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1 Introduction

On the 13th of September 2005, the extreme weather "Kristin" hit the west
coast of Norway, leading to �oods, landslides and the loss of three lives
[Stohl]. This event came about due to a transport of moisture across the
Atlantic; an atmospheric river.

An atmospheric river is de�ned as a long and narrow region of intense
vertically integrated water transport in the atmosphere (see [Rutz]). In his
Master's thesis, Kristian Alfsvåg attempted to detect these rivers using per-
sistent homology. The data he used is called the total column water (or
tcw for short), which is de�ned as the integral of the water density from a
point on the Earth's surface directly upwards to the top of the atmosphere
(given in kg/m2). This data came from the ERA-Interim project, which has
recorded arrays of meteorological data from 1979 until today [Dee et al.].

Figure 1: Here we see a visualization of the tcw data from the ERA-Interim
project showing the atmospheric river responsible for "Kristin" as it hits

Bergen

Using this data, he created two algorithms to detect atmospheric rivers
hitting Bergen, one involving two-dimensions and one involving three-dimensions.
His two-dimensional algorithm, called the bec algorithm, appeared to be very
successful at its task. He then moved on to add a time dimension, in the
hopes of detecting more general plumes of humidity being transported across
the Atlantic to Bergen which are not connected to the equator at any �xed
time-step (henceforth only referred to as "plumes", so as to distinguish them
from rivers). This three-dimensional algorithm he called the tbec algorithm.
The results of these calculations were more ambiguous, and it is not clear
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whether they detect what we want them to or something else entirely. In
this thesis, I continued where Alfsvåg left o� and compared the two methods
more thoroughly using the bottleneck distance of persistent homology, in an
attempt to uncover what exactly the tbec is detecting. I then created a new
three-dimensional algorithm called the altbec in an attempt to �x what I
perceived to be the problem. As we shall see, the results were surprising,
but still useful.

I was a bit worried at �rst that such an experimental thesis might lack
the theoretical depth expected of a Master's thesis in mathematics. However,
as I read about the bottleneck distance, it became clear to me that I could
simplify an important proof somewhat by working at the right "level of
generality". Thus, the thesis turned out to have quite a large theoretical
component, and it is e�ectively split into two parts: A theory part exploring
the bottleneck distance and proving the Isometry theorem (Sections 4 and
5), and a part where we use the bottleneck distance to compare the di�erent
methods of detecting rivers and plumes (Sections 6 and on). Before we get
that far though, we need to go through some preliminaries (Section 2), and
explain the bec and tbec in more detail (Section 3).

2 Preliminaries

2.1 Persistent homology and persistence diagrams

De�nition 2.1. A �ltered complex X is a CW-complex X equipped with a
�ltration of subcomplexes

∅ = X0 ⊂ X1 ⊂ X2 ⊂ . . .

If X is a �nite CW-complex (so that X = XN = XN+1 = . . . for some
N), then we say that X is a �nite �ltered complex.

Note that the Xn are subcomplexes, not to be confused with n-skeleta.

From this point on when we refer to �ltered complexes, we mean �nite
�ltered complexes unless otherwise stated. Also, in this thesis we only con-
cern ourselves with homology calculated with �eld coe�cients (for reasons
which will become clear later).

De�nition 2.2. Given a �ltered complex X, we de�ne the k-persistent ho-

mology Hk(X) to be the sequence:

∅ = Hk(X
0)→ Hk(X

1)→ . . .→ Hk(X
N ) = Hk(X)

where the arrows are induced by the inclusions.
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Example 2.3. Consider a 2-simplex X (a �lled triangle) with a �ltration
X1 ⊂ X2 ⊂ X3 = X constructed in the following manner:
All of the cells are simplices (see [Z-C, p. 254] for the extra conditions re-
quired for a CW-complex to be a simplicial complex),
The simplices [a], [b], [c], [ab] have �ltration degree 1,
the simplices [ac], [bc] have �ltration degree 2,
and the simplex [abc] has �ltration degree 3.

In this case, the 0-persistent homology will have one cycle that lasts
through all �ltration degrees (we can for instance choose [a] as the generator),
and one cycle that starts in �ltration degree 1 and is killed o� in �ltration
degree 2 (if [a] was chosen as the generator of the other cycle, then this cycle
must necessarily be generated by [c]). The 1-persistence homology has a
single cycle that is born in �ltration degree 2 and dies in �ltration degree 3.
This cycle represents the hole in our triangle that occurs in �ltration degree
2 and is �lled in the next degree. This complex has no higher dimensional
homology.

In general, cycles that last through many �ltration degrees represent per-
sistent topological features of our �ltered complex. Here is a more detailed
example:

Example 2.4. as before, let the simplices [a], [b], [c], [ab] have �ltration de-
gree 1,
and let the simplices [ac], [bc] have �ltration degree 2.
Now, introduce simplices [d], [e], [de], [f ], [g], [fg] of �ltration degree 3,
and �nally the simplices [bd][af ] of �ltration degree 4.
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Considering the 0-persistence homology, we see that we ultimately have
one connected component at �ltration degree 5 and above, but in lower de-
grees we have several. In particular, we have a cycle lasting through all
�ltration degrees and a cycle lasting from �ltration degree 1 to �ltration de-
gree 2 as before, and two cycles lasting from �ltration degree 3 to �ltration
degree 4. For the 1-persistent homology, we have a single cycle that is born
in �ltration degree 2 and is never killed. This long cycle represents the fact
that our space has a persistent one-dimensional hole.

Note that the information obtained by calculating persistent homology
with �eld coe�cients can be described by sets of intervals, with each interval
starting at the time of birth and ending at the time of death of its corre-
sponding cycle. The homology of a �ltered complex changes a �nite number
of times, and in when calculating persistent homology we are only interested
in the time of birth, the time of death, and the length of the cycles. So
for simplicity, we can write all intervals as open without losing information
that is relevant to us. For instance, the 0-persistent homology of the above
example can be written as:

{(1,∞), (1, 2), (3, 4), (3, 4)}

Such a list of intervals is called a bar code.
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Note that a bar code is not in general a set, since the same interval can
occur several times in the same bar code as the interval (3, 4) does in the
example above. However, a bar code can be described as a multiset.

De�nition 2.5. A multiset M is a pair (S,m) consisting of a set S and
a multiplicity function m : S → N≥1. If a ∈ S, then we call m(a) the
multiplicity of a.

Thus, the bar code above can be given by the set {(1,∞), (1, 2), (3, 4)}
together with a multiplicity functionm such thatm((1,∞)) = 1, m((1, 2)) =
1, and m((3, 4)) = 2. We de�ne B to be the set of all bar codes and we write
B(Xk) to be the bar code obtained by taking the k-persistent homology of a
�ltered complex X.

There are other ways we can represent persistent homology. In this thesis,
the concept of persistence diagrams will play an important role. The idea
behind a persistence diagram can easily be understood by noting that we
can represent an open, real interval by a point in the extended half-plane:

} = {(a, b) ∈ R2 | a < b} ∪ {−∞} × R ∪ R× {∞} ∪ {(−∞,∞)}

Note that when it comes to persistent homology, all of the intervals (a, b) will
have a ≥ 0. Also note that we have de�ned the extended half-plane to not
include the diagonal. This is so we don't have to consider the multiplicity of
points on the diagonal.

De�nition 2.6. Let X be a �ltered complex and let Xk denote thhe k-
persistent homology of X. The persistence diagram of Xk is a multiset
dgm(Xk) = {(a, b) ∈ R2 | 0 ≤ a < b, (a, b) ∈ B(Xk)}, where the multi-
plicity mX((a, b)) of a point is the multiplicity of the corresponding interval
in the bar code.

Figure 2: The 0-persistence diagram of the �ltered complex in example 2.4
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2.2 Calculating persistent homology

Let k be a �eld and X be a �ltered complex. Then Hk(X,k) denotes the
k-persistence homology with coe�cients in k. However, we shall for the sake
of brevity simply write Hk(X). We can de�ne a graded module α(Hk(X))
over k[t] by α(Hk(X)) =

⊕∞
i=0Hk(X

i). The grading is given by �ltration
degree, so multiplying by t simply shifts the elements up one �ltration degree.

Since XN = XN+1 for some N and each Xn is a �nite CW-complex, this
module is �nitely generated. Since k is a �eld, then k[t] is a principal ideal
domain. By the structure theorem for �nitely generated, graded modules
over a principal ideal domain ([Z-C][Theorem 2.1]), we get that:

α(Hk(X)) ∼= (
n⊕
i=1

tαik[t])⊕ (
m⊕
j=1

tβjk[t]�tγj )

Let B ∈ B be a bar code, and letmj
i denote the multiplicity of an interval

(i, j) ∈ B. We have a bijection Q from the set of bar codes to the set of
isomorphism classes of �nitely generated, graded k[t]-modules given by:

Q(B) =

{⊕
(i,j)∈B(tik[t]�tj)⊕m

j
i ifj 6=∞⊕

(i,j)∈B(tik[t])⊕m
j
i ifj =∞

Here, themj
i 's encode that if you have several copies of the same interval,

these are each sent to a di�erent copy of the corresponding module (and vice
versa).

We see that the target modules are of the same form as the ones occur-
ring in the decomposition of α(Hk(X)). Hence all the information we need
to represent the k-persistent homology with �eld coe�cients is contained in
the αi's, βj 's and γj 's. Speci�cally, the αi's tell us the birth values of cycles
which go to in�nity, and the βj 's and γj 's tell us the respective birth and
death values of cycles with a �nite lifespan.

To obtain these values, we start with the standard matrix reduction
algorithm for computing homology [Z-C, p. 256]. The twist is that we also
need to keep track of the �ltration values of the chains. This is done by
setting the degree of the element in the (i, j)-th square of a matrix to be
the �ltration degree of the corresponding column basis element minus the
�ltration degree of the corresponding row basis element. By induction, we
can assume that we have a homogeneous basis for the cycles Zk−1 ⊂ Ck−1,
and a matrix Ak representing the map δ̃k : Ck → Zk−1 (the initial case is
trivial, since Z0 = C0). These cycles are sorted from the highest to the
lowest �ltration degree.
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In the case where several cycles appear at the same �ltration degree,
these are sorted arbitrarily. We obtain the matrix Ak+1 by using column
operations to reduce Ak to column-echelon form. The column basis elements
corresponding to zeroed-out columns after this reduction give a homogeneous
basis for Zk.

