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Abstract

Carbon capture and storage (CCS) is an important component of several initiatives to
reduce global greenhouse gas emissions by injecting and storing CO2 in underground
reservoirs. Simulation technology plays an important role in providing storage capacity
estimates and analyzing long-term safety and risk factors of leakage to the surface. Two
of several important questions that need to be answered before a storage project may
be approved is how fast and how much CO2 can be injected without compromising the
integrity of the sealing caprock, which stops it from migrating to the surface.

To evaluate the integrity we rely on mathematical models, but due to the large extent
of the area that needs to be considered and the many processes that are involved the
calculations can quickly become large and complicated and very time consuming to
solve. For screening purposes of potential storage sites, or investigation of potential
storage sites when little data is available, many model realizations are needed, thus fast
and robust yet accurate numerical techniques are not only tractable but also essential.

To understand what happens to the CO2, formation water and rock during injection
and storage, we have thoroughly reviewed the main processes that are relevant to the
integrity of the reservoir and sealing formations. These main processes are fluid flow,
stress change and temperature change and they are all coupled where for instance a
change in pore pressure and temperature due to CO2 injection causes deformations and
stress alterations that can affect the integrity of the injection reservoir and caprock.

Considering the low solubility of CO2 in formation water under typical storage con-
ditions (depth, temperature, pressure and salinity) we have illustrated that it is a good
approximation to treat the injected CO2 and formation water as two separate fluids.
Miscibility is therefore not an important process to consider in relation to long-term
mechanical integrity and this simplifies the mathematical description of fluid flow.

Whether the thermo-hydro-mechanical coupling, where the temperature change is
also considered, is important to evaluate is less obvious. Through examples we show
that the in situ temperature is important to consider when estimating material proper-
ties, but the effect of the cold (CO2) injection, relative to the storage formation, is very
local and mainly affects the near-field of the injector. The cooling effect reduces the
spreading of the CO2, but has little effect on the pore pressure. In general, cold injec-
tion (relative to formation temperature) lowers the fracture pressure of the rock and the
limit for maximum sustainable injection rate, and therefore, ignoring non-isothermal
effects can underestimate the risk of failure, and vice versa for hot injection. A risk
analysis of reactivation of faults in the sealing formation in the CO2 storage project at
In Salah, Algeria, revealed that the thermal effect can make the difference between safe
and risky storage.

To achieve a procedure for faster numerical evaluation, the layering structure and
high aspect ratio of typical storage reservoirs can be used to simplify the mathematical
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description of the internal physical processes using a method of dimensional reduction.
This has previously been found particularly attractive in simulating the migration of
CO2 in the context of CCS. Since hydro-mechanical coupling is particularly essential
to consider when evaluating the integrity of the caprock, we have extended this concept
to also include the geomechanical processes. The underlying assumptions of negligi-
ble vertical flow compared to horizontal flow (Vertical Equilibrium, VE, assumption)
and linearly varying displacement across the thickness of the reservoir (Linear Vertical
Deflection, LVD, assumption) has proved promising in providing significant savings in
computational time and effort with up to more than ten times faster calculations com-
pared to a full-dimensional model. It has also been demonstrated that such models can
retain a high accuracy when applied to realistic field data, such as the conditions at the
CO2 storage plant at In Salah, Algeria. Also, the range of applicability of the dimen-
sionally reduced model is to a leading order the thickness of the reduced domain and
accurate solutions in the order of 0.1 % and less difference in solution compared to a
full-dimensional formulation for aquifers up to 100 meters thick has been achieved.
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Chapter 1

Introduction

1.1 Background

The first main conclusion from the fifth, and latest, report by the Intergovernmental
Panel on Climate Change (IPCC) reads: "Warming of the climate system is unequivocal,
and since the 1950s, many of the observed changes are unprecedented over decades to
millennia. The atmosphere and ocean have warmed, the amounts of snow and ice
have diminished, sea level has risen, and the concentrations of greenhouse gases have
increased." [107]. The effect is more extreme weather at increasingly higher material
and human cost and the rapidly rising levels of carbon in the atmosphere, which is
currently at its highest in the last 800,000 years, is believed, beyond reasonable doubt,
to be the the main cause.

Carbon dioxide is a by-product of fossil fuels combustion, and because 80% of the
worlds energy supply comes from fossil fuels [e.g. Fig. 2.13 56], it will continue to
be an important and valuable source for decades to come. The only viable solution
to achieve mitigation goals of carbon neutrality is through Carbon Capture and Stor-
age (CCS) [43]. CCS is a process that captures carbon dioxide emissions from point
sources, e.g. coal-fired power plants, and either reuses it, for instance for the purpose
of enhanced oil and gas recovery (EOR and EGR, respectively), or stores it safely un-
derground. Geologic formations suitable for carbon dioxide storage typically include
oil and gas reservoirs, unmineable coal seams and deep saline reservoirs - structures
that have stored crude oil, natural gas, brine and carbon dioxide over millions of years.
In fact, CO2 have been used for EOR for decades already, since the 1970s, and later in
several sequestration projects, hence the technology is proven, at least on small to mod-
erate scale of up to 1 megatons CO2 injected per year. When it comes to site selection, it
is argued, that storage in abandoned and under-pressurized oil and gas reservoirs is the
preferred choice. This is mainly due to the amount of data and knowledge available of
the sites, its proven ability to store oil and gas for millions of years and that the infras-
tructure for CO2 transport is already partly in place. However, there are doubts about
the capacity and integrity and there are also concerns whether there are considerable oil
and gas resources left yet to be recovered with improved technology and techniques.
The contribution to indefinite storage is presumably low [57, p. 12].

In order to be part of the solution to reduce the anthropogenic emissions, the deploy-
ment of CCS needs to be on the scale of hundreds of gigatons of CO2 over the course of
the 21’st century, according to the stabilization scenarios described by IPCC [ch. 6 and
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7.11 in 43]. Unfortunately, pressure build-up from the injection of CO2 causes stress
alterations in the formation that can affect the integrity of not only the reservoir and
caprock, but also the surrounding formations. Thus, higher injection rates and injection
volumes increases the stress and exposes a larger area to potential leakage. In addi-
tion, far-field pressure effects can interfere with hydrocarbon production, geothermal
reservoirs and underground water reservoirs and there are concerns about significant
induced seismic events due to large-scale CCS. Assuming that the earths crust is close
to being critically stressed, a lot of potential stored strain energy can be released when
the stress field is disturbed by changing the pressure, and in the worst case lead to
large earthquakes [127]. On the other hand, there is also doubt about whether this con-
cern is justified for typical CCS projects, considering the rather shallow depths (1-3
km) compared to typical earthquake hypocenters (typicaly 8-16 km) [59]. And accord-
ing to Davies et al. [37], from a compilation of hundreds of fracturing operations only
three examples of induced seismicity high enough to be felt, by people, had been doc-
umented. Thus, although large faults and fractures can often be identified and avoided,
it cannot be ruled out that reactivation of existing faults can induce felt seismicity. This
emphasizes the need for improved understanding of the connection between induced
seismicity and fault activation and geological characterization in the context of CCS,
relating to the stress alterations due to injection. These are some of the challenges faced
by successful CCS.

The CCS Directive1 provides a legal framework for safe geological storage of car-
bon dioxide in the EU. It applies to storage projects larger than 100 kilotons of carbon
dioxide and contains an extensive list of criteria for "characterisation and assessment of
the potential storage complex and surrounding area", highlighting the need for assess-
ing the many uncertainties by considering a range of scenarios. These uncertainties can
for instance be related to parameters in the geological description and material prop-
erties. Teletzke and Lu [108] highlight key topics in modeling of the different stages
of a CO2 storage project; from initial screening and selection of potential sites through
to development planning, implementation and operation and finally to site closure and
post-injection monitoring. The level of required details in the models will change as
the project moves through the various phases, expressing the need for different fit-for-
purpose models. When evaluating different scenarios, well configurations, injection
strategies and the many uncertainties in geology and material properties, many model
realizations will be required. Therefore, particularly in the initial stages of CCS plan-
ning, fast and accurate numerical techniques are essential.

There are several mechanisms that contribute to trap the injected carbon dioxide. In
the long-term perspective of several hundreds to thousands of years, injected CO2 will
be trapped and stabilized due to capillary forces in small pores, dissolution in brine and
mineralization with the host rock. However, in shorter terms, safe storage is relying on
structural and stratigraphic trapping as the main trapping mechanism. Thus, one of the
major aspects of safe CO2 storage is therefore the integrity of the confining rock; the
caprock. It is necessary to avoid exceeding the fracture pressure of the caprock during
injection and the amount that can be stored is therefore pressure limited and one critical
parameter is the maximum sustainable injection rate.

1EU Directive 2009/31/EC on the geological storage of carbon dioxide.



1.1 Background 3
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Figure 1.1: A schematic description of the various main processes in a reservoir model during
production or injection.

CO2 storage involves considering many physical processes, as indicated in Fig.
1.1. The various processes are affecting each other, indicated by the connections, but
how strongly they are coupled varies with the particular condition. Considering non-
isothermal conditions, temperature has an affect on fluid properties such as density and
viscosity, affecting the fluid flow; temperature changes in a reservoir can induce ther-
mal stresses, affecting the stress distribution and deformation; the fluid can react with
the host rock by dissolution or precipitation, affecting the hydraulic properties and the
fluid flow, and these reaction rates are often highly temperature dependent. Thus, there
are many ways the various processes in Fig. 1.1 are affecting and interacting with each
other. It can become complex and difficult to describe, but often times assumptions
can be made that greatly simplifies the mathematical description of a particular prob-
lem. For instance, the density of brine depends on the fluid pressure, temperature and
salinity. By increasing the pressure the density will increase as well. However, if the
pressure change is small and temperature is almost constant, salinity will not change
and a good approximation can be to consider the density as constant. This kind of rea-
soning and assumptions can greatly simplify the complexity of a system and represents
one of the main challenges in numerical modeling; how to make good assumptions that
gives good approximations.

The overall objective of this project is to "derive the mathematical description of
the main relevant processes involved in CO2 injection and storage to assess the geome-
chanical integrity of the storage reservoir and the surrounding formations and analyze
how these can be simplified for a faster numerical evaluation while keeping an accept-
able level of accuracy". To achieve this, the focus in this project is the thermo-hydro-
mechanical coupling; the interaction of fluid flow, energy transport and geomechanics,
the grey shaded boxes in Fig. 1.1. Regarding the geochemistry branch, in the short
term (decades) it is generally assumed that mineral reactions are of less importance
compared to dissolution of CO2 in the formation water and structural and stratigraphic
trapping. However, on longer time scales, the mineral reactions can be significant [50].
Rocks contain different kinds of minerals where some dissolve in contact with car-
bonic acid (from CO2 dissolving in water) and some precipitate and these reactions can
be beneficial and/or detrimental for trapping CO2. For instance, by allowing CO2 to
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form carbonates will promote permanent storage. Dissolving minerals can change the
permeability [61] that in turn affect the flow regime in the reservoir and sealing forma-
tions and this can have both positive and negative effects on storage. Hellevang [50]
showed that reactivity varies greatly between the reservoir minerals and understand-
ing of geochemical processes are therefore important when selecting long-term storage
sites. Hence, the geochemistry branch in Fig. 1.1 are considered as site specific com-
pared to the thermo-hydro-mechanical processes and therefore will not be covered in
this project.

From the above discussion, it is apparent that the models can quickly become com-
plex and thereby difficult and time consuming to solve numerically. Geometrical sim-
plifications, reducing the problem to a two-dimensional, axially symmetric or even
one-dimensional problem, can greatly reduce the computational size and the calcula-
tion time, but such simplifications are not always possible and in this project an alterna-
tive type of simplification is exploited. By making assumptions on the variability of the
solution in some direction, e.g. the vertical direction in a reservoir model, the balance
equations can be integrated to obtain a dimensionally reduced form. This means that
a three dimensional problem can be reduced to a two-dimensional problem while still
retaining the full dimensional solution. The computational benefits of the dimension-
ally reduced models for two-phase flow in porous media is tremendous. Exploiting this
benefit by coupling it with a complementary formulation for poroelasticity is therefore
natural when also considering geomechanical effects. It greatly reduces the calculation
time, the drawback is the added complexity to the mathematical description, but that is
addressed in this project and honors the main objective of this project.

Dimensionally reduced models for fluid flow, single- and two-phase flow, in thin
reservoirs are well established. Reduced models for single-phase flow coupled with ge-
omechanics is well documented in early works by Bear and Corapcioglu [10, 11, 34],
but little has appeared later, see for instance [105], and the analysis is limited to the
aquifer, and not considering the surrounding formations. On the other hand, dimen-
sionally reduced models for two-phase flow has received more recent attention, from
simple immiscible two-phase flowmodels without capillary pressure [53, 82] to models
including capillary pressure and hysteresis [84], partially miscible phases with convec-
tive mixing [47] and variable thermodynamic properties of the phases [5]. However,
no work has shown how to couple the dimensionally reduced equations for two-phase
flow, including capillary pressure, with geomechanical deformation. In addition, pore
pressure and stress communication with the surrounding formations is considered.

1.2 Thesis outline

This thesis contains two parts. The first part introduces the mathematical background
of the relevant processes for CO2 injection and storage; geomechanics, single- and
two-phase fluid flow and energy transport. The emphasis is on evaluation of various
simplifying assumptions that can reduce the mathematical model while retaining an
acceptable accuracy for evaluating the integrity of the storage reservoir and the sur-
rounding formations. Some topics that are not covered in my papers, e.g. miscible
two-phase flow and non-isothermal effects related to cold/hot injection are described in
more detail.



1.2 Thesis outline 5

The second part contains the journal and conference papers published during the
course of the project followed by the appendices.

Chapter 2 introduces the concept of stress in a geological setting; the various stress
regimes, possible stress states and how the stress-field is affected by change in pore
pressure; fluid pressure in the pore space of rocks. The pore pressure and the stress-
field are directly coupled to each other and a review on how this affects the stability
and integrity of rocks and faults/fractures are given. Various mechanisms for failure,
when and how they occur, are also reviewed, together with ways it can be illustrated,
e.g. Mohr diagrams and allowable stress diagrams.

Chapter 3 introduces the theory of poromechanics which is the study of the mechan-
ical deformation of a fluid saturated porous media. This is an extension to chapter 2, by
also considering spatial and temporal changes in stress due to pore pressure and tem-
perature changes. Here the momentum balance equation together with the constitutive
relations for stress and strains for linear elasticity, poroelasticity and thermoporoelas-
ticity is defined. The two stress conventions that are frequently encountered in the
literature, compressive and extensional, are explained and some typical simplifications
of the governing equation for solving linear elastic deformation are derived.

Chapter 4 introduces the governing equations for single- and multi-phase flow in
porous media with detailed derivations. Although seemingly trivial, single-phase flow
is reviewed in detail because of its importance in reservoir models. Multi-phase flow
is important inside a reservoir, but outside the reservoir, in the surrounding formations,
the flow is usually approximated as a single-phase flow problem. Typically used simpli-
fications are derived and compared to illustrate the impact of the resulting storage co-
efficient. Then the equations for immiscible two-phase flow are derived and it is shown
how the mass conservation equations and auxiliary equations can be manipulated to ar-
rive at various formulations of different dependent variables. These formulations are
benchmarked against a new, semi-analytic solution, using pseudospectral methods and
Chebychev polynomials, of the McWhorter-Sunada equations [72] for one dimensional
two-phase flow with capillary pressure [22]. A formulation for partially miscible, two-
phase flow is also derived and compared to a two-component, two-phase flow extension
of the Buckley-Leverett equation.

In chapter 5 the governing equation for energy transport is reviewed. A typical CO2
storage model is defined and two models; a THM- (Thermo-Hydro-Mechanical, model
considering temperature, fluid flow and geomechanics) and an HM-model (Hydro-
Mechanical) is compared to analyze non-isothermal effects on phase saturation and
pore pressure. The thermal effect on stresses and strains in relation to integrity and risk
failure is discussed in chapter 7.

Chapter 6 introduces dimensionally reduced models. The theory from Chapters 3
and 4; linear proelasticity, single-phase flow and immiscible two-phase flow in partic-
ular (phase miscibility and non-isothermal effects are not evaluated) is used to derive
the dimensionally reduced formulations of the governing equations. For single- and
two-phase flow the assumption of vertical equilibrium (VE); vertical phase pressure
gradients are assumed constant, is reviewed. The momentum balance equation with
linear elastic and linear poroelastic constitutive relations are integrated to give the cor-
responding dimensionally reduced forms; Linear Vertical Deflection (LVD) equation
and the Poroelastic Linear Vertical Deflection (PLVD) equation where the name reflects
the assumed structure of the displacement within the dimensionally reduced domain.
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Solutions and the performance of the LVD and PLVD equations are compared with the
full-dimensional solution.

In Chapter 7 some findings from the previous chapters are discussed. The difference
in performance for the various formulations for immiscible two-phase flow is further
discussed and compared to partially miscible two-phase flow. Due to the direct coupling
between the pore pressure and stresses, the effect of diffusion/dispersion and miscibility
on pore pressure is evaluated. The non-isothermal effect that was reviewed in chapter 5
is discussed further in relation to stresses and strains, integrity and risk of failure. And
finally, the performance of the dimensionally reduced models are discussed.

Finally, in chapter 8 Conclusion, some concluding remarks are made on the obtained
results.

1.3 Thesis preface

It should be noted that in this project the focus is on the mathematical model; the de-
scription of the various physical processes related to CO2 storage modeling, and not the
choice of numerical method, solvers and mesh generators or mathematical analysis of
uniqueness and existence of solution. The aim is to describe the mathematical model
in a rigorous manner, highlight the various simplifying assumptions and their justifi-
cations, and present it on a form that can be implemented in a numerical framework
of choice. Here, the finite element method has been chosen for the discrete approxi-
mated solution of the resulting partial differential equations. The finite element method
is globally mass conservative (as opposed to, for instance, the finite volume method
which is locally mass conservative) and may suffer from weaknesses such as stability
for discontinuous processes, e.g. sharp saturation fronts in multi-phase flow problems,
and may therefore not be the most suitable method. However, the finite element method
is the standard method of choice for mechanical problems. Thus, when solving a prob-
lem that considers several physical processes, the choice of numerical tool will be a
compromise of not only accuracy and stability, but also usability and ease of imple-
mentation. The particular tool of choice in this project is COMSOL Multiphysics R⃝.
It is a general purpose mathematical modeling tool designed for solving an arbitrary
number of partial differential equations in arbitrary dimensions. A real strength of the
chosen software is its usability and ease at which multiple physical processes can be
coupled together in a model that can become progressively more complex as new data
comes to light and it is easy to switch on and off different effects and adjust parameters
for sensitivity studies.

1.4 Main findings

• The first complete model including a consistent, vertically integrated approach
for fully coupled multi-phase flow and mechanical deformation.

– General and dimensionally reduced equations for immiscible two-phase,
with capillary pressure, and Biot’s theory for linear poroelasticity are de-
rived by integration of the governing equations across the thickness of the
dimensionally reduced domain, here the vertical direction. This results in a
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set of equations that can be solved very efficiently compared to solving the
full-dimensional formulation.

– The coupled model retains all the simplicities of previously developed
reduced-dimensional models for flow, including less stiff nonlinear systems
of equations (allowing longer time steps by the numerical solver) and less
degrees of freedom (since the computational space has been reduced), mak-
ing it much faster at lower computational cost.

– Such dimensionally reduced models can retain reasonable accuracy when
applied to realistic field data and the range of applicability is to a leading
order the thickness of the reduced domain, e.g. the injection reservoir. When
applied to a realistic CO2 storage scenario (In Salah, Algeria) the accuracy of
the solution was found to be in the order of less than 0.1% different compared
to a full-dimensional formulation for up to 100 m thick reservoirs.

• A fast and robust solution procedure for one-dimensional, immiscible, two-phase
flow in porous media with capillary pressure using Chebyshev spectral colloca-
tion (pseudospectral) method.

– As a general solution to two-phase flow, and an analogue to the Buckley-
Leverett equation, the equations, which were originally proposed byMcWhorter
and Sunada [73], has many applications that go beyond the verification of
numerical codes. However, the original, iterative solution procedure by
McWhorter and Sunada [73] is highly sensitive to the input parameters (par-
ticularly viscosity, relative permeability and for high saturations at the inlet),
and the use of a pseudospectral method proved to be robust and converge
fast.

• Analysis of non-isothermal effects related to CO2 storage (injection of cold CO2
relative to the warmer storage formation) has led to the following general obser-
vations:

– Temperature is very important when evaluating the material properties of the
fluid, thus temperature should not be assumed constant in space (it increases
with depth). However, the thermal effect of cold injection is very local, the
main transport mechanism is heat convection, but typical thermal properties
results in a temperature footprint much smaller than the migration of the
injected CO2 (less than 1:10), compared to the pressure footprint. This leads
to another important finding:

– If fluid migration is the main concern then temperature can be considered
constant in time (although not necessary in space). However, for the stress
field it is different:

– For cold injection, ignoring non-isothermal effects can underestimate the
risk of failure (and vice versa for warm injection) around the injection well
(due to the local effect). Reducing temperature induces thermal stress similar
to reducing pressure.
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Chapter 2

Pore pressure-stress coupling

2.1 Introduction

When considering CO2 storage, one of the concerns is the integrity of the storage reser-
voir and surrounding formations. In response to injection, the fluid pressure in the
pores change with a concomitant change in the mechanical stresses within the reser-
voir. When a rock is stressed it deforms and the stress is transferred far beyond the
injected fluid and the injection reservoir to the surrounding formations. How much
and how it deforms depends on the mechanical properties. If, for instance, the stress
is high enough it can also fail, and weaknesses such as fractures and faults can slide,
creating new leakage pathways for CO2, and it is therefore necessary to avoid that the
stress increases above the fracture pressure limit, or rock strength, or friction of fault-
/fracture planes. When the stress state of a rock is altered, its physical properties can
also change. However, throughout this study mechanical properties will be assumed
constant.

In this chapter various typical failure mechanisms of rocks will be reviewed. Which
of the mechanisms is most likely to occur is determined by the stress field. The tensor
character of the coupling between pore pressure and stress leads to changes in the dif-
ferential stress (difference between the maximum and minimum principal stresses) of
the system, how this relates to possible failure of the rock depends on the stress regime.
Stress distribution/orientation and principal stress components are critical parameters
when evaluating the impact of CO2 injection and this will also be reviewed.

2.2 Failure mechanisms

When concerned with the integrity of the aquifer and caprock, comparing the stress
field to failure criteria is essential. In this section some commonly used failure crite-
ria and failure mechanisms is reviewed, some of these will be used in later chapters
when solving illustrative examples of injection processes. Three modes of failure are
generally considered, see Fig. 2.1:

1. Shear failure of intact rock (red dash-dotted line)

2. Tensile failure of intact rock (red dashed line, σ ′
n < 0)
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3. Reactivation of existing weaknesses, e.g. (cohesionless) faults and fractures (blue
solid line)
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Figure 2.1: Left: Mohr diagram showing various failure modes (modified from Mathias et al.
[70]). The shear failure envelope and fault reactivation are here shown as Coulomb failure
envelopes. The slope of the Coulomb failure envelope, µs [-], is also termed the coefficient of
internal friction, µ f [-] and ϕ f [rad] are the sliding friction coefficient and the friction angle of
a fault/fracture. S0 [Pa] is the cohesion (cohesive strength) and T0 [Pa] is the tensile strength (at
τ = 0). The extensional failure envelope (red dashed line, σ ′

n < 0) is described by the Griffith
criterion, Eq. (2.5), which gives S0 = 2T0. Right: Sketch of a triaxial test, a laboratory test to
measure the mechanical properties of rocks. θ [rad] is the angle between the normal effective
stress σ ′

n and the maximum principal stress σ1.

Fig. 2.1 shows a Mohr diagram of a rock sample. The Mohr circle (black half-
circle in Fig. 2.1) describes the possible states of effective normal stress1, σ ′

n [Pa], and
shear stress, τ [Pa], in a fluid saturated porous sample with pore pressure p [Pa] as
it is subjected to the loads σ1 [Pa] and σ3 [Pa], where σ1 > σ3. Note that there are
an infinite number of possible stress states within a rock, but failure occurs when the
Mohr circle intersects with either the shear failure envelope (red dashed-dotted line), the
fault reactivation envelope (blue solid line) or tensile failure envelope (red dashed line).
Coulomb failure envelopes, or compressive failure envelopes, are defined as straight
lines in a shear-/normal-stress diagram where the slope of the line is the coefficient of
internal friction, µs [-] and µ f [-] for shear failure and fault reactivation, respectively.
Typical values for the friction coefficients are 0.5< µs < 1 and 0.6< µ f < 0.85 [104].
The Coulomb failure envelopes can be obtained from a series of triaxial tests (Fig. 2.1,
right) by varying the confining stresses σ1 and σ3 (and pressure p). The tensile failure
envelope is here exemplified by the Griffith extensional failure envelope [e.g. 104].
When positive stress is compressive the effective stress is expressed as the difference
between the applied stress and the pore pressure inside the sample:

σ ′
n = σn− p (2.1)

1Effective stress is the part of the total stress which is carried by the solid/grains in a porous media and will
be reviewed in detail in section 3.3.
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Expressions for shear stress τ and normal stress σn acting on a plane with angle θ in
terms of principal stress magnitudes can be found in [92]. In 2D they are expressed as
[e.g. 118, 126]:

τ =
σ1−σ3

2
sin2θ , σn =

σ1+σ3

2
+

σ1−σ3

2
cos2θ (2.2)

Expressions for the principal stresses in terms of the spatial stresses are given in App.
F and the stress tensor (of spatial stresses) will be reviewed in chapter 3. The angles in
Fig. 2.1 are related according to:

2θ f = π/2+ϕ f , 2θs = π/2+ϕs (2.3)

As can be seen from Fig. 2.1, reactivation of an existing fault or fracture is normally
more likely to occur before shear failure of intact rock, assuming there are faults and
they are favorably oriented. However, the values of µs and µ f differs between material-
s/rocks and they can intersect such that the likely failure mechanism may also depend
on the magnitude of the normal and shear stress.

Failure criteria

It should be noted that there are many different failure criteria that are described
in the literature, e.g. Griffith, Hoek-Brown, Lade, Drucker-Prager, Tresca, Von Mises
and Barton-Bandis to name a few. Depending on the material, some failure criteria are
preferred to others. The various criteria have different fitting parameters and as more
experimental data become available they can be refined to better describe a particular
rock. However, it is common to present experimental results using Mohr diagrams and
Coulomb failure envelopes [126], as in Fig. 2.1 (left).

The uniaxial/unconfined compression strength (UCS, often denoted withC0) [Pa] is
a commonly used rock property. It can be determined by uniaxial stressing of a sample
(no confining stress: σ2 = σ3 = 0) and the rock strength is defined as the applied load
at failure: C0 = σ1.

The cohesive strength (cohesion), S0 [Pa], is defined as the internal strength of the
sample and can be obtained by the following relation [126]:

UCS= 2S0
[(

µ2
s +1

)1/2
+µs

]
(2.4)

The different failure modes in Fig. 2.1 are illustrated in Fig. 2.2. Which mode that can
occur depends on the stress-state.
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Figure 2.2: Sketch of the various failure modes in Fig. 2.1 (modified from Sibson [104]).
The angles δi are related to the angles θi in Fig. 2.1 according to δi = π/2− θi (note that
0 < δe < δs). With reference to Fig. 2.1 (left) the failure mechanisms are: (a) Tensile failure
at τ = 0, (b) Tensile shear (red dashed line), (c) Shear failure (red dashed-dotted line) and (d)
fault reactivation (blue line).

Griffith criterion for tensile failure can be expressed as [e.g. 104]:

τ2 = 4T0σ ′
n+4T 2

0 , p= σn+
4T 2

0 − τ2

4T0
(2.5)

In order for tensile failure and fractures to develop, the Mohr circle must touch the
failure envelope where the shear stress is zero and the differential stress is less than 4T0
(see Fig. 2.2 (a)):

(σ1−σ3)< 4T0 (2.6)

A conservative assumption is that a tensile fracture could develop as soon as the fluid
pressure exceeds the least compressive principal stress and tensile strength T0, leading
to a critical fluid pressure for fracturing according to:

p= σ3+T0 (2.7)

For 4T0 < (σ1−σ3)< 6T0 the rock can fail in a mixed mode of shear and tensile failure.
The angle of the failure band is typically between tensile failure plane (pependicular to
σ3) and shear failure plane: 0< δe < δs, indicated by the shaded area in Fig. 2.2 (b).

The onset of shear failure, according to Coulomb failure criteria, occurs when (σ1−
σ3)> 6T0, see Fig. 2.2 (c):

τs ≥ S0+σ ′
nµs, p= σn+

S0− τs
µs

(2.8)

and similarly for faults, reactivation (of cohesionless faults; S0 = 0), Fig. 2.2 (d), occurs
when

τ f ≥ σ ′
nµ f , p= σn−

τ f

µ f
(2.9)
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In general, a failure of a favorably oriented fault or fracture can occur when (see
e.g. Jaeger et al. [58], Vidal-Gilbert et al. [118], Zoback [126]):

σ ′
1

σ ′
3
=

σ1− p
σ3− p

≥

[√(
µ2
f +1

)
+µ f

]2
(2.10)

where positive stress is defined compressive. Thus, by calculating the changes in the ef-
fective stress field as a result of for instance injection-induced changes in fluid pressure,
the Coulomb failure criterion can be used to evaluate the likelihood of shear slip reac-
tivation and associated induced (micro-) seismicity as slip will first occur in optimally
oriented fractures or faults. If one assume randomly oriented cohesionless fractures of
ϕ f = 30◦ (a typical and conservative value for failure [95]), the onset of slip can be
expressed by Eq. (2.10):

σ ′
1 ≥ 3σ ′

3 (2.11)

This implies that shear slip, and therefore induced seismicity, can occur whenever the
maximum principal effective stress is 3 times higher than the minimum principal effec-
tive stress.

Slip-tendency Ts [-] analysis can also provide a means for assessing relative risk of
earthquakes and fault slip:

Ts =
τ
σ ′
n

(2.12)

Compared to Eq. (2.9), it can be seen that the sliding friction coefficient µ f is the
value of Ts when a cohesionless fault starts to slip [75].

When a material approaches tensile failure, when the Mohr circle in Fig. 2.1 is
shifted to the left due to increasing pore pressure, there is a transition between tensile
failure and shear failure (tensile shear, Fig. 2.2 (b)), depending on where the Mohr cir-
cle intersects the failure envelope. This can also be described by the dilation tendency
Td [-] which is the ability of a fracture to dilate and thus to serve as a potential path for
fluid flow. The ability to transmit fluid is directly related to the aperture, which is in turn
related to the effective normal stress acting on the fracture. The effective normal stress
imposed on a fracture depends on the magnitude and direction of the principal stress
relative to the fracture plane and the dilation tendency Td [-] for a surface is defined as
[45]:

Td =
σ1−σn

σ1−σ3
(2.13)

Faults oriented perpendicular to the minimum principal stress are therefore most likely
to dilate and behave in a transmissive manner.

Both slip and dilation tendency analysis (Eqs. (2.12) and (2.13)) are techniques to
visually assess the stress states and potential fault activity. However, the distinction
is that the dilation tendency Td expresses the potential for dilation of fractures and
thereby increase in permeability, whereas slip-tendency Ts expresses the potential for
failure through fracture slip.
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A few ways to determine failure or risk of events that can be crucial to successful
CO2 storage has been given above. These criteria define the upper bound to maximum
injection rate and storage capacity and are therefore key considerations when designing
a CO2 storage project. As shown, this relate very much to the stress regime and stress
state through the principal stresses σ1, σ2 and σ3, which will be reviewed next.

2.3 Stress regimes

The surface of the earth is normally considered a principal stress plane. Since principal
stresses are always perpendicular to each other, the surface of the earth, and by assump-
tion to some shallow depth below the surface, has two horizontal principal stresses, of-
ten termed σH and σh [Pa]. The capital H indicates that the magnitude of σH > σh.
The third principal stress is normally considered to be the vertical stress; σv [Pa] and
is approximately the weight of the rock. The magnitude and order of these principal
stresses must be measured and can vary between locations.

