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ARTICLE INFO ABSTRACT

Keywords: We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales
Biodiversity over which the ocean interior varies in terms of biodiversity and function. An integrated approach was neces-
BiUgeégfﬁPhiCﬁl ecoregions sary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A
Oceanic biomes panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate
Gyres . expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature,
Oxygen minimum zones L. . . . . . . . is .
Upwelling salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional bio-

logical and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion
boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic
while 13 are ‘distant neritic.” While each is driven by a complex of controlling factors, the putative primary
driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust
mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this
study will prove to be a useful and timely input to policy planning and management for conservation of deep-
pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are
expected to be broadly similar in composition, and hence can inform application of ecosystem-based
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management approaches, marine spatial planning and the distribution and spacing of networks of representative

protected areas.

1. Introduction

The open oceans and deep seas (> 200 m depth) cover the majority
of the Earth’s surface area and habitat volume. Within these, the vast
deep-pelagic habitat between the sunlit layers (upper 200 m) and the
seafloor is the largest and least-understood environment on our planet
(Webb et al.,, 2010). This habitat contains the mesopelagic
(200-1000 m depth) and bathypelagic (water column > 1000 m depth)
zones, though the precise depth at which these zones transition is
variable, and vertical connectivity across this transition appears to be
the rule rather than the exception at larger spatiotemporal scales
(Sutton, 2013).

The importance of pelagic ecosystems to services supporting life on
Earth, such as carbon cycling, are widely acknowledged but poorly
understood (Robinson et al., 2010; St. John et al., 2016). Our limited
knowledge of these ecosystems is increasingly problematic as they may
be vulnerable to global issues such as climate warming, deoxygenation,
acidification, commercial fishing, seabed mining, and other threats
with unknown potential for feedback to the climate system (Sarmiento
et al., 2004; Koslow et al., 2011; Ramirez-Llodra et al., 2011;
Mengerink et al., 2014).

That the deep pelagial represents a critical gap in our knowledge of
global ocean biodiversity has become abundantly clear as various in-
ternational initiatives attempt to identify important or sensitive areas in
the open oceans and deep seas-such as Ecologically or Biologically
Significant Areas (EBSAs) in the high seas (CBD, 2009; Dunn et al.,
2014), Vulnerable Marine Ecosystems in relation to deep-sea fisheries
(FAO, 2009) and Particularly Sensitive Sea Areas in relation to shipping
(IMO, 2005). The value of global biogeographies as a key first step in
meeting targets for representative protection of the world’s oceans is
recognized (Lourie and Vincent, 2004), but such initiatives have pri-
marily focused on benthic habitats or the epipelagic zone, necessitated
by the limited availability of data and synthetic analyses of deep-pe-
lagic ecosystems (Webb et al., 2010). Such classifications concentrate
on the upper water column (Longhurst, 1998, 2007; Spalding et al.,
2012) or the seafloor (UNESCO, 2009; Watling et al., 2013). As stated
in the Global Open Oceans and Deep Seabed (GOODS) biogeographic
classification, which was developed in 2007, “available information on
taxonomic patterns or even of the abiotic drivers of such patterns re-
mains so poor that it is unlikely that any distinct and global scale
classification of deep-pelagic biogeography is possible at the present
time” (UNESCO, 2009). However, as more data become available on
deep-pelagic communities there are opportunities for new global bio-
geographic analyses to support these policy processes.

Based on present knowledge and available biotic and abiotic data-
sets on deep-pelagic ecosystems, we here propose a biogeographical
classification schema for the mesopelagic zone, with the explicit proviso
that the sparsity and spatiotemporally biased nature of mesopelagic
data are why expert maps are still required in under-sampled areas of
the ocean. We present this as a ‘current state of knowledge’ framework
against which future data/analyses can be used to: 1) refine boundary
locations and dynamics as spatiotemporal information accumulates; 2)
investigate these dynamics to better understand the mechanisms un-
derlying pelagic boundaries; and 3) provide a guide to the regional
scales over which the deep-pelagic ocean varies in terms of biodiversity
and function, thereby informing global conservation efforts. Also, the
ecoregions proposed in this study could be used as a biogeographical
framework in further studies to quantify potential anthropogenic per-
turbation in deep-pelagic ecosystems.
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2. Methods

Rigorous quantitative analyses of taxonomic and environmental
data for the deep-pelagic zone on a global scale are currently impeded
by the spatially patchy and inconsistent manner of data collection over
large areas, and because less than 1% of this enormous habitat has been
sampled (Webb et al., 2010; Mora et al., 2011; Appeltans et al., 2012;
Costello et al., 2012; Higgs and Attrill, 2015; St John et al., 2016).
Hence this classification was accomplished by collating expert knowl-
edge on distributional patterns of pelagic fauna or regions relative to
environmental data felt to be important ecological drivers. A modified
Delphi Method (Linstone and Turoff, 2002) was employed during a
workshop held in July 2013 in Glasgow, Scotland, where a panel of
experts provided information regarding the biogeography of various
regions of the world’s oceans, facilitators provided a summary of in-
formation, and panelists as a group reviewed this summary. The overall
goal of the Delphi process as applied to this study was to lead the expert
panel to consensus by an iterative exchange of information via a process
coordinator. During this exchange, a GIS was used to display data and
project a map on to a white board where the experts could interact with
it when describing potential boundaries. This process mimicked the one
used in the Convention on Biological Diversity’s regional workshops to
describe Ecologically or Biologically significant areas (Bax et al., 2016)
and other expert-driven stakeholder processes. Higher weight was given
to information produced from time-series data as opposed to shorter
duration studies.

The panel constituency represented expertise in a suite of requisite
disciplines: descriptive and numerical physical oceanography, geospa-
tial mapping, marine ecology, organismal biology, and deep-pelagic
taxonomy. Panel taxonomic/ecological expertise in a broad spectrum of
taxa was encompassed (e.g., gelatinous zooplankton, chaetognaths,
molluscs, crustaceans, and fishes), as different pelagic taxa exhibit
different distributional dynamics; more mobile, longer-lived animals
generally have larger ranges than smaller, more planktonic organisms
(van der Spoel, 1994). Also, biogeographical boundaries can be asym-
metrical/semi-permeable with respect to specific assemblage compo-
nents. For example, subpolar fronts can be sharp distributional
boundaries for warm-water pelagic fishes, whereas cold-water pelagic
fishes can extend across these boundaries via subtropical submergence
(e.g., Sutton et al., 2013).

In order to align this effort with the GOODS classification and
subsequent updates (UNESCO, 2009; Watling et al., 2013), the meso-
pelagic biogeography was based on ecoregions. Ecoregions are areas of
ocean that contain geographically distinct assemblages of natural
communities and species (Spalding et al., 2007). These ecoregions host
distinct species assemblages that are presumed to share a common
history of co-evolution. This unit of biogeographic classification should
not be equated with individual faunal ranges or distribution patterns,
the latter being defined as the occupation of a range by two or more
species. The biogeographic classification presented here relates to the
daytime distribution of large-scale mesopelagic faunal communities.
We consider daytime distributions as defining the mesopelagic fauna,
given that a large portion of this fauna occurs in the epipelagic at night
due to diel vertical migration. This classification does not consider the
biogeography of the epipelagic fauna. Though we present ecoregion
boundaries as static lines on a map, we wholly acknowledge the po-
tential for seasonal movement of the transition zones based on epipe-
lagic plankton dynamics (e.g., spring blooms at high latitudes) and
seasonal water column stratification/destratification. The strength of
seasonality at mesopelagic depths at specific locations is unknown for
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most of the worlds’ oceans, so the lines placed here were guided by
concordance with mean annual physical oceanographic characteristics.

2.1. Data used for the biogeographic classification

2.1.1. Water masses

A core understanding among oceanic biogeographers is that meso-
pelagic faunal distributions and boundaries are influenced by en-
vironmental conditions within water masses and circulation distribu-
tions. Although very few pelagic species are restricted to one water
mass, studies of pelagic biogeography have consistently shown the
concordance of large-scale pelagic assemblage distributions and the
distribution of water masses (e.g., McGowan, 1974; Backus, 1986;
Goetze and Ohman, 2010; Olivar et al., 2017). Temperature, salinity
and dissolved oxygen data from the World Ocean Atlas (2009) and the
CARS model (CARS, 2009) were used, as these parameters adequately
delineate large-scale water masses and have been among the most
consistently measured globally. The data were extracted at 200, 500,
750, and 1000 m depths, based on parameters of known biophysical
significance, including light environment (Menzel and Ryther, 1959),
depth of permanent thermocline (Lewitus and Broenkow, 1985), and
depths of diel vertical migration (Vinogradov, 1997), respectively. In
addition to being readily available on a global scale, these variables are
thought to be key ecological drivers, or proxies for faunal community
structure or abundance. Other variables are likely to be important at
smaller spatial scales, but the focus here is on the broader ecoregion
scale.

Investigation of individual variables at specific depths and cluster
analyses of multiple variables across multiple depths were used to help
identify biogeographic ecoregion boundaries. In ArcGIS, a non-hier-
archical, iterative self-organizing clustering procedure (ISODATA; Ball
and Hall,1965; Richards, 1986) was used to identify groups of cells with
similar temperature, salinity and dissolved oxygen characteristics
across a range of depths (200, 500 and 750 m, Fig. 1). The depths were
chosen a priori based on known biophysical significance (e.g., light
environment, permanent thermocline, diel vertical migration). The
number of clusters was limited to 10 to avoid “over-splitting” the data
at greater depths where there is lower variability in oceanographic
parameters. The algorithm iteratively designated an arbitrary mean for
each cluster and then assigned each 0.5° gridcell from the CARS dataset
to the cluster with the closest mean. A new cluster mean was calculated
based on all the gridcells assigned to a given cluster. The process was
repeated until the number of pixels migrating between iterations was
small. The final clusters were mapped and displayed on a whiteboard
for discussion by workshop participants. Existing water mass classifi-
cations (e.g. Talley et al., 2011), based largely on global-scale hydro-
graphic programs such as the World Ocean Circulation Experiment
Hydrographic Program, were referenced when interpreting the cluster

Clusters I + NN > N = N + NN N N 7 1 [« [ o O v
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results. An adaptive process based on discussions around the projected
ArcGIS maps produced subsequent cluster analyses. This process was
particularly useful as a starting point for discussion of the location of
ecoregion boundaries.

