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Abstract 

The constructs of shared mental models and situation awareness are highlighted as            

influential for team processes and team outcomes. In interdependent teams collaborating to            

solve tasks, social dynamics are likely involved in such processes. The aim of the current               

analysis was to explore whether there is a relationship between social dynamics and shared              

beliefs in emergency response teams, using the approach of social network analysis. Data on              

communication and reliance dynamics in 11 teams was gathered from scenario training            

sessions. The data was graphed as networks displaying communication and reliance patterns.            

Communication and reliance, measured both on individual and team level was assessed as             

predictors of variance for the measured outcome variables of situation awareness and shared             

mental models. Further, the applicability of social network analysis for investigating social            

dynamics related to team functions in our sample was evaluated. The analysis revealed strong              

associations between network density and degree of shared beliefs, on a team level, but did               

not display significant covariance between communication or reliance networks and shared           

beliefs on the individual level.  

 

Keywords​: Social network analysis, shared mental models, situation awareness, team          

dynamics, operative teams. 
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Sammendrag 

Delte mentale modeller og situasjonsbevissthet er sentrale elementer i teamprosesser          

og har implikasjoner for målbare utfall av teams funksjoner. I team hvor arbeidsmåten preges              

av gjensidig avhengighet og tett samarbeid, kan underliggende sosial dynamikk trolig påvirke            

slike prosesser. Denne studien hadde til hensikt å utforske hvorvidt sosial nettverksanalyse            

kan brukes til å avdekke eventuelle sammenhenger mellom teammedlemmers sosiale          

samhandling og grad av delte oppfatninger om den aktuelle arbeidssituasjonen.          

Selvrapporterte mål på kommunikasjon og tillit ble hentet fra scenariobaserte treningsøvelser           

hos 11 beredskapsteam. Målene ble brukt til å danne grafiske nettverk som avbildet sosial              

dynamikk på de målte parametrene, for hvert team. Kommunikasjon og tillit ble kartlagt både              

på individ- og teamnivå. Målene ble brukt som prediktorer for varians i utfallsvariablene             

delte mentale modeller og situasjonsbevissthet. Videre ble sosial nettverksanalyse evaluert          

som tilnærming for å kartlegge sosial samhandling knyttet til teamfunksjoner i den gjeldende             

settingen. Analysen avdekket sammenhenger mellom nettverk med høy tetthet av          

kommunikasjon og tillit, og delte mentale modeller og situasjonsbevissthet, på teamnivå.           

Tilsvarende sammenhenger ble ikke funnet på individnivå. 

 

Nøkkelord: Sosial nettverksanalyse, delte mentale modeller, situasjonsbevissthet,       

teamdynamikk, operative team. 
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Working life is increasingly implementing sociotechnical systems, where humans         

interact with machines in highly complex environments that require skilled collaboration for            

monitoring and distributing information and tasks. Therefore, teamwork is becoming the           

norm in most industries (Cross, Rebele, & Grant, 2016). A team consists of two or more                

people who have defined roles and show some level of interdependence to accomplish a              

shared goal (Salas, Dickinson, Converse & Tannenbaum, 1992). Further typical          

characteristics of teams are coordination among team members, roles with own           

responsibilities and pronounced communication (Salas, Sims & Burke, 2005). Errors in           

sociotechnical processes, whether human or systemic, may lead to catastrophic consequences.           

Therefore, determining factors that can contribute to prevention of errors and optimitimizing            

team functions is vital. A main goal of the current analysis was to explore social dynamics                

within teams, and whether patterns emerging from such networks can predict team functions. 

In the field of human factors (HF), researchers aim to identify and understand             

physical and cognitive features of individuals or groups that influence processes in            

sociotechnical systems. High reliability organizations (HROs) ​are characterized by         

successfully and perpetually avoiding accidents and errors under circumstances where there is            

a possibility for loss of lives or considerable resources. Increasingly, organizations commit to             

using powerful, costly and dangerous technical systems, creating a need for low-risk            

performance in hazardous environments, to attain the associated benefits. Teams working           

under such conditions, like emergency response teams (ERTs) in the hydrocarbon industry,            

are expected to manage complex and hazardous work tasks, and simultaneously maintaining            

the capacity for high peak demand and productivity (La Porte, 1996).  

According to Weick and Sutcliffe (2007), HROs have five common denominators in            

how they implement preventive measures to their infrastructures; they continually focus on a)             

tracking small errors, b) resisting oversimplification, c) maintaining sensitivity to the           

operative tasks, d) reinforcing capabilities for resilience, and e) using shifting locations of             

expertise to their advantage. Thus, to maintain high reliability and at the same time, high               

production, rigorous explorations of all aspects of the operative workplace is a prerequisite.             

This includes insight into social and cognitive processes that contribute to the establishment             

of shared conceptions (Van Den Bossche, Gijselaers, Segers, Woltjer and Kirschner, 2011).  
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Social network theory is one approach to explore social aspects that may influence             

team functions. This methodology is designed to investigate interaction patterns between           

social actors by graphing dyadic relationships between relevant individuals, groups or           

institutions (Borgatti & Foster, 2003). In an extensive review on the use of social network               

theory in team research, Henttonen (2010) described how such studies have mainly focused             

on individuals (i.e. egocentric networks) or groups within the organization (i.e. bounded            

networks), as the units of analysis (see also Cummings & Cross, 2003). Both Henttonen              

(2010) and Balkundi & Harrison (2006) underline that intrateam network analyses is            

underused in team research, although highly relevant. The current analysis is an attempt to              

explore this approach. The following provides an introduction to our outcome variables and             

their relevance in team functions. 

Shared Mental Models  

Mental models are structures of organized, declarative knowledge that enable us to            

interact with the environment. They are used to understand the behavior of the world around               

us by recognizing and remembering relationships between components in our surroundings.           

Mental models facilitate processes in which we identify, explain, predict, and draw inferences             

about events, actively constructing the overall understanding of elements in the world around             

us (Mathieu, Goodwin, Heffner, Salas, Cannon-Bowers, 2000). The content and degree of            

complexity of a mental model is highly subjective, as it is a product of the individual’s                

personal experiences and knowledge. When discussing mental models in the context of teams             

in a HRO, it is implied that the mental models in question are task-specific and highly                

influenced by the level of expertise among these individuals. The increasingly complex            

sociotechnical systems with which these teams interact, calls for synchronization and           

coordination of information from all team members.  

In operative teams, team members are required to adapt to rapid changes while under              

considerable pressure. Such teams often have individual team members perform specialized           

functions while the team as a whole has overarching, common tasks and goals. To achieve               

such goals, and to efficiently perform the tasks at hand, team members draw on what is                

referred to as shared mental models (SMM). Mathieu et al. (2000) defines SMM as “the               

usage of one’s own organized knowledge to understand other team members’ tasks, resources             

and challenges, and thereby making informed decisions in line with the team’s goals”.             



 

SOCIAL NETWORK ANALYSIS IN OPERATIVE TEAMS 9 
 

Endsley (1995) describes the quality of SMM as an indicator of team coordination and              

efficiency.  

In an impactful empirical study, Bolstad & Endsley (1999) found that providing team             

members with tools and information that contribute to building SMM of each other’s current              

work status, enhanced efficient team performance. The authors described that boosting teams’            

SMM could be accomplished through instructions, training or provision of sociotechnical           

systems specifically designed for that purpose (e.g. shared monitors displaying relevant           

information).  

Cannon-Bowers, Salas and Converse (1993) identified four types of SMM, organized           

into the following categories: a) equipment, b) task at hand, c) team interaction, and d) type                

of team. To solve a problem, team members frequently merge information from the various              

categories of SMM. In an interdependent team, shared knowledge about the sociotechnical            

system (e.g. computer screen, operator desk) combined with shared understandings of when            

each member’s workload increases and how to support and communicate with each other             

when it does, is clearly advantageous. According to Espevik, Johnsen, Eid, and Thayer             

(2006), another important aspect of SMM is that they facilitate effective information            

exchange without the receiver asking for it. This likely reduces cognitive interference and             

distractions from essential tasks. Such implicit coordination is considered highly          

valuable.The impact of SMM on team collaboration, learning, communication, performance          

and efficiency is widely documented (see Cannon-Bowers et al., 1993; Cannon-Bowers &            

Salas, 1992; Cannon-Bowers, Salas & Milanovich, 1999; Espevik, et al., 2006, Mathieu et al.,              

2000; Rouse, Santos, Uitdewilligen & Passos, 2015, among others). In conclusion, the quality             

and accuracy of mental models are highly influential for achieving necessary states of             

knowledge and evaluation in complex environments. Thus, they make out the underpinnings            

of what is referred to as ​situation awareness​ (SA). 

Situation Awareness 

Complex, dynamic environments present an ever-evolving composition of factors in which           

small shifts in the context might have big implications for where the situation is headed. To                

accommodate the demands of a complex and changing environment that calls for continuous             

analysis and decision making, SA becomes the binding factor enabling operators to “become             

and remain coupled to the dynamics of their environment” (Stanton et al., 2017, p. 451).               
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While first forays into the construct of SA were undertaken in first world wars aviation, today                

the notion of having a correct mental representation of the situation is deemed important in               

several different areas. Research on SA has been conducted in a diversity of fields, like               

general aviation (Taylor, 1990), military air combat (Carretta, Perry & Ree, 1996), naval             

navigation simulation (Saus, Johnsen, Eid & Thayer, 2012), air traffic control (Endsley &             

Rodgers, 1994), driving (Ma & Kaber, 2005), process industry (Nazir, Colombo & Manca,             

2012) and command and control (Artman, 2000). Research interest in the construct of SA has               

risen drastically since its emergence as a topic under academic scrutiny in the late eighties.               

Endsley’s two influential articles in 1995 generated a sharp increase in this interest (Patrick &               

Morgan, 2010). SA has since become one of the most studied phenomenons in the HF               

literature (Stanton, Salmon, Walker & Jenkins, 2010).  

A unified definition of SA has not been agreed upon (Sarter & Woods, 1991; Stanton                

et al., 2017). This may in part result from SA being the object of study for several disciplines.                  

Engineering, psychology and system ergonomics, among others, have taken a hold of SA as a               

research interest, each with their own focus on the matter (Stanton et al., 2010).  

Another reason for lack of agreement is the fundamental differences between two            

distinct SA research traditions. As has been pointed out by Durso and Gronlund (1999), the               

division between process- and product-definitions is common in conceptualizations of SA           

and a likely source of confusion when comparing SA research that does not clearly              

distinguish between those two - though both approaches may be appropriate when suitable             

methods are applied (Durso & Sethumadhavan, 2008; Stanton et al., 2017).  