Faults are geological fractures in a rock where the two blocks are displaced relative
to each other and a principle in structural geology is that the type of faulting is related
to the stress field which has three principle stress components; σ1 > σ2 > σ3. The An-
dersonian classification [6] defines three types of faults and associated stress regimes.
Depending on which of the principal stresses is in the vertical direction, the following
main faults/stress regimes can be defined:

• Normal faulting/extensional stress regime:

– σv > σH > σh, see Fig. 2.3, (a).
– failure on steeply dipping planes at < 45◦ to σ1 (the vertical stress)

• Reverse (thrust) faulting/compressional stress regime:

– σH > σh > σv, see Fig. 2.3, (b).
– failure on shallowly dipping planes at < 45◦ to σ1 (the maximum horizontal
stress)

• Strike-slip or wrench faulting/strike-slip stress regime:

– σH > σv > σh, see Fig. 2.3, (c).
– failure is horizontal on near-vertical planes striking/trending< 45◦ to σ1 (the
maximum horizontal stress)

Note that the angle of failure, 45◦, is the theoretical value, typically failure occurs at
angles of 30◦. Note also that intermediate stress regimes can occur between (1) exten-
sional and strike-slip stress regimes, resulting in a combination of normal and strike-
slip faulting, and (2) between compressional and strike-slip stress regimes, resulting in
a combination of reverse and strike-slip faulting.

Knowledge of the stress state allows the identification of fault orientations that has
the greatest potential for reactivation. Note that the stress-regime can change during
production/injection, especially when the stress state is close to the limit between the
various regimes.
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Figure 2.3: Andersonian fault classification (figure is modified from [58]). (a) Normal, (b)
reverse (thrust) and (c) strike-slip stress regimes. The intermediate principal stress is perpen-
dicular to the plane shown in the figure.

The effect of stress arching; the transfer of stress, is an important aspect of stress
analysis. When stress is induced in the reservoir, e.g. by injection or production, some
of the stress will also be transferred to the overburden and underburden, even if the
pore pressure does not change outside the reservoir. Due to the tensor character of
stress, changes in pore pressure and deformation leads to changes in the differential
stress (difference between the minimum and maximum principal stresses) of the system
which can be essential for fault reactivation. Imagine the depletion of an oil-field, as
illustrated in Fig. 2.4, and assume further that the permeability inside the reservoir
is high compared to the outside of the reservoir such that the pressure drop is mainly
inside the reservoir. This is essentially the consolidation model by Geertsma [48],
noting that the Geertsma model is assuming constant mechanical properties everywhere
(see App. C.1 for details and examples). The depletion causes the reservoir to contract
and consequently the surface subsides. The open arrows in Fig. 2.4 (a) illustrates the
horizontal strain at the surface and shows that when the reservoir contracts, or "caves
in", there is compression of the subsurface above and below the reservoir, whereas the
flanks at the surface experiences extension.
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(a) Fault activation developing around a de-
pleting reservoir (from Segall [101]).
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(b) Change in horizontal stress due to deple-
tion. Depth and distance in units of reservoir
depth. Stress contours in MPa. White dashed
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Figure 2.4: (a) During depletion, the stress above and below a reservoir is compressive; pro-
moting reverse/strike-slip faulting and reactivation of shallowly dipping fractures/faults. On
the flanks the stress is extensional; promoting normal faulting and reactivation of steeply dip-
ping fractures and faults. (b) A simple model of production (that can be solved by Geertsma’s
nucleus of strain model, see App. C.1). White dashed line indicate zero change in horizontal
stress.

A schematic poroelastic model of the depleting reservoir is shown in Fig. 2.4 (b).
The reservoir (white rectangle) is depleted and the white dashed line indicate the zero-
change in horizontal stress. The areas of compression and extension are indicated,
noting that extensional stress is positive. In a reverse faulting stress regime, compres-
sion promotes activation of shallowly dipping fractures/faults and in a normal faulting
stress regime, extension promotes steeply dipping fractures/faults. This concept has
been applied to several case-studies with good correlation between theoretically and
observed seismicity [101, 126]. Detailed stress analysis is the topic for the next chapter
3.

2.4 Stress approximations

Here two first order approximations of stress is described. The first method is the stress
state-method, or k0-method. The ratio k0 between the effective minimum horizontal
stress, (σh− p) and the effective vertical stress (σv− p) has been widely used to de-
scribe the state-of-stress in sedimentary basins [1, 44, 54, 112]:

k0 =
σh− p
σv− p

(2.14)

The vertical stress σv in a point at elevation d can often be approximated as the total
weight of the overlying rock (including any formation fluids):

σv = g
∫ D0

d
ρb(z)dz (2.15)
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where z [m] is the vertical coordinate direction, g [m/s2] is the gravitational constant
andD0 [m] is the elevation of the surface, ρb [kg/m3] is the bulk density of the overlying
rock that (usually) changes with depth. Rearranging Eq. (2.14) yields:

σh = k0σv+(1− k0)p (2.16)

It is known that changes in pore pressures also affects the horizontal stress while the
vertical stress, which is in most cases simply the weight of overburden, is largely un-
affected. This can be justified given that the earths surface is a free surface where the
strain is allowed to absorb any change in pore pressure while there are constraints in
lateral strains. Hence, total vertical stress is an absolute limit to pore pressure because
pore pressure larger than vertical stress (and tensile strength: p≥ σv+T0) will induce
horizontal tensile fractures, see also Eq. 2.7.

The second approximation is often referred to as the stress path or pore pressure-
stress coupling. For thin, laterally extending reservoir, and by assuming the following:
horizontal strains are negligible, total vertical stress is constant and isothermal condi-
tions, it can be derived that change in horizontal stress is proportional to the change in
pore pressure according to (see e.g. [102]):

∆σh

∆p
= b

1−2ν
1−ν

,
∆σH

∆p
= b

1−2ν
1−ν

(2.17)

where b [-] is the Biot’s coefficient, or effective stress parameter, and ν [-] is the Pois-
son’s ratio of the rock. Biot’s coefficient b is often assumed to be equal to 1 and is
therefore often left out of the expression. It is Eq. (2.17), which states the correlation
between the change in horizontal stress to the change in pore pressure, that is often re-
ferred to as the stress path or pore pressure-stress coupling. Differentiating Eq. (2.16)
with respect to pore pressure p yields:

dσh

dp
= (1− k0) (2.18)

Comparing Eq. (2.18) with Eq. (2.17) it can be seen that (for b= 1):

k0 =
ν

1−ν
(2.19)

which can be rearranged to ν = k0/(1+ k0). For Poisson’s ratio ν = 0.25, the ratio
∆σh/∆p = 0.67 (and similarly from Eq. (2.18)), which is comparable to values mea-
sured in the field [44, 54, 112].

The effect of changing the pore pressure in the three typical stress regimes; normal,
reverse and strike-slip faulting regimes, are shown in a Mohr diagram in Fig. 2.5. The
state-of-stress value k0 is calculated from the initial stress state (black dashed lines).
Upon changing the pressure, the various stress terms can be updated to [3]:

σ ′
v = σ ′0

v −∆p (2.20)

σ ′
h = σ ′0

h+
∆σh

∆p
∆p−∆p (2.21)

σ ′
H = σ ′0

H +
∆σH

∆p
∆p−∆p (2.22)
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and the resulting Mohr circles, after decreasing or increasing pressure and updating the
principal stresses, are plotted in the same diagram, blue and red curves, respectively.
Note that total vertical stress typically does not change with change in pressure (because
the weight of the rock remains unchanged).
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Figure 2.5: Mohr diagram for various stress regimes; normal, reverse/thrust and strike-slip
faulting regimes, respectively, and the effect on the total principal stress components with a
change in pore pressure p. For a given initial state of stress (black dashed line) the effective
horizontal differential stresses changes with increasing pore pressure (red line) and decreasing
pore pressure (blue line) according to Eqs. (2.20)-(2.22). Figures are modified from [3].

It can be seen that, for a normal faulting stress regime, the effective vertical stress
decreases more rapidly (proportional to the pore pressure) than the effective minimum
horizontal stress, causing the Mohr circle to become smaller as the differential stress
is reduced. For decreasing pore pressure the effect is the reversed. Compared to the
normal fault stress regime, the effect is the opposite for the reverse stress regime. How-
ever, for the strike-slip stress regime, both maximum and minimum principal stresses
are horizontal and react equally to the pore pressure change, hence the Mohr circle
simply shifts to the left or right for increasing or decreasing pore pressure, respectively.

The result of this analysis indicate that for the normal faulting stress regime, the
pore pressure-stress coupling favor the formation of tensile fractures with increasing
pore pressure rather than reactivation of pre-existing faults. Also, for applications of
injection, normal faulting stress regimes seem beneficial, as the reverse/thrust faulting
stress regime tends to approach the failure envelope more rapidly.

The range of possible principal stress magnitudes for normal, reverse/thrust and
strike-slip faulting stress regimes can also be visualised in an allowable stress region
diagram [126], see example in Fig. 2.6. The allowable stress conditions for a particular
geographic region can be assumed to lie within an area defined by frictional limits.
Frictional limits theory states that the ratio of the maximum to minimum effective stress
cannot exceed the magnitude required to cause faulting on an optimally oriented, pre-
existing, cohesionless fault plane. Thus the frictional limit to stress is obtained from
Eq. (2.10) and the allowable stress region diagram can be drawn by using the following
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relations for the various stress regimes:

Normal faulting:
σ ′
1

σ ′
3
=

σv− p
σh− p

≤
[√

(µ2
f +1)+µ f

]2
(2.23)

Reverse faulting:
σ ′
1

σ ′
3
=

σH − p
σv− p

≤
[√

(µ2
f +1)+µ f

]2
(2.24)

Strike-slip faulting:
σ ′
1

σ ′
3
=

σH − p
σh− p

≤
[√

(µ2
f +1)+µ f

]2
(2.25)

The three Eqs. (2.23), (2.24) and (2.25) has five unknowns, assuming that for an av-
erage reservoir rock µ f = 0.6 [126] and by specifying one of the stress components
or pore pressure, the frictional stress limits can be calculated and the allowable stress
diagram can be constructed.
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Figure 2.6: An example of on an allowable stress region diagram. σH and σh are the maximum
and minimum horizontal stress, respectively. The black cross shows the stress state at In Salah,
Algeria (at CO2 injection well KB-502 [76]); σv = 44.5MPa, σH = 49.9MPa, σh = 30.8MPa,
and pore pressure (before CO2-injection started) p = 19.2 MPa. From Eq. (2.14) the stress
state k0 = 0.46. The thick black line indicates the failure envelope for a friction coefficient
µ f = 0.6. It can also be seen that the stress state is in the strike-slip faulting stress regime and
within the allowable stress region of not failing.
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Chapter 3

Poromechanics

3.1 Introduction

Poromechanics is the study of the mechanical deformation of a fluid-saturated porous
medium. Porous media are often considered as solids permeated with intercon-
nected pores that are saturated with a fluid. As was seen in chapter 2, stress is af-
fected by change in pore pressure, thus fluid flow and geomechanics are coupled pro-
cesses. Poroelastic behavior can be divided into primary and secondary coupling effects
[96, 119]. The primary coupling effects occurs through deformation and pore fluid in-
teractions and relate to changes in the pore volume and the volumetric strain rate, see
Fig. 3.1:

(i) Change in stress causes a deformation of the pore space that affects the fluid pres-
sure or fluid mass.

(ii) Change in fluid pressure or fluid mass changes the effective, causing the porous
material to deform.

The secondary coupling considers indirect effects of change in pore volume and volu-
metric strain:

(iii) Change in the stress causes a change in the hydraulic properties of the rock mass.

(iv) Change in the pore fluid pressure causes a change in the mechanical properties of
the rock mass.

Both primary and secondary coupled processes may be fully reversible, the sec-
ondary effects (iii) and (iv) will not be considered in this study. Note how the couplings
between both processes are coupled to the pore volume change. The two processes can
be de-coupled, and greatly simplify any numerical analysis, if a proper correlation for
pore volume change can be defined and in the literature many material properties have
also been found to correlate with pore volume or change in pore volume.
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Figure 3.1: Hydromechanical couplings in geological media. (i) and (ii) are direct couplings
through pore volume change, whereas (iii) and (iv) are indirect couplings through changes in
material properties (modified from Rutqvist and Stephansson [96]).

The concept of poromechanics is based on early work by Karl von Terzaghi and
later Maurice Anthony Biot [13–17], now known as Biot’s theory of linear poroelastic-
ity. Terzaghi assumed the mechanical and hydraulic processes could be treated uncou-
pled where consolidation could be determined by evaluating the pore pressure only. See
App. C.3 for more details on the theory and an example. Biot’s theory of linear poroe-
lasticity follows from the combination of Hooke’s law with the momentum balance
equations for the pore structure, which will be reviewed in this chapter, and Darcy’s
law with the fluid mass conservation equations, which will be reviewed in chapter 4
for single- and two-phase flow. The theory by Biot has later been further developed,
by e.g. Detournay and Cheng [40] and Rice and Cleary [93]. The theory captures the
primary coupling in Fig. 3.1. Based on work by Van Der Knaap [114], who showed
that the compressibility of a solid matrix in a porous media is partially linear, Biot [17]
extended his theory by introducing the concept of semilinearity. Although the consti-
tutive relations are not strictly valid for a nonlinear inelastic media, one can make the
assumption that the properties are piecewise constant such that the elastic moduli are
meaningful quantities at small increments of stress [8, 12, 36].

In this chapter a brief review of the concepts of linear elasticity (for small deforma-
tions) and how the constitutive relations for stress and strain are affected by temper-
ature (thermoelasticity), pore pressure (poroelasticity) and both temperature and pore
pressure (thermoporoelasticity) are given. It is important to note that rocks in general
exhibit nonlinear, partly irreversible and sometimes viscous mechanical behaviour, par-
ticularly when the pore pressure is high or the rock is unconsolidated (e.g. clay or sand).
Despite this, it will in the remainder of the thesis be assumed that the rock behaves per-
fectly elastic, and acknowledge that it only provides an approximate description of the
real behavior.
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3.2 Linear elasticity

By balancing all forces acting on all faces of an elementary volume the stress state in a
material point as the dimensions of the cube approaches an infinitesimal value, see Fig.
3.2, can be derived.
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Figure 3.2: Forces acting on an elementary volume. Note that only the y-direction components
of the stress are shown. σy is the outward pointing normal stress and σxy and σzy are shear
stresses. The differences in stress magnitude between opposing faces are indicated with the
addition of ∆σy, ∆σxy and ∆σzy.

In matrix form the stress tensor looks like:

σ =

σx σxy σxz
σyx σy σyz
σzx σzy σz

 (3.1)

where the first subscript indicate the face on which the stress acts and the second sub-
script in which direction it is pointing, e.g. σxy [Pa] represents the stress pointing in the
y-direction acting on the surface with a normal vector pointing in the x-direction. It can
be shown that Eq. (3.1) holds for any orientation of the coordinate axes, e.g. Nordal
[80].

Conservation of momentum (Cauchy’s first law of equilibrium/motion):

−∇ ·σ = f (3.2)

Here f [N/m3] is the body load vector defined as:

f= ρg−ρa (3.3)

where a [m/s2] is the acceleration vector in dynamic problems (for static/quasi-static
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problems a= 01), g [m/s2] is the gravity vector

g= gez = g

 0
0
−1

 (3.4)

where ez [-] is the unit vector in the vertical direction and g [m/s2] is the gravity con-
stant. The volume-averaged total mass density ρ [kg/m3] is (typically) given by:

ρ = (1−ϕ)ρs+ϕ
np

∑
α
sαρα (3.5)

where α denotes the fluid phase, np [-] is the number of fluid phases and sα [-] is the
fluid volume fraction (saturation) of fluid phase α (see Eq. (4.40), two-phase flow is
introduced in chapter 4.3).

A constitutive relation is the relation between two physical quantities, in structural
analysis it relates the stresses to strains and for a linear elastic problem it can be ex-
pressed as:

σ = λεvI+2Gε (3.6)

where εv [-] is the volumetric strain, ε [-] is the strain tensor, λ [Pa] and G [Pa] are
the Lamé coefficients and I [-] is the identity matrix. The strains and displacements are
related according to:

ε =
1
2

(
∇u+(∇u)T

)
(3.7)

where u = [u,v,w]T and u, v and w [m] are the displacements in x-, y- and z-direction,
respectively. By combining Eqs. (3.6) and (3.7) it is obtained that

σ = λ (∇ ·u)I+G
(

∇u+(∇u)T
)

(3.8)

where ∇u can be expressed as2:

∇u=


∂u
∂x

∂u
∂y

∂u
∂ z

∂v
∂x

∂v
∂y

∂v
∂ z

∂w
∂x

∂w
∂y

∂w
∂ z

 (3.9)

For small deformations, the volumetric strain εv in Eq. (3.6) is given as the sum of the
normal strains (diagonal in Eq. (3.7)):

εv = ∇ ·u=
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= εx+ εy+ εz (3.10)

1a= ∂ 2u/∂ t2, where u= [u,v,w]T and u, v and w [m] are the displacements in x-, y- and z-direction, respec-
tively.

2The component (∇u)i, j in Eq. (3.9) is here defined as ∂u j/∂xi, this is also frequently defined in the literature
as ∂ui/∂x j.
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3.3 Poroelasticity

Fluid flow and geomechanics are coupled processes and a hydromechanical model de-
scribes the interaction between the solid phase of the porous media and the fluid phase
in the pores. Poroelasticity describes the constitutive behavior of a fluid saturated rock
and usually refers to the linearized theory of poroelasticity, in which the compressibil-
ities and the other constitutive coefficients are independent of stress. There are many
physical processes in which the stress increments are small enough that this restric-
tion is of little consequence since the governing equations can always be linearized for
small stress increments, as noted in chapter 3.1.

Central in poroelasticity is the concept of effective stress first proposed by [109,
110]. Effective stress, often denoted with an apostrophe, σ ′, is the stress carried by the
solid matrix as opposed to the pore pressure, which is carried by the fluid in the pores.
In other words; the effective stress is the part of the total stress that causes deformation
of the porous media and is expressed by the constitutive relations in Eq. (3.6) for
elastic deformation and Eq. (3.27) for thermoelastic deformation. Effective stress is
often expressed as the difference between the total stress σ and the pore pressure p
[Pa] according to:

σ ′ = σ − pI (3.11)

where positive confining stress is compressive, as illustrated in Fig. 3.3 (right). For an
extensional stress regime a negative confining stress is compressive, see Fig. 3.3 (left).
Note that the fluid is in a compressive state for positive fluid pressure, e.g. the density
of a fluid increases when fluid pressure increases.

p
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p
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Extensional

p
s

p
con

Compressive

Figure 3.3: Sketch of a porous medium with sign conventions for confining pressure pcon
[Pa] (stress) and the pore pressure acting on the solid, ps [Pa]. (Left) Positive stress pcon is
extensional. (Right) Positive stress pcon is compressional.

The definition of effective stress σ ′ depends on the sign convention of confining
stress and pore pressure. The total stress σ of a porous medium with incompressible
grains is given by:

Compressive: σ = σ ′+ psI (3.12)
Extensional: σ = σ ′− psI (3.13)

where ps [Pa] is the stress the pore fluid exerts on the solid.
For a poroelastic material where the grains are compressible, the effective stress,

now denoted as σ ′′ (as in Lewis and Schrefler [64]), is defined in Biot’s theory of linear
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poroelasticity and is given by:

Compressive: σ = σ ′′+bpsI (3.14)
Extensional: σ = σ ′′−bpsI (3.15)

where b [-] is Biot’s coefficient that is defined as3:

b= 1− K
Ks

(3.16)

and Ks [Pa] is the bulk modulus of the grains; the solid constituents of the porous
medium. It should be noted that although both σ ′ and σ ′′ are expressed by the same
constitutive relations: Eq. (3.6) for elasticity and Eq. (3.27) for thermoelasticity, they
are not equal in magnitude, hence the different notations. However, the total stress σ
will be the same, regardless of the compressibility of the solid constituents.

In the following, and in this thesis, the extensional stress convention will be used
where the stress is positive for tensile strain. Thus, by inserting the constitutive relation
for linear elasticity, Eq. (3.6), for the effective stress σ ′′ in Eq. (3.15), the poroelastic
stress tensor can be expressed as:

σ = λεvI+2Gε −bpsI (3.17)

A first order approximation and a validation model for poroelasticity is given by
Geertsma [48], see App. C.1 for two examples.

A useful relation that will be used later, in deriving the equation of state (EOS) for
the solid phase, is the first effective stress invariant, I′1 [Pa]: I′1 = tr(σ ′). From Eq.
(3.13) (for an extensional stress regime):

I′1 = tr(σ + psI) (3.18)

For a poroelastic material where the grains are compressible, the total stress is ex-
pressed by Eq. (3.15):

I′1 = tr(σ ′′+(1−b)psI) (3.19)

By using that σ ′′ is expressed by the constitutive relation for thermoelasticity, Eq.
(3.27), the first effective stress invariant I′1 can thus be expressed as:

I′1 = 3K
(

∇ ·u+ ps
Ks

−βsT
)

(3.20)

3The Biot’s coefficient b can also be interpreted as an effective stress coefficient, indicating how much of the
pore pressure that can be transferred to the solid, and this depends on the contact area between the fluid and the
grain. In compression, this contact area can decrease, but cementation of a rock can also reduce this area and in
effect lower the value of b [2].
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Pore pressure in multi-phase flow

Bishop [18] derived a general expression for the effective stress in unsaturated soil
according to:

σ ′ = σ − paI+χ(pa− pw)I (3.21)

where pa [Pa] and pw [Pa] were the fluid pressure in air and water, respectively. χ =
χ(sw) [-], called the Bishop parameter, depends on the water saturation sw of the soil.
A common approximation is to use that χ = sw such that ps can be expressed as the
saturation averaged partial fluid phase pressure according to:

ps =
np

∑
α
sα pα (3.22)

where α [-] denotes the fluid phase, np [-] is the number of phases and sα [-] and pα
[Pa] are the saturation and pressure of fluid phase α , respectively, and

np

∑
α
sα = 1 (3.23)

For two-phase flow this can also be justified by considering a force balance and
equating the upward and downward acting forces on an idealized porous rock, as illus-
trated in Fig. 3.4.
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Figure 3.4: Stress on a pore pressure-grain contact. pcon [Pa] is the confining stress and pavg
[Pa] is the average effective stress acting against confining stress [modified from 125]. Note
that the arrows do not represent scaled vectors, but are just indicators of stress terms and
directions.

The balance of forces around an arbitrary pore (shown cut in half in Fig. 3.4 left),
can be expressed as:

pcon = (1−ϕ)pavg+ϕ ps (3.24)

Similar argument can be extended to the pore pressure (Fig. 3.4, right) by decompos-
ing the fluid in the pore space into a wetting and a non-wetting fraction (according to
saturation) to obtain

ps = swpw+ snpn (3.25)

which is the same as Eq. (3.22) for np = 2.
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From the definition of the capillary pressure, which relates the phase pressures ac-
cording to pc = pn− pw (see App. E for details and various expressions encountered in
the literature), it can be seen that the capillary suction has a direct effect on the effective
stress in the rock:

ps = pw+ snpc (3.26)

However, for a water-wet rock or when capillary pressure can be ignored (pc ≪ ps),
e.g. when non-wetting saturation becomes small, a reasonable approximation can be
that ps ≈ pw.

3.4 Thermoelasticity

The theory of thermoelasticity accounts for the effect of changes in temperature on
the stresses and strains in a rock. It is well described in the literature, e.g. Coussy
[36] and Jaeger et al. [58], in this thesis, the description from Jaeger et al. [58] is
adopted. The theory is analogous to the theory of poroelasticity, which is described
in details in Sec. 3.3, with temperature playing a role similar to that of pore pressure.
For instance, a change in temperature, or a change in pore pressure, will both give rise
to change in normal strains. Despite this, the effect of mechanical deformation on the
temperature field is often ignored, whereas the effect of mechanical deformation due
to changes in pore pressure cannot, in most instances, be ignored [58]. Thermoelastic
effects are generally concentrated around injectors/producers while poroelastic effects
extends much farther and therefore affects a much larger area/volume [66].

Consider a rock that is initially unstressed and at a uniform temperature T0 [◦C].
This state can be taken as the reference state, where the strains are usually defined
to be zero. If the temperature of a rock is increased, to T1 [◦C], and no other forces
act on the rock, it will expand. Under the assumption of linearity, this temperature
rise will induce thermal strains εth in the rock according to εth = β (T1− T0), where
β [1/K] is the linear/uniaxial thermal expansivity coefficient (although β can also be
a tensor). For an expanding material, β is defined to be positive number, although a
minus sign is included when extensional strains are considered to be negative (typical
in rock mechanics).

Thermoelastic stress can be defined as [e.g. 58]:

σ = λεvI+2Gε −βsKT I (3.27)

where T [K] represents the change in temperature (T1− T0) and positive stresses are
extensional, K [Pa] is the bulk modulus of the porous medium and βs = 3β [1/K] is a
tensor. It can be seen that if the rock is constrained the effective stress is zero and the
change in total stress σ will be equal to the thermal stress: σ =−βsKT I.

From Eq. (3.27) it can be seen that thermal stresses can contribute to an order of
βsKT , which can be significant. It can also be seen that thermoelastic effects increases
with increasing rock mechanical stiffness. Given typical values K = 10 [GPa] and
βs = 10−5 [1/K] (see e.g. Schön [100] for more properties of rocks), a thermal stress
of approximately 0.1T MPa/◦C will be induced. High temperature differences can be
expected, for instance, around underground radioactive waste canisters, during cold
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water injection of geothermal wells (for pressure maintenance) and in various natural
geothermal processes [58] and in such systems, thermally induced stresses may be of
considerable importance. An example of this on a CO2 storage system will be described
in more details and illustrated in chapter 5.

3.5 Thermoporoelasticity

Thermoporoelasticity considers the effect of both temperature and pore pressure on
the mechanical behavior; combining the equations of momentum balance, mass and
energy conservation for the phases. The thermoporoelasticity stress tensor is given by
(for positive extensional stress):

σ = λεvI+2Gε −βsKT I−bpsI (3.28)

Eq. (3.28) can be obtained by inserting the constitutive relation for linear thermoelas-
ticity in Eq. (3.27) for the effective stress σ ′′ in Eq. (3.15).

When injecting a cold fluid (increasing pressure ps and reducing temperature T ),
e.g. CO2 storage, it can be seen that the combined effect on the stress of the last
two terms in Eq. (3.28) is reduced. Thus neglecting thermal stress in cold injection
processes can be considered conservative when evaluating the geomechanical integrity
by overestimating the effective stress.

3.6 Navier-Cauchy equations

The governing equations for solving displacement due to linear elastic deformation is
described by the linear elasticity equation, aka. Navier-Cauchy equation. The linear
elasticity equation can be derived by combining the momentum balance equation Eq.
(3.2) with the constitutive relation for linear elastic materials, Eq. (3.6). In terms of the
Lamé coefficients it can be expressed as (see App. G for derivation):

(λ +G)∇(∇ ·u)+G∇2u+ f= 0 (3.29)

Similarly, by combining the momentum balance equation Eq. (3.2) with the other
(linear) constitutive relations described earlier for poroelasticity, thermoelasticity and
thermoporoelasticity, Eqs. (3.17), (3.27) and (3.28), respectively, the following gov-
erning equations can be derived:

poroelasticity: (λ +G)∇(∇ ·u)+G∇2u−b∇psI+ f= 0 (3.30)

thermoelasticity: (λ +G)∇(∇ ·u)+G∇2u−βsK∇T I+ f= 0 (3.31)

thermoporoelasticity: (λ +G)∇(∇ ·u)+G∇2u−b∇psI−βsK∇T I+ f= 0 (3.32)

Note that the material properties in the various governing equations above can also
be tensors.
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Decoupling momentum balance and flow equation

There are many attempts in the literature to determine if the equations for poroelasticity
and porous media flow need to be solved simultaneously (fully coupled) or if they
can be decoupled and solved separately (explicitly coupled) or sequentially (iteratively
coupled) [39]. However, there are cases where these equations truly decouples, this is
reviewed below, but in cases where they do not, solving repeatedly and/or sequentially
can sometimes give a satisfactory accurate approximation. Explicitly coupled approach
often means that the fluid flow is solved first, assuming some simplified mechanical
behavior (e.g. using one of the decoupling strategies discussed below), and the resulting
pressure profile is then used as input for solving the mechanical process at all or a
selection of time steps from the flow simulation. The iteratively coupled approach
often means that the two equation systems are solved in an iterative loop; paths (i)
and (ii) in Fig. 3.1 in sequence. This latter approach has many possible algorithms.
The goal is to save time and reduce the size of the numerical problem to be solved,
partly because solving two small problems is generally faster than solving one large
problem, but also because a satisfactory accuracy can sometimes be achieved even
without solving for all the processes at every time step in a simulation. However, it
is difficult to know when any of the two approaches will work satisfactory. Without
going to deep into the literature on this, Dean et al. [39] concluded from four sample
problems that no method is superior and that the choice of method comes down to
ease of implementation, program availability, numerical stability and computational
efficiency. However, as mentioned above there are cases where these processes truly
decouple:

1. Steady state, since the mechanical coupling term in the equation for flow disap-
pears along with all other time derivatives (single and two-phase flow equations
will be introduced in chapter 4)

2. A highly compressible fluid; the compressibility of the fluid dominate the storage
term and in a rigid material, e.g. a rock, the deformations can be negligible

3. An irrotational displacement field in an infinite or semi-infinite domain without
body forces. For negligible changing body-loads it corresponds to uniaxial strain
under constant vertical stress, see 4. below

4. A state of uniaxial strain and constant vertical stress. The horizontal deforma-
tions are assumed negligible compared to vertical deformation and the vertical
total stress is constant, then the volumetric strain becomes equal to the vertical
strain and the momentum balance equation simplifies to a linear relation between
volumetric strain, pore pressure and temperature

Some of these decoupled cases will be evaluated and compared in section 4.2, but
first, irrotational displacement and uniaxial strain (3. and 4.) will be described in more
detail.
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Irrotational deformation

Deformation is considered irrotational when:

∂u
∂y

=
∂v
∂x

,
∂u
∂ z

=
∂w
∂x

,
∂w
∂y

=
∂v
∂ z

(3.33)

This reduces Eq. (3.29) to:

(λ +2G)∇(∇ ·u)+ f= 0 (3.34)

In elastodynamics this leads to the three-dimensional wave equation [e.g. 52, Ch.
9.11,]. Applying Eq. (3.33) on the constitutive relation for thermoporoelasticity, Eq.
(3.32), it can be obtained that

∇((λ +2G)εv−bps−βsKT ) = 0 (3.35)

when using that that εv = ∇ ·u. A useful application of this is the one-dimensional case,
or in uniaxial displacement (and consolidation), where the only equation left to solve
is the uniaxial component, e.g. strain in z-direction.

Uniaxial displacement

An important approximation which justifies an uncoupled analysis is the uniaxial strain
approximation. In this approximation, horizontal deformations are assumed negligible
(compared to vertical strain) and the vertical total stress is assumed to be constant.
When the horizontal deformations are set equal to zero, the volumetric strain is equal
to the vertical strain and the remaining term of Eq. (3.35) is:

∂
∂ z

[(λ +2G)εv−bps−βsKT ] = 0 (3.36)

Assuming that the vertical momentum is negligible (due to negligible change in vertical
stress), the volumetric strain can be expressed as:

εv =
bps+βsKT

λ +2G
(3.37)

The assumption is widely used in analytical solution, e.g. Geertsma [48], Mandel
[69], Terzaghi et al. [111] (see App. C for examples), but also in reservoir models, as an
approximation when the lateral extent of the reservoir is much larger than its thickness.
It is also used in controlled lab experiments, like the Oedometer test, to obtain material
properties by constraining the displacements in the lateral direction with a rigid jacket.
The quantity λ +2G is also called the Oedometer modulus.
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Chapter 4

Flow equations

4.1 Introduction

The governing equations for single-phase fluid flow in a deformable porous medium
are derived in Biot’s theory of linear poroelasticity, described in Chapter 3, where the
voids of the porous medium are assumed fully saturated by a fluid and the fluid flow in
the deforming porous medium is assumed to be governed by Darcy’s law. In addition to
Darcy’s law, the governing equations are derived from the momentum balance equation,
the mass conservation equations for the solid and the fluid and the energy conservation
equations for the solid and the fluid. Note that the energy conservation equation will
be covered in chapter 5 and here a constant temperature will be assumed. In case of
multi-phase flow there are multiple mass conservation equations for the fluid-phase, in
addition some auxiliary equations is needed, e.g. the equation of state for the fluid and
solid, and the details will be described in the following sections.