2.1.2. Oxygen minimum zones (OMZs)

Extreme OMZs were regarded as one of the strongest environmental
drivers of certain biogeographical ecoregions (e.g., Stramma et al.,
2008). An OMZ ecoregion was defined by values of less than 0.5 ml 17!
dissolved oxygen concentration, a value that limits the distribution of
many mesopelagic taxa (Vinogradov, 1997; Childress and Seibel, 1998).
OMZs were extracted from the CARS and WOA in ArcGIS by delineating
the 0.5ml1~! contour at 500 m depth (near the mid-point of the me-
sopelagic zone), although considerable variability is seen in the hor-
izontal extent of OMZs as a function of depth within the mesopelagic
zone (Fig. 2).

2.1.3. Temperature extremes

It is well-established that temperature plays a key role in the evo-
lution and establishment of faunal distribution patterns. Extremes of
temperature were defined by values less than 0.5 °C (‘below normal,’
Vinogradov, 1970) and greater than 10 °C. These low and high ex-
tremes are proxies for faunal communities that have origins or asso-
ciations with polar and equatorial region water masses, respectively.
Similar to the oxygen minimum zones, these areas were delineated in
ArcGIS by extracting their respective contour lines at various depths.

2.1.4. Surface water productivity

As for epipelagic ecosystems (Longhurst, 1995, 1998, 2007), pri-
mary production in surface waters is a demonstrated driver of meso-
pelagic community biogeography (e.g., Schmid et al., 2000a, 2000b).
We used global-scale production characteristics to define oceanic do-
mains, into which ecoregions were organized.

2.1.5. Biotic partitioning

Where participants knew of very strong faunal community breaks or
regions, perhaps driven primarily by biotic interactions, these were
included by delineating the breaks on the map displayed on the white
board, and then georectifying pictures of the white board map.
Examples are listed in the ecoregion accounts. The participants ac-
knowledged the potential for unknown discontinuities which are not
taken into account here; these would provide the impetus for future
updates.

2.2. Caveats

There are several qualifications that are associated with the data
used. Predominant among these are data gaps, both geographically

Fig. 1. Plot of 10 clusters values derived from the ISODATA
analysis of global 0.5° resolution temperature, salinity and dis-
solved oxygen layers from the CARS (2009) model.
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( —— 200m Contour

Fig. 2. Delineation of the OMZ region (0.5ml1~" O,) in the
eastern Pacific Ocean, extracted from the CARS (2009) model in
500m Contour ArcGIS at the 200 m, 500 m, and 1000 m depth horizons.

- 1000m Contour

(e.g., Southern Pacific; www.iobis.org) and vertically (e.g., deeper than
200 m; Fig. 2 in Webb et al., 2010). For example, substantial areas
within the ecoregions we propose are very poorly sampled, with little or
no mesopelagic faunal data available (Fig. 3). Even in regions where
research surveys have been conducted, sampling biases hamper synth-
eses of available data, as all midwater sampling techniques are in-
herently selective (e.g., Omori and Hamner, 1982; Robison, 2009;
Heino et al., 2011). Seasonal life history cycles, especially ontogenetic
depth zonation, obscure full knowledge of faunal distributions. Lastly,
seasonal variations in both environmental conditions and sampling

intensity vary widely by region, with many databases (e.g., OBIS)
heavily skewed toward summer sampling.

3. Results

The biogeographic classification presented here defines 33 ecor-
egions (Fig. 4, Table 1), depicting the daytime distribution of large-
scale mesopelagic faunal communities. These are generally at the
oceanic basin or sub-basin level which reflect the scale of oceanic water
mass and current characteristics, although there are also more

Fig. 3. Ocean Biogeographic Information System (OBIS) records
aggregated to 5° cells in the world ocean by two depth zones: (a)
0-200 m, (b) 200-1000 m. Data from OBIS (2015). Heat map
spectrum describes the number of records on a log scale: from
light orange = > 10 to dark red (> 1,000,000).

[ 1<10[_J<100[__]<1,000 ] <10,000 ] <100,000 [ <1,000,000 [FE] >1,000,000.000
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Fig. 4. Proposed mesopelagic ecoregions of the world’s oceans. The numbers are simply for reference, and relate to the geographical names used in Table 1. Areas with depths less than

200 m shaded in black.

restricted ecoregions driven by a localized combination of factors. We
have organized our ecoregions by oceanic biome (Beklemishev, 1971;
Longhurst, 1995) in order to express the commonalities of the ecor-
egions on the largest scale before listing differences. These biomes
(polar, westerly winds, trade wind, distant neritic) are based primarily
on seasonal biophysical coupling of turbulence, stratification, and ir-
radiance, all of which define primary productivity dynamics which
drive ecosystem structure. Of the 33 ecoregions recognized, 20 are
oceanic while 13 are distant neritic (i.e., oceanic assemblages asso-
ciated primarily with continental shelf breaks, sensu Beklemishev,
1971). Biome characteristics and included ecoregions are given below
(with ecoregion numbers listed as in Table 1, Fig. 4).

3.1. Polar biome — 3 ecoregions

In this biome the depth of water column mixing in winter is con-
strained by ice cover. A shallow pycnocline in spring/summer promotes
algal blooms, while light limitation keeps primary productivity low the
rest of year. The polar domain includes the Arctic (1), Northwest
Atlantic Subarctic (21), and Southern Ocean/Antarctic (33) ecoregions.
Each ecoregion contains a distinct cold-water mesopelagic fauna (e.g.,
fishes, squids, and crustaceans) that is depauperate relative to adjacent,
lower latitude waters.

3.2. Westerly winds biome — 10 ecoregions

This biome is characterized by large seasonal changes in mixed
layer depth due to high westerly wind stress in winter. Within this
biome there are two groups of ecoregions based on the timing of
maximum primary productivity. Two ecoregions, the Subarctic Pacific
(2) and North Atlantic Drift (22), exhibit large spring and secondary
late summer/autumn algal blooms, with light and/or nutrient limita-
tion over the remainder of year. Eight ecoregions exhibit maximum
algal production in winter, with nutrient limitation only. These include
the South Central Pacific (8), Coral Sea (9), Tasman (10), Southern
Indian Ocean (19), Mediterranean (25), South Atlantic (30),
Circumglobal Subtropical Front (31) and Subantarctic (32) ecoregions.

89

Seasonality is weak to moderate in all of these except the Subantarctic
ecoregion.

3.3. Trade wind biome — 7 ecoregions

This biome is characterized by small amplitude responses to trade
wind variability. Seasonality is weak and primary production is low. A
deep chlorophyll maximum is a persistent feature. This biome includes
the Northern Central Pacific (4), Eastern Tropical Pacific (5), Equatorial
Pacific (6), Southeast Asian Pocket basins (13), Gulf of Mexico (23),
Central North Atlantic (24), and Tropical/West Equatorial Atlantic (27)
ecoregions. The ecoregions included here contain the most diverse
mesopelagic assemblages in the world’s oceans (detailed in following
ecoregion descriptions).