Figure 3: This �gure illustrates the matrix reduction process discussed
above used to calculate the 0-persistence homology of a simple �ltered

complex. Figure taken from [Alfsvåg]

Considering the matrix Ãk, the column-echelon form of the matrix Ak,
we note that because of our sorting of the row basis elements, the degree of
the entries in each column are monotonically increasing as we move down the
matrix. This means that we can further reduce the matrix to normal form
without a�ecting the degree of the pivot elements or the row basis elements.
Hence, there is no need to reduce the matrix to normal form at all! All the
information we require is given by the degrees of the pivot elements and the
degrees of the row basis elements.
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For instance, if row i has the pivot Ãk(i, j) = tn (a pivot element of
degree n), and its row basis element is of degree di, then it contributes the
module tdik[t]�tdi+n to the description of Hk−1(X). That is, the matrix
shows us that there is a cycle that is born at degree di and dies at degree
di +n. Non-pivot rows contribute modules of the form tdik[t]. The intervals
in the bar code for Hk−1(X) corresponding to pivot and non-pivot rows are
(di, di + n) and (di,∞), respectively.

This algorithm ensures that if a cell c appears and kills a cycle, the �l-
tration degree of the cycle getting killed will be the highest �ltration degree
of the cells in the boundary of c. In other words, in the event that several
cycles could be killed by a cell appearing, it is always the youngest cycle
which is killed (youngest in the sense that it is born at the highest �ltration
degree). This is called the elder rule, and it is vital for calculating persistent
homology (since we want to detect the cycles which persist through many
�ltration degrees).

To study this algorithm in more detail and learn how to implement it on
a computer, see [Z-C].

3 What has been done

In his master's thesis (see [Alfsvåg]), Kristian Alfsvåg used the total column
water (tcw) data from the ERA-Interim project to construct two di�erent
�ltered complexes, one two dimensional and one three dimensional. Then
he calculated the persistent homology of these �ltered complexes with with
coe�cients in Z�2. The idea was that the information obtained about the
"shape" of these spaces would be enough to detect atmospheric rivers (and
plumes, in the 3D case). These algorithms he named the bec and the tbec

algorithm, respectively.

Before we go into the bec and tbec algorithms in more detail, we discuss
how to construct a �ltered complex from tcw data in general.

The tcw is sampled along a grid on the Earth's surface. Alfsvåg used a
grid with whole-degree intervals (longitude and latitude). A grid with half-
degree intervals was available, but a coarser grid was chosen in order to save
computation time. In general, a two dimensional grid G can be de�ned as:

G =

N∐
i=1

{0, 1, . . . , ni−1}

We can think of this grid G as having N rows of varying length ni.
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If G is three dimensional, it can be de�ned as:

G =

N∐
i=1

({0, 1, . . . , ni−1} × {0, 1, . . . ,mi−1})

Here it is useful to visualize G as a stack of "discretized planes" (that is,
as points evenly spaced on horizontal planes), each with length ni and width
mi.

In the data Alfsvåg and myself are using, the tcw is sampled in six hour
intervals. For the tbec algorithm, a time dimension based on this sampling
is included as the grid's third dimension.

Using the points of a grid as vertices, we now want to construct a �ltered
complex. To do this, we introduce a function f : G→ R that assigns a value
to each grid point. In our case, this function will give the tcw value at each
point. There are two ways we can construct a �ltered complex from this
information: the top-down and the bottom-up �ltration. In both cases, the
�ltration value of each grid point will be its function value.

The top-down �ltration adds the points with the highest �ltration value
�rst, and assigns the �ltration value of a cell between two adjacent grid
points to be the minimum of the �ltration value of said points. For higher
dimensional cells, the �ltration value is given by the minimum �ltration value
of the cells in its boundary. In practice, the top-down �ltration �lls in the
most humid areas �rst, and then the entire space is �lled in as drier and
drier points are allowed. This is the �ltration that Alfsvåg used for his bec
and tbec calculations.
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Figure 4: The top-down �ltration of a 2x2 grid.

The bottom-up �ltration mirrors the top-down �ltration. It adds the
points with the lowest �ltration value �rst (the driest points), and then
gives the �ltration value of 1-cells and higher dimensional cells by taking the
maximum �ltration value of the cells in their boundaries. As one might ex-
pect, this �ltration �lls in the driest areas �rst, and the entire space is �lled
when the most humid areas are added. In section 7, we shall introduce an
alternative (or supplementary) algorithm to the tbec that uses a bottom-up
�ltration.
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Figure 5: The bottom-up �ltration of the same 2x2 grid as above.

We now describe the bec algorithm in more detail. Since we are inter-
ested in atmospheric rivers hitting Bergen, there is no need to include the
southern hemisphere in our grid, as atmospheric rivers always come from
humid areas around the equator. Additionally, because of the Coriolis ef-
fect and because of the large, dry landmasses to the south and south-east of
Norway, atmospheric rivers that hit Bergen almost always originate in the
south-west. Because of this, Alfsvåg chose a grid with the southern part of
Norway in the upper right corner, and the Gulf of Mexico in the lower left
corner.

Speci�cally, the grid he chose was

G = {−95◦E,−94◦E, . . . , 15◦E} × {0◦N, 1◦N, . . . , 65◦N}
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Figure 6: The area covered by the grid G

The bec algorithm works by �rst adding a point with a 1-cell connecting
it to Bergen. We "arti�cially" give this point the maximal �ltration value.
We also set the �ltration value of points along the equator to be more than
the rest of the points in the �ltration, but less than the added point con-
nected to Bergen. We now compute the persistent 0-homology of the �ltered
complex resulting from taking the top-down �ltration. Because of our prior
modi�cation of the �ltration values, the cell generated by the added vertex
will be the oldest cell in the �ltration, and the cell generated by the equator
will be the second-oldest. By the elder rule, we then have that Bergen is
connected to the equator when the second-oldest cell is killed. We call the
�ltration value at which this occurs the bec, short for "Bergen equator con-
nected" (hence why it is called the bec algorithm). If the bec is high, this
means that there is a path of high humidity from the equator to Bergen: a
possible atmospheric river.

When we test this algorithm and compare it to a visualization of the
meteorological data, we see that it is indeed a good algorithm for detecting
atmospheric rivers. However, due to its two dimensional nature, it cannot
detect plumes (as plumes are not connected to the equator in the two di-
mensional case). We need to introduce a time dimension to our �ltration in
order to do that.
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To move to three dimensions, we select a time interval {ti, ti+1, . . . , ti+m}
starting at some time step ti, and where the ti and ti+1 are six hours apart
(recall that the tcw is sampled every six hours, so for a non-leap year, i =
1, 2, . . . , 1460). We want to detect rivers and plumes hitting Bergen during
this interval. However, we must �rst add the interval {ti−n, . . . , ti−1} to our
space as well, in order to allow rivers and plumes originating earlier than ti
to be detected. In the calculations done so far, a month was selected as the
desired interval for detection, and rivers/plumes originating up to 10 days
earlier than the start of the month were allowed. For example, for the month
of February in any given year which isn't a leap year, the grid of vertices
would be:

G = {−95◦E,−94◦E, . . . , 15◦E}×{0◦N, 1◦N, . . . , 65◦N}×{t85, t86, . . . , t236}

since the tcw is sampled in six hour intervals.

However, in this case we are only interested in detecting rivers and plumes
that hit Bergen after t124 (that is, in February). To achieve this, we arti�-
cially set the �ltration value of the vertices at {t85, t86, . . . , t124} to be the
minimum. Since we are doing a top-down �ltration, that means that these
points won't be added until the �nal stage of the �ltered complex. In the
general case, we do this to vertices in the interval {ti−n, . . . , ti−1}.

Before we build our �ltered complex, we once again attach an extra ver-
tex to Bergen as we did in the two dimensional case. However, we must
now do this at every time step. In addition, we attach a line from a point
at the equator to this added vertex. We give the equator, the line, and the
vertex the maximum �ltration value, so that they are included in the �rst
step of the �ltration. Note that we now have the potential for the same
river or plume to generate many persistent cycles, since they may hit Bergen
at several time steps. To counteract this, we take the lines from Bergen to
the added vertex to be boundaries of 2-simplexes. These 2-simplexes are
included in our �ltered complex, and given the "expected" �ltration values
(the minimum �ltration values of their boundaries).

14



Figure 7: An illustration of the 3D grid used in the tbec algorithm with an
attached back wall connecting Bergen to the equator.

Now that we have built our �ltered complex, we move on to the persis-
tent homology calculation. Since we are only interested in cycles going from
the equator to Bergen, we discard all cycles which do not travel along "the
back wall". Speci�cally, a cycle is discarded if it does not include the line
from the equator to the added vertex.

In order to compare the bec and tbec algorithms, we need to calculate
the bec for an entire month at a time. To do that, we use a height function
on monthly graphs of the bec, and then calculate the 0-persistent homology
given by this height function.
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Figure 8: The graph of the bec in February of 2011

By visually comparing the bar codes produced by the bec and tbec cal-
culations for the same month, we see that the atmospheric rivers detected
by the bec calculation are also detected by the tbec calculation. However,
the tbec calculation does in general produce many more cycles than the bec
calculation, and some of these cycles can be rather persistent. We wish to
�nd out whether or not the persistent cycles which do not appear in the bec
calculation correspond to plumes.

Before sifting through the weather data, it is a good idea to compare
the two methods using something more rigorous than visual comparison, so
that we can pinpoint where the potential plumes or unwanted cycles are.
The C++ library Dionysus o�ers a method for measuring how similar two
persistence diagrams (i.e. two sets of bar codes) are to one another. This
measure is called the bottleneck distance.

Upon reading articles regarding the bottleneck distance, it is apparent
that by using the concepts of persistence modules and interleavings as pre-
sented in "The Structure and Stability of Persistence Modules" by Chazal, de
Silva, Glisse and Oudot (see [Chazal et al.]), one could easily obtain stronger
results than is given in other articles (at least the articles my supervisors and
I were aware of before starting this thesis). However, in order to prove the
desired results for a more general class of persistence diagrams (which in-
cludes in�nite persistence diagrams), the authors had to de�ne many new
concepts, and introduce a lot of novel notation for simplicity.
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In order to give the same results for the persistence diagrams which oc-
cur in practice (i.e. �nite persistence diagrams), many of these concepts are
not needed, and we can shorten the process of obtaining important results
considerably. Thus, we shall endeavour to simplify the available literature,
and prove the results (most notably the Isometry Theorem, which includes
the Stability Theorem) provided in Chazal et al. (see [Chazal et al., p. 49])
for �nite persistence diagrams only.

4 The Bottleneck Distance and the Interleaving Dis-

tance

Now we delve into the more theoretical parts of the thesis. Readers who
simply wish to see the comparison of the bec and tbec calculations without
this theoretical detour may skip to section 6.