There are two basic underlying phenomena in poroelastic behavior, cf. Fig. 3.1:

• Solid-to-fluid coupling (i): occurs when a change in applied stress produces a
change in fluid pressure or fluid mass. The magnitude of solid-to-fluid coupling
depends on the porosity and the compressibility of the bulk frame of the porous
material, the pores, the solid grains and pore fluid.

• Fluid-to-solid coupling (ii): occurs when a change in fluid pressure or fluid mass
results in a change in volume of the porous material.

When only fluid-to-solid coupling is important, the flow field can be solved indepen-
dently of the stress field. However, when the changes in stress feed back significantly to
the pore pressure it is important to consider the two-way coupling, see also discussion
on decoupling in section 3.6.

In this chapter the equations for fluid flow in porous media will be derived: first
for a single-phase fluid, second the two-phase immiscible flow and finally two-phase
partially miscible flow.

4.2 Single-phase flow

Single-phase fluid flow in a deformable porous medium can be described by consider-
ing the mass conservation equations for the fluid phase and the solid phase:
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Fluid phase:
∂
(
ρ fϕ

)
∂ t

+∇ ·
(
ρ fϕv f

)
= R f (4.1)

Solid phase:
∂ [ρs(1−ϕ)]

∂ t
+∇ · [ρs(1−ϕ)vs] = 0 (4.2)

where t [s] is the time, ρs [kg/m3] and ρ f [kg/m3] are the density of the solid con-
stituents of the porous medium and fluid, respectively, and ϕ [-] is the porosity of the
porous medium. v f [m/s] and vs [m/s] are the local volume averaged velocities for
the fluid and the solid, respectively. R f [kg/m3/s] is the volumetric fluid source/sink-
term. The specific discharge q f expresses the volumetric flux relative to the deforming
porous medium and can be expressed according to Darcy’s law:

q f = ϕ
(
v f −vs

)
=− k

µ f

(
∇p f −ρ fg

)
(4.3)

where µ f [Pa·s] is the dynamic fluid viscosity, p f [Pa] is the fluid pressure, k [m2] is
the intrinsic permeability tensor and g [m/s2] is the gravity vector.

When the porous medium is moving, or deforming, the fluid (and solid) moves with
it. Changes in phase properties needs to consider this movement and it is provided by
the material derivative, relative to the solid phase, and is for some property (·) defined
as:

d(·)
dt

=
∂ (·)
∂ t

+vs ·∇(·) (4.4)

The governing equation for single-phase flow in a fully saturated porous media is
a very important one in all reservoir simulations. One might consider the aquifer or
reservoir of interest to be a multi-phase and/or multi-component fluid, but the rest of the
formations can often be treated as single-phase flow regions. Also, far away, the driving
forces for movement might be small, or even negligible, and the main contribution of
the fluid is as a constituent of the porous medium, affecting its stiffness and carrying
part of the stress.

In the literature there are many forms of the governing equation for single-phase
fluid flow, based on various assumptions. One needs to be cautious about which one to
use (which assumptions are used) since it can have a large affect on the fluid pressure.
Here, the general governing equation for single-phase flow in a fully saturated, slightly
deforming porous medium will be derived, then common approximations are applied to
derive some of the various formulations typically encountered in the literature. Finally
the various formulations are compared in a reservoir model example.

4.2.1 Governing equations

The general governing equations for single-phase flow in a fully saturated, slightly
deforming porous media is well described in the literature, e.g. Chen et al. [31], Lewis
and Schrefler [64], Pinder and Gray [89] and others (here the derivations by Pinder and
Gray [89] is used with a modified nomenclature to fit the rest of the text).
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Combining the mass conservation equations for the fluid and solid, Eqs. (4.1) and
(4.2), with the specific discharge, Eq. (4.3), apply the product rule to expand the deriva-
tive terms and the material derivative, Eq. (4.4), the following conservation equations
for the fluid phase and solid phase, respectively, are obtained:

ρ f
dϕ
dt

+ϕ
dρ f

dt
+ϕρ f∇ ·vs+∇ · (ρ fq f ) = R f (4.5)

(1−ϕ)
dρs

dt
−ρs

dϕ
dt

+(1−ϕ)ρs∇ ·vs = 0 (4.6)

Rearranging Eq. (4.6) produces an expression for the change in porosity:

dϕ
dt

=
1−ϕ

ρs

dρs

dt
+(1−ϕ)∇ ·vs (4.7)

To proceed, the equation of state for the various material properties and constitutive
relation for the porous medium is needed. Considering that the fluid density depends
on the fluid pressure, temperature and chemical composition: ρ f = ρ f (p f ,T,C), the
following general expression for the density of a fluid can be obtained by differentia-
tion:

1
ρ f

dρ f

dt
=− 1

Vf

dVf

dt
=

1
ρ f

(
∂ρ f

∂ p f

dp f

dt
+

∂ρ f

∂T
dT
dt

+
∂ρ f

∂C
dC
dt

)
(4.8)

where the following terms can be recognised

1
ρ f

∂ρ f

∂ p f
= c f (4.9)

1
ρ f

∂ρ f

∂T
=−β f (4.10)

1
ρ f

∂ρ f

∂C
= β fC (4.11)

and c f [1/Pa] and β f [1/K] are the compressibility and (volumetric) thermal expansion
coefficient of the fluid, respectively. β fC is the concentration compressibility and has
the inverse unit of C [kg/m3] and expresses how the density of the fluid changes with
change in composition1. Thus, the density of a fluid phase α can be expressed by the
following equation of state:

1
ρα

dρα
dt

= cα
dpα
dt

−βα
dT
dt

+βαC
dC
dt

(4.12)

where the subscript α (for fluid phase α) has replaced the subscript f (for fluid) above.
Considering now the solid phase. The density depends on the pore pressure

acting on the solid, temperature and the first invariant of the effective stress [64]:
1The density variation of a fluid can be a complex function of many dissolved species. Composition can

be expressed as solute concentration, mass- and volume fractions and, in the case of CO2, the concentration
compressibility β fC in Eq. (4.11) will typically vary with temperature, pressure and salinity. This is not a
relevant discussion for single-phase flow and will be revisited in section 4.4 on partially miscible two-phase flow.
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ρs = ρs(ps,T, I′1), the following general expression for the density of the solid can be
obtained by differentiation

1
ρs

dρs

dt
=− 1

Vs

dVs
dt

=
1
ρs

(
∂ρs

∂ ps

dps
dt

+
∂ρs

∂T
dT
dt

+
∂ρs

∂ I′1

dI′1
dt

)
(4.13)

and, similar to the fluid, the following two terms can be recognised [64]:

1
ρs

∂ρs

∂ ps
= cs (4.14)

1
ρs

∂ρs

∂T
=−βs (4.15)

where cs [1/Pa] is the compressibility of the solid and βs [1/K] is the (volumetric)
thermal expansion coefficient for the solid. The last term in Eq. (4.13) can be obtained
by considering the following: The mean effective stress σ ′

m acting on the solid results in
a volume change according to (1/ρs)(∂ρs/∂σ ′

m) =−cs, noting that a positive change in
effective mean stress results in an expansion and therefore a negative change in density.
The first effective stress invariant is related to the mean effective stress σ ′

m [Pa] in the
solid according to I′1 = 3σ ′

m, resulting in ∂σ ′
m/∂ I′1 = 1/3. Since the mean effective

stress on a surface of area A on an arbitrary plane intersecting the porous media will be
distributed over a smaller area equivalent to (1−ϕ)A, the last term in Eq. (4.13) can be
expressed as follows:

1
ρs

∂ρs

∂ I′1
=

1
ρs

∂ρs

∂σ ′
m

∂σ ′
m

∂ I′1
=−cs

1
3(1−ϕ)

(4.16)

A similar discussion as above is done by Bishop [19], Selvadurai and Nguyen [103],
Verruijt [117].

To proceed, a preliminary equation of state for the solid can be summarised as:

1
ρs

dρs

dt
=

1
Ks

dps
dt

−βs
dT
dt

− 1
3Ks(1−ϕ)

dI′1
dt

(4.17)

Note that Ks [Pa] is the bulk modulus of the solid grains in the porous media; Ks = 1/cs.
The time derivative of the constitutive relation for the first invariant of the effective
stress is given by (from Eq. (3.20)):

dI′1
dt

= 3K
(

∇ ·vs+
1
Ks

dps
dt

−βs
dT
dt

)
(4.18)

By combining Eqs. (4.17) and (4.18), a final expression for the equation of state for the
solid material is obtained [64]:

1
ρs

dρs

dt
=

1
1−ϕ

[
(b−ϕ)

1
Ks

dps
dt

− (b−ϕ)βs
dT
dt

− (1−b)∇ ·vs
]

(4.19)

Inserting Eq. (4.19) into Eq. (4.7) results in the following important relation for the
change in porosity:

dϕ
dt

= (b−ϕ)
[
1
Ks

dps
dt

−βs
dT
dt

+∇ ·vs
]

(4.20)
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Inserting Eq. (4.20) into Eq. (4.5) the final form of the non-isothermal, single-phase
flow equation in a slightly deforming porous medium is obtained (noting that ps = p f
for a single-phase fluid, see Eq. (3.22)):

ρ f

[
(b−ϕ)
Ks

+
ϕ
K f

]
dp f

dt
+ρ fb∇ ·vs+∇ · (ρ fq f ) = ρ f

(
ϕβ f +(b−ϕ)βs

) dT
dt

+R f

(4.21)

where q f is given by Darcy’s law, Eq. (4.3) and noting that the concentration com-
pressibilities βαC, Eq. (4.11), is ignored.

There are several ways to derive Eq. (4.21), by analyzing the compressibility of the
various components of a fluid-filled porous media, e.g. [46, 58, 117] and others. Here
the approach described by [64] is adopted.

Eq. (4.21) is coupled to the momentum balance through the volumetric strain rate
term (∇ ·vs) and the material derivatives, and to the heat transport equation (introduced
in chapter 5) through the temperature dependency terms on the right-hand side of the
equation. Assuming isothermal conditions, Eq. (4.21) simplifies:

ρ fS
dp f

dt
+ρ fb∇ ·vs+∇ · (ρ fq f ) = R f (4.22)

where the storage coefficient S [1/Pa] is given by:

S=
[
(b−ϕ)
Ks

+
ϕ
K f

]
(4.23)

In general, Eq. (4.21), or Eq. (4.22), will involve solving the flow equation together
with equations of equilibrium, Eq. (3.2), using the poroelastic or thermoporoelastic
constitutive relation for the stress, Eqs. (3.17) or (3.28), respectively.

4.2.2 Simplifying assumptions

In the literature there are various assumptions used in deriving the equations for single-
phase flow in a porous media, some will be described below. These assumptions will
be compared in a numerical study of an idealized two-dimensional conceptual model
described in App. K.1. For simplicity, isothermal conditions are assumed.

The effect of two parameters will be investigated:

1. The injection pressure, pin j, due to a constant injection rate qin j = 0.05 kg/s/m.

2. The maximum sustainable injection rate, qmax, due to a maximum allowable in-
jection pressure constraint, pmax = 15 MPa after 30 years of injection.

The latter study implies a simple inversion analysis where the injection rate is varied
until the injection pressure after 30 years of injection is equal to the maximum allow-
able injection pressure pmax. The assumptions that will be compared relate to how the
movement/deformation of the solid phase is treated:
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1. Completely rigid solid phase

2. Solid movement is ignored, vs = 0, and porous medium is assumed completely
rigid, but solid constituents are compressive

3. Solid movement of porous medium is considered implicitly through its compress-
ibility

4. Solid movement is considered implicitly assuming uniaxial strain approximation

These assumptions result in the governing equations for isothermal single-phase
flow, Eq. (4.22), to become decoupled from the poroelasticity equation Eq. (3.30).
Therefore, the results will be compared to a fully coupled model where the solid move-
ment is described in detail by also solving the poroelastic equation for the displace-
ments.

Case 1: Completely rigid solid

When treating the solid as completely rigid, properties related to the solid, like poros-
ity and density, is considered constant and the solid movement is ignored, hence it is
only needed to consider the mass conservation for the fluid, Eq. (4.1), which can be
simplified to:

S1ρ f
∂ p f

∂ t
+∇ · (ρ fq f ) = R f (4.24)

and the effective storage coefficient S1 is given as:

S1 =
ϕ
K f

(4.25)

It can be seen that the rate of change of the fluid mass per unit volume is only related to
the change in density of the fluid, in general this is a good approximations for (highly)
compressible fluids (relative to the porous media).

Case 2: No solid movement, rigid frame

No solid movement; vs = 0. All deformation is simply assumed negligible. The change
in porosity is solely due to (de-) compression of the solid constituent. This assumption
simplifies the mass conservation equation for the fluid to:

S2ρ f
∂ p f

∂ t
+∇ · (ρ fq f ) = R f (4.26)

where the effective storage coefficient S2 is given as:

S2 =
b−ϕ
Ks

+
ϕ
K f

(4.27)

Often it is further assumed that the density of solid is only depending on the pore
pressure, and not effective stress, such that S2=(1−ϕ)/Ks+ϕ/K f , which is equivalent
to treating the porous media as a suspension of rigid particles and contradictory to the
assumption of completely rigid solid where b = 1 ⇒ Ks → ∞ ⇒ S2 = ϕ/K f (see Eq.
(3.16)).
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Case 3: Implicit bulk movement

The vs is eliminated from the mass conservation equation of the fluid by using the
mass conservation equation of the solid. After careful rearrangement of the resulting
equation, following the procedure by Pinder and Gray [89, ch. 3.6.3], it is obtained:

ρ f

[
1−ϕ
Ks

+
ϕ
K f

]
dp f

dt
−

ρ f

(1−ϕ)ρs

d [(1−ϕ)ρs]

dt
+∇ · (ρ fq f ) = R f (4.28)

Assuming that the stress exerted on the solid is the pore pressure p f , the bulk com-
pressibility cb [1/Pa] is defined as:

cb =− 1
(1−ϕ)ρs

d [(1−ϕ)ρs]

dp f
(4.29)

Resulting in the mass conservation equation for the fluid (the solid velocity is negligible
such that the material derivatives may be approximated as partial derivatives):

S3ρ f
∂ p f

∂ t
+∇ · (ρ fq f ) = R f (4.30)

where the bulk modulus of the porous medium K = 1/cb, and the effective storage
coefficient S3 is thus given by:

S3 =
1−ϕ
Ks

+
ϕ
K f

+
1
K

(4.31)

Case 4: Uniaxial strain approximation

By assuming that the horizontal strains are negligible, compared to the vertical strain,
and that the change in vertical stresses are negligible, the volumetric strain can be
expressed by Eq. (3.37) (remembering that temperature is constant and pore pressure
ps = p f ):

εv =
bp f

λ +2G
(4.32)

Inserting this expression into Eq. (4.21), and again assuming that the solid velocity is
negligible such that the material derivatives may be approximated as partial derivatives:

S4ρ f
∂ p f

∂ t
+∇ · (ρ fq f ) = R f (4.33)

where the effective storage coefficient S4:

S4 =
b−ϕ
Ks

+
ϕ
K f

+
b2

λ +2G
(4.34)

Note that S4 is the same as the effective storage coefficient in the modified Terzaghi
one dimensional consolidation equation described in App. C.3.
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Results

For linear elastic materials the storage coefficients Si can be calculated from the
Young’s modulus E [Pa], Poisson’s ratio ν [-] and Biot’s coefficient b [-] using the
following relations:

K f =
1
c f

(4.35)

K =
E

3(1−2ν)
(4.36)

λ =
Eν

(1+ν)(1−2ν)
(4.37)

G=
E

2(1+ν)
(4.38)

Ks =
K

1−b
(4.39)

From these expressions, and the material properties in Table K.1, the storage terms
Si for the various cases are calculated and given in Table 4.1.

Table 4.1: Storage coefficients Si for the various cases.

Fully
Coupled Case 1 Case 2 Case 3 Case 4

(Biot) Rigid solid Rigid frame Implicit Uniaxial
Si (S1, S2, S3 and S4), [1/GPa] 0.067 0.043 0.067 0.37 0.20

In the first comparison a constant injection rate qin j is applied and the concomitant
injection pressure, pin j, for various storage coefficients Si are compared. Results are
shown in Fig. 4.1 (left). The solution from the reference model (fully coupled poroe-
lastic model) is shown in thick, black dashed line. Due to the layered structure of the
model, it can be seen that the uniaxial strain approximation solution (magenta line)
compares, as expected, almost perfectly to the reference model. For the other cases it
can be seen that the decoupling of the groundwater flow equation from the poroelas-
ticity equation gives very different pressure responses, see Fig. 4.1 (center). Note that
in case 2 (for completely rigid solid), the deformation is simply ignored. After long
injection times the solutions converge as the models approach steady state.
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Figure 4.1: Results from the comparison study of simplifying assumptions for single-phase
flow. Left: Pore pressure profile at injection well for a constant injection rate. Center: De-
viation in injection pore pressure profile compare to a fully coupled model (two-way, Biot).
Right: Pore pressure profile at injection well for a constant injection rate such that pore pres-
sure is constrained to pmax = 15 MPa after 30 years of injection. See App. K.1 for model
description.

In the second comparison, the maximum sustainable injection rate, qmax, due to a
maximum allowable injection pressure constraint after 30 years, pmax = 15 MPa, is
evaluated. The resulting pressure profile is given in Fig. 4.1 (right), and the corre-
sponding injection rates and total injected amounts are given in Table. 4.2 together
with the deviation from solution from the reference model (two-way, Biot).

Table 4.2: Injection rates and total mass injected after 30 years of constant injection rates
constrained to maximum injection pressure pmax = 15 MPa.

Fully
coupled
(Biot)

Rigid
solid
Case 1

Rigid
frame
Case 2

Implicit
Case 3

Uniaxial
Case 4

Injection rate, [kg/s/m] 0.063 0.0573 0.0591 0.0682 0.0629
Total injection, [ktons/m] 59.6 54.1 55.8 64.5 59.6
Deviation from ref. model
(Biot), [%]

NA -9.2 -6.4 8.3 0.0

It is obvious that the difference in the solution of the models are due to the differ-
ences in the storage coefficients Si, see table 4.1, which is a property that expresses
the aquifers capacity to release a fluid. The only difference between model case 1-4
is the way the displacement of solid material, and thereby also porosity, is interpreted,
resulting in the various expressions for the storage coefficient. Most of the assump-
tions used here are obviously not good, the exception being case 4 (uniaxial). Case 2
illustrates very well the importance of considering deformation, simply ignoring de-
formation completely can underestimate the pore pressure dissipation, resulting in too
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high pore pressure estimates. It is seen how a simple approximation of uniaxial defor-
mation, as in case 4, improves the results substantially. Thus, depending on the purpose
of the model, the examples serves as a reminder that for simplified, yet realistic calcu-
lations, special attention should be on obtaining representative values for the storage
coefficient.

4.3 Two-phase immiscible flow

When multiple fluids with different material properties are occupying the pore space in
a porous medium, the mass conservation equations for the various fluids becomes more
complex. The fluids coexist in the pores; sharing the pore space, where they mix and
dissolve and they can even react with each other. They can also react chemically with
the porous media itself, depending on the chemical composition, to form new species.
Particularly in the case of injecting CO2 into a brine saturated porous medium, the CO2
will partially dissolve in the brine, forming carbonic acid and a subsequent lowering
of the pH. In particular, carbonic acid can potentially react with metal-oxide bearing
materials in the porous medium, forming corresponding carbonates and solid byprod-
ucts, e.g. calcite, magnesite, dolomite, and siderite [106]. The products of mineral
carbonation are naturally occurring, stable solids that would provide storage capacity
on a geological time scale, aka. mineral sequestration [74]. However, these are often
considered slow processes and assumed to play a long-term role in CO2 sequestration
as the carbonates are thermodynamically stable for millions of years [106]. This com-
plex interaction of dissolution of the porous medium and precipitation can for instance
change the porosity and affective the hydraulic and mechanical properties of the porous
medium [122]. In the short-term, it has been shown that the permeability can increase
up to an order of magnitude due to chemical reactions between CO2-rich water and
minerals commonly found in caprocks [7]. On the other hand, the chemical reaction
between the porous medium and the fluid occurs in the vicinity of the fluid-rock in-
terface and the dissolved minerals may be precipitated further downstream of the flow,
clogging the pores. Hence, the caprock integrity is not necessarily compromised due
to dissolution alone, but it can be an important mechanism in reactivating faults and
fractures that may act as conduits and therefore emphasizes the need for further site
specific investigations of geochemical interactions in future sequestration projects.

Here the discussion on multi-phase flow is limited to two non-reacting fluid phases.
Partial miscibility of the fluid phases will be considered in section 4.4.

4.3.1 Governing equations

Two-phase immiscible flow implies that the two fluids do not dissolve in each other,
thus the three phases, the solid phase and the two fluid phases, occupying different
volumes. The pores are assumed fully saturated with one or both of the fluids such that
the sum of the fluid volume fractions, saturation sα for fluid phase α , equals unity, see
Eq. (3.23). For np = 2:

np

∑
α
sα = sw+ sn = 1 (4.40)
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where sw [-] and sn [-] are the volume fractions of the wetting- and non-wetting fluid2,
respectively. The mass conservation equation for each phase component is derived in
App. D and for immiscible phases it is obtained from Eq. (D.17) that:

d(ϕswρw)

dt
+∇ · (ρwqw)+ϕswρw∇ ·vs = Rw (4.41)

d(ϕsnρn)

dt
+∇ · (ρnqn)+ϕsnρn∇ ·vs = Rn (4.42)

where the Rw [kg/m3/s] and Rn [kg/m3/s] are the volumetric source/sink terms of the
wetting and non-wetting phases, respectively. The mass balance equation for the solid
phase is given by Eq. (4.2), and the multi-phase extension of Darcy’s law is given by:

qα = sαϕ(vα −vs) =−kkrα
µα

(∇pα −ραg) , α = w,n (4.43)

where krα [-] is the relative permeability (for single-phase flow krα = 1). Various forms
of relative permeability are given in App. E. In addition, the phase pressures relate to
each other through the capillary pressure function pc [Pa]:

pc = pn− pw = pc(sα) (4.44)

Assuming that the capillary pressure is not hysteretic (see App. E), the capillary pres-
sure is considered a unique function of saturation that can be inverted to give the capil-
lary effective saturation:

scapeα = p−1
c (sα) (4.45)

noting that although the capillary pressure pc is a function of saturation, it only varies
with effective saturation seα [-]. The effective saturation depends on the irreducible
saturation srα of the phases present. The mobility of a phase is zero if the saturation
is less than the residual saturation; sα ≤ srα . Hence, sometimes the mobile part of a
phase corresponds to a saturation srw ≤ sw ≤ 1, but if the non-wetting phase is present,
in sufficient amount (sn ≥ srn), the mobile part can correspond to srw ≤ sw ≤ (1− srn)
and the effective saturation can be defined as (depending on the circumstances):

seα =
sα − srw
1− srw

, srw ≤ sw ≤ 1

seα =
sα − srα

1− srw− srn
, srw ≤ sw ≤ (1− srn)

(4.46)

where srw and srn [-] are the residual saturations for wetting phase and non-wetting
phase, respectively.

Using the material derivative, Eq. (D.6), and expand the resulting derivatives, the
mass conservation equation for the fluid phase α can be expressed as:

ϕρα
dsα
dt

+ sαρα
dϕ
dt

+ϕsα
dρα
dt

+ sαϕρα∇ ·vs+∇ · (ραqα) = Rα (4.47)

2Wetting phase "wets" the porous media.
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Using Eq. (4.20) for the change in porosity, and the equation of state for fluid phase
α , Eq. (4.12) (ignoring the dependence on chemical composition), the governing, non-
isothermal mass balance equation for fluid phase α is obtained:

ϕρα
dsα

dt
+ sαρα

[
b−ϕ
Ks

dps
dt

+
ϕ
Kα

dpα

dt
+b∇ ·vs

]
+∇ · (ραqα) = sαρα [ϕβα +(b−ϕ)βs]

dT
dt

+Rα

(4.48)

where qα is given by Eq. (4.43) and Kα [Pa] is the inverse of the fluid phase α compressibility.
Note that similarly to single-phase flow, Eq. (4.48) can be decoupled from the momentum
balance equation by approximating the volumetric strain rate-term, b∇ ·vs, using the concepts
introduced in chapter 4.2.2. For uniaxial strain approximation the following substitution can
be made:

b∇ ·vs =
b2

λ +2G
∂ ps
∂ t

(4.49)

where the pore pressure acting on the solid, ps, is defined by Eq. (3.22) (for np = 2):

ps = swpw+ snpn (4.50)

Note that other expressions for ps can be encountered in the literature, e.g. the sum of
the phase pressures (Dalton’s law for total pressure in a mixture of gases): ps = pw+ pn, and
in fractional flow formulations: ps = pn−

∫
S( fw

dpc
dS )(ξ )dξ = pw+

∫
S( fn

dpc
dS )(ξ )dξ , see e.g.

[31]. However, it seems that Eq. (4.50) is the typical choice.

4.3.2 Various formulations

The governing equations for immiscible, two-phase flow is described by the fluid phase con-
servation equation, Eq. (4.48), containing the unknowns; sw, sn, pw, pn, temperature T and
displacement velocity vs. However, in the remainder of this chapter vs and T will be ne-
glected. By using the auxiliary equations for saturation, capillary pressure and total pressure
(Eqs. (4.40), (4.44) and (4.50), respectively), and rearrange, various formulations in terms of
dependent variables can be obtained. There are two main groups of dependent variable com-
binations. The first group is the pressure based formulations, where the dependent variables
can be any pair-combination of pw, pn, ps and pc (12 possible combinations) and the satura-
tions are solved for implicitly using the capillary pressure pc and pore pressure ps (Eqs. (4.44)
and (4.50), respectively). The second group is the saturation based formulations where the de-
pendent variables can be any combination of either sw or sn together with any of the pressure
variables pw, pn or ps (6 possible combinations). Some examples that will be evaluated are
given in table 4.3.

Table 4.3: Various two-phase flow formulations: dependent variable pairs.

Pressure based formulations: Saturation based formulations:
1. ps− pc 5. pw− sn
2. pw− pn 6. pn− sw
3. pn− pc 7. ps− sw
4. pw− pc 8. ps− sn
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When considering two-phase isothermal, incompressible and immiscible displacement in
a rigid homogeneous porous medium, the governing equations reduces substantially. By using
that:

∂ sw
∂ t

=
∂ sw
∂ pc

∂ pc
∂ t

(4.51)

∂ sn
∂ t

=
∂ sn
∂ sw

∂ sw
∂ pc

∂ pc
∂ t

(4.52)

the mass conservation equations for the wetting- and non-wetting phase can be described as
(here shown for the (pw− pn)-formulation):

ϕ
∂ sw
∂ pc

∂ pc
∂ t

−∇ ·
(
kkrw
µw

∇pw

)
= Rw (4.53)

−ϕ
∂ sw
∂ pc

∂ pc
∂ t

−∇ ·
(
kkrn
µn

∇pn

)
= Rn (4.54)

where it can be obtained from Eq. (4.40) that ∂ sw/∂ sn = ∂ sn/∂ sw =−1 and recognizing that
the ∂ pc/∂ t-term can be expressed by the dependent variables pw and pn through:

∂ pc
∂ t

=
∂ pn
∂ t

− ∂ pw
∂ t

(4.55)

When including compressibility of the fluid phases, the conservation equations can be
described as:

ϕρw
∂ sw
∂ pc

∂ pc
∂ t

+ swρwϕcw
∂ pw
∂ t

−∇ ·
(

ρw
kkrw
µw

∇pw

)
= Rw (4.56)

−ϕρn
∂ sw
∂ pc

∂ pc
∂ t

+ snρnϕcn
∂ pn
∂ t

−∇ ·
(

ρn
kkrn
µn

∇pn

)
= Rn (4.57)

In the pressure-based formulations, the saturations can be calculated from the capillary effec-
tive saturation scapeα in Eq. (4.45), and from Eq. (4.46) it follows that:

sα = scapeα (1− srw)+ srα
sα = scapeα (1− srw− srn)+ srα

(4.58)

where 0 ≤ scapeα ≤ 1. Thus the conservation equations for the pressure based formulations can
get an additional, artificial source-term from the residual saturation term on the left-hand side
in Eqs. (4.56) and (4.57) when sw < srw and/or sn > 1− srn.

Known solutions

There are two well known mathematical solutions to two-phase flow in porous media; the
Buckley-Leverett equation [28], and the McWhorter-Sunada equation (MSE) by McWhorter
and Sunada [72]. The former ignores capillary pressure, allowing the governing equation to
be reduced to a hyperbolic partial differential equation that can be solved analytically using
similarity transform and the method of characteristics, see for instance Orr [85].

However, the analogue solution to the Buckley-Leverett equation for viscous dominated
flow, where capillary pressure is significant, is diffusive and not generally self-similar. One of
the more general exception is when the boundary flux is inversely proportional to the square
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root of time, and McWhorter and Sunada [72] showed that the governing equation could be
effectively reduced to a single non-linear, second order ordinary differential equation (see for
instance Schmid and Geiger [98] for other examples). They demonstrated an exact solution
in the form of an iterative integral equation to a boundary value problem and proposed an
iterative procedure to solve it. But, the method proved to be exceptionally sensitive to several
model parameters (especially the relative permeability, the fluid viscosity and for large wetting
saturations at the inlet) resulting in convergence problems and often in failure, strongly limiting
the applicability of the solution.

As an analogue to the Buckley-Leverett equation, to evaluate for instance the impact of
capillary pressure, and as a semi-analytical solution to two-phase flow with capillarity it is
important that the solution to the MSE is not only fast, but also robust. Therefore, Bjørnarå and
Mathias [22] proposed an alternative approach using a pseudospectral method and Chebyshev
differentiation matrices [88, 121] that offers not only a fast and accurate, but also a robust
solution to the MSE. In the following section this approach will be used in a numerical code
validation for various formulations for two-phase flow.

Comparing various formulations

The various formulations in table 4.3 are compared in terms of performance and validated
against the semi-analytical solution for a one-dimensional, horizontal (thus ignoring gravity),
two-phase incompressible and immiscible displacement in a rigid and homogeneous porous
medium as described by Bjørnarå and Mathias [22]. The equations that are solved are Eqs.
(4.53) and (4.54), but formulated in terms of the various combinations of dependent variables
given in table 4.3.

The reservoir is initially close to fully saturated with a non-wetting phase, s0n = 0.9, and a
wetting phase is injected (qin j = A/

√
t, where A= 0.0114, see Bjørnarå and Mathias [22] for

details), displacing the non-wetting phase. The material properties used are given in table 4.4
and the relative permeability and capillary pressure functions are given by Brooks and Corey
[27] (see App. E).

Table 4.4: Hydraulic properties of the aquifer in two-phase immiscible flow validation model.

Property Value
Permeability, [m2] k 10−10

Porosity, [-] ϕ 0.3
Entry pressure, [Pa] pd 105

Pore size distribution parameter, [-] λ 2
Viscosity, wetting phase, [mPa·s] µw 1
Viscosity, non-wetting phase, [mPa·s] µn 0.5

The resulting saturation of the wetting phase, sw, for the various formulations are plotted
in Fig. 4.2.
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Figure 4.2: Wetting phase saturation profiles for one-dimensional, horizontal (ignoring grav-
ity), two-phase incompressible and immiscible displacement in a rigid and homogeneous
porous medium for the various two-phase flow formulations in table 4.3. The semi-analytical
solution from Bjørnarå and Mathias [22] are given by the thick dotted black line. The simula-
tion time for the various formulations are given in brackets.

As expected, Fig. 4.2 shows that all the formulations give the same result and are equal to
the semi-analytical solution (thick, black dashed line), but an interesting result is the solution
times indicated in brackets in Fig. 4.2 and this is commented further in chapter 7.

