
Master Thesis

University of Bergen

Department of Informatics

A Comparative Study on Distributed
Storage and Erasure Coding

Techniques Using Apache Hadoop
Over NorNet Core

Author:
Maximiliano Vela

Supervisor:
Eirik Rosnes

November 18, 2017

Acknowledgements
Work exposed in this thesis would not have been possible without the constant
assistance, guidance, motivation, and support from my supervisor Eirik Rosnes,
currently Senior Research Scientist at Simula@UiB, who has always been available
for me whenever I needed him.

I also want to thank Thomas Dreibholz (Simula), Ahmed Elmokashfi (Simula),
and Per Simonsen (MemoScale) for their technical support in regards to NorNet
Core usage and erasure coding policy handling.

Last but not least, I would not be able to go on without thanking Mari Garaas
Løchen and the entire UiB administration for granting me the opportunity of deep-
ening my education in such an upstanding institution.

i

Abstract
Both private and public sector organizations are constantly looking for new ways to
keep their information safe and accessible at all times. Over the past few decades,
replication has always been a reliable way to make sure data is constantly available,
even though it has been proven to induce higher costs due to the additional required
storage.

Since the early 2000s, erasure codes have been developed as a means to drastically
reduce the overhead, while enormously increasing efficiency and providing significant
error-correcting capabilities. One of the most well-known erasure coding policies is
Reed-Solomon (RS), a highly consistent, reliable, and efficient technique to store and
recover data, currently used at Facebook’s data centers. Other frequently mentioned
policies are Pyramid codes, a variant of Locally Repairable Codes (LRCs) that make
use of a pyramid-based scheme to generate additional parity groups for each level,
and has been used at Microsoft’s Windows Live servers.

Apache Hadoop is an open-source distributed framework used for scalable pro-
cessing that has recently introduced erasure coding policies to their storage capa-
bilities. NorNet Core (or NorNet Core Testbed1), a distributed academic network,
will be used as the main scenario to measure, compare, and analyze these different
erasure coding policies and their efficiency.

Based on simulations of physically distributed storage, this thesis will show how
minimal alterations in commonly known codes (such as RS codes) can converge in
a Pyramid-based code that could severely enhance fault-tolerance and performance.
Additionally, in a side-to-side comparison, it will be detailed how bigger codes (of
higher dimension and length), more often than not, provide a more beneficial trade-
off.

1NorNet Core Testbed website: www.nntb.no.

iii

List of Figures

1.1 CAGR projection from 2016 to 2021. 1
1.2 Historical global traffic. 2

2.1 System model. 6
2.2 Simple erasure coding example. 7
2.3 General reconstruction scheme for an n = 6, k = 4 code. 8
2.4 Standard 3-way replication. 9
2.5 XOR(2, 1) example. 9
2.6 RS encoding phase - n = 6, k = 4. 10
2.7 MBR-MSR trade-off curve, n = 15, k = 10, B = 1, and d = n− 1 = 14. 12
2.8 LRC(16, 12, 6) encoding. 13
2.9 Hierarchical codes. 13

3.1 Hadoop engine and its modules [1]. 16
3.2 Hadoop configuration files. 18
3.3 Hadoop system variables. 18
3.4 Hadoop environment variables. 18
3.5 File core-site.xml settings. 18
3.6 File mapred-site.xml settings. 19
3.7 File hdfs-core.xml settings. 19
3.8 Hosts file on Master. 20
3.9 Adding a new policy to Hadoop, step 1. 20
3.10 Adding a new policy to Hadoop, step 2. 21
3.11 Adding a new policy to Hadoop, step 3. 21
3.12 Apache Hadoop release directory. 22
3.13 Apache Hadoop compiling executable. 22
3.14 Apache Hadoop compiling process. 23
3.15 Apache Hadoop re-compiled file. 23

4.1 NorNet Core current site list. 24
4.2 NorNet Core - Norwegian site locations. 25
4.3 Successful gatekeeper access. 26
4.4 Successful node access. 26
4.5 Operating systems and access order. 27

5.1 Pyramid code construction. 29
5.2 IPTraf-NG user interface. 29
5.3 Traffic log sample on a real cluster simulation. 30
5.4 Node DNS names file. 30
5.5 Node names file. 30

v

6.1 Traffic logs during encoding (in bytes) - RS, n = 5, k = 3. 32
6.2 Participating nodes - RS, n = 5, k = 3. 33
6.3 Cluster status before reconstruction - RS, n = 5, k = 3. 33
6.4 Traffic logs during reconstruction (in bytes) - RS, n = 5, k = 3. 34
6.5 Cluster status after reconstruction - RS, n = 5, k = 3. 34
6.6 Traffic logs during encoding (in bytes) - RS, n = 11, k = 8. 34
6.7 Participating nodes - RS, n = 11, k = 8. 35
6.8 Cluster status before reconstruction - RS, n = 11, k = 8. 35
6.9 Traffic logs during reconstruction (in bytes) - RS, n = 11, k = 8. . . . 36
6.10 Cluster status after reconstruction - RS, n = 11, k = 8. 36
6.11 Participating nodes - RS, n = 14, k = 10. 37
6.12 Traffic logs during encoding (in bytes) - RS, n = 14, k = 10. 37
6.13 Cluster status before reconstruction - RS, n = 14, k = 10. 38
6.14 Traffic logs during reconstruction (in bytes) - RS, n = 14, k = 10. . . 38
6.15 Cluster status after reconstruction - RS, n = 14, k = 10. 39
6.16 Traffic logs during encoding (in bytes) - Pyramid, n = 6, k = 3. . . . 40
6.17 Participating nodes - Pyramid, n = 6, k = 3. 40
6.18 Cluster status before reconstruction - Pyramid, n = 6, k = 3. 41
6.19 Traffic logs during reconstruction (in bytes) - Pyramid, n = 6, k = 3. 41
6.20 Cluster status after reconstruction - Pyramid, n = 6, k = 3. 43
6.21 Traffic logs during encoding (in bytes) - Pyramid, n = 12, k = 8. . . . 43
6.22 Participating nodes - Pyramid, n = 12, k = 8. 44
6.23 Cluster status before reconstruction - Pyramid, n = 12, k = 8. 44
6.24 Traffic logs during reconstruction (in bytes) - Pyramid, n = 12, k = 8. 45
6.25 Cluster status after reconstruction - Pyramid, n = 12, k = 8. 46
6.26 Participating nodes - Pyramid, n = 15, k = 10. 47
6.27 Traffic logs during encoding (in bytes) - Pyramid, n = 15, k = 10. . . 47
6.28 Cluster status before reconstruction - Pyramid, n = 15, k = 10. . . . 48
6.29 Traffic logs during reconstruction (in bytes) - Pyramid, n = 15, k = 10. 49
6.30 Cluster status after reconstruction - Pyramid, n = 15, k = 10. 50
6.31 Network traffic comparison. 52
6.32 Duration comparison. 53

vi

List of Tables

6.1 Results summary - Network traffic and duration. 51
6.2 Network traffic comparison during encoding. 51
6.3 Network traffic comparison during reconstruction. 51
6.4 Duration comparison during encoding. 52
6.5 Duration comparison during reconstruction. 52
6.6 Repair comparison. 53

viii

Contents

Acknowledgements . i
Abstract . iii
List of Figures . v
List of Tables . viii
Contents . x

1 Introduction 1
1.1 Objective . 2
1.2 Thesis Organization . 3

2 Distributed Storage 4
2.1 Linear Codes . 4

2.1.1 Maximum Distance Separable (MDS) Codes 6
2.2 System Model . 6
2.3 Erasure Codes . 7
2.4 Repair Process . 7
2.5 Traditional Codes Used in Distributed Storage 8

2.5.1 Replication . 8
2.5.2 XOR . 9
2.5.3 RS Codes . 9

2.6 Regenerating Codes . 11
2.7 LRCs . 12

2.7.1 Pyramid and Hierarchical Codes 13
2.8 Tested and Used Schemes . 14

3 Hadoop 16
3.1 Overview . 16
3.2 Requirements . 17
3.3 Configuration . 17
3.4 Adding New Erasure Coding Policies to Hadoop 20
3.5 Recompiling Hadoop’s Source Code 21

4 NorNet Core 24
4.1 Description . 24
4.2 Access . 25

5 Storage Simulations and Measurements 28
5.1 Overall Concepts and Methodology Used 28
5.2 Software Used . 29
5.3 Traffic Log-Harvesting Script . 30

x

5.4 Participating Nodes . 31

6 Results 32
6.1 RS Codes . 32

6.1.1 RS(5,3) . 32
6.1.2 RS(11,8) . 34
6.1.3 RS(14,10) . 36

6.2 Pyramid Codes . 39
6.2.1 PYR(6,3) . 40
6.2.2 PYR(12,8) . 43
6.2.3 PYR(15,10) . 46

6.3 Results Summary . 50

7 Conclusion and Further Work 55

8 Appendix - Code Snippets 57
8.1 Log-Harvesting Script . 57
8.2 Hadoop’s Default Cauchy Matrix Generator 58
8.3 Hadoop’s Modified Cauchy Matrix Generator 59
8.4 Hadoop’s Modified Pyramid Policy 59

References 62

xi

Chapter 1

Introduction

Today’s applications and services are using more and more data every year, naturally
having social networks in the lead. Livestreaming, media sharing, personal data,
and interactions sent from and between users demand immense amounts of disk
space meant to store data either temporarily or permanently. A report regarding
Facebook’s storage upgrade in April 2014 [2] points out that they were at the time
receiving a daily data income rate of 600TB from more than 1.9 billion users.

Network traffic is also increasing at an enormous rate every year. One of the
latest white papers published by Cisco [3] describes an astonishing series of Internet
traffic facts:

• Yearly IP traffic in 2016 has come up to 1.2 Zettabytes (1021 bytes, or 1000
Exabytes), and will continue to reach 3.3 ZB per year by 2021.

• Between 2016 and 2021, mobile data traffic will increase sevenfold.

• From 2016 to 2021, IP traffic will grow at a Compound Annual Growth Rate
(CAGR) of 24 percent, as depicted in Figure 1.1.

Figure 1.1: CAGR projection from 2016 to 2021.

• Monthly IP traffic per capita accounted for 13GB in 2016, and will continue
to grow up to 35GB by 2021.

• Global Internet traffic reached 26 600GB per second, and will amount to
105 800GB per second in 2021, as shown in Figure 1.2.

1

Figure 1.2: Historical global traffic.