Among the definitions that prevail in the human factor litterature one of the most              

prominent is Endsley’s (1988b), in which SA is defined as “the perception of the elements in                

the environment within a volume of time and space, the comprehension of their meaning and               

the projection of their status in the near future”. This definition describes SA as a form of                 

“activated knowledge about a situation in which one is currently involved” (Saner, Bolstad,             

Gonzalez & Cuevas, 2009). The definition, like the model that builds upon it (Endsley,              

1995b), uses a cognitive approach to SA and follows an information-processing tradition that             

generally places the achievement of SA internally within the individual operator, where            

perception, comprehension and projection each contribute to a knowledge state about           

situational cues “within a volume of time and space”. Endsley’s model (1995b) is comprised              

of three hierarchical levels of knowledge about the situation, perception (level 1 SA),             
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comprehension (level 2 SA) and projection of future states (level 3 SA), that result in states                

of knowledge about the crucial task factors in the surroundings (Salmon et al. 2008). The               

three levels of Endsley’s model build on each other, and the operator going through all of                

them is favorable for achieving the most accurate understanding of his surroundings. While             

this sounds like the model implies a linear approach, attainment of SA can be heavily driven                

by top-down processing (Endsley, 2015, Endsley, 1995b; Stanton et al., 2017). Such            

processes can be described as mental structures built from training and experience guiding             

both perception and comprehension through a priori expectations. 

This contrasts approaches where SA is modelled directly after the processes involved            

in achieving SA, e.g. in the definition of Gorman, Cooke and Winner (2006), who define SA                

as a “continuous perception-action process in which ongoing activity plays an integral role in              

what there is to be perceived” (p. 1314), where the emphasis lies on how the responses to the                  

developing situation partly form the perception and selection of relevant elements. Taking a             

different stance, Sarter and Woods (1995) even make SA out to be “a variety of cognitive                

processing activities” (p.16), seemingly not assigning SA the idiosyncratic status among           

concepts of human cognitive function that other theoretical approaches may seem to imply. 

Patrick and Morgan (2010) however, make it clear that the distinction between            

process and product approaches, while useful on a theoretical level (Endsley, 2015), may be              

difficult to realize in practical applications of SA (which includes the act of measuring the               

construct). This is because the cognitive mechanisms and functions used in the description of              

process definitions of SA are not easily distinguished from the resulting knowledge states,             

where “a person’s SA will in turn have an effect on what information is searched out and                 

attended to, with product affecting process in a circular fashion” (Endsley et al., 2003, p. 25).                

All the aforementioned definitions are part of a individual focused rendition of SA. Stanton              

and colleagues (2017) make this (a) individual level out to be one of three distinct types of                 

SA models with different theoretical underpinnings - the others being the (b) team and (c)               

system model type. 

Modern information technology and organizational design have made many         

industries’ `day to day’ operations quite complex. Many work tasks today require the effort              

of a team to be able to be carried out in a timely and accurate manner. In this regard not only                     

the SA of an individual operator but the SA of the whole team is of concern. The situation                  

awareness at the team level, hereafter called TSA, has been a research interest for quite some                
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time (Salas, Prince, Baker, & Shrestha, 1995), and also in this case, different approaches for               

definition of the concept exists (Stanton et al., 2017). The definition proposed by Endsley              

(1995) frames TSA as “the degree to which every team member possesses the situation              

awareness required for his or her responsibilities” (p.39). This definition highlights the            

individual’s need for information in order to contribute to the overall team effort, and thus,               

TSA. When the tasks carried out by team members have common ground for their respective               

SA requirements, SA may be shared (Jones and Endsley (1996). This implicates that while              

some SA requirements may be relevant to several team members, and sharing of related              

information may be beneficial for raised TSA, other requirements may only be important for              

one individual’s task completion. Salas and colleagues’ (1995) TSA model features a            

combination of individual SA and various team processes. They emphasize the critical            

importance of information exchange for the attainment of TSA. Salas and colleagues argue             

that distribution of task relevant information may affect perception of SA elements to a larger               

degree than information exchange. This is meant in the sense that distribution of information              

accelerates effects of information exchange, that are relevant for task completion, team            

competency and clarifications of individual responsibilities and roles (Salas et al., 2005). 

The theoretical work for SA presented so far is heavily influenced by a psychological              

perspective and with an emphasis on individual cognition, even when treated at the team              

level. In recent years, models for SA have been proposed that provide alternative ways for               

conceptualizing SA, namely ​distributed SA (DSA) (​Salmon et al., 2006; Stanton et al, 2006;              

Stanton et al., 2010), the third group of models proposed by Stanton et al. (2017).  

Distributed SA, which is related to the concept of distributed cognition (Hutchins,            

1995), places the emergence of SA in the collaborative system, where SA is held by different                

agents (Stanton et al., 2006). The main divergence from ‘classic’ SA models is the              

assumption that SA may reside also in other parts of the non-human system, like displays and                

tools, which would be classified as artifacts by cognitive theories (Endsley, 2015). While             

DSA is seen as complementary to earlier models of SA (Salmon et al., 2008) and not a                 

general critique of how those earlier models conceptualize SA, other researchers have            

challenged earlier approaches to SA, like Endsley’s three level model (Dekker & Hollnagel,             

2004; Dekker, Hummerdal & Smith, 2010; Rousseau et al, 2010; Salmon et al., 2008; Stanton               

et al., 2010; Van Winsen & Dekker, 2015). 
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Despite the contention around conceptualizations of SA, and which definition to           

adopt, SA is widely regarded as a crucial element in safety-critical work environments, where              

technological and situational complexity are main factors (Byrne, 2015; Wickens, 2008;           

Parasuraman, Sheridan & Wickens, 2008; Saner et al., 2009). 

Measurement of Situation Awareness 

Various definitions and research disciplines involved in examining SA has led to            

several different conceptualizations, which leads to direct implications for how one is to go              

about to operationalize the construct, and to measure it further along the line (Salmon et al.,                

2008). Measurements of which environmental cues are available to the operator’s attention            

often involves the praxis of establishing a “ground truth” for what information is available to               

the individual operator in a given scenario. The operator’s assessments are compared against             

this measure of optimal information attainment, to assess the individual’s accumulated           

comprehension of information. A scoring system of what an operator could and should be              

aware of at a specific point in time is often established by use of subject matter experts                 

(SMEs) who develop a rating scale (Salmon et al., 2006). Since every situation is thought to                

have different challenges, this enables tailoring the scoring system to the specific SA             

requirements of the scenario in question. Endsley’s commonly used situation awareness           

global assessment technique (SAGAT; 1995a), employs a variant of this approach.  

The notion of normative performance standards to which individual operator          

responses can be compared against, makes a challenging proposition. Establishing these           

standards requires considerable resources. It also confines SA measurement to settings which            

can be sufficiently controlled, which hinders applicability in real-life incidents and complex            

training scenarios (Sætrevik & Eid, 2014). Further, there may exist situations where the             

objective standard cannot be established (Stanton et al., 2017). To accommodate situations            

like these, it has been proposed that rather than measuring responses against a ‘ground truth’,               

measures should assess to which degree operators’ responses to relevant questions are shared             

(Sætrevik & Eid, 2014; Sætrevik, 2015).  

Bolstad, Cuevas, Gonzalez, and Schneider (2005) state that SA attainment is primarily            

affected by three distinct components, the operators abilities, their interaction with the            

environment and their interaction with other operators. The last component will be the focus              

of this analysis. Measures derived from two separate networks graphing each teams’ patterns             
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of interaction regarding communication and reliance, will be used to assess whether shared             

beliefs can be predicted by social networks. The current analysis uses the approach of              

measuring SA by comparing team members’ responses, based on the notion that the team              

member who can be assumed to have the most extensive understanding of the situation              

should be used as a reference for assessing other team members’ responses. Bigger overlap in               

responses is thus taken to be an indicator of a higher degree of shared SA. A similar                 

assessment of the degree to which responses were shared, was used by Saner and colleagues               

(2009), though the study focused on dyads, and employed a traditional ‘ground truth’             

approach to make judgements on response accuracy. 

Social Network Analysis 

While there is no single social network theory (Kilduff & Tsai, 2003), a common              

denominator of theories for social network analysis (SNA) postulates that individuals are            

embedded in relational structures that are multilevel in nature (Monge & Contractor, 2003;             

Newman, 2010, Streeter & Gillespie, 1992). Social networks can be said to have ​structure              

and ​content (Balkundi & Harrison, 2006). ​Structure include the number of social parties             

(often referred to as a ‘node’) in the network, the number of connections between them               

(‘ties’), and the distance between specific nodes, describing the layout of a given network.              

Structural characteristics involve three levels of analysis, namely the whole network,           

subgroup level and individual level. For each of these three levels, the analysis provides              

detailed information about the networks’ compositions. ​Content​, on the other hand, describe            

the nature of the relations between nodes in a network. This includes the frequency and               

importance of the connections between nodes, but also more subtle characteristics, like the             

flow and distribution of information, resources and influence. 

While research with sociological or anthropological background has often         

concentrated on networks in larger populations, like communities, states or nations (Borgatti,            

Mehra, Brass, & Labianca, 2009), appliance of SNA has been successfully extended to             

smaller scale, with modelling network level effects at the organizational (Contractor,           

Wasserman & Faust, 2006) or team level of analysis (Balkundi & Harrison, 2006). When              

applied at the team level, SNA highlights the importance of specific patterns of network              

relationships which makes investigating the effects of group-level peer interactions possible.           

As opposed to many methodologies commonly used in the social sciences, SNA investigates             
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dyadic attributes, rather than focusing on individual or unidirectional characteristics like           

gender, age, income or competence. This means that SNA’s focal point is the nature of two                

nodes interconnection and how that relationship may be defined further by its content, e.g. in               

terms of affective, cognitive and social states, with a common polarization in ​expressive and              

instrumental content (Lincoln & Miller, 1979). Instrumental content is often seen as transfer             

of information and advice necessary for task completion, while expressive content           

encompasses the affective ties, like social support given in friendships (Ibarra, 1993). Nodes             

may consist of a single person or represent an extended group of people, or even institutions.  

The dyadic ties commonly investigated in SNA is thought to reveal information about             

the network as a whole by quantifying and graphing interactions (e.g. communication),            

affiliations (e.g. friendships), similarities (e.g. group membership) or flow of resources (e.g.            

information) (Wölfer, Faber & Hewstone, 2015). The method is ideal for uncovering            

underlying and systematic social patterns that govern who has contact with whom            

(McCulloh, 2013). Furthermore, it may reveal interdependencies, collaborations and         

transitional processes that are likely to describe social actors’ behavior above and beyond the              

level of individual characteristics (Borgatti & Halgin, 2011). Social positioning and           

accumulation of relations are some of the relational terms that often is defined             

mathematically and graphed by means of a SNA. SNA may uncover hierarchies or social              

groupings that exist outside of the organization’s formal positioning system. Relevant           

structural properties can be defined mathematically, enabling researchers to operationalize          

and use them as predictors in further statistical analysis. This facilitates the researcher’s             

endeavour to use a network’s structure and content to make inferences about team             

functioning, in excess of individual factors. SNA may thus be advantageous in describing             

important social systems’ and structures’ effect on team outcomes that are difficult to define              

without using relational terms. ​A number of network features may be uncovered through             

SNA. For an extensive introduction to the various network property measures commonly            

used in SNA, see Wölfer et al. (2015). In the current analysis we have focused on the                 

concepts ​centrality​, ​centralization​ and ​density​, which are described in more detail below. 

Centrality, centralization and density.  

As has been stated above, SNA offers access points for analysis at several levels (Streeter &                 

Gillespie, 1992). One way to look at social structure in a team’s network is by examining the                 
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characteristics of the nodes that constitute it. The distribution of ties in a network may reveal                

central nodes that display higher degrees of connectedness and influence on other nodes, both              

in terms of the frequency with which they interact with other nodes, and their importance in                

the network. Centrality can be measured by self-reported or observed frequency of            

participation in a network interaction setting (Sauer & Kauffeld, 2013). 

