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Abstract

In this thesis, we are exploring the particle spectrum of trilinear-augmented gaugino me-
diation. In particular, we calculate the masses of the stau and the tau sneutrino in a
section of the parameter space in which one is found to be the NLSP, while being very
nearly mass-degenerate to the other. We attempt to understand the mechanisms behind
this small mass difference at tree-level, and discuss how the situation changes by going
up to 1-loop level.
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1 Introduction

The standard model of particle physics (SM) is often hailed as one of the greatest achieve-
ments of modern physics. One illustrative example of its astonishing predictive power
lies in the measurement of the electromagnetic coupling α, as inferred from measurements
of the magnetic moment of the electron [1]: the difference between theory and experiment
is currently measured to be less than 10−12 [2]. Nevertheless, the theory is also generally
viewed as incomplete, the most glaring omission being the gravitational force. It also
lacks any particle matching the characteristics of the observed mass abundance in the
universe, often dubbed Dark Matter [3], and its prediction of the cosmological constant
is infamously 120 orders of magnitude too large [4]. In addition, a general uneasiness re-
sides regarding the arbitrariness of the theory: it has some 20 free parameters, including
the masses of most of its particle contents, and in order to work, cancellations between
huge numbers are needed to produce the observed values. This latter problem is dubbed
the Hierarchy Problem [5], and as we will see, provides one of the main motivations for
considering Supersymmetry (SUSY) as an extension to the standard model.

Figure 1: The Bullet Cluster, providing striking evidence for Dark Matter [6].

However, if Supersymmetry were to hold exactly, we would see a lot more particles all
around us than we do. As such, if the universe is fundamentally supersymmetric, some-
thing must break the symmetry, and in the process give the new particles higher masses,
making them more difficult to observe. There are many suggestions to how this might
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Figure 2: A gaugino loop, giving mass to a scalar particle through interactions on the hidden
brane, (figure taken from [8]).

happen, and one such suggestion is the theory we’ve come to know as gaugino-mediation
[7, 8].

Here, we embed the visible universe on a four-dimensional "brane" living in a higher-
dimensional "bulk", with the extra spatial dimensions compactified. The fermions and
their superpartners are confined to the brane, while the gauge and Higgs bosons and
their superpartners are allowed to propagate in the bulk. Supersymmetry is then broken
by interactions with fields on other branes, spatially seperated from ours, and carried
back to the visible brane-fields through loop interactions (see figure 2).

In this thesis, we will explore some of the phenomenological consequences of such a
setup. The superpartner of the graviton, the gravitino, is found to be the lightest su-
persymmetric particle (LSP), and a viable dark matter candidate1. Due to the weakness
of gravity, this makes the next-to-lightest supersymmetric particle (NLSP) long-lived, and
a good candidate for beyond-the-standard-model searches in colliders like the LHC [11].

1Such an explanation for the perceived mass abundance is usually referred to as WIMP dark matter, for
Weakly Interacting Massive Particles; other possible explanations include Primordial Black Holes (PBHs)
[9] and Modified Newtonian Dynamics (MOND) [10].
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After defining our conventions in Chapter 2, we give in Chapter 3 a general introduction
to supersymmetry, supersymmetry breaking, and the Minimal Supersymmetric Standard
Model (MSSM). In chapter 4, we discuss the process needed for making precision correc-
tions in Quantum Field Theory (QFT) finite, known as Renormalisation. After describing
gaugino-mediated SUSY-breaking in Chapter 5, we provide in Chapter 6 an analysis of
a part of parameter space in which the NLSP changes from the neutrino superpartner,
the sneutrino, to the tau superpatner, the stau. Reconstructing the masses at tree-level
and at one-loop level, we then identify the processes most important in determining the
difference in mass between them. Concluding remarks are given in Chapter 7, and some
details omitted in the main text are provided in the Appendices.
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2 Conventions and notations

Before we start exploring the many aspects of supersymmetry and gaugino mediation,
it is necessary to define some conventions; in this thesis, we will mainly follow those of
references [12] and [5].

We work in a relativistic framework wherein three-dimensional space is combined with
time to form four-dimensional spacetime, described by the Minkowski metric2

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (2.1)

Here, we follow the standard convention of using letters from the middle of the Greek
alphabet to denote space-time indices, and letters from the middle of the Roman al-
phabet to denote three-dimensional space indices. Vectors now have four components,
aµ = (a0, a1, a2, a3), with the zeroth component denoting the time part and the other three
denoting the usual three-dimensional space parts.

The inner product of vectors is given by

gµνaµbν ≡ aνbν = a0b0 − a1b1 − a2b2 − a3b3 . (2.2)

Note that here we use Einstein’s summation convention, wherein summation over re-
peated indices is implied. We also state for the record that consistency requires that only
an upper and a lower space-time index be contracted with one another, and that in the
first equality above we have defined the metric’s ability to raise and lower space-time
indices.

gµνaν = aµ , gµνaν = aµ . (2.3)

2Here we find a slight abuse in notation, as technically the left hand side of this equation is a single
number, while the right hand side is a matrix. We will allow ourselves this in order to write the indices
explicitly, which has become the standard notation for relativistic theories.
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Position vectors combine with time to become

xµ = (t, x, y, z) , (2.4)

while momentum vectors combine with energy to become

pµ = (E, px, py, pz) . (2.5)

To simplify our equations, we work in natural units, where the speed of light and the
reduced Planck constant are both set to unity:

c = h̄ = 1 . (2.6)

In several of the definitions to come, we will employ the commutator, defined as

[A, B] = AB− BA , (2.7)

as well as the anti-commutator, defined as

{A, B} = AB + BA . (2.8)

Particles are described as excitations of fields of different spins, where we separate be-
tween fields of integer spin, called bosons (due to them obeying Bose-Einstein statistics),
and fields of half-integer spin called fermions (obeying Fermi-Dirac statistics). Spin 0
fields are called scalar fields, and they carry no index, while spin 1 fields are called vector
fields, as they carry one space-time index. Spin 1/2 fields are known as spinor fields,
and they are described by four-dimensional objects called Dirac spinors, named after the
legendary physicist who developed them.

Ψα =


Ψ1

Ψ2

Ψ3

Ψ4

 . (2.9)

As illustrated, we will denote spinor indices by letters from the beginning of the Greek
alphabet, in order to separate them from space-time indices. These objects obey equations
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of motion given by the Dirac equation,

(iγµ∂µ −m)Ψ ≡ (i/∂ −m)Ψ = 0 , (2.10)

where m ≡ m 1, and where we’ve employed the Feynman slash γµaµ = /a . The γµ are
matrices obeying

{γµ, γν} = 2gµν , (2.11)

and can be given in several representations. In this thesis, we operate with the so-called
chiral or Weyl representation, wherein they’re given as

γµ =

(
0 σµ

σ̄µ 0

)
, (2.12)

where

σ0 = σ̄0 =

(
1 0
0 1

)
, σ1 = −σ̄1 =

(
0 1
1 0

)
,

σ2 = −σ̄2 =

(
0 −i
i 0

)
, σ3 = −σ̄3 =

(
1 0
0 −1

)
. (2.13)

A useful definition, which has come to be known as the fifth gamma matrix, is given by

γ5 = iγ0γ1γ2γ3 . (2.14)

With this, we can now define the chiral projection operators:

PL =
1
2
(1− γ5) , PR =

1
2
(1 + γ5) , (2.15)

which, as the names imply, return the left- and right-handed3 parts, respectively, of any
spinor they act upon.

ΨL = PLΨ , ΨR = PRΨ . (2.16)

These operators now take on a particularly simple form, giving the chiral representation

3Technically left- and right-chiral; there is a slight difference in these definitions which can be sum-
marised as to say that chirality is Lorentz-invariant for all particles, while handedness, or helicity, isn’t. We
will follow the standard nomenclature and make it implicit that whenever we talk about handedness, we
are referring to chirality.
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its name.

PL =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , PR =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 . (2.17)

Thus, the left- and right-handed parts of a Dirac field simply become

ΨL =


Ψ1

Ψ2

0
0

 , ΨR =


0
0

Ψ3

Ψ4

 . (2.18)

Chirality turns out to play a major role in formulating the laws of nature, as left-handed
fields transform differently under the various gauge transformations of the standard
model than right-handed fields. As such, it is useful to define the fields in terms of left-
and right-handed two-component spinors, called Weyl spinors:

Ψ =

(
ψL

ψR

)
, (2.19)

where

ψL =

(
Ψ1

Ψ2

)
, ψR =

(
Ψ3

Ψ4

)
. (2.20)

Now we need to be a bit more careful with the spinor indices. The conventions are as
follows: left-handed Weyl spinors carry undotted indices α ∈ {1, 2}, while right-handed
Weyl spinors carry dotted indices α̇ ∈ {1, 2}. Also note that the Hermitian conjugate of
any left-handed Weyl spinor is a right-handed Weyl spinor (and vice versa), such that

ψα = (ψ†α̇)† . (2.21)

This means that any right-handed field may be defined in terms of a left-handed Weyl
spinor. Following convention, we define all fields in terms of left-handed spinors and
their conjugates, and as such, we decompose the four-component Dirac spinor as

Ψ =

(
ψL

ψR

)
=

(
ξα

χ†α̇

)
. (2.22)
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The Weyl spinor indices are raised and lowered by the antisymmetric symbol εαβ, given
by

ε12 = −ε21 = ε21 = −ε12 = 1 , ε11 = ε22 = ε11 = ε22 = 0 , (2.23)

satisfying εασεσβ = εβσεσα = δ
β
α , and likewise with dotted indices. Note that this implies

that

ξαχα = εασξσεαβχβ

= ξσ(−εσα)ε
αβχβ

= −ξσδ
β
σχβ

= −ξβχβ . (2.24)

This means that, as opposed to with spacetime and Dirac indices, we now need to keep
track of which way the indices are contracted. We choose the definitions

ξαχα = ξχ , ξ†
α̇χ†α̇ = ξ†χ† . (2.25)

σµ and σ̄µ each carry two indices, one dotted and one undotted.

(σµ)αα̇ , (σ̄µ)α̇α . (2.26)

The Dirac equation can then be written as [13] m −iσµ∂µ

−iσ̄µ∂µ m


 ξ

χ†

 = 0 . (2.27)

Finally, we note the rather nice result that now easily follows:

ξχ = ξαχα = −ξαχα = χαξα = χξ , (2.28)

where we have used the fact that the components of a fermion field are anti-commuting4.

4Such variables are called Grassmann numbers — though, of course, they are not numbers in the ordinary
sense. Nevertheless, it is possible to define algebraic operations on them, and their study has become
especially important in the wider field of supersymmetric theories. For a review, see e.g. [5, Ch. 4].
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3 Supersymmetry as an extension to the Standard Model

3.1 Motivation: the hierarchy problem

As was mentioned in the introduction, the so-called hierarchy problem has provided one
of the chief motivations for supersymmetry ever since its inception [5]. It pertains to a
problem one encounters in general extensions to the standard model, and in particular
in attempting to make predictions to the Higgs mass5. The problem is that any analyti-
cal expression for the Higgs mass would receive enormous corrections from every other
massive particle in the theory. This happens through so-called loop corrections, which
after renormalisation affects all masses and couplings of the theory6.

For example, for any (Dirac) fermion f, coupling to the Higgs field with a Lagranigan
term −λ f H f̄ f , where λ f is the Yukawa coupling of the particle, the Feynman diagram in
figure 3b yields a correction

∆m2
H = −

λ2
f

8π2 Λ2
UV +O

(
m f
)

. (3.1)

Here, the cut-off scale ΛUV is to be interpreted as the scale above which new physics
enters to alter the high-energy behaviour of the theory, ensuring renormalisability. In ad-
dition to this, if there are heavier, undiscovered Dirac fermions, we see from equation (3.1)
that the contribution would be even larger, demonstrating that the largest contribution to
the Higgs mass comes from the heaviest of the particles it is interacting with.

Similarly, if there were an undiscovered scalar particle S, coupling to the Higgs via the
term −λSH2S2, a diagram such as figure 3a would give us

∆m2
H =

λS

16π2 Λ2
UV +O

(
m2

S

)
. (3.2)

5This is often talked of as being a problem with the standard model itself, though with the Higgs mass
simply being a free parameter, it would be more accurate to call it a worry than a problem.

6For a detailed discussion, see section 4.
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f

H

(b)

Figure 3: One-loop corrections to the Higgs mass due to (a) a scalar, and (b) a fermion.