The first concern for both large and smaller companies is to be able to cover
up the storage requirements as they continue to grow over time, but it is also very
important to use the available storage in an effective manner. Data replication has
been widely used over the years but more specifically during the 80s and 90s, when
overly inflated budgets and mostly unused, redundant information were the only
way to keep the data available at all times.

Distributed storage has been introduced to the industry during the mid 90s,
and it continues to be on the rise as more and more companies choose this concept
not only due to its indisputable flexibility, but also its ability to significantly reduce
costs and increase processing speed [4]. A cluster of nodes is often treated as a single
storage unit (using standard infrastructure, drivers and network), while combining
RAM and CPU capacities from several servers into a common pool. As cluster size
grows, so does the processing speed - additionally, servers are required to store less
data, and the transfer rate per node decreases drastically. A master node is often
necessary to command these individual efforts and increase fault-tolerance within
the cluster.

In a typical distributed storage system, participating servers can either be located
in the same data center or within geographically distant locations without affecting
their behavior. Some businesses rely on cloud storage companies that take care of
such details and provide the infrastructure they require: some examples are Amazon
AWS, Windows Azure, Rackspace, and IBM SmartCloud.

On top of this approach, erasure codes have been developed as an attempt to
reduce storage overhead and increase fault-tolerance thanks to their recovery capa-
bilities. These codes allow distributed systems to entirely re-generate missing parts
of the file structure (i.e., parts of a file, a database, or even entire disks) without
requiring any contact with the detached node. Depending on the properties of the
erasure code used, it could also retrieve information stored in several different nodes
that can no longer be reached with relative ease.

1.1 Objective
The initial objective in this academic work is to determine whether Apache Hadoop
usage is viable over NorNet Core’s platform. If so, the main objective is then to
analyze and compare erasure coding policies (preferably more than just the ones of-
ficially provided by Apache), assess their efficiency, and evaluate if previous research

2

correlates to our pragmatic results.

1.2 Thesis Organization
• Chapter 2: Overview of linear and erasure codes, a global system model

definition along with a brief explanation of some of the most relevant erasure
coding techniques.

• Chapter 3: General Hadoop concepts, a review of some of its modules and
more technical details regarding requirements and configuration used in this
thesis.

• Chapter 4: NorNet Core description, list of participating institutions and
their nodes, as well as a short guide on how to access NorNet Core.

• Chapter 5: Some guidelines regarding the way we obtained results shown
later in the thesis, software used to gather measurements, followed by the list
of NorNet Core nodes that have been used in our experiments.

• Chapter 6: Detailed information about the results we obtained, cluster sta-
tuses throughout simulations, and measurements harvested.

• Chapter 7: Conclusion regarding results obtained, and suggested future
work.

• Chapter 8: Appendix of code fragments used in this thesis.

3

Chapter 2

Distributed Storage

Distributed storage and computing is a wide concept that involves performing tasks
in a parallel manner, combining the processing power and storage capabilities of
multiple servers. This scheme is being increasingly used in the industry, as it allows
companies to make a more efficient use of the hardware they own at a lower cost,
yielding almost no disadvantages.

Oftentimes, when distributed storage systems are combined with erasure coding
techniques, they are designed based on a trade-off within a list of properties, where
not all of them can be fully achieved simultaneously. The most important properties
are:

• Resiliency to disk failures or fault-tolerance.

• Storage overhead or efficiency.

• Download complexity.

• Repair cost of a node or repair bandwidth.

• Upgrade cost.

• Security level (e.g., eavesdropping and data-tampering).

The most common example is erasure coding schemes that have high resiliency
at the expense of a higher repair cost (typically, Reed-Solomon (RS) codes), whereas
other techniques improve upon the required repair bandwidth (number of symbols
needed to be downloaded to repair a single node) while sometimes conditioning the
fault-tolerance of the code in specific scenarios.

Some of these properties will be discussed in this chapter, along with a general
definition of both linear and erasure codes.

2.1 Linear Codes
A linear code C can be defined as a k-dimensional subspace of the vector space
Fnq , where n is the length of the code, k is the dimension, and Fq is the finite field
over which the code is defined. The codes are defined as q-ary codes, where q is a
prime number or a prime power. The linear space C can be represented as a set of
codewords, often found in row combinations of a generator matrix G. This matrix is

4

said to be in standard form (and the code systematic) whenever its leftmost columns
correspond to an identity matrix Ik of size k × k, following the definition:

G = [Ik|P] =

g1,1 g1,1 · · · g1,k g1,k+1 · · · g1,n
g2,1 g2,2 · · · g2,k g2,k+1 · · · g2,n
· ·
gk,1 gk,2 · · · gk,k gk,k+1 · · · gk,n

 .

From this generator matrix we can obtain a parity check matrix H, which con-
tains the coefficients of the parity check equations. These coefficients show how
certain linear combinations of the coordinates of each codeword c ∈ C equal zero, as
defined below:

H = [−P T |In−k] =

h1,1 h1,2 · · · h1,k h1,k+1 h1,k+2 · · · h1,n
h2,1 h2,2 · · · h2,k h2,k+1 h1,k+2 · · · h2,n
· ·

hn−k,1 hn−k,2 · · · hn−k,k hn−k,k+1 hn−k,k+2 · · · hn−k,n

 ,

where (·)T denotes the transpose of its argument. As a result we can converge in a
set of parity check equations:

h1,1c1 + h1,2c2 + · · ·+ h1,n−1cn−1 + h1,ncn = 0

h2,1c1 + h2,2c2 + · · ·+ h2,n−1cn−1 + h2,ncn = 0

· · ·+ · · ·+ · · ·+ · · · = 0

hn−k,1c1 + hn−k,2c2 + · · ·+ hn−k,n−1cn−1 + hn−k,ncn = 0,

where c = (c1, c2, . . . , cn) denotes a codeword from C.
As an example, we can take a binary linear code of dimension k = 3 and length

n = 5. A generator matrix G could have the following structure:

G =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

 ,

with parity check matrix

H =

(
1 1 0 1 0
0 1 1 0 1

)
.

Identifying each coefficient of a codeword as ci (the codeword c = (c1, c2, . . . , c5)) we
obtain the check equations:

c1 + c2 + c4 = 0

c2 + c3 + c5 = 0.

Associating this simple equation set to the field of regenerating codes, we can claim
that in the case of a missing coefficient c2, we can re-obtain it by replacing it with
the binary sum of c1 and c4 (or the binary sum of c3 and c5). As n gets bigger, so
does the equation set size, thus allowing the recovery of several missing coordinates
simultaneously.

5

2.1.1 Maximum Distance Separable (MDS) Codes

MDS codes or maximum distance separable codes are a type of (n, k) linear codes of
minimum Hamming distance dmin that meets the Singleton bound dmin ≤ n− k+1,
where the minimum Hamming distance is the minimum number of positions in which
two distinct codewords differ. For linear codes dmin is equal to the minimum Ham-
ming weight over all non-zero codewords, where the Hamming weight of a codeword
is the number of non-zero entries it contains. As the error correcting capabilities of
linear codes are related to the minimum Hamming distance, MDS codes attain the
highest correction capacity. An (n, k) linear code C fulfills the MDS condition if,
and only if, one of the following statements are true:

1. The minimum Hamming distance of C is n− k + 1.

2. The rank of the parity check matrix H is n− k, and every (n− k)× (n− k)
sub-matrix is full-rank.

3. The rank of the generator matrixG is k, and every k×k sub-matrix is full-rank.

2.2 System Model
When referring to linear and erasure codes there is a necessity to describe a general
system model where all these schemes take place. We can take for instance a dis-
tributed storage system that stores a set of f files D1, . . . , Df , where each of these
files Dm = [dmij], m = 1, . . . , f , is a δ × k matrix over Fq, where δ and k are positive
integers and q some prime number or prime power. Files are split into a list of δ
stripes and encoded using a linear code. Let dmi = (dmi,1, d

m
i,2, . . . , d

m
i,k), i = 1, . . . , δ, be

a message vector that is encoded by an (n, k) linear code C over Fq, into a length-n
codeword cmi = (cmi,1, c

m
i,2, . . . , c

m
i,n), where cmi,j ∈ Fq. The δf generated codewords cmi

are allocated in the array C = ((c11)
T | . . . |(c1δ)T | . . . |(c

f
δ)
T)T of dimension δf × n,

where (v1| . . . |vδf) denotes the concatenation of column vectors v1, . . . , vδf . The
symbols cmi,j for a fixed j are stored on the j-th node. If the code C is systematic,
we assume that the first k code symbols are message symbols and the subsequent
n− k symbols are parity symbols. This description is depicted on Figure 2.1.

Figure 2.1: System model.

6

2.3 Erasure Codes
Within the field of information theory, an erasure code is a technique based on linear
codes that splits data into fragments that are used to generate additional parity
pieces. This expanded message can be later used to recover missing fragments from
any combination of remaining pieces depending on the code structure. Erasure codes
are often mentioned as a type of Forward Error Correction (FEC), used to detect
and control errors in data transmission over noisy or unreliable channels.

More specifically, an erasure code is able to encode k data parts of a certain
size into n chunks after adding up parity pieces (see Figure 2.2), and each set of n
symbols is often referred to as a stripe. The goal of this code, of parameters (n, k) is
to regenerate up to n− k missing or corrupted chunks from any remaining k parts.

Figure 2.2: Simple erasure coding example.

In the example above, taking for instance an original file of size 1MB, would
result in a total size of 1MB× 4

2
= 2MB when encoded, or a 100% overhead.

Nowadays, there are several erasure coding techniques, each with its very own
parameters, functionality, logic, and complexity. The following sections provide a
quick introduction to a few erasure coding schemes and their uses, as well as the
general repair process.

2.4 Repair Process
After a file has gone through the encoding phase and subsequent parity blocks have
been generated, each segment is typically stored within distantly located nodes
that maintain constant communication between each other. On a real scenario
(for example during Hadoop’s encoding), each block is stored on a random cluster
location, meaning that each node is independent of the block positions it contains.

When a node goes down, either temporarily or permanently, and there exists
another available node, for RS codes and regenerating codes (see Section 2.6 below)
a minimum of k blocks from each stripe is transferred over to the newly joining node,
which is capable of re-generating the originally missing block. Other erasure codes,
however, like Locally Repairable Codes (LRCs) (see Section 2.7 below), may require
less than k blocks. This reconstruction process can be depicted directly below in
Figure 2.3 for an example code.