3.4. Distant neritic biome — 13 ecoregions

In this biome oceanic circulation is modified by interaction with
continental topography and associated coastal winds. Algal blooms are
produced by terrestrial runoff, upwelling, tidal rectification, and other
oceanic margin effects. Three groups of ecoregions are included. The
California Current (3), Peru Upwelling/Humboldt Current (7), Agulhas
Current (20), Mauritania/Cape Verde (26), Guinea Basin/East
Equatorial Atlantic (28), and Benguela Upwelling (29) ecoregions are
sites of pulsed production at coastal divergences when winds are fa-
vorable for upwelling. The Arabian Sea (14), Bay of Bengal (15), Somali
Current (16), Northern Indian Ocean (17), and Mid-Indian Ocean (18)
ecoregions exhibit large amplitude responses to tradewind reversals
which drive monsoon reversals. In these ecoregions rapid responses to
nutrient pulses are due to upwelling and/or offshore Ekman suction.
The last group includes the Sea of Japan (11) and China Sea (12)
‘marginal sea’ ecoregions, each with unique features due to surrounding
topography. The ecoregions included here contain a high proportion of
‘pseudoceanic’ mesopelagic species, i.e. species from primarily meso-
pelagic families whose distributions are centered along continental
shelf breaks.
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Summary of mesopelagic ecoregion descriptions (ecoregion numbers as in Fig. 4).
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Ecoregion Ecoregion name Physical geography Biotic characterization
number
1 Arctic Cold, low salinity water. Circulation restricted by land 20% endemic zooplankton fauna; depauperatemicronekton/nekton
masses. fauna
2 Subarctic Pacific Productive waters, permanent halocline in offshore Very few species in common with Pacific Central gyres.
regions. Low diversity
3 California Current Productive system driven by seasonal coastal upwelling.  Distinctive fauna, some endemism. Faunal change at tip of Baja
Peninsula.
4 Northern Central Pacific Gyre system bounded by North Equatorial and Kuroshio ~ Oligotrophic; fauna distinct from that of central Equatorial Pacific.
Currents.
5 Eastern Tropical Pacific Extensive stratification, shallow thermocline and very Eutrophic; endemic species adapted to low oxygen.
low oxygen.
6 Equatorial Pacific Complex of both eastward and westward currents; zones = Mesopelagic fauna differs markedly from gyres to north and south.
of convergence and divergence, semi-permanent Dominant species rare in gyres.
upwelling.
7 Peru Upwelling/Humboldt = Northward flow of surface waters of subantarctic origin;  Highly productive zone. Sharp faunal transition at western edge of
Current strong upwelling. Peru Current.
8 Southern Central Pacific Gyral analog to that of North Pacific. Oligotrophic; fauna distinct from N. Pacific gyre, lower biomass.
9 Coral Sea Core associated with North Queensland Current and the Distinct mesopelagic fish fauna, notably lanternfishes.
Coral Sea gyre.
10 Tasman Sea Semi-enclosed circulation bounded by the Tasman Front.  Fish fauna includes temperate species, with greater diversity than
Coral Sea ecoregion.
11 Sea of Japan Atidal; very cold deep waters (0.5 °C). Depauperate mesopelagic fauna.
12 South China Sea Deep, warm marginal sea, exchanges with Kuroshio. Very speciose fish fauna, with species not found in the east.
13 Southeast Asian Pocket Very deep (> 4000 m) basins of the Indo-Malayan Unique Indo-Pacific fauna. Celebes Sea and Sulu Sea may constitute
basins Archipelago, Sulu, Celebes, and Banda Seas. Complex distinct ecoregions.ecoregions.
oceanography due to topography. Mesopelagic fauna includes epipelagic taxa due to high
temperatures.
Mesopelagic fauna includes epipelagic taxa due to high
temperatures.
14 Arabian Sea Highly seasonal: upwelling during the SW Monsoon, Very productive; biodiversity intermediate, but abundance, biomass
convective overturn during the NE Monsoon. OMZ and dominance of few species is extremely high.
region.
15 Bay of Bengal Smallest of four major OMZ regions, separated from Mesopelagic fauna adapted to low oxygen concentrations; some
Arabian Sea. endemism.
16 Somali Current Seasonal monsoon conditions, with strong upwelling. Southern boundary based on mesopelagic fish transition.
17 Northern Indian Ocean Gyre system affected by complex seafloor topography. Fish fauna distinct from Southern Indian Ocean; endemic crustacean
species.
18 Mid-Indian Ocean Broad frontal band with a characteristic TSO signature. More productive than the Northern Indian Ocean ecoregion, with
diverse mesopelagic fish fauna.
19 Southern Indian Ocean Broad band of subtropical surface waters north of Oligotrophic; mesopelagic fish diversity and biomass are lowest here
Subtropical Front. Well oxygenated. relative to the rest of the Indian Ocean
20 Agulhas Current Largest western boundary current in the world ocean, Enhanced productivity; fauna reflects combination of subantarctic
drives upwelling to the south. and tropical spp.
21 Northwest Atlantic Only major ocean region with deep-water connection High seasonal productivity; distinct cold-water assemblages.
Subarctic with the Arctic.
22 North Atlantic Drift Eddy field region, expanding eastwards as the Transition ecotone with admixture of boreal and subtropical species.
continuation of the Gulf Stream.
23 Gulf of Mexico Enclosed, deep sea; flow dominated by the Loop Current.  Extremely diverse ecotonal fauna of tropical, subtropical and
temperate taxa.
24 Central North Atlantic Broad area of warm and consistent TSO conditions, Faunal composition distinct from the North Atlantic Drift and
including the Sargasso Sea. Equatorial Atlantic.
25 Mediterranean Landlocked, with single shallow strait; deep waters Depauperate mesopelagic fauna. 2nd-most abundant mesopelagic
uniformly warm and highly saline. fish species is endemic.
26 Mauritania/Cape Verde Upwelling region. Discrete faunal communities, including endemics and relict
populations of “cool water” taxa.
27 Tropical and West Easterly winds cause divergence and upwelling. Oligotrophic except for regions of upwelling. Distinct cephalopod
Equatorial Atlantic fauna.
28 Guinea Basin and East Trade wind reversal causes shoaling of pycnocline High diversity of mesopelagic fish and cephalopods except in OMZ
Equatorial Atlantic (Atlantic monsoon analog). Marked OMZ at about 400 m.  areas.
29 Benguela Upwelling Strong upwelling system, severe seasonal OMZ. Highly productive; fauna strongly pseudo-oceanic. High cephalopod
diversity.
30 South Atlantic Gyral system of complex circulation affected by local Mostly oligotrophic except for borders. Fauna includes sister species
topography (e.g., Walvis Ridge and Rio Grande Rise). of North Atlantic gyre taxa.
31 Circumglobal Subtropical Broad convergence band of subtropical and subantarctic ~ Highly productive with distinct deep-pelagic micronekton and
Front waters. Frontal zone highly variable. zooplankton assemblages.
32 Subantarctic waters Zone between the Antarctic Polar and Subtropical Fronts,  High productivity; deep- pelagic fauna either confined to, or
characterized by cold, low salinity waters. centered within the Subantarctic Front; high number of endemic
species.
33 Antarctic/Southern Ocean Cold, dense bottom water. The Polar Front is a strong Highly productive seasonally; high zooplankton endemism,

barrier (and may be a separate ecoregion).

mesopelagic micronekton diversity is low, no endemics.
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3.4.1. Mesopelagic ecoregions and their description
3.4.1.1. Arctic.

About half of the area of the Arctic is represented by shallow seas,
which generates the most obvious faunal community separation
between the oceanic fauna inhabiting the central basins and the
neritic fauna found in shelf habitats. Primary communication with
other oceans at mesopelagic depths occurs via the Northeast Atlantic.
Circulation is restricted by the Eurasian and American land-masses,
such that exchange with other ocean basins is limited (Bluhm et al.,
2011). Studies of zooplankton communities have found the Arctic
ecoregion as a whole resembles that of the inflowing Atlantic, but
with 15-20% of Arctic mesopelagic species being endemic (e.g.,
Kosobokova and Hirche, 2000). With respect to mesopelagic
micronekton and nekton, the Arctic ecoregion is a depauperate
version of the North Atlantic. This nature is exemplified by the
absence in the core of the Arctic of the lanternfish family
Myctophidae, a ubiquitous mesopelagic fish taxon found in all other
oceans (Backus et al., 1977; Catul et al., 2011). Within the Arctic,
temperatures at 200 m appear to be a better predictor of mesopelagic
faunal distributions (Btachowiak-Samotyk, 2008).

3.4.1.2. Pacific Subarctic.

This ecoregion includes the northern and western North Pacific, plus
the Bering Sea, Alaskan gyre, and northern California Current. The
offshore oceanic part of the Subarctic is a large HNLC (high nitrate low
chlorophyll) region. Temperature and salinity minima are found at the
surface (Willis, 1984), with a permanent halocline near 110 m. Light
and iron limit phytoplankton growth. There is a strong seasonal (spring)
productivity peak, but in contrast to the North Atlantic subarctic spring
bloom there are short term phytoplankton oscillations rather than a
single seasonal chlorophyll biomass peak. Phytoplankton abundance is
kept in check by protozoan grazers that are in turn grazed on by large
copepods. Some of these copepods have large seasonal diapausing
populations at mesopelagic depths, with young stages shoaling to feed
on products of the spring bloom (summarized in Miller and Wheeler,
2012). The southern boundary is the Subarctic front, with steep
horizontal gradients of salinity, temperature and chlorophyll (Park
et al., 1967; Roden, 1972, 1977), sound scattering layers, copepod
species, and animal biomass (Donaldson and Pearcy, 1972). The Pacific
Subarctic has very few mesopelagic fish species in common with central
Pacific gyres, equatorial waters, or the Eastern Tropical Pacific (Barnett,
1984). It is strongly dominated by a few species, such as the lanternfish
Stenobrachius leucopsarus, whose relative abundance appears
remarkably consistent in the western North Pacific over decades of
study (50% of total assemblage; Willis, 1984; Sinclair and Stabeno,
2002). In addition, deep-sea smelts (Bathylagidae) such as Leuroglossus
schmidti, Bathylagus pacificus and Pseudobathylagus milleri are very
abundant (Sinclair and Stabeno, 2002). Within the Subarctic front,
denser Subarctic water subsides under lighter Central waters, and this is
reflected in the fish fauna taken from various depths (Willis, 1984). This
vertical difference in biogeographic affinity highlights the complexity
of determining pelagic biogeographic schemes in a truly three-
dimensional environment.

In the western North Pacific there are transitional waters located
between the subarctic and subtropical fronts, i.e. the Oyashio and
Kuroshio fronts, respectively (Roden, 1991; Oyashio-Kuroshio interac-
tion region of Longhurst, 1998), with extremely complex hydrography.
These conditions sustain high productivity (and thus are included in
this ecoregion and in the Subarctic water ecoregion of Brodeur and
Yamamura (2005)) into which highly migratory pelagic fishes migrate
in spring/summer for spawning and nursery habitat (Sassa and
Kawaguchi, 2004). In general, transition waters in the western North
Pacific appear to be more diverse than Subarctic waters with less
dominance (e.g., dominant lanternfish, Diaphus theta, a typical subarctic
species, represented ~ 16% of total fish assemblage; Sassa et al., 2002).
In contrast with the west, eastern North Pacific transition waters are
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much less complex, except during El Nifo conditions (Hernandez-
Trujillo, 1999; Hood et al., 1990).

3.4.1.3. California Current.

This is a productive system driven by seasonal coastal upwelling
(Hickey, 1979, 1998; Checkley and Barth, 2009) and strong interannual
variability of horizontal advection of cold, low salinity, waters rich in
nutrients from the north (Bernal and McGowan, 1981; Bernal, 1981;
Chelton et al., 1982). Surface flows are to the south but a deep
northward, strongly seasonal undercurrent probably assists in
maintaining some populations in this ecoregion (Johnson and
Checkley, 2004). The northern boundary of this ecoregion is marked
by the intersection of the 7 °C isotherm with the top of the permanent
halocline in the region of the Subarctic Current. There is a zone of
faunal change at the southern tip of Baja Peninsula as cool, lower
salinity water is warmed and mixed with subtropical water (Sverdrup
et al., 1942; Brewer, 1973). Behaving almost as an “ecotone* of three
other distinct biogeographic ecoregions, the assemblage composition of
this ecoregion is much less spatiotemporally predictable than those of
the central gyres (Barnett, 1983).