A node’s access to social resources is said to be a function of the node’s position in                 

the social network. Being in a central position is thus highly advantageous because it              

increases the chance of getting benefits, such as information or control thereof (Burt, 1992).              

Likewise, with its high degree of connectedness in the network, a central node is also in a                 

position to convey information to other nodes, i.e. team members in our context, via fewer               

ties. Shorter, stronger pathways to other nodes are considered to give central nodes greater              

relational impact than other nodes. A common aggregation of these aspects is a node's              

centrality​, indicating where a node is positioned in a network relative to others. Centrality has               

been associated with various outcomes, like individual performance (Baldwin, Bedell, and           

Johnson, 1997), group performance (Mehra, Dixon, Brass & Robertson, 2006), and diverse            

favorable team outcomes in a series of 1950’s MIT studies on communication in small              

groups. Bavelas (1950), Leavitt (1951), Shaw (1954), and Goldberg (1955) collectively           

demonstrated that a common denominator for problem solving efficiency, speed, activity,           

leadership and satisfaction was that they were characteristics of central members of the teams              

(Freeman, 1977), findings which were both analogically and empirically supported in later            

studies (Balkundi & Harrison, 2006; Katz et al., 2004; Cummings & Cross, 2003). 

Figure 1. ​Examples of teams with high and low centralization          

  
Figure 1. (left) High centralization in team 9’s reliance network, (right) low centralization in team 2’s communication                 

network; node size scaled to members weighted in-degree centrality. 
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Networks where one or a few nodes are central and others are more peripheral in               

comparison, are considered to be high in ​centralization​, as opposed to networks where all              

nodes partake in a more equal manner. In a network with maximal centralization a graphed               

interaction pattern would take the form of a star-like structure, where the dominant node is               

positioned in the center and the peripheral nodes are distributed around it, connected by ties               

to the central node but not (necessarily) to each other. In real-world data, like the examined                

ERTs in this study, networks with high or low centralization show the difference of centrality               

scores between nodes, but in continuing degrees, see Figure 1. In the highly centralized              

network most of the ties in the network are connected to the chief of staff (‘S’), while other                  

members receive less direct social interaction. The example from team 2 shows a network of               

team members with relatively equal distribution of ties, resulting in less difference in             

individual centrality scores. 

Cummings and Cross (1993) showed that groups with markedly disparate          

core-peripheral and hierarchical structures, i.e. signs of high centralization, displayed lower           

performance than groups with less distance in their members’ centrality. In the same line,              

Sparrowe, Liden, Wayne, and Kraimer (2001) investigated 38 work groups in five            

organizations, with groups handling relatively complex work tasks. The field study showed            

that teams with decentralized communication structures were more efficient in solving           

complex tasks, receiving higher performance scores and made fewer errors. Lipman-Blumen           

and Leavitt (2001) also attributed decentralized communication patterns as being favorable           

for effective teamwork. This aligns with earlier, seminal research where work units or teams              

characterized by high centralization have been linked to lower performance and efficiency in             

complex tasks, than work groups where the distribution of ties is not as concentrated around               

few members (Leavitt, 1951; Shaw, 1954, 1964, 1971). The main thought is that relying on               

fewer members (i.e. the highly central ones compared to the rest of the team) to convey                

important social resources, e.g. information and support, raises the chance for performance            

loss, when the transfer is not successful. Taking information as an example, this could result               

in an uneven picture of the situation at hand in different parts of the team network. Team                 

members having the same requirements for their SA to carry out their responsibilities, but              

receiving different information, might hamper the overall TSA. On the same note, limited             

access to the network transmitted resources could severely intervene with the development of             

SMM, for instance when the team needs to change their model for the workings of the                
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situation, but is not able to because of disparate information or because important task work               

that a function relies on has not been executed. 

Amidst the vast amount of team-level network variables available to researchers (see            

McCulloh, 2013; Hanneman & Riddle, 2005; Monge & Contractor, 2003; Newman, 2010)            

density is commonly seen as highly applicable to the inherent multilevel structure of a team,               

the communicational and relational patterns, and different team outcomes, e.g. performance           

(Balkundi & Harrison, 2006). In general, density denotes the extent to which nodes in a               

network are interconnected (Hanneman & Riddle, 2005). Denser networks are thus realized            

when interconnectivity between nodes increases (Scott, 2000; Newman, 2010). Applying this           

to the team level of analysis, a team’s density increases when connections between team              

members are established (Balkundi & Harrison, 2006). So while centralization is indicating a             

difference in centrality scores between team members, density rises the more team members             

are interconnected. As can be seen in Figure 2 the high density in team 11’s communication                

network has many of its members tied to each other, resulting in a lot of possible pathways                 

for transfer of social resources. This network also exemplifies that centralization and density             

are independent measures. Team 11 had a below average centralization score that is very              

similar to team 5’s centralization - while being one of the densest networks in the sample.                

The low density in team 5’s reliance network has some of the team members almost excluded                

from the rest of the teams interactions, while others have interconnections with their adjacent              

nodes, but not with many others. 

Figure 2.​ Examples of ERTs with high and low density 

 
Figure 2. (left) High density in team 11’s communication network, (right) Low density in team 5’s reliance network; node                   

size scaled to members weighted in-degree centrality 



 

SOCIAL NETWORK ANALYSIS IN OPERATIVE TEAMS 19 
 

Characterizations of denser teams are often reported in form of increased information            

exchange, collaboration, and general interaction between team members (Sparrowe et al.,           

2001; Wölfer, Faber & Hewstone, 2015). 

SNA has increasingly been selected as the method of choice for scholars interested in              

inter- and intra-team dynamics in the last decade, this is especially true for organizational              

research (Borgatti & Foster, 2003; Burt, Kilduff & Tasselli, 2013). However, both Wölfer et              

al. (2015) and Henttonen (2010) states that SNA is still underused in relevant areas of               

research, possibly on account of lack of knowledge about the analytical possibilities inherent             

to this approach. The authors strongly encourage the use of SNA to shed light on what they                 

deem to be “open research questions within the science of groups” (Wölfer et al., 2015, p.                

47), underlining that social dynamics are salient predictors for team functions. In a             

methodological assessment of SNA’s usability in field settings of command and control,            

Houghton et al. (2006) encourages further use of the approach for investigating such teams.              

In the current analysis, we hope to expand the knowledge about ERTs’ intra-group             

communication and reliance dynamics in relation to shared beliefs, on both individual and             

team level. 

Research Setting 

The current analysis was performed using data previously gathered from a Norwegian            

hydrocarbon industry company, considered a HRO. Specifically, 11 second-line emergency          

preparedness teams responded to questionnaires during scenario based training sessions. The           

subjected teams are mustered when an alarm sounds at any of the company’s offshore              

installations. Potential incidents include detection of gas leakages, fires, vessels on collision            

course, or personnel injury (Sætrevik, 2015). The teams assist the tactical first-line            

emergency management in making decisions on how to mitigate the ongoing situation.            

Functions performed by the ERTs include collecting and distributing relevant information           

between involved parties, and organizing resources like sea- or airborne vessels. The team is              

also responsible for continually keeping the strategic third-line officials on corporate level            

updated, and converting managerial decisions into practice, for instance by establishing and            

operating an information hotline for next of kin or initiating and organizing evacuation or              

production shut-down. Each team consists of about 10 individuals. Every team member’s            

competence is specified in accordance with their respective area of responsibility, and all             
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teams include the following roles: chief of staff (emergency commander), personnel           

coordinator, medical advisor, air transport officer, maritime resource officer, maritime          

communications officer, government liaison, communications officer, and strategic line         

leader. Some scenarios put particular team functions under a relatively high workload, and by              

corporate routine, these functions may therefore be reinforced with an extra operator in some              

scenarios (see the Methods and results section for adjustments). All team members have other              

office jobs in the company, and are mustered if an alarm is detected, in which case they are                  

expected to be present in the preparedness center within one hour. A total of six teams work                 

on a rotating schedule, five weeks off, one week on ‘call’. Usually, each team starts their                

week on call duty with a simulated training scenario. The data used for the current analysis                

was gathered in an actual training session (Experiment 1), and in a scripted training scenario,               

closely resembling a regular training simulation session (Experiment 2). The training sessions            

were intermittently ‘frozen’, during which time the team members would fill out a             

questionnaire asking about their understanding of the ongoing events. At the end of each              

session, they also rated which of the other team members they communicated most with, and               

who they had relied most upon to complete their own tasks, during the training session. 

Chief of staff’s role. 

The chief of staff has a prominent role in the investigated teams, functioning as an               

information hub, gathering and distributing information among the other team members. In            

ongoing emergency events, the chief of staff arranges brief (2-3 minutes) status update             

meetings every 20-30 minutes. When initiating meetings, the chief of staff takes a position in               

front of the rest of the team, using screen displays and a writing board to visualize relevant                 

updates. The other team members are seated at desks forming a V-shape surrounding the              

chief of staff. Each team member is seated in a specific location, the proximity to other team                 

members predetermined by their individual roles. The chief of staff performs an executive             

function in the team, merging the detailed descriptions of the situation from every team              

member’s area of expertise to formulate strategies aimed at resolving the ongoing incident.             

This includes intel from the corporate strategic (third line) level (although the strategic line              

leader is responsible for the direct contact between third and second line teams). The team               

members are typically communicating with external sources, like the first line offshore crew             

or other relevant personnel. The chief of staff is thus expected to be the best informed team                 
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member. This is not a new notion, and a recent example that reinforces it is Vogus and Rerup                  

(2017), who describe how HRO team leaders systematically identify and re-configure           

resources to achieve superior team performance, thus underlining the inherent importance of            

leaders in HRO team. 

Sætrevik (2015) found that ERT members’ degree of shared beliefs, measured as            

SMM and SA, was affected by which team they belonged to, but not the specific function                

they performed in the team. Sætrevik thus attributed the variation in shared beliefs to team               

specific characteristics. He hypothesized that variance in leadership characteristics, the          

team’s shared experience and communication patterns may contribute to variance in shared            

beliefs. We will explore the possibility of patterns in the teams’ social networks being a               

predictor for shared beliefs, using the same data as Sætrevik (2015) and Sætrevik & Eid               

(2014). Any findings of explained variance in shared beliefs could be beneficial in terms of               

understanding the underlying dynamics of team efficiency, as it is widely accepted that             

accurate shared beliefs facilitate team cooperation and thus, team performance (see           

Cannon-Bowers & Salas, 2001; Espevik et al. 2006; and Sætrevik & Eid, 2014, among              

others). 

Hypotheses 

Based on the discussion above we propose that SNA may be a useful method for               

shedding light on social dynamics involved in ERTs’ functions. The predictions comprises            

assumptions about relationships that to some extent have already been established in previous             

publications, e.g. that intra-team communication is vital for the establishment of SMM (Stout,             

Cannon-Bowers, Salas & Milanovich, 1999). In extension to this, we wanted to explore             

whether a SNA, and concepts commonly used in network analyses, such as centrality,             

centralization and density, would be applicable to these types of data. In line with              

Henttonen’s recommendation (2010), our study aims to widen the scope of team types             

investigated by SNA. The following section will detail the hypotheses formed to explore the              

applicability of SNA to the ERTs, and the emergence of possible associations between the              

patterns of their social relations and their shared beliefs. 