7

Figure 2.3: General reconstruction scheme for an n = 6, k = 4 code.

2.5 Traditional Codes Used in Distributed Storage
The following subsections give an overview of traditional codes used in distributed
storage systems.

2.5.1 Replication

Standard replication consists of generating additional data copies and storing each
of these in different physical or logical locations. This procedure lacks of an encoding
phase as no additional parity blocks are generated, and yields an overhead of 100%
per replication factor. Even though it provides a clear negative tradeoff in terms of
storage efficiency, up to 4-way replication has been widely used in the industry in the
last decade. Formal comparison between this scheme and erasure coding techniques
has been analyzed in [5,6]. A simple 3-way replication example can be found below
in Figure 2.4.

8

Figure 2.4: Standard 3-way replication.

2.5.2 XOR

XOR-based encoding is arguably one of the most basic erasure coding techniques
available. Recent research work [7,8] state that these schemes can be computation-
ally more efficient than MDS codes, but still offer a negative trade-off in terms of
performance, space-efficiency, and fault-tolerance.

Having k symbols of size s bits, an additional parity symbol is generated by
XOR-ing the previous data symbols, thus reaching n = k + 1 total symbols. This
encoding is often referred to as XOR(n, k), and the most common implementation
is XOR(2, 1), depicted in Figure 2.5.

Figure 2.5: XOR(2, 1) example.

Even though XOR codes will always provide a better storage overhead than
standard replication, its simplicity will inevitably make it much less trustworthy
than more robust codes such as RS codes or LRCs. Different authors have pro-
posed modified XOR-based policies, such as Hitchhiker-XOR/XOR+ [9], claiming
to significantly enhance performance.

2.5.3 RS Codes

RS codes were introduced in 1960 by Irving S. Reed and Gustave Solomon and they
have very wide applications, ranging from CD/DVD storage to satellite transmis-

9

sions. They are a special class of MDS codes, and are often specified as an RS(n, k)
code with s-bits symbols.

In the encoding phase, data is split into sets of k data symbols of size s, and
parity symbols are added to make a codeword of size n. As a result, n − k parity
symbols of size s will be generated. When these codewords are decoded, up to n−k
erased symbols can be corrected.

Typically, the first section of the generator matrix G corresponds to an identity
matrix of size k×k. Contiguously there must be a smaller structure of size k×(n−k)
with coefficients (g15, g25, . . . , g45, g16, g26, . . . , g46 on Figure 2.6) that will allow the
codeword encoding later on. For an RS code, the resulting matrix of size k× (n−k)
can be a Cauchy matrix. On the decoding phase, the inverse process is performed
in order to retrieve the original raw data.

Figure 2.6: RS encoding phase - n = 6, k = 4.

The storage overhead for RS codes (as well as for general linear codes) is n
k
. For

instance, given a file of size 2GB and an RS code with parameters (5, 3):

Overhead =
5

3
= 1.66.

File size =
5

3
× 2GB = 3.33GB.

The most common RS code implementations for distributed storage, includ-
ing some that will be studied in this academic work are RS(5, 3), RS(9, 6), and
RS(14, 10). These three configurations can be found on Hadoop’s default erasure
coding policies from version 3.0.0 onwards. Some slight parameter variation will also
be included for analysis and comparison.

RS Hadoop Example

A framework based on Hadoop’s file system (HDFS), Xorbas, has been previously
used to compare RS codes with other policies [10]. Take for instance an RS code
with the parameters specified in the figure above. A real example of a Cauchy matrix
generated using Hadoop’s RS encoding phase can be found below:

G =

1 0 0 0 71 −89
0 1 0 0 122 −70
0 0 1 0 −89 71
0 0 0 1 −70 122

 .

10

Although this matrix is often depicted as a two-dimensional array, Hadoop gen-
erates and transmits it as a one-dimensional array, thus locating the identity matrix
between positions 0 and k2 − 1. Subsequent positions will contain the randomly
generated coefficients, between positions k2 and nk − 1, and will refer to two incre-
menting indexes i and j, precisely in the form of 1

i+j
. Source code from Hadoop’s

default Cauchy matrix generation procedure can be found under Section 8.2.

2.6 Regenerating Codes
During storage failures, codes must be able to regenerate corrupt or missing nodes
and resume normal activities. A traditional MDS code (like an RS code) must
typically connect to k nodes, download the entirety of their contents and re-encode
the data in order to extract the corrupted blocks. This scheme may result in a
lack of efficiency, as the entire stripe must be downloaded just to store a small
fraction of the structure within the new node. Regenerating codes, introduced by
Dimakis et al. [11,12] are an attempt to avoid this issue and significantly reduce the
repair bandwidth, defined here as the number of symbols needed to be downloaded
to repair a single node. We remark that there has been some recent work on the
efficient repair of RS codes, showing that RS codes can indeed be more efficiently
repaired than what was first believed. See, for instance, [13] and references therein.

Given an amount α of information (or symbols) stored on each node, and an
amount β of information (or symbols) sent from k ≤ d ≤ n − 1 nodes during the
recovery process, we can identify the total repair bandwidth as γ = dβ. According
to [11], it is proven that the system capacity Ck,d(α, γ) (or the maximum file size in
terms of symbols that can be stored on the system) is

Ck,d(α, γ) =
k−1∑
j=0

min

(
α,
d− j
d

γ

)
.

The expression above gives an inherent trade-off between storage capacity per node
α and repair bandwidth γ. Setting Ck,d(α, γ) = B, explicit expressions for the two
boundary points of this trade-off curve can be obtained. The minimum storage
regenerating (MSR) point is obtained through minimizing α and then γ to obtain:

α =
B

k

γ =
dB

k(d− k + 1)

.

Similarly, we can reach the minimum bandwidth regenerating (MBR) point by min-
imizing in the opposite order, and get

α =
2dB

k(2d− k + 1)

γ =
2dB

k(2d− k + 1)

.

These two points are located at the two ends of the trade-off curve [11], depicted in
Figure 2.7 for n = 15, k = 10, B = 1, and d = n− 1 = 14.

11

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0.1

0.11

0.12

0.13

0.14

0.15

0.16

(MBR)

(MSR)

γ

α

Figure 2.7: MBR-MSR trade-off curve, n = 15, k = 10, B = 1, and d = n− 1 = 14.

Note that the trade-off curve described above is for functional repair, where there
is no requirement that the reconstructed node shall be an identical copy of the failed
node, but nevertheless provide equal overall fault-tolerance. Under exact repair,
however, such a requirement is imposed and codes operating on the curve are known
to not exist at essentially all interior points [14]. See also [15] for code constructions
operating between the MBR and the MSR points with the exact repair property.
At both the MBR [16] and the MSR [16, 17] points, however, code constructions
under exact repair for all values of (n, k, d) are known to exist. Related work finding
minimum required storage in this type of codes can be found in [18,19].

2.7 LRCs
As described in one of the papers that first introduced this type of codes [20]: An
(n, r, dmin,M, α)-LRC is a code that takes a file of sizeM bits, encodes it into n coded
symbols of size α bits such that any of these n coded symbols can be reconstructed
by accessing and processing at most r other code symbols. Moreover, the minimum
distance of the code is dmin, i.e., the file of size M bits can be reconstructed by
accessing any n− dmin +1 of the n coded symbols. LRC implementations split data
into several subgroups of a certain size, generate local parity fragments for each of
them and global parity blocks for the stripe as a whole. LRCs are important for
applications where not only the repair bandwidth, but also the number of nodes
needed to be contacted during repair matters. The number of nodes needed to
be contacted during repair is often referred to as the repair locality/access. In the
following, to simplify notation, an (n, k, r)-LRC, sometimes denoted as LRC(n, k, r),
is code of length n that takes as input k information symbols, such that any of its n
output coded symbols can be recovered by accessing and processing at most r other
code symbols. The minimum distance dmin of an (n, k, r)-LRC is upper-bounded [21]

12

by

dmin ≤ n− k −
⌈
k

r

⌉
+ 2

which can be seen as a modification of the Singleton bound. From the formula
above, a trade-off between locality and fault-tolerance can be observed. Any LRC
achieving the upper bound above is called an optimal LRC. Designing optimal LRCs
for any triple (n, k, r) that are easy to implement is an active research area. Further
analysis regarding LRCs can be found in [10,22,23].

Figure 2.8 shows a typical LRC(16, 12, 6) scenario, used in Windows Azure Stor-
age [24, 25]. Fragments (c1, c2, . . . , c6) and (c7, c8, . . . , c12) correspond to data frag-
ments, having LP1 and LP2 as local parities for each subgroup. Additionally, GP1

and GP2 are derived global parities in similar fashion as in the RS encoding phase.

Figure 2.8: LRC(16, 12, 6) encoding.

2.7.1 Pyramid and Hierarchical Codes

Pyramid and hierarchical codes are special classes of LRCs. We illustrate the concept
by an example. Given a set of symbols (c1, c2, . . . , c8), a hierarchical code would
first start by generating sets of local parities of size s = 2. We can divide our list of
symbols into symbol subgroups c1, c2; c3, c4; . . . ; c7, c8 and encode each fragment pair,
obtaining local redundancy. Subsequently, a new parity group of size s = 4 must
be generated as a means to allow redundancy to a higher level. The set of symbols
will now be split into two subgroups c1, c2, c3, c4; c5, c6, c7, c8 and later encoded. This
method will go on creating local redundancies on a bigger scale every time, as long
as the code size allows it. This iterative process is depicted below on Figure 2.9.

Figure 2.9: Hierarchical codes.

13

In this hierarchical scheme, we can easily retrieve single erased symbols by using
the remains of its local group and its corresponding local redundancy. For example,
when computing c1 + c2 and c2 we can easily obtain c1. Additionally, if two simul-
taneous erasures happen where a local redundancy goes missing as well as a single
symbol (say c1 and c1 + c2), we can replace the remaining symbol on the first-level
global redundancy (c1 + c2 + c3 + c4 in this case) to obtain c1, and then recover the
local redundancy. However, if a complete local redundancy group goes missing (c1
and c2), recovery is no longer possible.

As opposed to hierarchical codes, pyramid codes have a top-down scheme in
which local redundancies are generated from a single global parity. Take for instance
an RS(6, 4) code. We have four data and two parity symbols, namely d1, d2, d3, d4,
p1, p2. From this sequence, these codes would obtain two parity fragments from p1,
namely p1a and p1b. These two newly generated fragments can be used to obtain
the original parity symbol, as p1a + p1b = p1. Each of these acts as a parity symbol
for each half of the data fragment total. In this case, p1a can be used along with d1
and d2 to retrieve missing components, and similarly p1b can be used with d3 and
d4. If the code size allows it, we can generate a new level of fragments related to
a smaller data portion (i.e., p1aa, p1ab, and so on), which in our case would not be
possible as data groups become too small to generate local redundancy.