Several species of fishes and invertebrates are endemic to either the
California Current ecoregion (Krygier and Pearcy, 1981; Jefferts, 1982)
or the Subarctic/California Current ecoregions (Brinton, 1962; Ebeling,
1962). The northern section represents the southern limit of many
Subarctic Pacific species (Brewer, 1973; Wasmer, 1972). Likewise, the
southern region of this ecoregion represents the northern limit of many
Eastern Tropical Pacific species (Brewer, 1973). For example, the dra-
gonfish Tactostoma macropus occurs almost exclusively to the north of
Point Conception, while its ecological counterpart Stomias atriventer is
only found to the south (Robison, 2004). In contrast, two additional
stomiids, Chauliodus macouni and Idiacanthus antrostomus, occur in
abundance throughout the California Current ecoregion. The Transi-
tional Zone waters (sensu Dodimead et al., 1963) off California contain
faunal components of Pacific Subarctic,North Central Pacific, and
Equatorial waters (Lavenberg and Ebeling, 1967; Brewer, 1973). Some
faunal components of the basins and canyons off California may be non-
reproductive, expatriate populations from both the north and south.
The Gulf of California deep-pelagic fish fauna is abundant but with
relatively low species diversity and a largely ETP affinity (Robison,
1972). Environmental parameters in the Gulf, particularly its well-de-
veloped oxygen minimum zone (Gilly et al., 2013), may be limiting for
a number of Northern Central Pacific and California Current species
(Brewer, 1973).

3.4.1.4. Northern Central Pacific.

This ecoregion largely corresponds to the oligotrophic
(40 g Cm™2yr~!) Northern Pacific gyre system. It is bounded to the
south by the North Equatorial Current and to the north by the Kuroshio
Current and Kuroshio Extension. Mesopelagic fish species diversity is
high, with low intra- and interannual variability in assemblage
composition (Barnett, 1983), suggesting limited advective processes
and a high degree of biological regulation. Dominance of the fish genus
Cyclothone is pronounced (Maynard et al., 1975). The fauna differ from
that in the central Equatorial Pacific band along the equator (White,
1994; Clarke, 1987) and differ markedly from that found in the
Subarctic waters to the north (Brodeur and Yamamura, 2005).
Copepods in the gyre also show high diversity (over 200 species) and
stable vertical distributions and community structure (McGowan and
Walker, 1979).

3.4.1.5. Eastern Tropical Pacific.

The Eastern Tropical Pacific (ETP) ecoregion is characterized by
high productivity and extensive layering of water masses, especially by
a shallow, abrupt thermocline and an OMZ with very low oxygen at
mesopelagic depths (Fiedler and Talley, 2006). There is also substantial
variability associated with ENSO and other climatic cycles that
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influences the shoreward extent of the low oxygen water (Chavez et al.,
2003; Chavez and Messié, 2009). While warm-water epipelagic taxa are
widely distributed across the entire equatorial and subtropical region,
ETP midwater taxa and diel vertical migrators must be adapted to these
extreme and abrupt depth gradients (McGowan, 1974). Consequently,
ETP mesopelagic faunal distributions are characterized by many
endemic taxa which are usually very rare in oceanic waters (Pierrot-
Bults and Angel, 2012) or by hiatuses in the distribution of tropical
species (e.g. Reid et al., 1978; Brinton, 1979; Fernandez-Alamo and
Farber-Lorda, 2006). There are also vertical associations with oxygen
gradients (e.g. Longhurst, 1967; Sameoto, 1986; Vinogradov et al.,
1991; Saltzman and Wishner, 1997; Escribano et al., 2009; Wishner
et al., 2013). The ETP ecoregion blends beyond about 130°W with
characteristic Equatorial ecoregion conditions. There are several
euphausiid species (Brinton, 1962) as well as lanternfishes such as
Diogenichthys laternatus that are present in the gyres but are dominant in
the ETP ecoregion (Brodeur and Yamamura, 2005; Evseenko and
Shtaut, 2005).

3.4.1.6. Equatorial Pacific.

This ecoregion is characterized by a complex of both eastward and
westward currents, with zones of convergence and divergence (Kessler,
2006). A narrow productive band exists between equatorial current and
counter-current conditions to the north and south, sustained by semi-
permanent upwelling. Due to its planetary forcing the central equatorial
Pacific is distinctive in being the only truly oceanic area in the world
ocean where upwelling and concomitant high primary production are
not strongly seasonal. Mesopelagic fauna of this ecoregion differ
markedly from gyral assemblages found in the Northern and Southern
Central ecoregions (Barnett, 1984). Grandperrin and Rivaton (1966)
studied the deep-pelagic fishes taken in a transect along the equator
from the Galapagos (~ 92°E) to 160°E and reported four longitudinal
faunal zones, belying a complex equatorial system with variations in
dissolved oxygen and primary productivity as principal environmental
drivers. Vertical migration between opposing currents may maintain
the geographic integrity of this ecoregion. Three deep-pelagic fish
species in this ecoregion, Cyclothone signata, C. acclinidens, and
Sternoptyx obscura, are rare or absent from the oligotrophic central
gyres but are abundant in the California Current (Ebeling et al., 1970)
and the Peru Current (Craddock and Mead, 1970), where surface
temperatures are lower than at the equator or in the gyres, but where
temperatures at depth are equivalent, and productivity is high (Barnett,
1984).

On a finer scale, Hartmann and Clarke (1975) and Clarke (1987)
suggested the presence of a distinct change in the mesopelagic fish
faunas within the Equatorial Pacific, between Hawaii and Tahiti, with a
North Equatorial component occurring between 14.5°N and 7°N and an
Equatorial component between 7°N and 3°S. The former contained
species endemic to the eastern Pacific, with most of these occurring in
the core of the Eastern Tropical Pacific, and many also in the California
and Peru Currents. The latter component contained species of Indo-
Pacific affinity. The faunal division between the two components did
not seem to be related to currents, as the boundary occurred in the
middle of the equatorial water mass. The authors suggested that the
North Equatorial component contained species adapted to low oxygen,
and the Equatorial component contained species adapted to high pro-
ductivity.

3.4.1.7. Peru Upwelling/Humboldt Current.

This ecoregion has a predominant northward flow of surface waters
of subantarctic origin and strong upwelling of cool nutrient-rich
subsurface waters of equatorial origin. Along the coast of Peru and
northern and central Chile, upwelling is localized and its occurrence
changes from being mostly continuous in Peru and northern Chile to a
more seasonal pattern in southern-central Chile (Thiel et al., 2007).
Low oxygen waters are present at depth due to high surface
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productivity that is two to three orders of magnitude higher, and an
oxygen consumption rate that is an order of magnitude higher, than
that of oligotrophic waters offshore (Packard et al., 1983). Primary
production rates along the Chilean coast are estimated as similar to
those of Peru (4000 mg Cm™2>d~'; Walsh, 1981) and about 2-fold
higher than those of the California upwelling system
(1000-2500 mg Cm™~2d™!; Olivieri and Chavez, 2000). The depth
and shoreward extent of the low oxygen water varies with the ENSO
cycle. It is a highly productive zone for epi- and mesopelagic fishes and
there is some faunal continuity with the Equatorial Pacific. Craddock
and Mead (1970) described the faunal change along an east-west
transect from the Peru Current toward the central South Pacific at
34°S, in the southern part of the South Central Pacific ecoregion. They
showed a change from a species assemblage found in southern mixed
waters of high productivity to a central water assemblage. The faunal
break centers at about 80°W, roughly the western edge of the Peru
Current.

3.4.1.8. Southern Central Pacific.

This ecoregion is broadly defined as the oligotrophic southern
Pacific gyre system. Like the Northern Central Pacific, this southern
ecoregion is rich in mesopelagic fish species, with low intra- and
interannual variability in assemblage composition (Barnett, 1983),
suggesting limited advective processes and a high degree of biological
regulation. Dominant fish species are similar to the Northern Central
Pacific, but the rank order of abundance is shifted on a scale greater
than that seen within either area alone (Barnett, 1983). It has been
estimated that approximately half of the total mesopelagic species of
both Central ecoregions are shared, the remainder being unique to
either ecoregion (Barnett, 1984). Overall biomass is also significantly
lower in the Southern Central Pacific relative to the Northern Pacific
(Barnett, 1984).

On a finer scale, Bertrand et al. (1999) found a maximum abun-
dance of deep-pelagic micronekton (fishes, shrimps and cephalopods)
between 11 and 14°S in the French Polynesian region, a zone of weak
convergence where oxygen is no longer limiting at depth (see their
Fig. 12).

3.4.1.9. Coral Sea.

This ecoregion occurs off the northeastern sector of Australia. The
core is associated with the North Queensland Current and the Coral Sea
gyre (Dennis et al., 2001; Schiller et al., 2008). It has a characteristic
lanternfish fauna, with approximately half of the species being
restricted to tropical waters and not extending past the Capricorn
boundary (~ 25°S; Flynn and Marshall, 2013). The Capricorn boundary,
identified for a range of marine taxa (Last et al., 2005; Hooper and
Ekins, 2005), corresponds to a zone of formation and intensification of
the East Australian Current (Weeks et al., 2010).

3.4.1.10. Tasman Sea.

Deepening of the Tasman Seaway was one of four major tectonic
events during the Cenozoic Era that had a major impact on ocean
circulation and pelagic biogeographical patterns (Angel, 1997). The
Tasman Front is an asymmetric zoogeographic boundary off eastern
and southeastern Australia, being semi-permeable to northern species
but strong for southern species. The lanternfish fauna differs from that
of the Coral Sea ecoregion (Flynn and Marshall, 2013), having more
species (including temperate species) and extending south to the
Tasman Front (33-35°S). There is a gradient in lanternfish biomass
across the Tasman Sea from west to east, and indications that there is
greater recycling of nutrients in eastern areas of the Tasman Sea, but
this sub-basin gradient is not sufficient to split the ecoregion
longitudinally (Flynn and Kloser, 2012).

3.4.1.11. Sea of Japan.
The Sea of Japan lies between the Asian mainland, the Japanese
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archipelago and the Russian island of Sakhalin. It has almost no tides
due to its nearly complete enclosure from the Pacific Ocean, being
shielded from the Kuroshio and Oyashio Currents by the landmasses of
Japan. Its salinity is lower (~ 34 psu) than the Pacific, but its dissolved
oxygen is elevated, though the oxygen content has decreased over the
past 60 years (Chen et al., 1999). Surface temperatures vary greatly
(> 20 °C) between regions and seasons, while deep layers are very cold
(0.5 °Q). It is the second-coldest sea in the world with an average water
temperature of 0.9 °C, compared to that of the Arctic Ocean at 0.7 °C.

