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Abstract 

Background: Accurate reconstruction of the morphology of single neurons is important 

for morphometric studies and for developing compartmental models. However, 

manual morphological reconstruction can be extremely time-consuming and error-

prone and algorithms for automatic reconstruction can be challenged when applied to 

neurons with a high density of extensively branching processes. 

New method: We present a procedure for semi-automatic reconstruction specifically 

adapted for densely branching neurons such as the AII amacrine cell found in 

mammalian retinas. We used whole cell recording to fill AII amacrine cells in rat 

retinal slices with fluorescent dyes and acquired digital image stacks with multi-

photon excitation microscopy. Our reconstruction algorithm combines elements of 

existing procedures, with segmentation based on adaptive thresholding and 

reconstruction based on a minimal spanning tree. We improved this workflow with an 

algorithm that reconnects neuron segments that are disconnected after adaptive 

thresholding, using paths extracted from the image stacks with the Fast Marching 

method. 

Results: By reducing the likelihood that disconnected segments were incorrectly 

connected to neighboring segments, our procedure generated excellent morphological 

reconstructions of AII amacrine cells. 

Comparison with existing methods: Reconstructing an AII amacrine cell required about 2 

hrs computing time, compared to 2-4 days for manual reconstruction. To evaluate the 

performance of our method relative to manual reconstruction, we performed detailed 

analysis using a measure of tree structure similarity (DIADEM score), the degree of 

projection area overlap (Dice coefficient), and branch statistics. 

Conclusions: We expect our procedure to be generally useful for morphological 

reconstruction of neurons filled with fluorescent dyes. 

 

 



 3 

1. Introduction 

Neurons are the fundamental building blocks of nervous systems, and the 

visualization, characterization and quantitative description of the morphology of single 

neurons are essential to understanding their structure-function relationships (for 

review, see Cuntz et al., 2014). Visualization of neuronal morphology can be performed 

with a multitude of different experimental methods, each with strengths and 

limitations, but for quantitative studies, digital reconstruction of the three-dimensional 

(3D) morphology is an essential step (Jaeger, 2001; Jacobs et al., 2010; Evers and Duch, 

2014). Such reconstructions have been crucial both for quantitative, morphometric 

analysis as well as for compartmental modeling of neuronal computation and signal 

processing (reviewed by Jaeger, 2001; Parekh and Ascoli, 2013). For the last 30 years or 

so, morphological reconstruction of single neuron morphology has meant manual 

reconstruction using computer-aided neuronal tracing software and light microscopic 

imaging (Glaser and Glaser, 1990; Turner et al., 1991; Meijering, 2010; Parekh & Ascoli, 

2013). Light microscopic imaging is either done simultaneously with the reconstruction 

or is used to acquire a digital image stack that is subsequently used for the 

reconstruction. However, such manual reconstructions can be extremely time-

consuming and can suffer from suboptimal accuracy. Accordingly, it becomes a 

challenge to generate high-quality morphological reconstructions of large numbers of 

neurons, e.g. to study morphological variation within and between different types of 

neurons and to study the organization of large, heterogeneous neural networks at 

cellular and subcellular resolution (e.g. Schneider et al., 2014; Zandt et al., 2016). 

 The difficulties and challenges of manual, computer-aided morphological 

reconstructions of single neurons have motivated a number of efforts aimed at 

automating digital morphological reconstruction (for recent reviews, see Donohue and 

Ascoli, 2011; Acciai et al., 2016). An additional motivation for such efforts has been the 

desire to make the process of reconstruction both less subjective and less prone to 

errors resulting from misinterpretations and operator fatigue. Some recently published 

methods have adopted algorithms and procedures based on well-established 
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principles of image processing, whereas others have developed new algorithms 

directly aimed at tackling challenges that are specifically linked to reconstructing 

neuronal morphologies (for examples, see Evers et al., 2005; Santamaría-Pang et al., 

2007, 2015; Losavio et al., 2008; Rodriguez et al., 2009; Cuntz et al., 2010, 2011; Chothani 

et al., 2011; Peng et al., 2011a; Türetken et al., 2011; Zhao et al., 2011; Myatt et al., 2012; 

Basu et al., 2013; Xiao and Peng, 2013; Feng et al., 2014). To foster development of new 

methods and algorithms, several initiatives have been launched, e.g. the DIADEM 

(Digital Reconstruction of Axonal and Dendritic Morphology; 

http://diademchallenge.org) challenge involving an international contest with 

monetary rewards (Ascoli et al., 2009; Gillette et al., 2011b). The DIADEM challenge 

has resulted in several published methods (see Gillette et al., 2011b) and a useful 

evaluation framework for comparing reconstructions to the corresponding manual 

"gold standard" reconstructions (Gillette et al., 2011a), as well as freely available data 

sets with light microscopic images of neuronal morphology (Brown et al., 2011). More 

recently, the BigNeuron project (http://bigneuron.org) was launched to establish an 

open platform and framework where automatic reconstruction methods can be ported 

to a common software platform, allowing them to be validated against large neuron 

datasets (Peng et al., 2015). In addition to such collaborative community projects, there 

are also important commercial developments with the goal of developing both semi-

automated and fully automated methods for single neuron reconstruction (e.g. 

Neurolucida 360 from MBF Bioscience and Imaris FilamentTracer from Bitplane).  

 A specific difficulty for developing robust algorithms for morphological 

reconstruction is that the performance of different algorithms may be challenged by 

specific neuron morphologies. The presence of multiple branching processes is 

common to almost all neurons, but the variability between different types of neurons is 

enormous, especially with respect to the dendritic processes (Ramón y Cajal 1909, 

1911). In the course of a project where we performed manual, computer-aided 

morphological reconstructions of rat retinal AII amacrine cells that had been filled with 

fluorescent dyes intracellularly and imaged with multi-photon excitation (MPE) 
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microscopy (Zandt et al., 2016), we became increasingly interested in supplementing 

our reconstructions with semi-automatic or fully automatic reconstructions. AII 

amacrine cells are small, narrow-field amacrine cells and found in all mammalian 

retinas. Whereas they are small cells, their processes branch extensively and the 

density, measured as the length/volume ratio, is very high (Zandt et al., 2016). Because 

we experienced limited success with both commercial and freely available (academic) 

software for automatic tracing, we have developed a method where we combined 

elements of other reconstruction procedures, with the goal of performing accurate 

semi-automatic reconstructions of these densely branching neurons. Briefly, we 

developed a reconstruction algorithm based on the TREES toolbox approach (Cuntz et 

al., 2010, 2011) and extended this with an algorithm for connecting disconnected 

neuron segments with image-extracted paths using the Fast Marching method 

(Sethian, 1996). To evaluate our method, we compared the results with those obtained 

by manual, computer-aided reconstructions using a measure of tree structure 

similarity (as implemented in the DIADEM metric; Gillette et al., 2011a), by calculating 

the degree of projection area overlap expressed by the Dice coefficient (Dice, 1945), and 

by analyzing the branch statistics. 

 

2. Materials and methods 

In this section we describe the materials and methods for cell preparation and MPE 

microscopic imaging, initial image enhancement by deconvolution and the removal of 

both recording pipette and extraneous fluorescence, with the latter caused by leakage 

of dye from the pipette and binding to dead cells and debris. We then provide details 

about the image segmentation, the morphological reconstruction process, and the 

conversion of the binary segmentations into a representation suitable for surface 

rendering and visual inspection. Finally, we describe the evaluation procedure used to 

compare the results obtained by automatic and manual segmentation. Although our 

procedure is semi-automatic, as opposed to fully automatic, we will henceforth refer to 
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it as automatic for simplicity. Unless otherwise noted, digital processing was 

performed with MATLAB (R2015b, MathWorks, Natick, MA, USA). 

 

2.1. Retinal slice preparation 

General aspects of the methods have previously been described in detail (Hartveit, 

1996; Zandt et al., 2016). Albino rats (female; 4 - 7 weeks postnatal) were deeply 

anaesthetized with isoflurane in oxygen and killed by cervical dislocation (procedure 

approved under the surveillance of the Norwegian Animal Research Authority). 

Retinal slices (100 - 200 µm thick) were visualized using a custom-modified "Movable 

Objective Microscope" (MOM; Sutter Instrument, Novato, CA, USA) with a ×20 water 

immersion objective (XLUMPLFL; 0.95 NA; Olympus) and infrared Dodt gradient 

contrast videomicroscopy (Luigs & Neumann, Ratingen, Germany; Dodt et al. 1998). 

Recordings were carried out at room temperature (22 - 25 °C). 

 

2.2. Solutions and electrophysiological recording 

The extracellular perfusing solution was continuously bubbled with 95% O2 - 5% CO2 

and had the following composition (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 

1 MgCl2, and 10 glucose, pH 7.4. The recording pipettes were filled with an 

intracellular solution of the following composition (in mM): 125 K-gluconate, 5 KCl, 8 

NaCl, 0.2 EGTA, 10 Hepes, 4 MgATP, and 0.4 Na3GTP (pH was adjusted to 7.3 with 

KOH). The pipette solution also contained Alexa Fluor 594 hydrazide (40 - 60 µM), as a 

sodium salt (Invitrogen / Molecular Probes). 