Predictions for the individual team member's centrality in the network. 

Information is transferred through communication between team members, and the          

degree to which a team member has similar information as other members determines the              
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individual’s SMM. It is therefore expected that team members' centrality in the            

communication networks will be positively associated individual SMM (measured by          

comparing individual team members’ responses to the teams’ mean responses) (H1a).           

Further, in interdependent teams, closely monitoring and supporting of each others tasks are             

key for team functioning. Team members that are evaluated as highly reliable therefore likely              

share other members’ mental models of the tasks at hand. Thus, it is expected that centrality                

in the reliance networks will be positively associated with individual SMM (H1b). Further,             

information regarding all aspects of the ongoing situation may be crucial for making             

evaluations, decisions and projections in an ERT. As the flow of information is distributed              

through communication, it is expected that team members' centrality in the communication            

networks will be positively associated with individual SA (H1c). Being alert to and mindful              

of the team’s overarching tasks and goals requires insight into the complex nature of the               

workplace, including other team members’ roles. Team members that are skilled in providing             

support and foreseeing when this is needed is likely regarded as reliable. It is therefore               

expected that team members' centrality in the reliance networks will be positively associated             

with individual SA (H1d). 

Predictions for the teams' overall network centralization. 

Equal distribution of information in teams is regarded as a vital element of the              

establishment of SMM. Centralization is an expression of the degree to which individual             

centrality is concentrated on one or a few individuals (nodes) in a network. It is therefore                

expected that higher degrees of centralization in the ERTs' communication networks will be             

negatively associated with TSMM (H2a). Following a line of reasoning, where reliance is an              

expression of team members’ backing and monitoring each other, it is likely that equal              

distribution of reliance between team members facilitate SMM. It is therefore expected that             

higher degrees of centralization in ERTs' reliance networks will be negatively associated with             

TSMM (H2b). Following Salas and colleagues (1995), TSA is likely highly influenced by             

equal distribution of communication. Higher levels of TSA are expected to be achieved only              

when all team functions have sufficient information to support individual SA requirements            

(Endsley, 1995b). It is therefore expected that higher degrees of centralization in ERTs'             

communication networks will be negatively associated with team SA (H2c). The degree to             

which team members rely upon each other equally likely expresses its accelerated capacity             
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for perceiving, evaluating and projecting internal and external events. It is therefore expected             

that higher degrees of centralization in ERTs' reliance networks will be negatively associated             

with team SA (H2d). 

A pre-registration of the current analysis was submitted to Open Science Framework            

(osf.org) prior to accessing the data and conducting the analysis. The pre-registration            

provides an extensive account of all variables and predictions, including details on data             

transformation, exclusion criteria, alpha levels, and Bonferroni adjusted alpha levels. See           

appendix 1 for a disclosure of the preregistration in its entirety. 

Methods 

Sample 

We used data from two separate experiments, conducted in the same setting and within the               

same organization. The following account of data recording in Experiment 1 and Experiment             

2 is adapted from Sætrevik (2015). All possible respondents were invited to partake in the               

scenario training sessions performed in Experiment 1 and Experiment 2. This means all             

members of the ERTs that make up the second line of our industry partner’s emergency               

organization. Some teams and team members will have been measured twice in our sample.              

In Experiment 1, data was gathered during the ERTs’ routine scenario training sessions, with              

durations of 2-3 hours. All the six ERTs participated in the data collection. Each team               

consisted of one chief of staff and between 9 and 11 team members, yielding a total of 58                  

participants. The participants in Experiment 2 were the same individuals as in Experiment 1,              

but the team constellations were rotated in accordance with staff availability and compliance             

to participate in the study. Some of the staff were unable to attend the experiment, resulting in                 

the recording of five, rather than six teams, each consisting of one chief of staff and eight                 

team members, yielding a total of 45 participants in Experiment 2. 

Procedure 

Scenario training sessions take place in the emergency room, with team members interact             

with the same personnel and equipment that would be involved in an actual event.              

Experiment 1 made no restrictions on the scenario design. The chief of staff announced status               

meetings 4-6 times during each training session. After the meetings were announced but             

before they commenced, team members were issued with a pen-and-paper survey booklet,            

comprising of eight probe questions. The first five probes queried for information about             
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individuals’ understanding of the ongoing incident by asking about the incident location and             

type, status of personnel involved in the incident, and by asking participants to make              

statements about the team’s prioritized tasks and predictions on the outcome of the incident.              

The responses to each probe question (also referred to as “domain of knowledge”, in              

Sætrevik & Eid, 2014, and Sætrevik, 2015) were used to calculate a similarity index for               

SMM, and a similarity index for SA. These similarity indices were developed by Sætrevik &               

Eid (2014) and has previously been applied to the current data to quantify individual SMM               

and SA. 

The format of the recording sessions was altered in experiment 2, with the aim of enhancing                

experimental control. The researchers developed detailed scripted scenarios for the training           

sessions. A staff of actors were introduced to perform the scripted roles of the various               

external personnel with whom the ERT members would communicate during the sessions.            

The scripts and the actors were introduced as a means to regulate task complexity (Sætrevik,               

2015). Furthermore, eight status meetings were planned for the scripted scenario sessions,            

every 20 minutes minutes after the sessions were initiated. The pen-and-paper questionnaires            

from Experiment 1 was replaced by questionnaires distributed by email, timed to arrive at              

each planned freeze point. Participants were required to submit the questionnaires in order to              

proceed with their tasks. These modifications enabled a stronger temporal resolution and            

reduced the potential for variability to be caused by the chiefs of staff’s decisions on when to                 

initiate status meetings. The electronic format of the questionnaires were meant to enhance             

compliance and reduce missing responses. 

Measures 

A network can take many forms and it is up to the the researcher to define a useful                  

ruleset of what should comprise the network structure. The ERTs that were examined in the               

two conducted sets of experiments were continually probed throughout the emergency           

scenarios they were participating in. When the scenario was finished they were asked to rank               

their top three for whom they had communicated most with and a corresponding ranking of               

which other team members they had relied most upon. This made it possible to attain two                

networks, one for communication and one for reliance. Since the data collection did not set               

out to collect all communication and all forms of reliance, but the three most frequented other                

team members for the individual, the formed networks do not, strictly speaking, display             
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communication and reliance patterns, but rather a network of all respondents’ triplet of dyads              

deemed most important. This being said, interaction with more than three functions occurred             

rather seldom. Thus, the networks will be treated as representing communication and reliance             

networks, for ease of discussion. This ranking was used to assign weights to the tie, with a                 

weight of three for the first, two for the second and one for the third rank. Since every team                   

member was asked to point out three functions in the team, the amount of outgoing ties was                 

rather foreseeable, with not answering or answering erroneously being the only way to have              

less than three outgoing ties. The decision was made to exclude the outgoing ties from a                

node’s own centrality equation, because they would be more or less equal for all participants.               

Rather, the number of ties a team member would receive was of interest. A node’s number of                 

received ties and strength, formed through the amount of assigned weights, lay the basis to               

calculate a node’s tuned, weighted in-degree centrality. Opsahl, Agneessens and Skvoretz           

(2010) referred to this measure as reflecting the node’s “popularity”, which is the term we               

will proceed to use. This measure, apart from being used on its own on the individual,                

node-level of analysis, will also lay the groundworks for calculations of centralization and             

density on the team level. The calculations, as well as the expansion of classic centralization               

and density measures to accommodate information from both ties and weights, will be             

detailed in the following section. 

Calculation of popularity, centralization and density. 

In-degree centrality, according to Freeman (1978) is given by 

(i)ki
in = C  

D−in = ∑
n

j=1
xji  

where ​i is the focal node, ​j are all other nodes, ​n is the total number of nodes and (​x​ji​)is the                     

adjacency matrix, in which the cell ​x​ji is defined as 1 if node ​j is connected to node ​i​, and 0                     

otherwise. Thus, reflects the amount of ingoing ties a node receives from other nodes in  ki
in               

the network. An extension of degree centrality to include networks where the ties are              

assigned different weights, hereafter called node strength, can be defined as 

(i)si
in = Cw

D−in = ∑
n

j=1
wji  

where (​w​ji​) is the weighted adjacency matrix, in which ​w​ji is greater than 0 if the node ​j is                   

connected to node ​i​, and the value represents the weight of the tie (Barrat et al., 2004; Opsahl                  
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et al., 2010). This measure includes weights, but foregoes the information included in the              

number of ties a node has received. 

An alternative approach is given in accordance to Opsahl and colleagues (2010), who             

postulate a centrality measure that retains information of both tie count and weight             

assignment. Calculation of the tuned in-degree centrality in a weighted network (popularity),            

combining traditional in-degree centrality ​k​i​in​ and node strength ​s​i​in​, is given by 

(i)  Cwα
D−in = ki

in · ( si
in

ki
in )

α
= (k )i

in (1−α)
· (s )i

in α
    

where is a positive tuning parameter which, depending on the value chosen, influences theα              

relative impact of in-degree centrality and node strength. When is set to either of the        α       

benchmarking values of 0 or 1 the equation equals the node’s in-degree centrality or strength,               

respectively. When the number of contacts over which the strength is distributed α < 1           

increases the value of the measure, when the number of contacts decreases it (assuming      α > 1        

the total node strength is fixed, in both cases, Opsahl et al., 2010). As pointed out before, the                  

way participants were asked to rank other members implies a prominence of the weight              

aspect of the data and a tuning parameter below one would therefore seem natural. An =              α  2
1  

was thus deemed appropriate, with 

(i) Cwα
D−in = (ki

in 
· s ) i

in 2
1   

 

giving the final equation of a nodes popularity. This equation bears resemblance to a standard               

square root function, which is strictly monotone. 

General calculation of centralization in a network (​NC​X​) according to Freeman (1978)            

is given by 

NC​X​ ​= 
(C  − C )∑

n

i=1
 Xmax Xi  

max (C  − C )∑
n

i=1
 Xmax Xi  

 

where ​n is the number of nodes, ​C​Xi represents the individual nodal centrality values, ​C​X max is                 

the largest value of ​C​Xi for any node in the network, and max equals the            (C  )∑
n

i=1
 Xmax − C Xi    

maximum possible sum of differences in nodal centrality for a network of ​n​ nodes. 

Given the ruleset imposed on the network through the way in which data was collected,               

participants were able to rank three other members at most, excluding themselves. Thus a              
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member u​i , , ranks up to three other members. In the following a set of networks over   i ≤ n              Φ  

a set of ​n ​nodes the ranking of a node ​u​i is given by the assigned weights from other members                    

u​j​ with 

w​j,i​ = ​3 for rank 1; 2 for rank 2; 1 for rank 3. 