One might picture a situation where such an undiscovered particle zoo extends all the
way to the Planck scale7, MP = 1√

8πG
= 2.4 × 1018 GeV, above which the complete

and as-of-yet undiscovered theory of quantum gravity enters to take care of the high-
energy behaviour. Even though we see from equations (3.1) and (3.2) that terms of op-
posite signs would enter the complete Higgs-mass correction, the cancellations needed
between terms of order O

(
M2

P
)
= 1036 GeV2 to produce the observed Higgs mass pa-

rameter m2
H = −(92.9 GeV)2 = −O

(
104) GeV2 would be miraculous indeed8. Even if

one were to assume that none of the undiscovered particles interacted directly with the
Higgs, similarly large corrections would still enter through higher loop orders as long as
the particles in question shared any of the gauge interactions of the Higgs.

If there were a symmetry, however, pairing every fermion with two scalars in such a way
that λS = λ2

f , we see that the quadratic divergences in (3.1) and (3.2) would cancel exactly.
This is the kind of symmetry we have come to know as supersymmetry, and it has been
shown that imposing it not only makes the quadratic divergences of the renormalised
Higgs mass cancel, but all its divergences, to arbitrary loop order [5].

3.2 The symmetries of nature

In order to understand supersymmetry, then, we must first understand symmetry. Let’s
start with the obvious question9.

7G is Newton’s gravitational constant.
8Such cancellations might be described as being unnatural, giving the subject its alternate name of the

naturalness problem.
9In the following, we will be quoting mainly from [14].
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3.2.1 What is a symmetry?

The dynamics of a system are in field theories determined by the Lagranigan density of
the system, L, hereafter simply referred to as the Lagrangian. It is defined as

S =
w

d4xL(φr(xµ), ∂νφr(xµ), xµ) , (3.3)

where S denotes the action, and the φr denote the dynamical variables of the system. The
equations of motion can then be derived by demanding that the action take on stationary
values.

δS = 0 . (3.4)

A symmetry of the system, then, is a transformation of the dynamical variables that leaves
the Lagrangian invariant, at least up to a total spacetime derivative10.

φr, x 7−→ φ′r, x′ , L 7−→ L′ + ∂µKµ,

L′(φ′r(x′), ∂µφ′r(x′), x′) = L(φ′r(x′), ∂µφ′r(x′), x′) , (3.5)

where we have suppressed the space-time index of x in order to avoid clutter. As an
example, consider the theory of a massive complex scalar field:

L = ∂µφ∗∂µφ−m2φ∗φ , (3.6)

where φ denotes the field, φ∗ its complex conjugate, and m denotes the mass. It is trivial
to see that this Lagrangian is invariant under the transformation

φ 7−→ φ′ = −φ ,

φ∗ 7−→ φ′∗ = −φ∗ . (3.7)

This transformation represents a typical example of a discrete internal symmetry, and is
known as a Z2 symmetry.

10The argument goes as follows [12]: since the Lagrangian is to be integrated over all space and time, one
may use the divergence theorem to convert the volume integral of the total derivative to a term integrated
over the boundary of the volume — and since the volume is infinite, the surface is infinitely far away, and
we may without loss of generality set the fields to vanish there. In other words, we set any surface terms
that show up in our Lagranigans, of the general form ∂µKµ, to be zero.
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Another class of symmetries, particularly important to field theories, are continuous sym-
metries. Consider the transformation

φ 7−→ φ′ = eiεφ ,

φ∗ 7−→ φ′∗ = e−iεφ , (3.8)

where ε denotes a real, continuously variable parameter. Applying the transformation to
our Lagrangian, we get

L′ = ∂µ(e−iεφ∗)∂µ(eiεφ)−m2(e−iεφ∗)(eiεφ)

= ∂µφ∗∂µφ−m2φ∗φ

= L . (3.9)

This particular transformation is known as a global U(1) transformation, for reasons that
will become apparent shortly, and is a generalisation of the previous Z2 symmetry.

An even larger class of symmetry is achieved if one allows the continuous parameter to
depend on space-time.

ε = ε(xµ) . (3.10)

These are then called local, or gauge, transformations, and invariance under them implies
the existence of gauge bosons — spin-1 fields carrying a space-time index. All known forces
of nature can be described as being mediated by such bosons belonging to different gauge
groups11.

In fact, it can be easily seen that the above Lagrangian (3.6) would not be invariant under
such transformations. In order to achieve invariance, we need to make the replacement
∂µ 7−→ Dµ,

L = (Dµφ)∗Dµφ−m2φ∗φ , (3.11)

where Dµ now includes a term proportional to a new vector field, Aµ.

Dµ = ∂µ + igAµ . (3.12)

11With the notable exception of gravity — its force carrier, the graviton, is a spin-2 field, meaning it carries
two space-time indices: gµν; its symmetry group is that of a general coordinate transformation, known as a
diffeomorphism [15].
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φ

φ∗

Aµ

Aµ

Figure 4: Quartic interaction between a complex scalar and a gauge boson.

In order to complete the Lagrangian, the vector field will need a kinetic term too. This is
easiest expressed in terms of the field strength tensor

Fµν ≡ ∂µ Aν − ∂ν Aµ . (3.13)

Adding the so-called Maxwell term, we then get the complete Lagrangian of a gauged
complex scalar field.

L = (Dµφ)∗Dµφ−m2φ∗φ− 1
4

FµνFµν , (3.14)

This will be invariant under the gauge transformation

φ(x) 7−→ φ′(x) = eigε(x)φ(x) ,

φ∗(x) 7−→ φ′∗(x) = e−igε(x)φ(x) ,

Aµ(x) 7−→ A′µ(x) = Aµ(x)− ∂µε(x) . (3.15)

We now have terms proportional to ∼ Aµφ, Aµφ∗, which we interpret as being interac-
tions between the scalars and the gauge boson — g is then interpreted as the coupling
strength. For example, from the term −g2Aµφ∗Aµφ, we would get an interaction vertex
like the one in figure 4.

Note that we did not add a mass term for Aµ — as can easily be checked, such a term
would break the gauge symmetry of the Lagrangian (3.14).

For a more detailed discussion on the subject, see e.g. [12, Ch. 11].
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3.2.2 Lie groups

In defining a framework to parametrise different classes of continuous symmetries, it is
useful to introduce the notion of a group, G, defined to be a set of elements g ∈ G and an
operation ◦, satisfying

1. Closure: g, h ∈ G ⇒ g ◦ h ∈ G

2. Contains neutral element e: g ◦ e = g ∀ g ∈ G

3. Contains inverse elements g−1: g ◦ g−1 = e ∀ g ∈ G

4. Association: f , g, h ∈ G ⇒ f ◦ (g ◦ h) = ( f ◦ g) ◦ h

As an example, consider the set of all real 3 by 3 matrices O that are orthogonal,

OTO = 1 , (3.16)

and have the "special" property of unit determinant,

det O = 1 . (3.17)

One can easily verify that this set, with the addition of the operation of matrix multiplica-
tion, satisfies the definition of a group. This group is called SO(3), for special, orthogonal,
and consisting of 3-dimensional matrices. It contains rotations in three-dimensional eu-
clidean space, with vectors transforming as

vi → v′i = Oijvj , (3.18)

and tensors transforming as

Tij...k → T′ij...k = OilOjm . . . OknTlm...n . (3.19)

Being orthogonal (and therefore square), the rotation matrices may be written as

O = eA ≡
∞

∑
n=0

1
n!

An . (3.20)
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Our conditions (3.16) and (3.17) then imply that A must be real and anti-symmetric; we
choose to parametrise it as the sum of three anti-symmetric matrices, such that

O = ei(θ1 J1+θ2 J2+θ3 J3) . (3.21)

Here, the J1 represents a rotation around the first axis by an angle θ1, J2 around the sec-
ond axis, and so on. Note that we have defined the J’s to be imaginary, and being anti-
symmetric, they are therefore Hermitian.

J†
i = Ji , (3.22)

The J’s will now satisfy the commutation relation

[Ji, Jj] = iεijk Jk , (3.23)

where εijk is the totally anti-symmetric Levi-Civita symbol. Equation (3.23) defines the
algebra of the rotation group in three dimensions. Any three-dimensional theory claiming
to be isotropic should possess a Lagrangian invariant under the action of this group.

In general, a Lie group12 is any group whose elements may be written:

g = eiαaTa
, (3.24)

where the Ta are N × N matrices common for every element, called the generators of the
group, with αa ∈ R determining the element. If the elements of the group are real, or-
thogonal N × N matrices with unit determinants, the group is called SO(N), and will
have a ∈ {1, 2, . . . , 1

2 N(N − 1)}; if we instead allow the elements to be complex N × N
matrices satisfying unitarity,

U†U = 1 , (3.25)

as well as having unit determinant, the group is called SU(N), and has
a ∈ {1, 2, . . . , N2 − 1}.

The generators of the group will follow the Lie algebra given by

[Ta, Tb] = i f abcTc . (3.26)

12Named after the Norwegian mathematician Sophus Lie.
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The f abc are known as the structure constants, and are for example for SU(2) simply given
by the three-dimensional Levi-Civita symbol εabc again.

It’s this latter class of symmetry groups that turns out to be realised in nature through the
various gauge groups of the standard model: the strong interaction of quarks and gluons
follows an SU(3) gauge symmetry, and the unified theory of electromagnetic and weak
interactions, known as electroweak theory, follows an SU(2) chiral gauge symmetry in
addition to a U(1) hypercharge symmetry. The full gauge group of the standard model is
then:

SU(3)C ⊗ SU(2)L ⊗U(1)Y . (3.27)

3.2.3 Broken symmetries

If the Lagrangian contains terms that are not invariant under a transformation of the
fields, we say that the symmetry in question is explicitly broken by the terms. However,
it is possible that the Lagrangian is completely invariant, but the resulting dynamics still
possess the features of a broken symmetry. This happens when the Lagrangian is invari-
ant under the transformation, but the lowest energy state, known as the vacuum state,
isn’t. We then say the symmetry is spontaneously broken. Consider the Lagrangian:

L = ∂µφ∗∂µφ−m2φ∗φ− g(φ∗φ)2 . (3.28)

Again, it is easy to verify that the Lagrangian is invariant under the U(1) symmetry (3.8).
If m2 and g are both positive, the potential given by V(φ) = m2φ∗φ + g(φ∗φ)2 will have
its minimum energy at φ = 0, which trivially possesses the same U(1) symmetry.

If, on the other hand, m2 < 0,13 the potential possesses a continuous range of minima
given by

φ =

√
−m2

2g
eiθ , (3.29)

none of which are invariant under (3.8). We say that the U(1) symmetry has been sponta-

13and g > 0, of course; theories with both parameters negative contain an unstable vacuum state, and are
therefore never considered.
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Figure 5: Potential V(φ) with m2, g > 0. The lowest energy state is at φ = 0.

neously broken by the non-zero vacuum expectation value, or vev:

v2 = −m2

2g
. (3.30)

This is exactly the kind of mechanism responsible for breaking the electroweak symme-
try: the Lagrangian is invariant under an SU(2)L ⊗U(1)Y gauge transformation, but the
vacuum state is not. In the process, all Standard Model fermions, as well as the W and
Z bosons, are given their masses, and a new particle arises from the symmetry-breaking
scalar field. The mechanism is known as the Brout-Englert-Higgs mechanism, and the parti-
cle is known as the Higgs boson [16, 17]. Its 1964 prediction and subsequent 2012 discovery
[18, 19] represents one of the greatest successes of the standard model of particle physics.

Figure 6: Potential V(φ) with m2 < 0, g > 0, affectionately known as the "Mexican hat potential".
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3.3 A different kind of symmetry

Simply put, supersymmetric theories are theories in which the Lagrangian is invariant
under a transformation of the bosonic fields into fermionic fields, and vice versa.

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (3.31)

Fermions being fields with half-integer spin (1/2 or 3/2), and bosons fields with integer
spin (0, 1, or 2)14, we can already sense a connection between this symmetry and the
symmetries of space-time, which will be made manifest shortly.

The simplest supersymmetric Lagrangian consists of a single chiral supermultiplet (φ, ψ)

with just a kinetic term for each:

L = ∂µφ∗∂µφ + iψ†σ̄µ∂µψ . (3.32)

This is known as the massless, non-interacting Wess-Zumino model [21]. Here, φ is again
a scalar field, and ψ a left-handed Weyl spinor (see section 2 for a discussion on the latter).