Because of the shallow straits connecting the sea with the Pacific
(< 140 m), the mesopelagic fauna is depauperate (Ikeda and Hirakawa,
1998). Only seven copepod species, two euphausiids, one mysid, two
hyperiid amphipods, one chaetognath, one micronektonic fish, and one
ostracod species regularly inhabit the extremely cold mesopelagic
depths (Ikeda and Hirakawa, 1998). The giant squid Architeuthis ap-
parently moves regularly into the Sea of Japan and resides at meso-
pelagic depths (Wada et al.,, 2015). Most of the deep-sea fauna are
boreal or sub-boreal species that are only now evolving into a deep-sea
mode of life — so-called “secondary deep sea species.” Surveys using
nets and more recently submersibles (Lindsay and Hunt, 2005) have
revealed that the species diversity of both midwater gelatinous meso-
and macro-plankton is also extremely low. Vinogradov (1970) reported
‘disturbed’ vertical distributions of fauna, with deep-pelagic organisms
found shallower than usual.

3.4.1.12. South China Sea.

The South China Sea is one of the deepest and largest marginal seas
in the Western Pacific Ocean. It is connected to the Pacific Ocean by the
Bashi Channel, Taiwan and Mindolo Straits, etc., and to the Indian
Ocean by the Strait of Malacca. It is mostly in the tropical zone and
exchanges warm water of the Kuroshio Current through the Bashi
Channel. The mesopelagic fish fauna is species-rich (e.g., 62 species of
lanternfishes; Yang and Huang, 1986) and of tropical/subtropical
affinity, sharing a majority of species with the Central and Eastern
Tropical Pacific, though with a number of species not found to the east
(Yang and Huang, 1986). Only a few South China Sea fish species are
found in the Subarctic Pacific.

3.4.1.13. Indo-Pacific “Pocket” Basins.

This ecoregion encompasses the deep (> 4000 m) basins of the
Indo-Malayan Archipelago, the Sulu, Celebes (Sulawesi), and Banda
Seas. It is bounded by the Philippines, New Guinea, Indonesia and
Borneo and has the largest density of islands on Earth. Between the
island groups are pocket basins, areas of the seafloor that are
thousands of meters deep, yet isolated from each other by islands
and submerged ridges. The sill depths of some of these seas reach to
within a few hundred meters of the surface, effectively restricting the
exchange of some deep-living fauna. The deeper layers are
hydrographically distinct and hold a unique Indo-Pacific fauna
(Briggs, 1974; Robison and Hamner, 2009). This ecoregion is
characterized by low productivity (<150gCm~2yr~!) and
complex oceanography within the basins due to strong currents,
trench topography, seamounts and active volcanic islands (US
NOAA,1991). The shallow sill depths of the Sulu Sea (400 m)
prevent the inflow of cold deep water from the Pacific and Indian
Oceans, resulting in high temperatures (10 °C) at great depth. As with
the Mediterranean and Red Seas, where water temperatures at depth
are also elevated, many usually common deep-sea taxa are absent
(Grossmann et al., 2015). The closed nature of the Sulu Sea in
particular is reflected in the characteristic temperature-salinity-
oxygen signature of its water as well as the presence of distinct
‘morphotypes’ of cosmopolitan species in this basin, such as the
viperfish, Chauliodus sloani (Haffner, 1952). The Sulu Sea likely
comprises an ecologically distinct habitat within the Indo-Malayan
region, and may warrant separation as a separate ecoregion on a
global scale. Although the species rosters of the other basins are not as
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distinct, these basins none-the-less comprise a distinct biogeographic
ecoregion, in part due to their complex oceanography and semi-closed
nature. This oceanographic complexity and isothermal nature have
been cited to explain the unusual presence of meso- and bathypelagic
organisms in the epipelagic zone (Gordon et al., 1994). van der Spoel
and Schalk (1988) reported both meso- and bathypelagic fauna
occurring in the upper 100 m of the eastern Banda Sea and Aru
Basin during both Southeast and Northwest Monsoon seasons, which
they ascribed to the effect of deep mixing (Gordon, 1986) and
deviating temperatures at depth. As a large, complex marine
ecosystem in total, this ecoregion holds a unique Indo-Pacific fauna,
including endemic species (Gopalakrishnan, 1975; Pietsch, 1979) and
inter-ecoregion species (Nafpaktitis et al., 1995), though inter-basin
differences are notable.

3.4.1.14. Arabian Sea.

The Arabian Sea is one of the most productive oceanic areas in the
world (Ryther et al., 1966), but production is highly seasonal and
associated with the monsoonal cycle. Productivity and vertical flux
peak during the summer Southwest Monsoon as a result of wind-driven
upwelling but are also surprisingly high during the Northeast Monsoon
as a result of deep convective overturn (Barber et al., 2001). This
seasonality causes unique and highly variable circulation systems
(Wyrtki, 1973; Qasim, 1982). A five-fold increase in zooplankton
displacement volumes has been reported during the Southwest
Monsoon relative to the Spring Intermonsoon in the western Arabian
Sea, but at mesopelagic depths there was little seasonal change in
zooplankton biomass during the JGOFS (Joint Global Ocean Flux
Study) year of sampling in 1995 (Wishner et al., 1998). There is a
strong onshore-offshore gradient in zooplankton biomass, however.
Seasonal severe OMZ intensification occurs (Herring et al., 1998), with
oxygen levels less than 1.0 ml17?! as far south as 10°N. The northern
Arabian Sea encompasses the thickest of the major oxygen-poor layers,
with values below 0.1 ml1~! from 100 m to 1000 m (Qasim, 1982).
Mesopelagic fish diversity is intermediate in the Arabian Sea relative to
equatorial waters of the Northern Indian Ocean (Cohen, 1986), but fish
abundance and biomass, particularly the lanternfish Benthosema
pterotum, can locally be very high (Gjgsaeter, 1984). The nearshore
areas of the Arabian Sea hold nearly one half of the mesopelagic fish
biomass recorded from the western Indian Ocean (Gjgsaeter and
Kawaguchi, 1980).

3.4.1.15. Bay of Bengal.

This ecoregion is the smallest of the four extensive regions with
oxygen levels below 0.1 mlL™! (the others being the California
Current, the Arabian Sea and the ETP, listed in increasing size). The
ecoregion is bounded in the south by equatorial waters, and has
separate low oxygen levels from the Arabian Sea Ecoregion. Both the
Bay of Bengal and the Arabian Sea share a limited deep-pelagic endemic
fish fauna, such as Chauliodus pammelas, (Gibbs and Hurwitz, 1967) and
Astronesthes lamellosus (Goodyear and Gibbs, 1969).

3.4.1.16. Somali Current.

The Somali Current ecoregion is affected by seasonal monsoon
conditions and has strong seasonal upwelling and productivity. The
deep-diapausing copepod Calanoides carinatus comes to the surface to
feed and reproduce during the Southwest Monsoon (Smith et al., 1998).
Its boundary coincides with the western edge of its namesake current,
where the dominant mesopelagic fish species (Benthosema fibulatum)
transitions to that of the Arabian Sea (Benthosema pterotum) (Gjosaeter,
1984). Overall mesopelagic fish abundance and biomass is much lower
than those of the Arabian Sea and Bay of Bengal, but higher than those
of the oceanic Indian Ocean (Gjgsaeter and Kawaguchi, 1980). One of
the dominant fishes in this ecoregion, Diaphus watasei, usually caught
near the bottom day and night, is among the largest lanternfishes
known (Nafpaktitus, 1978).
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3.4.1.17. Northern Indian Ocean.

This ecoregion is the northern gyre system of the Indian Ocean,
~10°N-4°S, affected by various currents at depth and complex seafloor
topography. Primary productivity is fairly low except in localized areas
of upwelling. Mesopelagic fish faunal composition is distinctive relative
to that of the Southern Indian Ocean. Mesopelagic fish diversity is
highest in equatorial waters, but offset to the south, coincident with the
interface between the South Equatorial Current and the Central water
masses (Wyrtki, 1973; Cohen, 1986), an area that also supports
enhanced seabird and tuna abundance.

3.4.1.18. Mid-Indian Ocean.

This ecoregion encompasses a broad frontal band of the Indian
Ocean near the equatorial region, ~ 4-20°S, with a characteristic
temperature-salinity-oxygen (TSO) signature, and shoaling of the 10 °C
isotherm (above 500 m). Primary productivity is higher in this
ecoregion than in the Northern Indian Ocean ecoregion. This
ecoregion is well- oxygenated relative to the Arabian Sea, but less
oxygenated than the Southern Indian Ocean. This ecoregion contains a
diverse mesopelagic fish fauna (Craddock and Haedrich, 1973).

3.4.1.19. Southern Indian Ocean.

This ecoregion encompasses a broad band of subtropical surface
waters, ~ 20-40°S, north of the Subantarctic Convergence. Primary
production in this ecoregion is very low, less than 0.10gCm~™2d™!
(Craddock and Haedrich, 1973). The waters are well oxygenated, with
values exceeding 5.0 ml 1~ . Mesopelagic fish diversity and biomass are
lowest here relative to the rest of the Indian Ocean (Cohen, 1986). Fish
biomass, but not diversity, increases around 40°S, where water column
stratification eases and the thermocline shoals (Cohen, 1986). Ebeling
(1962) surveyed 135 species of circumglobal deep-pelagic fishes and
found that species living in this and the Mid-Indian Ocean Ecoregions
have a 45% overlap with the South Atlantic and 75% overlap with the
South Central Pacific. The pelagic fauna of the southwestern Indian
Ocean is influenced by seamounts and continental slopes of the
Southwest Indian Ocean Ridge. From Socotra Island at 12°N to
Walters Shoals at 33°S, 50-80% of the mesopelagic biomass at night
may be accounted for by benthopelagic shrimps of the genera Janicella,
Pasiphaea, Challengerosergia, and the lophogastrid genera Lophogaster,
Paralophogaster, and Echinomysis (Vereshchaka, unpubl.). As shown for
invertebrates in areas of the Pacific (Vereshchaka, 1990), the water
column at night in areas of the Southern Indian Ocean is dominated by
a specific benthopelagic fauna at distances of tens of kilometers around
topographic features (Vereshchaka, 1995), and thus this ecoregion
contains punctured areas where mesopelagic assemblages significantly
differ from those in the surrounding waters.