As mentioned, there are many possibilities to derive equations for two-phase flow, there are
four pressure variables and two saturation variables that will behave differently from case to
case depending on the hydraulic and mechanical properties and it can be useful to have some
choices when faced with a particular problem. In general, the saturation-based formulations
are more applicable because they solve for the saturation and can therefore handle correctly
saturations outside the mobility range, e.g. when wetting saturation is below residual satura-
tion. Also, in terms of heterogeneity in the entry pressure (in the capillary pressure function),
the saturation-based formulations can handle the resulting discontinuity in saturation.

4.4 Two-phase partially miscible flow

Now the assumption that the phases are immiscible is relaxed and the components are allowed
to mutually dissolve; i.e. a fraction of the non-wetting phase can dissolve in the wetting phase,
and vice versa. Here we will consider a two-component, two-phase system.

4.4.1 Two-component, two-phase flow

The mass conservation equation of each component is given by Eq. (D.11). To derive the gov-
erning equations for two-component, two-phase flow, two assumptions will be emphasized:
(1) Instantaneous local chemical equilibrium will be assumed, such that the components will
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mutually dissolve and immediately satisfy equilibrium composition conditions. (2) Ideal mix-
ing will be assumed, where the component densities are independent of composition, resulting
in a simple expression for the phase density (harmonic average):

ρα =

(
nc

∑
i

Xiα
ρi

)−1

(4.59)

where ρi [kg/m3] is the mass density of component i, nc [-] is the number of components (here
nc = 2) and Xiα [-] is the mass fraction of component i in fluid phase α .

Under the assumption of ideal mixing, i.e. constant total volume on mixing, a volume
fraction of component i in phase α , ciα can also be defined, expressed as [e.g. 85]:

ciα =

Xiα
ρi

nc

∑
i

Xiα
ρi

(4.60)

where ciα [-] are the tie-line volume fractions corresponding to the chemical equilibrium com-
positions in the phases [85]. Comparing Eqs. (4.59) and (4.60) it can be seen that:

ρiciα = ραXiα (4.61)

Using Eq. (4.61), Eq. (D.11) can be expressed as:

d(ϕsαρiciα)
dt

+∇ · (ρiciαqα)+ϕsαρiciα∇ ·vs−∇ · (Dα∇(ρiciα)) = Riα (4.62)

Before deriving the governing equations for two-component, two-phase flow, some useful
relations will be introduced. Firstly, the volume fractions of components i in phase α sum up
to unity:

nc

∑
i
ciα = 1 (4.63)

As a consequence of Eq. (4.63) it follows that
nc

∑
i

∇ciα = 0 (4.64)

The overall volume fraction of component i in all the phases:

ci =
np

∑
α
ciαsα (4.65)

and from Eqs. (4.63), (4.65) and using the saturation constraint in Eq. (4.40) it follows that
nc

∑
i
ci = 1 (4.66)

The expressions for the saturation can now be found by rearranging Eq. (4.65) (and again
using the saturation constraint in Eq. (4.40)):

sn =
cn− cnw
cnn− cnw

, sw =
cw− cwn
cww− cwn

(4.67)
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4.4.2 Governing equations

The continuity equation is obtained by summing the conservation equation Eq. (4.62) for all
components i in all the phases:

nc

∑
i

np

∑
α

[
d(ϕsαρiciα)

dt
+∇ · (ρiciαqα)+ϕsαρiciα∇ ·vs−∇ · (Dα∇(ρiciα))−Riα

]
= 0 (4.68)

For two-component, two-phase flow this can be expressed as:

d [ϕ(ρncn+ρwcw)]
dt

+∇ · [ρn (cnnqn+ cnwqw)+ρw (cwnqn+ cwwqw)−D]

+ϕ (ρncn+ρwcw)∇ ·vs = R
(4.69)

where

R=
np

∑
α

nc

∑
i
Riα (4.70)

and the dispersion-term D is expressed by:

D=Dn [ρn∇cnn+ cnn∇ρn+ρw∇cwn+ cwn∇ρw]+Dw [ρn∇cnw+ cnw∇ρn+ρw∇cww+ cww∇ρw]
(4.71)

where the phase diffusion/dispersion-terms Dn and Dw are defined by Eq. (D.13). The mass
conservation for component i is expressed in terms of the overall volume fraction, ci in all the
fluid phases:

np

∑
α

[
d(ϕsαρiciα)

dt
+∇ · (ρiciαqα)+ϕsαρiciα∇ ·vs−∇ · (Dα∇(ρiciα))−Riα

]
= 0 (4.72)

For two-phase, two-component flow, this can be expressed as:

d(ϕρici)
dt

+∇ · [ρi(cinqn+ ciwqw)−Dn∇(ρicin)−Dw∇(ρiciw)]+ϕρici∇ ·vs = Ri (4.73)

where

Ri =
np

∑
α
Riα (4.74)

By rearranging Eq. (4.69), the continuity equation can be expressed in terms of known quan-
tities as:

ϕ
[
(ρn−ρw)

dcn
dt

+ cn
dρn

dt
+ cw

dρw

dt

]
+(ρncn+ρwcw)

(
dϕ
dt

+ϕ∇ ·vs
)
+

∇ · [ρn (cnnqn+ cnwqw)+ρw (cwnqn+ cwwqw)−D] = R
(4.75)

Similarly, Eq. (4.73) can be rearranged and expressed in terms of known quantities (here the
non-wetting component):

ϕ
[

ρn
dcn
dt

+ cn
dρn

dt

]
+(ρncn)

(
dϕ
dt

+ϕ∇ ·vs
)
+

∇ · [ρn(cnnqn+ cnwqw)−Dn∇(ρncnn)−Dw∇(ρncnw)] = Rn

(4.76)
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The change in porosity, dϕ/dt, can be expressed by Eq. (4.20) and the change in density of
the fluids are given by the equation of state for the fluid component, Eq. (4.12). Note that in
the governing equations for partially miscible two-phase flow, Eqs. (4.75) and (4.76), it can be
seen from Eq. (4.65) that:

∇ciα =
dciα
dci

∇ci =
1
sα

∇ci (4.77)

4.4.3 Validation

The set of equations for two-phase partially miscible flow, Eqs. (4.75) and (4.76) is vali-
dated by comparing the solution to an analytical, two-component, two-phase flow extension
to Buckley-Leverett, see e.g. Orr [85]. The hydraulic and material properties in the validation
model are given in Table 4.5. The model is one dimensional and horizontal (ignoring gravity)
with mutual dissolution of the two components, brine and CO2, in a rigid and homogeneous
porous medium. Fluid density is assumed constant for both phases and the relative permeabil-
ity and capillary pressure functions are defined by Brooks and Corey [27] (see App. E). Since
the analytical model assumes negligible capillary pressure, a low value is used for the capillary
pressure in the numerical model: entry pressure pd = 10 [Pa].

Table 4.5: Properties in two-phase partially miscible flow validation model.

Property Value
Porous media:
Permeability, [m2] k 10−10

Porosity, [-] ϕ 0.3
Diffusion coefficient (Eq. (D.13)), [m2/s] dα 0
Longitudinal dispersion coefficient (Eq. (D.13)), [mm] dlα 5
Residual wetting saturation, [-] srw 0.2
Residual non-wetting saturation, [-] srn 0
Initial wetting saturation, [-] s0w 0.95
Fluid phases:
Viscosity, wetting phase, [mPa·s] µw 1
Viscosity, non-wetting phase, [mPa·s] µn 0.5
Dissolution of CO2 in water, [-] cnw 0.24
Dissolution of water in CO2, [-] cwn 0.012
Injection fluid:
Non-wetting phase fraction, [-] sin jn 0.99
Wetting phase fraction, [-] sin jw 0.01
Total injection rate, [1/s] qt 0.74709
Non-wetting phase injection rate, [1/s] qn 0.988qt
Wetting phase injection rate, [1/s] qw qt −qn
Brooks-Corey parameters (see App. E):
Entry pressure, [Pa] pd 10
Relative permeability parameter, [-] λ 2

The dissolution of CO2 in water (cnw= 0.24) and dissolution of water in CO2 (cwn= 0.012)
are somewhat exaggerated compared to a real case CO2 storage scenario. Dissolution of CO2
and water/brine depend on temperature, pressure and salinity of the water. It is typically
assumed that dissolving CO2 in water increases the density of water. However, this is highly
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depending on the salinity and temperature, and for high salinity brines at high temperature the
density is actually reduced [123]. Therefore, for more precise modeling of partially miscible
phases, expressions for phase and component density with temperature and pressure variations
should be obtained. Approximate values for the dissolution of the phases are given in Table
4.6 for a temperature range of 50-100◦C, pressure range of 10-30 MPa and at high salinity
(from Yan et al. [123], see also Duan and Sun [42] for a mathematical model to calculate the
solubility of CO2 in water and brine at various temperatures (0-260 ◦C) and pressure (0-2000
bar)) and App. B.

The values for dissolution used in the validation model (specified in Table 4.5) are four
times the approximated dissolution numbers in Table 4.6. See also Fig. B.13 for more values
of volume fraction cnw at various salinity, pressure and temperature. Note also that dissolution
of the phases can also affect the viscosity [77], an effect that is not considered in this thesis.

Table 4.6: Volume fraction of mutual dissolution of brine and CO2 (assuming a temperature
range of 50-100 ◦C and pressure range of 10-30 MPa and high salinity, numbers are approxi-
mated from Yan et al. [123]).

Volume fraction
CO2 dissolved in brine, cnw, [-] 0.06
Brine dissolved in CO2, cwn, [-] 0.003

The saturation profiles (total and effective) and the overall volume fraction of the non-
wetting phase are plotted in Fig. 4.3.
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Figure 4.3: (Left) Saturation and (right) overall volume fraction of non-wetting phase for
partially miscible two-phase flow after 1 second. Numerical solution (thin lines) is compared
with the analytical solution (thick, dashed lines) which is a two-component, two-phase flow
extension of the Buckley-Leverett model after Orr [85].

Due to diffusion through the capillary pressure-term and dispersion, the profiles in Fig. 4.3
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show some discrepancy close to the injection well, but the effect of dissolution and residual
saturation is well captured as well as the leading front.

Analysis of the pressure and effect of various dispersion coefficients dlα and dissolution
on a modified model is discussed in Chapter 7, Figs. 7.3 and 7.4, respectively.



Chapter 5

Consideration of non-isothermal effects

5.1 Introduction

Temperature is a very important property, in reservoir simulations it affects material proper-
ties such as density and viscosity, but also mechanical properties and even thermal properties.
Some properties vary less than others with changing temperature and can be considered con-
stant. Temperature dependency in density of the fluid and solid phase was addressed in chapter
4 in relation to the equation of state, Eqs. (4.12) and (4.19), respectively. Effects of temper-
ature change on stresses and strains have been addressed in chapter 3, and particularly in
chapter 3.4 on thermoelasticity. When temperature is expected to change significantly, an ad-
ditional equation that describes the spatial and temporal variations in temperature is required.
This equation, the heat transport equation, can be obtained by considering the conservation of
energy and will be described in this section.

The focus in this thesis is how to simplify geomechanical considerations, although thermo-
poroelasticity is part of this, it will not be evaluated in detail. This chapter is meant to comple-
ment the description of the main processes affecting the reservoir and caprock when injecting
CO2 and give some insight into the consequences of spatial and temporal temperature varia-
tions. Analysis by Gor et al. [49], Luo and Bryant [68], Preisig and Prévost [90] suggest that
thermoporoelasticity is an important factor to consider when evaluating safety of CO2 storage,
particularly when large temperature differences are expected between the injected fluid and
the injection formation, and this is discussed further in chapter 7.4.

5.2 Heat transport equation

There are several modes of heat transport. The main modes, that will be considered here,
are heat conduction in the fluid(s) and solid phase and convective transport by advection of
fluid(s) in the pores. By ignoring heat convection by the solid and by assuming that the phases
are in a local state of equilibrium (temperature T is the same in all the phases), then the energy
conservation equations for all the phases can be added to obtain the overall heat transport
equation [64]:

(ρCp)eff
∂T
∂ t

+

(
np

∑
α

ραCαqα

)
·∇T −∇ · (χeff∇T ) = Rq (5.1)
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Here (ρCp)eff [J/m
3/K] and χeff [W/m/K] are the effective volumetric heat capacity and the

effective thermal conductivity tensor, respectively. qα [m/s] is the Darcy flux given by Eq.
(4.43) (where vs = 0 since heat transport due to solid movement is ignored) and Rq [W/m3]
is the difference between the volumetric energy sources and sinks in the fluids and solids. In
Eq. (5.1), terms related to radiation, mixing of fluids, chemical reactions, phase transition and
dispersion are also ignored. Despite all these assumptions, Eq. (5.1) is appropriate for many
practical applications, including CO2 storage. The effective volumetric heat capacity at con-
stant pressure, (ρCp)eff, and the effective thermal conductivity tensor, χeff, can be expressed
by [64]:

(ρCp)eff = (1−ϕ)ρsCs+ϕ
np

∑
α
(ραsαCα) (5.2)

χeff = (1−ϕ)κs+ϕ
np

∑
α
sακα (5.3)

where Cs [J/kg/K] and Cα [J/kg/K] are the specific heat capacity (evaluated at constant pres-
sure) and κs [W/m/K] and κα [W/m/K] are the thermal conductivity tensors of the solid and
fluid phases α , respectively.

In order to illustrate the non-isothermal effects, a CO2 storage scenario based on conditions
at the CO2 storage project at In Salah, Algeria, is defined.

5.3 The non-isothermal effect: Case study

The temperature of the injected fluid at In Salah is about 40◦C lower than the temperature
in the reservoir [20]. Here a slightly less conservative value of 30◦C lower temperature is
used. Two models will be evaluated and compared (See App. K.2 for details on model and
parameters):

1. THM: Thermo-hydro-mechanical coupling

2. HM: Hydro-mechanical coupling (thermal effects are ignored)

In both models the material properties for the fluids (water and CO2) are evaluated from the
equations of state from the online NIST database [65] using a constant temperature profile
(30◦C at the surface and 30◦C/km gradient) and the initial pore pressure profile based on
estimated in situ pore pressure at the reservoir in the area of injection well KB-502 at In Salah
from Morris et al. [76]. Note also that the fluid properties are considered constant (in time).

Table 5.1: In situ stress state and pore pressure at the reservoir in the area of injection well
KB-502 at In Salah. Values are from Morris et al. [76].

Property Parameter Value
Vertical stress σ0

v 44.5 MPa
Maximum horizontal stress σ0

H 49.9 MPa
Minimum horizontal stress σ0

h 30.8 MPa
Initial pore pressure p0s 19.2 MPa

In situ stress state and pore pressure at the reservoir in the area of injection well KB-502
at In Salah is given in table 5.1, and it can be seen that the reservoir is in a strike-slip stress
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regime where the vertical stress σv is the intermediate principal stress; σH > σv > σh. The
stresses and pore pressure in table 5.1 is extrapolated to the rest of the over- and underlying
formations of the reservoir with a fixed, constant gradient that is obtained by assuming zero
stress at the surface and the stress- and pore pressure-state in table 5.1 at 1820 meter depth.
The stress state and pore pressure can thus be approximated as:

p0s = 1055gD (5.4)

σ0
H = 2742gD (5.5)

σ0
v = 2445gD (5.6)

σ0
h = 1692gD (5.7)

where D [m] is the elevation relative to the surface and g is the gravity constant. The models
(THM and HM) are assuming plane-strain conditions where the minimum horizontal principal
stress σh is acting in the out-of-plane direction, according to the stress orientation at In Salah
(injection well is parallel with σH [94]).

5.3.1 Results

The first observation is the limited dissipation of the temperature compared to the migration
of the injected CO2, see Fig. 5.1. After 12 years a temperature change can be observed up to
100 meters laterally into the reservoir, and in the vertical direction it extends about 60 meters
into the caprock and underburden. On the other hand, the injected CO2 migrates almost 1700
meters, thus illustrating the local effect of the temperature. Since the material properties of the
fluids are constant, the volume of the injected fluid is the same in the two models and thus the
saturation distribution are almost the same, which is illustrated by the black dashed lines from
the HM-model superimposed on the solution of the THM-model, colored contours in Fig. 5.1
(b).

How far the temperature dissipates into the formation depends on the magnitude of the
effective volumetric heat capacity (ρCp)eff and the effective heat conductivity χeff, Eqs. (5.2)
and (5.3), respectively, which expresses how much heat can be transport with the fluid through
the pores. The water has a much greater heat capacity than the injected CO2 and the solid
phase, see table K.4, thus much of the energy difference between the injected fluid and the
residing fluid (brine) is effectively neutralized by the formation water. It can also be seen in Eq.
(5.3) that the effective heat conductivity will be largely dominated by the solid material, both
in magnitude compared to the fluids (see table K.4) and due to the porosity (water occupies
only 17 % of the rock volume). The usually low thermal conductivity exhibited by rocks [e.g.
99] implies little heat transport by conduction. Heat capacity Cp for rocks are typically in
the order of 800-1000 [J/kg/K] (at temperatures 50-150 ◦C) and thermal conductivity κs is
typically in the order of 3 [W/m/K] [99].
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Figure 5.1: Temperature distribution (a) and non-wetting phase saturation distribution (b) in
the reservoir after 12 years of injection. The reservoir (between 1800-1820 meters depth),
overlying caprock layers and underburden are outlined by the thin, black lines.

Temperature is affecting the geomechanics of the system through thermal strains, see chap-
ter 3.4. Excess pore pressure causes the reservoir to expand, resulting in a positive (exten-
sional) volumetric strain, while cooling of the reservoir due to injection of colder CO2 causes
the solid rock phase to contract. The net result of these two processes is that the reservoir is
expected to expand less in the THM-model compared to the HM-model. This is illustrated
well in Fig. 5.2, showing the deformation of the reservoir after 1, 3.4 and 12 years of injec-
tion. The grey shaded area is the initial (undeformed) location of the reservoir and the red and
blue lines show the deformed position of the top and bottom boundaries of the reservoir (ex-
aggerated 5000 times). The inserted axis illustrate the absolute difference in the displacement
(in mm) of the boundaries for the THM- and HM-models. It can be seen that the difference
is local and due to the thermal strains resulting from the cooling. A similar result is shown
in Fig. 5.3 where the ratio of volumetric strain εv between the two models are shown. The
negative ratio indicates that the volumetric strain in the THM-model is less compared to the
HM-model, thus ignoring the thermal effects, here cooling, overestimates the deformation.
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Figure 5.2: Deformation of the reservoir due to cooling by injecting cold CO2 into a reservoir
after 1, 3.4 and 12 years of constant injection. The grey shaded area is the initial (unde-
formed) location of the reservoir, the red and blue lines show the deformed position of the
outer boundaries (exaggerated 5000 times). The inserted axis illustrate the absolute difference
in the displacement (in mm) of the boundaries, between the THM- and HM-models.
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Figure 5.3: Ratio of volumetric strain, εv, between the THM- and HM-model after 1, 3.4 and
12 years of injection. Note that the distance is in logarithmic scale. The reservoir (between
1800-1820 meters depth), overlying caprock layers and underburden are outlined by the thin,
black lines.

Inspecting the mass conservation equation for the fluid phases, Eq. (4.48), there are two
terms that couple the geomechanics to the flow. But, since Biot’s coefficient b = 1, making
the solid compressibility cs = 0 (see Eq. (3.16)), the remaining non-zero coupling term is the
volumetric strain rate (which becomes positive due to expansion):

sαρα∇ ·vs > 0 (5.8)

The thermal expansion terms couple the temperature to the flow (which becomes negative due
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to cooling):

sαρα [ϕβα +(b−ϕ)βs]
dT
dt

< 0 (5.9)

The net effect of these two processes is that the fluids have more space to occupy and the mass
conservation equations yields a mass "sink", with the result of a lower pore pressure increase.
However, when comparing the magnitude of the injection pressure in the two models, they
are almost undistinguishable, see for instance the comparison of the injection pressure in Fig.
5.5 (right). But, when comparing the spatial differences, it can be seen clearly that there is an
effect and it is indeed local and related to the temperature change, see Fig. 5.4.

The big difference in pore pressure is predominantly directly above and below the reservoir
and it indicates that the cooling has an expected positive effect on pore pressure in the sense
that the pressure increase is reduced and a lower pore pressure decreases the poroelastic effec-
tive stress σ ′′ (see Eq. (3.15)) and inhibit failure. Thus not considering thermal effects, here
cooling, overestimates the pressure increase by up to 0.35 MPa in the caprock/underburden.
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Figure 5.4: Pore pressure difference between THM- and HM-model after 1, 3.4 and 12 years
of injection. Note that the distance is in logarithmic scale. The reservoir (between 1800-1820
meters depth), overlying caprock layers and underburden are outlined by the thin, black lines.

Despite the limited and local nature of the temperature effect, it is significant. The differ-
ences in displacement and strain are small, see Figs. 5.2, 5.3 and the comparison of surface
elevation in Fig. 5.5 (Left), and less deformation means less stress transfer to the surrounding
formation. But cooling also introduces thermal stress in the vicinity of the injection well and
the critical area, the caprock. Analysis of the stress differences in the two models, compared
to failure criteria, will be discussed in chapter 7.4.
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Figure 5.5: (Left) Vertical elevation at the surface directly above the injection well and (right)
injection pressure.
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Chapter 6

Dimensionally reduced models

6.1 Introduction

When modeling two-phase flow and poroelasticity we are faced with solving a three dimen-
sional problem. Sometimes the variability in one dimension/direction can be ignored, for
instance along one of the principal directions or angular direction, allowing the model to be
reduced to a two-dimensional problem or an axially symmetric problem, respectively. In rare
cases the variability can even be ignored in two dimensions to allow the model to be reduced
to a one dimensional problem. However, ignoring variabilities in one or two directions/dime-
sions are often not a good approximation for real scenarios. Here an alternative simplification
will be described; dimensional reduction, where the variability across one of the dimensions
is approximated explicitly. A fine scale n-dimensional model is defined whereas the corre-
sponding coarse scale model is the dimensionally reduced, (n− 1)-dimensional model. The
governing equations describing the fine scale model is then integrated along a path where, by
making appropriate assumptions, the variability of the solution (dependent variable(s)) can be
explicitly expressed to obtain the corresponding governing equations for the, now, dimension-
ally reduced coarse scale model. The details on when and how this can be applied to two-phase
flow and poroelasticity in an aquifer/reservoir is described in the following sections.

First, some general considerations that apply to dimensionally reduced models will be
described. Then, the dimensionally reduced models for single-phase flow and two-phase im-
miscible flow under vertical equilibrium and momentum balance for elasticity (LVD; Linear
Vertical Deflection) and poroelasticity (PLVD; Poroelastic Linear Vertical Deflection) will be
derived in detail along with illustrative examples. An extension to include thermal effects
and miscibility of the phases have not been investigated here, although, miscibility in dimen-
sionally reduced models for two-phase flow have been documented by other authors, see e.g.
Gasda et al. [47], Mykkeltvedt and Nordbotten [79], Nordbotten and Celia [81].

6.2 Dimensionally reduced aquifer/reservoir models

Due to the often layered nature of reservoirs, aquifers and aquitards, the horizontal extent is
often much larger than the vertical extent and they can be referred to as large aspect ratio ge-
ological features. This high aspect ratio property permits justification of the assumptions on
the local vertical variability in the solution of the dependent variables because the variability
across the thickness is smaller compared to the variability in the horizontal direction. A con-
ceptual sketch of such a system is shown in Fig. 6.1 where the aquifer is located between an
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over- and underburden and shows topographic behavior. The bounding surfaces of the aquifer
are denoted FB and FT , where the location of surface Fn can be expressed as

Fn(x,y,z) = z−ζn(x,y) = 0 (6.1)

and ζn(x,y) [m] is the vertical position of surface Fn. This notation allows the normal vector
n of a surface to be defined as n= ∇Fn. For an aquifer with a top and bottom surface, FT and
FB, as shown in Fig. 6.1, it will be used in the following derivations that the normal vectors
are defined as:

nT = ∇FT =

[
−∂ζT

∂x
,−∂ζT

∂y
,1
]T

, nB = ∇FB =

[
−∂ζB

∂x
,−∂ζB

∂y
,1
]T

(6.2)

Note that these normal vectors are scaled such that the vertical extent equals 1, thus |n| ≥ 1
and pointing (upwards) in positive z-direction; ∂Fn/∂ z= 1.

H(x,y)
Aquifer/reservoir

Underburden

Overburden

F
B

F
T

Figure 6.1: Example of an aquifer/reservoir with varying thickness located between an over-
and underburden. Note that the vertical dimension has been exaggerated severely and the
maximum slopes are typically only a few degrees for geological formations considered for
CO2 storage.

In order to complete the formulations for dimensionally reduced models, some assump-
tions on the variability, or structure, of the solution within the aquifer is needed. This is
specifically required to obtain explicit expressions, or closure relationships, for fluid flux, fluid
pressure and geomechanical strain across the thickness of the aquifer. These closure relation-
ships will be introduced when required.

In the following sections it will be shown how the equations for single-phase flow and
immiscible two-phase flow, including capillary pressure, can be converted to the equivalent
dimensionally reduced formulation using the vertical equilibrium (VE) assumption. For the
two-phase flow, this assumption implies a strong buoyant drive in the system that leads to ver-
tical segregation of the phases on a time scale that is fast compared to the time scale of the
simulation. The simplest dimensionally reduced formulation for two-phase flow is obtained
when assuming the phases are immiscible and the capillary pressure can be completely ig-
nored. This results in the sharp interface model and is well described by Nordbotten and Celia
[81]. But here the capillary pressure will be included.

To keep the notation simple, vertical variability in the material or fluid properties within the
dimensionally reduced domain will not be considered, but note that the following integrated
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conservation equations are valid without regard to any assumptions on the parameters. It
is possible to derive the constitutive laws for stress and strains and fluid fluxes with greater
generality than what will be done here. However, this can add significant complexity in the
definitions of the effective parameters in the integrated equations, for instance for variable fluid
density, see e.g. Andersen et al. [5].

6.3 Flow in porous media

6.3.1 Single-phase flow

The mass conservation equation for single-phase flow is given by Eq. (4.21). When ignoring
non-isothermal terms, it can be expressed as:

ρ f

[
(b−ϕ)
Ks

+
ϕ
K f

]
dp f

dt
+ρ f b∇ ·vs+∇ · (ρ fq f ) = R f (6.3)

When integrating Eq. (6.3) in the vertical direction, assuming a rigid porous medium such
that the material derivatives can be written as partial derivatives and the volumetric strain
becomes zero, the integral becomes:∫ ζT

ζB

(
ρ f

[
(b−ϕ)
Ks

+
ϕ
K f

]
∂ p f

∂ t
+∇ · (ρ fq f )−R f

)
dz= 0 (6.4)

In order to be able to perform the integration, the parameters that are not constant in the
equation needs to be expressed in terms of the variable of integration, here the vertical position
z. This is described in more detail in App. H and is referred to below. After integration, upon
using Leibniz’ integral rule, the following dimensionally reduced equation for single-phase
flow is obtained:

ρ f

[
(b−Φ)

Ks
+

Φ
K f

]
∂Pf

∂ t
H+ ∇̃ · (ρ fQ f )+ (ρ fq f ·n)

∣∣
T − (ρ fq f ·n)

∣∣
B = R̃ f (6.5)

where Pf is the representative fluid pressure defined at the datum z = ζp; Pf = p f (ζp), and is
given by Eq. (H.14). The datum is typically the top or bottom boundary of the aquifer but can
in principle be chosen freely. H = H(x,y) [m] is the thickness of the aquifer:

H = ζT (x,y)−ζB(x,y) (6.6)

R̃ f is the integrated volumetric source/sink term:

R̃ f =
∫ ζT

ζB
R f dz (6.7)

and the notation for the resulting horizontal gradient after integration has been introduced:

∇̃ =

[
∂
∂x

,
∂
∂y

,0
]T

(6.8)
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Φ [-] is the average porosity expressed by Eq. (H.4). The integrated Darcy flux Q f is derived
in App. H.5, Eq. (H.57). For fluid phase mobility Λ f = 1 and when assuming that the material
properties are constant, it can be expressed as:

Q f =−KH
µ f

(
∇Pf +ρ f g∇ζP

)
(6.9)

Note that since vertical variability in the material or fluid properties is not considered
within the dimensionally reduced domain, their respective notation is also used in the reduced
form.

Validation: Compare with fully resolved model

To illustrate the solution of Eq. (6.5), two examples with an over- and an underburden and
a caprock that is overlying a topographic aquifer is solved, see App. K.3 for a detailed de-
scription of the model parameters and geometries that will be evaluated. The geometry of the
caprock and aquifer is also indicated together with the vertical pressure profiles in Figs. 6.2a
and 6.2b.

In the first example, the bottom of the aquifer is flat and the top is sine-shaped, in the
second example the bottom of the aquifer is sine-shaped. For both examples, the solution of
Eq. (6.5) is compared to a reference solution which is obtained by solving a fully resolved,
full-dimensional, model. Vertical crossections of the normalized pore pressure is shown in Fig.
6.2. The location of the profiles are indicated by the corresponding, colored vertical dashed
lines across the aquifer and caprock.

The gain in performance when solving for single-phase flow in the aquifer is limited since
the diffusive single-phase flow equation is already efficient to solve, but it is still apparent, see
a comparison of solver convergence rates in Fig. 6.3 and solver performance in Tab. 6.1.
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(a) Results from validation example 1.
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(b) Results from validation example 2.

Figure 6.2: Results from validation examples (see App. K.3 for model description). Nor-
malised vertical pore pressure profiles from the dimensionally reduced single-phase flow equa-
tion compared to a fully resolved, full-dimensional, model. The thick dashed lines are from
the fully resolved model and the corresponding thin lines are from the dimensionally reduced
model using the vertical equilibrium assumption for the pore pressure.
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Figure 6.3: Output from the solver-log for the two single-phase flow validation models.

Table 6.1: A summary of performance of single-phase flow simulations considering a dimen-
sionally reduced aquifer, assuming VE, and a fully resolved aquifer.

VE Fully resolved
No. dofs, [#] Solving time, [s] No. dofs, [#] Solving time, [s]

Model 1 12866 5 19119 10
Model 2 13222 5 19475 12

6.3.2 Immiscible two-phase flow

In this section the governing equations for immiscible two-phase flow, including capillary
pressure, in porous media using the vertical equilibrium (VE) assumption will be described
and the implementation in a numerical code will be validated by comparing the results with a
fully resolved (full-dimensional) model.

Governing equation

The governing equations are derived following the approach by Nordbotten and Dahle [83]
and Nordbotten and Celia [81]. Similar to previous section (on single-phase flow), it is as-
sumed, for now, that the porous medium is fully rigid, such that the material derivative can be
expressed by partial derivatives, and non-isothermal effects are ignored (extension to poroelas-
ticity and deforming media will be described in chapter 6.4 and 6.5). The mass conservation
equation for fluid phase α , Eq. (4.48), can then be expressed as:

ϕρα
∂ sα
∂ t

+ sαρα

[
b−ϕ
Ks

∂ ps
∂ t

+
ϕ
Kα

∂ pα
∂ t

]
+∇ · (ραqα) = Rα (6.10)

where qα is given by Eq. (4.43). Integrating the mass conservation equation in the vertical
direction,∫ ζT

ζB

(
ϕρα

∂ sα
∂ t

+ sαρα

[
b−ϕ
Ks

∂ ps
∂ t

+
ϕ
Kα

∂ pα
∂ t

]
+∇ · (ραqα)−Rα

)
dz= 0 (6.11)



66 Dimensionally reduced models

and using Leibniz’ integral rule, the following dimensionally reduced equation for two-phase
flow, including capillary pressure, it is obtained:

Φρα
∂Sα

∂ t
H+Sαρα

[
b−Φ
Ks

∂Ps
∂ t

+
Φ
Kα

∂Pα

∂ t

]
H+ ∇̃ · (ραQα)+ (ραqα ·n)|T − (ραqα ·n)|B = R̃α

(6.12)

where R̃α is the integrated volumetric source/sink term of fluid phase α:

R̃α =
∫ ζT

ζB
Rαdz (6.13)

Eq. (6.12) and the various upscaled quantities are described in detail in App. H. Note that since
vertical variability in the material or fluid properties is not considered within the dimensionally
reduced domain, their respective notations in also used in the reduced form.

Validation: Compare with fully resolved model

To illustrate the solution of Eq. (6.12), two example models are defined with a topographic
aquifer, see App. K.4 for detailed description of model parameters and the geometries. In
both models the aquifer is assumed to be confining and the solution is compared to a reference
solution obtained from an identical, but fully resolved, full-dimensional, model.