The aim of these types of codes is to allow reconstructions using the smallest
possible portion of symbols, thus reducing the bandwidth to the very minimum,
while keeping the regenerating capabilities more robust codes have (e.g., MSR, MBR,
and RS codes) through global parities in the worst-case scenarios. More information
and examples of these types of codes can be found in [26].

2.8 Tested and Used Schemes
Most of the schemes described previously have been or are used to some extent in
the industry. Those found on top of the list are also the most tested, analyzed, and
proven to yield a more favorable trade-off in terms of download complexity, recovery
bandwidth, fault-tolerance and/or storage requirements. These are:

• RS

– RS(14, 10), Facebook: in [27], this code (along with the rest included
in this paper) is compared with HACFS, an implementation that uses
two different product code constructions meant to be used independently
whether information retrieved is either hot or cold, depending on how
often it is accessed. These two code constructions are namely a fast
code (PC(2×5)) and a compact code (PC(6×5)), where the fast code
aims to have a lower recovery cost at the expense of a higher storage
overhead, and the compact code attempts to achieve the exact opposite.
According to [27], this code attained the highest degraded read latency
and reconstruction time, while achieving a lower storage overhead.

– RS(9, 6), Google Colossus: in [27] it is also shown how this smaller code
provided a much better read latency and significantly lower recovery du-
ration, although providing the overall largest storage overhead.

14

• LRC

– LRC(20, 12, 2): this code is referred to in [27] as LRCfast, including 6 local
parity blocks as opposed to its most commonly known configuration with
only two, mentioned below.

– LRC(16, 12, 6), Azure Storage: previously cited scientific paper by Xia et
al. [27] describes how this LRC policy provided better storage overhead
as the rest of the codes, but otherwise obtained similar results in terms
of reconstruction time and degraded read latency. In [25], this code is
compared to RS policies of a similar size, showing how fault-tolerance
capabilities can be traded off as a means to obtain a lower repair band-
width.

• Pyramid

– PYR(12, 8), Microsoft’s Windows Live: paper [28] by Microsoft compares
this Pyramid scheme with an MDS policy with the same k parameter
(identified as the MDS code (11, 8)), showing how it can enhance average
read overhead and allowing up to 4 simultaneous block reconstructions
(as opposed to the MDS code, where up to 3 are possible).

15

Chapter 3

Hadoop

Apache Hadoop is a renowned software that has been in the spotlight for the last
few years, as it allows users to easily create distributed storage environments meant
either for commercial or research uses. This chapter gives a short description of
what Hadoop is, and how it will be used in this thesis.

3.1 Overview
Hadoop, also known as Apache Hadoop, is an open-source framework initially re-
leased by Yahoo! and later developed by Apache Software Foundation, used for
highly-scalable processing and storage of large data sets in a distributed manner.

This software allows users to build up clusters from any number of nodes in a
common master-slave scheme, where the master is capable of individually handing
out processing subtasks to the slaves and later building up the global result. This
typical scenario, one of those Hadoop is often known for, is mostly carried out by
one of its built-in modules called MapReduce. An illustration of the Hadoop engine
and its modules is given below on Figure 3.1.

Figure 3.1: Hadoop engine and its modules [1].

16

One of the main features that characterizes Hadoop is its high fault-tolerance
whenever the information is being treated or just stored. Every time a node from the
cluster goes down, its file system will be reconstructed in a different node whenever
possible while resuming any affected tasks. The reconstruction process is often
achievable due to either a replication factor configured by the user, having several
data copies found across the cluster, or an erasure code policy that allows the missing
data chunks to be re-generated.

Additionally, Hadoop allows clusters to be increased in size at any time, even if
nodes are already running, thus providing immense flexibility and scalability. This
translates into huge computational power capabilities and the ability to process
several terabytes of data in a short period of time.

3.2 Requirements
Procedures and results shown in this thesis correspond to Hadoop version 3.0.0-
alpha2 running on Linux, which has a series of requirements:

• Java 5 or higher, preferably 6 or higher.
• SSH updated and configured, keys shared across the entire cluster thus allow-

ing passwordless SSH access from/to each node.
• IPv6 disabled (recommended).
• Dedicated Hadoop user with admin privileges (recommended).

3.3 Configuration
Hadoop has a list of configuration files that define both functionality and behaviour
for the cluster, mostly defining settings for the different modules (i.e., Yarn, MapRe-
duce, etc.). All of these files can be found on the $HADOOP_HOME/etc/hadoop/
folder, as shown in Figure 3.2.

Before modifying each file, it is important to update system variables on the
/.bashrc file (in this case /etc/bashrc on Fedora, or /etc/profile when changing set-
tings permanently for all users). This enables Hadoop to execute commands from
any directory without invoking the full installation path. The last few lines should
look exactly like Figure 3.3, found below.

The next step is modifying the Java path on the Hadoop environment variables,
found on /etc/hadoop/hadoop-env.sh. The only line that needs to be modified is
shown in Figure 3.4.

The following files to modify, shown on Figures 3.5, 3.6, and 3.7 specify cluster be-
havior on the different Hadoop modules. File /etc/hadoop/core-site.xml defines key
attributes regarding storage locations both locally and remotely within the cluster.
Similarly, file /etc/hadoop/mapred-site.xml configures MapReduce folder paths, ex-
clude list location for suspended nodes and module ports. Finally, /etc/hadoop/hdfs-
site.xml determines key storage settings and is arguably the most important config-
uration file in Hadoop.

17

Figure 3.2: Hadoop configuration files.

Figure 3.3: Hadoop system variables.

Figure 3.4: Hadoop environment variables.

Figure 3.5: File core-site.xml settings.

18

Figure 3.6: File mapred-site.xml settings.

Figure 3.7: File hdfs-core.xml settings.

In order to allow the communication between each pair of nodes in the clus-
ter, every server needs to have the complete list of IP-domain name pairs on their
/etc/hosts file. Figure 3.8 specifies the hosts file content for the node that has been
used as master during the measurements, namely bakklandet.ntnu.nornet.

19

Figure 3.8: Hosts file on Master.

3.4 Adding New Erasure Coding Policies to Hadoop
In order to add new policies with different n and k parameters, but using one of the
existing erasure coding policies in Hadoop (such as RS or XOR), three source files
must be modified. Note that this short guide has been tested and used with Apache
Hadoop version 3.0.0-alpha2, as different versions may provide slight changes in its
file structure.

The first file to modify is named ErasureCodeConstants.java, and can be found
under directory /hadoop-common-project/hadoop-common/src/main/java/org/
apache/hadoop/io/erasurecode/, where a new policy needs to be specified as shown
in Figure 3.9 for a new RS scheme with parameters n = 11 and k = 8.

Figure 3.9: Adding a new policy to Hadoop, step 1.

20

Subsequently, we need to add our policy to file HdfsConstants.java, found in
location /hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache
/hadoop/hdfs/protocol/. This file is shown under Figure 3.10.

Figure 3.10: Adding a new policy to Hadoop, step 2.

Finally, we need to include our scheme in file ErasureCodingPolicyManager.java,
located under directory hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/
apache/hadoop/hdfs/server/namenode/. This will allow our policy to be listed when
using command hdfs erasurecode -listPolicies once the cluster is running. This file
is depicted below, in Figure 3.11.

Figure 3.11: Adding a new policy to Hadoop, step 3.

3.5 Recompiling Hadoop’s Source Code
The Apache Hadoop project, described as an open-source project for reliable, scal-
able, and distributed computing, allows users to modify the code with relative ease.
Source files can be downloaded directly from their github site1 and locally extracted
from the compressed tar.gz file. Release directory is often similar to the one shown
on Figure 3.12.

1Apache Hadoop releases: https://github.com/apache/hadoop/releases.

21

Figure 3.12: Apache Hadoop release directory.

One of the main requirements for recompiling code is installing docker and all
of its components, which must be available when re-building the package. The
executable responsible for initializing the compiling process is start-build-env.sh,
visualized on Figure 3.13.

Figure 3.13: Apache Hadoop compiling executable.

Command outlined above will start the compiling process, which normally takes
between 10-15 minutes, and in case there are no syntax errors present in the code,
a successful compile message will be presented as seen in Figure 3.14.

22

Figure 3.14: Apache Hadoop compiling process.

After the re-compilation is complete, a compressed installation file will be located
in folder /hadoop-dist/target, as depicted in Figure 3.15.

Figure 3.15: Apache Hadoop re-compiled file.

23

Chapter 4

NorNet Core

NorNet Core was introduced in 2012 by Simula Research Laboratory, as an effort to
create a scenario where institutions and researchers can perform tests, experiments,
analysis, and reviews regarding research projects they participate in. This chapter
provides an overview of the NorNet environment, its contributing institutions, and
how to access NorNet Core.

4.1 Description
NorNet Core, or NorNet Core TestBed [29] is a distributed academic network used
for experimental networking research, initiated at Simula Research Laboratory in
Norway. Although this network mainly consists of physical nodes located inside of
Norway (see Figure 4.2), there are several nodes belonging to other partner institu-
tions worldwide. The current list of participants is as follows:

Figure 4.1: NorNet Core current site list.

24

Figure 4.2: NorNet Core - Norwegian site locations.

As described in the NorNet Core Handbook [30], each site consists of one switch
and four HP DL320 servers, all of which have exactly the same specifications (quad-
core x64 CPUs, 8GB RAM, 500GB HD, and two 1000BASE-T Ethernet interfaces)
and as of October 2017, each individual node runs Fedora 25.

The NorNet Core network also consists of an Ubuntu-based gatekeeper (specif-
ically gatekeeper.nntb.no), the main point of access for users and the middle point
between the physical nodes and the outer Internet.

4.2 Access
After transmitting their own private RSA keys to the gatekeeper on the user inter-
face, users need to authenticate themselves through SSH. If the access is validated,
the user is welcomed to the gatekeeper as shown on Figure 4.3.

25

Figure 4.3: Successful gatekeeper access.

Figure 4.4: Successful node access.