3.4.1.20. Agulhas Current.

The Agulhas Current (AC) is the western boundary current of the
southwest Indian Ocean, and is considered the largest western
boundary current in the world ocean (~ 100 Sv). It flows down the
east coast of Africa from 27°S to 40°S, where it is narrow and strong.
The zone of departure from the South African Coast is characterized by
complex patterns of vigorous fronts and eddies, the effects of which
extend below 1600 m depth (Bang, 1970; Lutjeharms, 1981). The AC
acts as a convergence zone, driving upwelling south of the current,
resulting in enhanced primary productivity (Mann and Lazier, 2006).
The faunal composition within this ecoregion reflects a combination of
deep-living subantarctic species and broadly tropical species whose
southern limit is extended by the AC (Hulley, 1989). The AC is one of
the likely dispersal routes between the temperate Pacific and Atlantic
habitats (Cermeno and Falkowski, 2009).

3.4.1.21. Northwest Atlantic Subarctic.
This ecoregion extends from the Arctic Circle to the North Atlantic
Subpolar Front. It is the only major ocean region that has a deep-water
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connection with the Arctic. This is the “subarctic” region of Backus
(1986), though his is much smaller. On smaller spatiotemporal scales
there is evidence that the Northwest Atlantic Subarctic has eastern and
western mesopelagic components, particularly on each side of the
relatively shallow Reykjanes Ridge (Sutton and Sigurdsson, 2008),
where wholesale changes of species abundance and dominance in the
fish fauna occurs. It has also been known for quite some time that the
northern boundary of many warm-water species varies considerably in
the eastern and western parts of this ecoregion (Krefft, 1976), being
much farther north on the eastern side.

3.4.1.22. North Atlantic Drift.

This ecoregion encompasses an eddy field region, expanding
eastwards and tracking the flow of the Gulf Stream. It is a weak
transition zone for northern species due to tropical submergence, but a
strong boundary for southern species (Sutton et al., 2013; Vecchione
et al., 2015). The Subpolar Front is the northern boundary, though this
boundary becomes quite weak east of about 25°W (Krefft, 1976). This
ecoregion corresponds to the “northern temperate” region of Backus
et al. (1977), though their region was much larger and contained six
ecoregions (Slope Water, Northern Gyre, Azores/Britain, Mediterranean
Outflow, Western Mediterranean, and Eastern Mediterranean). In the
far western North Atlantic, the Slope Water fauna described in Jahn and
Backus (1976) appears to be an oceanic rim ecotone between the
Northern Sargasso Sea region of the North Atlantic Drift ecoregion and
the Labrador region of the Northwest Atlantic Subarctic ecoregion.

3.4.1.23. Gulf of Mexico.

The Gulf of Mexico (GoM) is physically distinct from the Caribbean
Sea and the Central North Atlantic due to geography (the ‘American
Mediterranean’), the influence of tropical waters and winter cooling,
and the influence of a large river system (Mississippi River). The GoM
has been called a place of ‘special interest’ to pelagic biogeographers
(Backus et al., 1977; Backus, 1986; Bangma and Haedrich, 2008). It is a
faunal region of high diversity with respect to mesozooplankton
(Hopkins, 1982), and mesopelagic micronekton: fishes (Gartner et al.,
1988), macrocrustaceans (Flock and Hopkins, 1992; Hopkins and
Sutton, 1998; Judkins, 2014), and molluscs (Passarella and Hopkins,
1991; Judkins et al., 2009). Bangma and Haedrich (2008) found the
GoM to be higher in abundance, biomass, and richness than adjacent
oceanic regions (Caribbean and Sargasso Sea), supporting the
classification of the GoM as a unique biogeographic ecoregion
(Backus et al., 1977; Gartner et al., 1989). The 794 fish species
collected in deep-pelagic surveys after the Deepwater Horizon oil spill
rank the GoM as one of the four most-speciose oceanic ichthyofaunas
known in the World Ocean (Sutton et al., 2017).

3.4.1.24. Central North Atlantic.

This ecoregions encompasses a broad area of consistent TSO
conditions across the northern Atlantic. Its faunal assemblage
composition is distinct from the North Atlantic Drift and Equatorial
Atlantic ecoregions, but with regional variation in relative abundances.
At its northern extent the borders of cold- and warm-water species
occur close together near 42°N (Backus et al., 1977). On the western
side the ecoregion includes the Caribbean Sea (‘Atlantic Tropical
Region’ of Backus et al., 1977) and the Sargasso Sea (‘Atlantic
Subtropical Region’ of Backus et al, 1977). On smaller
spatiotemporal scales Backus et al. (1977) classified northern and
southern subtropical regions within the Central North Atlantic, The
former geographic border is detectable but weak relative to ecoregion
borders, especially when one considers deep-mesopelagic and
bathypelagic taxa (Sutton et al., 2010). Fasham and Foxton (1979), in
an analysis of pelagic decapod crustacean distribution in the eastern
North Atlantic, did not detect this faunal boundary in their datasets.
Hulley and Krefft (1985) also questioned this subdivision based on
results of the 1979-Sargasso Sea Expedition of the R/V Anton Dohrn,
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finding differences in species abundances rather than faunal
composition. There is evidence of east/west regional differences
within the Central North Atlantic, with some species restricted to one
side or the other (e.g., Maurolicus weitzmani in the western North
Atlantic, Argyropelecus olfersi in the eastern). The Azores Front, a
permanent southerly return branch of the Gulf Stream, has been
reported as a biogeographic boundary separating Eastern and Western
Atlantic Water (Gould, 1985; Domanski, 1986), though the effect is
primarily on abundance and rank order versus presence/absence of
species.

3.4.1.25. Mediterranean.

The Mediterranean is the youngest of our ecoregions, formed about
5.3 million years ago when a narrow strait opened to the Atlantic
flooding the then nearly dry Eastern and Western basins (Garcia-
Castellanos et al., 2009) to an average depth of 1500 m. Now a
nearly land-locked sea, it is connected to the Atlantic by the shallow
(300 m) Strait of Gibraltar. Evaporation greatly exceeds precipitation
and drives the circulation. The deep waters of the Mediterranean are
universally warm (12-13°C) and of relatively high salinity. The
mesopelagic plankton is much sparser than that of the Atlantic, likely
due to the warm temperatures that result in low survival of immigrants
(Casanova, 1986). The larger fauna is depauperate relative to the North
Atlantic Drift and Mauritanian ecoregions (see below), an observation
typified by both lanternfishes (Myctophidae) and pelagic decapod
shrimps (Judkins, 2014). The Mediterranean has 17 resident
lanternfishes and 10 decapod species compared to 44 lanternfishes
(Sutton et al., 2008) and 44 shrimp in the mid-North Atlantic, 53
lanternfishes (McEachran and Fechhelm, 1998) and 35 decapods in the
Gulf of Mexico, and 67 lanternfishes in the South Atlantic subtropical
region (Backus et al., 1977). The biomass of mesopelagic fishes is low,
even more so in the Eastern Basin than in the Western (Goodyear et al.,
1975). The second- most abundant mesopelagic fish species (Cyclothone
pygmaea; Badcock, 1984) and a deep-living decapod (Sergestes eximia;
Judkins, 2014) are endemic.

3.4.1.26. Mauritania/Cape Verde.

This ecoregion encompasses an area around the Cape Verde Plateau
with the Canary Current at the surface. Two production regimes exist
within this ecoregion, based on the source of upwelled water: north of
Cape Blanc is North Atlantic Central Water, which is less nutrient-rich;
south of Cape Blanc is South Atlantic Central Water, which is ‘older’ and
more nutrient-rich (Gardner, 1977). Backus (1986) recognized this
ecoregion as a ‘special biogeographic region.” It has discrete
mesopelagic faunal communities, including relict populations of far
northern Atlantic deep-pelagic species (euphausiid Meganyctiphanes
norvegica and lanternfish Benthosema glaciale), Mediterranean species
(Badcock, 1981), as well as other eastern Atlantic “cool water group”
lanternfishes (Badcock, 1981; Hulley, 1981; Zelck and Klein, 1995) and
pelagic decapods (Judkins, 2014). Olivar et al. (2017) analyzed samples
from 12 stations across the tropical and equatorial Atlantic (NW Africa
to Brazil), and found that the mesopelafc fish species richness off the
Cape Blanc upwelling was the highest for the entire survey, reflecting
the mixed faunas of tropical and subtropical and even temperate
origins. This ecoregion also contains endemic species, such as the
lanternfish Lampadena pontifex (Backus et al., 1977) and, along with the
Benguela Upwelling ecoregion (see below), the decapods Sergia
manningorum, DeoSergestes pediformis, ParaSergestes diapontius and
Gennadas brevirostris (Judkins, 2014). The two ecoregions also share a
strong on-slope component, with obligatory and facultative
pseudoceanic lanternfish species as dominants (e.g., Diaphus taaningi
and Diaphus dumerilii; Badcock, 1981). Morphological analyses of fish
species co-occurring in the Mediterranean and Canary Current regions
suggest that gene flow between these ecoregions must be strongly
maintained, much more so than that between the Mediterranean and
the North Atlantic (Badcock, 1981).
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3.4.1.27. Tropical and West Equatorial Atlantic.

In this ecoregion easterly winds cause divergence and upwelling,
creating a narrow band of high productivity. This ecoregion is
influenced by the northern boundary of the South Atlantic subtropical
gyre, the effect of which is noticeable from the surface down to 1500 m
(Schmid et al., 2000a, 2000b), and the south equatorial current and
counter current system. Marked differences in the combination of TSO
characteristics from adjacent areas are evident and this mesopelagic
ecoregion is in general alignment with epipelagic boundaries. There is
some differentiation of water properties at around 30°W, the eastern
part being cooler, of lower salinity and having less dissolved oxygen
than the western part (Backus et al., 1977). This ecoregion is mostly
oligotrophic, with mean productivity lower than 90 g Cm™2 yr~! (Rosa
et al.,, 2008). Over the Mid-Atlantic ridge mesopelagic fish and
cephalopod assemblages were found to be of lower abundance and
species-poor compared with adjacent areas (Kobyliansky et al., 2010;
Perez et al., 2012).