Results of the comparison are shown in Figs. 6.4 and 6.5. The figures show some selected
saturation contours (Figs. 6.4a and 6.5a), the change in pore pressure at the top and bottom
of the aquifer (Figs. 6.4b and 6.5b, left) and the non-wetting saturation at top and bottom of
aquifer (Figs. 6.4b and 6.5b, right), respectively, at various times.

A summary of the performance is given in Table 6.2.

Table 6.2: A summary of performance of two-phase flow, confined aquifer.

VE Fully resolved
No. dofs, [#] Solving time, [s] No. dofs, [#] Solving time, [s]

Model 1 798 105 19926 1128
Model 2 798 83 19926 1095
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line) and dimensionally reduced model (thin
black line).
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Figure 6.4: Results of validation model 1 for two-phase flow using the VE assumption in a
confined aquifer. See App. K.4 for details on model.
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Figure 6.5: Results of validation model 2 for two-phase flow using the VE assumption in a
confined aquifer. See App. K.4 for details on model.

6.4 LVD: Linear Vertical Deflection

The theory of linear elasticity was presented in chapter 3. In order to derive an approximate,
yet accurate, description of linear elasticity appropriate for large aspect ratio formations, e.g.
thin aquifers, the momentum balance equation, Eq. (3.2), is integrated across the thickness of
the aquifer to obtain an upscaled, dimensionally reduced, formulation. The requirements to
dimensionally reduce the momentum balance equation is to assert certain assumptions on the
variablility of the solution (displacement) in the direction of integration. The assumption of the
Linear Vertical Deflection (LVD) equation is that the displacements across the thickness of a
large aspect ratio formation can be approximated by linear functions. The acronym LVD comes
from the assumption of linear displacements across the integration path which is (typically)
vertical. First these assumptions will be introduced and discussed and the LVD-equation will
be derived in detail. In the following section, an extension to the LVD equation to include
poroelastic effects will be presented: Poroelastic Linear Vertical Deflection (PLVD) equation,
along with some illustrative examples.
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6.4.1 LVD: Assumptions

The main assumptions that is used in the derivation of the LVD equation is linearity in the
displacements across the integration path of the aquifer (here in the vertical z-direction):

uR = uB+
uT −uB

H
(z−ζB) (6.14)

vR = vB+
vT − vB

H
(z−ζB) (6.15)

wR = wB+
wT −wB

H
(z−ζB) (6.16)

where u [m], v [m] and w [m] are the displacement in x-, y- and z-direction, respectively, and
the subscripts R, T and B indicate reservoir/aquifer and top and bottom of reservoir/aquifer,
respectively. Using these linear relationships, the strains (derivatives for the displacements
components) can be derived, here just shown for u-component; displacement in x-direction:

∂uR
∂x

=
∂uB
∂x

+

(
∂uT
∂x

− ∂uB
∂x

)
z−ζB
H

− uT −uB
H

(
∂ζB
∂x

+

(
∂ζT
∂x

− ∂ζB
∂x

)
z−ζB
H

)
(6.17)

∂uR
∂y

=
∂uB
∂y

+

(
∂uT
∂y

− ∂uB
∂y

)
z−ζB
H

− uT −uB
H

(
∂ζB
∂y

+

(
∂ζT
∂y

− ∂ζB
∂y

)
z−ζB
H

)
(6.18)

∂uR
∂ z

=
uT −uB

H
(6.19)

6.4.2 LVD: Governing equations

To obtain the governing equation for LVD, the equilibrium equation, Eq. (3.2), is integrated
between the bottom and top of the reservoir (defined by the surfaces FB and FT in Fig. 6.1):∫ ζT

ζB
(∇ ·σ + f)dz= 0 (6.20)

The critical part is integrating the divergence-term. Applying Leibniz’ rule on the first (hori-
zontal) component of σ , the integral of the divergence can be expressed as:∫ ζT

ζB

∂σx

∂x
dz+

∫ ζT

ζB

∂σyx

∂y
dz+

∫ ζT

ζB

∂σzx

∂ z
dz=

∂
∂x

∫ ζT

ζB
σxdz−

[
σx|T

∂ζT
∂x

− σx|B
∂ζB
∂x

]
+

∂
∂y

∫ ζT

ζB
σyxdz−

[
σyx|T

∂ζT
∂y

− σyx|B
∂ζB
∂y

]
+[σzx|T − σzx|B] =

∂
∂x

∫ ζT

ζB
σxdz+

∂
∂y

∫ ζT

ζB
σyxdz−

([
σx|T

∂ζT
∂x

− σx|B
∂ζB
∂x

]
+

[
σyx|T

∂ζT
∂y

− σyx|B
∂ζB
∂y

]
− [σzx|T − σzx|B]

)
(6.21)

Similarly, the integrated (∇ ·σ)-term for the other two components can be obtained to obtain
on tensor form: ∫ ζT

ζB
(∇ ·σ)dz= ∇̃ ·Σ+[σ ·n|T − σ ·n|B] (6.22)

where the stress-terms on the upper and lower surfaces of the aquifer in Eq. (6.22), σ ·n|T and
σ ·n|B, are the traction forces acting on the over- and underburden, respectively, and

Σ =
∫ ζT

ζB
σdz (6.23)
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To derive Eq. (6.23) for linear elasticity, the stress tensor defined by Eq. (3.8) is integrated:∫ ζT

ζB
σdz=

∫ ζT

ζB

[
λ (∇ ·u)I+µ

(
∇u+(∇u)T

)]
dz (6.24)

The detailed step by step derivation to solve the integral is shown in App. I and the final result
is given by Eq. (I.8):

Σ = λ
[
∇̃ ·U

]
I+µ

[
∇̃U+(∇̃U)T

]
+[λ (u ·n|T − u ·n|B)I+µ (nu|T − nu|B)+µ (un|T − un|B)]

(6.25)
where

U=
∫ ζT

ζB
udz (6.26)

which, from the assumptions of linear displacements (Eqs. (6.14)-(6.16)) can be expressed, on
tensor form, as:

U=
1
2
(uT +uB)H (6.27)

The governing equation for LVD can finally be expressed, in a similar structure as the original
momentum balance equation, Eq. (3.2), as:

−∇̃ ·Σ = F (6.28)

where

F= [σ ·n|T − σ ·n|B]+
∫ ζT

ζB
fdz (6.29)

The last term, the integral of the body load f from Eq. (6.20), is case dependent and can be
integrated once it is defined.

6.5 PLVD: Poroelastic Linear Vertical Deflection

When considering the pore pressure from the fluid in a porous medium, an additional term is
added to the stress tensor; −bpsI, see constitutive relation in Eq. (3.17). Similarly, an addi-
tional term is added to the LVD-equation to obtain the Poroelastic Linear Vertical Deflection
(PLVD) equation, and from Eq. (3.17) the constitutive relation for a poroelastic medium can
be expressed as:

σ = λ (∇ ·u)I+µ
(

∇u+(∇u)T
)
−bpsI (6.30)

The pore pressure for two-phase flow in a porous medium is given by Eq. (4.50). In the
dimensionally reduced form (using the vertical equilibrium assumption for the fluid pressure),
the pore pressure is integrated across the thickness of the aquifer/reservoir, when assuming
constant Biot’s coefficient b, the integrated effective stress can be expressed as (for positive
extensional stress):

Σ = Σ′′−bPsI (6.31)

where the integrated effective stress Σ′′ is now given by Eq. (6.25) and Ps is given by the
integral in Eq. (H.37) (see section H.4 for details).
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6.6 Validation of LVD- and PLVD-equation

To validate the LVD- and the PLVD-equations (Eq. (6.28) where the constitutive relations are
described by Eqs. (6.25) and (6.31), respectively) two example cases are defined:

1. Static pore pressure, no flow

2. Dynamic pore pressure, two-phase flow

The models in the study are two-dimensional assuming plain strain conditions for more
accurate assessment of computational performance.

6.6.1 Example 1: Static pore pressure, no flow

The first example is a static (non-transient) case where an over- and underburden is separated
by an aquifer with various topography. The reservoir thickness H = 30±10 meters thick, see
App. K.5 for detailed description of model parameters and the geometries. A linearly varying
pore pressure change ∆ps is prescribed in the aquifer according to:

∆ps =
(
W− x
W

)
107 (6.32)

where W [m] is the width of the aquifer and x [m] is the horizontal position.
The results for various stress components (σx, σy and σxy) for the two geometries are

shown in Figs. 6.6, 6.7 and 6.8 and the displacement components (u and v, horizontal and
vertical, respectively) are shown in Figs. 6.9 and 6.10. Note that the deformation in the plots
is exaggerated 5000 times. Note also that the contours are somewhat arbitrary chosen to give
a fairly uniform distribution of the contours in the plots. The filled colored contours with thick
dashed lines show the solution of the fully resolved, full-dimensional model and the thin black
lines are the corresponding solution from the dimensionally reduced PLVD-model.
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(a) Model 1, flat bottom aquifer boundary.
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Figure 6.6: PLVD validation case; static pore pressure. The figures show horizontal stress
contours of the two different geometries modelled for the aquifer. The filled contours and
dashed lines are from the fully resolved model and the thin lines are the corresponding solution
from the PLVD-model.
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(a) Model 1, flat bottom aquifer boundary.
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(b) Model 2, flat top aquifer boundary.

Figure 6.7: PLVD validation case; static pore pressure. The figures show vertical stress con-
tours of the two different geometries modelled for the aquifer. The filled contours and dashed
lines are from the fully resolved model and the thin lines are the corresponding solution from
the PLVD-model.
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(a) Model 1, flat bottom aquifer boundary.
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Figure 6.8: PLVD validation case; static pore pressure. The figures show shear stress contours
of the two different geometries modelled for the aquifer. The filled contours and dashed lines
are from the fully resolved model and the thin lines are the corresponding solution from the
PLVD-model.
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(a) Model 1, flat bottom aquifer boundary.
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(b) Model 2, flat top aquifer boundary.

Figure 6.9: PLVD validation case; static pore pressure. The figures show horizontal displace-
ment contours of the two different geometries modelled for the aquifer. The filled contours
and dashed lines are from the fully resolved model and the thin lines are the corresponding
solution from the PLVD-model.
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(a) Model 1, flat bottom aquifer boundary.
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(b) Model 2, flat top aquifer boundary.

Figure 6.10: PLVD validation case; static pore pressure. The figures show vertical displace-
ment contours of the two different geometries modelled for the aquifer. The filled contours
and dashed lines are from the fully resolved model and the thin lines are the corresponding
solution from the PLVD-model.

6.6.2 Example 2: Dynamic pore pressure, two-phase flow

In the second example case, the porous medium is fully saturated with a wetting phase (here
water) and a non-wetting phase (here CO2) is injected through a long horizontal pipe located
in the middle of the reservoir, see App. K.4 for detailed description of model parameters and
the geometries evaluated. Note that this is the same model that was evaluated in chapter 6.3.2
for single-phase flow.
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The aquifer is assumed to be semi-confining: the non-wetting phase is confined in the
aquifer while the wetting phase is allowed to enter/leave the aquifer. For both geometries,
the solution is compared to a reference solution obtained from an identical but fully resolved
model.

Some plots of the comparison is given in Figs. 6.11-6.16, showing some selected contours
for the stress components (σx, σy and σxy), displacement (u and v) and pore pressure (ps)
after 20 years of injection. The figures to the left are for a flat, 30 meter thick reservoir, the
center figures are for an aquifer with a flat bottom boundary and the figures to the right are
for an aquifer with a flat top boundary. The inserted plots show the relative deviation of the
respective quantities evaluated in a point located in the middle of the caprock (indicated by the
small black circle in the figures) as a function of time and the color indicates a positive (blue)
and negative (red) deviation. The relative deviation is a measure of the difference between the
solution of dimensionally reduced and full-dimensional models divided by the solution of the
full-dimensional model for the quantities evaluated.
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(a) Flat aquifer.
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(b) Flat bottom aquifer sur-
face.
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(c) Flat top aquifer surface.

Figure 6.11: PLVD validation case; transient pore pressure. The figures show horizontal stress
contours. The filled contours are from the fully resolved model and the thick dashed lines
are the corresponding solution from the PLVD-model. The Inserted axis show the relative
deviation between the dimensionally reduced model and full-dimensional model.
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(a) Flat bottom aquifer sur-
face.
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(b) Flat bottom aquifer sur-
face.
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Figure 6.12: PLVD validation case; transient pore pressure. The figures show vertical stress
contours. The filled contours are from the fully resolved model and the thick dashed lines
are the corresponding solution from the PLVD-model. The Inserted axis show the relative
deviation between the dimensionally reduced model and full-dimensional model.
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Figure 6.13: PLVD validation case; transient pore pressure. The figures show shear stress
contours. The filled contours are from the fully resolved model and the thick dashed lines
are the corresponding solution from the PLVD-model. The Inserted axis show the relative
deviation between the dimensionally reduced model and full-dimensional model.
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Figure 6.14: PLVD validation case; transient pore pressure. The figures show horizontal dis-
placement contours. The filled contours are from the fully resolved model and the thick dashed
lines are the corresponding solution from the PLVD-model. The Inserted axis show the relative
deviation between the dimensionally reduced model and full-dimensional model.
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Figure 6.15: PLVD validation case; transient pore pressure. The figures show vertical displace-
ment contours. The filled contours are from the fully resolved model and the thick dashed lines
are the corresponding solution from the PLVD-model. The Inserted axis show the relative de-
viation between the dimensionally reduced model and full-dimensional model.
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Figure 6.16: PLVD validation case; transient pore pressure. The figures show pore pressure
change contours. The filled contours are from the fully resolved model and the thick dashed
lines are the corresponding solution from the PLVD-model. The Inserted axis show the relative
deviation between the dimensionally reduced model and full-dimensional model.

A summary of the performance is given in Table 6.3.

Table 6.3: A summary of performance of two-phase flow in a confined aquifer.

VE, PLVD Fully resolved
No. dofs, [#] Solving time, [s] No. dofs, [#] Solving time, [s]

Flat 62556 1047 99216 23360
Model 1 62382 1873 99042 21278
Model 2 62232 1653 98892 19634



Chapter 7

Discussion

The preceding chapters have covered several topics and relevant processes for CO2 storage and
injection, leading up to a simplified model. Successful storage of CO2 depends on the ability
to contain the CO2 in the storage formation, and successful containment of CO2 relies on not
compromising the confining rock. Therefore various failure mechanisms and criteria were
reviewed in chapter 2 where the evaluation of principal stress and effective principal stress
are important parts of the analysis, and the constitutive relations for elasticity, poroelasticity,
thermoelasticity and thermoporoelasticity were given in chapter 3.

Next, the various modeling results from chapters 4, 5 and 6 will be discussed, together
with some extended analysis from the respective chapters.

7.1 Single-phase flow

The effective stress is an important concept when evaluating the integrity of the storage forma-
tion and surrounding formations and it plays a major role in deriving the fluid flow equations,
as shown in chapter 4. The mass conservation equation for a single-phase fluid was care-
fully derived in chapter 4.2. Although seemingly trivial, the single-phase flow equation is very
important in reservoir simulations because the flow in a large part of the reservoir and sur-
rounding formations can be described by this equation. In chapter 4.2.2 various simplifying
assumptions on the solid-phase movement were compared for single-phase fluid flow. The re-
sults illustrate the importance of treating the mechanics of the solid phase properly. It was also
seen that the uniaxial strain approximation is a good first order approximation in simplified
analysis.

7.2 Two-phase, immiscible flow

In chapter 4.3 the equations for two-phase immiscible flow were reviewed, various formula-
tions of different pairs of dependent variables were solved and compared to a semi-analytical
solution as shown by Bjørnarå and Mathias [22]. The performance (which depends on many
factors such as the number of degrees of freedom, time-stepping in the numerical solver, etc.)
of the various formulations were compared (see Fig. 4.2) and the fastest being the ps− sn-
formulation and the slowest was the pw−sn-formulation, with a factor 1.6 difference in perfor-
mance. A preferred formulation can not be concluded based on the validation model because
it will depend on a number of factors, such as initial property values and capillary pressure
and relative permeability functions. In the examined model the number of degrees of freedom
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were the same, hence the performance depended on how efficient the time-stepping in the nu-
merical solver is for the various formulations. The results of a similar extended test is shown
in Figs. 7.1 and 7.2 where in the first test-case a wetting phase is displacing a non-wetting
phase (Fig. 7.1) and in the second test-case a non-wetting phase is displacing a wetting phase
(Fig. 7.2). Material- and model parameters are described in table 7.1.

Table 7.1: Properties in two-phase immiscible flow validation model. Relative permeability
and capillary pressure functions are defined by Brooks and Corey [27] (see App. E for details).
Fluids and solid are incompressible and isothermal conditions are applied. Results are shown
in Figs. 7.1 and 7.2.

Description Property Value Model 1 Model 2
(Fig. 7.1) (Fig. 7.2)

Permeability, [m2] k 10−10

Porosity, [-] ϕ 0.3
Injection rate, wetting phase, [m/s] qin jw - 0.018295 0
Injection rate, non-wetting phase, [m/s] qin jn - 0 0.018295
Viscosity, wetting phase, [mPa·s] µw 1
Viscosity, non-wetting phase, [mPa·s] µn 0.5
Initial wetting saturation, [-] s0w - 0.05 0.95
Residual wetting saturation, [-] srw 0
Residual non-wetting saturation, [-] srn 0
Entry pressure, [Pa] pd 105

Pore size distribution parameter, [-] λ 2
Diffusion coefficient (Eq. (D.13)), [m2/s] dα 0
Longitudinal dispersivity, [mm] dlα 0.1
Dissolution of CO2 in water, [-] cnw 0.0
Dissolution of water in CO2, [-] cwn 0.0

In the first test-case, Fig. 7.1, the pw− sn formulation showed the poorest performance of
the immiscible, two-phase flow formulations, by a factor of 2.4 compared to the fastest, but
in general the saturation-based formulations seem to perform better compared to the pressure-
based formulations. This general trend is comparable to the previous results shown in Fig.
4.2. However, this is reversed in the second test case, Fig. 7.2, although the difference in
performance is slightly less. In Figs. 7.1 and 7.2 the solution time for the compositional flow
model (pw−Cn-formulation, described in chapter 4.4) is also shown. It is interesting to note
that the performance is better compared to the immiscible flow formulations, and this is due
to the added diffusion and dispersion that stabilizes the solution by "smearing" out the sharp
leading saturation front of the injected phase, but as can be seen on both the saturation profile
and injection pressure evolution, the impact on the solution is negligible. However, this also
depends on the phase being injected as it can be seen that the trend is opposite when injecting
non-wetting phase, compare performance in Figs. 7.1 and 7.2 for pw−Cn-formulation, and
further emphasizes that different mathematical formulations can have a numerical advantage
in different scenarios.
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Figure 7.1: Comparing performance of various formulations of two-phase flow when injecting
a wetting phase into a non-wetting phase saturated domain (s0w = 0.05). (Left) Saturation
profile of the wetting phase sw at end of simulation (1 sec.). The legends indicate which
formulation is used and the solving time. (Right) Injection pressure ps. See table 7.1 for
material- and model parameters. See Box 7.2 for a note on the undershoot in saturation profile
(left figure) around 0.75 m.

Box. 7.2. Note on overshoots/undershoots in numerical solutions
Overshoots or undershoots, typically close to areas of high gradients in solution, can look
like oscillations/wiggles in a numerical solution and are due to numerical errors in the nu-
merical discretization scheme. It is important to note that this is not a matter of numerical
method (e.g. finite difference method, finite element method or finite volume method), but
a matter of numerical discretization. These errors can grow uncontrollably and completely
deteriorate the solution, but a less severe instability occurs when the solution is locally un-
bounded (small oscillations/wiggles that do not grow uncontrollably), yet globally stable,
and the solution is locally inaccurate but globally accurate to the allowable numerical er-
ror. More specifically it can be said that the local oscillations where the dependent variable
shows a large gradient are due to too locally large Peclet numbers. For a stable solution it
is generally required that

Pe=
|v|h
Dh

< 2

where v [m/s] is the local velocity, h [m] is the local mesh size and Dh [m2/s] is the lo-
cal diffusion coefficient. Localized oscillations occurs because the numerically discretized
solution does not have enough diffusion compared to the actual problem. For simple prob-
lems the amount of (artificial) diffusion that needs to be added can be determined exactly.
However, for higher dimension models and more complicated equations this is normally
not possible and the problem can be solved by (1) refining the numerical grid (reducing h)
until the actual diffusion can be properly resolved or (2) the problem can be remedied by
adding "sufficient" amount of artificial diffusion to the equation, or numerical diffusion by
changing the discretization scheme, or both.

Note that Pe < 2 is not an absolute and decisive limit for stability, e.g. according
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to Hirsch [55] the limit for stability also depends on the time-stepping, thus "sufficient"
amount is problem dependent and makes it difficult to determine. Adding too little artificial
diffusion will still give oscillations/wiggles and local inaccuracies in the solution (even
though it may be reduced), while adding too much may alter the original problem and
result in a wrong solution. Thus, the amount of artificial diffusion should always be subject
to a sensitivity analysis to determine the optimum amount.

In some numerical schemes so-called slope (or flux) limiters can be used to avoid over-
/under-shoots in the solution by limiting the spatial derivatives to physically meaningful
quantities (make the solution total variation diminishing). These limiters are applicable in
numerical schemes that are locally conservative and this is why the finite volume method
is often the preferred method of choice for solving flow problems.
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Figure 7.2: Comparing performance of various formulations of two-phase flow when injecting
a non-wetting phase into a wetting phase saturated domain (s0w = 0.95). (Left) Saturation
profile of the wetting phase sw at end of simulation (1 sec.). The legends indicate which
formulation is used and the solving time. (Right) Injection pressure ps. See table 7.1 for
material- and model parameters. See Box 7.2 for a note on the overshoot in saturation profile
(left figure) around 1.15 m.

7.3 Two-phase, miscible flow

To investigate the effect of miscibility on the pore pressure, a similar model (as above) was
defined and compared for various contributions of dispersion and dissolution, see table 7.2 for
material- and model parameters.
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Table 7.2: Properties in a partially miscible two-phase flow model used in the parameter sen-
sitivity analysis. Relative permeability and capillary pressure functions are defined by Brooks
and Corey [27], (see App. E). Fluids and solid are incompressible and isothermal conditions
are applied. Results are shown in Figs. 7.3 and 7.4.

Description Property Value Model 1 Model 2
(Fig. 7.3) (Fig. 7.4)

Permeability, [m2] k 10−10

Porosity, [-] ϕ 0.3
Injection rate, wetting phase, [m/s] qin jw 0.00012
Injection rate, non-wetting phase, [m/s] qin jn 0.00988
Viscosity, wetting phase, [mPa·s] µw 1
Viscosity, non-wetting phase, [mPa·s] µn 0.5
Initial wetting saturation, [-] s0w 0.99
Residual wetting saturation, [-] srw 0.2
Residual non-wetting saturation, [-] srn 0
Entry pressure, [Pa] (App. E.1.1) pd 105

Pore size distribution parameter, [-] λ 2
Diffusion coefficient (Eq. (D.13)), [m2/s] dα 0
Longitudinal dispersivity, [mm] dlα 0.5 0.05-100
Dissolution of CO2 in water, [-] cnw 0.06 0.03-0.36
Dissolution of water in CO2, [-] cwn 0.003 0.0015-0.018

The results from the compositional flow model is compared to immiscible two-phase flow.
In Fig. 7.3 the saturation and injection pressure profiles are compared for various values of
dispersivity dαl (in Eq. (D.13) which defines the diffusion/dispersion tensor in the governing
Eqs. (4.75) and (4.76)). It can be seen how the saturation profile is increasingly "smeared" out
with increasing dispersion, Fig. 7.3, and the injection pressure is affected by dissolution, Fig.
7.4. For a longitudinal dispersivity up to 5 [mm]1 the affect on pore pressure is modest; less
than 1 % compared to immiscible flow. At this value the solving time is also comparable to
immiscible case, see summary of performance in Table 7.3.

In Fig. 7.4 the results for various levels of dissolution of the phases is compared to immis-
cible flow. The dissolution has an effect on the saturation close to the injection well, but the
migration is almost identical compared to immiscible two-phase flow.

1Following the procedure in App. J, the shape of the immiscible flow profile compares to a dispersivity dlα of
0.03 mm.
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Table 7.3: Summary of performance of partial miscibility two-phase flow models.

Model 1 Model 2
Dispersivity Solving time Solubility Solving time
[mm], dlα [s] [-], (cnw,cwn) [s]

0.05 2570 (0.0015,0.03) 1838
0.5 2320 (0.003,0.06) 1980
5 1381 (0.006,0.12) 1717
50 339 (0.012,0.24) 1638
100 201 (0.018,0.36) 858

Immiscible 1295
(pn− sw)
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Figure 7.3: Comparing saturation profiles and injection pressure for various values of longi-
tudinal dispersion coefficient, dlα [m], in the compositional flow model. The inserted figure
shows the relative difference in the pressure compared to immiscible two-phase flow. See table
7.2 for material- and model parameters. See Box 7.2 for a note on the overshoot in saturation
profile (left figure) around 7.5 m.
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Figure 7.4: Comparing saturation profiles and injection pressure for various equilibrium com-
positions in the fluid phases: cwn is the volume fraction of wetting phase that dissolve in the
non-wetting phase and cnw is the volume fraction of non-wetting phase that dissolve in the
wetting phase. The inserted figure shows the relative difference in the pressure compared to
immiscible two-phase flow. See table 7.2 for material- and model parameters. See Box 7.2 for
a note on the overshoot in saturation profile (left figure) around 7.5 m.

Dissolution has a limited effect on the pressure and saturation distribution, especially when
reasonable amounts of dissolution is considered compared to what can be expected in typical
CO2 storage projects, see also table 4.6. The main exception is for extreme dissolution values.

This simple analysis has tried to address the issue of how the pressure is affected by con-
sidering partial miscibility and in turn the effective stress in the reservoir and surrounding
formations. It can be seen that for the expected solubility of the, and moderate dispersion,
CO2 injection can with sufficient accuracy capture the migration and pressure evolution by
assuming immiscible flow.

It has been shown that the governing equations for two-phase flow can be formulated in
numerous ways by considering the mass conservation of the two phases using the auxiliary
equations for capillary pressure, Eq. (4.44), the constraint on the saturation, Eq. (4.40), and
rearranging. The underlying assumption is (normally) that both phases are present, at least in a
small enough amount so that it does not cause numerical instabilities. When considering two-
phase immiscible flow, it is not unreasonable to assume that a small amount of both phases
is present and it is often assumed that some amount of formation water is always present
such that the wetting pressure is continuous throughout the whole domain of interest. The
typically used capillary pressure functions are also defined such that, once present, the wetting
saturation will never become zero (as the pressure required to do so approaches infinity, see
App. E). However, when considering partially miscible flow, in practice it is possible that one
phase can completely disappear as it becomes dissolved in the other phase. This is particularly
crucial when for instance CO2 is displacing the formation brine. In order to avoid this, a small
amount of wetting phase is injected with the non-wetting phase, in sufficient amounts, to make
sure that both phases are present at the injection well. This can pose a practical problem as
dry-out of brine due to CO2 injection can cause the dissolved salt to precipitate, which in
turn can have a negative effect on the permeability/porosity and lead to increased injection
pressure, and/or lower injectivity. Interestingly, it has been proposed as a means of sealing
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abandoned/abandoning wells to inject high salinity brine followed by CO2 [120].

7.4 Non-isothermal effects

An often overlooked aspect in reservoir modeling is heat transport, as coupled flow and ge-
omechanics is more frequently encountered in the literature. Here the effect of considering
non-isothermal processes in the context of CO2 storage is illustrated. It is is not a thorough
analysis, but points out some significant effects. Consider the thermoporoelastic constitutive
relation in Eq. (3.28), by comparing the thermoelastic stress-term to the poroelastic stress-
term, temperature effects can often be ignored when

b∆ps ≫ βsK∆T (7.1)

However, non-isothermal effects might be very relevant for high-permeable reservoirs when
pore pressure change is presumably small.

Considering the contribution of thermal expansivity of fluids qT for fluid phase α , in the
fluid conservation equation for immiscible flow, Eq. (4.48):

qT = sαρα [ϕβα +(b−ϕ)βs]
dT
dt

(7.2)

It can often be ignored when dT/dt is small. It can be seen that temperature change can be
a key factor, temporally (for fluid mass conservation, Eq. (7.2)) and spatially (for stress, Eq.
(7.1)), but the change must be significant enough to make a difference.

In general it is difficult to compare the various rate terms in the flow equation, heat trans-
port equation and momentum balance equation because they have very different spatial and
temporal variations. Volumetric strain rate, for instance, will have two time-scales: one for
pressure dissipation (fast) and one for temperature dissipation (slow). Before continuing the
analysis, remember the two models that were solved in Chapter 5.3:

1. THM: Thermo-hydro-mechanical coupling, model is considering two-phase flow, poroe-
lasticity and energy transport.

2. HM: Hydro-mechanical coupling, model is considering two-phase flow and poroelastic-
ity and temperature is assumed constant in time.

In both models the initial material properties for the fluids (water and CO2) were evaluated
from the equations of state from the online NIST database [65] using an initial temperature
gradient (30◦C at the surface and 30◦C/km gradient) and an initial pore pressure profile that
was based on estimated in situ pore pressure. Remember that in the example presented in
chapter 5, the material properties of the fluid phases (density, viscosity and compressibility)
are based on initial pressure and temperature conditions and are considered constant in time. It
was seen that the effect of the temperature was very local in nature and had very little effect on
the saturation distribution, deformation and pore pressure beyond the temperature signature.
In a modified example, where the fluid properties (density, viscosity and compressibility) are
functions of pressure and temperature and not constant in time, the same effect is observed.
This is illustrated in Figs. 7.5 and 7.6 where the contours of the density and viscosity of water
and CO2 [from 65] are plotted for various temperatures and pore pressures. The diagonal white
lines represents the initial condition for temperature and pore pressure and the white dots in
Fig. 7.5 represents the pressure and temperature combinations in all the degrees of freedom in
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the HM-model, after 12 years of injection, superimposed on the EOS-plots, and illustrate that
the density and viscosity increases with time as the pore pressure is increasing in a small part
of the model corresponding to the reservoir.
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Figure 7.5: The density and viscosity variations in the HM-model (temperature is assumed
constant but varies with depth). The diagonal white lines indicate the initial state. The white
dots are the PT-data points of all the degrees of freedom in the model after 12 years of injection.
The black lines show how the temperature and pore pressure in selected points around the
injection well evolves in time. Since temperature is constant in time, the black arrows are
horizontal: density/viscosity increases as pore pressure increases.

In the HM-model, Fig. 7.5, the temperature profile is constant, linearly varying with depth,
and the white area is gradually extended in time towards higher pressure values. This is illus-
trated by the black lines in Fig. 7.5 where the pressure and temperature evolution is tracked in
time in a few selected locations around the injection well. Since the temperature is constant in
time the lines are horizontal as the pressure increase with time.
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Figure 7.6: The density and viscosity variations in the THM-model. The diagonal white lines
indicate the initial state. The white dots are the PT-data points of all the degrees of freedom in
the model after 12 years of injection. The black lines show how the temperature and pore pres-
sure in selected points around the injection well evolves in time: density/viscosity increases as
pressure increases and temperature reduces.

Similarly, in Fig. 7.6 the pressure and temperature combinations in all the degrees of
freedom in the THM-model, after 12 years of injection, is superimposed on the EOS-plots.

In the THM-model, Fig. 7.6, the high pore pressure points that is cooled down close to the
injection well is shown as a vertical trail of white points. This is also illustrated by the black
lines which track the temperature and pressure evolution in time in a few selected locations
around the injection well. The reduction in temperature results in a higher increase in density
and viscosity.

In Fig. 7.7 the results from this modified model is compared with the results from Fig.
5.5 and it can be seen that the temperature effect is very modest. In Fig. 7.7 there are two
dashed lines and two solid lines. The difference between the two solid lines is that the material
properties are updated with temperature and pressure in the THM-model and only pressure
in the HM-model. The difference between the solid lines and the dashed lines is that in the
dashed lines the material properties are constant in time (not changing with neither pressure
nor temperature). In all cases the initial pressure and temperature are varying with depth.
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Figure 7.7: (Left) Vertical elevation at the surface directly above the injection well and (right)
injection pressure. The dashed lines are the results from Fig. 5.5 where the material proper-
ties were constant in time and defined using initial pressure and temperature conditions (but
varying with depth). The EOS-models indicate that the material properties are updated in time
with pressure and temperature in the THM-model and pressure only in the HM-model. ∆p
and ∆T indicates the difference in the solutions when fluid properties are constant in time and
when they are changing with pressure and temperature, respectively.