For a network  let the factor  be defined as ϕ ∈ Φ (ϕ)  γ  

:= (ϕ)  γ (C C (i))∑
n

i=1

wα
D−in max −  wα

D−in  

From the networks ruleset follows . Further let max​ be(ϕ)  γ ≥ 0 γ  

max​ := ​MAX ​{  | }γ (ϕ)  γ ϕ   ∈ Φ  

the maximal for all possible networks . Under the assumptions that n is greater (ϕ)  γ    ϕ   ∈ Φ         

than 3, the given ruleset implies , thus the following is well-defined.γmax > 0  

In analogy to Freemans centralization measure it is now possible to define 

NC  ​= = ; (ϕ)   wα
D−in  MAX  {γ(ϕ) | ϕ∈Φ}

(C  − C ( i))∑
n

i=1
 wα

D−in max
wα
D−in

 
  γ(ϕ)

γ max ϕ  ∀ ∈ Φ  

with the denominator being the maximum sum of difference for tuned nodal in-degree             

centrality in a weighted network, with the measure ​NC ranging between 0 and 1.        (ϕ)   wα
D−in      

Applied, Freeman’s term compares the sum of differences of the actual maximum popularity             

and all other nodes popularity in a network with the absolute maximal sum of differences that                

are possible to obtain for a network - constrained by the ruleset given through how data was                 

collected. 

For every network that holds = max has to contain a node ​u​k with   ϕm ∈ Φ   (ϕ )  γ m  γ          

, maximizing the term for all i ≠ k. Such a ​u​k(k) C C wα
D−in =  wα

D−in max     C (i)C wα
D−in max −  wα

D−in          

can be constructed if ​u​k​ is ranked first by all other nodes, in terms of popularity: 

w​j,k​ ​= 3 ; j = .  ∀ / k  

To simplify we assume k = 1. 

To determine how the rest of the weights have to be distributed to obtain a maximum                

sum of differences we construct by consideringγmax  

(ϕ) (C   (i))γ = ∑
n

i=1

wα
D−in max − C wα

D−in   

           (C (i)) = n · C wα
D−in max − ∑

n

i=1

wα
D−in  
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           (k )  = n · C wα
D−in max − ∑

n

i=1
i
in · si

in 2
1

 

Since is constant this becomes maximal, when the term C wα
D−in max  

(k ) ∑
n

i=1
i
in · si

in 2
1

 

is minimal. In accordance with the semblance to a common square root function this sum               

becomes minimal if the remaining weights are concentrated on as few as possible other              

nodes, i.e. nodes ​u​2​, ​u​3​ and ​u​4​. 

Let ​u​2​ be so that 

w​1,2​ = 3 and ​w​j,2​ ​= 2 ; j = , .  ∀ / 1 2  

Further let ​u​3​ be so that 

w​1,3​ = 2, ​w​2,3​ ​= 2 and ​w​j,3​ ​= 1 ; j = , , .  ∀ / 1 2 3  

Finally let ​u​4​ be so that 

w​j,4​ = 1 for ​j​ = 1,2,3 and ​w​j,4​ = 0 for j .  ∀ ≥ 4  

This way a total of ties and ​n ​times first-, second- and third-rank     n )  3 · ( − 1 + 3 = 3 · n          

weights are assigned, respectively. 

Common team-level density is derived by dividing the sum of tie values by the total               

number of possible ties for the network (McCulloh, 2013; Hanneman & Riddle, 2005). To              

retain information of both weights and tie counts for a node, density ​d in the current networks                 

is calculated by dividing the sum of actual popularity scores for each network by the maximal                

possible popularity scores for a network of size ​n​. Thus the term becomes 

(i)d wα
D−in = √3n·6n 

 (i)∑
n

i=1
C wα

D−in

= 3n √2

 (i)∑
n

i=1
C wα

D−in

  

with a total of 3​n possible ties and 6​n possible weights in the network, with the given ruleset                  

for the network. 

Shared mental models, situation awareness and team situation awareness. 

For the individual and team SMM and SA calculations, the same approach was used              

as in the previous study (Sætrevik and Eid, 2014). If a team member had not submitted any                 

responses a given freeze point, this freeze point was excluded from the calculation of that               

member's average score (as he/she may have been unavailable to answer the probes at the               

time). If a team member had responded to some but not all probe questions at a freeze point,                  
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the unanswered probes were scored as "Don't know". If the team leader had not responded to                

some or all probe questions at one or more freeze points, the team's SA was not calculated for                  

those freeze points. 

The SMM index was calculated by comparing all team members’ (including chief of             

staff’s) answers to the group mean answer, for all domains of knowledge. The values are               

subsequently standardized to vary between 0-1, where 1 expresses that the individual’s            

response matches perfectly with the team’s average responses, and numbers closer to 0             

indicate little overlap between the individual’s and the team’s average responses.  

The SA index was calculated by defining the numerical distance between the            

individual team member’s answer and the chief of staff’s answer, for every domain,             

standardizing it to vary between 0-1. On the SA index, 1 expresses perfect alignment between               

a team member’s and the chief of staff’s responses on the probe questions, while numbers               

closer to 0 indicate increasing discrepancy between such responses. Since the number of             

status meetings varied between recording sessions, only the first four data points for each              

team were used for calculating similarity index scores, enabling comparison between the            

teams. For more details on similarity index calculations, see Sætrevik & Eid (2014). 

Analysis Plan 

Upon receiving the data, a number of data transformations and adjustments were            

performed. Subsequently, a t-test was conducted to determine whether the chiefs of staff were              

more central than the other team members, as expected. Preliminary Pearson product-moment            

correlations were then performed for both individual and team level in order to determine if               

the data were suitable for further analyses. Given the directed hypotheses these were             

one-tailed. The initial alpha level was set to ​p = .1 in the pre-registration, with a Bonferroni                 

correction for eight simultaneous hypotheses tested (four for both the individual and the team              

level), resulting in a final alpha level of ​p = .013. When initial alpha levels were met, simple                  

linear regression was used for the relevant prediction. After concluding testing of the             

pre-registered hypotheses, further exploratory analyses were conducted, namely the inclusion          

of density as a possible predictor of shared beliefs. The same order of statistical tests as for                 

the previous analyses was used here. 
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Pre-analysis adjustments and data transformations. 

Upon data entry of raw data and preparations for social network analysis, we realized              

that our data (mainly for Experiment 1) contained a number of limitations. To correct for               

these limitations we made several adjustments, some of which were not anticipated in the              

pre-registration. Once the limitations were identified, how they were to be handled was             

decided on and registered (see appendix 2). The adjustments were made during data entry,              

before social network and statistical analyses were conducted, and before the predictor            

variables were compared to the outcome variables, in accordance with Kerr’s (1998)            

recommendations to indicate what was known when to enhance research transparency. For a             

complete account for adjustments, please refer to appendix 3 alongside the preregistration,            

disclosed in full in appendix 1. 

Results 

Descriptive tests of the popularity scores were followed by eight Pearson product-moment            

correlations were used to determine whether regression analysis for the predicted associations            

for H1a-d and H2a-d were justified. Further, exploratory analyses, investigating density in            

relation to shared beliefs, were performed. Results from all analyses are presented below. 

Descriptive Statistics 

It was expected that the chief of staff would, on average, be the most central member in all                  

scenarios, given the team composition with a designated role working as an information hub              

and the physical layout of the control room, designed to support this mode of operation. An                

independent t-test indeed showed a significant difference in mean popularity in the            

communication network for chief of staff (M = 6.9, SD = 3.63) and other team members (M                 

= 3.23, SD = 1.97); t(10.75) = -3.3, ​p = .007. This mean difference was also present for                  

popularity scores in the reliance network; ​t​(10.79) = -4.96, ​p ​< .001. 

Inferential Statistics 

Popularity’s effect on individual measures of shared mental models and situation           

awareness. 

Preliminary analysis of popularity scores in both networks and individual SMM and            

SA scores were not significant, apart from popularity’s positive association with individual            
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SMM, which passed the initial alpha level; ​r = .14, ​p = .09. The planned linear regression                 

analyses were not conducted for the individual level analyses, as the results of the              

preliminary analyses did not justify further analyses. H1b-d did therefore not find any             

support, while H1a gained partial support. 

Since the experiments were conducted in two separate sets, with partly different team             

compositions, we examined whether results would differ between the two experiments. By            

dividing popularity variables from each network, and the associated individual SMM and SA             

scores by experiment 1 and 2, testing the correlations for each experiment set were made               

possible (see Table 1.). 
Table 1.​ Correlations for communication and reliance popularity and individual SMM and SA, for each experiment set 

    SMM      SA   

    com. popularity rel. popularity ind. SMM   com. popularity rel. popularity ind. SA 

 1 - .81*** .19*  - .80*** .27* 
Experiment 1 2  - .18*   - .20* 

 3   -    - 
 1 - .91*** -.01  - .8*** -.11 

Experiment 2 2  - -.07   - -.09 
  3     -       - 

Note​: * denotes ​p​ < .1; ** ​p​ < .05; *** ​p​ < .01; N = 99 (SMM), N = 88 (SA) 

Table 1 shows how the positive associations were significant on the unadjusted alpha level in               

the first set of experiments, but only with small correlations. Nonetheless, this distinction             

might be indicative that the differences in the setup of the two sets of experiments might have                 

impacted the respective ERTs in a way that covariation between popularity-values from their             

networks and individual SMM and SA scores were affected.  

Centralization’s effect on team shared mental models and team situation awareness. 

To establish whether there were associations in line with H2a-d, the individual popularity             

scores were used to calculate centralization scores for each team (i.e. each scenario). The              

resulting values are presented in Table 2. A Pearson product-moment correlation between            

centralization variables from both networks and TSMM and TSA, showed small negative            

associations between reliance centralization and TSMM and TSA, and small positive           

associations between communication centralization and TSMM and TSA, though neither of           

the associations were significant. The analysis thus did not find support for H2a-d. 
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Table 2.​ Density and centralization values for both networks for each team  

  Centralization   Density  
Team Communication   Reliance Communication   Reliance 

1. 0.30  0.65 0.72  0.70 
2. 0.11  0.43 0.75  0.83 
3. 0.26  0.51 0.90  0.91 
4. 0.36  0.45 0.94  0.93 
5. 0.31  0.29 0.59  0.56 
6. 0.56  0.45 0.88  0.85 
7. 0.49  0.53 0.90  0.88 
8. 0.36  0.46 0.88  0.83 
9. 0.48  0.73 0.94  0.94 

10. 0.64  0.64 0.96  0.87 
11. 0.30   0.27 0.96   0.87 
M 0.38  0.49 0.86  0.83 
SD 0.15   0.14 0.12   0.11 

Exploratory Analyses 

Density’s effect on team shared mental models and team situation awareness. 

After testing of the pre-registered hypotheses was concluded, an examination of whether the             

networks’ interconnectedness could serve as a predictor for shared beliefs was conducted.            

This approach deviates from the pre-registered analysis plan, but follows the same theoretical             

outline where evenly distributed networks are more likely to have higher TSA and TSMM.              