In this section, we introduce the bottleneck distance, which is the metric
we will use to compare the results of the bec and tbec calculations. The
bottleneck distance is a measure of how close two sets of points lying above
the diagonal in R2 are. We relate this to persistent homology through the
concept of persistence modules.

4.1 Persistence modules

De�nition 4.1. A persistence module over a partially ordered set T (hence-
forth called a T -persistence module) consists of an indexed family of vector
spaces {Vt | t ∈ T} and linear maps {vts | s, t ∈ T} for which vtr = vts ◦ vsr
whenever r ≤ s ≤ t.

De�nition 4.2. A homomorphism Φ between two T-persistence modules U
and V is a collection of linear maps {φt : ut → vt | t ∈ T} such that

Us

φs
��

uts // Ut

φt
��

Vs
vts // Vt

commutes for all s ≤ t.

Example 4.3. Let X be a �ltered complex. If homology is taken with �eld
coe�cients, then the family: Hn(X0, k) → Hn(X1, k) → Hn(X2, k) → · · ·
determine a persistence module (the maps are induced by inclusions).
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We now de�ne interval modules. Note that, contrary to the norm, we
de�ne interval modules using open intervals only. This is due to that when
calculating persistent homology we only concern ourselves with one type of
interval. This lack of ambiguity regarding the topology of the intervals will
also simplify some proofs for us.

De�nition 4.4. An interval module I(a, b) where (a, b) is an interval in T is
a T -persistence module with vector spaces

It =

{
k if t ∈ (a, b)

0 if t /∈ (a, b)

and maps idc which are the identity if c, d ∈ (a, b) and zero otherwise.

De�nition 4.5. We say that a persistence module is decomposable if it can
be decomposed into interval modules, i.e. written as a sum V =

⊕
j I(aj , bj)

for some indexing set J . If it can be written as a �nite sum of interval
modules, we say that it is �nitely decomposable.

A theorem by Krull, Remak, Schmidt and Azumaya gives us that such
a decomposition is unique up to permutation ([Chazal et al., Theorem 1.3,
p. 12]).

As we have seen in Example 4.3, the persistent homology of a cellular
complex has the structure of a persistence module, and we know that it
can be represented by a sum of intervals (the bar code). Hence, persistent
homology can be described by a decomposable interval module. Consider
the �ltered complex in Example 2.4. If we describe the 0-persistence ho-
mology of this complex by a persistence module V, we can write: V =
I(1,∞)⊕ I(1, 2)⊕ I(3, 4)⊕ I(3, 4)

As with the speci�c case of persistent homology, the intervals in a de-
composable T -persistence module where T ⊂ R can be represented by points
that lie in the extended half-plane.

De�nition 4.6. If U is a decomposable persistence module over R, that is:
U =

⊕
j I(aj , bj) for some indexing set J , we de�ne the persistence diagram

of U to be the multiset dgm(U) = {(aj , bj)|j ∈ J} −∆ where ∆ denotes the
diagonal in R2.

Note that (as before) this is a multiset since intervals in the interval
decomposition can occur with multiplicity, and hence so can points in the
diagram.

De�nition 4.7. Let U =
⊕

j∈J I(aj , bj) be a �nitely decomposable persis-
tence module. Then the cardinality |dgm(U)| is equal to |J |. Remark: since
J indexes each individual copy of an interval module, we can also write this
cardinality as Σj∈JmU(aj , bj).
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4.2 The bottleneck distance

Recall: the l∞-metric in the plane, which is given by d∞((a, b), (c, d)) =
max{|a− c|, |b− d|}.

Henceforth in this section, if a point α in a persistence diagram has
multiplicity n, we index the di�erent "instances" of α by writing α1, α2 · · ·αn
so we can work with sets instead of multisets.

De�nition 4.8. A partial matching between two persistence diagrams dgm(U)
and dgm(V) is a collection of pairs M ⊂ dgm(U)× dgm(V) such that
1) For every α ∈ dgm(U) there is at most one β ∈ dgm(V) such that
(α, β) ∈M.
2) For every β ∈ dgm(V) there is at most one α ∈ dgm(U) such that
(α, β) ∈M.

De�nition 4.9. We say that a partial matching is a δ-matching if all of the
following are true:
1) If (α, β) ∈M then d∞(α, β) ≤ δ
2) If α ∈ dgm(U) is unmatched, then d∞(α,∆) ≤ δ
3) If β ∈ dgm(V) is unmatched, then d∞(∆, β) ≤ δ

De�nition 4.10. The bottleneck distance between dgm(U) and dgm(V) is
de�ned to be:
db(dgm(U), dgm(V)) = inf{δ | ∃ a δ-matching between dgm(U) and dgm(V)}

Figure 9: Here we see two instances of persistence diagrams being
compared. On the left, we have a small bottleneck distance. On the right,
an unmatched square far away from the diagonal gives a large bottleneck

distance.

Note that the bottleneck distance is indeed a metric. The only thing that
is not obvious is that it satis�es the triangle inequality.
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Proposition 4.11. For any three persistence diagrams A,B,C, the triangle

inequality

db(A,C) ≤ db(A,B) + db(B,C)

holds.

Proof. Let δ = δ1 + δ2 where M1 is a δ1-matching between A and B, and
M2 is a δ2-matching between B and C. To show that the triangle inequality
holds, we must show that there exists a δ matching M between A and C.

Let M = {(α, γ) | ∃ a β ∈ B such that (α, β) ∈M1 and (β, γ) ∈M2)}.

Now, if (α, γ) ∈M , then d∞(α, γ) ≤ d∞(α, β) + d∞(β, γ) ≤ δ1 + δ2 = δ.

If α ∈ A is unmatched in M (the proof is symmetric for γ), then either
α is unmatched in M1, or α is matched with an element β ∈ B, in which
case β must be unmatched in M2.
In the �rst case, we have that d∞(α,∆) ≤ δ1 ≤ δ.
In the second case, we have that

d∞(α,∆) ≤ d∞(α, β)+ ≤ d∞(β,∆) ≤ δ1 + δ2 = δ.

Hence, the desired δ-matching exists.

4.3 The interleaving distance

It might seem intuitive why the bottleneck distance is a useful tool for com-
paring instances of persistent homology. But it is always useful to be wary
of when we think of two related things as "the same". In the next section,
we shall prove the Isometry theorem, which states that

db(dgm(U), dgm(V)) = di(U,V)

The distance on the right-hand side will be covered shortly. It is called the

interleaving distance and measures how close two persistence modules are to
being isomorphic. What this theorem tells us is that working with the bot-
tleneck distance on persistence diagrams gives us the same result as working
directly with modules. Nothing is lost or added in the jump from module to
diagram in the sense that the "di�erence" between two modules is preserved
exactly as it was.

We now explain what we mean by an interleaving, and de�ne the inter-
leaving distance.
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An isomorphism between two persistence modules is de�ned in the way
one would expect. That is, two persistence modules U and V are isomorphic
if there are maps Φ ∈ Hom(U,V) and Ψ ∈ Hom(V,U) such that Ψ◦Φ = 1U
and Φ ◦ Ψ = 1V. However, when working with persistent homology, this
criterion is too strict to be the one we use for when we want to think of two
modules as essentially "the same". Even if we work with the same dataset,
there will at least be slight di�erences in the output if we build our cellular
complexes using di�erent functions. Therefore, a weaker relation is needed.

De�nition 4.12. Let U,V be R-persistence modules. Let δ ∈ R. A homo-
morphism of degree δ is a collection Φ of linear maps
φt : Ut → Vt+δ ∀ t ∈ R
such that

Us

φs
��

uts // Ut

φt
��

Vs+δ
vts // Vt+δ

commutes for all s ≤ t

We write Homδ(U,V) for homomorphisms U→ V of degree δ.

De�nition 4.13. Let δ ≥ 0.
Two persistence modules U,V are said to be δ-interleaved if there are maps
Φ ∈ Homδ(U,V) and Ψ ∈ Homδ(V,U) such that for any t ∈ R:
(Ψ ◦ Φ)t = ut+2δ

t and (Φ ◦Ψ)t = vt+2δ
t .

Example 4.14. Let X be a �ltered complex with sublevelsets given by
(X, f)t = {x ∈ X | f(x) ≤ t}, where f : X → R.
Alternatively, we can use a di�erent function g : X → R to build the sub-
levelsets of X. If ‖ f−g ‖∞≤ δ, then the corresponding persistence modules
obtained by calculating the persistent homology are δ-interleaved.

This is due to the fact that we have inclusions

(X, f)t ⊆ (X, g)t+δ ⊆ (X, f)t+2δ

and
(X, g)t ⊆ (X, f)t+δ ⊆ (X, g)t+2δ

which induce interleaving maps of degree δ when we take the persistent
homology.

Observe: if two PMs are δ-interleaved, then they are also (δ+ε)-interleaved
for all ε > 0.
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The maps Φ′ = Φ ◦ 1εU = 1εV ◦ Φ and Ψ′ = Ψ ◦ 1εV = 1εU ◦Ψ
give the required interleavings.
We say that they are δ+-interleaved if they are (δ + ε)-interleaved for all
δ > 0.

De�nition 4.15. The interleaving distance between two persistence mod-
ules U,V is de�ned as
di(U,V) = inf{δ |U,V are δ-interleaved} = min{δ |U,V are δ+-interleaved}.
If there is no value δ giving a δ-interleaving between U and V, then di(U,V) =
∞.

Remark: it is easily checked that the interleaving distance satis�es the
triangle inequality, but it is not a true metric in general. This is due to the
fact that di(U,V) = 0 does not imply that U ∼= V. For instance, if we allowed
the occurence of closed interval modules, the interleaving distance between
I[a, b] and I(a, b) is equal to zero, but they are obviously not isomorphic as
persistence modules.

5 The Isometry theorem

We now arrive at the main theorem assessed in this thesis: the Isometry
theorem.

Theorem 5.1. Let U,V be �nitely decomposable persistence modules. Then

di(U,V) = db(dgm(U), dgm(V))

In this thesis, we have chosen to specialize the theorem to �nitely decom-
posable modules. This is due to the fact that these are the only modules that
occur when calculating persistent homology (since for all practical applica-
tions the �ltered complexes must be �nite). However, proving the theorem
in the general case requires signi�cant e�ort. So by specializing in this way,
we can obtain this important result for all the persistence modules which
occur in practice with much less hassle.