It is apparent from the results in Fig. 7.7 that considering the temporal change in pressure
on the material properties is more important than considering the temporal change in both
pressure and temperature on the material properties: the cooling effect is almost negligible
compared to the pressure effect.

The pressure effect on the saturation distribution is also noticeable, compare results in Figs.
5.1 and 7.8. The migration of CO2 plume is noticeable shorter, which is mainly because the
density of CO2 increases with increasing pressure.
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Figure 7.8: (a) Temperature distribution and (b) non-wetting phase saturation distribution in
the reservoir after 12 years of injection. The reservoir (between 1800-1820 meters depth),
overlying caprock layers and underburden are outlined by the thin, black lines. The material
properties are functions of pressure and temperature and not constant in time.

As was shown in chapter 5, and argued above, the temperature effect is local and does not
affect the flow regime. Thus, when fluid flow andmigration is of main concern, the temperature
may (often) be assumed constant in time, but should not necessarily be considered constant
in space. However, it will be shown that this does not apply to the stress-field, which will be
considered next.

It was also shown in chapter 5 that the temperature effect is local in relation to strain
and displacement, see Figs. 5.2 and 5.3. In Figs. 7.9 and 7.10 the differences in maximum
and minimum principal stresses in the THM- and HM-model is shown, and again the local
nature of the temperature effect is apparent (note that the x-axis is in logarithmic scale). The
thermal stress reduces the local stress as the THM-model shows significant lower maximum
and minimum principal stress directly above and below the injection well, approximately 2.5
MPa and 4 MPa, Figs. 7.9 and 7.10 respectively, compared to the HM-model. Remember
the initial maximum and minimum principal stresses in Table 5.1, 49.9 MPa and 30.8 MPa,
respectively. As discussed in chapter 2, the maximum and minimum principal stresses are
essential when evaluating the possibility of rock failure.
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Figure 7.9: Difference in maximum principal stress between THM- and HM-model at 1, 3.4
and 12 years after start of injection. Note that the distance is in logarithmic scale. The reservoir
(between 1800-1820 meters depth), overlying caprock layers and the underburden are outlined
by thin black lines.
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Figure 7.10: Difference in minimum principal stress between THM- and HM-model at 1, 3.4
and 12 years after start of injection. Note that the distance is in logarithmic scale. The reservoir
(between 1800-1820 meters depth), overlying caprock layers and the underburden are outlined
by thin black lines.

The initial and resulting (after 12 years of injection) Mohr circle with failure envelope (for
fault/fracture reactivation in the caprock 20 m above the injection well) for the two models are
shown in Fig. 7.11 (left). It can be seen that due to the strike-slip stress regime, the differential
stress (difference between the maximum and minimum principal stresses) in the HM-model
is almost constant after 12 years of injection, resulting in an almost pure shift of the Mohr
circle to the left (blue curve compared to dashed, black line representing initial stress). In the
THM-model, the Mohr circle is also shifted to the left, but the differential stress is increased,
resulting in the Mohr circle crossing the failure envelope (red curve). This is also illustrated
in Fig. 7.11 (right), the initial state is the same in the two models, but the current stress state
(after 12 years of injection) in the THM-model (red curve) is outside the allowable stress region
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(which is enclosed by the solid black line), while the stress state in the HM-model (blue line)
is just within the allowable stress state region.
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Figure 7.11: (Left) Stress state evaluated in point [0,−1790] (middle of caprock above injec-
tion well) for THM- (red curve) and HM-model (blue curve), after 12 years of injection. Black
dashed curve indicates initial stress state conditions, the pressure increase 10 m above the top
reservoir has shifted the initial Mohr-circle towards the left. The Coulomb failure envelope
is expressed by Eq. (2.9) (for cohesionless faults) and assuming a sliding friction coefficient
µ f = 0.6. (Right) Allowable stress region. As the pore pressure is increased after 12 years
of injection the allowable stress area becomes smaller (compare area inside thick dashed and
solid lines). The red (THM) and blue (HM) lines indicate the change in stress state.

It has been shown that injecting cold CO2 into a hot reservoir results in increased risk of
failure. In Fig. 7.11 the risk of failure was evaluated in a point above the injection well, in
the middle of the lower caprock. In Fig. 7.12 the frictional limit failure criteria given by Eq.
(2.10) is evaluated (again using that µ f = 0.6), where positive values indicate risk of failure.
It can be seen that in the THM-model (Fig. 7.12, left), the risk of failure (dark red region) is
apparent around the injection well in the reservoir and the first 20 meter into the lower caprock
and underburden, while the HM-model shows a lower risk of failure and no risk of failure
outside the reservoir (relative to the frictional limit failure criteria).
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Figure 7.12: Frictional limit criteria evaluated after 12 years of injection for THM-model
(left) and HM-model (right). The values are calculated after Eq. (2.10), where positive values
indicate risk of failure and negative values indicate safe stress state. Note that the distance in
logarithmic scale. The dashed lines indicate failure limit.

Temperature has an effect on flow and the pressure, but the initial spatial temperature
profile is more important than considering the temporal changes. The temperature effect is
very local, the conductive and convective energy transport is too small to affect the flow. For
the stress, the temperature change significantly increases the risk of failure in the caprock
above the injection well in the illustrative example based on conditions at the CO2 storage site
at In Salah, Algeria.

7.5 Simplifying geomechanics

It is tempting to find ways to eliminate the need to calculate the momentum balance equation
to evaluate the stress state. Two methods were highlighted in chapter 2.4: the k0-method
expressed by Eq. (2.16), and the stress-path method with equations relating the change in
stress to change in pore pressure, Eqs. (2.20), (2.21) and (2.22). In Fig. 7.13 the difference
between the calculated and the approximated minimum horizontal stress (σh) for the stress-
path method (using Eq. (2.21), left figure) and the k0-method (using Eq. (2.16), right figure).
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Figure 7.13: The difference between approximated and simulated minimum horizontal prin-
cipal stress σh. The approximated stress is evaluated using the stress-path method (left, Eq.
(2.21)) and the k0-method (right, Eq. (2.16)).

Both methods approximates the change in stress solely due to changes in pore pressure. It
can be seen that the stress path method gives a reasonably good approximation in the reser-
voir. However, outside the reservoir the stress transfer due to deformation of the reservoir is
completely ignored and can not be used.

The k0-method does not consider the change in horizontal stress with change in pore pres-
sure, dσh/dp, and fails even worse. Altmann et al. [4] also showed that the ratio expressed
in Eq. (2.21) represents the long-term limit (t → ∞) thus none of the approximations handle
dynamics accurately and are strictly valid for steady-state conditions only. Stress analysis is
therefore needed to accurately predict spatio-temporal distribution of failure risk [4].

7.6 Dimensionally reduced models

It is not always desirable, nor feasible, to model in full-dimension because of the computa-
tional cost and long simulation times. By integrating the governing equations for the leading
order processes, many degrees of freedom can, in effect, be eliminated, allowing a numerically
smaller problem to be solved, and faster. This was explored in chapter 6. The mass conser-
vation equations were integrated to obtain the dimensionally reduced form of the single-phase
flow equation, Eq. (6.5), and the two-phase flow equation (including capillary pressure ef-
fects), Eq. (6.12). Both dimensionally reduced models were compared to a fully resolved,
full-dimensional model for two different geometries of the reservoir (reservoir thickness of
30± 10 meters) and the results are shown in Fig. 6.2 for single-phase flow and Figs. 6.4
and 6.5 for two-phase flow. The dimensionally reduced models compare excellent with the
reference models for both saturation and pressure.

The underlying assumption for the derivation of the dimensionally reduced flow equations
implies that the pressure gradient in the vertical direction has reached a steady state: vertical
equilibrium (VE). In high permeable aquifers the pressure propagates quickly, thus this as-
sumption is close to the real behavior for the pressure. Yortsos [124] examined the validity of
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the VE assumption and identified a key dimensionless variable RL defined as:

RL =
L
H

√
kv
kh

(7.3)

where L [m] is a characteristic length, H [m] is the height (length of integration path) and
kv [m2] and kh [m2] are the vertical and horizontal permeability in the aquifer, respectively.
The VE assumption was found to be valid in the limit of large R2

L. In a validation model
presented by Bjørnarå et al. [25] based on realistic CO2 storage conditions at In Salah, Algeria,
it was found that it holds even for reservoir thickness H up to at least 100 meters. The VE-
assumption implies further that since the pressure is in vertical equilibrium, then so is the
phase distribution, or saturation. In practice, the phase segregation is much slower than the
propagation of the pressure and the VE-assumption on the saturation is not valid at early times.
However, this is mainly an issue for the vertical distribution of the phases and to a little degree
the phase pressure. This quick pressure equilibrium is particularly important, and fortunate,
when evaluating effective stress because the pore pressure is normally less dependent on the
saturation, but mainly on the wetting pressure, see Eq. (3.26).

The performance of the dimensionally reduced model compared to a full-dimensional
model is given in table 6.2 and show a speed-up of more than 10 times. it is interesting to
note that a high vertical resolution in the fully resolved full-dimensional model is required to
get a comparable saturation profile. This is particularly the case of high permeability reser-
voirs because the thickness of the plume, which will be thin at high permeability, needs to be
resolved.

The concept of vertical equilibrium (VE) for flow was applied to the momentum balance,
Eq. (3.2). For the flow, VE implies a constant vertical pressure gradient (e.g. from Eq.
(H.14) when fluid density can be assumed constant across the thickness of the reservoir):
∂ pα/∂ z = −ραg. In the dimensionally reduced form of the momentum balance equation the
underlying assumption is constant vertical strain component: linearly varying displacement
across the thickness of the reservoir as expressed in Eqs. (6.14)-(6.16). Integration of the
momentum balance equation, using these assumptions, results in a dimensionally reduced
form of the equation for linear elasticity that is therefore referred to as the Linear Vertical
Deflection equation (LVD). It was shown that the LVD equation can be expressed on a similar
form as the full-dimensional momentum balance equation: −∇̃ ·Σ = F (Eq. (6.28)). The LVD
stress tensor Σ and body-load vector F contains several boundary-terms that are well defined
when the dimensionally reduced domain is embedded by surrounding formations.

To account for effective stress, the pore pressure is included in the constitutive relation
for the stress, see Eq. (3.17). The LVD equation is the dimensionally reduced form of the
momentum balance equation, and the equivalent form of the dimensionally reduced poroelas-
ticity equation is simply termed the Poroelastic Linear Vertical Deflection (PLVD) equation.
To validate the PLVD equation, as well as the implementation into a finite element code, two
validation models were defined. The first model was a static case with a constant load; here
a constant pore pressure profile across the width of the reservoir as expressed by Eq. (6.32).
The aim was to compare the accuracy of various stress-terms and displacement variables and
it can be seen that the two solutions coincide almost perfectly, see Chapter 6.6.1 for results.
Note also that the topography causes large stress contrasts related to the slope of the reservoir.
In the second model, the PLVD-model was also compared to a fully resolved, full-dimensional
model, but with a transient pore pressure arising from the injection of CO2 into a water satu-
rated reservoir. Thus, the PLVD-form of the momentum balance equation was coupled with a
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dimensionally reduced form of the two-phase flow equation under vertical equilibrium condi-
tions as described in chapter 6.3.2 (and App. H).

As with the dimensionally reduce two-phase flow models under VE assumptions, there is
a significant gain in performance. Three different model geometries was solved for and the
speed-up of the simulations showed 11-22 times faster calculation times, see table 6.3. Due to
the dimensional reduction, the numerical size of the problems was reduced by 35-40 %. The
difference in improved performance (speed-up) and computational cost (number of degrees
of freedom) are very different. By reducing the numerical size of a problem, the calculation
becomes faster. In a time dependent problem the linear system of equations are solved many
times, to capture the transient behavior. Solving a smaller problem many times (for every
time step) can accumulate to significant savings in total computational time. However, the
large speed-up (11-22) compared to the (modest) reduction (35-40 %) in cost is also due to
a less stiff non-linear system of equations in the dimensionally reduced models, allowing the
numerical solver to use larger time-steps. This is illustrated in Fig. 7.14, showing the output
from the solver log of one of the models.
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Figure 7.14: Output from the solver-log for the two-phase flow problem in table 6.3 (flat reser-
voir) for the fully resolved model (black curve) and dimensionally reduced model (red curve).
(Left) Step-size as a function of the number of time steps taken by the solver. The dimension-
ally reduced model requires 1641 time steps by the solver to solve 10 years of injection while
the fully resolved model requires 3550 time steps. (Right) Step-size as function of simulated
time (10 years of injection). Vertical black dashed line indicate when the plume reaches the
caprock.

The non-linear system of equations in a dimensionally reduced model is less stiff, allowing
longer time-steps to be taken by the time dependent solver and resulting in fewer time steps
(calculations) and therefore shorter calculation time, see Fig. 7.14 (left). The dimensionally
reduced model requires 1641 time steps by the solver to solve 10 years of injection while the
fully resolved model requires 3550 time steps. Also, the numerical cost for every time step is
lower (35-40%) for the dimensionally reduced models.
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The benefit of the dimensionally reduced model is, as pointed out previously, that the
dimensionally reduced domain can in effect be eliminated from the model. This is particularly
beneficial for large-aspect ratio domains, e.g. very thin but laterally extensive domains, which
can be challenging, or even impossible, to discretize (mesh).

Lu et al. [67] compared fully resolved numerical simulations to simple analytical solutions
based on the vertical-equilibrium and sharp-interface assumptions (two-phase flow without
capillary pressure) of a simplified and radially symmetric problem. They concluded that the
vertical-equilibrium, sharp-interface analytical approaches were unable to accurately predict
the CO2 front position and further that these simplified models were not appropriate to model
CO2 injection. [35] extended this analysis and looked at conditions under which vertical-
equilibrium models are appropriate and the conditions under which the sharp-interface models
are appropriate. They showed that in many cases the vertical-equilibrium models are reason-
able. Naturally, by making simplifying assumptions the range of validity may be reduced. In
that sense, the sharp-interface model may have limited use, but at the same time it is extremely
efficient to solve compared to a fully resolved model and can therefore be absolutely neces-
sary to use, particularly when large numbers of realisations are required. However, it has been
shown here, and by Bjørnarå et al. [25], that application of dimensionally reduced models can
give accurate results when applied to realistic scenarios.



96 Discussion



Chapter 8

Conclusion

In order to continue to use fossil fuels for energy, storing the bi-product CO2 is the only
sustainable option. In CO2 storage, the main concern is containment of the stored gas. Any
safe storage is constrained by how much gas can be injected while not exceeding a pressure
that can compromise the storage and in particular the integrity of the surrounding formation
and caprock.

The overall objective of this project was to "derive the mathematical description of the
main relevant processes involved in CO2 injection and storage to assess the geomechanical
integrity of the storage reservoir and the surrounding formations and analyze how these can
be simplified for a faster numerical evaluation while keeping an acceptable level of accuracy".
To this end, several processes, and the interaction between them, were investigated: single-
phase and two-phase (immiscible and partially miscible) fluid flow in porous media, energy
transport and poroelasticity, to derive a reduced-dimensional model for coupled single- and
two-phase fluid flow and geomechanical deformation within the context of CO2 storage.

For single-phase flow, many formulations from various simplifying assumptions are en-
countered in the literature, but it is not always clear what these assumptions or justifications
are. The various formulations originate from various simplifying assumptions on the me-
chanical behavior (deformation) of the porous media (e.g. rock or soil) under consideration,
resulting in different formulations for the fluid storage term. In a comparison test in this study,
it was shown that the various simplifications can give significantly different results and it is
therefore important to be aware of what they imply. In one case the deformation was sim-
ply ignored (completely rigid solid), and while the fluid flow equation was the same as in the
fully coupled reference model (which solves for both fluid flow and geomechanics, simulta-
neously), the resulting pore pressures were very different. On the other hand, in the case of a
relatively thin reservoir, a simple consideration of deformation (uniaxial strain approximation)
improved the results substantially. These various formulations were also the topic of the paper
by [23] and, although seemingly trivial, it was pointed out that the single-phase flow equation
is very important in reservoir simulations because it is typically applied to a larger part of the
reservoir and the surrounding formations.

From the governing equations for multi-phase flow and the auxiliary equations (capillary
pressure functions and the saturation constraint), as much as eighteen formulations for im-
miscible two-phase flow can be derived. Eight of these formulations were compared to a
new semi-analytic solution of the McWhorter-Sunada equation (MSE, originally proposed by
McWhorter and Sunada [72]) for two-phase flow in porous media including capillary pressure.
The originally proposed algorithm to solve MSE is exceptionally sensitive to hydraulic prop-
erties and the new solution procedure by Bjørnarå and Mathias [22] provided a fast, robust and
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accurate alternative using a pseudospectral method. The comparison revealed some preferred
formulations in terms of solving time, depending on the process, e.g. if a wetting-phase was
invading a non-wetting phase saturated medium, or vice versa. The difference in calculation
time for the various formulations was up to a factor two between the fastest and the slowest
calculation. However, an optimal formulation or a detailed guideline to which formulation will
be the fastest is difficult to assess, if even possible, as it is problem dependent. However, the
saturation-based formulations (six possible formulations) are in general more applicable be-
cause they can handle situations where the saturation is below the residual saturation as well
as discontinuities in the saturation due to heterogeneity in capillary pressure in the formations.

The partially miscible (soluble) two-phase flow formulation was validated to an analytical
two-component, two-phase flow extension to the Buckley-Leverett equation [28]. The model
was further used to evaluate the effect of solubility of CO2 on the migration and the pore
pressure that in turn will affect the stresses in the reservoir and surrounding formations. CO2
has a low solubility in water, in the order of a few percent in mass ratio (noting that the exact
ratio depends on temperature, pressure and salinity), and it was shown that when considering
moderate dispersion, the assumption of immiscible two-phase flow is a good approximation,
both in terms of CO2 migration, pore pressure and solving time.

Non-isothermal effects were illustrated in a well-documented case study of CO2 storage
from In Salah, Algeria. To isolate the non-isothermal effect, the difference between a hy-
dromechanical (HM) model and a thermohydromechanical (THM) model was analyzed. In
the HM-model, fully coupled fluid flow (two-phase) and poroelasticity were considered and in
the THM-model, the energy balance was also considered. It was shown that the temperature
effect is very local due to limited heat transport that results in a slow dissipation of tempera-
ture compared to the migration of the injected CO2 and the pressure dissipation. This means
that the thermal effect on the material properties is local and spatially limited to the injection
well. Thus, from a regional-scale point of view, when the fluid migration and pore pressure
are important aspects, the initial spatial temperature profile is more important to consider than
the temporal changes.

The non-isothermal effect on stress is a different matter. In general, cold injection (relative
to formation temperature) lowers the fracture pressure and the limit for maximum sustainable
injection rate. However, how significant this effect is, depends on: the magnitude of the ther-
mal expansion coefficient, the stiffness of the formations in question and the magnitude of the
temperature change. Thus, for cold injection, ignoring non-isothermal effects can underesti-
mate the risk of failure, and vice versa. In the illustrative example based on conditions at the
CO2 storage site at In Salah, Algeria, the temperature change is significant enough to cause
failure in the caprock above the injection well.

To provide capacity estimates and to analyze long-term storage safety and potential risk
factors in CO2 injection and storage, it is necessary to have a consistent mathematical descrip-
tion of the main relevant processes involved: fluid flow, energy transport and geomechanics.
However, the numerical models quickly become large, requiring a huge computational effort.
For instance, knowing how far the pressure footprint extends is crucial when comparing mod-
els to measured data, implying that large models may need to be considered, to the extent
that a full three-dimensional model can become unfeasible to solve. When geometrical sim-
plifications are not possible (no spatial symmetries), another approximation was exploited:
dimensional reduction. This approximation has been found particularly attractive in model-
ing of CO2 injection and storage due to: strong buoyant segregation of the lighter CO2 phase
compared to the resident brine, the relatively long time-scales associated with storage and the
typically large aspect ratios of the storage formations (flat/thin with large lateral extent). Since
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stress is particularly essential to consider when evaluating the integrity of the caprock, the
concept of dimensional reduction was extended to also include the geomechanical processes.
A fully coupled dimensionally reduced model for multiphase flow and geomechanics in an
aquifer being of lower dimension while the surrounding formations (e.g. caprock and over-
and underburden) are of full dimension, was developed. The model is derived from the gen-
eral mathematical description of immiscible two-phase fluid flow with capillary pressure and
poroelasticity. In deriving the dimensionally reduced formulation, the following assumptions
(within the dimensionally-reduced domain) were applied: the fluid is in Vertical Equilibrium
(VE), implying here that the vertical pressure gradient is constant, and the Linear Vertical De-
flection (LVD) for the momentum balance equation, implying that the vertical strains are con-
stant (displacement components are linearly varying in the vertical direction). These choices
of closure relationship (VE and LVD) allow for an efficient and accurate reconstruction of fluid
saturation, fluid pressure and deformation that works just as well on flat, horizontal aquifers as
topographic aquifers.

The dimensionally reduced model was thoroughly tested and it successfully captures the
main processes investigated. The model also retains all the benefits of reduced-dimensional
models for flow, including less stiff non-linear systems of equations, allowing longer time-
steps to be taken by the numerical solver and requiring fewer degrees of freedom. This pro-
vides significant savings in computational time when faced with a large number of simulations,
up to more than twenty times faster calculation times compared to a full-dimensional model.
The new model was validated for single- and two-phase flow coupled to poroelasticity in prac-
tical examples, with various topography of the aquifer, in both two and three dimensions. The
model was also the main topic of the papers by Bjørnarå et al. [24] and Bjørnarå et al. [25] and
it was applied to real field data from the CO2 storage site at In Salah, Algeria, [21].
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Chapter 9

Papers

Paper I: A Pseudospectral Approach to the McWhorter and Sunada Equation for Two-Phase
Flow in Porous Media with Capillary Pressure

When deriving and implementing a numerical code for two-phase fluid flow it is important
to have an analytical solution to verify that it behaves as expected and the solution is correct.
McWhorter and Sunada [72] defined a nonlinear second-order ordinary differential equation
to solve one-dimensional immiscible two-phase flow in porous media with capillary pres-
sure (MSE). This equation, MSE, can be considered a capillary effect-analog to the analyt-
ical Buckley-Leverett solution [28] which neglects the capillary pressure. However, the con-
vergence of the original solution procedure by McWhorter and Sunada [72] has proven to
be extremely sensitive to the model parameters, thus we proposed a fast and robust solving
procedure using Chebyshev spectral collocation (pseudospectral) method. The equations by
McWhorter and Sunada [72] were re-derived and the final formulation is slightly more flex-
ible, supporting both co-current and counter-current flow. This procedure and formulation is
used to validate various two-phase, immiscible flow formulations in chapter 4.3.

Paper II: Vertically Integrated Models for Coupled Two-Phase Flow and Geomechanics in
Porous Media

This paper contains the main contribution of this thesis: the first complete model including a
consistent, vertically integrated approach for fully coupled multi-phase flow and mechanical
deformation. Typical CO2-storage reservoirs have large aspect ratios and are relatively flat.
By making reasonable assumptions on the structure of the solution across the thickness of the
reservoir, the governing equations can effectively be reduced to a lower dimension, e.g. the
processes (multi-phase flow and mechanical deformation) in a 3D reservoir volume can be de-
scribed on a surface, while the surrounding overburden and underburden are of full dimension.
The reduced-dimensional model has less degrees of freedom compared to the full-dimensional
model (since the high grid resolution in the vertical direction can be avoided) and the resulting
system of equations are less stiff (since the upscaled constitutive functions are closer to linear),
allowing longer time steps by the numerical solver. The computational example, based on the
In Salah CO2-storage site, showed that the solution was accurate up to the order of 0.1% for
reservoirs up to 100 meter thick compared to a full-dimensional computation.

Paper III: Field data analysis and hydromechanical modeling of CO2 storage at In Salah, Al-
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geria

Here we apply the dimensionally reduced model defined in the previous paper [25] on real
field data from the CO2 storage site at In Salah, Algeria. The In Salah storage reservoir is
approximately 20 m thick and located about 1.8 km below ground, about 3.8 Mtons of CO2
has been injected into three wells (KB501, KB502 and KB503) between 2004 and 2011. The
injection pressure has frequently exceeded the fracture pressure, thus fracture injection is an
important transport mechanism for the injected CO2 and a static geomodel cannot adequately
capture the geomechanical processes. A pressure dependent correlation for the reservoir per-
meability was suggested based on an analysis of the field data (pressure decay in wellhead
pressure data from the injection) and shows a good fit for the measured surface heave above
all the wells and for the pressure response at two of the three wells (KB501 and KB503). The
field data at KB502 suggest a strong dependency on the behavior of a large and intersecting
fault system (F12) with highly uncertain material properties, but this was not analyzed in de-
tails since the focus of the paper was the reservoir permeability and the utilization of shut-in
curves (pressure decay curves following a shut-in). The modeling work consisted of fitting
two parameters in the pressure dependent correlation for the reservoir permeability and bene-
fitted largely from the use of the dimensionally reduced model described in this thesis and in
the previous two papers [24, 25].
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Abstract Models of reduced dimensionality have been found to be particularly attractive in simulating
the fate of injected CO2 in supercritical state in the context of carbon capture and storage. This is motivated
by the confluence of three aspects: the strong buoyant segregation of the lighter CO2 phase above water,
the relatively long time scales associated with storage, and finally the large aspect ratios that characterize
the geometry of typical storage aquifers. However, to date, these models have been confined to considering
only the flow problem, as the coupling between reduced dimensionality models for flow and models for
geomechanical response has previously not been developed. Herein, we develop a fully coupled, reduced
dimension, model for multiphase flow and geomechanics. It is characterized by the aquifer(s) being of lower
dimension(s), while the surrounding overburden and underburden being of full dimension. The model
allows for general constitutive functions for fluid flow (relative permeability and capillary pressure) and uses
the standard Biot coupling between the flow and mechanical equations. The coupled model retains all the
simplicities of reduced-dimensional models for flow, including less stiff nonlinear systems of equations
(since the upscaled constitutive functions are closer to linear), longer time steps (since the high grid resolu-
tion in the vertical direction can be avoided), and less degrees of freedom. We illustrate the applicability of
the new coupled model through both a validation study and a practical computational example.

1. Introduction

The coupling of flow and deformation of geological porous media is important in a range of applications
such as groundwater withdrawal, geothermal energy extraction, shale gas extraction, and CO2 storage. The
two latter applications require attention to multiphase flow, while all examples (perhaps with the exception
of groundwater extraction) include features of high aspect ratios. These may take the form of fractures (in
the case of geothermal energy or shale gas extraction) or the presence of relatively thin storage units in the
case of CO2 storage [Celia and Nordbotten, 2009]. Our attention is therefore drawn to modeling and simula-
tion of multiphase flow in deformable porous media with high aspect ratios.

The combined presence of multiphase flow and thin storage layers for CO2 storage makes models of
reduced complexity attractive for large-scale simulation [Lake, 1989; Nordbotten and Celia, 2012]. This has
led to the development of both simple immiscible two-phase flow models [Hesse et al., 2008; Nordbotten
et al., 2005] and more elaborate models including both explicit consideration of capillary forces and hystere-
sis [Nordbotten and Dahle, 2011], partially soluble fluids with upscaled convective mixing [Gasda et al.,
2011], as well as models including careful treatment of effective fluid properties such as spatially varying
fluid density [Andersen et al., 2014]. Such upscaled, or vertically integrated, models, have been applied to
assess real field data [Celia et al., 2011; Mykkeltvedt and Nordbotten, 2012; Nilsen et al., 2011] and participated
in benchmark studies [Class et al., 2009; Nordbotten et al., 2012], while their range of validity has been estab-
lished by several authors both numerically [see e.g., Court et al., 2012] and analytically [see e.g., Yortsos,
1995].

Reduced models for coupled flow and mechanics have received comparatively less attention, with little
work appearing after the early work of Bear and Corapcioglu [Bear and Corapcioglu, 1981a,b; Corapcioglu
and Bear, 1983]. In particular, no work has shown how to couple the vertically integrated multiphase flow
models of the previous paragraph to mechanical deformation.

In this work, we show the first complete model including a consistent, vertically integrated approach for
coupled multiphase flow and mechanical deformation. We consider the setting of thin porous layers, such
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as aquifers, embedded in a larger physical domain (typically denoted overburden and underburden). Our
interest is thus in the case where the thin layer can be upscaled to a lower dimensional surface, on which
vertically integrated equations govern the physics, while we will retain the full-dimensional formulation out-
side the thin layer.

Throughout this paper, we consider the context of CO2 storage, wherein CO2 in supercritical state is injected
into an underground geological formation, e.g., a saline aquifer or an abandoned oil or gas reservoir [Celia
et al., 2015]. Our interest herein is safe storage, and in particular the mechanical integrity of the reservoir
and overlying caprock. In this context, hydromechanical models are essential in order to evaluate induced
stresses with respect to failure envelopes or strengths of reservoir and surrounding seals. These models
describe the interaction between the porous media and the fluid, linking the stress and the pore pressure.
We consider this coupling within the theory of poroelasticity. A general description of this theory was first
considered by Biot [1935] and his later works [Biot, 1941, 1955, 1972, 1973], and later this initial work has
been given a more rigorous theoretical foundation [see for instance Rice and Cleary, 1976; Ferr�ın and Mikelić,
2003; E. Detournay and A. H.-D. Cheng, Fundamentals of poroelasticity, unpublished data, 1993].

There is an extensive literature on the subject of hydromechanical coupling. More particularly, in relation to
CO2 storage, the industrial-scale projects have been subject to numerous modeling studies. At the Sleipner
CO2 storage site off the shore of Norway, flow analysis has been the main focus due to the excellent injec-
tivity, large storage capacity, and the availability of 4-D seismic that images the extent of the injected CO2

plume. However, at the In Salah storage site in Algeria, the unusual upheaval patterns at the surface that
was detected by satellite surveys (InSAR), particularly around one of the three injection wells, attracted
much attention to the hydromechanical coupling. Indeed, early studies suggested the presence of a high-
permeable fault system intersecting one of the injection wells [Vasco et al., 2008] which was also later con-
firmed by updated seismic (in 2009) [Ringrose et al., 2013] and further supported by several additional mod-
eling studies [e.g., Durucan et al., 2011; Gemmer et al., 2012; Rinaldi and Rutqvist, 2013; Rutqvist et al., 2010;
Shi et al., 2012]. The thermohydromechanical coupling at In Salah has been studied by Preisig and Pr�evost

[2011] and Gor et al. [2013], suggesting that nonisothermal effects and thermal stress can be important to
consider when evaluating the integrity of a CO2 storage site, particularly when significant temperature var-
iations are expected. Despite this, the isothermal approximation is a common simplification in the context
of CO2 storage modeling. Most often isenthalpic conditions are assumed, implying that temperature condi-
tions are considered in determining the material properties, but heat transport due to fluid flow is not.

Our emphasis throughout this manuscript therefore lies on the context of vertically integrated hydrome-
chanical models, and in particular the novel treatment of mechanical deformation, which we term Linear
Vertical Deflection (LVD). The LVD equations are the dimensionally reduced (integrated) equations for linear
elasticity. We see this model in the broader setting of a hierarchy of models with different complexity [Celia
and Nordbotten, 2009]. Such a hierarchy is particularly valuable, as the different stages of operation (screen-
ing, ranking, planning, and operation) have very different data availability and computational objectives. As
such, it is both infeasible and undesirable to make a full 3-D simulation in the screening stage of operations,
and at this stage, simplified models have particular value. At the same time, we point out that fully resolved
3-D simulations may be computationally infeasible even for relatively simple problems in the presence of
coupled processes, as was emphasized both in a recent benchmark study [Nordbotten et al., 2012], and in
subsequent work [Elenius et al., 2015].