 Patch pipettes were pulled from thick-walled borosilicate glass (outer diameter, 

1.5 mm; inner diameter, 0.86 mm; BF150-86-10; Sutter Instrument) and the open tip 

resistance was 7 - 12 M" when filled with the intracellular solution. Whole cell voltage 

clamp recordings were performed with an EPC10-triple amplifier controlled by 

PatchMaster software (HEKA Elektronik, Lambrecht/Pfalz, Germany). During image 

acquisition, cells were voltage clamped at a holding potential of -60 mV (corrected for 

the liquid junction potential). 
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2.3. MPE microscopy and image acquisition 

MPE microscopy was performed as described in detail previously (Zandt et al., 2016). 

Briefly, fluorescence from neurons filled with Alexa 594 was imaged with the MOM 

equipped with a mode-locked Ti:sapphire laser (Mai Tai DeepSee; SpectraPhysics, 

Irvine, CA, USA) tuned to 810 nm. Scanning was performed by galvanometric scanners 

(XY, Cambridge Technology; Cambridge, MA, USA) with 3 mm mirrors. Fluorescence 

was detected by multialkali photomultiplier tubes (R6357, Hamamatsu Corp.; 

Bridgewater, NJ, USA) and the analog signals were digitized by an acquisition board 

(NI-6110E, National Instruments, Austin, TX, USA). The intensity of the laser light was 

attenuated and controlled by an electro-optic modulator (350-80LA with BK option; 

ConOptics, Danbury, CT, USA) driven by a 302RM amplifier (ConOptics). An image 

stack was acquired as a series of optical slices (each slice 1024 × 1024 pixels; XY pixel 

size from ~64 to ~83 nm) collected at a focal plane interval (Z) of 0.4 µm, satisfying 

Nyquist rate sampling (for details, see Zandt et al., 2016). At each focal plane, two 

images were averaged on-line to improve the signal-to-noise ratio. For each image 

stack, we acquired two channels, one for fluorescence light and one for IR light (laser 

scanning gradient contrast imaging; see Zandt et al., 2016). MPE microscopy and image 

acquisition were controlled by ScanImage software (version 3.8; Pologruto et al., 2003) 

running under MATLAB. 

 

2.4. Deconvolution 

The multi-channel image stacks were de-interleaved based on acquisition channels 

(using IGOR Pro, version 6, 64-bit, WaveMetrics, Lake Oswego, OR, USA) and saved as 

individual files (one per channel). Huygens Essential (version 4 64-bit; Scientific 

Volume Imaging, Hilversum, The Netherlands) was used to remove noise and reassign 

out-of-focus light with a theoretically calculated point spread function (PSF), using the 

Classic Maximum Likelihood Estimation (CMLE) deconvolution method. In addition, 

the Object Stabilizer module was used to align images along the Z-axis to compensate 
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for drift and mechanical instabilities. Processed image stacks were saved in 16-bit TIFF 

format, utilizing the whole dynamic range and used without further modifications for 

manual reconstruction. For automatic reconstruction, the files were converted in Fiji 

(Schindelin et al., 2012) to the NRRD format for easier handling in MATLAB. For an 

individual neuron, the same image stack was used for both the manual and the 

automated segmentations.  

 

2.5. Manual 3D morphological reconstruction 

Morphological reconstruction of the fluorescently labeled cells was done manually 

with computer-aided neuronal tracing software (Neurolucida; version 11 64-bit; MBF 

Bioscience, Williston, VT, USA; Glaser & Glaser, 1990) by one of the authors (BJZ). 3D 

reconstruction of the soma was performed by tracing it with multiple contours at a 

series of focal planes corresponding to different slices of the image stack. As the 

diameter of the thinnest processes of AII amacrine cells cannot be adequately resolved 

by light microscopy, we set the minimum diameter of any process to 0.23 µm (Zandt et 

al., 2016). To reduce the abrupt steps in the Z-direction that often are generated during 

manual reconstruction, we smoothed the reconstructed trees with the smooth_tree 

function in the TREES toolbox (Cuntz et al., 2011) (using default parameters, effective 

for the Z-coordinates). 

 

2.6. Image preprocessing 

Before the automated cell segmentation could be initiated, it was necessary to remove 

the image of the recording pipette used to fill the cell with fluorescent dye. During this 

step it was also advantageous to remove any extraneous fluorescence due to leakage 

from the pipette. If such false signals are not removed, they will be treated by the 

segmentation algorithm as if they belong to the cell, as their intensity can be 

considerably above background levels (see section 2.7 below). We found that the most 

expeditious way to remove both the pipette and such false signals was to manually 

circumscribe the area containing the soma and the dendritic tree in a frontal (XY) 
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maximum-intensity projection (MIP) of the image stack, using the getline function in 

MATLAB. This function allows the user to use a computer mouse to click on the MIP 

to determine the points of a polygon that will demarcate the region of interest. The 2D 

contour was extruded to a 3D volume of interest and image intensity values for voxels 

outside this volume were set to zero. At the same time, this procedure also demarcated 

the border between the soma and pipette. Before thresholding was used to perform an 

initial intensity segmentation of a cell, the image stack was smoothed by applying a 

coherence enhancing diffusion filter (Weickert, 1997). 

 

2.7. Initial intensity segmentation of the cell 

To segment the geometrically complex and intensity-varying dendritic tree, we applied 

adaptive thresholding. We used adaptive filter size r = [2.5, 2.5, 5] (µm). To prevent 

noise from being segmented, the adaptive threshold was increased by a constant equal 

to 5% of the maximum image intensity (i.e., the background addition for the adaptive 

thresholding routine was set to 0.05, cf. Hodneland et al., 2013). In thick structures with 

sizes comparable to the adaptive filter size, i.e. the soma and primary dendrite, 

indentations or holes would sometimes occur after adaptive thresholding. Therefore, a 

second segmentation was performed by applying a global threshold (heuristically set 

to 11% of the maximum image intensity), followed by morphological operations to 

identify the largest connected component. This resulted in a segmentation containing 

the soma and neck of the primary (apical) dendrite, in addition to the segmentation 

obtained from adaptive thresholding. The union of these two segmentations was 

constructed for further use. This procedure was followed by removal of components 

smaller than 20 voxels (which were regarded as noise). The next step was to connect 

the disconnected components generated by the initial segmentation. 

 

2.8. Fast Marching arrival times 
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The Fast Marching method is a versatile path extraction technique (Sethian, 1996) and 

was used to compute the optimal paths to connect disconnected segments. It 

approximates the solution of the Eikonal equation: 

 ∇! ! = 1,        (1) 

where T is the so-called arrival time and F is the speed of a moving front, with the 

arrival time gradient and the front speed being inversely proportional. 

 The Fast Marching arrival times were computed for all voxels in the stack, 

using a point in the soma as a starting point and using the original (preprocessed) 

image intensity as the speed function. The choice of the speed function was motivated 

by the fact that the thinnest processes, which we were not able to segment using 

thresholding, were still brighter than the average background level. Consequently, the 

marching time between two segments with a thin process running directly between 

them (in the original image) will be lower than the marching time between two 

segments having only background voxels between them (i.e., intensity close to zero in 

the original image stacks). 

 

2.9. Connecting disconnected segments by the Fast Marching method 

Segments were merged by back tracing the Fast Marching arrival time map T from 

each segment to the soma. To automatically select a point roughly in the center of the 

soma, our procedure calculated the center of mass (XY position) of the 100 brightest 

pixels in an additive Z-projection of the preprocessed stack. The Z-coordinate was 

determined by finding the voxel at this XY position with the largest distance to the 

background in the thresholded stack, using a distance transform. For each segment, the 

voxel with the lowest arrival time mapped to it was taken as the starting point. To 

prevent the back tracing from getting stuck in regions with zero intensity, the speed 

function was set to a minimum of 1e-8. 

 The Fast Marching arrival time map T increases monotonically from 

the soma center point, and back tracing from the disconnected segments can be 

performed using the steepest descent method: 
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 !!!! = !! − ℎ∇! ! ,       (2) 

where n = 0, 1, 2,...; x = (x,y,z); T(x0) ≥ T(x1) ≥ T(x2) ≥ ..., and h is the step length. For a 

constant speed function F, the back tracing would give straight lines between start and 

end points. However, for non-constant F, the back tracing pathway is attracted to 

voxels with high intensity values, i.e. where F is high. Binary representations of the 

cells were created by joining the voxels traversed by the connection paths and the 

segments from the initial intensity segmentation of the cells (as described in section 

2.7). 