The Isometry theorem is split into two parts, the Stability theorem:

Theorem 5.2. Let U,V be �nitely decomposable persistence modules. Then

di(U,V) ≥ db(dgm(U), dgm(V))

and the Converse Stability theorem:

Theorem 5.3. Let U,V be �nitely decomposable persistence modules. Then

di(U,V) ≤ db(dgm(U), dgm(V))
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5.1 The Stability theorem

We �rst prove the Stability theorem, and we start by noting that it can also
be stated in the following fashion:

Theorem 5.4. Let U,V be �nitely decomposable persistence modules which

are δ-interleaved. Then there exists a δ-matching between dgm(U) and dgm(V).

Note that since U and V are �nitely decomposable, it is easy to see that
if there is an η-matching between their respective persistence diagrams for
every η > δ, then there is also a δ-matching between them. Since there are
�nitely many points, there is a �nite amount of ways to match them. Hence
the amount of η-matchings is closed, and so attains its minimum. This gives
us that proving the theorem under the weaker condition that U and V are
δ+-interleaved implies that we have also proved it under the stronger condi-
tion that they are δ-interleaved.

The proof of the Stability theorem requires two lemmas: the Box lemma
and the Interpolation lemma.

5.1.1 The Box lemma

Lemma 5.5. Let U,V be δ-interleaved persistence modules. For a < b ≤ c <
d such that a, b, c, d lie above the diagonal, let R be the rectangle [a, b]× [c, d]
and let Rδ be the thickened rectangle [a − δ, b + δ] × [c − δ, d + δ]. Then

|dgm(U)|R| ≤ |dgm(V)|Rδ | and |dgm(V)|R| ≤ |dgm(U)|Rδ |.

Proof. We show that |dgm(U)|R| ≤ |dgm(V)|Rδ | (the proof of the other in-
equality is symmetrical).

Due to the δ-interleaving, we may construct the following module:

W = Va−δ → Ua → Ub → Vb+δ → Vc−δ → Uc → Ud → Vd+δ

Note that all points lying in Rδ (if thought of as intervals) contain the
interval (b + δ, c − δ), which is represented by the lower right corner of
Rδ. Hence, the cardinality of dgm(V) in Rδ (which we have denoted by
|dgm(V)|Rδ |) is equal to the sum Σx≤b+δ

y≥c−δ
mV(x, y) ∀ (x, y) ∈ |dgm(V)|Rδ |,

which we denote by mV,Rδ(b+δ, c−δ). We will use this notation for the rest
of the proof.

We see that mU,R(b, c) = mW,R(b, c) by the construction of W and the
fact that interleaving maps commute with module maps. Also by the con-
struction of W, we have that mV,Rδ(b+ δ, c− δ) = mW,Rδ(b+ δ, c− δ). Note
that mW,Rδ(b + δ, c − δ) is equal to mW,R(b, c) plus some additional terms
(given by the other intervals that restrict to (b+ δ, c− δ)).
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By omitting said terms, we see that mW,R(b, c) ≤ mW,Rδ(b+ δ, c− δ) .

Combining these observations, we obtain the inequality:

|dgm(U)|R| = mU,R(b, c) = mW,R(b, c) ≤ mW,Rδ(b+δ, c−δ) = mV,Rδ(b+δ, c−δ) = |dgm(V)|Rδ |

This gives us that |dgm(U)|R| ≤ |dgm(V)|Rδ |

5.1.2 The Interpolation lemma

Having proved one of the two lemmas we need, we turn our attention to the
Interpolation lemma. Our proof of the Interpolation lemma uses the idea of
shifted diagonals in the plane.

De�nition 5.6. For any real number x,we de�ne the diagonal shifted by x
as ∆x = {(a, b) ∈ R2 | b− a = 2x}

There is an isomorphism r → (r − x, r + x) between the real line and
∆x. If we use the standard partial ordering of the plane, we can use this
isomorphism to identify persistence modules over R with persistence modules
over ∆x.

Lemma 5.7. Let U,V be δ-interleaved persistence modules. Then for x ∈
[0, δ] there exists a family of persistence modules Ux such that U0 = U and

Uδ = V, and such that for every x, y ∈ [0, δ], Ux and Uy are |y − x|-
interleaved.

Proof. The proof consists of four steps:

1) Showing that two persistence modules U,V are |y − x| interleaved if
and only if there exists a persistence module W over ∆x ∪ ∆y such that
W|∆x = U and W|∆y = V

2) Using step 1 to show that proving the lemma can be reduced to show-
ing that any persistence module W over ∆0 ∪ ∆δ extends to a persistence
module W̄ over the diagonal strip ∆[0,δ] = {(a, b) ∈ R2 | 0 ≤ b− a ≤ 2δ}.

3) De�ning a candidate for such an extension.

4) Showing that the candidate we de�ned above is in fact the extension
we were after, i.e. that W̄|∆0

∼= U and W̄|∆δ
∼= V.
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Step 1:

We assume without loss of generality that x < y.
Given interleaving maps

φt : Ut → Vt+y−x

and
ψt : Vt → Ut+y−x

To construct the module W we need maps W|∆x → W|∆x , W|∆y → W|∆y ,
W|∆x → W|∆y and W|∆y → W|∆x , with the composition rule determined
by the partial ordering on the plane. However, all of these maps are already
given by the modules U,V and the interleaving maps. The �rst two cases
are obvious. For the last two, note that if W|∆x = U and W|∆y = V, we can
rewrite the interleaving maps in the following manner:

φt : Ut = W(t−x,t+x) →W(t−x,t+2y−x) = Vt+y−x

ψt : Vt = W(t−y,t+y) →W(t+y−2x,t+y) = Ut+y−x

this gives us the maps needed to de�ne W (it is easy to check that these
maps agree with the composition rules for module and interleaving maps).

Assume we are given a moduleW on ∆x∪∆y withW|∆x = U andW|∆y = V.
The module maps will be of the form ωSR : WR → WS for R ≤ S, satisfying
the composition rule ωSR ◦ ωRT = ωST for T ≤ R ≤ S. We need to check that
the cases of ωSR where R ∈ ∆x and S ∈ ∆y or vice versa give us the desired
interleaving maps between U and V. Assuming R ∈ ∆x and S ∈ ∆y, then
by taking R = t and S = t + y − x we obtain φt through the rewriting we
did above. Similarly, we obtain ψt by starting with R ∈ ∆y and S ∈ ∆x. It
is easily checked that

ψt+y−x ◦ φt = u
t+2(y−x)
t

and
φt+y−x ◦ ψt = v

t+2(y−x)
t

as required.

Step 2:

By assumption, U,V are δ-interleaved, which by step 1 implies that there
exists a persistence module W over ∆0 ∪ ∆δ such that W|∆0 = U and
W|∆δ

= V. If we show that W extends to a persistence module W̄ over
the diagonal strip ∆[0,δ], then for each pair x, y ∈ [0, δ] the restriction of W̄
to ∆x∪∆y yields us (again, by step 1) |y−x|-interleaved persistence modules
Ux and Uy.
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Step 3:

We wish to work with a moduleW de�ned over ∆−1∪∆1 instead of over
∆0 ∪∆δ, as this will make the proof more symmetrical and easy to follow.
This poses no problem, as it is simply a matter of translation and rescaling
in the plane.

Assume we are given such a persistence moduleW de�ned over ∆−1∪∆1.
Since W|∆−1 = U and W|∆1 = V, then by step 1 we have interleaving maps
Φ ∈ Hom2(U,V) and Ψ ∈ Hom2(V,U).

Note that since U and V are de�ned over ∆−1 and ∆1 respectively, we
have that Ut = W (t+ 1, t− 1) and Vt = W (t− 1, t+ 1).

We extendW to a module W̄ de�ned over the strip ∆[−1,1] by construct-
ing four persistence modules over R2 as well as module maps between them.
The persistence modules are as follows:

A: given by A(p,q) = Up−1 and a
(r,s)
(p,q) = ur−1

p−1

B: given by B(p,q) = Vq−1 and b
(r,s)
(p,q) = vs−1

q−1

C: given by C(p,q) = Uq+1 and c
(r,s)
(p,q) = us+1

q+1

D: given by D(p,q) = Vp+1 and d
(r,s)
(p,q) = vr+1

p+1

We now de�ne the module maps between them at each point (p, q):

1U(p,q)
: A(p,q) → C(p,q) given by uq+1

p−1 : Up−1 → Uq+1

1V(p,q)
: B(p,q) → D(p,q) given by vp+1

q−1 : Vq−1 → Vp+1

Φ(p,q) : A(p,q) → D(p,q) given by φp−1 : Up−1 → Vp+1

Ψ(p,q) : B(p,q) → C(p,q) given by ψq−1 : Vq−1 → Uq+1

Note that while Φ and Ψ are de�ned over the whole plane, 1U and 1V
are only de�ned where p− 1 ≤ q + 1 and q − 1 ≤ p+ 1 respectively. Hence
all four of the module maps are de�ned over the diagonal strip ∆[−1,1] =
{(p, q) ∈ R2 | − 2 ≤ q − p ≤ 2}. This means that the matrix:

Ω =

[
1U Ψ
Φ 1V

]
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is also de�ned over ∆[−1,1]. We claim that W̄ = im(Ω) is the extension we
seek.

Step 4:

What is left to show is that W̄|∆−1
∼= U and W̄|∆1

∼= V. We show �rst
the former and then the latter.

On ∆−1 = {(t+ 1, t− 1)} we have that:

1U(t+1,t−1) = utt, 1V(t+1,t−1) = vt+2
t−2, Φ(t+1,t−1) = φt and Ψ(t+1,t−1) =

ψt−2.

Hence we have that:

Ω|∆−1 =

[
utt ψt−2

φt vt+2
t−2

]
This matrix can be factorized as:

Ω|∆−1 =

[
utt
φt

] [
utt ψt−2

]
For any point (p, q) = (t + 1, t − 1), this factorization provides us with

the following scenario:

Ut
⊕

Vt−2 → Ut → Ut
⊕

Vt+2

where the map on the left is a surjection and the map on the right is an
injection. Hence U ∼= im(Ω|∆−1).

The proof that W̄|∆1
∼= V follows the exact same procedure, but we write

it out for the sake of completeness.

On ∆1 = {(t− 1, t+ 1)} we have that:

1U(t−1,t+1) = ut+2
t−2, 1V(t−1,t+1) = vtt, Φ(t−1,t+1) = φt−2 and Ψ(t−1,t+1) =

ψt.

Hence we have the matrix:

Ω|∆1 =

[
ut+2
t−2 ψt
φt−2 vtt

]
which we can factorize as:

Ω|∆1 =

[
ψt
vtt

] [
φt−2 vtt

]
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Now, given any point (p, q) = (t− 1, t+ 1), we have the factorization:

Ut−2

⊕
Vt → Vt → Ut+2

⊕
Vt

giving that V ∼= im(Ω |∆1).