We impose the transformation rule for scalar fields to be

φ 7−→ φ′ = φ + εψ , φ∗ 7−→ φ′∗ = φ∗ + ε†ψ† . (3.33)

Here, εα is a constant15, infinitesimal Weyl fermion object, with spinor index α ∈ {1, 2}.
Correspondingly for a fermion,

ψα 7−→ ψ′α = ψα − i(σµε†)α∂µφ ,

ψ†
α̇ 7−→ ψ′†α̇ = ψ†

α̇ + i(εσµ)α̇∂µφ∗ . (3.34)

The hope now is that the Lagrangian (3.32) will be invariant under these transformations.

14Any interacting theory containing a finite number of particles with spin > 2 will be inconsistent and
such theories are therefore never considered; see [20, Ch. 9.5] for an argument why.

15In this thesis, we study global supersymmetry, meaning we only consider transformations satisfying
∂µεα = 0. Local supersymmetry, in which the εα are allowed to depend on the spacetime variables xµ,
leads to the possibility of curved backgrounds, and poses a possible path towards understanding gravity
in a quantum field theoretic context. The resulting theory is known as supergravity, (see e.g. [22] for an
introduction on the topic).
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Let’s check. Inserting for our transformations, we get

L 7−→ L′ = ∂µ(φ + εψ)∂µ(φ
∗ + ε†ψ†) + i(ψ† + iεσν∂νφ∗)σ̄µ∂µ(ψ− iσρε†∂ρφ) . (3.35)

Expanding, we have to first order in ε

L′ = L+ ε†∂µφ∂µψ† + ε∂µψ∂µφ∗ + ψ†σ̄µσρε†∂µ∂ρφ− εσνσ̄µ∂µψ∂νφ∗ . (3.36)

Now we can rewrite the latter two terms, such that we end up with

L′ = L+ ε†∂µφ∂µψ† + ε∂µψ∂µφ∗ − ε†∂µφ∂µψ† − ε∂µψ∂µφ∗

−∂µ(εσνσ̄µψ∂νφ∗ − εψ∂µφ∗ − ε†ψ†∂µφ) . (3.37)

Finally, cancelling and setting the surface term to zero, we get what we wanted:

L′ = L . (3.38)

The details in going from equation (3.36) to (3.37) actually involves some rather clever
tricks — the interested reader will find a step-by-step calculation in appendix C.

In order for us to be able to conclude that this theory is indeed supersymmetric, we also
need to show that the supersymmetry algebra closes, i.e. that two supersymmetry trans-
formations is another symmetry of the Lagrangian. We will merely quote the results here;
for a detailed discussion, see [5].

Given two supersymmetry transformations, parametrised by ε1 and ε2, their commutator
yields

[δε2 , δε1 ]φ = i(−ε1σµε†
2 + ε2σµε†

1)∂µφ (3.39)

for the bosonic field, and

[δε2 , δε1 ]ψα = i(−ε1σµε†
2 + ε2σµε†

1)∂µψα + iε1αε†
2σ̄µ∂µψ− iε2αε†

1σ̄µ∂µψ (3.40)

for the fermionic field.

Remarkably, we see from (3.39) that the commutator of two supersymmetry transforma-
tions gives back a spacetime translation of the field — the generator of such transformations
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is the space-time momentum operator P, generating translations on the fields X according
to

[Pµ, X] = −i∂µX . (3.41)

We get the same result from (3.40), given that the equation of motion for the field, as
derived from the Lagrangian (3.32), is employed.

σ̄µ∂µψ = 0 . (3.42)

So here, then, we see the connection between supersymmetry and space-time that was
hinted at earlier16.

From this, we conclude that the supersymmetry algebra indeed closes, but only on-shell,
i.e. when the equations of motion are satisfied. This might be a bit worrisome, as quan-
tum mechanically there exist virtual states that don’t obey these equations. Of course,
we would very much like supersymmetry to hold quantum mechanically as well as clas-
sically, so to remedy this situation we introduce a complex scalar field F, known as an
auxiliary field, with the Lagrangian

Lauxiliary = F∗F . (3.43)

From this, one might derive its equations of motion, finding the rather unexciting result
F = F∗ = 0. However, they turn out to be useful in ensuring that supersymmetry also
closes off-shell, which is achieved if we revise our initial transformations (3.33), (3.34) to

16This is especially remarkable given that there exists a theorem, the Coleman Mandula Theorem, that
states that "space-time and internal symmetries cannot be combined in any but a trivial way" [23]. Super-
symmetry being an internal symmetry, and clearly combining with space-time symmetries in a non-trivial
way, one would think that this means our construction is bust. Supersymmetry circumvents this theorem,
however, by being not a Lie algebra but a Lie superalgebra. The corresponding, generalized theorem is
known as the Haag Lopuszanski Sohnius Theorem [24].
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include the auxiliary field. The transformation rules then become:

φ 7−→ φ′ = φ + εψ ,

φ∗ 7−→ φ′∗ = φ∗ + ε†ψ† ,

ψα 7−→ ψ′α = ψα − i(σµε†)α∂µφ + εαF ,

ψ†
α̇ 7−→ ψ′†α̇ = ψ†

α̇ + i(εσµ)α̇∂µφ∗ + ε†
α̇F∗ ,

F 7−→ F′ = F− iε†σ̄µ∂µψ ,

F∗ 7−→ F′∗ = F + i∂µψ†σ̄µε . (3.44)

With these, one can verify that the supersymmetry algebra indeed closes for every field,
and for arbitrary field configurations.

[δε2 , δε1 ]X = i(−ε1σµε†
2 + ε2σµε†

1)∂µX , (3.45)

with X ∈ { φ, φ∗, ψ, ψ†, F, F∗}.

According to Noether’s theorem [25], invariance of the action under a continuous sym-
metry implies a conserved current; for supersymmetry, we get the supercurrents Jµ

α , J†µ
α̇ .

Perhaps unsurprisingly, they carry spinor indices as well as the usual spacetime index —
this is one of the unique features of SUSY, and a consequence of the symmetry having
fermionic generators. Their form may be derived from the definition,

εJµ + ε† J†µ ≡∑
X

δX
δL

δ(∂µX)
− Kµ , (3.46)

where Kµ is defined by δL = ∂µKµ — in practice, just the surface term again, though it can
be redefined as Kµ 7→ K′µ = Kµ + kµ for any kµ satisfying ∂µkµ = 0. Up to this ambiguity
then, one then ends up with

Jµ
α = (σνσ̄µψ)α∂νφ∗ , J†µ

α̇ = (ψ†σ̄µσν)α̇∂νφ . (3.47)

These will be separately conserved, ∂µ Jµ
α = ∂µ J†µ

α̇ = 0, and from them one is now able to
construct the conserved charges,

Qα =
√

2
w

d3~x J0
α , Q†

α̇ =
√

2
w

d3~x J†0
α̇ . (3.48)
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Here, finally, we have the generators of supersymmetry, satisfying the supersymmetry alge-
bra:

{Qα, Q†
α̇} = 2σ

µ
αα̇Pµ ,{

Qα, Qβ

}
= 0 , {Q†

α̇, Q†
β̇
} = 0 . (3.49)

The fact that the generators satisfy anti-commutation relations rather than the usual com-
mutation relations (3.26) is another one of the unique features of supersymmetry, truly
making it a different kind of symmetry.

Finally, we note that, as can be seen from (3.41) and the fact that we are talking about
global supersymmetry, these transformations will commute with space-time translations.

[Qα, Pµ] = 0 , [Q†
α̇, Pµ] = 0 . (3.50)

3.4 General supersymmetric Lagrangians

In this section, we will quote the most general form the Lagrangian of a consistent super-
symmetric field theory can take; to see how the form of such Lagrangians is constrained
to give the following results, see [5].

The general form of such Lagrangians turns out to be

L = Dµφ∗iDµφi + iψ†iσ̄µDµψi −
1
2
(W ijψiψj + W∗ijψ

†iψ†j)−W iW∗i + FiF∗i + W iFi + W∗i Fi

−1
4

Fa
µνFµνa + iλ†aσ̄µDµλa +

1
2

DaDa

−
√

2g(φ∗Taψ)λa −
√

2gλ†a(ψ†Taφ) + g(φ∗Taφ)Da . (3.51)

Here, ψi represent the fermions, φi their scalar partners, and Fi their auxiliary fields; Aa
µ

(see eq. (3.57)) are the gauge bosons, λa their Weyl-fermionic partners, and Da their
bosonic auxiliary fields17, with the index a enumerating the generators of the gauge

17Not to be confused with Dµ, the covariant derivative.
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group18. The superpotential W is defined as

W = Liφi +
1
2

Mijφiφj +
1
6

yijkφiφjφk , (3.52)

where the term linear in φi is typically excluded, as it requires φi to be gauge singlets. In
terms of this, we have the definitions

W i =
δ

δφi
W , W ij =

δ2

δφiδφj
W . (3.53)

The covariant derivative Dµ is given for the various fields as

Dµφ = ∂µφ− igAa
µ(T

aφ) , (3.54)

Dµψ = ∂µψ− igAa
µ(T

aψ) , (3.55)

Dµλa = ∂µλa + g f abc Ab
µλc , (3.56)

and similarly for their conjugate fields. The field strength tensors Fa
µν are defined as

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν . (3.57)

g now stands for a general gauge coupling. Of course, for theories with more than one
gauge symmetry, the Lagrangian and covariant derivatives should be extended to include
terms for each coupling separately.

Now the equations of motion for the auxiliary fields are no longer trivial, though they are
expressible algebraically (i.e. without derivatives) in terms of the scalar fields only.

Fi = −W∗i , F∗i = −W i , Da = −g(φ∗Taφ) . (3.58)

Finally, we quote the full transformation rules for these fields, where we for the sake of

18Fields carrying such an index are said to be in the adjoint representation of the gauge group; see e.g. [14,
Appendix B] for a discussion on representations.
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brevity have excluded the conjugate fields:

δφi = εψi , (3.59)

δψiα = −i(σµε†)αDµφi + εαFi , (3.60)

δFi = −iε†σ̄µDµψi +
√

2g(Taφ)iε
†λ†a , (3.61)

δAa
µ = − 1√

2
(ε†σ̄µλa + λ†aσ̄µε) , (3.62)

δλa
α = − i

2
√

2
(σµσ̄νε)αFa

µν +
1√
2

εαDa , (3.63)

δDa =
i√
2
(−ε†σ̄µDµλa + Dµλ†aσ̄µε) . (3.64)

3.5 The Minimal Supersymmetric Standard Model

Having understood the basics of supersymmetry, it’s time to see how it may be applied
as an extension to the standard model. In the minimal version, the particle content is
essentially doubled, with a superpartner for every particle. In addition, we will see that
an extended Higgs sector is needed. Since no superpartners are observed at low en-
ergy, the particle and sparticle masses must be non-degenerate, and supersymmetry must
therefore be broken. Instead of committing to one of the many proposed models of how
this happens, it is useful to simply parametrise our ignorance by introducing explicitly
supersymmetry-breaking terms into the Lagrangian. The resulting theory is known as
the Minimal Supersymmetric Standard Model, or MSSM. Let us tackle each of these sub-
jects in order19.

3.5.1 Particle contents

In the MSSM, every particle is joined with a superpartner in a supermultiplet: the
fermions get scalar superpartners, called sfermions (for scalar fermions); the gauge bosons
get fermion superpartners, called gauginos; while the several Higgs bosons (see section
3.5.2) also get fermion partners, called higgsinos. They are distinguished by a tilde (see

19In this section we are once again quoting [5], unless otherwise noted.
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tables 1, 2), and they transform identically as their standard model partners under the
gauge groups of the SM.

More technically, the two degrees of freedom in a Weyl fermion (from the two spin states)
are grouped together with the two degrees of freedom of a complex scalar field in a su-
permultiplet. Thus, the left-handed and right-handed parts of a particle get separate
superpartners: for instance, the superpartners of the electron will be the selectrons ẽL and
ẽR. Such supermultiplets are then called chiral supermultiplets. Likewise, the two degrees
of freedom of a massless gauge boson are grouped with the two degrees of freedom of its
massless, Weyl-fermionic partner. These are then known as gauge supermultiplets.

Only the fields needed to make the standard model supersymmetric are added. In partic-
ular, right-handed neutrinos are absent, and thus right-handed sneutrinos are too; like-
wise for the graviton and its superpartner, the gravitino. Thus, we get a minimal super-
symmetric extension to the standard model.

In terms of these supermultiplets, then, the superpotential for the MSSM can be expressed
as:

WMSSM = ūλuQHu − d̄λdQHd − ēλeLHd + µHuHd . (3.65)

where the λu,d are the Yukawa couplings — in general, they will be unitary 3× 3 matrices
in family space. Applied to equation (3.51), one is able to deduce the full, unbroken
Lagrangian of the MSSM; this can be found in [26].