 

2.10. Tree representation 

The binary cell representation generated by the automated segmentation was 

transformed to a tree representation following the definitions of the SWC-format, a 

simple tabular text format that lists a set of (X, Y, Z) positions and associated tubular 

radii (Cannon et al., 1998). Skeletonization of the segmented volume, i.e., thinning the 

segmented volume by erosion of the surface (Lee et al., 1994), was performed by the 

Skeletonize3D function in Fiji, called automatically from within MATLAB. Prior to 

skeletonization, all slices within the segmented volume were smoothed (3 x 3 pixel 

mean filter) and binarized by the Smooth and Make Binary functions in Fiji. The 

coordinates of the voxels in this skeleton were then used to generate a minimum 

spanning tree (MST; Prim, 1957) using the TREES toolbox (Cuntz et al., 2010, 2011). An 

MST simultaneously optimizes the total branch length and the total path length to 

soma for all points. The relative weight between the wiring cost and the path length 

cost is controlled by a so-called balancing factor. Since the resulting points in the 

skeleton are closely spaced on the dendrites, there is little ambiguity in how they 

should be connected. Considering the optimized total path length to soma is therefore 

of little advantage. Accordingly, we used a small balancing factor of 0.01, essentially 

drawing the shortest possible connections between points. 

 

2.11. Determination of branch diameter 
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In image stacks acquired by light microscopy, the axial optical resolution (in the Z-

direction) is inherently lower than the lateral optical resolution (in the X- and Y-

directions) (reviewed by Murphy and Davidson, 2013). The cross-sections of the 

branches of the automatically segmented volume are therefore elliptical, i.e. much 

thicker in the Z-direction. We corrected for this by a process of "tubularization", 

whereby the diameter associated with each reconstruction point (each voxel in the tree 

structure after skeletonization) was calculated as twice the distance from the point to 

the closest border of the segmented volume. This diameter is equal to the diameter of 

the largest sphere, centered at the reconstruction point, that could be fitted into the 

segmented volume. These diameters were obtained by calculating the Euclidean 

distance transform of the segmented image (using MATLAB's bwdistsc function) 

(Paglieroni et al., 1992; Maurer et al., 2003; Mishchenko, 2015). A minimum diameter of 

0.23 µm was enforced (see section 2.5 above). 

 

2.12. Corrections 

First, possible false branch endings introduced in the neuronal tree during 

skeletonization were removed using the clean_tree routine in the TREES toolbox (Cuntz 

et al., 2010, 2011). This routine removes branches shorter than a specified length 

parameter (termed radius) and branch endings within a specified distance parameter 

(radius) from other branch endings. Based on empirical testing, we set the radius 

parameter to 0.2 µm. Second, when the skeletonization algorithm attempted to 

represent the soma volume, it typically generated a number of false branches in the 

region inside and close to the outside of the soma. We investigated the possibility to 

automatically remove the spurious branches by the following procedure. First, we 

determined the approximate center of the soma (see section 2.9 above) and an ellipsoid 

was fitted inside the segmented volume. Then, we removed all reconstruction points 

inside this ellipsoid. To reliably remove all spurious branches, however, the ellipsoid 

lengths had to be slightly enlarged (by a factor of ~1.3). Unfortunately, this also 

removed parts of the reconstructed apical dendrite and smaller branches emanating 
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directly from the soma. Therefore, instead of a fully automatic method, we chose a 

semi-automatic approach with manual delineation of the region where the spurious 

branches occurred. In our procedure, the user is prompted to draw the outline of this 

region (using Matlab's getline function), first in a front view projection (XY) and then in 

a side view projection (YZ). In these views, the generated skeleton was overlaid on a 

maximum intensity projection of the pre-processed image stack. Points were removed 

if both their XY-coordinates and their YZ-coordinates were inside the corresponding 

outlines. We found this much more efficient than to manually remove any spurious 

branches that were left over in cells where automatic removal was only partially 

successful. 

 Whereas both manual and automatic reconstructions can suffer from discrete 

steps along the Z-dimension, we found that the automatic reconstructions also suffered 

from a similar phenomenon along the X- and Y-dimensions, because of the large 

number of reconstruction points per unit branch length. Because this problem 

artificially increased the branch length, we spatially filtered the automatic 

reconstructions using the smooth_tree function in the TREES toolbox (Cuntz et al., 2011) 

(using default parameters). 

 

2.13. Volume reconstruction 

To enable assessment of overlap between the manual and automated segmentations, 

both tree representations were converted to binary masks (with the same voxel 

dimensions as the original stacks). For the manual cell reconstructions, we converted 

the corresponding files from ASC format (Neurolucida) to SWC format using NL 

Morphology Converter (http://www.neuronland.org). The tree-to-volume 

transformation was then done by adding spheres along the (X, Y, Z) points listed in the 

SWC file. These points were too sparse to achieve a smooth surface, so the trees were 

first upsampled to have 1 voxel distance between reconstruction points (using the 

TREES toolbox). In this way we obtained binary masks that could be used to calculate 

Dice coefficients and generate isosurface renderings. 
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2.14. Generating the soma contour 

As a final step, a representation of the soma was added to the SWC file. After 

segmentation of the cell, our procedure generated a single contour to represent the 

soma. The procedure automatically traced the soma outline in the individual slices of 

the segmented image stack (obtained from the procedure described in section 2.7) and 

then selected the one with the maximum area. First, it found a point (XY-coordinate) 

approximately in the center of the soma by calculating the center of mass of the 100 

brightest voxels in an additive intensity projection of the whole image stack. Then, it 

processed each image slice of the segmented image stack individually to find the 

contour of the soma in that slice. The contours in the image were calculated and the 

one enclosing the center point was selected. The radius of this contour as a function of 

angle was calculated with the initial center point as origin (3.6˚ resolution). In the next 

step, process-like extensions were eliminated from the soma contour by removing 

peaks smaller than an angle ∆θ in an angular plot of the radii (using MATLAB’s 

ordfilt2 function). An optimal ∆θ was heuristically determined as 36 degrees. To 

counteract the possibility of a sub-optimal initial determination of the soma center, a 

new center point was then calculated as the center of mass of the contour, and the 

procedure was iterated. The iteration typically converged in three steps, so for good 

measure we performed 10 iterations for each individual image slice. After processing 

all slices in the image stack, the procedure calculated the area of the contour in each 

slice and plotted the area as a function of the Z position in the stack. The contour in the 

center of the soma, typically the contour with the largest area, was then selected by 

finding the peak of this curve, after smoothing (2nd order Savitzky-Golay filter with 

window length set to 8 µm, equal to the typical diameter of the soma).  

 

2.15. MATLAB implementation 

The algorithms for segmentation of the cell from the background, the Fast Marching 

method and the tree generation were all implemented in MATLAB R2015b, partly by 
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using functions from the TREES toolbox (v 1.15; Cuntz et al., 2010, 2011), the Accurate 

Fast Marching toolbox (Kroon, 2009) and the CellSegm toolbox (Hodneland et al., 

2013).  

 

2.16. Performance evaluation 

Manual and automated segmentations were compared using the metric developed for 

the DIADEM challenge (Gillette et al., 2011a), the Dice Coefficient (Dice, 1945), and 

analysis of branch statistics (using functions from the TREES toolbox; Cuntz et al., 

2010, 2011). The DIADEM metric score compares two trees represented in the SWC 

format (Gillette et al., 2011a). The core of the metric compares the nodes in the trees 

with respect to spatial position and global topology. Since perfect spatial 

correspondence is rarely obtained, the metric includes parameters that allow the user 

to set distance thresholds for the matching. The parameters x and z are the Euclidean 

distances defining the neighborhood in the XY-plane and along the Z-direction, 

respectively, in which a node is searched for, and set the maximum distances between 

a gold standard node (i.e., a node obtained from the manual segmentation) and an 

acceptable node in the test segmentation (i.e., a node obtained from the automated 

segmentation). In addition, the ancestor nodes of this pair of nodes are compared. To 

allow for small deviations when comparing the node-to-ancestor-node path length in 

the gold standard with the corresponding path length in the test segmentation, the 

parameters xyPathThresh and zPathThresh specify the allowed relative path length 

deviations in the XY- and Z- directions, respectively. In order to obtain an accurate 

score for the quality of the reconstructions, we visualized and manually inspected the 

missed and extra branches in our automatic reconstruction as reported by the 

DIADEM algorithm. We manually adjusted the parameters for node matching 

distances and path length tolerances, such that we approximately observed the fewest 

false positives and false negatives (for accuracy), as well as approximately equal 

numbers of false positives and false negatives (for fairness). The optimal setting was 

determined as x = 3 µm, z = 3 µm, xyPathThresh = 0.2 and zPathThresh = 0.2. 
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 The Dice coefficient (DC) is a measure of set similarity and can be used to 

assess the overlap between two segmented objects. If A and B are two objects, 

then 

 !" = ! !∩!
! ! ! .        (3) 

To determine a Dice coefficient, we compared the areas of the frontal (XY) maximum 

intensity projection. Volumes were not compared because the size of the voxels in the 

Z-direction is approximately equal to the typical branch diameter (0.4 µm), such that 

the Dice coefficient would only reflect the fraction of branches displaced by one voxel 

in the automated reconstruction relative to the manual reconstruction. 