As mentioned above, interconnectedness in a network can be assessed through the ratio of a               

networks actual distribution of connections and maximal possible interconnection for the           

network. Using density as a means to represent the degree of completeness in all the teams’                

networks, both communication- and reliance-variants, preliminary analysis showed large,         

significant positive correlations for both communication and reliance density and TSMM and            

TSA, see Table 3. The density values were also highly intercorrelated, meaning that teams              

with more complete communication networks also showed higher interconnectedness in their           

reliance networks, and vice versa. 
Table 3.​ Correlation for density for both network types and TSMM and TSA 

  Com. Density Rel. Density TSMM TSA 

1 - .92*** .60** .58** 

2  - .64** .58**  

3   - .87*** 

4    - 

Note​: * denotes ​p​ < .1; ** ​p​ < .05; *** ​p​ < .01; one-tailed 
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Further analysis consisted of simple linear regression to predict both TSMM and TSA scores              

by communication and reliance density, respectively. The results of the four models are             

shown in Table 4. 
Table 4.​ Simple linear regression of density for both network types and TSMM and TSA  

   TSMM    TSA  
  B SE B β  B SE B β 

Constant  .78 .04 -  .71 .06 - 
Com. density  .10 .04 .60**  .15 .07 .58** 

         
Constant  .77 .04 -  .71 .06 - 

Rel. density   .11 .05 .64**   .16 .08 .58** 
Note​: * denotes ​p​ < .01; ** ​p​ < .05; *** ​p​ < .01; N = 11; one-tailed 

A linear regression to predict TSMM based on communication density resulted in a model              

(F(1,9) = 5.107, ​p = .025) with an ​R​2 ​of .36. Two further linear regression used to predict                  

TSA by communication (F(1,9) = 4.59, ​p = .031) and reliance density (F(1,9) = 4.494, ​p =                 

.032) resulted in two models with an ​R​2 ​of .34 and .33, respectively. The model found in the                  

prediction of TSMM by reliance density (F(1,9) = 6.317, ​p = .017) showed an ​R​2 of .41.                 

While all the models presented showed tendencies for prediction of TSMM and TSA by              

network density, none of the models reached significance at our Bonferroni-adjusted alpha            

threshold. 

Discussion 

The aim of the current analysis was to assess SNA viability as a method to describe ERTs. By                  

deriving measures from the graphed networks we sought to determine whether patterns of             

relations between team members were associated with measures of SMM and SA.  

Analyses confirmed that the chiefs of staff were significantly more central than other team              

members, for both communication and reliance. The initial individual level analyses (for            

H1a-d) showed significant positive associations between popularity and individual SA, and           

popularity and individual SMM for Experiment 1, but not for Experiment 2. The planned              

tests for team level analyses (H2a-d) did not support the hypothesized relationship between             

centralization and TSA or TSMM. When proceeding to test the team level hypotheses using              

density measures, however, analyses yielded large, significant correlations between density in           

both network types and both measurements of the teams’ shared beliefs.  
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Sætrevik (2015) found that ERT members’ degree of shared beliefs were affected by             

which team they belonged to, but not the specific function they performed in the team. He                

therefore attributed the variation in shared beliefs to team-specific characteristics, and           

suggested that leadership, the team’s shared experience, and communication patterns could           

be possible contributing factors to variance in shared beliefs.  

The current analysis was intended to further explore Sætrevik’s proposed relationship           

between social dynamics and shared beliefs. We tested whether a SNA of communication and              

reliance patterns could predict ERTs shared beliefs. This method is commonly used to             

investigate underlying social or structural elements influencing team functions (Henttonen,          

2010; Wölfer et al., 2015). Any explained variance in shared beliefs would be beneficial in               

terms of understanding underlying influences on team functions, as it is widely accepted that              

accurate shared beliefs facilitate team cooperation and thus, overall team performance           

(Bolstad & Endsley, 1999; Mathieu et al., 2000). The results will be interpreted and              

discussed, organized into individual and team level analyses, followed by a general            

discussion SNA’s suitability as a research method for investigating social dynamics and            

shared beliefs in ERTs. 

Individual Level Analyses 

Communication in the emergency response teams. 

Initial correlation analyses for popularity in both network types (from both           

experiments) and SMM and SA measures did not show significant associations, except for a              

moderate covariance between reliance and SMM. The nature of communication in the ERTs             

may have influenced these results. Communication in the teams comprising our sample is             

most commonly brief, concise, task-oriented and to the point. Using closed-loop           

communication and minimizing the amount of intra-team communication is thought to reduce            

the possibility for cognitive interference in highly complex work environments, thus           

optimizing the capacity for performance (Espevik et al., 2006). The networks we investigated             

might be reflective of this type of communication. The chief of staff’s function in the team                

include perpetually gathering and distributing information between team members to          

facilitate coordinated team processes. The chief of staff’s role therefore inherently imply that             

they communicate most with all other team members, as indicated by their popularity in the               

communication networks in the current analysis. This leads to communication between other            
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team members being somewhat limited, and the communication that does take place in other              

dyads is likely to be of a instrumental and functional nature. The networks emerging from a                

SNA is meant to express social dynamics. It is possible that the communication networks              

from the current analysis reflects the highly systematic approach to communication that takes             

place in our sample. For this reason, communication popularity may provide less predictive             

value for shared beliefs than reliance popularity in these ERTs. 

Intra-team communication likely affects team processes, and especially so for teams           

that are highly interdependent to fulfil their tasks (Bolstad & Endsley, 2005). According to              

Henttonen (2010), communication is one of the most prevalent phenomena to be subjected to              

SNA. Communication in some form takes place in all networks and is thus a natural vantage                

point for researchers to investigate relationships among social actors, whether connected           

through virtual platforms or working face-to-face in an ERT. Communication patterns           

therefore seemed an appropriate subject for investigation in our attempt to uncover relevant             

social dynamics in ERTs. Whether the networks were influenced by the nature of             

communication existing in the investigated teams could be the subject for future research in              

this setting. 

Reliance in the emergency response teams. 

The networks that emerged from the current analysis displayed which reliance ratings            

each team member received, enabling us to establish an association between reliance and             

shared beliefs. In a recent meta-study, De Jong, Dirks & Gillespie (2016) found intrateam              

trust to be a predictor for team performance across 112 independent studies. Interpersonal             

trust is defined as “an individual’s willingness to accept vulnerability based on positive             

expectations of the intentions or behavior of another” (Rousseau, Sitkin, Burt, &            

Camerer,1998, cited in De Jong et al., 2016, p. 1136). Upon inspecting trust as a covariate in                 

main effects, and as moderator, De Jong and colleagues concluded that the element of trust               

seems to matter most in teams that are highly interdependent, and where there is a clear                

leader. This description matches the ERTs in our sample well, reinforcing the assumption that              

reliance would be a relevant variable for investigating team functions, such as shared beliefs.              

Although ‘trust’ and ‘reliance’ may not be the same, they are likely closely related in this                

context.  
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In ERTs, the members are experts in performing their jobs in a highly efficient and               

coordinated manner, leaving little room for socialization that is not task-related. Although the             

question about intra-team reliance used in the current study may have been interpreted in              

different ways, we believe that the scope of such interpretations was limited due to the               

questions being asked in the context of scenario training sessions. In that context, it is               

unlikely that participants interpreted ‘reliance’ as being related to anything but the relatively             

instrumental supportive functions each team member provides. Thus, asking participants to           

rate the ones they ‘trusted’ the most would likely yield similar responses as asking about               

‘reliance’. The results of our analysis indicated an association between team members’            

reliance popularity and shared beliefs, implying support for the validity of such a measure for               

future use. 

In some networks the chief of staff did not have the highest popularity score. A few                

networks even displayed chiefs of staff with below-average popularity scores and the            

networks being highly centralized around another team member. This occurred on two            

occasions, where the communication officer and the line leader, respectively, were most            

central. Although the chief of staff was the most central team member for most of the                

networks, the exceptions may be due to some scenarios requiring more of one specific team               

member’s resources. Each team member in the ERTs has their own area of expertise and a                

given scenario may engage these skills in varying degrees. If one team member’s expertise              

was especially relevant in a training session, this may have caused the other members to rank                

this function/member as the one they relied most upon and communicated most with, instead              

of the chief of staff. It should be underlined, however, that the chiefs of staff were among the                  

highest ranked team members in all but the two mentioned networks. The remaining four              

networks displayed a less centralized structure, not indicating a protruding team member.            

Importantly, since the most popular member was not always the chief of staff, as expected               

(see Figure 2., for an example of a team network in our study where this was the case), the                   

association between reliance popularity and shared beliefs could be determined to exist            

beyond the popularity of the chief of staff. Had the chief of staff been the most popular                 

member in all reliance networks, we would have had to take into account the possibility that                

other unique characteristics of the chief of staffs’ function in the ERTs could have had               

confounding effects on the covariance. 
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Popularity and individual shared beliefs. 

Team members’ SMM of a given task is developed through communication and            

collaboration with the other team members (Cannon-Bowers et al, 1993; Mathieu et al. 2000;              

Stout et al., 1999). Relational configurations such as communication and reliance are            

necessary for collaboration to take place in a team, and individuals that have central roles in                

these configurations should therefore be better equipped to develop SMM. It is reasonable to              

assume that having a central position with regards to communication or reliance in an              

interdependent team enhances insight into other team member’s work tasks and operational            

modes, which in turn facilitates monitoring and supportive behavior associated with SMM            

(Espevik et al., 20016). Extensive contact with other members, implied by popularity, should             

in itself lead to greater overlap in mental models between closely knit units, leading us to                

expect central members to have higher degrees of SMM, measured on the individual level.              

Results from the planned analysis were not in line with these expectations. However, upon              

splitting the data between experiments, we found that analyses for the individual level             

measures of popularity in the reliance and communication networks indicated a positive            

relationship between reliance popularity and shared beliefs in the networks from Experiment            

1, but not for networks from Experiment 2.  

The chiefs of staff were expected to be the most central team members, as their               

function involves constantly acquiring, evaluating and distributing information from all          

involved personnel. As mentioned above, the prominent position of the chiefs of staff was              

confirmed by descriptive analysis. While the chief of staff's beliefs about the scenario was              

included in the SMM calculations, following the approach from Sætrevik & Eid (2014), the              

chief of staff’s replies formed the referent in the SA calculations, and was therefore excluded               

from the sample. The popularity correlations with SA were likely influenced by how SA was               

calculated. We acknowledge that removing the most central member from the analyses may             

have caused some variance between the network variables and individual scores of shared             

beliefs to be lost. Inclusion of a second measure for SA might be a possible solution to retain                  

the chief of staff in future analysis. For instance, the chief of staff’s SA could be calculated                 

by using the second-best informed member’s responses as reference values. Several factors            

may have had an influence on the discrepancy between results from Experiment 1 and              

Experiment 2, and the following is our account of those deemed most notable. 
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In Experiment 1, all teams consisted of the actual team members, but in Experiment 2,               

some team members were replaced by another participant, belonging in another team but             

performing the same function. Some of the respondents in Experiment 2 also participated in              

more than one training session. Communication between team members that are used to             

working together and know each other well may be very different from communication in              

teams where the members do not know each other (Bolstad & Endsley, 1999, Espevik et al.,                

2006). In small, interdependent teams, collaboration is largely based on previous experience            

from working in a specific team constellation, and with specific individuals. It is therefore              

possible that the communication and reliance ratings would in some way be affected when              

some participants were placed in an unfamiliar or less familiar team, which was the case in                

Experiment 2.  

This line of thought resonates with previous research on SMM in operative teams. For              

instance, Espevik and colleagues (2006) found that team familiarity enhanced performance in            

submarine attack teams, and that SMM contributed more to team performance than operative             

skills did. Being placed in an unfamiliar team had measurable implications for several             

different aspects of performance, such as stress reactivity, information exchange and number            

of hits on target. The authors argue that expert knowledge about and mastery of rules, skills                

and procedures is not sufficient to establish an optimally functioning team, and that SMM is               

necessary to succeed in performing such functions. These empirical results are in line with              

Balkundi and Harrison’s (2006) findings, who in an extensive meta-study on social network             

configuration in teams, identified member familiarity as a moderator in structure-performance           

connections. 