Hygophum reinhardtii, H. taaningi, Lobianchia gemellarii and
Myctophum selenops were the only lanternfishes of Atlantic tropical
distribution found in this region, as were the squids Cycloteuthis sirventi
and Neoteuthis thielei. This cephalopod fauna impoverishment was also
reported by Rosa et al. (2008), and attributed to the low primary pro-
ductivity at the surface. Over the slope of the Brazilian margin
(500-2000 m), Haimovici et al. (2007) differentiated two pelagic ce-
phalopod assemblages to the north and to the south of 18°S, roughly the
boundary between this ecoregion and the South Atlantic ecoregion.

3.4.1.28. Guinea Basin and East Equatorial Atlantic.

This ecoregion is characterized by a summer phytoplankton bloom
induced by the intensification of the Southeast trade winds that cause
the deepening of the thermocline in the West Equatorial Atlantic while
shoaling in the East (Longhurst, 1993). Surface chlorophyll a
concentrations vary between 0.66 and 1.28 mg m™~ between June and
December and the region is also influenced by the coastal upwelling
system off Namibia and the plume produced by the Congo River runoff
(Pérez et al., 2005). The western boundary of this ecoregion is based on
the distribution of dissolved oxygen, as there is a marked OMZ in the
equatorial eastern Atlantic at about 400 m. The mesopelagic fish
species richness of this ecoregion is high; the lanternfish species
number equals that of the Gulf of Mexico (Backus et al., 1977).
Diverse and abundant assemblages of mesopelagic fishes and
cephalopods occur over the Romanche Fracture Zone
(00°34'N-04°48’S), with a strong sound-scattering layer (Kobyliansky
et al., 2010; Perez et al., 2012). Among the dominant taxa of this region
are the fish species Cyclothone alba, Sternoptyx diaphana and Vinciguerria
nimbaria, and the cephalopods Liocranchia reinhardti and Vitreledonella
richardi.

3.4.1.29. Benguela Upwelling.

The Benguela Ecoregion is a strong upwelling system supporting
highly productive pelagic fisheries and severe seasonal OMZ formation.
The mean annual primary productivity exceeds 300 g Cm ™2y~ ! (Rosa
et al.,, 2008). Its mesopelagic fauna has a strong pseudo-oceanic
component (Hulley and Lutjeharms, 1989) owing to the proximity of
the frontal system to the shelf break in the southern region of the
ecoregion. The dominant pseudo-oceanic lanternfish, Lampanyctodes
hectoris, is so abundant it has been fished commercially and at one time
accounted for over 9% of the annual pelagic catch by the South African
purse-seine fishery (Hulley and Prosch, 1987). Some deep-pelagic
crustacean taxa (e.g., Euphausia hanseni and Nyctiphanes capensis)
appear to have life cycles that retain the populations within the
upwelling cells (Barange and Pillar, 1992). This ecoregion contains
the highest diversity of oceanic cephalopods in the Atlantic (Rosa et al.,
2008) and the diversity of pelagic decapods, with 46 of 91 Atlantic
species, is likewise high (Judkins, 2014). The landward distribution of
oceanic species and the seaward distribution of pseudo-oceanic species
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in the central and southern Benguela regions (28-35°S) largely coincide
with the 800-m isobath. The areal extent of the Benguela Upwelling
ecoregion is seasonal, being pinched during summer and early autumn
between the Angola and Agulhas Current systems (Shannon, 1985,
1986), and expanding in the winter.

3.4.1.30. South Atlantic.

This ecoregion is a region of complex circulation features. Circulation
at depth is affected by local topography (e.g., Walvis Ridge and Rio
Grande Rise), potentially deeper than 1000 m. The ecoregion mostly
contains oligotrophic waters of the South Atlantic subtropical gyre,
except for borders with the Subtropical Convergence zone (to the south)
and the Benguela upwelling zone (to the east). Nesis (2003) defined this
zone as “south subtropical,” citing the Atlantic distribution limits meso-
and bathypelagic squid species (e.g., Teuthowenia pellucida and
Histioteuthis macrohista). Zooplankton communities are distinctive
across the southern Atlantic. Mesopelagic fish and shrimp faunas differ
from those of the Central North Atlantic, though the difference often is
manifest as “sister species” (i.e., within a genus or closely related genera)
replacements. For example, the caridean shrimp Acanthephyra kingsleyi is
replaced at about 18°S by A. quadrispinosa, which in turn is replaced by
A. pelagica at about 35°S (Fasham and Foxton, 1979; Judkins, 2014).
Deep-pelagic (meso- and bathypelagic) species richness is higher in the
South Atlantic Central waters than in the North Atlantic (Fock, 2009),
possibly a function of paleo-ecology; the deepwater pathways between
the Pacific and Atlantic ~50 million years ago channeled through the
South Atlantic before entering the North Atlantic (Mironov, 2006).
Kobyliansky et al. (2010) reported high mesopelagic fish diversity in
the vicinity of the Walvis Ridge, both over abyssal depths and the
summits of a large guyot. In the latter, samples comprised a mixture of
tropical, subtropical and subantarctic lanternfish species. These authors
attributed the increased fish diversity (and abundance) to the proximity
of a transition zone, the highly productive subtropical convergence.
Similar results were shown for the cephalopod fauna with a high
diversity of Atlantic tropical-subtropical species, including
Stigmatoteuthis arcturi, Histioteuthis corona, H. meleagroteuthis and H.
reversa (Perez et al., 2012).

3.4.1.31. Circumglobal Subtropical Front.

This ecoregion encompasses a broad band in the Southern
hemisphere where there is convergence of subtropical and
subantarctic waters. The Subtropical Convergence is associated with
strong horizontal gradients in the upper 400 m, with associated high
hydrographic variability (Sokolov and Rintoul, 2002; Hamilton, 2006).
At some places and times the frontal zone is relatively permanent and
intense (e.g., south of Africa), while in others it can be ephemeral and
weak (e.g., mid-Atlantic sector; Barange et al., 1998) or highly dynamic
(e.g. the eddy-filled region in SW Atlantic; Stramma and Peterson,
1990). This ecoregion is highly productive; in the South Atlantic
satellite-derived mean annual estimates of primary productivity
exceed 190 gCm ™~ 2yr! (Rosa et al., 2008), with associated high
diversity of oceanic cephalopods in the Atlantic. In the Pacific sector,
Bekker and Evseenko (1986) defined the southern boundary between
40 and 42°S, determined from an analysis of the shift in species
composition of mesopelagic fishes and their larvae.

Pakhomov et al. (1994) identified distinct deep-pelagic micronekton
and zooplankton assemblages in the Subtropical Convergence and
Subantarctic Front (their Antarctic Polar Front) off Southern Africa.
Robertson et al. (1978) and McGinnis (1982) also identified the Sub-
tropical Convergence as a biogeographic boundary off New Zealand and
south of 30°S, respectively. In all areas of the Subtropical Convergence
cross-frontal mixing of subtropical and Antarctic species across a wide
range of trophic levels is prevalent (Barange et al., 1998).

3.4.1.32. Subantarctic.
This ecoregion encompasses an oceanographic zone (“notalian”
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zone of Parin et al., 1974; “Westwind Drift” of Krefft, 1974) between
the Antarctic Polar and Subtropical Fronts (Condie and Dunn, 2006).
The zone is characterized by cold, low salinity waters. This ecoregion
contains deep-pelagic fauna either confined to, or centered within the
Subantarctic Front and extending south into the Southern Ocean
(Krefft, 1976; Flynn and Marshall, 2013). In the Pacific sector, Bekker
and Evseenko (1986) defined the southern boundary between 50 and
54°S (depending on longitude) and the northern boundary around
40-42°S, determined from an analysis of changes in species
composition of mesopelagic fishes and their larvae. For zooplankton,
the subantarctic waters are the only truly oceanic region with
substantial endemism (Pierrot-Bults and Angel, 2012). Across taxa,
the high number of species endemic to the ecoregion corroborates its
distinctiveness. Krefft (1976) postulated that the speciose, circumglobal
Southern Ocean midwater fish fauna originated in the subantarctic
water mass. In the Australasian region, species with Subantarctic
affinities may extend north into the Subtropical and Tasman Sea
ecoregions if they occupy deeper strata (i.e., “tropical submergence”;
Thorne, 1972; van der Spoel and Schalk, 1988).

3.4.1.33. Antarctic/Southern Ocean.

This ecoregion is characterized hydrographically by cold, dense
water, and a strong eastward circumpolar current south of Antarctic
Convergence, which is the largest pelagic boundary of the world ocean
(Sournia, 1994). Some consider the Southern Ocean water mass to
include the waters listed in the previous two biogeographic ecoregions;
in this treatment we regard the seasonally fluctuating Antarctic
Convergence as separating the Southern Ocean biogeographic
ecoregion from those of other oceans due to the distinctive faunal
composition of the former relative to those of the latter. Unlike its
northern counterparts, where phytoplankton growth is primarily
limited by nitrate, the Southern Ocean is characterized by strong iron
limitation (Moore and Abbott, 2000; Cermefnio and Falkowski, 2009),
which in turn affects the distribution of higher trophic levels. As with
the Arctic, temperatures at 200 m appear to be a better predictor of
mesopelagic faunal distributions within the Southern Ocean than
surface temperature (Hulley, 1998; Koubbi et al., 2011). A similar
finding was indicated for Arctic zooplankton (Blachowiak-Samotyk,
2008). In general the mesopelagic fish species richness of the Southern
Ocean is low compared to other ocean basins (e.g., Macpherson (2002)
for Atlantic Ocean). When primarily benthic or benthopelagic taxa are
excluded (e.g., Notothenoidei, Zoarcidae, Liparidae), there appears to
be no exclusively Antarctic midwater fish fauna. However, the relative
contribution of deep-pelagic fishes to the total Antarctic fish fauna is
high, ~ 25% (Kock, 1992), and in areas outside the influence of
seasonal pack ice, i.e., areas not dominated by Euphausia superba
(Hempel, 1987), nekton diversity can be relatively high (Piatkowski
et al., 1994). Though early reports confirmed the circumpolarity of
Southern Ocean plankton species (Baker, 1954), more recent studies
have prompted the subdivision into “ecoregions.” For example, Koubbi
et al. (2011) suggested up to three pelagic ecoregions of the Indian
sector between the Subantarctic Front and the Subtropical Convergence
based on modelling of lanternfish distribution.