 To allow a comparison with other reconstruction algorithms, we also 

reconstructed the set of nine olfactory projection fibers used in the DIADEM 

competition (Brown et al., 2011). For this set we changed the adaptive filter size to r = 

[10, 10, 20] (XY-pixel sizes), the cleaning radius parameter to 2 (XY-pixel sizes), and 

manually set the roots of the trees to the positions stated in the DIADEM data set. A 

DIADEM score for the reconstructions of the olfactory projection fiber data set was 

computed with the parameters as used in the DIADEM competition (x = 3.94 pixels, z = 

5 images, xyPathThresh = 0.08 and zPathThresh = 0.2). 

 Data are presented as the mean ± SD. 

Figure 1 near here 

 

3. Results 

3.1. Semi-automated reconstruction pipeline 

Our semi-automated reconstruction pipeline is summarized as a flowchart in Fig. 1. 

The pipeline consists of four major parts which we have termed preprocessing 

(including deconvolution), segmentation, skeletonization and tubularization, and 

postprocessing. In the following, we will illustrate examples of the results obtained at 

the various stages along this workflow. For AII amacrine cells, we are able to acquire 

image stacks at the resolution required for Nyquist sampling as single volumes. For 

larger neurons that require acquisition of multiple tiled stacks, an additional step with 
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registration of a number of such stacks would be necessary to generate a single 

supervolume (e.g. Losavio et al., 2008). 

Figure 2 near here 

 

3.2. Image preprocessing and deconvolution 

Deconvolution is a powerful image processing technique to increase the signal-to-noise 

ratio and decrease the axial and lateral blurring (van der Voort and Strasters, 1995). As 

described in detail for a previous study from our laboratory (Zandt et al., 2016), the 

deconvolution software requires user input of several microscope and imaging 

parameters and an additional parameter that controls the sharpness of the final image. 

Fig. 2A shows a maximum intensity projection (XY plane) of the cell before 

deconvolution and Fig. 2B shows the same after deconvolution (using Huygens 

Essential). After the deconvolution, the user is instructed to denote a region of interest 

(ROI) to circumscribe the relevant structures belonging to the cell, excluding the 

pipette and any contaminating extraneous fluorescence due to leakage from the pipette 

used to fill the cell with dye. Examples of areas of such extraneous fluorescence are 

illustrated by the areas marked by dotted lines in Fig. 2B. Whereas the ROI needs to 

precisely follow the transition between the cell body and the pipette tip, the dendritic 

tree can be more coarsely outlined (Fig. 2C). 

Figure 3 near here 

 

3.3. Intensity segmentation 

To prevent noise from being segmented during adaptive thresholding, we increased 

the threshold value by a constant that by default was set equal to 5% of the maximum 

image intensity. In general, the result of the segmentation was fairly insensitive to the 

specific value selected for background addition. However, for three of our image 

stacks (3/10 cells), the highest intensity in the image (located at the soma) was 

considerably higher than the intensity throughout the rest of the cells. For these image 

stacks, the background addition was lowered to 1 or 2%. Segmented components with 
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fewer than a specified number of voxels were considered to be noise and were 

removed. For the AII amacrine cells, we obtained reasonable results by setting this 

criterion to 20 voxels. However, for other image stacks and cell types, the optimal 

value may differ and must be determined empirically. 

 The thresholding generated a binary representation of the cell and typically 

resulted in cells that consisted of multiple disconnected components, as illustrated by 

an example in Fig. 3A. In the next step, these disconnected components were 

connected by the Fast Marching method that involved calculating a map of the arrival 

times from the soma center (see Materials and methods). Fig. 3B, C shows an example 

of how this procedure connected the originally disconnected components to the rest of 

the cell by marking the paths from all the originally disconnected components (n = 62 

components; Fig. 3A) to the soma. In the final result, single voxel-thick paths connected 

all components into a single volume (Fig. 3D). 

Figure 4 near here 

 

3.4. Skeletonization and tubularization 

In the next steps of the algorithm, the binary representation generated by the 

segmentation was transformed to a tree representation. After smoothing the 

segmented volume, skeletonization was performed by thinning the segmented volume 

using voxel erosion. A representative result of the skeletonization procedure is 

illustrated in Fig. 4A. A weakness of the skeletonization procedure is that it typically 

generated a multitude of false branches inside and around the soma (Fig. 4B). The most 

efficient way we have found to remove such false branches, involves prompting the 

user to demarcate a ROI around the soma, both in the front (XY; Fig. 4B, top) and the 

side (YZ; Fig. 4B, bottom) view. The coordinates of the voxels in the skeleton were used 

to generate an MST, using algorithms of the TREES toolbox (Cuntz et al., 2010, 2011). 

The nodes of false branches inside the corresponding volume were then removed (Fig. 

4C). In addition, small branches were cleaned from the tree structure by the clean_tree 

function of the TREES toolbox. In the final step of this part, the tree structure was 
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converted by a process of "tubularization" to a structure where each reconstruction 

point received an associated diameter (Fig. 4D). 

Figure 5 near here 

 The procedure adopted for tubularization is necessitated by the fact that for 

image stacks acquired by light microscopic imaging, the optical resolution is inherently 

lower in the axial direction than in the lateral direction, meaning that imaging a 

structure that is perfectly round in cross section will result in a structure that has an 

elliptical cross section, with a larger diameter in the axial direction than in the lateral 

direction (Fig. 4A). For each reconstruction point, the diameter of the corresponding 

tubular process was set as the diameter of the largest sphere (centered at the 

reconstruction point) that could be fitted into the segmented volume. This is illustrated 

in more detail in Fig. 5A, B that compares the result from the segmentation (red lines) 

with the result after tubularization (yellow lines). For the projection in the XY-plane 

(Fig. 5A), there was little difference, as is expected, but for the projection in the YZ 

plane (Fig. 5B) it can readily be seen that the tubularization effectively corrected for the 

lower axial resolution. For comparison, the resulting tubularization was also overlaid 

on the manual, computer-aided reconstruction (Fig. 5C, D). Such reconstructions are 

performed exclusively by manual delineation of processes and their diameters when 

the image stack is displayed as slices viewed in the XY plane, effectively forcing the 

diameters obtained for this plane to be used as the diameters in the axial direction. As 

illustrated in Fig. 5C, D, the results of the tubularization were in very good 

correspondence with the manual reconstruction, both as viewed in the XY plane and in 

the YZ plane. 

Fig. 6 near here 

 

3.5. Generating the soma contour 

For small cells, such as AII amacrines, the soma represents a significant fraction of the 

total area of the cell, and precise reconstruction is important. In general, a soma can be 

represented either by a single contour, multiple contours, multiple cylinders, a "three-
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point soma", or a single sphere (http://neuromorpho.org/SomaFormat.html). Because 

light microscopic imaging artificially elongates the soma in the axial direction (Fig. 4A), 

we chose a single soma contour representation (defined in the XY plane). Most analysis 

and simulation programs (e.g. NEURON, L-measure) correctly handle files with single 

soma contours by assuming that the soma has a primary axis in the XY-plane and is 

rotationally symmetric. 

 The first step in our procedure was to set a point (XY) approximately in the 

center of the soma (see section 2.14), indicated by the white cross in the example 

illustrated in Fig. 6A. Then, the contour of the object containing this point was 

determined for each image in the segmented image stack (Fig. 6A) and the radii of each 

contour were plotted as a function of angle (Fig. 6B). These contours typically 

displayed process-like extensions (see examples in Fig. 6A and the corresponding radii 

in Fig. 6B) and these were eliminated by removing peaks in the radius versus angle 

plot (Fig. 6B). A new center point was then calculated as the center of mass of the 

corrected contour. The procedure was re-iterated 10 times to ensure convergence. An 

example of the end result is illustrated in Fig. 6C. When all the slices in the image stack 

had been processed in this way, the procedure calculated the area of the soma contour 

in each slice and plotted the area as a function of position in the stack (Fig. 6D). After 

smoothing the curve, the central contour at the peak was selected to represent the soma 

(Fig. 6D). 

Fig. 7 near here 

 

3.6. Qualitative comparison of automatic and manual reconstructions 

For visual comparison of the overall similarity between automatic and manual 

reconstructions, we used the tree representations (in the SWC format) generated after 

cleaning and removal of spurious nodes inside and around the soma (see section 2.12). 

Visual inspection and comparison of the reconstructions confirmed that overall, the 

automatic reconstructions accurately reproduced the manual reconstructions. An 

example of this is illustrated by the AII amacrine cell displayed in Fig. 7. The cell 
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branched extensively within a relatively small volume, as is typical for these cells (cf. 

Zandt et al., 2016). The tree structures generated by the automatic and manual 

reconstructions are shown in Fig. 7A and 7B, respectively, and suggest a high 

correspondence between the two methods. An overlay of the two trees verifies the 

correspondence (Fig. 7C). The DIADEM algorithm detects mismatches both as 

spurious and missed nodes (branch points). Spurious nodes (marked by x and X in Fig. 