5.1.3 The proof

Finally, we have all the ingredients needed for our proof of the Stability
theorem. Once again, we restate the theorem to make it easier to prove. Note
that U and V being δ-interleaved implies the assumptions of the following
restatement by the preceding lemmas.

Theorem 5.8. Let {Ux |x ∈ [0, δ]} be a one-parameter family of �nitely

decomposable persistence modules with U0 = U and Uδ = V. Assume that

for all x, y ∈ [0, δ], x 6= y, the box inequality

|dgm(Ux)|R| ≤ |dgm(Uy)|R|y−x| |

holds for all rectangles R whose |y−x|-thickening is in } (the extended half-

plane). Then there exists a δ-matching between dgm(U) and dgm(V).

Proof. The proof consists of 3 parts. First, we show that given an α far
enough away from the diagonal, then there exists a β that is a potential
match. Then, we show that there is at most one such β, so that we have a
matching. Finally, we need to show that the two previous steps imply that
dgm(U) and dgm(V) are δ-matched.

1) If α ∈ dgm(Ux) and d∞(α,∆) > |y − x|, then ∃β ∈ dgm(Uy) with
d∞(α, β) < |y − x|. Symmetrically, if β ∈ dgm(Uy) and d∞(β,∆) > |y − x|,
then ∃α ∈ dgm(Ux) with d∞(α, β) < |y − x|.

We prove only the �rst case, as the second is symmetrical.

Given α ∈ dgm(Ux) such that d∞(α,∆) > |y − x|, let ε > 0 be small
enough so that d∞(α,∆) > |y− x|+ ε is satis�ed. We de�ne the ε-square of
α to be αε = {γ ∈ } | d∞(α, γ) ≤ ε} (this is a square due to the l∞ metric).
By the box inequality of the Theorem, we have:

1 ≤ |dgm(Ux)|αε | ≤ |dgm(Uy)|α|y−x|+ε |

Hence, there is at least one point of dgm(Uy) in the square α|y−x|+ε.
Clearly, the same inequality also holds for all ε′ < ε. Since dgm(Uy) is �nite,
this means that there is at least one point β ∈ dgm(Uy) in the square α|y−x|.
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2) Now we prove that there is at most one such β that is matched with
each α.

Suppose we are given an x ∈ [0, δ]. We index all the distinct points in
dgm(Ux) by α1, . . . , αk, each point with its respective multiplicitym1, . . . ,mk.
For every such x we de�ne a function ρ(x) satisfying:

0 < ρ(x) <
1

2
d∞(αi, αj)

for i 6= j, and

0 < ρ(x) <
1

2
d∞(αi,∆)

for all i.

We claim that if y ∈ [0, δ] and ρ(x) > |y − x|, then Ux,Uy are |y − x|-
matched.

Let
}|y−x| = {α ∈ } | d∞(α,∆) ≤ |y − x|}

That is, }|y−x| denotes all points in the extended half-plane that lie within
some distance |y−x| from the diagonal. From part 1 of the proof, it is clear

that all points in dgm(Uy) lie in the union }|y−x| ∪α|y−x|1 ∪ . . .∪α|y−x|k . Due
to how we have chosen ρ(x), this union is disjoint. Also because of how we
chose ρ(x), for ε > 0 small enough so that 2|y − x|+ ε < 2ρ(x) + ε we have
that

|dgm(Ux)|αεi | = |dgm(Ux)|
α
2|y−x|+ε
i

|

From the box inequality we now obtain the following:

mi = |dgm(Ux)|αεi | ≤ |dgm(Uy)|α|y−x|+εi

| ≤ |dgm(Ux)|
α
2|y−x|+ε
i

| = mi

Which gives us that |dgm(Uy)|α|y−x|+εi

| = mi. Hence, counting multiplic-

ity, there is exactly mi points of dgm(Uy) in the square α
|y−x|+ε
i . This means

that we can match each of the mi copies of αi ∈ dgm(Ux) with a point in
dgm(Uy), de�ning a |y − x|-matching.

3) As we have seen in the proof of Proposition 4.10 (the triangle in-
equality for the bottleneck distance), if dgm(U0), dgm(Ux) are x-matched,
and dgm(Ux), dgm(Uy) are |y − x|-matched, then dgm(U0), dgm(Uy) are y-
matched.
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Let r = sup{x ∈ [0, δ] | dgm(U0) and dgm(Ux) are x-matched}. Now
choose an r′ such that dgm(U0), dgm(Ur′) are r′-matched and ρ(r) ≥ r− r′.
By the triangle inequality and step 2 of this proof, dgm(U0) and dgm(Ur)
must be r-matched. If r < δ, then by the same logic there would exist an
r̃ > r such that dgm(U0) and dgm(Ur̃) are r̃-matched. This cannot be the
case, since it contradicts the de�nition of r. Hence dgm(U0) = dgm(U) and
dgm(Uδ) = dgm(V) are δ-matched.

5.2 The Converse Stability theorem

We now move on to prove the Converse Stability theorem.

Proposition 5.9. Let (a, b) and (c, d) be intervals (they may be in�nite).

Let U = I(a, b) and U = I(c, d) be interval modules. Then di(U,V) ≤
d∞((a, b), (c, d))

Proof. We consider the case where a, b, d, c are all �nite (the in�nite cases
are similar). We must show that if δ > max(|a − c|, |b − d|) then U,V are
δ-interleaved. To do this, we �rst de�ne systems of linear maps

Φ = {φt : Ut → Vt+δ}

and
Ψ = {ψt : Vt → Ut+δ}

and show that they are homomorphisms of persistence modules.

For Φ to be a homomorphism of persistence modules, the diagram

Ut

φt
��

// Ut+ε

φt+ε
��

Vt+δ // Vt+δ+ε

must commute for all t and for all ε > 0 (the case for Ψ is symmetric).

Since U,V are interval modules, the vector spaces are ether a copy of
the ground �eld k or are 0. Hence, the only hypothetical cases where the
diagram does not commute would be:

1)
k

��

// k

��
0 // k
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and 2)
k

��

// 0

��
k // k

We show that these cannot occur.

1) In this case, a ≤ t since Ut = k, and t + δ ≤ c since Vt+δ = 0 but
Vt+δ+ε = k. This is impossible since δ > c− a

2) Here b ≤ t + η since Ut+ε = 0 but Ut = k, and t + δ + ε ≤ d. This is
also impossible since δ > d− c.

To show that Φ ◦Ψ = (1U)2δ we show that the diagram

Ut //

!!

Ut+2δ

Vt+δ

;;

commutes ∀ t (the proof is symmetric for Ψ ◦ Φ).

The only case where it does not commute is the case

k //

��

k

0

??

Again we show that this cannot occur. The top row implies that a ≤ t and
t+ 2δ ≤ b. Since δ > c− a and δ > b− d we obtain the inequality

c < δ + a ≤ t+ δ ≤ b− δ < d

but this implies that Vt+δ = k.

Proposition 5.10. Let (Uα |α ∈ A) and (Vα |α ∈ A) be families of persis-

tence modules, and let

U =
⊕
α∈A

Uα

and

V =
⊕
α∈A

Vα

Then di(U,V) ≤ sup(di(Uα,Vα) |α ∈ A).
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Proof. Given δ-interleavings for Φα and Ψα for each pair Uα,Vα, then the
direct sum maps ⊕Φα and ⊕Ψα give an interleaving of U and V. Hence every
upper bound for {di(Uα,Vα)}α is greater than or equal to di(U,V).

Proposition 5.11. Let U = I(a, b) be an interval module corresponding

to the interval (a, b), and let 0 denote the zero persistence module. Then

di(U,0) = (b− a)/2.

Proof. Let δ ≥ 0. We have a δ-interleaving between U and the zero module
when the interleaving maps are zero. In one direction this is trivial, so we
only need to check that when Φ : U → 0 and Ψ : 0 → U, then ΨΦ =
(1U)2δ = 0. This holds when δ > (b − a)/2 and fails when δ < (b − a)/2 (a
needs to be shifted past b).

We now use these propositions to prove the converse stability theorem
for decomposable persistence modules.

Proof. Let M be a δ-matching between dgm(U) and dgm(V). Each point in
the diagrams correspond to an interval summand in its respective persistence
module, so from M we obtain a pairing between the interval summands of
U and V. We say that two paired summands are matched.

We can therefore rewrite U and V in the form

U =
⊕
α∈A

Uα

and
V =

⊕
α∈A

Vα

such that each pair is one of the following:
1) A pair of matched intervals.
2) Uα is an unmatched interval and Vα = 0, or Vα is an unmatched

interval and Uα = 0.

For case 1, we have that

di(Uα,Vα) ≤ d∞((a, b), (c, d)) ≤ δ

by Proposition 5.9 and the de�nition of δ-matching.

For case 2, Proposition 5.11 gives us that

di(Uα,0) = (b− a)/2 = d∞((a, b),∆) ≤ δ

. Now, by Proposition 5.10 we have that di(U,V) ≤ δ, and thus the proof is
complete.

This concludes our proof of the Isometry theorem.
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6 Results of the �rst comparison

We now continue where we left o� at section 3.

As these were the months which Alfsvåg considered in his thesis, we
have chosen to compare the bottleneck distances of the bec and tbec algo-
rithms for the entirety of 2011 and 2012 except for January, as well as for
June from 2000 and onwards (comparing the results of the same month over
many di�erent years is useful because it allows us to disregard seasonal vari-
ance, as we shall soon see). The Dionysus method for computing bottleneck
distances yields us three values: the actual bottleneck distance (which we
have rounded to three decimal places), the number of cycles discovered by
the bec algorithm, and the number of cycles discovered by the tbec algorithm.

For example, for February of 2011 the output is as follows:
Amount of cycles for bec: 24

Amount of cycles for tbec: 62

Bottleneck distance: 2.270

For June of the same year, we obtain:
Amount of cycles for bec: 24

Amount of cycles for tbec: 1108

Bottleneck distance: 5.458

As we can see, the number of cycles discovered by the bec algorithm is
the same both for February and June, but the number of cycles discovered
by the tbec algorithm is much greater for June than for February. We can
also see that the bottleneck distance between the bec and tbec diagrams is
much larger for June than for February. This leaves us with two questions:
is the latter related to the former? And if so, what might be the cause of
the discrepancy in the amount of cycles? Considering the visualization of
the tcw data for February and June (provided by the ERA-Interim project),
we see that the "band" of humidity at the equator appears to stretch much
further north during June than during February.
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Figure 10: A typical "winter scene" during February 2011. Most of the
activity is concentrated near the equator save for arms of humidity (rivers)

stretching out towards the north.