In order to explain the conservation of baryon and lepton number, which is a "happy
accident" in the standard model (meaning no renormalisable terms can be written down
that violate them) but not in the MSSM, a new, discrete Z2 symmetry is introduced, called
R-parity. Each particle is assigned a new quantum number, defined as

PR = (−1)3(B−L)+2s , (3.66)

where B and L are the baryon and lepton numbers, respectively, and s is the spin of the
particle. Now, all standard model particles, as well as the scalars of the extended Higgs
sector, have even R-parity (PR = 1), while all superpartners have odd R-parity (PR = −1).
We then demand that any Lagrangian term to be included must have the product of its
R-parities be +1, meaning that there must be an even number of PR = −1 particles in any
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Supermultiplet spin 0 spin 1/2

squarks, quarks Q (ũL, d̃L) (uL, dL)
ū ũ∗R u†

R
(×3 generations) d̄ d̃∗R d†

R

sleptons, leptons L (ν̃, ẽL) (ν, eL)
(×3 generations) ē ẽ∗R e†

R

Higgs, higgsinos Hu (H+
u , H0

u) (H̃+
u , H̃0

u)
Hd (H0

d , H−d ) (H̃0
d , H̃−d )

Table 1: Chiral supermultiplets in the MSSM.

interaction vertex.

This has the consequence that any decaying superpartner must decay to at least one other
superpartner, the lightest of which will be stable. This particle, then, is known as the
lightest supersymmetric particle, or LSP. If it is electrically neutral, it will be an attractive
candidate for Dark Matter.

3.5.2 Higgs in the MSSM

As the Higgs resides in an SU(2) doublet, it seems clear that so must the higgsinos, to-
gether forming a chiral supermultiplet. However, as is seen in table 1, it is necessary to
introduce not just one but two chiral supermultiplets. The reasons are two-fold: firstly,
the introduction of higgsinos with hypercharge Y = 1 introduces gauge anomalies (i.e.
loop diagrams breaking gauge symmetry — see figure 7) that can only be cancelled by
introducing a similar higgsino with Y = −1; this, of course, means introducing a Y = −1
Higgs doublet as well.

Specifically, in order to have an anomaly-free theory, the conditions Tr
[
Ta{Tb, Tc}

]
= 0

must be satisfied, with the T’s being the generators of the interacting currents in the
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Supermultiplet spin 1/2 spin 1

gluino, gluon g̃ g

winos, W bosons W̃± W±

W̃0 W0

bino, B boson B̃0 B0

Table 2: Gauge supermultiplets in the MSSM.

anomalous diagrams [1, ch. 19.4]. Applied to the electroweak SU(2) ⊗ U(1) symme-
try, these include Tr

[
I2
3Y
]
= Tr

[
Y3] = 0, with the trace taken over all left-handed Weyl

fermionic degrees of freedom — these, then, are the conditions violated by the single
higgsino multiplet.

Secondly, it turns out to be necessary for giving masses to both up- and down-type
quarks. In the standard model, these are given by interactions with the Higgs field (with
Y = 1) and its conjugate (with Y = −1), respectively. However, one can show quite gen-
erally that interaction terms with conjugate scalar fields will not be supersymmetric (i.e.,
their contribution to δL cannot cancel against any other term, nor can they be formulated
as a total derivative). Therefore, the only way to make this work is to have two Higgs
supermultiplets, with Y = 1 and −1 respectively, designated Hu and Hd after the families
of quarks they give mass to. Their supersymmetry-conserving mass terms are

Lsupersymmetric Higgs mass = −|µ| 2(|H0
u|

2
+ |H+

u |
2
+ |H0

d |
2
+ |H−d |

2
) . (3.67)

We see here that the mass cannot be negative. Therefore, electroweak symmetry-breaking
cannot be understood without additional SUSY-breaking Higgs mass parameters. For this
to happen without too much cancellation, µ should be roughly on the order of 102–103

GeV — or, in other words, roughly the order of the soft masses. Why this should be the
case, with these being in principle completely independent mass scales, is dubbed "the µ

problem"; it is, in a sense, the final remnant of the original hierarchy problem.
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Figure 7: A loop diagram breaking gauge symmetry, arising from fermion-gauge boson interac-
tions. In the standard model, all such diagrams end up cancelling out; in order for the MSSM to be
a viable theory, they must be cancelling out here too. This necessitates an extended Higgs sector.

3.5.3 Breaking the symmetry

As mentioned in the introduction, supersymmetry needs to be broken somehow. In the
MSSM, this is simply done explicitly. We restrict ourselves to soft SUSY-breaking terms,
meaning terms that lead to at most logarithmic divergences20. In the MSSM, the possible
such terms are

LMSSM
so f t = −1

2
(M3 g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.)

−( ˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eae L̃Hd + c.c.)

−Q̃†m2
QQ̃− L̃†m2

L L̃− ˜̄um2
ū ˜̄u† − ˜̄dm2

d̄
˜̄d† − ˜̄em2

ē ˜̄e†

−m2
Hu

H∗u Hu −m2
Hd

H∗d Hd − (BµHuHd + c.c.) . (3.68)

Here, M1, M2 and M3 are the Bino, Wino, and Gluino soft masses, respectively; au, ad, and
ae are complex 3× 3 matrices in family space, containing the trilinear (scalar)3 couplings;
m2

Q and m2
L are similar 3 × 3 mass matrices for the left-handed sparticles, while m2

ū, m2
d̄,

and m2
ē are the right-handed mass matrices. Finally, the m2

Hu
, m2

Hd
, and Bµ terms are the

SUSY-breaking contributions to the Higgs potential.

In order to satisfyingly solve the hierarchy problem, these parameters should all be on
the order of a characteristic mass scale mso f t, not much larger than a TeV.

The MSSM is infamous for having a tremendously large number of free parameters, and
here is where they enter. The supersymmetry-preserving part of the Lagrangian gets

20Otherwise, we would just be trading one hierarchy problem for another, up to the scale of the SUSY-
breaking.

28



all its parameters from the standard model, and thus have just the same amount of free
parameters. Supersymmetry-breaking, however, appears to be very arbitrary: no less than
105 new, free parameters are introduced [27]!

But this is, of course, just a consequence of our ignorance when it comes to exactly how
supersymmetry is broken — as we will see in section 5, by restricting ourselves to a par-
ticular model of SUSY-breaking, one is typically able to reduce this to just a handful of
free parameters.

3.5.4 Mixing sparticles and Higgses

Any scalars with the same electric charge, R-parity, and colour quantum numbers may
mix with each other. In order to find the mass eigenstates, it is therefore necessary to
express interactions between such particles as a mass matrix to be diagonalised. As a
simplified example, consider two such scalars χ and ξ, with the Lagrangian

L = ∂µχ∗∂µχ + ∂µξ∗∂µξ −m2
χχ∗χ−m2

ξξ∗ξ − gχ∗ξ + c.c. (3.69)

Expressing the fields in terms of an array φ = (χ, ξ)T, these terms are then expressible in
terms of the squared-mass matrix m2.

L = φ†m2φ =
(

χ∗, ξ∗
)(m2

χ g
g∗ m2

ξ

)(
χ

ξ

)
. (3.70)

In order to find the mass eigenstates, then, one must "rotate" the field φ into a basis in
which m2 becomes diagonal. Rotating by an angle θ, one ends up with two mass eigen-
states:

φ1 = cos θ χ + sin θ ξ , φ2 = cos θ ξ − sin θ χ . (3.71)

In the MSSM, then, one would have to diagonalise a 6× 6 squared-mass matrices (3 gen-
erations × 2 helicities) for the squarks and sleptons, and a 3× 3 sneutrino matrix. How-
ever, the general hypothesis of flavour-blind soft parameters (as needed to suppress large
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FCNCs and CP-violations [5] — see Chapter 5),

m2
Q = m2

Q1 , m2
ū = m2

ū1 , m2
d̄ = m2

d̄1 , m2
L = m2

L1 , m2
ē = m2

ē 1 ,

au = Au0λu , ad = Ad0λd , ae = Ae0λe . (3.72)

where the 1s are 3× 3 unit matrices in family space, leads to most of these mixing angles
being negligible; the only non-negligible mixing will be in the pairs (t̃L, t̃R), (b̃L, b̃R), and
(τ̃L, τ̃R). The mass eigenstates are denoted by 1, for the lightest, and 2, for the heaviest.
For example, we have for the τ̃,τ̃1

τ̃2

 =

 cτ̃ sτ̃

−sτ̃ cτ̃


τ̃L

τ̃R

 , (3.73)

where cτ̃ ≡ cos θτ̃ and sτ̃ ≡ sin θτ̃.

The situation is similar for the gauginos and higgsinos, although here the interactions that
lead to mixing only arises after the Higgses develop vevs. The neutral gauginos, B̃ and
W̃0, mix with the neutral higgsinos, H̃0

u and H̃0
d , to form the four neutralinos21 χ̃0

i , while the
positively charged gaugino, W̃+, mixes with the charged higgsino H̃+ to produce the two
charginos χ̃+

i , (and similarly for their conjugates). The neutralino masses are then found
by acting on the fields with the unitary matrix N such that N∗Mχ̃0 N† becomes a real,
diagonal matrix containing the neutralino masses mχ̃0

i
. The chargino masses are similarly

found by a biunitary transformation, such that U∗Mχ̃+V† is a diagonal matrix containing
the chargino masses mχ̃+

i
.

After electroweak symmetry-breaking, the two Higgs doublets will acquire vacuum ex-
pectation values vu and vd. The masses of the various standard model particles are then
given in terms of these as [1]

mu =
1√
2

λuvu , md =
1√
2

λdvd , (3.74)

M2
W =

1
4

g2(v2
u + v2

d) , M2
Z =

1
4
(g′2 + g2)(v2

u + v2
d) , (3.75)

21In models with minimal particle contents, the lightest of these is often assumed to be the LSP, as it is
the only dark matter candidate in the MSSM that has not been ruled out by observation [5].
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where the λ are the usual Yukawa couplings, with subscript u designating I3 = 1
2 fermions

and d designating I3 = −1
2 fermions, and where g and g′ are the SU(2)L and U(1)Y gauge

couplings, respectively.

In light of equation (3.75), one might want to define vu and vd in terms of the standard
model vev as

vu = v sin β , vd = v cos β , (3.76)

where β is a free parameter. In particular, their ratio is then expressed as

vu

vd
= tan β . (3.77)

Letting sβ ≡ sin β, cβ ≡ cos β, and with sW , cW being the sine and cosine of the weak
mixing angle, the mass matrices of the MSSM are as follows22:

For the neutralinos, we get the mass terms−χ̃0T Mχ̃0 χ̃0 + h.c., where χ̃0 = (−iB̃0,−iW̃0, H̃d, H̃u)T,
and

Mχ̃0 =


M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 µ

MZsβsW −MZsβcW µ 0

 . (3.78)

For the charginos, we get the mass terms−χ̃−T Mχ̃+ χ̃+ + h.c., where χ̃+ = (−iW̃+, H̃+
u )T,

χ̃− = (−iW̃−, H̃−d )T, and

Mχ̃+ =

 M2
√

2MWsβ√
2MWcβ −µ

 . (3.79)

For up- and down-type squarks, we have terms like ũ†m2
uũ and d̃†m2

dd̃, with ũ =

(ũL, ũR)
T, d̃ = (d̃L, d̃R)

T, and

m2
ũ =


M2

Q + m2
u + ∆ũL

1√
2

(
vua∗u − µλuvd

)
1√
2

(
vuau − (µλu)∗vd

)
M2

U + m2
u + ∆ũR

 , (3.80)

22All but the sfermion mass matrices are taken from reference [28] — these are instead quoted here in the
form of reference [29].
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m2
d̃ =


M2

Q + m2
d + ∆d̃L

1√
2

(
vua∗u − µλuvd

)
1√
2

(
vdad − (µλd)

∗vu

)
M2

D + m2
d + ∆d̃R

 , (3.81)

∆ f̃ represents a "hyperfine splitting" arising from quartic interactions with the Higgs of
the form f̃ 2H2 — it is model-independent for a given choice of tan β, and is given by [5]

∆φ = (Iφ
3 − eφs2

W)M2
Zc2β , (3.82)

where eφL , eφR are the electric charge of the left-handed field and the conjugate of the
right-handed field, respectively, in units of the elementary charge.