7) are nodes in the automatic reconstruction that were not matched by nodes in the 

manual reconstruction. Missed nodes (marked by o and O in Fig. 7) are nodes in the 

manual reconstruction that were not matched by nodes in the automatic 

reconstruction. The small markers (x, o) denote mismatches located at branch endings, 

while the large markers (X, O) denote mismatches of (centripetally) higher-order 

branch points. It is clear from Fig. 7 that most mismatches correspond to spurious and 

missed branch endings, while the main structure is accurately obtained with few errors 

(five spurious and two missed higher-order branch points for the example shown in 

Fig. 7). 

Fig. 8 near here 

 We also judged the degree of area overlap of the automatic and manual 

reconstructions. Fig. 8 shows projections of isosurface renderings (using the radii along 

the tree) of the same cell illustrated in Fig. 7, both for automatic (Fig. 8A) and manual 

(Fig. 8B) reconstructions and both for front (XY; top row) and side (YZ; bottom row) 

views. The degree of overlap appears very high and this was confirmed when the two 

projections were overlaid (Fig. 8C; top and bottom). From inspection of the front and 

side views, it can be seen that our method produced similar diameters for both 

arboreal and lobular dendrites, as well as for the dendritic varicosities which are 

characteristic for AII amacrine cells. 

Fig. 9 near here 

 For a more detailed comparison of manual and automatic reconstructions, 

including details of missed and spurious branches, we inspected multiple regions with 

side-by-side comparisons of maximum intensity projections of the image stack overlaid 
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with the reconstructions. For the AII amacrine cell illustrated in Fig. 9A, we show 

examples of four different subregions that include the soma (Fig. 9B), lobular dendrites 

and appendages (Fig. 9C), and arboreal dendrites (Fig. 9D, E). The overlays were 

constructed by rendering the tree representations of the automatic and manual 

reconstructions as a set of short cylinders (TREES toolbox) displayed on top of the 

maximum intensity projections of the image stack (Fig. 9B-E; "Automatic", "Manual"). 

In addition to the overlays, we also show the projection of the volumes of the two 

reconstructions, including their overlap (Fig. 9B-E; "Projected volume"). Finally, to 

compare the tree structures we display the branches overlaid (Fig. 9B-E; "Schematic"). 

Overall, the correspondence between the dendritic trees is quite remarkable (Fig. 9B-E), 

although at a more granular level there are many examples of how the automatic and 

manual reconstructions differ from each other. In general, the automatic reconstruction 

accurately followed the variation of thickness along the dendrites and varicosities (Fig. 

9B-E), but the diameters of the automatically reconstructed segments tended to be 

slightly larger than those of the manually reconstructed. Furthermore, on several 

occasions the algorithm generated or missed short branches (Fig. 9C-E, see also Fig. 7). 

 Fig. 9B shows small branches arising from and located close to the soma. 

Branches in this region can be very difficult to reconstruct (both manually and 

automatically) due to scattered light originating from the very bright soma. While the 

rightmost branch in Fig. 9B was correctly reconstructed by the automatic procedure 

(left panel), the branch extending upwards from the apical dendrite was cut (bottom 

arrow) and wrongly connected to the soma close to where its distal end should have 

been. In addition, one valid branch in front of the soma (center arrow) was removed 

from the automatic reconstruction during the cleaning of spurious branches around the 

soma. Finally, an additional branch behind the soma was detected (top arrow). Closer 

inspection of the image stack revealed that this branch was actually correctly detected, 

but missed during manual reconstruction. 

 Fig. 9C shows a region with multiple lobular dendrites and lobular appendages 

close to the soma and illustrates a series of typical errors: a branch tip that was too 
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short (left arrow), a small branch that was missed (center arrow), and a spot of low 

fluorescence intensity detected as a small branch by our algorithm (right arrow), but 

that was considered noise during the manual reconstruction. Fig. 9D shows a region 

corresponding to the distal part and terminal branches of arboreal dendrites and 

illustrates two relatively minor errors: missing a small branch (top arrow) and 

terminating another branch too early (bottom arrow). Fig. 9E shows a more proximal 

region of the arboreal dendritic tree and illustrates a typical error that can occur in the 

relatively rare situation where branches cross in the XY plane and are close to each 

other along the Z axis. In such cases, distal branches are usually connected to the 

parent branch that has the shortest path to the soma. In the present case, a small branch 

extends from the branch on the right towards the vertically oriented branch on the left. 

Just proximal to the crossing of these two processes, the algorithm cut the vertical 

process (arrow) and incorrectly connected its distal part to the small branch. From the 

projected volumes (Fig. 8, 9B-E), it can be seen that for most regions of the dendritic 

tree, the automatic reconstruction overall produced slightly thicker processes than the 

manual reconstruction. 

Table 1 near here 

 

3.7. Quantitative comparison of automatic and manual reconstructions 

To quantitatively compare the results of the automatic and manual reconstructions, we 

used the metric developed for the DIADEM competition (Gillette et al., 2011a), the Dice 

coefficient (Dice, 1945), and analysis of branch statistics. To use the DIADEM metric for 

comparison between two tree structures, they need to be represented in the SWC 

format (Gillette et al., 2011a). The automatic reconstructions were generated in this 

format by default and the manual reconstructions generated with Neurolucida 

software were converted to the SWC format by the program NL Morphology 

Converter. For calculating the DIADEM score, we used files without soma 

representations. For the 10 AII amacrine cells reconstructed, the average DIADEM 

metric score was 0.950 ± 0.019 (range 0.920 - 0.972) and Table 1 shows individual scores 
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for these cells. To use the Dice coefficient for comparison, we measured the areas of the 

maximum intensity projections in the XY plane (cf. Fig. 7) for each of the manually and 

automatically reconstructed cells. The average Dice coefficient was 0.857 ± 0.014 (range 

0.826 - 0.875) and Table 1 shows individual coefficients for these cells. 

Fig. 10 and Table 2 near here 

 To further assess the degree of similarity between the automatic and manual 

reconstructions, we analyzed the branch statistics (using functions in the TREES 

toolbox), including number of branch points (nodes) and endings, branch length, the 

average diameter, and surface area (for review, see Capowski, 1989). Table 2 shows the 

distribution of the properties we measured, as well as the ratios between the 

measurements for automatic and manual reconstructions. 

 Despite a high degree of overall similarity, we identified three important 

differences between the automatic and manual reconstructions. First, the automatic 

reconstructions overall generated a number of spurious, short terminal branches that 

were missing in the manual reconstructions (see section 3.6 and Fig. 7), increasing the 

number of branch points and endings by ~50% (Table 2). This can be seen from the 

distribution of branch segment path lengths illustrated in Fig. 10A, reflecting the larger 

number of branch segments shorter than ~5 µm in the automatic reconstructions. This 

is not only due to the short length of the additional branches, but is magnified because 

adding a branch splits the parent branch segment into two shorter segments. If we 

removed all terminal branch segments shorter than 1 µm, the distributions were very 

similar for automatic and manual reconstructions (Fig. 10B). 

 Second, the automatic reconstructions sometimes contained a few branches 

generated by connecting to regions with spurious fluorescence (typically 0 - 5 

branches, but two reconstructions contained 12 and 20 such branches, respectively). 

These branches were almost straight and primarily occurred in the dendritic tree 

closest to the soma where most of the spurious fluorescence was located. An example 

of a false branch can be seen in the side view (YZ-plane) of Fig. 8A where a one-voxel 

thick branch extends from the primary dendrite to the right side of the image. This 
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problem influenced the distribution of the length of processes as a function of the 

distance from the soma, illustrated by the Sholl analysis (Sholl, 1953) in Fig. 10C. 

Whereas the distributions were very similar at distances > 30 µm from the soma, the 

automatic reconstruction generated longer process lengths than the manual 

reconstruction for distances closer to the soma. 

 Finally, the branch analysis indicated that the automatic reconstructions overall 

generated somewhat thicker branches than the manual reconstructions. On average, 

the diameter (weighted by branch length) was ~27% larger in the automatic 

reconstructions (Fig. 10D; Table 2). In combination with the larger total branch lengths, 

this resulted in a surface area that was ~45% larger (Table 2). 

 In addition to the topological accuracy of the automatic reconstructions, the 

time required for reconstruction is important. Whereas the processing time obviously 

will vary according to the size of the image stack and the number of disconnected 

segments, automatic reconstruction required (in its present implementation) an 

average of 2 hrs computing time for each preprocessed image stack containing a single 

AII amacrine cell (100 - 200 slices, each with 1024 x 1024 pixels) on a 2.6 GHz Intel Core 

i7 CPU with 16 GB 1600 MHz RAM. This is considerably shorter than the 2 - 4 days 

required by an expert to manually reconstruct an AII amacrine cell using Neurolucida. 