Once users are success-
fully authenticated, they
need to access each indi-
vidual node through an ad-
ditional SSH tunnel from
the gatekeeper itself. Ac-
cesses often include the
name of a specific slice,
a sub-environment created
on the gatekeeper meant to
be used for a specific re-
search project or group of
projects. It is often nec-
essary to specify the SSH
private key location using
the -i parameter on SSH. A
typical access must be in the following form (as seen on Figure 4.4):

ssh -i KEY/LOCATION SLICE_NAME@NODE_NAME . SITE . nornet

26

In the entirety of this project, the gatekeeper has been accessed from an Oracle
VirtualBox VM running Ubuntu, created over a Windows local machine. The envi-
ronment access order, as well as the operating system specification can be visualized
on Figure 4.5.

Figure 4.5: Operating systems and access order.

27

Chapter 5

Storage Simulations and
Measurements

The following chapter describes the way results have been obtained in this thesis,
including the software that has been used to assess network traffic and the list of
NorNet Core nodes that intervened in our experiments.

5.1 Overall Concepts and Methodology Used
Across all simulations, clusters have been constrained only to Norwegian nodes in
order to reduce latency to the minimum and standardize network bandwidth, thus
increasing the comparability of the results. Since different sites might provide un-
equal bandwidth allowances, this could later on be reflected through disparate up-
load/download times between nodes during encoding and reconstruction, making
them slightly biased.

Every simulation aims to upload and encode a file of approximate size 5GB
(more precisely, 5 473 128 572 bytes, or 5.097GB) containing random content, and
allow the reconstruction of one or many missing nodes through the interaction of
the remaining participants. Cluster master will always be bakklandet.ntnu.nornet
(often found as bakklandet).

Two policies, considered the most relevant for our experiments, will be compared
in this section. These are:

1. RS - RS(5, 3), RS(11, 8), RS(14, 10).

2. LRC (Pyramid) - PYR(6, 3), PYR(12, 8), PYR(15, 10).

Hadoop’s default RS policies provided are RS(5, 3), RS(9, 6), and RS(14, 10).
The RS(9, 6) policy will be discarded, as there exists no Pyramid counterpart with
the same k in the industry to be compared with. On the other hand, PYR(12, 8)
is a code introduced and described by Microsoft in 2007 [28], and seemed to be
particularly relevant in this experiment. In order to allow the comparison with a
corresponding RS code with the same k, an additional RS(11, 8) policy has been
included. Although this scheme is not found within Hadoop’s default policy list, it
has been added manually through code injections.

Note that Pyramid policies used in this thesis need to be included in Hadoop’s
source code as they are not available by default. The construction process consists

28

in using two of the parity blocks to generate local parity groups, and using the
remaining as global parities. A comparison of RS(5, 3) and PYR(6, 3) can be found
below in Figure 5.1. Further details regarding our Pyramid code implementation
are described in Section 6.2.

Figure 5.1: Pyramid code construction.

Finally, all of Hadoop’s encoding and decoding operations are handled under the
finite field of order q = 256. They specifically provide a set of utility functions named
GF256.java, which is called during most storage-related procedures. Even though
this finite field is not strictly required when handling most of the codes analyzed in
this thesis (and all RS codes), it enhances all byte operations and increases their
efficiency.

5.2 Software Used
IPTraf-NG 1.1.4 is a console based network statistic monitoring utility that has been
used to measure ongoing traffic between participating nodes in the cluster. Through
a simple user interface (see Figure 5.2), it describes detailed information regarding
network statistics such as IP, TCP, UDP, ICMP, non-IP and other IP packet counts,
IP checksum errors, interface activity and packet size counts. It also allows users to
generate traffic logs, which will be used thoroughly during simulations outlined in
this thesis. A log sample is shown below in Figure 5.3.

Figure 5.2: IPTraf-NG user interface.

29

Figure 5.3: Traffic log sample on a real cluster simulation.

5.3 Traffic Log-Harvesting Script
A simple script has been developed in order to gather network logs from each par-
ticipating node, harvest only relevant information from them, calculate simulation
totals and eliminate duplicates. Since a packet transfered from node c1 to c2 will
appear on both nodes’ logs (as ingoing and outgoing packets respectfully), they need
to be canceled out as they may otherwise interfere in the simulation’s measurement
accuracy. This script also allows the user to specify start and end times, thus re-
stricting the process to a specific time frame. Full source code can be found in
Section 8.1.

Additionally, the code calls out for two text files (see Figures 5.4 and 5.5) that
contain node DNS service name, as well as just node name which is the way they
will be identified during the execution to filter log files.

Figure 5.4: Node DNS names file.

Figure 5.5: Node names file.

30

5.4 Participating Nodes
Nodes used for experimentation throughout this thesis work belong to the NorNet
Core network and can be found on the list below. For the most part, nodes will be
identified only by its name and not by their network site (i.e., ntnu, uis, uit) as they
still are unique identifiers.

1. kaiserberg.tukl.nornet (Log-Harvesting)

2. bakklandet.ntnu.nornet (Master)

3. byaasen.ntnu.nornet

4. bybro.ntnu.nornet

5. heimdal.ntnu.nornet

6. lerkendal.ntnu.nornet

7. askje.uis.nornet

8. fjoeloey.uis.nornet

9. klosteroey.uis.nornet

10. mosteroey.uis.nornet

11. rennesoey.uis.nornet

12. sokn.uis.nornet

13. kongsbakken.uit.nornet

14. amundsen.uit.nornet

15. arctandria.uit.nornet

16. aunegaarden.uit.nornet

17. skarven.uit.nornet

18. fjoesnisse.uia.nornet

19. bjoervika.uio.nornet

31

Chapter 6

Results

The following chapter is composed of results obtained during our experimentation
with Apache Hadoop and NorNet Core. They reflect how erasure coding policies
compare to one another in terms of efficiency, repair bandwidth, duration, and fault-
tolerance capabilities. The last section provides an overview of all the analyzed
policies, and aims to summarize the pragmatic results achieved in this thesis.

6.1 RS Codes
This section provides experiment results for the RS code policies on their different
configurations. Both theory and literature suggest that reconstructions only require
to contact k nodes, and that is also the case for Hadoop’s recovery process. Although,
network traffic measurements will more often than not contain more than k nodes
transmitting information to the new node, as each stripe is re-generated from any
random k nodes but these may vary on each cycle.

6.1.1 RS(5,3)

Figure 6.2 shows the list of participating nodes and their content after the encoding
phase, detailed in Figure 6.1. Note that each node contains 1.71GB, which can
otherwise be calculated as (5.097GB× 5

3
)/5.

Figure 6.1: Traffic logs during encoding
(in bytes) - RS, n = 5, k = 3.

When taking down one node before
the reconstruction takes place, 14 blocks
from this file structure will go missing as
shown on Figure 6.3. After the recon-
struction is completed (see Figures 6.4
and 6.5), all block groups will be shown
as minimally erasure-coded, and under-
replicated block messages will then dis-
appear.

The reason behind blocks being min-
imally erasure-coded relies in the fact
that during our experiments, a cluster
of size n has been used to store the data,
thus delivering each stripe to the en-
tirety of the cluster.

32

File encoding and the later uploading process has taken 11 minutes and 40
seconds, while reconstruction has had a 9 minutes and 6 seconds duration. As
clearly seen on Figure 6.4, the later part of the process has taken place on node
fjoeloey.uis.nornet.

Figure 6.2: Participating nodes - RS, n = 5, k = 3.

Figure 6.3: Cluster status before reconstruction - RS, n = 5, k = 3.

33

Figure 6.4: Traffic logs during reconstruction (in bytes) - RS, n = 5, k = 3.

Figure 6.5: Cluster status after reconstruction - RS, n = 5, k = 3.

6.1.2 RS(11,8)

Figure 6.6: Traffic logs during encoding
(in bytes) - RS, n = 11, k = 8.

First figure found below (Figure 6.7)
shows that each node contains approxi-
mately 650MB (0.63GB) after the en-
coding process (detailed in Figure 6.6
on the side), which is equivalent to
(5.097GB× 11

8
)/11. This time 6 blocks

will disappear from the file structure
when one of the nodes goes down, as
listed on top of Figure 6.8. File en-
coding lasted 8 minutes and 26 seconds,
while reconstruction took 6 minutes and
10 seconds. Figure 6.9 shows the traf-
fic details during reconstruction, where
k = 8 nodes transmitted their blocks to
skarven.uit.nornet.

34

Figure 6.7: Participating nodes - RS, n = 11, k = 8.

Figure 6.8: Cluster status before reconstruction - RS, n = 11, k = 8.

35

Figure 6.9: Traffic logs during reconstruction (in bytes) - RS, n = 11, k = 8.

Figure 6.10: Cluster status after reconstruction - RS, n = 11, k = 8.

6.1.3 RS(14,10)

Figure 6.11 found below illustrates how after the encoding (detailed in Figure 6.12),
each node stores files for approximately 526MB (0.51GB), otherwise equivalent
to (5.097GB × 14

10
)/14. In this case 5 blocks will be excluded from the cluster

storage when one of the participating nodes is turned off. This can be depicted
on Figure 6.13. For this configuration the decoding process took 9 minutes and
14 seconds, while reconstruction surprisingly lasted only 2 minutes and 48 seconds.
Figure 6.14 shows the network traffic during reconstruction, where nodes transmitted
their contents to bjoervika.uio.nornet.

36

Figure 6.11: Participating nodes - RS, n = 14, k = 10.

Figure 6.12: Traffic logs during encoding (in bytes) - RS, n = 14, k = 10.

37

Figure 6.13: Cluster status before reconstruction - RS, n = 14, k = 10.

Figure 6.14: Traffic logs during reconstruction (in bytes) - RS, n = 14, k = 10.

38

Figure 6.15: Cluster status after reconstruction - RS, n = 14, k = 10.

6.2 Pyramid Codes
This subsection shows results obtained while running a modified Pyramid-XOR pol-
icy, including Cauchy matrix alteration and coefficient-handling. Our code is based
on the original XOR logic provided by Hadoop, and can be found under Section 8.4.
This new policy aims to generate two local parity groups, reducing the bandwidth
and minimum data required during recovery processes. On the other hand, duration
should not be reduced as transmissions between nodes happen simultaneously, and
the same amount of data per node is transferred.

When it comes to the generator matrix G, our objective is to replace the original
version on the left (with n = 7 and k = 4) for a pyramid-oriented layout, on the
right:

G =

1 0 0 0 71 −89 12
0 1 0 0 122 −70 −89
0 0 1 0 −89 71 35
0 0 0 1 −70 122 −114

→

1 0 0 0 71 0 12
0 1 0 0 122 0 −89
0 0 1 0 0 71 35
0 0 0 1 0 122 −114

 .