The above exemplifies how team members’ familiarity based on personal experiences           

in working and training together is both empirically and theoretically linked to SMM. The              

individual’s ability to make correct inferences about the behavior and mental states of others              

in interdependent teams is also likely to influence the individual’s SA (Bolstad & Endsley,              

2005; Nonose, Kanno, Furuta, 2010; Shu & Furuta, 2005). Thus, implying that experience             

and intimate knowledge about one’s collaborative partners is an advantage in the formation             

of SA (and TSA). For this reason, keeping the established team constellations intact should              

be emphasized in future investigations.  

Familiarity as a precursor for extended team performance may also explain the            

difference in correlation in between experiment sets in another way. In their special issue on               
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the state of science regarding high team performance, O’Neill & Salas (in press) presented              

four key aspects for future research and development in the field. One of these aspects is the                 

dynamic properties of teamwork. Individual and team factors have been investigated           

extensively, but the authors pointed out that there is an increased need for knowledge on               

temporal developments of social dynamics and their effect on team functions. Lin, Yang,             

Arya, Huang, & Li (2005) argued that different predictors for team performance come into              

play in different stages of group development. In particular, while factors at the individual              

level were, to a greater extent, predictive of performance in a group’s starting phase, group               

level factors, like network properties, were far more useful in a more matured group where               

team members knew each other better. As pointed out, even small changes in a team’s               

composition can affect performance. The introduction of team members who do not regularly             

work on the team may have changed the team dynamic in such a way that it resembled a team                   

in an initial phase, where members have to get to know how to work with each other. It is                   

thus possible that network level factors lost some predictive power in the second set of               

experiments, where changes like this occured. 

The fluctuations in team constellations that occurred in the sample of Experiment 2             

was limited to some members’ participation in more than one scenario training, and some              

participants stepping in for another, performing the same function. This was not expected to              

compromise the results dramatically, but we acknowledge the possibility that it might have             

skewed the networks and caused some of the discrepancies between the results of the              

analyses when divided between Experiment 1 and Experiment 2. Another possible           

consequence of some team members participating in several training sessions is the potential             

for fatigue and diminished compliance. This may have led to more erroneous or missing              

responses, although there was no evidence of this in our data. Sætrevik and Eid (2014)               

measured compliance for the current data and did not report decreased compliance for             

Experiment 2. 

The discussed elements relevant for individual-level analyses identifies that         

systematic communication, the chief of staffs’ inherently central position in the ERTs, and             

the way SA was calculated, may explain why initial analyses only reached the predetermined              

significance level for the predicted association between individual reliance popularity and           

SMM. When analysing the two sets of experiments separately, the experiments conducted            

with intact teams showed associations in line with our predictions. This may be a              
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consequence of less familiar team members taking part in some training sessions, although             

this is difficult to establish in hindsight. Taking the aforementioned limitations into account,             

we consider the results to be promising for future research. 

Team Level Analyses 

Centralization and shared beliefs. 

While popularity, i.e. the application of an individual level network measure, showed some             

tendencies for an association with individual SMM scores, the main interest in examining the              

team level was to establish whether teams characterized by especially central members had             

lower degrees of shared beliefs. Earlier research of SNA in a team context has focused on                

centralization (Katz et al., 2004), i.e. one or few members having especially high centrality              

scores compared to the rest of the group working together. Work units or teams characterized               

by high centralization have already in early studies been linked to lower performance and              

efficiency in complex tasks than work groups with lower centralization (e.g. Leavitt, 1951;             

Shaw, 1954, 1964, 1971), and continue to do so in more recent publications (Cummings &               

Cross, 2003; Henttonen, 2010; Leenders, ​van Engelen & Kratzer, 2003; ​Lin et al., 2005;              

Mehra et al., 2006; Sparrowe et al., 2001). In accordance with Bolstad and Endsley (1999)               

and Mathieu and colleagues (2000), distribution of communication and collaboration is vital            

in the formation of objectively accurate mental models and that these are shared between              

team members. High degrees of centralization in a communication network may inhibit            

distribution of information on a team level, as the flow of information is concentrated around               

the most central team member(s). The same assumption can be made about centralization in              

reliance, as the team’s overall shared beliefs may diminish when one or a few individuals are                

relied the most upon, compared to when reliance is equally distributed between all team              

members. Such a mechanism may be explained by concentration of ties on one or few team                

members in a network raising the chance for those team members to act as ‘gatekeepers’,               

nodes through which information has to flow to reach from one part of the network to                

another. Such restrictions on the workflow could potentially act as a ‘bottleneck’, in             

particular if the team member representing the node in question does not pass on the social                

resources sent through them (e.g. information, social support or advice) in an adequate             

manner.  
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Analyses testing centralization’s predictive quality for shared beliefs did not show any            

clear tendencies. Overall, the results from the current analysis indicate that for this sample              

there was no association between centralization and shared beliefs. These results depart from             

the expected negative association of centralization and team outcomes. Taking up the idea of              

a ‘gatekeeper’ as described before, the implied bottleneck first becomes a problem for the              

team, if the most central team member fails to distribute the social resources channeled              

through them. The ERTs in question are highly trained and specialized units, with a chief of                

staff that collects, condenses and disperses resources and function as an information-hub. The             

chief of staff was also the most central team member in a majority of teams (16 out of 22). If                    

centralization of resource distribution leads to the a bottleneck (in the current setting), a              

well-adapted and skilled chief of staff may have the exact opposite effect of a bottleneck.               

This would be a possible explanation for why centralization did not have the predicted              

associations with shared beliefs in these particular teams. It has been argued (Balkundi &              

Harrison, 2006) that central positions for leaders in social networks may be of great              

importance, since leaders are assumed to use their social position in the network, e.g. for task                

completion. It is thus possible that factors like the organizational and physical layout of the               

ERT, clear team role and function distinction, and considerable expertise, in combination,            

were able to offset potential detrimental factors of centralization. 

Another factor might be that the aforementioned association between centralization          

and team outcomes often uses measures of performance or efficiency, e.g. time needed to              

complete complex tasks as a team (Shaw, 1964), complex project tasks (Sparrowe et al.,              

2001; Cummings & Cross, 2003) or sales performance (Mehra et al., 2006). Possibly,             

measures of shared beliefs are to be seen as emergent states of continuous coworking, rather               

than performance. In relation to SA, Endsley (1995b, 2015) distinguished between the            

attainment of SA and eventual decision making, affecting performance. While the factors of             

SMM and SA are deemed important in the processes leading up to different forms of               

performance (Bolstad & Endsley, 1999; Endsley et al., 2003; Mathieu et al., 2000), they are               

not synonymous with them. It is possible that centralization hampers ERTs’ task performance             

outcomes in other ways, that does not appear as associations with this study’s measures of               

shared beliefs. 
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Density and shared beliefs. 

Density expresses the actual distribution of interconnections in a network compared to            

the maximal possible amount of interconnections. In the current context, density indicates the             

extent to which flow of communication and reliance is distributed among team members,             

regardless of whether one member functions as a hub for the interconnections between other              

members. Therefore, density was deemed a suitable alternative measure for distribution of            

communication and reliance in the ERTs. This enabled us to explore the rationale behind              

H2a-d without focusing on individuals’ positions in the networks, but rather the extent to              

which communication and reliance distribution in itself can be of predictive value for teams’              

shared beliefs. The correlations between density in both network types and shared beliefs,             

indicated a clear relationship between these variables, also directing further research towards            

the use of density as a predictor for shared beliefs. These results are in line with several                 

previous findings. Various researchers (Balkundi & Harrison, 2006; Reagans, Zuckerman &           

McEvily, 2004; Lin, Yang, Arya, Huang & Li, 2005) have investigated team functions, such              

as effectiveness and performance, as outcomes for density and reported it to be a salient               

predictor. Wong (2008) measured knowledge density and found that increased density in            

knowledge networks also predicts team effectiveness. 

Denser teams are often reported to have increased information exchange,          

collaboration, and general interaction between team members (Sparrowe, Liden, Wayne, &           

Kraimer, 2001; Wölfer, Faber & Hewstone, 2015). Team interaction patterns of this kind             

have been associated with increases in performance of the team as a whole, and for individual                

team members. Results of a meta-analysis of 72 independent studies on the ‘hidden profile’              

paradigm (i.e. the social psychological phenomenon where individuals withhold relevant          

information known only to them in a group discussion, potentially leading to fallible group              

decisions) led the authors to conclude that “although moderators were identified, information            

sharing positively predicted team performance across all levels of moderators”          

(Mesmer-Magnus & DeChurch, 2009, p.535).  

In a complimentary review and meta-analysis, Lu, Yuan and McLeod (2012) showed            

a strong main effect for in-group information sharing on the accuracy of a team’s              

decision-making. In regards to SMM in particular, reviews of Kozlowski and Ilgen (2006), as              

well as Kozlowski and Bell (2012), suggest that establishing shared mental schema for joint              
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task-activities supports task completion and coordination of team members. Further, Balkundi           

and Harrison’s meta-analysis (2006) reported general positive associations between team          

density and team performance. Newer findings also support the notion that density can be a               

relevant factor in predicting team level processes (Mehra, Dixon, Brass, & Robertson, 2006;             

Roberson & Williamson, 2012: Henttonen, 2010). Given the general positive association of            

team level density and team functions, it was expected that ERTs with denser networks show               

greater degrees of shared mental models, and in extension, more accurate TSA. We consider              

our findings to be in line with the rationale behind above mentioned findings, where density               

in networks is associated with positive effects on team functions. 

The density measures of communication and reliance were highly intercorrelated.          

This indicates that networks where communication was distributed and weighted evenly,           

reliance was distributed and weighted in an equal manner. The popularity values used to              

obtain the density measures were also intercorrelated (see Table 1.) The measures covary to              

such an extent that it is reasonable to question whether they are, in fact, separate constructs.                

The inherent meaning of ‘reliance’ and ‘communication’ cannot be regarded as the same, and              

one can argue that a closely collaborating team may communicate with and rely upon              

different people, depending on the context and nature of the team’s tasks. Regardless, the              

measures did overlap in the current setting. We believe that this overlap may have been               

caused by the specific dynamics in these ERTs. The chief of staff’s assigned responsibility              

for gathering and distributing information, and coordinating the team, can lead to that person              

being ranked in first place for both reliance and communication by the other team members.               

Furthermore, in these highly coordinated ERTs, communication is determined by the current            

situation, the tasks at hand and functional necessity. It is concise, brief and to the point. Thus,                 

it is likely that the communication that does take place between team members is initiated to                

gain or give support, which in turn might be perceived and reported as reliance, resulting in                

convergence between communication and reliance measures. 

Implications of the situation awareness measurement. 