The gluino mass, meanwhile, is simply given by the soft mass M3, while the sneutrino
masses are given by

m2
ν̃ = M2

L + ∆ν̃ . (3.83)

As for the Higgses, the gauge eigenstates (H+
u , H0

u), (H0
d , H−d ) mix to produce four mass

eigenstates: a charged Higgs, H+, a CP-odd pseudoscalar, A0, a heavy neutral Higgs, H0,
and a light neutral Higgs, h0, the latter of which is identified with the standard model
Higgs observed at ∼ 125 GeV. Treating the pseudoscalar Higgs mass m2

A0 as a free pa-
rameter, the charged Higgs mass is given by

m2
H+ = m2

A0 + M2
W , (3.84)

while the neutral Higgs masses is found through diagonalising the mass matrix [30]

M2
H0 =

 mA0s2
β + m2

Zc2
β −(m2

A0 + m2
Z)sβcβ

−(m2
A0 + m2

Z)sβcβ m2
A0c2

β + m2
Zs2

β

 . (3.85)

This is achieved by a rotation through the Higgs mixing angle, α.H0

h0

 =

 cα sα

−sα cα


Hu

Hd

 . (3.86)
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3.6 A comment on the current status of experiments

The Large Hadron Collider has been actively searching for signs of supersymmetry since
it began operations in 2008 — indeed, besides the prospect of producing the Higgs parti-
cle, this was one of the main motivations for building the machine. It was said that either
the LHC must discover at least some superpartners, or the case for low-energy supersym-
metry would be "significantly weakened" [31]. This was based on the argument that we
don’t expect the cancellations in the Higgs mass parameter, as explained in section 3.1, to
occur at more than one order of magnitude.

Well, the LHC has looked, and the situation seems dire: no unambiguous evidence for
physics beyond the standard model has been found23, and in particular, no superpartners.
Though it will continue collecting data for decades to come, a general pessimism regard-
ing the prospects of supersymmetry seems to have taken root in the field [33].

It is important to emphasise, however, that we are talking about low-energy supersymme-
try here, as needed to satisfyingly solve the hierarchy problem. Even besides the hierar-
chy problem, there remain several very good reasons to study supersymmetry. For one, it
ensures the unification of the gauge couplings at higher energies, something the standard
model fails to do (see figure 8)24. Second, it still readily provides attractive candidates
for Dark Matter, as discussed in section 3.5.1. Third, and perhaps most importantly, it is
required by the only known candidate for a renormalisable theory of quantum gravity,
namely (super)string theory [36].

As for the hierarchy problem, one might have to accept that at least some fine-tuning is
involved, but if that cancelling happens at a couple of orders of magnitude, as would
be the case if the SUSY breaking occurs just beyond the LHC limit, that would still be a
lot less disturbing than the 36 orders of magnitude we began with. If so, there are good
prospects for discovering superpartners in future colliders like the ILC [37] and the FCC
[38, 39]25.

23Other than the non-zero neutrino masses that is, as inferred from the observed mixing of solar neutrinos
[32].

24The resulting theories, commonly referred to as a Grand Unified Theories, or GUTs, typically combine
the gauge groups of the standard model SU(3)⊗ SU(2)⊗U(1) into the unified gauge group SU(5) [34],
or more commonly SO(10); see [35] for a review.

25In particular, assuming the standard model of cosmology, the observed dark matter relic abundance
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Figure 8: Running couplings in the SM (dashed lines), in the MSSM for sparticles at ∼ 750 GeV
(blue lines), and in the MSSM for sparticles at ∼ 2.5 Tev (red lines). Figure taken from [5].

Finally, even if the breaking were to take place at the GUT scale ofO
(
1016) GeV (and thus

implying fine-tuned cancellations between terms of orderO
(
1032)), it still wouldn’t imply

any explicit inconsistencies of the theory — this is fundamentally a problem of aesthetics,
rather than mathematical consistency26.

bounds the mass of WIMP dark matter from above by MDM < 1.8TeV(g2
e f f /0.3), with ge f f the effective

coupling determining their annihilation rate, strongly suggesting new physics at the TeV scale [39].
26In order to make sense of such a situation, though, one might find it necessary to resort to anthropic

reasoning, since in order to support complex structures, and thus life, the Higgs mass parameter cannot
differ much from its observed value. Talking about "naturalness" and "likelihoods" in the face of this may
make little sense, as otherwise we wouldn’t be here to discuss it. Indeed, such arguments have seen a
rise in popularity with the advent of multiverse theories, wherein it is hypothesised that we live in one of
an infinitude of different "bubble universes", each with slightly different physical parameters [40]. For a
detailed discussion of such "fine-tuned" SUSY, including its phenomenology, see [41].
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4 Renormalisation

One of the main successes of QFT as a theoretical framework over the older framework
of relativistic quantum mechanics, is the prediction of precision corrections to the inter-
actions of the theory. In addition to the more precise predictions of masses and cross
sections associated with going to higher orders in perturbation theory, this leads to scale-
dependent, or "running", gauge couplings [12]. Such higher-order interactions are repre-
sented in the usual perturbative framework by Feynman diagrams with loops.

Figure 9: A one-loop Feynman diagram. This particular diagram yields a correction to the mass
of the propagating fermion through interaction with a virtual scalar.

In the early development of quantum field theory, these kinds of diagrams represented a
major difficulty. The problem lies in the fact that the momentum of the inserted particle
is undetermined, and must therefore be integrated over all possibilities. Schematically,

(undetermined loop momentum q) −→
∞w

−∞

d4q
(2π)4 . (4.1)

Not only are these integrals divergent, but there would be, in the non-perburbative limit,
infinitely many of them for any given process. The situation was finally resolved in the
sixties by the development of the method known as renormalisation. Roughly speaking,
the process is as follows:

First, introduce a regulator such that the integral becomes finite. The simplest way to do
this is to simply introduce a cut-off Λ to the integral.

w d4q
(2π)4 −→

w

|q|<Λ

d4q
(2π)4 , (4.2)

where, at the end of the calculation, Λ is to be taken to infinity again. This method has
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the benefit of being both simple and intuitive27. On the other hand, it breaks both gauge
symmetry and Lorentz invariance, leading to computational difficulties.

The more popular method of regularisation is dimensional regularisation, in which the
dimensionality of the integrals is altered instead.

w d4q
(2π)4 −→

w dDq
(2π)4 , D ≡ 4− ε , (4.3)

where ε is to be taken to zero at the end of the calculation. With this method, gauge
invariance is preserved, and the divergences show up as terms proportional to 1/ε.

After having regularised the theory, the next step is then to absorb the divergent terms
into redefinitions of the gauge couplings and masses — or, put another way, make the
parameters of the Lagrangian infinite in just such a way as to cancel the divergences of
the integrals28.

g0 7−→ g = g0 −
1
ε

, (4.4)

where g0 would be the "bare" coupling of the tree-level theory, and g the renormalised
coupling. Here we see what was stated above: in order for g to be finite in the ε→ 0 limit,
g0 must be infinite. This isn’t a problem, however, as g0 is not an observable parameter.

If all divergences of the theory can be absorbed by such redefinitions, the theory is said
to be renormalisable. We are left with finite predictions, but now in terms of the renor-
malised parameters. These are running parameters, meaning they now depend on the en-
ergy scale, a dependence which may be derived from the renormalisation group equations

27It is also instrumental to the formulation of so-called "effective" field theories. These are to be thought
of as non-fundamental approximations, correct up to an energy scale Λ, above which a more fundamental
(possibly unknown) theory enters.

28For many years, this was thought to be an improper mathematical procedure, and doubts lingered as
to whether the procedure was even mathematically consistent. Consider for example this comment by Paul
Dirac, from as late as 1975 [42, p. 184]:

Most physicists are very satisfied with the situation. They say: ’Quantum electrodynamics is
a good theory and we do not have to worry about it any more.’ I must say that I am very
dissatisfied with the situation, because this so-called ’good theory’ does involve neglecting
infinities which appear in its equations, neglecting them in an arbitrary way. This is just not
sensible mathematics. Sensible mathematics involves neglecting a quantity when it is small
— not neglecting it just because it is infinitely great and you do not want it!

Today, however, renormalisation is generally accepted to be a consistent procedure, and integral to the
study of QFT.
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(RGEs):

µ
dg
dµ

= β(g) . (4.5)

Here, g is a coupling constant, µ is the energy scale, and β(g) is a function of the coupling
constant that may be computed from the theory. For example, at one-loop order, the
coupling constant of quantum electrodynamics has β(α) = 2α2/3π [1, ch. 12.2].

At a more technical level, we have the following integrals appearing at one-loop level in
self-energy calculations [28]:

A0(m) = 16π2µ4−D
w dDq

i (2π)D
1

q2 −m2 + iε
, (4.6)

B0(p, m1, m2) = 16π2µ4−D
w dDq

i (2π)D
1[

q2 −m2
1 + iε

][
(q− p)2 −m2

2 + iε
] ,(4.7)

pµB1(p, m1, m2) = 16π2µ4−D
w dDq

i (2π)D
qµ[

q2 −m2
1 + iε

][
(q− p)2 −m2

2 + iε
] ,(4.8)

pµ pνB21(p, m1, m2) + gµνB22(p, m1, m2) , (4.9)

= 16π2 µ4−D
w dDq

i (2π)D
qµqν[

q2 −m2
1 + iε

][
(q− p)2 −m2

2 + iε
] .

A0 can be integrated to give

A0(m) = m2
(

2
ε
− γE + ln 4π + 1− ln

m2

µ2

)
, (4.10)

where γE is the Euler-Mascheroni constant [43], while the function B0 can be rewritten as

B0(p, m1, m2) =
2
ε
− γE + ln 4π −

w 1

0
dx ln

(1− x) m2
1 + x m2

2 − x(1− x) p2 − iε
µ2 .

(4.11)
Here we see explicitly the divergent terms that are to be subtracted. If one uses redefini-
tons like (4.4) to subtract only the 2/ε poles, the renormalisation scheme is called MS,
for minimal subtraction; if one instead chooses to subtract 2/ε̂ = 2/ε− γE + ln 4π, the
scheme is known as MS (pronounced MS-bar). Clearly, the resulting predictions will de-
pend somewhat upon the scheme one chooses, though this dependence must necessarily
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disappear in the non-perturbative limit.

All the other integrals can now be written in terms of A0 and B0. For example,

B1(p, m1, m2) =
1

2p2

[
A0(m2)− A0(m1) + (p2 + m2

1 −m2
2)B0(p, m1, m2)

]
. (4.12)

Similar expressions for the other functions can be found in reference [44].
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5 Gaugino-mediated supersymmetry-breaking

The MSSM, in its most basic form, comes with several problems. For one, it predicts
large flavour-changing neutral currents (FCNCs); no such currents, beyond those arising
from higher-order interactions in the standard model, have been observed. Second, it
predicts large CP-violating phases. Again, no CP-violation have been observed beyond
that predicted by the standard model [2]. Therefore, for a particular supersymmetric
model to be phenomenologically viable, it needs to predict these terms and phases to be
negligible29.

One particularly promising scenario is that of gaugino mediated supersymmetry break-
ing [7, 8]. In this setup, the matter fields of the MSSM are confined to a 4-dimensional
brane, embedded in a d-dimensional bulk30. The gauge and Higgs superfields are allowed
to propagate in the field, and so is gravity (see figure 2). The size of the extra dimensions
determines the compactification scale MC ≡ (1/Vd−4)

1
d−4 , where Vd−4 is their collected

volume — this will be the scale needed to resolve the compact dimensions.

We work in a model with one additional dimension and one additional brane, spatially
separated from the MSSM brane by a distance R5. This brane contains at least one chiral
superfield, S, which is a singlet under the SM gauge groups. Here, SUSY is broken by the
vacuum expectation value of its auxiliary field FS. The gauginos and Higgses acquire soft
masses through couplings to this field proportional to the vev, while the soft sfermion
masses are suppressed by factors of order e−R5 MP . Thus, even if R5 is on the order of
M−1

U = O
(
10−16), they will be suppressed by a factor e−102

= O
(
10−44)!

In order for the additional FCNCs to be negligible, it is sufficient to assume that the mass
matrices in eq. (3.68) are diagonal:

m2
Q = m2

Q1 , m2
ū = m2

ū1 , m2
d̄ = m2

d̄1 , m2
L = m2

L1 , m2
ē = m2

ē 1 , (5.1)

where the 1s are 3 × 3 unit matrices in family space. Since this theory predicts the
sfermion soft masses to be 0, this requirement is trivially satisfied.

29In particular, just assuming them to be small is seen to be unsatisfactory. This is because the one place
where CP-violation can show up in the SM, namely in the CKM matrix [1], it appears at order one [2].