Similarly, the resulting parity check matrix H will be affected as shown below:

H =

 71 122 −89 −70 1 0 0
−89 −70 71 122 0 1 0
12 −89 35 −144 0 0 1

→
 71 122 0 0 1 0 0

0 0 71 122 0 1 0
12 −89 35 −144 0 0 1

 .

One important thing to mention is that Hadoop’s functionality is far too complex
to properly identify these matrix alterations, and will continue to transfer data

39

from k nodes during reconstruction regardless of these changes. For this reason,
measurements will be adapted to match our pyramid encoding properties.

In order to analyze the traffic in the most rigorous way we will assign each node to
a stripe index, assuming that each node contains all i indexes for each stripe. Then
we will estimate an average between network traffic for recoveries on the first local
parity group, second local parity group and global parities. For example, given the
code in the second example (see 6.2.2 below), of length n = 12 and dimension k = 8,
we know for a fact that the first group involves transfers between 5 nodes, as well as
the second group (but with different nodes), and the global parities make use of k
random nodes to perform a recovery. Statistically we can claim that an average of
these three individual measurements would give us an approximate amount of data
required in average for a reconstruction, regardless of the block position missing in
the stripe.

6.2.1 PYR(6,3)

Figure 6.16: Traffic logs during encoding (in bytes)
- Pyramid, n = 6, k = 3.

Figure 6.17 shows the cluster
status after the original file has
been encoded and stored, de-
tailing the network traffic in
Figure 6.16. This process
lasted 10 minutes and 33 sec-
onds, where each node ended
up containing a total amount of
1.71GB (5.097GB× 6

3
/6).

After 14 blocks went miss-
ing, the reconstruction pro-
cess began on recently joining
node fjoeloey.uis.nornet (see
Figures 6.18 and 6.19). This time, the duration of the recovery (shown in Figure
6.20) has been 9 minutes and 32 seconds.

Figure 6.17: Participating nodes - Pyramid, n = 6, k = 3.

40

Figure 6.18: Cluster status before reconstruction - Pyramid, n = 6, k = 3.

Figure 6.19: Traffic logs during recon-
struction (in bytes) - Pyramid, n = 6,
k = 3.

We can now start by calculating the
total bandwidth output required to per-
form the most general reconstruction,
using global parities. In this case, we
could assign each participant node to a
stripe index (c1, c2, . . . , c6) as follows:

• c1 = byaasen (LP1)

• c2 = bybro (LP1)

• c3 = heimdal (LP2)

• c4 = lerkendal (LP2)

• c5 = askje (LP1)

• <Missing node> (GP)

• c6 = klosteroey (Recovery),

41

where LP stands for local parity and GP for global parity. Nodes tagged LP1
belong to the first local parity group, nodes tagged LP2 belong to the second local
parity group, while nodes tagged GP store global parities. Since the traffic shown in
Figure 6.19 already considers the transfers of k nodes per stripe, we will normalize
them to n−1 = 5 (the number of nodes currently alive, and sending data over to the
new node), multiplying each line by 5

3
, allowing us to properly calculate approximate

traffic measurements for each local parity group later on.
We can now re-calculate an average of all incoming (tini) and outgoing (touti)

traffic between all k combinations within our cluster (c1, c2, . . . , cn−1) leaving two
nodes out on each round. Although this method may be slightly redundant, it will
be re-obtained as a means to use retrieved measurements across all reconstructions
in a consistent manner. We can otherwise refer to this calculation as:

∑
∀G⊆{1,...,n−1}:|G|=k

∑
i∈G
(
tini + touti

)(
n−1
k

) = 12 763 159 047 bytes (11.88GB).

If instead we needed to do a reconstruction within the first local parity group,
we could then assume that the missing node has either index 1, 2, or 5 and obtain
an average amount of traffic sent and received from the group indexes. In the first
case, we leave out index 1 (byaasen), and sum interactions between bybro, askje
and klosteroey (the recovery node). For the second round, we take in byaasen, askje
and klosteroey, and the process is repeated for every combination. The resulting
measurement will in that case be:

∑
g∈G1={1,2,5}

∑
i∈G1\{g}

(
tini + touti

)
|G1|

= 8 302 165 928 bytes (7.73GB).

For the second local parity group, since it is too small to be encoded (having
a size of 2) we can simply calculate the required traffic as a raw transfer from the
remaining node in the group, as data should be an exact copy. This can be formalized
as: ∑

g∈G2={3,4}
∑

i∈G2\{g}
(
tini + touti

)
|G2|

= 4 899 168 907 bytes (4.56GB).

Finally, as we have three indexes that can be repaired through the first local
parity group, two by the second group, and only one that require involving global
coefficients, we can estimate the required traffic using this policy as:

3× 8 302 165 928 + 2× 4 899 168 907 + 12 763 159 047

6

= 7 911 332 440 bytes (7.37GB).

42

Figure 6.20: Cluster status after reconstruction - Pyramid, n = 6, k = 3.

6.2.2 PYR(12,8)

Figure 6.21: Traffic logs during encoding
(in bytes) - Pyramid, n = 12, k = 8.

In this scheme, Figure 6.22 shows the
initial node status before the reconstruc-
tion. Each node contains a total amount
of 657.6MB (5.097GB ×12

8
/12).

File encoding and upload has taken
8 minutes and 23 seconds, whereas node
recovery towards skarven.uit.nornet has
had a 5 minutes and 6 seconds duration.
Network traffic monitored during these
processes can be found on Figures 6.21
(to the side) and 6.24.

43

Figure 6.22: Participating nodes - Pyramid, n = 12, k = 8.

Figure 6.23: Cluster status before reconstruction - Pyramid, n = 12, k = 8.

44

Similarly to previous cases, we can now analyze reconstructions using global
parities. Allocating each node to a stripe position, we can identify our cluster as:

• c1 = byaasen (LP1)

• c2 = bybro (LP1)

• c3 = heimdal (LP1)

• c4 = lerkendal (LP1)

• c5 = askje (LP2)

• c6 = klosteroey (LP2)

• c7 = mosteroey (LP2)

• c8 = rennesoey (LP2)

• c9 = sokn (LP2)

• c10 = kongsbakken (LP1)

• c11 = amundsen (GP)

• <Missing node> (GP)

• c12 = skarven (Recovery).

Figure 6.24: Traffic logs during recon-
struction (in bytes) - Pyramid, n = 12,
k = 8.

To make this global reconstruction possible we require transfers from k = 8
nodes, and after normalizing our results by 11

8
, we can obtain the average in-

/outgoing network traffic as:

∑
∀G⊆{1,...,n−1}:|G|=k

∑
i∈G
(
tini + touti

)(
n−1
k

) = 8 704 001 288 bytes (8.11GB).

If instead we needed to do a reconstruction within the first local parity group,
we can assume the missing node is either c1, c2, c3, c4 or c10. We then leave out one
of these nodes at a time, counting all the interactions between the rest of the nodes
and c12 (our recovery node), and obtain the average. This can be defined as:

∑
g∈G1={1,2,3,4,10}

∑
i∈G1\{g}

(
tini + touti

)
|G1|

= 5 467 333 076 bytes (5.09GB).

Similarly, for the second local parity group we can obtain it as:

∑
g∈G2={5,6,7,8,9}

∑
i∈G2\{g}

(
tini + touti

)
|G2|

= 4 236 626 591 bytes (3.95GB).

Subsequently, knowing that for this policy there are two local parity groups of
size 5, as well as two global parities, we can generalize our traffic measurements for
all cases as:

45

5× 5 467 333 076 + 5× 4 236 626 591 + 2× 8 704 001 288

12

= 5 493 983 409 bytes (5.1GB).

Figure 6.25: Cluster status after reconstruction - Pyramid, n = 12, k = 8.

6.2.3 PYR(15,10)

Figure 6.26 depicts the content on each participating node after the file encoding,
which can otherwise be obtained as (5.097GB× 15

10
)/15. Encoding allocation lasted

9 minutes and 18 seconds, while recovery lasted for 4 minutes and 31 seconds. Fig-
ure 6.29 shows the traffic details during reconstruction, where k nodes transmitted
their blocks to bjoervika.uio.nornet.

46

Figure 6.26: Participating nodes - Pyramid, n = 15, k = 10.

Figure 6.27: Traffic logs during encoding (in bytes) - Pyramid, n = 15, k = 10.

47

Figure 6.28: Cluster status before reconstruction - Pyramid, n = 15, k = 10.

48

Figure 6.29: Traffic logs during recon-
struction (in bytes) - Pyramid, n = 15,
k = 10.

In a global scenario we can assign
each slave node to a stripe index as:

• c1 = byaasen (LP1)

• c2 = bybro (LP1)

• c3 = heimdal (LP1)

• c4 = lerkendal (LP1)

• c5 = askje (LP1)

• c6 = fjoeloey (LP2)

• c7 = klosteroey (LP2)

• c8 = mosteroey (LP2)

• c9 = rennesoey (LP2)

• c10 = sokn (LP2)

• c11 = kongsbakken (LP2)

• c12 = amundsen (LP1)

• c13 = aunegaarden (GP)

• c14 = skarven (GP)

• <Missing node> (GP)

• c15 = bjoervika (Recovery)

A global recovery process will re-
quire transmissions from k = 10 nodes
in order to be completed successfully. After normalizing our data to 14

10
, we can

obtain an average of all the traffic needed to fulfill this process as:

∑
∀G⊆{1,...,n−1}:|G|=k

∑
i∈G
(
tini + touti

)(
n−1
k

) = 8 011 158 379 bytes (7.46GB).

If we instead needed to do a recovery process on the first local parity group, we
could then calculate the average necessary traffic as follows:

∑
g∈G1={1,2,3,4,5,12}

∑
i∈G1\{g}

(
tini + touti

)
|G1|

= 4 801 772 830 bytes (4.47GB).

For the second local parity group, we can similarly obtain it as:

∑
g∈G2={6,7,8,9,10,11}

∑
i∈G2\{g}

(
tini + touti

)
|G2|

= 3 244 455 073 bytes (3.02GB).

49

Knowing that in our n = 15, k = 10 code there are two local groups, each of size
6, as well as three global parities, we can align these three results in a general case
as:

6× 4 801 772 830 + 6× 3 244 455 073 + 3× 8 011 158 379

15

= 4 820 722 837 bytes (4.49GB).