4. Discussion

In this paper we have integrated new and previous efforts to develop
a global biogeographical classification of the mesopelagial, designed to
mesh with the epipelagic and deep-benthic classifications developed as
parts of the GOODS biogeographic classification (UNESCO, 2009;
Spalding et al., 2012; Watling et al., 2013). In considering a biogeo-
graphic division of the global mesopelagial, given the data gaps we
have listed, one may ask, “Why now, and why is this important?” The
reasons are many, and relate to an increasing awareness of the im-
portant role of mesopelagic animals in the structure and function of the
global ocean. Mesopelagic fishes dominate the world’s total fish
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biomass and constitute a major component of the global carbon cycle.
Gjpsaeter and Kawaguchi, 1980 estimated their biomass at 1000 million
tons, but acoustic surveys now suggest that mesopelagic fish biomass
may be an order of magnitude higher (Kaartvedt et al., 2012). This
biomass, when combined with findings that energy transfer efficiency
from phytoplankton to fishes in the open ocean is higher than typically
assumed (Irigoien et al., 2014), suggests that mesopelagic fishes in
oceanic ecosystems may be respiring as much as 10% of the primary
production in the deep pelagial. The increased biomass estimate has
recently spawned increased interest in mesopelagic fisheries, with
Norway and Pakistan issuing new licenses to fish there (The Economist,
2017). Lastly, in terms of global biogeochemistry, marine fishes may
contribute up to 15% of total oceanic carbonate production in their
intestines (Wilson et al., 2009), while vertical migrators (fish, crusta-
ceans, cephalopods) play a major role in the active transport of carbon
to deeper waters (Steinberg et al., 2002; Bianchi et al., 2013).

A critical element of the biogeographical classification was con-
sideration of variability in both horizontal and vertical dimensions, as
illustrated in Fig. 2. The panel approach enabled and expert-opinion
consideration of this variability to produce a general scheme that we
believe will prove reasonably sound. Nevertheless, both vertical and
horizontal boundaries should be regarded as transitional zones (some-
times characterized by fronts, eddies and other mixing phenomena,
varying with depth and location) and not abrupt borders (Vecchione
et al., 2015). Ecoregion boundaries in some cases are thought to be
highly dynamic, such as the changing position of the Sub-Polar Front in
the North Atlantic. In addition to physical mixing processes, many pe-
lagic taxa can persist for appreciable periods of time when advected
into regions beyond their reproductive ranges (e.g., lanternfishes and
deep-sea smelts; Sassa et al., 2004). Thus, these diffuse and often
asymmetrical biogeographical boundaries apply primarily to ‘typical’
assemblages, rarely to individual species. It is also clear, as more data
on depth distributions of a range of taxa become available, that the
depth ranges encompassed by epi-, meso-, and bathy-pelagic zone de-
finitions are not borders, and species patterns vary with depth and taxa.
Our understanding of how trends may change within the mesopelagial
will no doubt evolve as more information is gathered on the deeper
bathyal fauna. Developing genetic approaches also offer considerable
promise for determining geographical relationships, and discovery of
cryptic species (e.g., Kulagin et al., 2014).

4.1. Comparisons with existing schema

Few global mesopelagic biogeographic classifications are directly
comparable to the one presented here. Most mesopelagic treatments are
confined to ocean basins or smaller scales, and most are taxon-specific.
Hoving et al. (2014) reviewed the state of biogeographical knowledge
of deep-sea cephalopods, but their account was structured by ocean
basin, and highlighted obvious geographical gaps in cephalopod stu-
dies. Vereshchaka et al. (2014) reviewed the global distribution of
mesopelagic shrimps (Sergestidae) and found that species of most me-
sopelagic genera are restricted to a single ocean. Brodeur and
Yamamura (2005) developed a biogeography for mesopelagic micro-
nekton in the North Pacific, and their divisions are similar to those
presented here at the largest scale. In their schema they divided our
Subarctic ecoregion into a northern Subarctic zone and southern
Transition zone. Such ‘zonal’ and ‘regional’ discrimination within our
ecoregion biogeographical level is also reflected in the delineation of 10
pelagic ‘regions’ in the North Atlantic by Backus et al. (1970). In a
follow-on paper, Backus and Craddock (1977) refer to these same de-
lineations as ‘provinces,” which were defined as ‘open waters of the
deep ocean in which the fauna is thought to be reasonably homo-
geneous.’ In this and later works (Backus et al., 1977; Backus, 1986) the
two terms were purposely undefined, other than to say that ‘provinces’
were subdivisions of ‘regions.” The resulting schema based on Atlantic
lanternfish distributions delineated seven faunal regions subdivided
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into 20 provinces. Aligning this with our structure, the 10 Atlantic
ecoregions conform reasonably well to their seven pelagic regions, with
some exceptions: we recognize the Mediterranean, Guinea/East Equa-
torial, and Benguela Upwelling ecoregions as being biogeographically
distinct, and our Atlantic subtropical gyre ecoregions are delimited by
equatorial upwelling. Judkins (2014) provides a perspective on taxo-
nomic specificity; his study of pelagic decapods from the same collec-
tions as those of Backus et al. (1977) recognized only five biogeo-
graphic patterns.

In considering the global distribution of 135 species of ‘warm-water’
deep-pelagic fishes, Ebeling (1967) described two main patterns: 1) that
of the equatorial water masses, and 2) that of the vertically stable
central water masses. In total, he recognized seven “primary zoogeo-
graphical regions”: Gulf of Mexico, Mediterranean, Atlantic Subarctic,
Circum-central/Tropical, Eastern Pacific Equatorial, Subarctic and
North Pacific Subarctic/Transitional. Aligning Ebeling’s (1967) schema
with ours, he recognized 14 of our 33 ecoregions, with the primary
differences being our discrimination of eight marginal seas and up-
welling regimes, and our georeferenced ecoregion boundaries.

Parin (1984) summarized previous studies of mesopelagic fish bio-
geography, citing the concordance of many species’ distributions with
the principal large-scale circulations, and with the transitional zones of
their interactions. He further described 12 types of ranges of mesope-
lagic fishes, many of which spanned multiple ecoregions listed in this
paper (e.g., ‘broadly tropical,’” ‘equatorial-central type’). He noted, “It
seems, however, that the recognition of water masses by temperature-salinity
indices is not sufficiently sensitive for revealing all pelagic habitats.” This
statement reiterated that of Backus et al. (1970): “Were the water mass
hypothesis sufficient, however, the zoogeography of the North Atlantic pe-
lagial would be very simple, for it consists solely of one water mass — the
North Atlantic Central Water. Our data indicate a far greater complexity.”
The classification presented here further refines this notion; the inter-
play between seasonality, export production, water column aerobic
respiration, proximity to continental shelves/topography, and the
nature of primary production (i.e., “new” vs. “recycled” production;
Dugdale and Goering, 1967) are likely drivers of biogeographical
ecoregion extent.

Proud et al. (2017) defined over 60 distinct provinces of mesope-
lagic organisms based on acoustically sensed deep-scattering layer
(DSL) characteristics (depth, vertical extent, and acoustic back-
scattering intensity). These authors chose a ten-class acoustic model (36
provinces) as corresponding most closely to existing mesopelagic bio-
geography. In large areas of the Pacific and Indian Oceans the 36-
province model has many of the same features as the present scheme,
but lack of data in the Atlantic Ocean, North Pacific and Northern In-
dian Ocean, along with their schema having no taxonomic component,
limit its comparability with a global mesopelagic biogeography. Their
acoustic schema, like our 33-ecoregion schema, revealed a biogeo-
graphic structure with more complexity than simple latitudinal banding
patterns. Given the disparate methodologies used, the biogeographic
patterns revealed by the two studies were similar in many regards,
emphasizing the importance of surface ocean processes on deep-pelagic
community structure.

Recent work by Sayre et al. (2017) stratified the ocean into physi-
cally and chemically distinct areas, based on analysis of temperature,
salinity, oxygen, nitrate, phosphate and silicate. They identified six
mesopelagic and seven bathyal pelagic “Ecological Marine Units”
(EMU) at 1000 m depth. The remaining 24 EMUs were epipelagic. This
schema has some similarities to the one we present, but has fewer re-
gions, and the same units often comprise several discrete areas which
may not include the same faunal communities because of geographical
separation.

An important element of the current work lies in the combination of
physical environmental data and biological information. Different en-
vironmental variables could have been used (as per Sayre et al., 2017)
but we felt that defining core water masses by temperature, salinity and
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oxygen was appropriate and biologically meaningful for mesopelagic
depths. Biological data were not specifically analyzed, but the knowl-
edge of panel members was used to synthesize patterns of a wide range
of taxa from both published studies and their familiarity with un-
published datasets. There remains a major problem with gaps in sam-
pling, but with time it is to be hoped more formal analyses can be
undertaken to test our classification.

4.2. Management applications

The first analytical step in any effort toward systematic conservation
planning is the consideration of the biogeographical context of the re-
gion in question (Roberts et al., 2003). It is fundamental to the appli-
cation of ecosystem-based management approaches, marine spatial
planning, and the development of representative networks of protected
areas (Rice et al., 2011). However, when we began this work no me-
sopelagic biogeography was available to the various ongoing inter-
governmental efforts aimed at global or regional conservation, though
Proud et al. (2017) recently used a hybrid of their and Longhurst's
biomes to predict future changes in biomass. While work remains to be
done to produce a truly three-dimensional, dynamic, mesopelagic bio-
geography, we believe that the classifications set forth in this study will
prove a useful, timely, and novel input to policy planning and man-
agement for conservation and sustainable use of deep-pelagic marine
biodiversity. In particular, it gives an indication of the spatial scale at
which faunal communities are expected to be broadly similar in com-
position, and it provides a contextual structure for prediction of future
changes resulting from climate change, environmental fluctuations, and
human-induced impacts. This mesopelagic biogeography extends the
depth range of our current global biogeographic knowledge, improves
our understanding of the nature of oceanic boundaries, and should
fundamentally shift the discussion over what is included when con-
sidering representative protection of the world’s oceans.
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