During processing of a stack, the most time consuming steps are the adaptive filtering, 

the calculation of the Fast Marching arrival times map, and the back tracing. The time 

required for user interaction is minimal (< 5 min) and corresponds to two separate 

steps in the work flow where the user is requested to denote specific regions of interest 

(Fig. 1). This estimate assumes that the optimization parameters have been tuned for 

the specific cell type and image data and that the image stack has already been 

deconvolved. 

Fig. 11 near here 
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3.8. Performance on the olfactory fiber dataset from the DIADEM competition 

As a general validation, we also tested our procedures on the image stacks of the 

olfactory fiber dataset (Jefferis et al., 2007) from the DIADEM competition (Brown et 

al., 2011). The automatic reconstructions were compared with gold standard manual 

reconstructions included in the same datasets. With the standard parameter settings 

from the competition, the reconstructions generated with our algorithm obtained a 

DIADEM metric score of 0.870 ± 0.066. An example of an automatic reconstruction of 

one of the olfactory projection fibers is illustrated in Fig. 11. It is clear that our 

algorithm is able to accurately reconstruct the general structure of the neuronal 

branches (Fig. 11A, D). However, several small branches are missing from the 

automatic reconstruction and for both the automatic and manual reconstructions there 

are examples of branch tips that are too short (Fig. 11B, C and E). In contrast to the AII 

amacrine reconstructions, the considerably smaller stacks of the DIADEM olfactory 

projection fiber dataset could be reconstructed in approximately three minutes. 

 

4. Discussion 

We have designed and tested a user-friendly method for semi-automatic segmentation 

and reconstruction of densely arborising neurons, using fluorescent images of retinal 

AII amacrine cells acquired with MPE microscopy. After obtaining an image stack of a 

fluorescently filled cell, the challenge of morphological reconstruction can be 

formulated as an object-from-background segmentation problem. Due to limitations of 

light microscopy to resolve the thinnest neuron processes and the unavoidable 

presence of noise, images of the tree-shaped neurons are blurred and only partly 

distinguishable from the background. Our approach employs preprocessing with 

deconvolution (to enhance the imaged object and sharpen its edges), simple and 

adaptive intensity thresholding, the Fast Marching method, skeletonization, and 

calculation of an MST from the skeleton. Our algorithms utilize several existing 

MATLAB toolboxes, including the TREES toolbox developed by Cuntz et al. (2010, 

2011), and combine them in a semi-automatic work flow that requires minimal user 



 27 

input and takes significantly less time than a manual reconstruction (by a factor of 10 - 

20). 

 

4.1. The AII amacrine cell as a test case for morphological reconstruction 

In the mammalian retina, AII amacrine cells are important for signal transmission in 

the inner plexiform layer and serve an important role for both scotopic and photopic 

signaling (reviewed by Hartveit and Veruki, 2012). They receive glutamatergic 

synaptic input from both rod bipolar cells and some types of OFF-cone bipolar cells, 

with the inputs segregated to separate domains of the dendritic tree. Their outputs are 

conveyed via electrical synapses to ON-cone bipolar cells and via chemical, inhibitory 

(glycinergic) synapses to OFF-cone bipolar cells and OFF-ganglion cells. In addition, 

AII amacrines are connected to each other via electrical synapses. 

 Whereas the challenge posed by the AII amacrine cell in relation to 

morphological reconstruction stems from the densely branching dendritic tree (for a 

quantitative analysis, see Zandt et al., 2016), it is important to realize that this is not 

simply related to the branching pattern as such, but also to the absolute scale (relative 

to the measurement technique). In other words, had the AII amacrine been a much 

larger cell, morphological reconstruction (both manual and automatic) would have 

been considerably easier. In the case of the AII amacrine and other small, densely 

branching cells, the structure of the dendritic tree brings different processes closely 

together at a scale where the resolution limit of light microscopy becomes critical. 

 The extent to which the AII amacrine cell can serve as a general test case for 

morphological reconstruction procedures is limited by the fact that it is an axon-less 

interneuron. Despite the recent discovery of an axon initial segment-like process in AII 

amacrines (Wu et al., 2011; Cembrowski et al., 2012), the AII does not have an axonal 

tree similar to that found in inhibitory local-circuit neurons like basket cells (e.g. 

Nörenberg et al., 2010). Accordingly, it remains to be investigated how our procedure 

will perform when challenged by the addition of densely and extensively branching 

axonal trees seen in some types of neurons. 
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 For neurons with spiny dendrites, it can be challenging to perform automatic 

reconstructions because the algorithm has to properly disregard the spines for accurate 

estimation of the process diameter (cf. Losavio et al., 2008). Although the AII amacrine 

does not carry spines similar to those seen on e.g. pyramidal neurons in the 

hippocampus and neocortex, the arboreal dendrites can have spine-like protrusions 

(e.g. Fig. 2, 9). In no case did we observe that the presence of such structures interfered 

with automatic reconstruction or the estimation of process diameter. Accordingly, 

whereas our procedures should be tested on spiny neurons, we do not foresee any 

major problems for automatic reconstructions of such neurons. 

 Because the AII amacrine cells are small neurons, we were able to image 

complete neurons in single stacks even when acquiring at high spatial resolution 

according to the Nyquist criterion. For larger neurons, it is often necessary to acquire 

multiple image stacks to obtain complete images, even when the axon terminal is 

ignored, and before reconstruction it is necessary to register multiple image volumes to 

make a single, composite image stack. In the regions of overlap between individual 

image stacks, there will often by transitions zones with strong variations in image 

intensity and this might challenge the performance of automatic reconstruction 

procedures. 

 

4.2. Proofreading and editing, semi-automic versus automatic 

Although a major motivation for developing procedures for automatic morphological 

reconstruction is to save time, this cannot be considered in isolation from other criteria. 

If the time saved during reconstruction is lost during extensive and time-consuming 

editing of the reconstructed cells, little real progress has been achieved. Given that 

there will always be some errors in the results of automatic procedures, it was recently 

emphasized that powerful, real-time visualization tools are important for proofreading 

and correcting the output of automated algorithms (Peng et al., 2010, 2011b). In the 

current state of implementation, our procedures do not contain functions for correcting 

and/or editing such errors. Until such functionality can be developed, the most 



 29 

convenient way to proofread the results from the automatic reconstructions would be 

to import them into e.g. Neurolucida (Glaser and Glaser, 1990) or neuTube (Feng et al., 

2014), followed by manual editing. The implicit assumption is that even with an 

additional step of manual error correction, the total reconstruction time will be 

significantly shorter compared to fully manual reconstructions. 

 

4.3. Limitations and comparison with other methods 

A number of different approaches have been taken to develop procedures for 

automatic neuronal reconstruction (for review, see Meijering, 2010; Santamaría-Pang et 

al., 2015; Acciai et al., 2016). The more simple and straightforward methods involve 

thresholding and skeletonization. However, they have several drawbacks compared to 

methods based on local image features. Most importantly, cells need to have a 

consistently higher intensity than the background. In addition, such methods do not 

deal well with branch crossings and they do not scale favorably for images and image 

stacks that contain multiple neurons. In principle, reconstructing neurons like AII 

amacrine cells from image stacks acquired with MPE microscopy should be little 

affected from these drawbacks. In ideal cases, only the cell is filled with fluorescent dye 

and the background intensity is relatively low. In addition, the problem of branch 

crossings is relatively low in 3D (cf. Meijering, 2010). Finally, only a single cell is 

contained within a given image stack. Accordingly, a method that incorporates 

adaptive thresholding followed by skeletonization should in theory be ideally suited. 

Nevertheless, there are practical limitations. Branches can suffer from low fluorescence 

intensity due to their small diameters and/or low levels of fluorescent dye. When the 

intensity of weakly imaged branches fall below threshold, they will not be segmented 

correctly by adaptive thresholding routines, typically leading to multiple disconnected 

segments per cell. For less densely branching cells, such disconnected segments are 

likely to be reconnected to the correct parent branch when an MST is calculated. For 

the densely branching AII amacrine cells, however, disconnected segments were often 

incorrectly connected to neighboring branches. To work around this problem, our 
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procedure takes advantage of the fact that the image intensities of the voxels between 

the disconnected segment and the correct branch are usually higher than background. 

Image intensities are not taken into account when constructing an MST, but we 

exploited this information by implementing an additional step where a Fast Marching 

routine was used to reconnect disconnected segments before skeletonization. Although 

motivated by the specific challenge of reconstructing densely branching AII amacrine 

cells, we expect this approach to be generally useful for neuronal morphological 

reconstruction. 