The similarity index used for calculating SA in the current analysis was developed             

with the intention of making a SA measure that can be applied and used in field settings                 

(Sætrevik & Eid, 2014). As described in the introduction section, measuring SA has been              

found to be a demanding and controversial venture. Establishing a ground truth for             
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comparison is time consuming and requires considerable resources in addition to expert            

knowledge about developing the measure, and the specific environment for which it is             

developed. SA measures have also been criticized for lack of ecological validity, as they have               

been tested and developed in controlled laboratory environments, not reflecting the           

complexity existing in field settings.  

According to Sætrevik & Eid (2014, p. 121), “some level of intrusion into the task               

work seems to be inevitable in all SA measures, yet the amount of intrusion varies according                

to the approach used”. Their own approach was aimed at measuring SA in a non-invasive               

way, and at the same time, developing a measure that was highly resource-efficient and              

applicable to naturalistic settings. Sætrevik and Eid’s approach enables organizations to           

implement the measure to their routine operations, potentially generating insight in SA            

variation, within and between teams. We evaluate the benefits of this approach as greater than               

the limitations for the current analysis, as it provides highly naturalistic information about the              

investigated ERTs’ shared beliefs. Although the generalizability of this SA measure is            

relatively low, it does express the variability existing among teams and team members in              

these ERTs. Our goal was not to make inferences about teams in general but to explore                

whether SNA can be a useful tool for research regarding shared beliefs in this or similar                

settings. Using the best-informed team member as point of reference for team member’s SA              

is likely a more finely tuned measure than any general SA-measure, using a ground truth               

approach, for instance. Therefore, we consider it to be a fitting approach for our purpose,               

although the construct validity of this measure can be debated. 

Possible Modifications for further Studies 

Respondents were asked to indicate which other team members they communicated           

most with and whom they relied most upon to complete their tasks. However, exact              

definitions of how this was to be interpreted were not given. The resulting data is thus a                 

function of what respondents themselves perceived and defined as communication with and            

reliance upon others. This implies that the content of ties may differ between team members.               

For instance, ‘reliance’ may connote the degree to which one team member trusts another              

member to share relevant information, to know which information is relevant to them, and              

when and how it is preferably transferred. Participants may give reliance ratings to other team               

members based on personal experience, and in accordance with subjective preferences for            
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collaboration. ‘Communication’ can be interpreted as verbal communication, which may be           

unidirectional or bidirectional. Non-verbal communication could be a highly relevant form of            

communication for ERT members, as explicit commands and information exchange is           

minimized in such highly specialized teams (Espevik et al., 2016).  

As mentioned in the Introduction, two common types of tie content studied in social              

networks are expressive and instrumental ties (Lincoln & Miller, 1979). However, inferring            

from the nature of the investigated ERTs work, the occurrence of strictly social (expressive)              

communication is likely minimal. In exploring whether the social dynamics that underlie the             

distribution of information and other team functions could predict variance in shared beliefs,             

it could nonetheless be useful to eliminate the possibility of participants ranking members             

they communicated most with in the expressive sense. One possible improvement for future             

research could therefore be to operationalize the communication ranking as ‘instrumental’           

(e.g. asking participants to rank team members who provided relevant information). 

The associations identified in the current analysis do not directly indicate the            

mechanisms through which the estimated relationships come to play. While we can assume             

that transfer of information and interdependence of team functions are the main explanatory             

factors in how communication and reliance networks are associated with team outcomes like             

shared beliefs, our measurements are not able to pinpoint the exact explanations. To approach              

this, one may apply direct measurement of the actual resources and information transferred             

throughout a network’s ties (Hansen, 1999) might mitigate this. Another possible approach            

would be to use audio recordings with subsequent coding of information to trace the paths of                

essential information, or hypothesizing patterns of functional dependence and then checking           

whether these patterns actually emerge, when tested in field settings. However, adjusting the             

data collection this way would require additional resources from the researcher in a context              

similar to our study, in the form of a more complicated experimental design, recording and               

storing equipment, or extended training for observers. 

Since the combination of the SNA approach tested in this study and the similarity              

index for shared beliefs proposed in the original study from Sætrevik and Eid (2014) should               

be usable by an HRO on its own, it is important that adjustments made in the collection of                  

data do not make appliance of the method too difficult for the organization. Not only the                

factor of raised resource use (e.g. in form of additional equipment or special expertise              

needed) is of concern, but also implications for the validity of measures, when additional data               
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collection adds or prolongs freeze points in the scenario. When using freeze points in an               

ongoing scenario, one general concern is how the ‘stop and go’ between scenario training and               

assessment interruptions alters how the scenario develops in comparison to what the natural             

course of development would have been without the assessment (Salmon et al., 2009). Data              

collection has to be balanced between being sophisticated enough for the participants to give              

satisfactory information, and not being intrusive to the extent that it could compromise the              

experiment’s ecological validity. However, given that the density of social networks graphed            

out of two simple, time efficient rankings (only administered at the end of each scenario)               

showed strong correlations with shared beliefs, inclusion of such rankings at every freeze             

point seems like a reasonable approach. This would enable obtaining of longitudinal            

networks without impacting the scenario’s ecological validity too heavily. 

One aspect the current experimental design is not able to answer is whether the              

predictive value of network density varies over time throughout the scenario. While the             

responses used to obtain the similarity indices were acquired through multiple freeze points -              

giving the possibility to present a temporal rendering of the development in shared beliefs -               

the questions for graphing the networks were asked when scenarios concluded. A future             

endeavour could be integrating the ranking of team members used to obtain the networks at               

each freeze point, enabling researchers to graph social interaction while scenario is ongoing.             

This could be used to assess whether density would be able to predict shared beliefs, which                

were shown to vary throughout training sessions (Sætrevik & Eid, 2014), equally at different              

points in time. Potential differences in predictive strength could point to eventual moderators. 

Interpersonal relationships and group structural patterns are not static and have           

increasing influence on team members’ behavior as they are established, according to O’Neill             

and Salas (in press). For instance, team members will interact more with those they already               

know, and being part of an established team structure has an accelerating effect on the               

perceived importance of social norms (Lin et al., 2005). It could be argued that the approach                

applied in the current analysis would be fitting for uncovering temporal aspects of social              

dynamics, given some modifications. For future use of the same approach, a longitudinal             

design should be considered, where teams were probed at every training session over the              

course of a several months. This would especially be of interest when investigating newly              

established team structures, or before, during and after a training program aimed at             

developing collaborative skills had been implemented. This would give the organization           
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insight into the development of reliance and communication patterns over time, and whether             

such fluctuations covary with shared beliefs, both on individual and team level. Comparing             

newer teams with established teams on these parameters would also be a potential direction              

for research using a longitudinal design. 

In the data collection for the current experiment, participants were instructed to report             

only the top three candidates for communication and reliance, and to provide each reported              

team member with a rank value between 1-3. This entails that team members could also have                

additional ties that were rendered unreported. Thus, there may exist additional           

communication and reliance transactions that were not part of the analysis or the networks              

emerging from it. However, all networks have limitations, either in the form of             

methodological obstructions (e.g. limited resources or ethical concerns), or inherent          

properties (e.g. relevant individuals being unavailable or unknown to the researcher). The            

networks shown in the current analysis were products of an approach developed first and              

foremost to be applicable for naturalistic settings. This means that the goal of high usability               

was superior to achieving results loaded with theoretical nuances. While more detailed            

questionnaires (e.g. where participants were asked to rate all other team members for every              

freeze point) might have generated more extensive networks, they would also (since they             

would be more time-consuming) likely be a source of interference, fatigue, less compliance             

and more missing data.  

It could have been beneficial to assess SA using several measures used in the current               

analysis. In an article reviewing the applicability of the then current measures for SA for C4i                

(command, control, communication, computers and intelligence) environments individual        

measurement techniques were deemed not sufficient by themselves to assess SA adequately            

for the environments in question (Salmon et al., 2006). According to the authors this              

methodological challenge could be attended to by use of several measurement approaches at             

once, since that would make testing for converging tendencies of SA possible. The             

employment of one technique is also the case in this study’s design and future iterations (or                

similar study designs) should incorporate several SA measurement technique to assess the            

soundness of both individual measures, and the validity of the tendencies in SA scores for the                

whole study. Triangulation of methods has given human factors researchers confidence in SA             

being a valid and useful construct in human-system interaction (Parasuraman, Sheridan &            

Wickens, 2008), and, on a smaller scale, the same case can be made for use of confluencing                 
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assessment techniques in a single study. The inclusion of another SA measurement would             

have helped in this study in particular being a possible workaround to make use of the chief                 

of staff’s popularity-scores on the individual level. 

Pre-registration of the Analysis 

As mentioned in the introduction, the current analysis was pre-registered at Open science             

framework (osf.io). Pre-registering a research project involves determining which variables          

are to be examined, how they are operationalized and measured, and which analyses are to be                

conducted. This is all done before data collection, or, in this case, before accessing and               

reviewing the data. The purpose of pre-registering research projects is to enhance            

transparency. Predetermining and disclosing all methodological elements applied to a          

research project enable other researchers to replicate and falsify original findings using the             

exact same approach. Pre-registering research projects reduces the chance of ​hypothesizing           

after the results are known ​(so-called HARKing), or adjusting of hypotheses in accordance             

with findings. HARKing greatly increases the chance of type 1-errors to occur and may              

therefore be detrimental for the validity of results in question (Kerr, 1998). Predetermining             

which analyses and how many analyses are to be conducted also reduces the potential for               

post-hoc testing and subsequent ‘​p​-hacking’ (​Head, Holman, Lanfear, Kahn & Jennions,           

2015)​. Pre-registration may therefore be one way of achieving more rigorous scientific            

publications. 

The pre-registration process was a time consuming part of the current analysis.            

Identifying which concepts from the SNA literature would be appropriate for exploring the             

predicted associations, and whether they would be compatible with subsequent statistical           

analyses, required some preparation in itself, as the methodological framework of SNA was             

new to us. Making such decisions about the various stages of the analysis to be conducted                

without reviewing the data, required considerations about possible elements, such as how to             

handle self-rankings. As described in the Methods and results section, we also developed a              

new measure, based on relevant literature but tailored to our requirements. Formulating the             

pre-registration therefore called for evaluations that would not necessarily have come into            

play if we had reviewed the data beforehand. That said, the process required a deeper               

immersion into the methodology than would have been the case without a pre-registration,             
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which proved advantageous throughout the process of conducting and interpreting this           

analysis.  

Conclusion 

ERTs work with critical situations, characterized by high stakes, ambiguous          

information and the need for swift and accurate decision making. Critical situations are             

inherently difficult to rehearse for, as unexpected elements will almost certainly emerge.            

Formalized knowledge and procedural training may only get operators so far in mitigating             

critical incidents. Underlying social or cognitive factors may be equally influential for team             

functioning. In interdependent teams, social dynamics affecting flow of information or who            

relies upon whom to perform their tasks could be a salient predictor for collaboration and               

team outcomes, such as productivity, effectivity and accident prevention. The results from the             

current analysis indicate that network density explain some of the similarity in ERT             

members’ beliefs about their current situation. More importantly, the analysis as a whole             

indicate that measures of a team network’s relational structure may be a valuable approach to               

investigate teams’ degree of shared beliefs. This counts both in terms of team members’              

SMM of the tasks at hand, as well as the team’s congruence in SA, when measured against                 

the chief of staff. Based on previous findings and our own results, we believe that               

implementing SNA as a psychometric tool in team research has the potential for expanding              

knowledge in the field. 
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