Figure 11: A frame from June 2011. As we can see, while the areas close to
the equator are still the most humid, the areas to the north are now much

more humid in general. This is typical for the summer months.

Considering the visualizations for the entirety of 2011 and 2012 apart
from January, as well as for June from 2000 and on, we see that the sit-
uations seen above are part of a greater trend. In general, the humidity
is concentrated near the equator in the earlier and later parts of the year
(save for atmospheric rivers and plumes), while during the summer months,
this humidity "expands" to cover areas further to the north. Looking at
the bottleneck calculations, we see that this trend appears to be re�ected
in two-out-of-three output values. The amount of cycles discovered by the

34



bec algorithm is consistent throughout the year - with every month having
between 21-32 cycles and with no apparent seasonal di�erence - whereas the
tbec algorithm generally discovers a lot more cycles in the summer months.
In addition, the bottleneck distance is generally higher in the summer months
as well, even when no plumes appear to be present (one would expect an in-
crease in plumes during the summer due to the generally high humidity, but
this often seems to be di�cult to con�rm visually due to the sheer amount
of activity).

Our hypothesis is therefore the following: the increased "activity" of
humidity during the summer months causes the tbec algorithm to detect
unwanted cycles. Such "fake" cycles may of course occur at any time, but
they are especially likely to occur during summer, and they are responsible
for the explosive increase in the amount of tbec cycles generally occurring at
this time. We also hypothesize that some of these unwanted cycles may be
persistent, hence they are also responsible for the larger bottleneck distances
that often accompany this increase in tbec cycles.

Imagine a pincer-shaped region of humidity over the Atlantic, closing
in on itself and surrounding a drier region. Now imagine that after some
time, this "pincer" opens up again. In the tbec algorithm, which is based
on a three-dimensional top-down �ltration (as we discussed in section 3),
this would appear as a cylindrically-shaped region of humidity, potentially
causing paths from the equator to Bergen to split into two paths, thereby
creating an unwanted cycle.

Figure 12: A "pincer" as described above.

35



This example illustrates what we fear might be a problem with the tbec
algorithm. To con�rm this manually, we look through the ERA-Interim visu-
alizations of the tcw data to see when large bottleneck distances are caused
by plumes, and when they might be caused by phenomena of the type we just
discussed. We have looked at some months where the bottleneck distance is
unusually large, as well as summer months where there are clear instances of
the pincer-like phenomenon we discussed above (which will from now on be
referred to simply as "pincers"). We refer to Appendix B for a complete list
of calculated bottleneck distances. The regions we discuss above the pictures
are highlighted by green circles.

June 2001

Amount of cycles for bec: 26

Amount of cycles for tbec: 562

Bottleneck distance: 9.403

This is the largest bottleneck distance we have calculated. There is a
clear plume here which we have marked as a possible culprit, though it
is di�cult to tell how strongly it hits Bergen. Even if it is rather weak
when it hits Bergen, it appears very "distinct" in the sense that it does not
appear to be a part of a river which connects to Bergen at a lower �ltration
degree, meaning that it is not unthinkable for it to be the cause of this large
bottleneck distance.

Figure 13: Frame 657 of 2001
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Frame 659 of 2001

Frame 669 of 2001

Frame 671 of 2001
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June 2002

Amount of cycles for bec: 29

Amount of cycles for tbec: 549

Bottleneck distance: 5.869

While not an unusually large bottleneck distance for a summer month,
we do see a clear example of the phenomenon we fear leads to generally
large bottleneck distances during the summertime. A relatively dry region is
encircled by humidity, and after a while this pincer opens up again towards
the south-west. We see that the humid region is attached to Bergen in the
third and fourth frame.

Figure 14: Frame 607 of 2002

Frame 612 of 2002
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Frame 619 of 2002

Frame 621 of 2002

Frame 625 of 2002
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Frame 628 of 2002

Frame 632 of 2002

June 2003

Amount of cycles for bec: 27

Amount of cycles for tbec: 778

Bottleneck distance: 6.258

It is a bit harder to spot than the similar occurrence in June 2002, but
here we see a small, dry region being encircled by a much more humid one.
This pincer eventually opens up towards the north. The humid region is
most clearly connected to Bergen in the second frame.
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Figure 15: Frame 673 of 2003

Frame 675 of 2003

Frame 679 of 2003
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Frame 682 of 2003

Frame 684 of 2003

Frame 686 of 2003
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June 2010

Amount of cycles for bec: 26

Amount of cycles for tbec: 139

Bottleneck distance: 8.730

This is the second largest bottleneck distance we have calculated, even
though there are very few tbec cycles for a summer month (the fewest of
any summer month we've considered in this thesis). We have identi�ed two
instances of pincers which may be responsible for this bottleneck distance.

we see the �rst pincer to occur in June 2010. It closes in from above, and
eventually also opens up towards the north. The humid region of the pincer
is most clearly connected to Bergen in the second frame.

Figure 16: Frame 642 of 2010

Frame 644 of 2010
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Frame 647 of 2010

Frame 649 of 2010

Frame 653 of 2010
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Frame 660 of 2010

Frame 663 of 2010

Frame 666 of 2010
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The pincer shown below is a bit more di�cult to spot than the �rst one,
but the spiral-like region of humidity captures a small, dry region inside of it
until it appears to dissipate. The humid region of the pincer is most clearly
connected to Bergen in the fourth frame.

Figure 17: Frame 703 of 2010

Frame 706 of 2010
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Frame 709 of 2010

Frame 712 of 2010

Frame 715 of 2010
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March 2011

Amount of cycles for bec: 30

Amount of cycles for tbec: 203

Bottleneck distance: 4.507

While smaller than the other bottleneck distances we've looked at so far,
it is certainly large for March. It was di�cult to �nd a possible explanation
for this. In the frames below we've highlighted a thin, spiral-like region
which may create a pincer, but it is so thin that it is hard to tell. There is
obviously a river that reaches Bergen during this timespan.

Figure 18: Frame 314 of 2011

Frame 316 of 2011
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Frame 317 of 2011

Frame 319 of 2011

Frame 321 of 2011
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Frame 323 of 2011

May 2011

Amount of cycles for bec: 27

Amount of cycles for tbec: 829

Bottleneck distance: 7.091

The third highest bottleneck distance we've calculated. Note the high
amount of tbec cycles. For comparison, May of 2012 only has 78 tbec cycles
and a bottleneck distance of 1.814. While it's hard to see why there are so
many tbec cycles, we have found two events which may explain the large bot-
tleneck distance. Below we see a quite humid plume clearly hitting Bergen.
This is the most likely cause of the large bottleneck distance, (though there
is an occurrence of a pincer that warrants attention).

Figure 19: Frame 507 of 2011
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Frame 511 of 2011

Frame 514 of 2011

Frame 517 of 2011

51



Here we see a dry region being encircled. The dry region is then trans-
ported westward, and opens up towards the north. The humid region of the
pincer appears to be connected to Bergen at several time-steps.

Figure 20: Frame 546 of 2011

Frame 550 of 2011
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Frame 555 of 2011

Frame 566 of 2011

Frame 567 of 2011
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Now that we have identi�ed a potential problem with the tbec algorithm,
we move on to presenting an alternative algorithm in the hopes of solving it.

7 The altbec

Since this method was intended as an alternative to tbec, we have appropri-
ately named it the altbec. We started with the idea of using a bottom-up
�ltration instead of a top-down �ltration in order to build our 3-dimensional
�ltered complex. The thought was that rivers and plumes would be detected
as holes in a 3D cubical complex, thus avoiding the need for "the back wall"
of the tbec algorithm. This seemed to us to solve the problem posed by
pincers, thus eliminating at least some of the unwanted cycles. A lot of the
challenge of this thesis was devising a �ltered complex with the properties we
wanted, and we went through quite a few di�erent concepts (and di�erent
versions of those concepts). While the method we ended using does have
some drawbacks, it has some apparent advantages as well.

The altbec relies on two key concepts: the idea of calculating the 1-
persistent homology of two "versions" of the same �ltered complex, and the
idea of "cross expanding". We describe the latter �rst.

To cross-expand a 3D grid, we �rst select a line through it along one of
the axes of the grid (if we think of the grid as embedded in R3). In our case,
we chose the line corresponding to Bergen going in the time-direction. For
the sake of explanation, we shall call the direction of the line for "time",
no matter the grid we're working with. So, moving in the time-direction,
we "fatten" our line by creating duplicates of every point along it. These
duplicates are added as adjacent points to the original one, in such a manner
that the point we started with has now become a 3x3 grid along the two
axes di�erent from time. Note that the points that occupied these positions
previously has not been replaced, but simply "pushed aside". The rest of
the grid is then adjusted so as to not e�ect the persistent homology of the
�ltered complex.
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Figure 21: An illustration of a cubical grid being cross-expanded. The
point in the center of the cross on the left becomes fattened up into the 3x3

grid on the right.

Figure 22: A 2D grid being cross-expanded at point number 8. This
illustrates what happens at every �xed time-step.

As we can see, this method has been given the name cross-expand due
to the fact that it takes a cross-shaped region of our grid (centered at our
chosen line) and fattens it up by adding duplicate points. Now, these du-
plicate points will all be �lled in at the same time as the original ones, so
there will be no di�erence between the persistent homology of the original �l-
tered complex and the cross-expanded one. So what then is the purpose? To
understand, we must �rst go through the initial steps of the altbec algorithm.
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When building the �ltered complexes we need for the altbec, we start
the same way as we would when building the �ltered complex needed to
calculate the tbec. We start with the grid:

G = {−95◦E,−94◦E, . . . , 15◦E} × {0◦N, 1◦N, . . . , 65◦N} × {ti, ti+1, . . . , tn}

and a function giving the tcw at each grid point. Then we deviate from
the tbec by using a bottom-up �ltration rather than a top-down �ltration.
This means that the driest points will be added �rst, and atmospheric rivers
and plumes will be detected as holes in the complex. However, we are only
interested in rivers and plumes hitting Bergen. This is where the second
key concept comes in. We create two di�erent versions of the same �ltered
complex - one with an arti�cially humid line going through Bergen and one
without - and only include the cycles that occur in the former but not the
latter, as they must be the ones involving the humid line (since the complexes
are identical otherwise). The value along this humid line is arbitrary, so long
as it is higher than the other tcw values in the �ltration (we set it at 100,
which is much higher than any recorded bec value in Bergen). We call the
�ltered complex with the humid line X, and the the one without we call Y.
Since we are doing a bottom-up �ltration, then at each �ltration degree k,
Xk ⊆ Yk. These inclusions induce maps on homology. So mathematically
speaking, what we're after is

ker(H1(X)→ H1(Y))

In practice, we �nd the desired cycles by removing the cycles in H1(X) which
also occur in H1(Y).