 In the ideal case, image stacks acquired after filling single neurons with 

fluorescent dye via pipettes will contain very low background fluorescence. The 

importance of low background intensity became obvious when we attempted 

reconstruction of a neuron in an image stack with multiple regions of spurious 

fluorescent signal (not shown). Such contamination is due to excessive leakage of dye 

from the pipette used to record from and fill the neuron and tends to be located in the 

vicinity of the recording site (typically the cell body). Unless the leakage of dye is 

excessive, distinguishing such regions from neuronal structures rarely proves difficult 

for an experienced human operator, but the performance of an algorithm simply based 

on thresholding and skeletonization was very poor. In the result, all segments with 

intensity above threshold were connected, irrespective of their shape or position in the 

image. Discarding segmented objects based on size alone is not a robust solution to this 

problem. This problem may be solved by setting a criterion for discarding segmented 

components that in addition to size also takes into account the arrival time to the main 

segmented object (i.e., the cell body). With such an approach, larger regions with 

spurious fluorescene should be removed if they are further away from the cell and/or 

are only connected via low intensity voxels. However, when image stacks are strongly 

dominated by artifacts of this kind, a segmentation method based on local image 

features is probably preferable over one that is based on thresholding and 

skeletonization (Meijering, 2010). 
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 In addition to procedures for fully automatic reconstruction of neuronal 

morphology, different methods for semi-automatic procedures involving variants of 

"finger-pointing" have been developed. This includes both commercial solutions (e.g. 

Neurolucida 360; http://www.mbfbioscience.com) and freely available, academic 

software such as neuTube (http://www.neutracing.com; Feng et al., 2014) and 

hxskeletonize (developed for the Amira environment, Evers et al., 2005; Evers and 

Duch, 2014). While there are substantial differences in the functionality and user 

interface, we have so far had limited success with such procedures with respect to 

morphological reconstructions of AII amacrine cells. A specific disadvantage of 

commercial software is that the code is not available for users to modify and improve 

for specific applications. 

 

4.4. Performance evaluation 

To evaluate the performance of our method, we compared the automatic and manual 

reconstructions using both volume projection overlap, tree structure similarity, and 

branch statistics. The metric developed for the DIADEM challenge (Brown et al., 2011; 

Gillette et al., 2011a) compares the dendritic topology of two reconstructions, together 

with the locations of terminations and bifurcations. Compared to other relevant studies 

(e.g. Gillette et al., 2011a), we obtained very high DIADEM metric scores when 

comparing automatic and manual reconstructions, but it is not straightforward to 

compare the numerical values of such scores for reconstructions of different types of 

neurons. Unfortunately, we have no direct comparison for AII amacrine cells. 

Importantly, however, we inspected the results of the DIADEM algorithm, i.e., which 

nodes were marked as missed and spurious, and selected parameter settings that gave 

the most accurate assessment of the reconstruction quality. This resulted in a score of 

0.950 ± 0.019, similar to a score of 0.943 ± 0.026 for a similar data set of AII cells for 

which the reconstructions of two human operators were compared (unpublished 

observations). Our algorithm scored very well and in general produced excellent 

reconstructions of the tree structure. Most points were lost for discrepancies in the 
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existence and length of small dendritic tips (Fig. 5, 7, 9), although this is arguably in 

part due to a limited accuracy of the gold standard (e.g. Fig. 5D). This is also reflected 

in the average score of 0.87 for the DIADEM olfactory projection fiber data set we 

reconstructed, which requires a high spatial accuracy to correctly match nodes and 

contains a relatively large number of endings. Our score is comparable to scores 

obtained with other algorithms for the same dataset (0.80 - 0.95; Chothani et al., 2011; 

Türetken et al., 2011; Zhao et al., 2011). 

 In addition to the DIADEM metric, we applied the Dice coefficient to evaluate 

the projection overlap. An advantage of the Dice coefficient compared to the DIADEM 

metric is that it (indirectly) also evaluates the dendrite diameters. Similarity indices 

like the Dice coefficient are applied extensively to evaluate segmentation results for 

various objects and organs in medical images. Misiak et al. (2014) applied such indices 

to 2D acquisitions of neurons (under the name F-score) with reported scores between 

0.56 and 0.81 for the methods evaluated in their study. Compared to these results, our 

method performed very well, but we have no direct comparison for AII amacrine cells 

of our method with other methods. A clear disadvantage of the Dice coefficient is that 

it ignores the actual branching structure and therefore primarily scores the quality of 

the initial segmentation. 

 Finally, we compared the automatic and manual reconstructions by analyzing 

the branch statistics, including Sholl analysis and distribution of branch length and 

diameter. Despite a high degree of similarity between the two methods, the most 

important differences were that the automatic reconstructions generated a number of 

spurious, short terminal branches and thicker branch diameters. Together, these 

differences resulted in a larger surface area of ~45% compared to the manual 

reconstructions. Potentially, the parameters of the automatic reconstruction algorithm 

could be adjusted to generate smaller branch diameters to more closely match the 

manual reconstructions. 
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4.5. Future developments 

We can identify two reasons for attempting to reduce the computation time required 

for automatic reconstruction. For off-line reconstruction, reduced time is always 

favourable and will in general increase throughput and productivity. In addition, 

however, there is strong interest in being able to perform fast and accurate automatic 

morphological reconstruction on-line during an experiment, essentially in parallel with 

electrophysiological recording (Losavio et al., 2008). This approach has the potential to 

provide feedback to and guide experimental design within the duration of a single 

experiment, potentially boosting the results from combined structural-functional 

studies, and close to real-time reconstruction would be a great advancement. For the 

procedure used in the current study, it is likely that faster automated reconstruction 

can be achieved with a re-implementation in C++ or the recently developed Julia high-

performance programming language (http://julialang.org). An implementation on a 

graphics processing unit (GPU), similar to that recently introduced for real-time 

deconvolution (e.g. the HyVolution system) could further decrease the processing 

time. 

 

Information sharing statement 

Code in the TREES toolbox (see Cuntz et al., 2010, 2011) and CellSegm toolbox (see 

Hodneland et al., 2013) is already publicly available. All additional code developed for 

the current project will be made available in open source 

(https://www.researchgate.net/profile/Bas-Jan_Zandt). 
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Figure Legends 

Fig. 1. Overview of the algorithm and work flow for automatic reconstruction of 

neuronal morphology. Each box summarizes a series of steps that together constitute a 

processing stage, the name of which is indicated at the upper left corner of each box. 

The user is prompted for input twice during the procedure (indicated by "user input" 

in the work flow). Abbreviations: maximum intensity projection (MIP); three 

dimensional (3D); minimum spanning tree (MST). 

 

Fig. 2. Workflow for multiphoton excitation microscopic imaging and preprocessing 

during morphological reconstruction of dye-filled AII amacrine cells. (A) Maximum 

intensity projection of raw image stack of cell filled with Alexa 594 during whole cell 

recording (dye-filled pipette attached to the cell body). (B) Same as in (A), but after 

deconvolution and alignment. Areas with increased background fluorescence caused 

by leakage of fluorescent dye are circumscribed by dashed lines. (C) Same as in B, but 

after removal of fluorescence corresponding to pipette and contaminating areas. 

Continuous line corresponds to manually delineated region containing the cell, outside 

of which fluorescence was removed. To enhance visibility, contrast in all panels was 

increased by 50%, leading to saturation of areas with higher intensity. Scale bar 10 µm 

(A-C). 

 

Fig. 3. Workflow of segmentation of an image stack containing an isolated neuron. (A) 

Result of the initial intensity segmentation of an image stack containing an AII 

amacrine cell (cf. section 2.7). The different parts of the cell are displayed as a surface 

rendering, with the main part in gray and the various disconnected segments in a series 

of different colors. (B, C) For each disconnected segment, the path of the Fastest March 

towards the soma was calculated (cf. sections 2.8 and 2.9). The paths (red) are displayed 

together with a cell surface rendering (gray), both semi-transparent (B) and non-

transparent (C) for enhanced visualization. (D) The thresholded cell volume merged 

with the Fast Marching paths. The originally disconnected segments and the paths 
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form a single connected volume that is subsequently used for skeletonization. Notice 

that to simplify the display of the extensively branching dendritic trees, we selected a 

cell with relatively few branches. Scale bar 10 µm (A-D). 

 

Fig. 4. Workflow for skeletonization and tubularization of the segmented image stack. 

For each step, the result is displayed both in frontal (XY) view (along the Z axis 

according to the spatial coordinates defined during multiphoton excitation microscopic 

imaging; top row) and in side (YZ) view (along the X axis; bottom row). (A) Isosurface 

renderings of the segmented stack. Note that the cell appears much thicker in side view 

(bottom) than in frontal view (top) due to the lower axial than lateral resolution of light 

microscopy. (B) Result after skeletonization of the segmented volume. Shaded areas 

(light gray) correspond to the user-selected soma region used for branch removal. Here, 

and in (C), the skeleton appears thicker in the side view (bottom) due to the anisotropic 

voxel dimensions, being larger in the Z- than in the XY-direction. (C) Skeleton after 

removal of the spurious branches created inside and around the soma. (D) Tree 

structure generated from the skeleton, rendered as cylindrical segments. For each 

reconstruction point, the dendritic diameter was determined as that of the largest 

sphere fitting inside the segmented volume. Scale bar 10 µm (A-D). 