We structure the rest of this manuscript as follows: in section 2, we give a brief review of hydromechanical
coupling in the context of CO2 storage. In section 3, we derive the vertically integrated model of interest
herein. To demonstrate the applicability of the method, we consider a prototypical storage simulation,
which is presented in section 4 and analyzed numerically in section 5. We conclude the paper in section 6.

2. Governing Equations

The basic concepts of poroelastic behavior can be divided into primary and secondary coupling [Rutqvist
and Stephansson, 2003;Wang, 2000]. The primary coupling occurs through deformation and pore fluid inter-
actions and relates to changes in the pore volume and the volumetric strain rate. A change in stress pro-
duces a change in fluid pressure or fluid mass (solid-to-fluid coupling) and a change in the pore fluid
pressure or fluid mass produces a change in the volume of the porous material (fluid-to-solid coupling). The
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secondary coupling considers indirect effects where a change in the stress causes a change in the hydraulic
properties of the rock mass (solid-to-fluid) and a change in the pore fluid pressure causes a change in the
mechanical properties of the rock mass (fluid-to-solid). Herein, we will for simplicity of exposition consider
only the primary coupling; however, the results extend also to the secondary coupling phenomena.

In the following, we give the relevant components of the theory of the multiphase extension of Biot’s
theory. While the equations for fluid flow and mechanical deformation are coupled, it is natural to present
them separately. Throughout this section, we will consider only small deformations, and the coordinate sys-
tem is Lagrangian with respect to the solid.

2.1. Fluid Flow Equations

For notational simplicity, to focus on the problem of coupling vertical equilibrium two-phase flow models
with larger geomechanical models, some simplifying assumptions will be made. First, only two phases will
be considered: wetting and nonwetting phase. The wetting phase is the resident aqueous phase which is
assumed to mainly consist of water, and the nonwetting phase is CO2 in a supercritical state due to the
pressure and temperature conditions (approximately 908C and 18–19 MPa, see e.g., Morris et al. [2011], Prei-
sig and Pr�evost [2011], and Deflandre et al. [2011], compared to the critical point of CO2 at 318C and 7.4 MPa
[Lide, 2003]). Second, mutual dissolution of the phases is ignored. For a temperature range of 508C–1008C, a
pressure range of 10–30 MPa, and high salinity (formation water is typically saline), the volume fraction of
CO2 that can dissolve in brine and the volume fraction of brine that can dissolve in CO2 is typically in the
order of 0.06 and 0.003, respectively [Yan et al., 2011]. Miscibility can be an important effect to consider
when evaluating long-term CO2 storage efficiency, but this has previously been explored in the nondeform-
able setting, e.g., by Gasda et al. [2011]. Last, thermodynamic effects are ignored. When large temperature
differences are expected, thermodynamic effects can be important to consider, but this has also been
explored in the nondeformable setting, e.g., by Andersen et al. [2014]. Therefore, within the aquifer forma-
tion, the relevant governing equations for the two-phase immiscible flow system can be written as follows:

@ð/qasaÞ

@t
52r � qa/savað Þ (1)

where / is the porosity and qa (kg/m3) and sa are the density and saturation of the fluid phase a, respec-
tively. The phase velocity va (m/s) is related to the Darcy flux qa (m/s) in a deforming media by the following
relation:

qa5/sa va2vsð Þ52
k

la
kraðrpa2qagÞ (2)

where vs (m/s) is the velocity of the solid deformation, k (m2) is the material permeability tensor, g (m/s2) is
the gravity vector and la (Pa s), kra5kraðsaÞ, and pa (Pa) are the dynamic viscosity, relative permeability, and
fluid pressure for phase a, respectively. With the focus on CO2 injected into a water-filled aquifer, we need
only consider a nonwetting (n) and wetting phase (w), respectively, where a5n for the supercritical gas
phase consisting mainly of CO2 and a5w for the resident water. The capillary pressure, pc (Pa), is defined by

pcðsaÞ5pn2pw (3)

Furthermore, it can be understood that since no other phases are present, the phase fractions of water and
CO2 satisfy

sw1sn51 (4)

Considering the mass conservation of the solid phase:

@½qsð12/Þ�

@t
1r � qsð12/Þvs½ �50 (5)

where qs (kg/m
3) is the density of the solid constituents of the porous medium. Using the equation of state

for the solid, acknowledging that the density depends on the pore pressure acting on the solid, ps (Pa), tem-
perature T (8C), and the first invariant of the effective stress, I

0

1 (Pa); qs5qsðps; T ; I
0

1Þ, the following expression
for the change in porosity can be obtained, following Lewis and Schrefler [1998]:

Water Resources Research 10.1002/2015WR017290

BJØRNARÅ ET AL. VERTICALLY INTEGRATED MODELS 1400



d/

dt
5ðb2/Þ cs

dps

dt
2bs

dT

dt
1r � vs

� �

(6)

where b is the Biot’s coefficient and cs (1/Pa) and bs (1/K) are the compressibility and the volumetric thermal
expansion coefficient for the solid phase, respectively. When assuming isothermal conditions and using
equations (2), (5), and (6), equation (1) can finally be expanded to

/qa
@sa

@t
1/saqaca

@pa

@t
1r � ðqaqaÞ

1saqa ðb2/Þcs
@ps

@t
1b

@ev

@t

� �

50

(7)

where ca (1/Pa) is the compressibility of fluid phase a obtained from the equation of state (for isothermal
conditions and immiscible phases):

ca5
1
qa

@qa
@pa

(8)

and we have used that the rate of change of volumetric strain ev can be expressed as @ev=@t5r � vs .

The pore pressure, ps, is typically defined as the sum of the saturation averaged phase pressures according
to [e.g., Bishop, 1959; Jaeger et al., 2007; Lewis and Schrefler, 1998]:

ps5
X

a

sapa (9)

Using the capillary pressure in equation (3), equation (9) can be rearranged to

ps5pw1snpc (10)

Under many typical reservoir conditions, the last term snpc is small compared to pw, such that ps � pw is
often used. We note that this already suggests that the fluid-to-solid coupling will primarily be through the
fluid pressures, while more weakly dependent on saturation.

2.2. Geomechanical Equations

Under quasi-static conditions, the balance of momentum leads to the equation of equilibrium. In differential
form, we then obtain (assuming static initial conditions):

r � r02bDpIð Þ1Df50 (11)

where r0 (Pa) is the effective stress tensor, Dp (Pa) is the change in pore pressure relative to initial, steady
state pore pressure, I is the identity matrix, and Df (N/m3) is the change in volumetric bodyload vector,
again, relative to steady state conditions. Note that we use a stress convention where positive stress is
extensional. The effective stress r0 is defined as the part of the total stress that governs the deformation of
a rock, or soil. In rocks, the Biot coefficient describes the difference between the pore volume change and
the bulk volume change during hydrostatic deformation and can be defined as b512K=Ks, where K (Pa) is
the dry (drained) bulk modulus of the porous media and Ks51=cs (Pa) is the solid bulk modulus (of the solid
material/mineral in the porous media).

In addition, a constitutive equation relates stresses and strains, for isotropic materials they relate linearly
according to

r05kev I12Ge (12)

where the mechanical properties are here given by the Lam�e parameters k (Pa) and G (Pa). The volumetric
strain is defined as ev5r � u, where u (m) is the displacement vector and the full strain tensor e is defined
as

e5
1
2

ru1 ruð ÞT
h i

(13)

We note again that in this convention the stresses and strains are positive for elongation and negative for
compression.
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The initial vertical stress is equal to the weight of the overburden; both the porous media and the pore
fluids:

rvðzÞ5patm1

ðz
0
qgdz (14)

q5ð12/Þqs1/
X
a

saqa (15)

where z (m) is the vertical elevation. When modeling under the assumption of steady state initial conditions,
we are only interested in the change of stress, thus from equation (15) we see that a change in saturation sa

may change the buoyancy of the pore fluid and thereby alter the vertical stress through the Df-term in
equation (11).

3. Dimensionally Reduced Model

Due to the often layered nature of reservoirs, aquifers, and aquitards, the horizontal extent is often much
larger than the vertical extent and we can refer to them as large aspect ratio geological features. This prop-
erty allows us to justify assumptions on the local vertical structure of the solution. In this section, we exploit
these ideas in order to derive approximations to the governing equations for two-phase flow and
poroelasticity.

In Figure 1, a conceptual sketch of such a system is shown. An aquifer is located between an overburden
and underburden and shows topographic behavior. Note that in this figure, the vertical dimension has
been exaggerated severely; for geological formations considered for CO2 storage, the maximum slopes are
typically only at most a few degrees.

With reference to the figure, the bounding surfaces of the aquifer are denoted FB and FT, where the function
for surface Fn is defined as

Fnðx; y; zÞ5z2fnðx; yÞ50 (16)

and fnðx; yÞ (m) is the vertical position of the surface. This notation allows us to define the normal vector n
of surface n as

n5rFn (17)

Note that these normal vectors are scaled such that the vertical extent equals 1, thus the vectors satisfy
jjnjj � 1.

In this section, we will first recall the
integrated fluid flow model for immisci-
ble two-phase flow [Nordbotten and

Dahle, 2010; Yortsos, 1995], and subse-
quently consider the analogue model
for mechanical deformation. To keep
notation simple, we will not consider
vertical variability in the material or
fluid parameters within an aquifer.
Thus, some properties will keep the
same notation in both the full-
dimensional formulation and the
dimensionally reduced formulation.

3.1. Vertically Integrated Flow Model

We first consider the integrated form of
mass conservation that will be obtained
from equation (7). By assuming con-
stant material properties in the vertical/
integration direction and applying

Figure 1. Example of an aquifer/reservoir of varying thickness H, located
between an overburden and underburden.
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Leibniz’ rule when integrating each term in equation (7) from z5fB to z5fT , the following dimensionally
reduced form of the mass conservation for fluid phase a is obtained:

/qa
@Sa

@t
H1/Saqaca

@Pa

@t
H1 ~r � ðqaQaÞ

1Saqa ðb2/Þcs
@Ps

@t
1b

@Ev

@t

� �

1qaðqa � nÞjT2qaðqa � nÞjB50

(18)

where H5Hðx; yÞ (m) is the thickness of the aquifer and we have introduced the notation for the horizontal
gradient

~r5
@

@x
;
@

@y
; 0

� �T
(19)

and the integrated volumetric strain is defined as

Ev5

ðfT
fB

evdz5

ðfT
fB

r � udz (20)

which is discussed further in equation (30) and section 3.3.3. Recall from equation (16) that fB and fT are the
vertical positions of the bottom and top of the aquifer, respectively. Furthermore, we have introduced the
representative pressure Pa (Pa) as the fluid pressure for fluid phase a at a specified datum z5fP ;
Pa5paðx; y; fP; tÞ. From the assumptions of constant density in the vertical direction, the fluid phase pres-
sure can be expressed as

paðx; y; z; tÞ5Paðx; y; tÞ2qag½z2fPðx; yÞ� (21)

Thus, we have for the integrated pore pressure:

Ps5

ðfT
fB

X
a

ŝa½Pa2qagðz2fPÞ�dz (22)

where the datum fP is typically chosen as the top or bottom surface of the aquifer and the integrated Darcy
flux and average saturation Sa of phase a can be expressed as

Qa5

ðfT
fB

qadz (23)

Sa5
1
H

ðfT
fB

ŝadz (24)

We will return to how to obtain explicit expressions for the integrated flux Qa and the reconstructed inverted
capillary saturation ŝa in section 3.3 on closure relationships. Terms including the normal vector n in equation
(18) represent the mass flux of fluid phase a across the top and bottom boundaries of the aquifer and are
derived directly from the integration of the divergence term in equation (7) upon applying the Leibniz’ rule.

3.2. Integrated Deflection Model

In the context of regional land subsidence due to ground water pumping, a series of papers on regional
scale vertically averaged models for deformation were developed by Bear and Corapcioglu in 1981 and
1983 [Bear and Corapcioglu, 1981a,b; Corapcioglu and Bear, 1983]. There they developed a mathematical
model for the areal distribution of drawdown, land subsidence, and horizontal displacement. The horizontal
two-dimensional model was derived by averaging the three-dimensional model over the vertical thickness
of the aquifer and taking into account the continuous variation in total stress as a result of water table fluc-
tuations. The total stress is due to water and soil overburden weight and the vertical compaction and hori-
zontal displacement is assumed to occur only in the reservoir where the pore pressure changes. In reality,
most often the poroelastic effect extends far beyond the reservoir. For instance, the displacements will
attenuate in the vertical direction as the pore pressure change also dissipates into the overburden and
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underburden. This earlier work further assumed that the horizontal displacement was constant across the
thickness of the aquifer and the vertical displacement varied linearly across the thickness of the reservoir.

Herein, we deviate from earlier work by treating the reservoir as an embedded region in a full three-dimensional
domain, thus accounting fully for the full stress tensor in the overburden and underburden. Furthermore, we
extend the fluid description to allow for multiple phases, here two phases, and consider linearly varying displace-
ment across the thickness of the aquifer in both the horizontal and the vertical direction. Also considering line-
arly varying horizontal displacement across the aquifer thickness can be particularly important when
noncorrelated displacement at the top and bottom of the aquifer is expected, for instance when the reservoir of
interest shows topographical behavior, is inclined and/or the surrounding formations exhibit significant contrasts
in mechanical properties. The effect of topography is illustrated and discussed further in section 5.3.

To obtain the compatible momentum balance equation to the VE formulations for two-phase flow, the
equilibrium equation in equation (11) is integrated across the thickness of the aquifer in the vertical z direc-
tion between two surfaces FB and FT to obtain (in analogy to equation (18)):

~r � R1 r � nð ÞjT2 r � nð ÞjB5DF (25)

where we have introduced the integrated stress

R5

ðfT
fB

rdz (26)

and the change in the integrated bodyload vector, DF. We recall that the total stress r can be expressed as

r5k r � uð ÞI1l ru1 ruð ÞT
� �

2bDpI (27)

Thus, the integral in equation (26) can be evaluated by inserting equation (27) and using Leibniz’ integral
rule, to obtain:

R5k ~r � U
� �

I1l ~rU1ð ~rUÞT
h i

2bDPsI

1k u � njT2u � njBð ÞI

1l nujT2nujBð Þ

1l unjT2unjBð Þ

(28)

where we have introduced the integrated displacement vector

U5

ðfT
fB

udz (29)

and have that the volumetric strain Ev in equation (20) can now be expressed as

Ev5 ~r � U1 u � nð ÞjT2 u � nð ÞjB (30)

Together, equations (25) and (28) form the governing Poroelastic Linear Vertical Deflection (PLVD) equa-
tions for the geomechanical system. The PLVD equations are thus the dimensionally reduced (integrated)
equations of equilibrium for a poroelastic medium. How to obtain the explicit expression for the integrated
displacement in equation (29) is described in section 3.3.3.

3.3. Closure Relationships

In order to complete the description of the vertically integrated model, it is necessary to make modeling
assumptions regarding the structure of the solution within the aquifer [Nordbotten and Celia, 2012]. Specifi-
cally, this is required in order to obtain explicit expressions for Qa and to relate Pa and U to the values at the
top and bottom of the aquifer.

Two main categories of closure relationships can be postulated for the main variables: (A) The internal struc-
ture is in a certain sense constant across the thickness of the aquifer. (B) The internal structure varies linearly
across the thickness of the aquifer.
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3.3.1. Pressure

It is common for the fluid equations to use closure form (A), wherein the fluid potential (pressure and hydro-
static effects; pa1qagz) is assumed to be vertically uniform within the aquifer. In order to be consistent with
previous studies, we will adopt this convention here. This implies that the fluid pressures are close to being
in vertical equilibrium, and thus the vertical gradients are proportional to the specific gravity of the fluid.
The term VE model refers to models where this assumption is applied. For each phase, the hydrostatic fluid
pressure can thus be expressed by equation (21), this is schematically illustrated for the wetting phase pres-
sure for fP5fB in Figure 2.

When significant fluid flow occurs through the aquifer, the approximation of constant vertical potential may
be questioned [Guo et al., 2014; Nordbotten and Celia, 2006]. However, due to the permeability contrast
between the aquifer and overburden, the dominant vertical variation in fluid potential is within the overbur-
den and underburden [Hunt, 1985]. The use of constant fluid potential within the aquifer has the modeling
advantage that the saturation reconstruction equation in Appendix A, equation (A1), does not depend on
vertical flux.
3.3.2. Saturation and Flux

The choice of constant fluid potential across the aquifer thickness allows us to exploit the capillary pressure
curve to derive the nonlinear structure of the variable ŝa as a function of the vertical elevation z [Nordbotten
and Dahle, 2010]. When ignoring hysteresis in the capillary pressure function, the saturation can be solved
for by inverting equation (3) such that sa5p21

c ðpn2pwÞ, thus, since the capillary pressure is in vertical equi-
librium, the saturation also becomes a distribution over the vertical elevation; ŝa5p21

c ðzÞ, see Figure 3. We
detail an explicit expression on this form in Appendix A. Together with the definition of the fluid flux, we
can then derive explicit expressions for the integrated flux in the form:

Qa52
kKaH

la
ðrPa2qaGÞ (31)

where G (m/s2) is the gravity contribution in the horizontal direction due to the topography of the
datum fP.

The average fluid mobility term is defined as

Ka �
1
H

ðfT
fB

kað̂saÞdz (32)

where kað̂saÞ is a function of the reconstructed inverted capillary saturation. Explicit expressions for Ka

when ka can be expressed by Corey-type power law functions, e.g., equations (38) and (39), can be obtained
from equations (A2) and (A3), respectively.

Note that when the capillary pressure is ignored, the mobility simplifies and is directly proportional to the
saturation [see e.g., Nordbotten and Celia, 2012, chapter 3.7; Nordbotten and Dahle, 2010].

3.3.3. Displacement

It is important to note that it is not suf-
ficient to use an assumption of con-
stant vertical displacement across the
aquifer thickness for our application,
since the vertical expansion of the
aquifer itself is an important feature of
the solution. In addition, for aquifers
with general topography, the overbur-
den and underburden may have non-
correlated displacement, and standard
reduced models with constant hori-
zontal displacement may be qualita-
tively wrong. Thus, we are led to
consider a closure relationship in the
form (B). The term LVD (Linear Vertical
Deflection) for the dimensionally

Figure 2. Vertical equilibrium pressure profile for the wetting phase (blue line).
The white area represents the aquifer and the red lines are the upper and lower
bounds of the aquifer. The dashed blue lines indicate continuity in wetting phase
pressure into the overburden and underburden.
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reduced form of the equation of equi-
librium and its poroelastic extension,
PLVD (Poroelastic Linear Vertical Deflec-
tion), have already been introduced.
The names reflect the assumed struc-
ture of the displacement vector u

which varies linearly in the vertical
direction across the thickness of the
aquifer according to

u5uB1
uT2uB

H
ðz2fBÞ (33)

where the subscripts T and B indicate
top and bottom of the aquifer, respec-
tively. The integrated displacement in
equation (29) can now be evaluated to

U5
ujT1ujB

2
H (34)

This is, however, not sufficient to form a
closed system of equations, and we
need to complement equation (34)
with a consistency requirement on the

vertical stresses. From equation (28), we know that the vertical component of integrated stress is given by
Hooke’s law and the displacement at the top and bottom of the aquifer. Furthermore, we require that this
integrated stress is compatible with the stress at the aquifer top and bottom, e.g.,

R � ðnjT 1njBÞ5 r � nð ÞjT 1 r � nð ÞjB½ �H (35)

3.4. Comments on Generality

In the preceding sections, we have consciously suppressed several nuances in the interest of obtaining a
relatively concise presentation. We note a few of them here.

Saturation within an aquifer. We have suppressed to some extent explicit notation regarding the vertical
structure of saturation [Nordbotten and Celia, 2012]. It is implied in all vertically integrated flow models that
the saturation structure can be reconstructed from the integrated saturation, and we have denoted this
reconstructed saturation, where needed, as ŝa. Note that this reconstructed saturation can be obtained ana-
lytically or numerically; however, these nuances have been explored in earlier work [Doster et al., 2013].

Shape of pressure profile. In the preceding, we have in the interest of being compatible with the majority of ear-
lier work on vertically integrated flow models used the convention from vertically integrated models wherein
the vertical distribution of pressure is hydrostatic. However, it is possible to use also for the flow equation a non-
hydrostatic vertical distribution, although this has received less attention [Nordbotten and Celia, 2006].

Assumptions on physical parameters. The general integrated conservation equations (18) and (25) are valid
without regard to any assumptions on parameters. It is also possible to derive the constitutive laws in equa-
tions (28) and (31) with greater generality; however, this typically comes at the price of significant added
complexity in the definitions of the effective parameters for the integrated equations [Andersen et al., 2014;
Nordbotten and Celia, 2012].

4. Validation Model

The validation model is inspired by the study on CO2 injection and ground deformations at In Salah, Algeria,
by Rutqvist et al. [2010]. In this example, CO2 is injected into a 20 m thick, flat, and horizontal reservoir with
a 900 m thick caprock layer, see Figure 4. The hydromechanical material properties are given in Table 1. The
pressure and temperature conditions at reservoir level (approximately 908C and 18–19 MPa) imply that the
CO2 is in supercritical state and the fluid properties that are used are given in Table 2. In the present paper,

Figure 3. Schematic comparison of the phase pressure and pore pressure pro-
files across an aquifer in vertical equilibrium with the capillary pressure function.
pd (Pa) is the entry pressure in the capillary pressure function. The horizontal
dashed line indicates where effective nonwetting saturation sen5 0 and the light
grey area indicates the two-phase flow region. Here the aquifer is assumed to be
confining for the nonwetting phase and the dashed blue lines indicate the conti-
nuity in the wetting phase pressure.
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we choose to work with dimensional
variables, due to the large number of
parameters associated with defining
poroelastic formulations in the geomet-
ric setting of multilayered geological
materials. For this problem, there is no
clearly preferred choice of characteristic
scales, and we find that using a nondi-
mensional formulation for this problem
would give an undue emphasis to the
somewhat arbitrary choice of scaling.

It is assumed that initially the pores are
fully water saturated and the initial pore
pressure p0 (Pa) is hydrostatic with
atmospheric pressure at the surface, see
Figure 4. The right boundary is defined
as an open boundary where the pres-
sure is equal to the initial pressure,
the bottom is a no-flow boundary
and the left boundary has symmetry
conditions.

The aquifer is considered partially leaky where the injected CO2 is confined to the aquifer. The water, however,
is allowed to escape/enter the aquifer and we have a continuity in both the wetting phase flux and pressure
across the interface between top and bottom of the aquifer and the caprock and underburden, respectively:
qw;u5qw;d and pw;u5pw;d [Helmig, 1997], where u and d indicate upside and downside of both the top and
bottom aquifer boundaries, respectively.

The numerical implementation was within the framework of the commercially available software COMSOL
Multiphysics, which utilizes finite elements and standard linear and nonlinear solvers.

The validation model is two-dimensional, under plane strain conditions. Note that although the equations,
as presented and derived in sections 2 and 3, are applicable to three-dimensional problems, a two-
dimensional validation model is chosen for greater flexibility in terms of assessing computational perform-
ance. The validation model is also consistent with an approximation to a horizontal well, such as was in use
at In Salah, and here the injection is at constant rate equivalent to a total yearly sequestration of 0.133 Mt of
CO2 through a horizontal, 1.5 km long injection well perpendicular to the model plane. The horizontal injec-
tion well therefore reduces to a point in the validation model and is located in the middle of the aquifer on
the axial symmetry line at x5 0.

4.1. Capillary Pressure and Relative Permeability Functions

The capillary pressure is described by a Brooks and Corey-type function:

pcðsnÞ5að12senÞ
21=2

1b (36)

Figure 4. Sketch of model geometry of validation model and boundary condi-
tions. Position (1)–(3) indicate the location where the values in the convergence
plot in Figure 13 are obtained. Positions (2) and (3) are located at top and bottom
of the aquifer, respectively, at x5 500 m. Initial pressure p0 is hydrostatic with a
constant vertical gradient and the pores are initially fully water saturated, sn5 0.

Table 1. Hydromechanical Material Properties Used in Validation Model

Material Property
Overburden
(0–900 m)

Caprock
(900–1800 m)

Reservoir
(1800–1820 m)

Underburden
(Below 1820 m)

Young’s modulus, E (GPa) 1.5 20 6 20
Poisson’s ratio, m 0.2 0.15 0.2 0.15
Biot’s coefficient, b 0.7 0.7 0.7 0.7
Porosity, / 0.1 0.01 0.17 0.01
Entry pressure, c (kPa) NA NA 90 NA
Permeability, k (m2) 10217 10219 13 3 10215 10219

Residual saturation, wetting phase, srw NA NA 0.4 NA
Residual saturation, non-wetting phase, srn NA NA 0 NA

Water Resources Research 10.1002/2015WR017290

BJØRNARÅ ET AL. VERTICALLY INTEGRATED MODELS 1407



where it can be seen that c � a1b corre-
sponds to the entry pressure pd (Pa) in the
capillary pressure function given by Brooks

and Corey [1964] and we use that c5 90 kPa,
a50:9c, and b50:1c. For an initial water sat-
urated porous medium, and since there is no
residual nonwetting saturation, the effective
saturation sen is related to the saturation sn by

sen5
sn

12srw
(37)

where srw is the residual wetting saturation. The relative permeability functions are given as Corey-type
power law functions:

knðsnÞ5spen (38)

kwðsnÞ5ð12senÞ
q (39)

where the exponents p and q are fitting parameters, here p5 2 and q5 3.

5. Results and Discussion

A two-dimensional, fully resolved poroelastic model with two-phase flow, including capillary pressure,
under plane strain assumption is compared to the equivalent dimensionally reduced model using Vertical
Equilibrium (VE) assumption to describe the two-phase flow in the aquifer and Poroelastic Linear Vertical
Deflection (PLVD) equation to describe the poroelastic behavior in the aquifer.

As CO2 is injected into the aquifer, the water is displaced and the pore pressure increases, resulting in
increased effective stress (remembering that stress is here positive in extension) and in turn causing the for-
mation to deform. Figure 5 shows an exaggerated deformation plot of the model, except the aquifer, where
the filled contours represent the vertical displacement and the values indicate the magnitude in centi-
meters. The solution is taken from the fully resolved model and the black contours show the corresponding
solution from the dimensionally reduced model. The white space is the aquifer and is not plotted to empha-
size its expansion as the CO2 is injected.

In the aquifer, the dimensionally re-
duced model assumes that the fluid
phases are in vertical equilibrium such
that the vertical flux is negligible com-
pared to the horizontal flux. At early
times, this is not a valid assumption, as
is well illustrated in Figure 6 (top left)
where the injected CO2 spreads in all
directions. As time progresses, the
assumption becomes increasingly more
appropriate and the saturation distribu-
tions of the two solutions coincide.

The main driving force for deformation
is the change in stress, see equation
(27). The stress depends on the pore
pressure and despite the differences in
the phase distribution at early time, see
Figure 6, the pressure is little affected
by this assumption. When comparing
the injection pressure (taken as the
pore pressure in the middle of the

Table 2. Properties of Water and CO2, Evaluated at 508C and 20 MPa [Lin-
strom and Mallard, 2015]

Density, qa
(kg/m3)

Viscosity,
la (mPa s)

Compressibility,
ca (1/GPa)

Water 997 0.55 0.419
CO2 784 0.069 15.6

Figure 5. Exaggerated (20,000 times) deformation plot of the displacement of
the overburden, caprock, and underburden after 40 years of injection. The filled
contours represent the vertical displacement and the values give the vertical dis-
placement in centimeters. The white space is the aquifer and emphasizes its
expansion as the CO2 is injected. The deformation and the colors are from the
solution of the fully resolved model and the black contours are the correspond-
ing solution from the dimensionally reduced model.
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aquifer), Figure 7, it can be seen that
even at early times the pressure pro-
files match within a small fraction. To
emphasize any difference in the pres-
sure profile, the time scale is logarith-
mic and the inserted axis shows the
relative difference.

This weak dependency on the satura-
tion can be explained by considering
the value of the pore pressure. The ini-
tial pore pressure is approximately 18
MPa in the aquifer. For typical values
of nonwetting saturation, the second
term in equation (10), snpc , becomes in
the order of 0.1 MPa. Hence, it can be
seen from equation (10) that ps � pw

and the saturation has negligible
impact on the pore pressure.

The change in wetting phase pressure
pw is illustrated in Figure 8 along verti-
cal cross sections 100 m away from the
injection point. It shows how the pres-
sure gradually dissipates out of the

aquifer despite the low permeability in the caprock and underburden compared to the aquifer, and the
thick dashed lines are the solution from the fully resolved model and the thin lines are from the dimension-
ally reduced model. The numbers indicate the time in years. Similar characteristics can be seen when look-
ing at the change in horizontal stress rx, see Figure 9.

Initially, the pressure increases mainly in the aquifer, causing it to expand in all directions, and in Figure 10,
it can be seen how the top and bottom of the aquifer (green and red lines, respectively) is forced apart at
early times. With time, the pressure dissipates into the caprock and underburden, increasing the effective

stress also here, leading eventually to
the whole aquifer to heave as the
underburden expands.

After 20 years of injection, the pore
pressure in the aquifer reaches a maxi-
mum value, see Figure 7 and 8, but the
pore pressure in the caprock and
underburden continue to rise as it dis-
sipates out of the aquifer, causing the
surface to continue heaving although
the aquifer has stopped expanding.

5.1. Performance and Applicability

There are two computational benefits
of using a dimensionally reduced
approach. First, the reduction in com-
putational cost, which is directly
related to the number of degrees of
freedom that needs to be solved.
Due to the two-phase flow in the
aquifer, a high grid resolution may be
required to resolve the distribution of
phases, but in the dimensionally

Figure 6. Saturation distribution of the CO2 in the aquifer at various times. The
filled contours are evenly distributed saturation levels ranging from 0 to 0.41. The
black contours represent the corresponding distribution from the dimensionally
reduced model. Note the difference in scale.

Figure 7. Evolution of the injection pressure (pore pressure in the middle of the
aquifer at x5 0) plotted on a logarithmic time scale. Thick dashed line is the pore
pressure ps from the fully resolve model and the thin line is the pore pressure Ps

from the dimensionally reduced model. The inserted axis shows the relative differ-
ence, ðps2PsÞ=ps .
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reduced approach, the degrees of
freedom inside the aquifer is elimi-
nated altogether and the internal
processes, in the aquifer, can be eval-
uated exactly from the upscaled vari-
ables. Second, the pressure field in
flow problems is usually smooth with
relatively small gradients, but two-
phase and multiphase flow problems
introduce volume fractions of the
phases (saturation), and, depending
on the hydraulic properties and the
injection rate, the spatial gradients of
the saturation can be very large
(steeply varying saturation profile). In
fact, the more convectively dominant
the flow is, the steeper these gra-
dients become. However, the dimen-
sionally reduced model solves for the
integrated mass thus the transition
between the phases will be smoother

and the gradients will be smaller, allowing longer time steps by the numerical solver and therefore
reduced calculation time.

As indicated, in order to get physically accurate and sometimes even meaningful solutions, a numerical
model usually requires a denser discretization in the two-phase flow region, and at the phase front in partic-
ular, compared to the single-phase flow region. The two-phase region is the area, or volume, where two
phases are expected to sweep across in the time frame of the model. Normally, these regions are discretized
differently, as illustrated in Figure 11. In the dimensionally reduced model, the two-phase flow and poroe-
lasticity are described in the red nodes only. Hence, the reduction in computational cost is the number of
degrees of freedom that can be eliminated inside the aquifer. How big this saving will be depends on the
size of the two-phase region of interest.

As CO2 displaces water, the size of the two-phase flow region will increase with times, as shown in Figure 6.
To evaluate this, a study of a progressively larger two-phase flow region, allowing an increasing number of

degrees of freedom to be eliminated,
has been performed: eight simulations
where the numerical grid in the two-
phase region is dense, as in Figure 11
(left), and then gradually increase in
size in the single-phase region until it
looks closer to Figure 11 (right). The
simulations were stopped when the
CO2 approached the extent of the
more densely meshed two-phase
region.

The ratio of the degrees of freedom
solved for by the two models is plotted
in Figure 12 (left, red line). At short
times, the two-phase flow area is very
small and the reduction in computa-
tional cost, by eliminating the degrees
of freedom in the aquifer, is low, see
for example point A in Figure 12. At
longer times, the number of degrees

Figure 8. Vertical cross sections of the change in wetting phase pressure pw at
100 m away from the injection point. Thick dashed lines are the solution from the
fully resolved model and the thin lines are from the dimensionally reduced model.
The numbers indicate the time in years.