30Now with d ∈N, of course.
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We assume gauge unification to occur at a scale MU ∼ 1016 GeV, such that

M1 = M2 = M3 = m1/2 . (5.2)

From interactions between S and the Higgs, we also get SUSY-breaking trilinear couplings
proportional to the Yukawa matrices31:

au = Au0yu , ad = Ad0yd , ae = Ad0ye . (5.3)

Making the additional assumption that CP-violation only occurs on the visible brane en-
sures that the only CP-violating phase in the theory is the usual CKM phase of the SM [8].
The free parameters of the theory are then just m1/2, m2

Hu
, m2

Hd
, Au0, Ad0, and Bµ.

The sfermions acquire masses from loop-interactions with the gauginos, as illustrated in
figure 2. The compactification scale, where m f̃ = 0, is taken as the input scale, and the
low-energy parameters of the theory are evaluated by backwards running down to an
energy scale appropriate for phenomenology32. This is done using RGEs analogous to
that in equation (4.5), which are listed in [5]. In most of the parameter space, the gravitino
will be the LSP [7], with a mass m3/2 & 10 GeV [46]; this can then be a viable Dark Matter
candidate33. The next-to-lightest supersymmetric particle (NLSP) then becomes stable on
collider time-scales, and is found to be either the lightest neutralino, the stau, or the tau
sneutrino [7, 8, 45].

The µ problem, meanwhile, is solved by the Giudice-Masiero mechanism [8, 49], wherein
it is given its value through interactions with the auxiliary field vev — just like the soft
masses!

31These couplings were absent in the original versions of the theory [7, 8]. However, their absence would
require m1/2 & 3 TeV in order to reproduce the observed Higgs mass of ∼ 125 GeV, and thus very heavy
sparticles; the addition of trilinear couplings alleviates this situation [45].

32This scale is usually taken to be µSUSY ≡
√mt̃1

mt̃2
.

33Though, many would argue, an unfortunate one; being a singlet under all the Standard Model gauge
groups, it is all but impossible to detect directly. However, as direct detection experiments keep producing
null-result after null-result [47, 48], this scenario is increasingly becoming one worth taking seriously.
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6 Our work

In [45], an extensive parameter search was conducted for the nature of the NLSP given
different high-scale input parameters. This was done at 1-loop level34 using the spectrum
generator SPheno [29]. The goal of our work is to achieve a greater understanding of the
mass ordering in a particular part of the parameter space, in which it was found that either
the stau or the tau sneutrino is the NLSP — this while being nearly mass-degenerate. In
particular, we attempt to identify what process is most important in determining this
small mass difference.

Figure 10: Plot taken from [45]. The dashed lines show the masses of the possible NLSPs in a slice
of parameter space, while the solid line shows the stau mixing angle. Here, Bµ has been traded
for tan β as a free parameter, as explained in [5, ch. 8.1]. The other input values are m1/2 = 2 TeV,
A0 = −2 TeV, and µ > 0.

Though it can be hard to see in the above plot, the identity of the NLSP changes at about
m2

Hd
/m2

1/2 ≈ 8.5, from the stau to the tau sneutrino, (see figure 11).

This, then, is the point of interest, motivating our investigation into the driving forces
behind the mass splitting.

34Or rather "1.5"-loop level: in addition to the complete one-loop corrections to the sparticle masses,
SPheno incorporates the most important two-loop corrections to the neutral Higgs sector. The RGEs are
numerically solved at two-loop order. [29]
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Figure 11: Also from [45], a plot showing regions of different NLSPs. In the white region, the
spectrum becomes tachyonic, i.e., containing negative soft squared-masses. The black dotted line
is the region considered in figure 10.

We will follow reference [45] and constrain ourselves to the case Au0 = Ad0 ≡ A0
35.

In addition, we take µ > 0, A0 < 0,36 and let the input scale to be the scale of grand
unification, MC = MU ≈ 1016 GeV.

6.1 Tree-level calculations

The first step in the process was to determine whether the results could be recreated at
tree-level. The tree-level stau mass matrix is [28]

m2
τ̃̃τ̃τ =

 M2
L3
+ m2

τ + ∆τ̃L mτ(Aτ̃ + µ tan β)

mτ(Aτ̃ + µ tan β) M2
ē3
+ m2

τ + ∆τ̃R

 , (6.1)

where we’ve now taken aτ̃̃τ̃τ = Aτ̃λτ, and where the hyperfine splitting ∆φ is given in
equation (3.82).

35Not to be confused with the divergent integral A0, as given in equation (4.6) — which of these we are
referring to shall always be clear from context.

36Changing the sign of both leads to similar phenomenology [45].
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Figure 12: Tree level masses of the sneutrino (blue, dash-dotted), the heavy stau (orange, long-
dashed), and the light stau (red, short-dashed) as a function of the high-energy input parameter
m2

Hd
/m2

1/2. The other input values are tan β = 20, m2
Hu

= 5 TeV2, m1/2 = 2 TeV, and A0 = −2 TeV.

Diagonalising yields the tree-level mass formulas

m2
τ̃1
=

1
2

(
M2

L3
+ M2

ē3
+ (IτL

3 − eτL s2
W − eτR s2

W)M2
Zc2β

−
√
(M2

L3
−M2

ē3
+ (IτL

3 − eτL s2
W − eτR s2

W)M2
Zc2β)2 + 4m2

τ(Aτ̃ + µ tan β)2
)

, (6.2)

m2
τ̃2
=

1
2

(
M2

L3
+ M2

ē3
+ (I3τL − eτL s2

W − eτR s2
W)M2

Zc2β

+
√
(M2

L3
−M2

ē3
+ (IτL

3 − eτL s2
W − eτR s2

W)M2
Zc2β)2 + 4m2

τ(Aτ̃ + µ tan β)2
)

. (6.3)

There being no right-handed sneutrinos in our model, the sneutrino mass is meanwhile
simply given by

m2
ν̃τ

= M2
L3
+ ∆ν̃τ . (6.4)

We wrote a Mathematica script that ran SPheno over a range of values, extracting the
relevant parameters and calculating the tree-level stau and tau sneutrino masses for each
one in order to recreate the results in figure 10. This was done in steps of ∆(m2

Hd
/m2

1/2) =
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Tree-level SPheno
mτ̃1 = 791.16 GeV mτ̃1 = 797.88 GeV
mτ̃2 = 983.59 GeV mτ̃2 = 1011.70 GeV
mν̃τ = 977.12 GeV mν̃τ = 1003.65 GeV

Table 3: Comparison between the tree-level masses and SPheno’s (1-loop level) output. These
values are taken from the point m2

Hd
/m2

1/2 = 5 in figures 10, 12.

(a) (b)

Figure 13: (a) The mass difference ∆m = mν̃τ − mτ̃1 at tree-level (red dashed curve) compared to
the same mass difference in the SPheno output (yellow dash-dotted curve). The solid blue line
is the unmixed tree-level mass difference, ∆m = mν̃τ − mτ̃L . (b) The same plot zoomed in to the
region in which the NLSP changes identity.

0.1, making it a total of 100 data points. The results are given in figure 12.

The first thing one notices is that the tree-level masses are consistently lower than
SPheno’s results — see table 3 for a comparison at the point m2

Hd
/m2

1/2 = 5. This is
not too surprising, as one expects the loops to push them upwards somewhat. Secondly,
the amount of stau mixing clearly depends a great deal on the value of m2

Hd
, with τ̃1 going

from being almost entirely right-handed to almost entirely left-handed over the course of
the plot. This is because the Higgs mass parameter µ, which shows up in the off-diagonal
terms in (6.1), shares a linear dependence with mHd . (Specifically, in unbroken SUSY,
m2

Hd
= |µ|2, as shown in eq. (3.67)).

But in order to get a clearer view of the situation, it is helpful to look only at the mass
difference, ∆m = mν̃τ − mτ̃1 — wherever it crosses zero will of course be the point where
the NLSP changes identity. Our result is compared to the mass difference in the SPheno
output in figure 13, together with the unmixed mass difference ∆m = mν̃τ −mτ̃L .
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From these plots, the situation starts to become clear: the unmixed stau τ̃L is always
heavier than the sneutrino, staying just above it at a mass difference of just a few GeV.
Comparing equation (6.1) and (6.4), we see that this must be due to the terms m2

τ and ∆τ̃L .
The first term is of course just the tau mass squared, with mτ ≈ 1.777 GeV [2] — but it is
the latter term, the hyperfine splitting, that dominates37. Up to the (negligible) tau mass,
then, this squared-mass difference is just

∆m ≈ ∆ν̃τ − ∆τ̃L = M2
Zc2βc2

W . (6.5)

This is found to be negative for tan β = 20. And so, as the lightest stau goes from be-
ing predominantly right-handed to more and more left-handed, it is only natural that it
should end up the heavier of the two.

One might wonder, in looking at equation (6.5), how it is that this mass difference also
seems to depend on the value of m2

Hd
, given that all of those parameters should be fixed.

The reason is that the Z boson squared-mass M2
Z is here a running parameter38, evaluated

using eq. (3.75), and the scale µ at which SPheno evaluates the parameters we are using
in these calculations is defined as

µSUSY =
√

mt̃1
mt̃2

, (6.6)

where mt̃1
and mt̃2

are the tree-level masses of the light and the heavy stop, respectively.
These will depend on the value of m2

Hd
, and therefore, so will the scale at which we eval-

uate M2
Z.

Looking at figure 13, we find that the identity of the NLSP changes from the stau to
the sneutrino somewhat early compared to SPheno, with m2

Hd
/m2

1/2 around 7.5 versus
SPheno’s ∼ 8.5. The desire to close this gap prompted us to investigate the situation at
1-loop level.

37m2
τ = O(1) GeV2, ∆τ̃L = O

(
103) GeV2.

38As opposed to the pole mass, MZ, pole ≈ 80.3 GeV [2].

45



Figure 14: Masses of the sneutrino (blue, dash-dotted), the heavy stau (orange, long-dashed), and
the light stau (red, short-dashed) as a function of the high-energy input parameter m2

Hd
/m2

1/2, now
evaluated at one-loop level; the high-energy input parameters are the same as those in figure 12.

6.2 In the loop

Initially, we thought we could save ourselves some time by only studying the mass dif-
ference m2

ν̃τ
− m2

τ̃, as due to cancellations this would mean we could ignore large parts
of the loop corrections the individual particles receive, and because precisely this mass
difference had already been studied in detail in reference [50]. This turned out to be more
tedious than expected, however, as it lead to a seemingly never-ending rabbit hole of
referenced formulas, many with conflicting conventions, and with increasingly archaic
notation. Upon realising that these formulas also completely neglected sparticle mixing,
and in particular loop-corrections to the off-diagonal terms of the mass matrix, this path
was abandoned in favour of doing the full one-loop calculations, based on the delight-
fully self-contained appendices of reference [28].

In order to find the pole masses of the staus, one needs to solve

det
[

p2
i −m2

τ̃̃τ̃τ(p2
i )
]
= 0 , m2

τ̃i
= Re(p2

i ) , (6.7)
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One-loop level SPheno
mτ̃1 = 799.13 GeV mτ̃1 = 797.88 GeV
mτ̃2 = 1010.98 GeV mτ̃2 = 1011.70 GeV
mν̃τ = 1001.29 GeV mν̃τ = 1003.65 GeV

Table 4: Comparison between the one-loop calculated masses and SPheno’s output. These values
are taken from the point m2

Hd
/m2

1/2 = 5 in figures 10, 14.

where

m2
τ̃̃τ̃τ(p2) =

m2
τ̃Lτ̃L
−Πτ̃Lτ̃L(p2) m2

τ̃Lτ̃R
−Πτ̃Lτ̃R(p2)

m2
τ̃Rτ̃L
−Π∗τ̃Lτ̃R

(p2) m2
τ̃Rτ̃R
−Πτ̃Rτ̃R(p2)

 , (6.8)

and similarly for the sneutrino,∣∣∣p2 −m2
ν̃τ
(p2)

∣∣∣ = 0, m2
ν̃τ

= Re(p2) , (6.9)

with
m2

ν̃τ
(p2) = M2

L3
+ ∆ν̃τ −Πν̃τ ν̃τ(p2) . (6.10)

As mentioned, we based our calculations on the Πs listed in [28], but adapted to the
present case of staus and sneutrinos; the resulting formulas can be found in appendix A.