 

Fig. 5. Results of tubularization and comparison with automatic and manual 

segmentations. (A-D) The segmented and tubularized volumes are projected in 2D and 

the outlines of these projections are overlaid on a maximum intensity projection of the 

image stack. The results for the same part of the image stack are displayed both in 

frontal (XY) view (A, C) and in side (YZ) view (B, D). (A, B) Comparison of the results 

of tubularization (yellow) with the results from the automatic segmentation (red). (C, D) 

Comparison of the results of tubularization (yellow) with the results from the manual 

segmentation (red). Notice that the tubular format adequately describes the shape of 

the dendrites and appears approximately equal to the segmented volume in the front 

view, for both automatic and manual segmentation (A, C). For the automatic 
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segmentation, the tubularization compensates for the elongated appearance of the 

segmented volume in the Z-direction (B). The result of the tubularization corresponds 

well with that of the manual segmentation also in the Z-direction (D). Notice that with 

the projection of the outlines of the segmented stacks in 2D, crossing of branches gives 

rise to a false impression of the presence of loops and holes (A-D). Scale bar 2 µm (A-

D). 

 

Fig. 6. Procedure for generating the soma contour. (A) Contour of the segment 

containing the soma (white line) in a slice of the segmented image stack displayed 

together with initial location of center point inside the soma (white cross). An example 

radius (r; indicated by white arrow) with angle θ originates from the center point. (B) 

Contour in (A) represented in polar coordinates, with the center point displayed in (A) 

as origin (solid line). Peaks are cut off using an order-statistic filter (ordfilt2 function in 

MATLAB) (dashed line). (C) Resulting contour and corrected center point (after 10 

iterations), same slice as in (A). (D) Cross-sectional area of contour in each slice of the 

image stack as function of depth in the stack (open circles; top slice in stack located at a 

depth of 0 µm). Data points have been fitted with a smoothing function (2nd order 

Savitzky-Golay filter with window length of 8 &m; continuous line). The contour in the 

slice corresponding to the peak of the cross-sectional area is selected to represent the 

soma contour. Scale bar 5 µm (A, C). 

 

Fig. 7. Comparison of tree structures generated by automatic and manual 

segmentation of an AII amacrine cell. (A) Result from automatic segmentation. (B) 

Result from manual segmentation. (C) Overlay of tree structures generated by 

automatic and manual segmentation (blue, automatic; red, manual). (A-C) Spurious and 

missed nodes are marked with x/X and o/O, respectively. Small markers (x, o) denote 

mismatches of branch endings, large markers (X, O) denote mismatches of 

(centripetally) higher-order branch points. The tree structure itself contains relatively 

few errors and most errors correspond to spurious and missed branch endings. Notice 
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the very high degree of similarity between the automatic and the manual tree 

structures. Scale bar 10 µm (A-C). 

 

Fig. 8. Comparison of the isosurfaces generated by automatic and manual 

segmentation of an AII amacrine cell. (A) Isosurface from automatic segmentation 

(blue) and automatically generated soma contour (black, top). (B) Isosurface from 

manual segmentation (red) and manually generated soma contour (black, top). (C) 

Overlay of projections of the segmentations generated by automatic and manual 

segmentation (blue, automatic; red, manual; gold, overlap). For each case (A-C), the 

result is displayed both in frontal (XY) view (along the Z axis; top row) and in side (YZ) 

view (along the X axis; bottom row). 

 

Fig. 9. Qualitative comparison of reconstruction results for different regions of the 

dendritic tree of an AII amacrine cell. (A) Maximum intensity projection (MIP) of 

preprocessed image stack (white). Four different regions are indicated by red boxes 

and are displayed at higher magnification in (B-E). (B-E) Magnified display of the 

corresponding regions in (A), each row (from left to right) shows results from the 

automatic (blue) and manual (red) reconstructions rendered as a series of short 

cylinders overlaid on the MIP, overlaid projections of the reconstructed volumes (blue, 

automatic; red, manual; gold, overlap), and a schematic representation of the tree 

structure (blue, automatic; red, manual). Arrows point to differences between the 

automated and manual reconstructions (see Results). Scale bar, 10 µm. 

 

Fig. 10. Analysis of branch statistics of automatically (continuous lines) and manually 

(dashed lines) reconstructed AII amacrine cells (n = 10). (A) Average frequency 

distribution of branch segment path lengths. Bin width 1 µm (A - C). (B) As in (A), but 

after removing all short (< 1 µm) terminal branches to allow for a better comparison of 

the distribution of branch segment lengths of the main structure of the reconstructions. 

(C) Sholl analysis of process length as a function of Euclidean distance from the center 
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of the cell body. (D) Average distribution of process diameters. Bin width 0.1 µm. 

Notice that "branch segment" is defined as the part of a branch between two nodes or 

between a node and a termination point. This follows the terminology of Capowski 

(1989), adopted by e.g. Zandt et al. (2016) and the Neurolucida software, but differs 

from that used by the TREES toolbox. 

 

Fig. 11. Qualitative comparison of reconstruction results for an olfactory projection 

fiber from the DIADEM data set. (A-C) Results from the automatic (blue) and manual 

(red) reconstructions rendered as a series of short cylinders overlaid on MIPs of the 

image stack. For clarity, the automatic and manual reconstructions have been shifted 

relative to each other. The region indicated by the white box (A) is displayed at higher 

magnification in (B, C). (B, C) Magnified display of the corresponding region in (A). 

Arrows point to some branches missed or reconstructed too short by the automatic 

reconstruction (B, C, E). (D) Schematic representation of the tree structure (blue, 

automatic; red, manual), symbols indicate missed (o) and spurious (x) branches as 

obtained by the DIADEM algorithm (D, E). (E) Magnified display of the corresponding 

boxed region in (D). Arrows as in (B, C). Scale bars, 10 µm (A), (B, C, E), (D). 

 



Table 1 

DIADEM metric scores and Dice coefficients, obtained by comparing our method for 

automatic reconstruction with manual reconstruction. 

 

Cell DIADEM metric  Dice coefficient 

1 0.972 0.867 

2 0.955 0.875 

3 0.969 0.864 

4 0.972 0.854 

5 0.946 0.866 

6 0.920 0.863 

7 0.930 0.853 

8 0.958 0.856 

9 0.949 0.826 

10 0.928 0.847 

Mean ± SD 0.950 ± 0.019 0.857 ± 0.014 

 

 

The parameters for DIADEM metric scores were set to x = 3 µm, z = 3 µm, 

xyPathThresh = 0.2 and zPathThresh = 0.2. Both scores have values in the interval [0, 1] 

and higher scores indicate better match. Last row denotes mean values and standard 

deviations across the sample. 

 



Table 2 

Comparison of branching properties between manual and automatic reconstructions of 

AII amacrine cells (n = 10). 

 

Parameter Manual 

(Mean ± SD) 

Automatic 

(Mean ± SD) 

Ratio 

(Mean ± SD) 

Number of nodes 195 ± 56 298 ± 92 1.55 ± 0.30 

Number of endings 207 ± 59 308 ± 97 1.51 ± 0.28 

Dendritic length 1110 ± 270 1290 ± 380 1.15 ± 0.13 

Average dendritic  

diameter (µm) 0.488 ± 0.044 0.612 ± 0.051 

 

1.27 ± 0.19 

Dendritic surface area (µm2) 1690 ± 380 2490 ± 760 1.45 ± 0.17 

 

Metrics were obtained from the TREES toolbox (v 1.15; Cuntz et al., 2010, 2011) and 

terminology follows that used by Zandt et al. (2016). 

Ratio: obtained by dividing the result obtained with automatic reconstruction by that 

obtained with manual reconstruction. 

Average dendritic diameter: obtained by averaging the diameters for the branch 

sections weighted by their lengths. 
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• Deconvolve and align images (Huygens)
• Denote ROI containing soma and dendrites in frontal MIP (user input)
• Cut away background and pipette

Preprocessing

• Filter image with coherence-enhancing diffusion
• Segment dendrites by adaptive thresholding
• Segment soma and primary dendrite by simple thresholding
• Join segmentations
• Remove small components (< 20 voxels)
• Connect components 

• Determine approximate soma center
• Calculate map of fast marching times from soma center 

(Accurate Fast Marching toolbox)
• Back trace from each component

• Join back-traced paths with segmented volume

Segmentation

• Clean tree of short and unlikely branches (TREES toolbox)
• Denote soma region in frontal and side projection (user input)
• Remove spurious nodes in soma region
• Apply spatial filter to smooth branches (TREES toolbox)
• Generate cell volume for isosurface renderings and Dice coefficient
• Add single soma contour
• Export to SWC format (TREES toolbox)

Postprocessing

Raw image stack

Image stack containing neuron only

• Smooth and binarize segmented volume (FIJI / ImageJ)
• Skeletonize (3D) the segmented volume (FIJI / ImageJ)
• Use voxel coordinates of skeleton as reconstruction points
• Generate tree structure from points (MST; TREES toolbox)
• Obtain diameters using distance transform on segmented stack

Skeletonization &
Tubularization

Segmented image stack

Dendritic tree

Reconstruction in SWC format
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Figure 11 (Zandt et al.)
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