From our results we can state that, in average, 4.49GB of transferred data is
required in order to reconstruct any missing node.

Figure 6.30: Cluster status after reconstruction - Pyramid, n = 15, k = 10.

6.3 Results Summary
This section provides an overall summary of the results we have encountered. The
main variables that are included in this comparison are repair bandwidth and du-
ration. Note that Tables 6.2 to 6.5 must be read from left to right, proportioning
policies on each row to those located above in each column.

50

Policy Process Traffic (bytes) Traffic (GB) Duration (sec.)

RS(5, 3) Encoding 10 750 953 930 10.01 700
RS(5, 3) Reconstruction 9 754 113 842 9.08 546
RS(11, 8) Encoding 7 494 812 653 6.98 506
RS(11, 8) Reconstruction 8 197 198 761 7.63 370
RS(14, 10) Encoding 7 644 837 886 7.12 554
RS(14, 10) Reconstruction 5 263 847 902 4.90 168
PYR(6, 3) Encoding 13 616 668 524 12.68 633
PYR(6, 3) Reconstruction 7 911 332 440 7.37 572
PYR(12, 8) Encoding 9 930 213 333 9.25 503
PYR(12, 8) Reconstruction 5 493 983 409 5.12 306
PYR(15, 10) Encoding 10 955 338 584 10.20 558
PYR(15, 10) Reconstruction 4 820 722 837 4.49 271

Table 6.1: Results summary - Network traffic and duration.

Policy RS(5, 3) RS(11, 8) RS(14, 10) PYR(6, 3) PYR(12, 8) PYR(15, 10)

RS(5, 3) - 143.4% 140.6% 78.9% 108.2% 98.1%
RS(11, 8) 69.7% - 98.0% 55.0% 75.4% 68.4%
RS(14, 10) 71.1% 102.0% - 56.1% 77.0% 69.7%
PYR(6, 3) 126.6% 181.6% 178.1% - 137.1% 124.2%
PYR(12, 8) 92.3% 132.4% 129.8% 72.9% - 90.6%
PYR(15, 10) 101.9% 146.1% 143.3% 80.4% 110.3% -

Table 6.2: Network traffic comparison during encoding.

Policy RS(5, 3) RS(11, 8) RS(14, 10) PYR(6, 3) PYR(12, 8) PYR(15, 10)

RS(5, 3) - 119.0% 185.3% 123.3% 177.5% 202.3%
RS(11, 8) 84.0% - 155.7% 103.6% 149.2% 170.0%
RS(14, 10) 54.0% 64.2% - 66.5% 95.8% 109.2%
PYR(6, 3) 81.1% 96.5% 150.3% - 144.0% 164.1%
PYR(12, 8) 56.3% 67.0% 104.4% 69.4% - 114.0%
PYR(15, 10) 49.4% 58.8% 91.6% 60.9% 87.7% -

Table 6.3: Network traffic comparison during reconstruction.

51

RS
(5
3)

RS
(11

8)

RS
(14

10
)

PY
R(
6 3
)

PY
R(
12
8)

PY
R(
15
10
)

4

6

8

10

12

Erasure Coding Policy

Tr
affi

c
in

G
ig
ab

yt
es

Encoding
Reconstruction

Figure 6.31: Network traffic comparison.

Policy RS(5, 3) RS(11, 8) RS(14, 10) PYR(6, 3) PYR(12, 8) PYR(15, 10)

RS(5, 3) - 138.3% 126.4% 110.6% 139.2% 125.4%
RS(11, 8) 72.3% - 91.3% 79.9% 100.6% 90.7%
RS(14, 10) 79.1% 109.5% - 87.5% 110.1% 99.3%
PYR(6, 3) 90.4% 125.1% 114.3% - 125.8% 113.4%
PYR(12, 8) 71.9% 99.4% 90.8% 79.5% - 90.1%
PYR(15, 10) 79.7% 110.3% 100.7% 88.2% 110.9% -

Table 6.4: Duration comparison during encoding.

Policy RS(5, 3) RS(11, 8) RS(14, 10) PYR(6, 3) PYR(12, 8) PYR(15, 10)

RS(5, 3) - 147.6% 325.0% 95.5% 178.4% 201.5%
RS(11, 8) 67.8% - 220.2% 64.7% 120.9% 136.5%
RS(14, 10) 30.8% 45.4% - 29.4% 54.9% 62.0%
PYR(6, 3) 104.8% 154.6% 340.5% - 186.9% 211.1%
PYR(12, 8) 56.0% 82.7% 182.1% 53.5% - 112.9%
PYR(15, 10) 38.7% 73.2% 161.3% 47.4% 88.6% -

Table 6.5: Duration comparison during reconstruction.

52

RS
(5
3)

RS
(11

8)

RS
(14

10
)

PY
R(
6 3
)

PY
R(
12
8)

PY
R(
15
10
)

2

4

6

8

10

12

Erasure Coding Policy

D
ur
at
io
n
in

M
in
ut
es

Encoding
Reconstruction

Figure 6.32: Duration comparison.

Table 6.6 describes the ability of each code to do several simultaneous repairs,
following the scheme below:

• Global: suggests that the code is able to retrieve the missing blocks through
a global structure, using at least one global parity.

• Local: points out that the code is capable of recovering the code through its
local parities, reducing the network traffic significantly.

• Local/Global: missing blocks are reconstructed either locally or globally, de-
pending on its stripe position.

• Restricted: reconstruction is possible only for very specific scenarios.

• No: if none of these apply, the code is not able to recover the missing blocks.

Repairs 1 2 3 4 5

RS(5, 3) Global Global No No No
RS(11, 8) Global Global Global No No
RS(14, 10) Global Global Global Global No
PYR(6, 3) Local/Global Local/Global Restricted No No
PYR(12, 8) Local/Global Local/Global Global Restricted No
PYR(15, 10) Local/Global Local/Global Global Global Restricted

Table 6.6: Repair comparison.

53

Chapter 7

Conclusion and Further Work

This thesis confirms that Apache Hadoop allows policy alteration to some extent,
and that this open-source software is totally compatible with NorNet Core. It has
been an excellent scenario to obtain pragmatic results in a real distributed scheme,
including nodes within miles from one another, without considerable inconveniences.

According to our results we can conclude that in all cases, bigger codes always
offer higher efficiency through network traffic, recovery span and fault-tolerance, and
they should be preferred over smaller codes as long as there exists no constraining
factors (such as cluster size). As expected, Pyramid codes helped to reduce net-
work traffic sent and received during reconstruction processes, although yielding no
improvement in its duration, since intervening nodes need to individually send the
same amount of information as in RS policies. An interesting result found in this
thesis is that, disregarding generated local parities, policy PYR(6, 3) still offered a
higher repair bandwidth than larger RS codes such as RS(14, 10).

Suggested further work could be experimenting with new erasure coding policies
and comparing properties other than duration and network traffic, finding ways to
more accurately control recovery processes within Hadoop, analyzing interactions
between more distant sites to see how less homogeneous clusters affect performance,
using vector codes as opposed to scalar codes, and investigating codes that yield a
higher security level.

55

Chapter 8

Appendix - Code Snippets

8.1 Log-Harvesting Script

#!/bin/bash

touch output

startTime=${1:-null}
endTime=${2:-null}

echo $startTime
echo $endTime

if [-f finalOutput]; then
rm finalOutput

fi

if [-f partialOutput]; then
rm partialOutput

fi

touch partialOutput
touch finalOutput

for i in $(cat nodes); do
echo $i
scp srl_sards@$i :/var/log/iptraf -ng/hadoop.log $i.log

done

for i in $(cat nodes); do
while read line; do

lineTime=$(echo $line | awk ’{print $4}’)
if [[$(echo $line | awk ’{print $15}’) == "sent;"]]; then

flagCountA =0
flagCountB =0
if [$startTime == null] || [$startTime \< $lineTime]; then

if [$endTime == null] || [$endTime \> $lineTime]; then
fromLine=$(echo $line | awk ’{print $11}’)
if grep -Fxq "$(echo $fromLine | awk -F’.’ ’{print $2}’)"

node_names; then
from=$(echo $fromLine | awk -F’.’ ’{print $2}’)
flagCountA =1

57

fi
if grep -Fxq "$(echo $fromLine | awk -F’.’ ’{print $1}’)"

node_names; then
from=$(echo $fromLine | awk -F’.’ ’{print $1}’)
flagCountA =1

fi
if [$flagCountA -eq 0]; then

from=$(echo $fromLine | awk -F’:’ ’{print $1}’)
fi
toLine=$(echo $line | awk ’{print $13}’)
if grep -Fxq "$(echo $toLine | awk -F’.’ ’{print $2}’)"

node_names; then
to=$(echo $toLine | awk -F’.’ ’{print $2}’)
flagCountB =1

fi
if grep -Fxq "$(echo $toLine | awk -F’.’ ’{print $1}’)"

node_names; then
to=$(echo $toLine | awk -F’.’ ’{print $1}’)
flagCountB =1

fi
if [$flagCountB -eq 0]; then

to=$(echo $toLine | awk -F’:’ ’{print $1}’)
fi
bytes=$(echo $line | awk ’{print $18}’)
if [$flagCountA -eq 1] && [$flagCountB -eq 1]; then

bytes=$((bytes /2))
fi
echo $from $to $bytes >> partialOutput

fi
fi

fi
done < $i.log

done

awk -F’ ’ ’{array[$1" "$2]+=$3} END { for (i in array)
{print i" " array[i]}}’ partialOutput > finalOutput

8.2 Hadoop’s Default Cauchy Matrix Generator

/**
* Ported from Intel ISA -L library.
*/

public static void genCauchyMatrix(byte[] a, int m, int k) {
// Identity matrix in high position
for (int i = 0; i < k; i++) {

a[k * i + i] = 1;
}

// For the rest choose 1/(i + j) | i != j
int pos = k * k;
for (int i = k; i < m; i++) {

for (int j = 0; j < k; j++) {
a[pos++] = GF256.gfInv((byte) (i ^ j));

}
}

}

58

8.3 Hadoop’s Modified Cauchy Matrix Generator

public static void genCauchyMatrix(byte[] a, int m, int k) {
// Identity matrix in high position
for (int i = 0; i < k; i++) {

a[k * i + i] = 1;
}

// For the rest choose 1/(i + j) | i != j
int pos = k * k;
for (int i = k; i < m; i++) {

for (int j = 0; j < k; j++) {
if ((i-k) < ((m-k)/2)) {

if (pos%2 == 0) {
a[pos++] = 0;