The calculations were done by first running SPheno, extracting the relevant parameters,
and doing the tree-level calculations for mτ̃i , mν̃τ again. These values were then used
in evaluating eq. (6.7) (with the other parameters again taken from SPheno), before be-
ing updated to their new, one-loop corrected values. The new values were then used to
re-evaluate (6.7), before being updated again. This process was repeated a total of four
times for each point, as we found this to be sufficient for the result to have stabilised
(|mn −mn−1| < 10−2 GeV). See Appendix B for a flowchart of our code.

Doing this calculation over the same range of high-energy input parameters as in section
6.1, we get the results presented in figure 14. We see that, rather than become smaller,
as one might have expected from figures 10 and 11, the loops seem to have enhanced the
mass difference between the stau and sneutrino.

This result is, by and large, the opposite of what we expected — the point at which the
NLSP changes identity is further from SPheno’s result than ever before, now at m2

Hd
/m2

1/2

below 7!
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(a) (b)

Figure 15: (a) The mass difference ∆m = mν̃τ −mτ̃1 calculated at one-loop level (red dashed curve)
compared to the same mass difference in the SPheno output (yellow dash-dotted curve). The
solid blue line is the unmixed one loop-level mass difference, ∆m = mν̃τ −mτ̃L . (b) The same plot
zoomed in to the region in which the NLSP changes identity — note that the range of the y-axis is
now four times larger than in figure 13b, reflecting the large enhancement of the mass splitting.

As for the overall mass scale, we did indeed come very close to SPheno’s output by going
up to 1-loop level, as can be seen in table 4. In this region, the difference is on the order
of 1 GeV, or ∼ 0.1%. This is of course not the case for higher values of m2

Hd
, as discussed

above.

6.3 Understanding the enhanced mass splitting

Though sparticle mixing still affects the results, the most striking feature of the above
plots is how the mass difference only becomes larger as τ̃ becomes more left-handed.
Ignoring the mixing, then, we delved into the individual terms of the τ̃L and ν̃τ loop
corrections. We found three terms to be of the greatest importance, several orders of
magnitude above the rest. The first two are

Πτ̃Lτ̃L(p2) ⊃
4

∑
i=1

[
fiττ̃LL G(mχ̃0

i
, mτ)− 2 giττ̃LL mχ̃0

i
mτB0(mχ̃0

i
, mτ)

]
+

2

∑
i=1

fiντ τ̃LL G(mχ̃+
i

, 0) , (6.11)
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χ̃0
j

τ

τ̃i τ̃i

(a)

χ̃+
j

ντ

τ̃i τ̃i

(b)

Figure 16: Examples of corrections to the stau mass through interactions with the (a) neutral gaug-
inos, and (b) charged gauginos. Making the replacement τ ←→ ν, χ̃+

j 7−→ χ̃−j would yield the
corresponding diagrams for the sneutrino.

H+

τ̃L

(a)

H+

ν̃τ

(b)

Figure 17: A loop arising from quartic interactions between the left-handed sleptons and the
charged Higgs, giving the mass correction terms (6.13), (6.14).

for the stau, and

Πν̃τ ν̃τ(p2) ⊃
4

∑
i=1

fiντ ν̃τ LL G(mχ̃0
i
, 0)

+
2

∑
i=1

[
fiτν̃τ LL G(mχ̃+

i
, mτ)− 2 giτν̃τ LL mχ̃+

i
mτB0(mχ̃+

i
, mτ)

]
, (6.12)

for the sneutrino — the definitions of the various functions and parameters appearing
here are listed in reference [28]. Though these terms differ both numerically and aestheti-
cally for the different particles, they sum up to give both an approximately equal upwards
push. They correspond to diagrams like those in figure 16, and, in being the most im-
portant contributions, are the kinds of corrections that give gaugino mediation its name
[8].

The third term identified to be of importance was:

Πτ̃Lτ̃L(p2) ⊃ g2 Iτ
3 cos(2β)A0(m2

H+) , (6.13)

Πν̃τ ν̃τ(p2) ⊃ g2 Iν
3 cos(2β)A0(m2

H+) . (6.14)
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(a) (b)

Figure 18: (a) The mass of the charged Higgs as a function of m2
Hd

/m2
1/2. (b) The divergent integral

A0(mH+) after MS-subtraction, as a function of m2
Hd

/m2
1/2 (we take minus the square root in order

to get the same units in both plots). Note the differing ranges on the y-axes.

These correspond to the diagrams shown in figure 17.

It now becomes clear how the enhanced mass difference comes about — as we see from
equations (6.13), (6.14), the left-handed stau and the tau sneutrino receive exactly the same
correction to their masses by interactions with the charged Higgs, only of opposite sign. In
addition, we find that the reason for the increasing mass difference with increasing m2

Hd
is

that the mass of the charged Higgs increases as well, as shown in figure 18a. This is again
unsurprising, given the relationship between mHd , µ, and mH+ . Finally, as demonstrated
in figure 18b, the finite part of the divergent integral A0(mH+) only acts to boost the effect
of the changing mass, (in addition to a change of sign).
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7 Conclusions and future prospects

In this thesis, we have given a short introduction to supersymmetry and its phenomeno-
logical prospects. Specialising to the theory of gaugino mediation, we then proceeded to
analyse the processes determining the NLSP in a region of the parameter space where it
is one of the third-generation sleptons. After discussing the situation at tree-level, where
it is largely determined by the mixing of the stau, we proceeded to redo the calculations
at one-loop level. Here, we found an unexpected enhancement of the mass-splitting, in
direct contradiction to SPheno. We found that this could be traced back to a single term in
the loop-corrected mass formulas, corresponding to a loop interaction with the charged
Higgs boson.

The disagreement between our results and SPheno’s remains a mystery; one wonders if
the two-loop corrections that SPheno includes for the neutral Higgs sector, as noted in
the footnote on page 41, really can be enough to close the gap. In the future, it would be
interesting to identify these two-loop corrections and incorporate them into our calcula-
tions too, though it might well prove necessary to engage in a study of the SPheno source
code in order to identify the real culprits.

One might also want to redo the analysis with other spectrum generators, e.g. SOFTSUSY
[51], in order to get an impression of the uncertainties typically involved in such calcu-
lations. A more careful analysis of the theoretical uncertainties, and to what degree the
respective predictions remain within them, might also prove valuable.

Finally, it would be interesting to investigate how the situation changes once one allows
for differing values in Au0 and Ad0.
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Feynman diagrams were created using the package TikZ-Feynman [52], while the diver-
gent integrals (4.6)–(4.9) appearing in (A.1)–(A.4) were evaluated using LoopTools [53].
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A One-loop formulas

Following are the complete 1-loop corrections to the squared-mass parameters of the staus
and the tau sneutrino. They are adapted from similar formulas listed in the appendices of
[28]; the definitions of the various functions and parameters appearing in these formulas
can be found there.

16π2 Πτ̃Lτ̃L(p2) = λ2
τ

(
s2

τ A0(mτ̃1) + c2
τ A0(mτ̃2)

)
+

1
2

4

∑
n=1

(
λ2

τ Dnd −
g2gτL

2ĉ2 Cn

)
A0(mH0

n
) +

4

∑
n=3

g2
( gτL

2ĉ2 − Iτ
3

)
Cn A0(mH+

n−2
)

+
4

∑
n=1

2

∑
i=1

(λH0
nτ̃Lτ̃i

)2B0(mH0
n
, mτ̃i) +

2

∑
n=1

(λH+
n τ̃L ν̃τ

)2B0(mν̃τ , mH+
n
)

+
4g2

ĉ2 (gτL)
2A0(MZ) + 2g2A0(MW) + (eτe)2

(
c2

τF(mτ̃1 , 0) + s2
τF(mτ̃2 , 0)

)
+

g2

ĉ2 (gτL)
2
[

c2
τF(mτ̃1 , MZ) + s2

τF(mτ̃2 , MZ)

]
+

g2

2
F(mν̃τ , MW)

+
g2

4

[
c2

τ A0(mτ̃1) + s2
τ A0(mτ̃2) + 2A0(mν̃τ)

]
+ g2 ∑

f
N f

c Iτ
3 I f

3

(
c2

f A0(m f̃1
) + s2

f A0(m f̃2
)

)
+

g′2

4
(YτL)

2
(

c2
τ A0(mτ̃1) + s2

τ A0(mτ̃2)

)
+

g′2

4
YτL ∑

f
N f

c

[
YfL

(
c2

f A0(m f̃1
) + s2

f A0(m f̃2
)

)
+ YfR

(
s2

f A0(m f̃1
) + c2

f A0(m f̃2
)

) ]

+
4

∑
i=1

[
fiττ̃LL G(mχ̃0

i
, mτ)− 2 giττ̃LL mχ̃0

i
mτB0(mχ̃0

i
, mτ)

]
+

2

∑
i=1

fiντ τ̃LL G(mχ̃+
i

, 0) . (A.1)
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16π2 Πτ̃Rτ̃R(p2) = λ2
τ

(
c2

τ A0(mτ̃1) + s2
τ A0(mτ̃2) + A0(mν̃τ)

)
+

1
2

4

∑
n=1

(
λ2

τ Dnd −
g2gτR

2ĉ2 Cn

)
A0(mH0

n
) +

4

∑
n=3

(
λ2

τDnu +
g2gτR

2ĉ2 Cn

)
A0(mH+

n−2
)

+
4

∑
n=1

2

∑
i=1

(λH0
nτ̃Rτ̃i

)2B0(mH0
n
, mτ̃i) +

2

∑
n=1

(λH+
n τ̃R ν̃τ

)2B0(mν̃τ , mH+
n
)

+
4g2

ĉ2 (gτR)
2A0(MZ) + (eτe)2

(
s2

τF(mτ̃1 , 0) + c2
τF(mτ̃2 , 0)

)
+

g2

ĉ2 (gτR)
2
[

s2
τF(mτ̃1 , MZ) + c2

τF(mτ̃2 , MZ)

]
+

g′2

4
(YτR)

2
(

s2
τ A0(mτ̃1) + c2

τ A0(mτ̃2)

)
+

g′2

4
YτR ∑

f
N f

c

[
YfL

(
c2

f A0(m f̃1
) + s2

f A0(m f̃2
)

)
+ YfR

(
s2

f A0(m f̃1
) + c2

f A0(m f̃2
)

) ]

+
4

∑
i=1

[
fiττ̃RR G(mχ̃0

i
, mτ)− 2 giττ̃RR mχ̃0

i
mτB0(mχ̃0

i
, mτ)

]
+

2

∑
i=1

fiντ τ̃RR G(mχ̃+
i

, 0) . (A.2)

16π2 Πτ̃Lτ̃R(p2) =
4

∑
n=1

2

∑
i=1

λH0
nτ̃Lτ̃i

λH0
nτ̃Rτ̃i

B0(mH0
n
, mτ̃i) +

2

∑
n=1

λH+
n τ̃L ν̃τ

λH+
n τ̃R ν̃τ

B0(mν̃τ , mH+
n
)

+
λτ

2 ∑
fd

N f
c λds2θd

(
A0(md̃1

)− A0(md̃2
)

)
+

g′2

4
YτLYτR sτcτ

(
A0(mτ̃1)− A0(mτ̃2)

)
+ (eτe)2sτcτ

(
F(mτ̃1 , 0)− F(mτ̃2 , 0)

)
− g2

ĉ2 gτL gτR sτcτ

(
F(mτ̃1 , MZ)− F(mτ̃2 , MZ)

)
+

4

∑
i=1

[
fiττ̃LR G(mχ̃0

i
, mτ)− 2 giττ̃LR mχ̃0

i
mτB0(mχ̃0

i
, mτ)

]
+

2

∑
i=1

[
fiντ τ̃LR G(mχ̃+

i
, 0)
]

. (A.3)
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16π2 Πν̃τ ν̃τ(p2) = λ2
τ

(
s2

τ A0(mτ̃1) + c2
τ A0(mτ̃2)

)
− 1

2

4

∑
n=1

g2 gντ

2ĉ2 Cn A0(mH0
n
) +

4

∑
n=3

(
λ2

τDnu + g2
( gντ

2ĉ2 − Iν
3

)
Cn

)
A0(mH+

n−2
)

+
4

∑
n=1

(λH0
n ν̃τ ν̃τ

)2B0(mH0
n
, mν̃τ) +

2

∑
i,n=1

(λH+
n ν̃τ τ̃i

)2B0(mτ̃i , mH+
n
)

+
4g2

ĉ2 (gντ)
2A0(MZ) + 2g2A0(MW)

+
g2

ĉ2 (gντ)
2F(mν̃τ , MZ) +

g2

2

[
c2

τF(mτ̃1 , MW) + s2
τF(mτ̃2 , MW)

]
+

g2

4

[
A0(mν̃τ) + 2

(
c2

τ A0(mτ̃1) + s2
τ A0(mτ̃2)

) ]
+ g2 ∑

f
N f

c Iν
3 I f

3

(
c2

f A0(m f̃1
) + s2

f A0(m f̃2
)

)
+

g′2

4
(Yν)

2A0(mν̃τ)

+
g′2

4
Yν ∑

f
N f

c

[
YfL

(
c2

f A0(m f̃1
) + s2

f A0(m f̃2
)

)
+ YfR

(
s2

f A0(m f̃1
) + c2

f A0(m f̃2
)

) ]

+
4

∑
i=1

fiντ ν̃τ LL G(mχ̃0
i
, 0)

+
2

∑
i=1

[
fiτν̃τ LL G(mχ̃+

i
, mτ)− 2 giτν̃τ LL mχ̃+

i
mτB0(mχ̃+

i
, mτ)

]
. (A.4)
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B A flowchart of our code

Figure 19: A flowchart of our code. The program was written and executed in Wolfram Mathe-
matica 11.0 [54]. This flowchart was made using code2flow [55].
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C SUSY-transforming the massless non-interacting

Wess-Zumino model

In this appendix, we will show explicitly how to go from equation (3.36) to (3.37).