However, we do not wish to replace the tcw values in Bergen with the
arti�cially humid line. Doing this would mean we would be detecting rivers
and plumes hitting points adjacent to Bergen. This is where we need the
cross-expand concept. What we do is that when we build X and Y, we cross-
expand both of them along the line at Bergen. We then modify X so that
the arti�cially humid line is located at the center of the "beam" we obtained
by cross-expanding. The code for cross-expanding and modifying the value
of the central line is can be found in Appendix A.
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Figure 23: What we do at each �xed time-step. B denotes the value at
Bergen.

We still have a few modi�cations left to do to our spaces. When we say
"add" or "�ll in" in the to-do list below, what we mean is to respectively add
a layer of points with value zero, or to set the value of the relevant points to
zero (so that they are included at the very start of the �ltration).

• Add a front and a back wall in the time direction. For X we poke
a hole through the back wall at the location of the arti�cially humid
line through Bergen. This is so that the holes representing rivers and
plumes can go through the complex, without there being a cycle living
until �ltration degree 100 going around Bergen. The back wall makes
the longest cycle be born at degree 0, which is useful for comparing
with bec and tbec (see the next section).
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• Add a roof (latitudinal direction) and a side wall (longitudinal direc-
tion) next to Bergen to avoid cycles caused by humidity coming from
above or to the east.

• Fill in the areas from Bergen and up for the �rst 40 time-steps of the
�ltration. This is because we add 10 days before the start of the month
in order to detect rivers and plumes originating earlier than the start
of said month, but we do not want to detect the rivers and plumes that
actually hit Bergen during this time (we do the same thing in the tbec
algorithm)

As with the cross-expansion, the code used for constructing the �ltered
complexes in the altbec algorithm is included in Appendix A.

Figure 24: An illustration of X at �ltration degree 0. The dotted line is the
arti�cially humid line through the center of the "Bergen beam". The 'o'
denotes where the line goes through the back wall, and the 'x' denotes
where the line hits the already �lled-in area at the �rst 40 time-steps.
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Since we are calculating the persistent homology twice, and then sorting
the cycles to select the cycles we want afterwards, the computation time
is more than double that of the tbec. Each of the two persistent homology
calculations produces cycles numbering in the tens of thousands, so it usually
takes in excess of two hours per computation (that is, 2+ hours per month),
even though we are using a powerful computer belonging to the Geophysical
Institute of UiB (skd-cyclone). Luckily, the amount of cycles we're left with
at the end of the selection process is much, much smaller.

8 Comparing the altbec with the previous methods

Recall that the �ltered complexes in the altbec algorithm is built using a
bottom-up �ltration, whereas when we calculate the bec and tbec we use a
top-down �ltration. In order to compare the persistence diagrams produced
by the former to those produced by the former, we must �rst swap the birth
and death value of the bec and tbec cycles. For instance, if we plotted the
diagrams of altbec and bec together without changing anything, their points
would be on opposite sides of the diagonal. Thus, swapping the death values
and the birth values of the points in the bec diagram amounts to simply
mirroring the points through the diagonal, so they are on the same side
as the points in the altbec diagram. In addition, the largest cycle in any
given month for the bec and tbec goes to −∞. We cut this o� at 0, so that it
corresponds with the same cycle in altbec (nothing changes below 0 anyway).

We now start by considering the same two examples we did in the start
of section 3, namely February and June of 2011.

February 2011

Amount of cycles for bec: 24

Amount of cycles for tbec: 62

Amount of cycles for altbec: 30

Bottleneck distance tbec-bec: 2.270

Bottleneck distance altbec-bec: 2.291

Bottleneck distance altbec-tbec: 2.270

June 2011

Amount of cycles for bec: 24

Amount of cycles for tbec: 1108

Amount of cycles for altbec: 22

Bottleneck distance tbec-bec: 5.458

Bottleneck distance altbec-bec: 9.445

Bottleneck distance altbec-tbec: 4.578
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As we can see, the altbec − bec bottleneck distance is almost the same
as the tbec − bec bottleneck distance for February. We expected this, since
February of 2011 is a winter month with few tbec cycles. In general, the
altbec− bec bottleneck distance is very similar the tbec− bec bottleneck dis-
tance, which for other months is a somewhat unexpected result (more on this
later). However, something interesting happens in June. The altbec − bec
distance is even larger than the tbec− bec distance, despite the fact that tbec
produces over 50 times the cycles that altbec does! In general, altbec pro-
duces a similar amount of cycles to bec, with no apparent seasonal variation.
Usually a few more than bec, but sometimes one or two fewer, as is the case
with June of 2011. In other words, the amount of cycles does not �uctuate
dramatically from season to season as is often the case with tbec. This seems
to be a huge advantage, but only if it means that it does not fail to detect
something that it "should".

So what causes this large bottleneck distance, despite the low number
of cycles? Since the humid line through Bergen goes through the back wall
(which is completely �lled in already in degree zero), we have that for each
month there will be an altbec cycle born in degree zero. This will be the
longest living cycle, and will "absorb" the most prominent river of that
month. It is killed when the entire "Bergen beam" is �lled in (save of course
for the humid line with �ltration degree 100). This means that the longest
cycle in altbec only tells us about the largest tcw in Bergen during the month
of interest. During most of the year, this poses little problem, as the most
humid time-steps in Bergen almost always correspond with a river. However,
during the summer, when it is very humid in general, this may not always
be the case. Looking directly at the persistence diagrams, we see that the
longest altbec cycle in June 2011 is (0, 34.464) (rounded to three decimal
places as with the bottleneck distance), whereas the longest bec cycle for
this month is (0, 25.019). The di�erence between the end values matches up
exactly with the bottleneck distance of 9.445.

In order to check what would happen if this large di�erence in the longest
cycle wasn't there, we modify the longest altbec cycle by giving it the end
value of the longest bec cycles. Doing this gives us a bottleneck distance
of 6.557, which is still quite large. There appear to be quite a few plumes
during this once. For example the cycle (11.782, 30.584) from the altbec has
the exact same initial value as the cycle (11.782, 18.252) from the bec, yet its
end value is much higher. This "lengthening" of cycles is typical for plumes,
as plumes are often part of weaker rivers which connect to Bergen at lower
�ltration degrees. Plumes like this would certainly explain the large bottle-
neck distance.
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We will now revisit some of the examples from section 6. We refer to
Appendix B for a full list of calculated bottleneck distances.

June 2001

Amount of cycles for bec: 26

Amount of cycles for tbec: 562

Amount of cycles for altbec: 23

Bottleneck distance tbec-bec: 9.403

Bottleneck distance altbec-bec: 9.403

Bottleneck distance altbec-tbec: 3.901

Here we have the exact same bottleneck distance between altbec and bec
as between tbec and bec, which is not that unexpected since we did spot a
plume during this month. Also note that the altbec−tbec bottleneck distance
is much smaller, further strengthening our belief that the other bottleneck
distances are due to a plume. However, it is doubtful that this bottleneck
distance is caused by the plume that we spotted. If we modify the longest
altbec cycle (0, 32.449) to set it equal to the longest bec cycle (0, 23.046) as
we did with June of 2011, we see that the di�erence in the end values is equal
to 9.403. As we commented above Figure 12, the plume we observed does not
appear to be part of a river which connects Bergen to the equator at some
lower degree, therefore it is highly unlikely that this plume is the originator
of the longest cycle. That being said, the altbec − bec bottleneck distance
we get after modifying the longest cycle is still very large at 7.721, and there
are a couple of persistent cycles in altbec which do not appear to correspond
to anything persistent in bec, for instance the cycle (13.587, 29.591), so there
is still a good chance that the plume in Figure 13 is detected.

Looking through the visualizations again, there does in fact appear to be
a plume which might correspond to the lengthening of the longest cycle, and
thus explain the large bottleneck distance. It was just a bit di�cult to spot.
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Figure 25: Frame 709 of 2001

Frame 711 of 2001. We see that there is now a gap between the plume and
the humid region connected to the equator.
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Frame 713 of 2001. It is not clear how connected the shape inside the circle
is (there is a thin path to the left that might connect it to the equator),
but the region that hits Bergen is clearly more humid than the rest of it.

Frame 714 of 2001

May 2011

Amount of cycles for bec: 27

Amount of cycles for tbec: 829

Amount of cycles for altbec: 40

Bottleneck distance tbec-bec: 7.091

Bottleneck distance altbec-bec: 7.091

Bottleneck distance altbec-tbec: 4.694
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Here we have a similar situation as in June of 2001 where the altbec−bec
and tbec − bec bottleneck distances are the same. While the altbec − tbec
distance is smaller in this case as well, the di�erence is not as large as in the
previous example. This is an expected result, as we spotted both a plume
and a pincer during this month. Also as is the case for June of 2001, we
have that the bottleneck distance is caused by the di�erence in the longest
cycle, which is (0, 27.334) for altbec and (0, 20.243) for bec. More surprising
is the fact that we still get a rather large bottleneck distance of 5.883 once we
modify the altbec diagram in the usual way. There does not appear to be any
other distinct plumes occurring this month, but there are a few persistent
cycles not corresponding to anything in bec. Two cycles in particular stand
out: (3.693, 24.812) and (9.021, 24.628). Does our plume correspond to one
of these cycles or to the lengthened longest cycle? Since it does not appear
to be part of a weaker river, it is most likely to be one of the former. By
design, the altbec should not detect pincers, so it is unclear what is causing
the other cycle.

Figure 26: Frame 518 of 2011, when the plume is sitting right on top of
Bergen. There appears to be a clear gap between the plume and the

dark-blue region connected to the equator (look at the violet ellipse inside
the green one), hence it is doubtful that this plume is part of a river which

connects to Bergen at a slightly lower �ltration degree.
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March 2011

Amount of cycles for bec: 30

Amount of cycles for tbec: 203

Amount of cycles for altbec: 33

Bottleneck distance tbec-bec: 4.507

Bottleneck distance altbec-bec: 4.507

Bottleneck distance altbec-tbec: 2.535

This was perhaps the most surprising of all our results. At �rst glance,
it seems like a similar situation to the ones we had at June of 2001 and May
of 2011, but recall that the only thing we could spot that might cause this
bottleneck distance was a thin spiral-like region that might form a pincer.
However, the altbec should not be able to detect pincers, yet the bottleneck
distance is exactly the same. Could this be caused by a plume that we
missed? We check by modifying the longest cycle in altbec to correspond
with the longest cycle in bec, but we still get the exact same bottleneck dis-
tance, so it is not the longest cycle that is causing it. Looking through the
cycles manually, we do indeed spot what appears to be a plume: a cycle
(4.216, 21.105) in altbec that seems to correspond to a cycle (4.216, 15.587)
in bec. However, we also spot a cycle (16.512, 21.920) that does not appear
to correspond to any cycle in bec. Could this cycle be what both altbec and
tbec picked up? If so, which phenomenon does it correspond to? Consid-
ering the visualizations, there does not appear to be anything immediately
recognizable that would explain this.