}
else {

a[pos++] = GF256.gfInv((byte) (i ^ j));
}

}
else {

if (pos%2 == 1) {
a[pos++] = 0;

}
else {

a[pos++] = GF256.gfInv((byte) (i ^ j));
}

}
System.out.println(a[pos -1]);
}

}
}

8.4 Hadoop’s Modified Pyramid Policy

@Override
protected void doDecode(ByteArrayDecodingState decodingState) {

byte[] output = decodingState.outputs [0];
int dataLen = decodingState.decodeLength;
CoderUtil.resetOutputBuffers(decodingState.outputs ,

decodingState.outputOffsets , dataLen);

int erasedIdx = decodingState.erasedIndexes [0];

int localDataUnits = 0;
int localAllUnits = 0;

if (getNumDataUnits ()%2 == 1) {
localDataUnits = getNumDataUnits () + 1;

}
else {

localDataUnits = getNumDataUnits ();
}
if (getNumAllUnits ()%2 == 1) {

localAllUnits = getNumAllUnits () + 1;
}

59

else {
localAllUnits = getNumAllUnits ();

}

int[] targetIdxArray = new int[localAllUnits /2];

if ((erasedIdx < localDataUnits /2) ||
(erasedIdx == (getNumDataUnits () + 1))) {
for (int i=0;i < (localDataUnits /2);i++){

targetIdxArray[i]=i;
}
targetIdxArray[targetIdxArray.length - 1] = getNumDataUnits () + 1;

}
else if (erasedIdx < (getNumDataUnits ()+1)) {

int j=0;
for (int i=(localDataUnits /2);i < (getNumDataUnits () + 1);i++){

targetIdxArray[j]=i;
j++;

}
}

if (erasedIdx > (getNumDataUnits ()+1)) {
byte [][] realInputs = new byte[getNumDataUnits ()][];
int[] realInputOffsets = new int[getNumDataUnits ()];
for (int i = 0; i < getNumDataUnits (); i++) {

realInputs[i] =
decodingState.inputs[validIndexes[i]];

realInputOffsets[i] =
decodingState.inputOffsets[validIndexes[i]];

}
RSUtil.encodeData(gfTables , dataLen , realInputs , realInputOffsets ,

decodingState.outputs , decodingState.outputOffsets);
}
else {

int[] coeficientsArray = new int[getNumAllUnits ()];
int j=0;
for (int i=getNumDataUnits ()* getNumDataUnits (); i <

encodeMatrix.length; i++){
if (i%(getNumAllUnits ()- getNumDataUnits ()) == 0 ||

i%(getNumAllUnits ()- getNumDataUnits ()) == 1) {
if (encodeMatrix[i] != 0) {

coeficientsArray[j] = encodeMatrix[i];
j++;

}
}

}
for (int i=j;i<coeficientsArray.length;i++) {

coeficientsArray[i] = 1;
}
System.out.println("Coeficients Array ... ");
for (int i=0;i<coeficientsArray.length;i++){

System.out.println("Coeficient: " + coeficientsArray[i]);
}
int targetIdx;
for (int eIdx = 0; eIdx < targetIdxArray.length; eIdx ++){

targetIdx = targetIdxArray[eIdx];
if ((targetIdx == erasedIdx) || (eIdx != 0 && targetIdx == 0))

continue;

60

int iIdx , oIdx;
for (iIdx = decodingState.inputOffsets[targetIdx],

oIdx = decodingState.outputOffsets [0];
iIdx < decodingState.inputOffsets[targetIdx] + dataLen;
iIdx++, oIdx ++) {

output[oIdx] ^= GF256.gfMul(decodingState.inputs[targetIdx][iIdx],
(byte) coeficientsArray[targetIdx]);

output[oIdx] = GF256.gfMul(output[oIdx],
GF256.gfInv((byte)coeficientsArray[erasedIdx]));

}
}

}
}

61

Bibliography

[1] Savvycom Software, “What you need to know about
Hadoop and its ecosystem.” https://savvycomsoftware.com/
what-you-need-to-know-about-hadoop-and-its-ecosystem, January
2016.

[2] P. Vagata and K. Wilfong, “Scaling the Facebook data warehouse to 300 PB,”
tech. rep., Facebook, April 2014.

[3] Cisco, “The zettabyte era: Trends and analysis,” tech. rep., June 2017.

[4] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large comput-
ing clusters,” in Proceedings of the 1st USENIX Conference on File and Storage
Technologies (FAST), January 2002.

[5] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quan-
titative comparison,” Revised Papers from the First International Workshop on
Peer-to-Peer Systems (IPTPS), pp. 328–338, March 2002.

[6] J. Cook, R. Primmer, and A. de Kwant, “Comparing cost and performance of
replication and erasure coding.” arXiv:1308.1887, August 2013.

[7] K. M. Greenan, E. L. Miller, and J. J. Wylie, “Reliability of flat XOR-based
erasure codes on heterogeneous devices,” in Proceedings of the IEEE Interna-
tional Conference on Dependable Systems and Networks With FTCS and DCC,
(Anchorage, AK, USA), June 2008.

[8] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure codes in storage
systems: Constructions, efficient recovery, and tradeoffs,” in Proceedings of the
26th IEEE Symposium on Mass Storage Systems and Technologies (MSST),
pp. 1–14, May 2010.

[9] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A “hitchhiker’s” guide to fast and efficient data reconstruction in
erasure-coded data centers,” in Proceedings of the ACM Conference on SIG-
COMM, pp. 331–342, August 2014.

[10] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “XORing elephants: Novel erasure codes for big
data,” Proceedings of the VLDB Endowment, vol. 6, pp. 325–336, March 2013.

[11] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions on Infor-
mation Theory, vol. 56, pp. 4539–4551, August 2010. arXiv:0803.0632.

62

https://savvycomsoftware.com/what-you-need-to-know-about-hadoop-and-its-ecosystem
https://savvycomsoftware.com/what-you-need-to-know-about-hadoop-and-its-ecosystem

[12] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network
codes for distributed storage,” Proceedings of the IEEE, vol. 99, pp. 476–489,
March 2011.

[13] M. Ye and A. Barg, “Repairing Reed-Solomon codes: Universally achieving the
cut-set bound for any number of erasures.” arXiv:1706.00112v1, May 2017.

[14] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Distributed
storage codes with repair-by-transfer and nonachievability of interior points on
the storage-bandwidth tradeoff,” IEEE Transactions on Information Theory,
vol. 58, pp. 1837–1852, March 2012.

[15] T. Ernvall, “Codes between MBR and MSR points with exact repair property,”
IEEE Transactions on Information Theory, vol. 60, pp. 6993–7005, August
2014. arXiv:1312.5106.

[16] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-matrix
construction,” IEEE Transactions on Information Theory, vol. 57, pp. 5227–
5239, July 2011. arXiv:1005.4178.

[17] S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating codes for
all parameters,” IEEE Transactions on Information Theory, vol. 63, pp. 6318–
6328, October 2017.

[18] V. Guruswami and A. S. Rawat, “MDS code constructions with small sub-
packetization and near-optimal repair bandwidth,” in Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2109–
2122, January 2017.

[19] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS code con-
structions with small sub-packetization and near-optimal repair bandwidth.”
arxiv:1709.08216v1, September 2017.

[20] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in Pro-
ceedings of the IEEE International Symposium on Information Theory (ISIT),
(Cambridge, MA, USA), pp. 2771–2775, July 2012. arXiv:1206.3804.

[21] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword
symbols,” IEEE Transactions on Information Theory, vol. 58, pp. 6925–6943,
November 2012.

[22] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Optimal
locally repairable and secure codes for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 60, pp. 212–236, January 2014.
arXiv:1210.6954.

[23] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE
Transactions on Information Theory, vol. 60, pp. 4661–4676, August 2014.

[24] Y. Zhou, “Ceph erasure coding introduction.” https://software.intel.
com/en-us/blogs/2015/04/06/ceph-erasure-coding-introduction, April
2015.

63

https://software.intel.com/en-us/blogs/2015/04/06/ceph-erasure-coding-introduction
https://software.intel.com/en-us/blogs/2015/04/06/ceph-erasure-coding-introduction

[25] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in Windows Azure storage,” in Proceedings of the
USENIX Annual Technical Conference, (Boston, MA, USA), June 2012.

[26] A. Datta and F. Oggier, “An overview of codes tailor-made for better repairabil-
ity in networked distributed storage systems,” ACM SIGACT News, vol. 44,
pp. 89–105, March 2013. arXiv:1109.2317.

[27] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure codes
in HDFS,” in Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), pp. 213–226, February 2015.

[28] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems,” ACM Transactions
on Storage, vol. 9, March 2013.

[29] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet Core - A multi-homed
research testbed,” Computer Networks: The International Journal of Computer
and Telecommunications Networking, vol. 61, pp. 75–87, March 2014.

[30] T. Dreibholz, “The NorNet Core handbook.” https://home.simula.no/
~dreibh/NorNet-Core-Handbook.pdf, June 2016.

64

https://home.simula.no/~dreibh/NorNet-Core-Handbook.pdf
https://home.simula.no/~dreibh/NorNet-Core-Handbook.pdf

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Objective
	Thesis Organization

	Distributed Storage
	Linear Codes
	Maximum Distance Separable (MDS) Codes

	System Model
	Erasure Codes
	Repair Process
	Traditional Codes Used in Distributed Storage
	Replication
	XOR
	RS Codes

	Regenerating Codes
	LRCs
	Pyramid and Hierarchical Codes

	Tested and Used Schemes

	Hadoop
	Overview
	Requirements
	Configuration
	Adding New Erasure Coding Policies to Hadoop
	Recompiling Hadoop's Source Code

	NorNet Core
	Description
	Access

	Storage Simulations and Measurements
	Overall Concepts and Methodology Used
	Software Used
	Traffic Log-Harvesting Script
	Participating Nodes

	Results
	RS Codes
	RS(5,3)
	RS(11,8)
	RS(14,10)

	Pyramid Codes
	PYR(6,3)
	PYR(12,8)
	PYR(15,10)

	Results Summary

	Conclusion and Further Work
	Appendix - Code Snippets
	Log-Harvesting Script
	Hadoop's Default Cauchy Matrix Generator
	Hadoop's Modified Cauchy Matrix Generator
	Hadoop's Modified Pyramid Policy

	References