First, we need some additional identities [5]:

(χ†σ̄νσµξ†)∗ = ξσµσ̄νχ = χσµσ̄µξ = (ξ†σ̄µσνχ†)∗, (C.1)

and

(σµσ̄ν + σνσ̄µ)
β

α = 2gµνδ
β
α , (C.2)

(σ̄µσν + σ̄νσµ)
β̇
α̇ = 2gµνδ

β̇
α̇ , (C.3)

all of which can be proven through explicit spinor index manipulation.

The terms that need rewriting are the latter two of equation (3.36), i.e. the fermionic part
of the transformation. Let’s tackle each term separately, starting with the third. Using eq.
(C.1), we get

ψ†σ̄νσµε†∂µ∂νφ = ε†σ̄µσνψ†∂µ∂νφ

Next, we exploit the fact that derivatives are commutative,

=
1
2

ε†σ̄µσνψ†(∂µ∂ν + ∂ν∂µ)φ

Relabelling the contracted indices in the second term µ←→ ν gives us

=
1
2

ε†(σ̄µσν + σ̄νσµ)ψ†∂µ∂νφ

and, applying (C.3),

= ε†ψ†∂µ∂µφ (C.4)
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Finally, we apply the product rule in reverse to get

= −ε†∂µψ†∂µφ + ∂µ(ε
†ψ†∂µφ) .

Next, we look at the fourth term of equation (3.36), where we will essentially apply the
same prescription in reverse. We start by adding a term that we know we’ll need.

−εσµσ̄ν∂νψ∂µφ∗ = −εσµσ̄ν∂νψ∂µφ∗ − εψ∂µ∂µφ∗ + εψ∂µ∂µφ∗

Then, applying (C.2) in reverse to the second term yields

= −εσµσ̄ν∂νψ∂µφ∗ − 1
2

ε(σνσ̄µ + σµσ̄ν)ψ∂µ∂νφ∗ + εψ∂µ∂µφ∗

Relabelling the second term and then commuting the differential operators, we get

= −εσµσ̄ν∂νψ∂µφ∗ − 1
2

εσνσ̄µψ(∂µ∂ν + ∂ν∂µ)φ
∗ + εψ∂µ∂µφ∗

= −εσµσ̄ν∂νψ∂µφ∗ − εσνσ̄µψ∂µ∂νφ∗ + εψ∂µ∂µφ∗

And finally, relabelling the indices of the first term as well, we can write this as

= −ε∂µψ∂µφ∗ − ∂µ(εσνσ̄µψ∂νφ∗ − εψ∂µφ∗) .

Collecting our results then, we end up with

−εσµσ̄ν∂νψ∂µφ∗ + ψ†σ̄νσµε†∂µ∂νφ = −ε∂µψ∂µφ∗ − ε†∂µφ∂µψ†

−∂µ(εσνσ̄µψ∂νφ∗ − εψ∂µφ∗ − ε†ψ†∂µφ) ,

which is exactly what we needed39.

39This calculation is a lot simpler in the more elegant superspace formalism, in which supersymmetry
is given a geometric interpretation in a space comprised of both ordinary and anti-commuting Grassman
coordinates. Though it has become the standard way to express theoretical developments in supersymme-
try, it is not necessary for phenomenology, and so it is not treated in the current work. For a review on
superspace and superfields, see [5].

58



References

[1] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory.
Westview, 1995.

[2] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.

[3] V. C. Rubin and W. K. Ford, Jr. Rotation of the Andromeda Nebula from a Spec-
troscopic Survey of Emission Regions. The Astrophysical Journal, 159:379, February
1970.

[4] Svend E. Rugh and Henrik Zinkernagel. The quantum vacuum and the cosmological
constant problem, 2001.

[5] Stephen P. Martin. A Supersymmetry primer. 1997. [Adv. Ser. Direct. High Energy
Phys.18,1(1998)].

[6] Douglas Clowe, Anthony Gonzalez, and Maxim Markevitch. Weak lensing mass
reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence
of dark matter. Astrophys. J., 604:596–603, 2004.

[7] D. Elazzar Kaplan, Graham D. Kribs, and Martin Schmaltz. Supersymmetry break-
ing through transparent extra dimensions. Phys. Rev., D62:035010, 2000.

[8] Z. Chacko, Markus A. Luty, Ann E. Nelson, and Eduardo Ponton. Gaugino mediated
supersymmetry breaking. JHEP, 01:003, 2000.

[9] Bernard Carr, Florian Kuhnel, and Marit Sandstad. Primordial Black Holes as Dark
Matter. Phys. Rev., D94(8):083504, 2016.

[10] Robert H. Sanders and Stacy S. McGaugh. Modified Newtonian dynamics as an
alternative to dark matter. Ann. Rev. Astron. Astrophys., 40:263–317, 2002.

[11] Lyndon Evans and Philip Bryant. LHC Machine. JINST, 3:S08001, 2008.

[12] Franz Mandl and Graham Shaw. Quantum Field Theory. Wiley, second edition, 2010.

[13] Steven Gottlieb. Fun with spinor indices. Department of Physics, Indiana University.
(Lecture notes).

59



[14] A. Zee. Quantum Field Theory in a Nutshell. Cambridge University Press, 2010.

[15] Joseph Polchinski. String Theory, Vol. 1: An Introduction to the Bosonic String. Cam-
bridge University Press, 1998.

[16] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons.
Phys. Rev. Lett., 13:321–323, Aug 1964.

[17] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett.,
13:508–509, Oct 1964.

[18] Georges Aad et al. Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1–29, 2012.

[19] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC. Phys. Lett., B716:30–61, 2012.

[20] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Princeton Uni-
versity Press, 2013.

[21] J. Wess and B. Zumino. Supergauge Transformations in Four-Dimensions. Nucl.
Phys., B70:39–50, 1974.

[22] H. Samtleben. Introduction to Supergravity. 13th Saalburg School on Fundamen-
tals and New Methods in Theoretical Physics, 2007. (Typed by M. Ammon and C.
Schmidt-Colinet).

[23] Sidney R. Coleman and J. Mandula. All Possible Symmetries of the S Matrix. Phys.
Rev., 159:1251–1256, 1967.

[24] Rudolf Haag, Jan T. Lopuszanski, and Martin Sohnius. All Possible Generators of
Supersymmetries of the s Matrix. Nucl. Phys., B88:257, 1975.

[25] E. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.

[26] Masaaki Kuroda. Complete Lagrangian of MSSM. 1999.

[27] Savas Dimopoulos and David W. Sutter. The Supersymmetric flavor problem. Nucl.
Phys., B452:496–512, 1995.

60



[28] Damien M. Pierce, Jonathan A. Bagger, Konstantin T. Matchev, and Ren-jie Zhang.
Precision corrections in the minimal supersymmetric standard model. Nucl. Phys.,
B491:3–67, 1997.

[29] Werner Porod. SPheno, a program for calculating supersymmetric spectra, SUSY
particle decays and SUSY particle production at e+ e- colliders. Comput. Phys. Com-
mun., 153:275–315, 2003.

[30] Wolfgang Frisch. The Higgs sector in the MSSM. HEPHY - Institute of High Energy
Physics. (Lecture notes).

[31] Riccardo Barbieri and G. F. Giudice. Upper Bounds on Supersymmetric Particle
Masses. Nucl. Phys., B306:63–76, 1988.

[32] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett.,
81:1562–1567, 1998.

[33] Joseph Lykken and Maria Spiropulu. Supersymmetry and the Crisis in Physics. Sci-
entific American, 310:34–39, 2014.

[34] Howard Georgi and S. L. Glashow. Unity of all elementary-particle forces. Phys. Rev.
Lett., 32:438–441, Feb 1974.

[35] Stuart Raby. Grand Unified Theories. In 2nd World Summit: Physics Beyond the Stan-
dard Model Galapagos, Islands, Ecuador, June 22-25, 2006, 2006.

[36] Joseph Polchinski. String Theory, Vol. 2: Superstring Theory and Beyond. Cambridge
University Press, 1998.

[37] Gerald Aarons et al. International Linear Collider Reference Design Report Volume
2: Physics at the ILC. 2007.

[38] CERN. The Future Circular Collider (FCC) Study. https://fcc.web.cern.ch/.

[39] Nima Arkani-Hamed, Tao Han, Michelangelo Mangano, and Lian-Tao Wang.
Physics opportunities of a 100 TeV protonproton collider. Phys. Rept., 652:1–49, 2016.

[40] V. Agrawal, Stephen M. Barr, John F. Donoghue, and D. Seckel. The Anthropic prin-
ciple and the mass scale of the standard model. Phys. Rev., D57:5480–5492, 1998.

61



[41] Nima Arkani-Hamed and Savas Dimopoulos. Supersymmetric unification without
low energy supersymmetry and signatures for fine-tuning at the LHC. JHEP, 06:073,
2005.

[42] Helge Kragh. Dirac: A Scientific Biography. Cambridge University Press, 1990.

[43] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2017.
http://oeis.org/A001620.

[44] G. Passarino and M. J. G. Veltman. One Loop Corrections for e+ e- Annihilation Into
mu+ mu- in the Weinberg Model. Nucl. Phys., B160:151–207, 1979.

[45] Jan Heisig, Jörn Kersten, Nick Murphy, and Inga Strümke. Trilinear-Augmented
Gaugino Mediation. JHEP, 05:003, 2017.

[46] Wilfried Buchmuller, Koichi Hamaguchi, and Jörn Kersten. The Gravitino in gaugino
mediation. Phys. Lett., B632:366–370, 2006.

[47] E. Aprile et al. First Dark Matter Search Results from the XENON1T Experiment.
Phys. Rev. Lett., 119:181301, Oct 2017.

[48] Xiangyi Cui et al. Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Ex-
periment. Phys. Rev. Lett., 119:181302, Oct 2017.

[49] G.F. Giudice and A. Masiero. A natural solution to the µ-problem in supergravity
theories. Physics Letters B, 206(3):480 – 484, 1988.

[50] Youichi Yamada. Radiative corrections to sfermion mass splittings. Phys. Rev.,
D54:1150–1154, 1996.

[51] B. C. Allanach. SOFTSUSY: a program for calculating supersymmetric spectra. Com-
put. Phys. Commun., 143:305–331, 2002.

[52] Joshua Ellis. TikZ-Feynman: Feynman diagrams with TikZ. Comput. Phys. Commun.,
210:103–123, 2017.

[53] Thomas Hahn. LoopTools 2.12.

[54] Wolfram Research, Inc. Mathematica 11.0.

[55] https://code2flow.com/.

62


	Abstract
	Introduction
	Conventions and notations
	Supersymmetry as an extension to the Standard Model
	Motivation: the hierarchy problem
	The symmetries of nature
	What is a symmetry?
	Lie groups
	Broken symmetries

	A different kind of symmetry
	General supersymmetric Lagrangians
	The Minimal Supersymmetric Standard Model
	Particle contents
	Higgs in the MSSM
	Breaking the symmetry
	Mixing sparticles and Higgses

	A comment on the current status of experiments

	Renormalisation
	Gaugino-mediated supersymmetry-breaking
	Our work
	Tree-level calculations
	In the loop
	Understanding the enhanced mass splitting

	Conclusions and future prospects
	One-loop formulas
	A flowchart of our code
	SUSY-transforming the massless non-interacting Wess-Zumino model