9 Concluding remarks

The altbec method has the apparent advantage that it produces a much
smaller number of cycles compared to the tbec method, thus making it much
easier to compare with the bec. However, it also has its downsides. The most
glaring one being that the longest cycle simply tells us what the highest tcw
value in Bergen was. This has a tendency to cause trouble during the warmer
months, as we could see with June of 2011. It also takes longer to compute
than the tbec. Perhaps a future task could be to tweak the algorithm in
order to overcome this problem, or eventually run tbec as a supplementary
algorithm to altbec in order to accurately detect the longest cycle (though
this would increase computation times even further).
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I created the altbec in the hopes of eliminating cycles created by pincers,
as I feared that these cycles could be rather persistent. Looking at the re-
sults of the bottleneck comparisons however, it becomes clear that most of
the large bottleneck distances between tbec and bec are not caused by pin-
cers, as they also occur when we compare altbec with bec. They appear to be
due to something unforeseen, or more benignly, plumes that are hard to spot.

While pincers might certainly still pose an issue (as seen in the �gure
below) we can conclude that they are not the cause of the most conspicu-
ous bottleneck distances. Whether what actually causes these distances are
"features" or "bugs" is a topic for future discussion between topologists and
meteorologists.

Figure 27: The most persistent tbec cycles in June of 2000. The sheer
amount of cycles with a non-trivial length is a reason to still be concerned

about pincers.
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Appendix A: Code

It should be note that, as this was my �rst foray into python programming,
these scripts very are ad-hoc in the sense that they are made only with our
speci�c case in mind. They may not be suitable for use in a more general
setting. For example, it might yield an error if one attempted to input a
di�erent grid into the ha.sliceArray() function called in altbec.py. It should
also be noted that these scripts build on the framework already created by
Kristian Alfsvåg. A link to his source code and its documentation can be
found in the bibliography.

I wish to apologize for the weird indentation going on here. I don't know
why the package pythonhighlight.sty is doing this, and I do not have time
to �x it. Hopefully it is still readable.

Cross-Expand

import numpy as np

#cross -expanding a 2D array

def crossExpand(A, c, wetPoint = False):

#A: an array

#c: the coordinates of a point in A

#wetLine: whether or not to raise the value at c to 100

n=c[0]

e=c[1]

N = A.shape[0]

E = A.shape[1]

B = np.zeros ((N+2,E+2))

expand = range(0,e+1) + [e] + range(e,E)

for j in range(0,n+1):

B[j,] = A[j,expand]

B[n+1,] = A[n,expand]

if wetPoint == True:

B[n+1,e+1] = 100

else:

B[n+1,e+1] = A[n,e]

for j in range(n+2,N+2):

B[j,] = A[j-2,expand]

return B
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#cross -expanding a 3D array

def crossExpand3D(A, c, wetLine=False):

X = np.zeros ((A.shape[0],A.shape[1]+2,A.shape[2]+2),dtype=

float)

for j in range(0,A.shape[0]):

X[j,:,:] = crossExpand(A[j,:,:],c,wetLine)

return X

The altbec

import numpy as np

import copy

import arraymod

import ha

import cfc

from cells import CubicalCell

def altBec(month ,year):

#month is a number from 2 to 12 (January is not included since

the algorithm relies upon

including the last 10 days of

the previous month).

timeInterval = 122 #1464/12

mint = (month-1)*timeInterval - 40 #-40 since we are

including the previous 10

days

maxt = month*timeInterval

bergen = (5,100) #the coordinates of the vertex at Bergen (it

's actually (60 ,5), but in our

grid the longitude starts at -

95 and the array for tcw starts

counting the latitudes from

above)

tcw = ha.loadTcw(year)

A = ha.sliceArray(tcw ,mint ,maxt ,1,0,65,2,-95 ,15 ,2)

B = arraymod.crossExpand3D(A, bergen , True) #here , the line

at the centre of the cross has

its filtration value set to

100
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C = arraymod.crossExpand3D(A, bergen , False) #here , the line

at the centre of the cross has

the same filtration value

as Bergen

#we add a solid front wall , so that we prevent the cycle going

around the artificially wet

line through Bergen from living

until degree 100

W1 = np.zeros((B.shape[1],B.shape[2])) #B and C have the same

shape

front = W1.reshape ((1,B.shape[1],B.shape[2]))

B = np.vstack ((front ,B))

C = np.vstack ((front ,C))

#we also add a side wall and a roof to avoid unwanted cycles

W2 = np.zeros((B.shape[0],B.shape[1]))

side = W2.reshape ((B.shape[0],B.shape[1],1))

B = np.dstack ((B,side))

C = np.dstack ((C,side))

W3 = np.zeros((B.shape[0],B.shape[2]))

roof = W3.reshape ((B.shape[0],1,B.shape[2]))

B = np.hstack ((B,roof))

C = np.hstack ((C,roof))

#we also add a back wall to reduce the amount of cycles

calculated and make the longest

cycle be born at degree 0 (for

the purpose of comparing with

the bec)

W4 = np.zeros((B.shape[1],B.shape[2]))

back = W4.reshape ((1,B.shape[1],B.shape[2]))

B = np.vstack ((B,back))

C = np.vstack ((C,back))

#we wish to for the grid points in the upper left corner to be

filled in first , so that we do

not detect rivers or plumes

hitting Bergen before the start

of the month

for i in range (0, bergen[0]+3): #+3 due to cross -expand

and the roof

for j in range (0,40):

B[j,i,:] = 0

C[j,i,:] = 0

#we poke a hole through the back wall where the wet line is
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B[B.shape[0]-1,bergen[0]+2,bergen[1]+1] = 100

#we now build filtered complexes from the arrays B and C. The

input 'b' gives us complexes

built using a bottom -up

filtration.

X = cfc.make2SkeletonFrom3Darray(B,'b')

Y = cfc.make2SkeletonFrom3Darray(C,'b')

#finally we compute the persistent homology (with Z/2

coefficients) and obtain the 1-

persistence diagrams of X and Y

X.computePersistentHomology(1)

Y.computePersistentHomology(1)

#computePersistentHomology and getDiagram are defined on

instances of the class "

FilteredComplex" (defined in

filteredcomplex.py). The method

make2SkeletonFrom3Darray made

X and Y into instances of this

class.

x = X.getDiagram(1)

y = Y.getDiagram(1)

print('Persistent homology computed!')

#we remove the points in x that also occur in y

z = copy.deepcopy(x)

i = 0

while i < (len(z.cycles)):

if z.cycles[i] in y.cycles:

z.cycles.remove(z.cycles[i])

else:

i += 1

#we sort the cycles of z so the longest ones appear first

z.cycles.sort(key=lambda x: x.death-x.birth , reverse=True)

return x,y,z
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Bottleneck distance

import pickle

import inout , cfc

import dionysus

import numpy as np

def tbec_bec(month , year):

tbec = inout.load('Time_diagrams/time_diagram_{:02d}_{:4d}'

.format(month ,year))

bec = inout.load('bec/bec'+str(year))

timeInterval = len(bec)/12

bec = bec[(month-1)*timeInterval:month*timeInterval]

#Compute persistent homology given by bec

f = cfc.makeCubicalComplex(np.array(bec), 't')

f.computePersistentHomology(0)

y = f.getDiagram(0)

#tbec

t = [(cycle.birth , cycle.death) for cycle in tbec.cycles]

tbec_pd = dionysus.PersistenceDiagram(1,t)

#bec

b = [(cycle.birth , cycle.death) for cycle in y.cycles]

bec_pd = dionysus.PersistenceDiagram(1,b)

print "Cycles in tbec: " + str(len(tbec_pd))

print "Cycles in bec: " + str(len(bec_pd))

x = dionysus.bottleneck_distance(tbec_pd ,bec_pd)

return x,y,tbec

def altbec_bec(month , year , modified=False):

z = pickle.load(open("month"+str(month)+str(year)+".p", "rb

"))

bec = inout.load('bec/bec'+str(year))

timeInterval = len(bec)/12

bec = bec[(month-1)*timeInterval:month*timeInterval]

#Compute persistent homology given by bec

f = cfc.makeCubicalComplex(np.array(bec), 't')

f.computePersistentHomology(0)

y = f.getDiagram(0)

#bec

y.cycles.sort(key=lambda c: c.birth-c.death , reverse=True)

y.cycles[0].death = 0

b = [(cycle.death , cycle.birth) for cycle in y.cycles]

bec_pd = dionysus.PersistenceDiagram(1,b)
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#altbec

if modified==True: #shorten the longest cycle to the length

of the longest cycle in

the bec

z.cycles[0].death = y.cycles[0].birth

a = [(cycle.birth , cycle.death) for cycle in z.cycles]

altbec_pd = dionysus.PersistenceDiagram(1,a)

print "Cycles in altbec: " + str(len(altbec_pd))

print "Cycles in bec: " + str(len(bec_pd))

x = dionysus.bottleneck_distance(altbec_pd ,bec_pd)

return x,y,z

def altbec_tbec(month , year):

z = pickle.load(open("month"+str(month)+str(year)+".p", "rb

"))

tbec = inout.load('Time_diagrams/time_diagram_{:02d}_{:4d}'

.format(month ,year))

#altbec

a = [(cycle.birth , cycle.death) for cycle in z.cycles]

altbec_pd = dionysus.PersistenceDiagram(1,a)

#tbec

tbec.cycles.sort(key=lambda c: c.birth-c.death , reverse=

True)

tbec.cycles[0].death = 0

t = [(cycle.death , cycle.birth) for cycle in tbec.cycles]

tbec_pd = dionysus.PersistenceDiagram(1,t)

print "Cycles in altbec: " + str(len(altbec_pd))

print "Cycles in tbec: " + str(len(tbec_pd))

x = dionysus.bottleneck_distance(altbec_pd ,tbec_pd)

return x,z,tbec
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Appendix B: Bottleneck distances
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