Figure 9. Vertical cross sections of the change in horizontal stress rx at 100 m
away from the injection point. Thick dashed lines are the solution from the fully
resolved model and the thin lines are from the dimensionally reduced model. The
numbers indicate the time in years.
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of freedom that can be eliminated
increases, see for example point B in
Figure 12. The corresponding ratio of
the simulation times is also shown in
Figure 12 (left, blue line), and even if
the reduction in degrees of freedom is
modest, the reduction in calculation
time becomes increasingly more
significant.

In order to quantify the applicability of
the dimensionally reduced model, a
numerical convergence study was per-
formed. Yortsos [1995] examined the
validity of the VE assumption and iden-
tified the key dimensionless variable to
be RL defined as

RL5
L

H

ffiffiffiffiffi
kv

kh

s
(40)

where L is a characteristic length and
kv and kh (m

2) are the vertical and hori-
zontal permeability in the aquifer,
respectively. The analysis showed that
VE is valid in the limit of large R2L . In
the validation model, the ratio
kv=kh51, thus RL5L=H and the numeri-
cal convergence study is with respect
to the thickness of the aquifer. The
model setup was identical to the vali-
dation case, but in order to make sure
that the injected CO2 did not reach the

outer boundary of the model, the injection rate was scaled with the thickness. The test was also done with-
out any residual saturation of either phases. The large range of aquifer thickness (H varied from 2 to 100 m)
required some special attention to the grid resolution in the aquifer, both in the lateral and vertical direc-
tion, to resolve the phase distribution. This affects the number of degrees of freedom in the aquifer that can
be eliminated. The ratio of the computational cost (degrees of freedom) and the calculation time for the
full-dimensional model versus the dimensionally reduced model for the various thicknesses are shown in
Figure 12 (right).

As can be seen in both the time varying performance test of the validation model and the applicability test
(convergence study) of varying aquifer thickness, Figure 12 (left and right, respectively), there are moderate

Figure 10. Plots of (left) vertical displacement and (right) horizontal displacement
of the bottom and top of the aquifer and the model surface for three different
times. Blue curves are at the surface of the model, green curves are at the top of
aquifer and red curves are at the bottom of aquifer. Dashed lines are the solution
from the fully resolved model and thin black lines are from the dimensionally
reduced model. Note that in the figures to the right the horizontal displacement
at the top and bottom of the aquifer (green and red curve, respectively) are
almost the same and the two curves coincide.

Figure 11. Example of the numerical grid in the aquifer. (left) Dense discretization in the two-phase flow region. (right) Coarse discretiza-
tion in the single-phase flow region.
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reductions in cost, but the savings in calculation time by using the dimensionally reduced model are signifi-
cant. As described earlier, this is partly the result of solving a reduced mathematical problem, but also, and
more importantly, the result of solving a less stiff nonlinear system of equations in the dimensionally
reduced model that allows for larger time steps by the numerical solver.

The main difference between the validation model and the convergence model is that in the latter the
injection rate is scaled to the thickness and is also comparably higher (for H5 20 m it is 2.7 times higher,
note that no residual saturation gives the injected CO2 more pore volume to sweep across). Higher injection
rates imply sharper saturation fronts, thus the applicability test further underlines the computational benefit
of the dimensionally reduced form, namely that the system of equations is more efficient to solve.

5.2. Convergence

In the extreme case of a zero-thickness aquifer, the integrated equations reduce to continuity requirements
on a surface, and thus the integrated model is exactly equivalent to the original full-dimensional equations.
We thus expect that any modeling error will be a function of the aquifer thickness [Yortsos, 1995], see also
equation (40). Since we are using a model with linear displacement, it is reasonable to expect the LVD
model to be second-order accurate with respect to the aquifer thickness. However, due to the constant ver-
tical potential used in the flow model, we expect the pressure to be only first-order accurate, which may
impact the overall accuracy of the model. In practice, we may expect that the model accuracy lies some-
where between first and second order. We note that simpler models, with e.g., constant displacement
across the aquifer thickness, are expected to be strictly less accurate. Unfortunately, a rigorous analysis of
these statements is beyond the scope of this work, due to the nonlinearities present in the system, and we
will therefore proceed with a purely numerical analysis of the model error as it depends on the aquifer
thickness and consequently look closer at the results of the convergence study described in section 5.1.

Because analytical solutions for this problem is unavailable, we consider the full-dimensional simulation as
the true model and measure the error as the relative difference in the solution obtained by the dimension-
ally reduced model and the fully resolved model. Furthermore, we measure the error in discrete points of
interest, rather than using a spatial norm, in order to capture the accuracy exactly near the model reduction.
The results are shown in Figure 13.

We note that in general a convergence between first and second order is obtained. We also remark that in
all cases, the difference is small, with less than 1% in almost all cases considered. A notable feature in the
convergence study is the irregularity of the plot. This stems from two cases: first, the full-dimensional grid
has to be adapted to the thickness of the aquifer, and the gridding of the full model thus changes between

Figure 12. The ratio of numerical solving time and number of degrees of freedom (left) for various simulations times in the performance
test, see text for description, and (right) for various aquifer thickness H after 20 years of injection in the convergence test.

Water Resources Research 10.1002/2015WR017290

BJØRNARÅ ET AL. VERTICALLY INTEGRATED MODELS 1412



each case considered. Furthermore, for thin aquifers, the error is approaching the order of the tolerance of
the nonlinear solver, and thus cannot be further reduced within the comparison paradigm chosen.

In sum, the convergence study indicates that the dimensionally reduced model has high accuracy for even
relatively thick aquifers, and essentially second-order convergence properties compared to the fully
resolved model with respect to aquifer thickness.

Figure 13. Convergence plot of the reciprocal of aquifer thickness H in various positions (position (1)–(3), as indicated in Figure 4). The
thin, black dashed lines indicate second-order convergence. Thickness H varies from 2 to 100 m. The results are after 1 year of injection.

Figure 14. (top) Contours of the horizontal displacement in and around a topographic aquifer (grey, shaded area). Note the difference in
scale. The overburden and underburden are assumed impermeable and a static pore pressure increase is applied to the aquifer that varies
linearly from 15 MPa at the left boundary to zero at the right boundary. (bottom) Horizontal displacement along the top (blue line) and
bottom (red line) surfaces of the aquifer.
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5.3. Effect of Topography

As described in section 3.3.3, the assumption for the LVD and PLVD equations is linearly varying displace-
ments across the thickness of the aquifer, see equation (33). In the validation model presented in section 4,
it can be seen from the results that the horizontal displacement at the top and bottom of the aquifer is
almost identical, see Figure 10 (right, green and red curves, respectively), making the assumption of con-
stant horizontal displacement across the aquifer a good approximation. However, this is because the aquifer
is flat and that the surrounding formations have the same mechanical properties. When the aquifer top and
bottom topographies are variable, see example in Figure 14 (top), it can be clearly seen that there may be
significant quantitative and qualitative differences in horizontal displacement across the aquifer. In this
example, a 20 m thick reservoir varies sinusoidally of 610 m in the vertical direction. The mechanical prop-
erties are the same as in the validation model, see Table 1, but the overburden and underburden are now
assumed impermeable and a static pore pressure change is applied to the aquifer that varies linearly from
15 MPa at the left boundary to zero (initial pore pressure p0) at the right boundary. It can be seen from the
horizontal displacement in Figure 14 (bottom) that it is far from constant across the aquifer, and at
x< 500 m it even has opposite sign. This can be significant when considering the integrity of a caprock in
CO2 storage.

6. Conclusion

We have derived a reduced-dimensional model for coupled two-phase flow and geomechanical deforma-
tion within the context of CO2 storage. The reduced-order model simplifies the complex flow and interac-
tion within thin storage units, while retaining the full-dimensional poroelastic equations for the overburden
and underburden.

Our presentation provides a general framework for reduced models; however, we emphasize our choices of
closure relationship: Vertical Equilibrium (VE) for the fluid and Linear Vertical Deflection (LVD) for the solid
within the aquifer. These choices allow for an efficient reconstruction of fluid saturation as well as realistic
approximation of aquifer deformation, even in the presence of variable aquifer topography.

The current presentation is within the context of immiscible fluids, which couples the main fluid-
mechanical coupling. We envision that recent work on advanced models for vertically integrated models
for more complex processes, including fluid miscibility and accounting for vertical variation in fluid density,
can be integrated with the current results. These coupled processes are important in that they are computa-
tionally demanding, and that simplified models are imperative to become computationally tractable.

In this study, the simplified model approach through dimensional reduction has proved promising in pro-
viding significant savings in computational time when faced with a large number of simulations. In general,
a reduction in computational cost allows for faster calculation. However, it has been shown in both the vali-
dation model and a convergence study, see Figure 12 (left and right, respectively), that in addition to a
reduction in cost, albeit modest, the dimensionally reduced formulation produces less stiff nonlinear sys-
tems of equations, allowing the numerical solver to progress with larger time steps and significantly con-
tribute to further reduce the computational time.

It has also been demonstrated that such models can retain reasonable accuracy when applied to realistic
field data, such as the conditions at CO2 storage plant in In Salah, Algeria. The range of applicability of the
dimensionally reduced model is to a leading order the thickness of the reduced domain, the aquifer. A con-
vergence test for a range of aquifer thickness values indicates that accurate solutions in the order of 0.1%
and less difference in solution compared to a full-dimensional formulation for aquifers up to 100 m thick
are achieved.

The main parameter affecting the effective stress is the pore pressure that in this example is little affected
by the phase distribution, hence the early-times violation of negligible vertical flow, the Vertical Equilibrium
(VE) assumption, does not affect the stress. In a different scenario, for instance at lower depths where the
density difference between the phases is bigger compared to the present scenario and the capillary pres-
sure will have a bigger impact on the pore pressure, the accuracy will depend more on the validity of the
Vertical Equilibrium assumption, and this has been investigated by others, see e.g., Court et al. [2012].
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However, as illustrated here, the VE assumption becomes increasingly appropriate with time and is almost
always appropriate for analysis of long-term behavior that can span many hundreds to thousands of years.

Appendix A

As the fluid phase pressures pa can be expressed as a function of the vertical position z, so can the capillary
pressure, pcðzÞ. The average saturation Sa in equation (24) is the integral of the reconstructed inverted capil-
lary saturation, ŝa, which is derived from the inverted capillary pressure function p21

c ðzÞ. From Nordbotten

and Dahle [2010], we have that the reconstructed effective inverted capillary saturation for the nonwetting
phase, ŝen, can be expressed by

ŝenðP
cap
� Þ5

0; 0 � f

12
1

B2 P
cap
� 1

z2fp

H

� �2 ; f < z � H

8>>><
>>>:

(A1)

where B and Pcap� are dimensionless constants [see Nordbotten and Dahle, 2010, for details], f (m) is the verti-
cal location of the interface where ŝen50, and ŝen is related to ŝn as in equation (37).

The expressions for the average phase mobilities can for simple constitutive functions (e.g., equations (38)
and (39)) be calculated explicitly as

KnðSnÞ5
Qðu1; pÞ2Qðu2; pÞ½ �; f50

Qðu1; pÞ2Qð1; pÞ½ �; f > 0

(
(A2)

and

KwðSnÞ5

Xq
i50

q

i

0
@

1
Að21Þi Qðu1; iÞ2Qðu2; iÞ½ �; f50;

Xq
i50

q

i

0
@

1
Að21Þi Qðu1; iÞ2Qð1; iÞ½ �1

f

H
; f > 0:

8>>>>>>><
>>>>>>>:

(A3)

where

u15BPcap� 1B; u25BPcap� (A4)

Qðu; pÞ5
1
B

Xp
i50

p

i

 !
ð21Þi

122i
u122i (A5)

Qðu; qÞ5
1
B

Xq
i50

q

i

 !
ð21Þi

122i
u122i (A6)

References

Andersen, O., S. E. Gasda, and H. M. Nilsen (2014), Vertically averaged equations with variable density for CO2 flow in porous media, Transp.
Porous Media, 107, 1–33.

Bear, J., and M. Y. Corapcioglu (1981a), Mathematical model for regional land subsidence due to pumping: 1. Integrated aquifer subsidence
equations based on vertical displacement only, Water Resour. Res., 17(4), 937–946.

Bear, J., and M. Y. Corapcioglu (1981b), Mathematical model for regional land subsidence due to pumping: 2. Integrated aquifer subsi-
dence equations for vertical and horizontal displacements, Water Resour. Res., 17(4), 947–958.

Biot, M. A. (1935), Le problème de la consolidation de matières argileuses sous une charge, Ann. Soc. Sci. Bruxelles, Ser. B, 55, 110–113.
Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12(2), 155–164.
Biot, M. A. (1955), Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182–185.
Biot, M. A. (1972), Theory of finite deformations of porous solids, Indiana Univ. Math. J., 21, 597–620.
Biot, M. A. (1973), Nonlinear and semilinear rheology of porous solids, J. Geophys. Res., 23, 4924–4937.
Bishop, A. W. (1959), The principle of effective stress, Tek. Ukeblad, 39, 859–863.
Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap. 3, Colo. State Univ., Fort Collins.
Celia, M. A., and J. M. Nordbotten (2009), Practical modeling approaches for geological storage of carbon dioxide, Ground Water, 47(5),

627–638, doi:10.1111/j.1745-6584.2009.00590.x.

Acknowledgments

The authors are thankful to the
following sponsors for the financial
support of this work: Research Council
of Norway (through the MatMoRA-II
project 215641, Mathematical
Modeling and Risk Assessment of CO2

storage) and Statoil ASA and NGI in
Oslo, Norway. Data used in this paper
are properly cited and referred to in
the reference list.

Water Resources Research 10.1002/2015WR017290

BJØRNARÅ ET AL. VERTICALLY INTEGRATED MODELS 1415



Celia, M. A., J. M. Nordbotten, B. Court, M. Dobossy, and S. Bachu (2011), Field-scale application of a semi-analytical model for estimation of
CO2 and brine leakage along old wells, Int. J. Greenhouse Gas Control, 5(2), 257–269, doi:10.1016/j.ijggc.2010.10.005.

Celia, M. A., S. Bachu, J. M. Nordbotten, and K. Bandilla (2015), Status of CO2 storage in deep saline aquifers with emphasis on modeling
approaches and practical simulations, Water Resour. Res., 51, 6846–6892, doi:10.1002/2015WR017609.

Class, H., et al. (2009), A benchmark study on problems related to CO2 storage in geologic formations, Comput. Geosci., 13(4), 409–434, doi:
10.1007/s10596-009-9146-x.

Corapcioglu, M. Y., and J. Bear (1983), A mathematical model for regional land subsidence due to pumping: 3. Integrated equations for a
phreatic aquifer, Water Resour. Res., 19(4), 895–908.

Court, B., K. W. Bandilla, M. A. Celia, A. Janzen, M. Dobossy, and J. M. Nordbotten (2012), Applicability of vertical-equilibrium and
sharp-interface assumptions in CO2 sequestration modeling, Int. J. Greenhouse Gas Control, 10, 134–147, doi:10.1016/
j.ijggc.2012.04.015.

Deflandre, J.-P., A. Estublier, A. Baroni, J.-M. Daniel, and F. Adj�emian (2011), In Salah CO2 injection modeling: A preliminary approach to pre-
dict short term reservoir behavior, Energy Procedia, 4, 3574–3581, doi:10.1016/j.egypro.2011.02.286.

Doster, F., J. M. Nordbotten, and M. A. Celia (2013), Impact of capillary hysteresis and trapping on vertically integrated models for CO2 stor-
age, Adv. Water Resour., 62, Part C, 465–474, doi:10.1016/j.advwatres.2013.09.005.

Durucan, S., J.-Q. Shi, C. Sinayuc, and A. Korre (2011), In Salah CO2 storage JIP: Carbon dioxide plume extension around KB-502
well—New insights into reservoir behaviour at the In Salah storage site, Energy Procedia, 4, 3379–3385, doi:10.1016/
j.egypro.2011.02.260.

Elenius, M., D. Voskov, and H. Tchelepi (2015), Interactions between gravity currents and convective dissolution, Adv. Water Resour., 83, 77–
88, doi:10.1016/j.advwatres.2015.05.006.

Ferr�ın, J. L., and A. Mikelić (2003), Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid,
Math. Methods Appl. Sci., 26(10), 831–859, doi:10.1002/mma.398.

Gasda, S. E., J. M. Nordbotten, and M. A. Celia (2011), Vertically averaged approaches for CO2 migration with solubility trapping, Water

Resour. Res., 47, W05528, doi:10.1029/2010WR009075.
Gemmer, L., O. Hansen, M. Iding, S. Leary, and P. Ringrose (2012), Geomechanical response to CO2 injection at Krechba, In Salah, Algeria,

First Break, 30(2), 79–84.
Gor, G. Y., T. R. Elliot, and J. H. Pr�evost (2013), Effects of thermal stresses on caprock integrity during CO2 storage, Int. J. Greenhouse Gas Con-

trol, 12, 300–309, doi:10.1016/j.ijggc.2012.11.020.
Guo, B., K. W. Bandilla, F. Doster, E. Keilegavlen, and M. A. Celia (2014), A vertically integrated model with vertical dynamics for CO2 storage,

Water Resour. Res., 50(8), 6269–6284, doi:10.1002/2013WR015215.
Helmig, R. (1997), Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems, Environ. Eng.,

Springer, Berlin.
Hesse, M. A., F. M. Orr, and H. A. Tchelepi (2008), Gravity currents with residual trapping, J. Fluid Mech., 611, 35–60.
Hunt, B. (1985), Flow to a well in a multiaquifer system, Water Resour. Res., 21(11), 1637–1641, doi:10.1029/WR021i011p01637.
Jaeger, J. C., N. G. W. Cook, and R. Zimmermann (2007), Fundamentals of Rock Mechanics, 4th ed., Wiley-Blackwell, Malden, Mass.
Lake, L. W. (1989), Enhanced Oil Recovery, Prentice Hall, Englewood Cliffs, N. J.
Lewis, R. W., and B. A. Schrefler (1998), The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media,

Wiley Ser. Numer. Methods Eng., 2nd ed., John Wiley, N. Y.
Lide, D. R. (Ed.) (2003), CRC Handbook of Chemistry and Physics, 84th ed., CRC Press, Boca Raton, Fla.
Linstrom, P., and W. Mallard (Eds.) (2015), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Natl. Inst. of Stand. and

Technol., Gaithersburg, Md.
Morris, J. P., Y. Hao, W. Foxall, and W. McNab (2011), A study of injection-induced mechanical deformation at the In Salah CO2 storage pro-

ject, Int. J. Greenhouse Gas Control, 5(2), 270–280, doi:10.1016/j.ijggc.2010.10.004.
Mykkeltvedt, T. S., and J. M. Nordbotten (2012), Estimating convective mixing rates from commercial-scale CO2 injection, Environ. Earth Sci.,

67(2), 527–535, doi:10.1007/s12665-012-1674-3.
Nilsen, H. M., P. A. Herrera, M. Ashraf, I. Ligaarden, M. Iding, C. Hermanrud, K.-A. Lie, J. M. Nordbotten, H. K. Dahle, and E. Keilegavlen (2011),

Field-case simulation of CO2-plume migration using vertical-equilibrium models, Energy Procedia, 4, 3801–3808, doi:10.1016/
j.egypro.2011.02.315.

Nordbotten, J. M., and M. A. Celia (2006), An improved analytical solution for interface upconing around a well, Water Resour. Res., 42,
W08433, doi:10.1029/2005WR004738.

Nordbotten, J. M., and M. A. Celia (2012), Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation, 256 pp., John Wiley,
Hoboken, N. J.

Nordbotten, J. M., and H. K. Dahle (2010), Impact of capillary forces on large-scale migration of CO2, in XVIII International Conference on

Water Resources, CMWR 2010, edited by J. Carrera, CIMNE, Barcelona, Spain.
Nordbotten, J. M., and H. K. Dahle (2011), Impact of the capillary fringe in vertically integrated models for CO2 storage, Water Resour. Res.,

47, W02537, doi:10.1029/2009WR008958.
Nordbotten, J. M., M. A. Celia, S. Bachu, and H. K. Dahle (2005), Semianalytical solution for CO2 leakage through an abandoned well, Environ.

Sci. Technol., 39(2), 602–611, doi:10.1021/es035338i.
Nordbotten, J. M., et al. (2012), Uncertainties in practical simulation of CO2 storage, Int. J. Greenhouse Gas Control, 9, 234–242, doi:10.1016/

j.ijggc.2012.03.007.
Preisig, M., and J. H. Pr�evost (2011), Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria, Int.

J. Greenhouse Gas Control, 5(4), 1055–1064, doi:10.1016/j.ijggc.2010.12.006.
Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constitu-

ents, Rev. Geophys., 14(2), 227–241.
Rinaldi, A. P., and J. Rutqvist (2013), Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection

well, In Salah, Algeria, Int. J. Greenhouse Gas Control, 12, 155–167, doi:10.1016/j.ijggc.2012.10.017.
Ringrose, P., A. Mathieson, I. Wright, F. Selama, O. Hansen, R. Bissell, N. Saoula, and J. Midgley (2013), The In Salah CO2 storage project: Les-

sons learned and knowledge transfer, Energy Procedia, 37, 6226–6236, doi:10.1016/j.egypro.2013.06.551.
Rutqvist, J., and O. Stephansson (2003), The role of hydromechanical coupling in fractured rock engineering, Hydrogeol. J., 11(1),

7–40.
Rutqvist, J., D. W. Vasco, and L. Myer (2010), Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In

Salah, Algeria, Int. J. Greenhouse Gas Control, 4(2), 225–230, doi:10.1016/j.ijggc.2009.10.017.

Water Resources Research 10.1002/2015WR017290

BJØRNARÅ ET AL. VERTICALLY INTEGRATED MODELS 1416



Shi, J.-Q., C. Sinayuc, S. Durucan, and A. Korre (2012), Assessment of carbon dioxide plume behaviour within the storage reservoir
and the lower caprock around the KB-502 injection well at In Salah, Int. J. Greenhouse Gas Control, 7, 115–126, doi:10.1016/
j.ijggc.2012.01.002.

Vasco, D. W., A. Ferretti, and F. Novali (2008), Reservoir monitoring and characterization using satellite geodetic data: Interferometric syn-
thetic aperture radar observations from the Krechba field, Algeria, Geophysics, 73(6), WA113–WA122, doi:10.1190/1.2981184.

Wang, H. F. (2000), Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrology, Princeton Univ. Press, Princeton, N. J.
Yan, W., S. Huang, and E. H. Stenby (2011), Measurement and modeling of CO2 solubility in NaCl brine and CO2 saturated NaCl brine den-

sity, Int. J. Greenhouse Gas Control, 5(6), 1460–1477, doi:10.1016/j.ijggc.2011.08.004.
Yortsos, Y. C. (1995), A theoretical analysis of vertical flow equilibrium, Transp. Porous Media, 18(2), 107–129, doi:10.1007/BF01064674.

Water Resources Research 10.1002/2015WR017290

BJØRNARÅ ET AL. VERTICALLY INTEGRATED MODELS 1417



9.3 Field-data analysis and hydromechanical modeling of CO2 storage at In Salah,
Algeria 135

9.3 Field-data analysis and hydromechanical modeling of CO2 stor-
age at In Salah, Algeria

Authors: Tore I. Bjørnarå, Bahman Bohloli and Joonsang Park.
Journal: Submitted to International Journal of Greenhouse Gas Control.



Appendix A

Papers, conference

Paper I: Fast Evaluation of Fluid-rock Coupling in CO2 Storage

Fluid flow in a deforming media is a coupled process. Changes in fluid pressure affect the stress
distribution in the porous media, causing it to deform, and vice versa, a deformation of the
porous media affects the fluid pressure. It is not always desirable nor necessary to numerically
solve both processes because of the computational cost and long solution time. How strong
this coupling is, depends on the fluid pressure and fluid properties (e.g. density, viscosity and
compressibility), hydraulic (e.g. porosity and permeability) and mechanical properties (e.g.
stiffness and Poisson’s ratio). When the coupling is weak, these processes can be considered
separately, and the key to this decoupling is to implicitly capture the volumetric strain as
accurately as possible without having to solve the mechanical processes. Many formulations
for such decoupled equations can be found in the literature. Some of these simplifications
were compared in a conceptual model that resembled the conditions of a typical CO2-storage
scenario, but with only single-phase fluid flow considered. The conceptual model illustrated
an example where the mechanical process could be sufficiently captured by a uniaxial strain
approximation and the two processes decoupled. A similar study is shown in chapter 4.2 to
highlight the effect of various storage terms that arise from applying different assumptions on
the mechanical behavior.

Paper II: Capturing the Coupled Hydro-Mechanical Processes Occurring During CO2 Injec-
tion - Example from In Salah

This paper was a preview of the journal paper to follow in 2016 [25] where the theory is fully
described. It was presented at the GHGT-12 conference in Austin, Texas (US).

History-matching field data from real applications with a numerical model often involve
several model iterations at a high computation cost. This can be due to the complexity of the
model geometry, level of details needed to accurately describe the problem, the number of
unknown parameters or the parameter space can be large. To address this, a dimensionally
reduced model was introduced that captures the key hydro-mechanical effects, while retaining
a high accuracy when applied to realistic field data from In Salah.

The dimensional reduction implies here that the governing equations are integrated across
the thickness of the reservoir (here in the vertical direction). For the fluid flow equations
this means that the vertical pressure gradient is constant, hence the name vertical equilibrium
(VE). To describe the poroelastic behavior, the poroelastic linear vertical deflection equations
was used (PLVD) which assumes that the vertical strains are constant. This is thoroughly



162 Papers, conference

described in the following paper [25], and here in this thesis, chapter 6.4 and 6.5.
The results from the dimensionally reduced model was compared to a fully resolved model

to evaluate the performance. The full potential of the model was not known at the time and
the reported saving in computational cost (36%) and computational speed-up factor (2.7) was
very modest and conservative compared to results obtained in this thesis and by Bjørnarå et al.
[25] with speed-up of up to 20 times.
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Nomenclature

b Biot's coefficient, b = 1 – K/Ks, [-]

, fitting parameters in capillary pressure function: pd = + , [Pa]

c compressibility of fluid phase , [1/Pa]

v volumetric strain, [-]

f volumetric body load vector, [N/m3]

porosity, [-]

g gravity vector, [m/s2]

I identity matrix, [-]

k permeability, [m2]

kr relative permeability of phase , [-]. Here: krn = sn
p and krw = (1–sn)q

K bulk modulus of (drained) porous media, [Pa]

Ks bulk modulus of solid grain, [Pa]

viscosity of phase , [Pa s]

p pressure of phase , [Pa]

pp pore pressure, [Pa]

pc capillary pressure, phase pressure difference; pc = pn – pw, [Pa]

pd entry pressure, pressure required for non-wetting phase to intrude wetting phase, [Pa]

p, q fitting parameters (exponent) for the power-law relative permeability functions kr , [-]

q Darcy flux of phase , [m/s]

density of phase , [kg/m3]

s saturation of phase , [-]

total stress tensor, [Pa]

' effective stress, [Pa]

t time, [s]

v velocity of fluid phase , [m/s]

vs velocity of solid phase, [m/s]

1. Introduction

At In Salah, CO2 is removed from the production stream of several natural gas fields and re-injected into a deep 

and relatively thin saline formation, approximately 20 meters thick, at about 1800 meters below surface. CO2 is 

injected into three locations; wells KB-501, -502 and -503, and the injection has been actively monitored. Of particular 

interest are the InSAR-surveys, that monitors the surface deformation, and tracers in the injected CO2, that allows 

detection of the injected CO2 in monitoring wells. The InSAR-data has revealed a surface heave rate of up to 5 mm/year 

on all the three injection wells, and a corresponding subsidence at the gas-producing wells of about 2 mm/year [11].

Due to the relatively poor hydraulic properties of the aquifer, 1-1.5 km long horizontal injection wells are used to 

ensure adequate injection rates and approximately 0.6 Mton CO2 is sequestered per year all together [5]. The surface 

heave/subsidence is caused primarily due to expansion/compaction of the aquifer/reservoir caused by the CO2

injection/gas production [8]. However, at injection well KB-502 there are two distinctive lobes in the heave pattern at 

the surface that have caught a lot of attention as to how this can be explained. It was suggested early that this was due 

to a long structural discontinuity; a non-sealing fault/fracture system, that is activated by tensile strains [13,15,17] due 

to its orientation in line with the direction of the maximum horizontal stress (a strike-slip stress regime [6,8]). Tracers 

in the injected CO2 at KB-502 also showed up in a monitoring well (KB-5) about three times faster than what would 

have occurred with an homogeneous cylindrical plume [14], again, indicating a highly permeable pathway in line with 

the strike-slip stress regime. And, indeed such a fault/fracture system (labelled F12) was later confirmed by updated 

seismic surveys and further supported by numerical modeling studies [13,15,17]. F12 cuts through the aquifer, but 

how far it extends in the vertical direction is not well constrained. Modeling has suggested that it may be confined 

within the aquifer [13] or that it may extend into the lowermost part of the overburden [9,15].



3418   Tore Ingvald Bjørnarå et al.  /  Energy Procedia   63  ( 2014 )  3416 – 3424 

In all the injection wells the formation bottom hole pressure (FBHP) may exceed the fracture pressure of the aquifer 

[3]. Analysis of the injectivity index (volumetric injection rate of CO2 versus FBHP) indicates that fractures are 

activated/deactivated during injection, depending on increasing/decreasing injection rate, respectively, and this is 

particularly the case for KB-501 and -502 [3]. Several authors, eg. [3,13,17], have history-matched the bottom hole 

pressure with numerical models and have obtained very good fits with measured surface heave. However, as observed 

from the injectivity index analysis, for wells KB-501 and -502 it is necessary to mimic the activation of fractures by 

introducing a transient permeability, to the aquifer, and transmissibility of the fault system F12. This dynamic behavior 

is consistent with stress analysis (related to fracture pressure) and field observations [17]. Also, the subsurface at In 

Salah has a layered structure, but how many distinctive layers that is used in the literature varies, along with the 

hydraulic and mechanical properties of the aquifer, F12, caprock and over- and underburden.

This variation in model realizations encountered in the literature shows that there are many possible explanations 

to the observed measurements. However, it often requires many model iterations to find a good fit between modelled 

and measured data, which can be computationally very expensive and time consuming. To address this, we have in 

this study applied the assumption that the thickness of the storage aquifer is much smaller than both the lateral extent 

of the aquifer and the length-scale of interest, to derive a simplified model that captures the key hydro-mechanical 

effects. The goal is to derive a computationally efficient, yet accurate, model that can be used in analysis where large 

numbers of simulations are required. The simplified model is compared with a fully resolved synthetic CO2 injection 

model, based on conditions in In Salah, to see how well it performs in terms of accuracy and computational cost and 

time.

2. Modeling approaches

The geomechanical effects related to CO2 injection at In Salah are analyzed through fully coupled modeling 

approaches to simulate simultaneously CO2 migration in the aquifer and the poroelastic stress changes during 

injection.

In the first approach, a fully resolved model where the complete geometry is discretized and the governing 

equations for two-phase immiscible fluid flow in porous media (with capillary pressure) and poroelasticity (using 

Biot's linear theory of poroelasticity) are solved using the finite element method. The critical area, in terms of 

numerical resolution, is the aquifer where the CO2 is injected and a dense numerical discretization is required to 

capture its migration and distribution to a sufficient accuracy.

In the second approach, a simplified description of the physical processes in the aquifer is derived using the method 

of reduction of dimensionality. It involves integrating the governing equations over the thickness of the aquifer, 

transforming relevant variables and equations into integrated and averaged quantities and equations that are only 

functions of spatial variables on a plane. This reduces the computational cost by reducing the number of degrees of 

freedom (DOF) needed to be solved.

For two-phase flow, reduction of dimensionality involves integrating the fluid mass conservation equations to 

obtain the Vertical Equilibrium (VE) equations, see eg. Nordbotten and Dahle [10]. The assumption for VE is that the 

vertical flow can be ignored (is zero), implying that the vertical pressure gradient is static (in vertical equilibrium) and 

proportional to the specific gravity of the pore fluid. For the poroelasticity, it involves integrating the momentum 

balance equation to obtain the poroelastic Linear Vertical Deflection (PLVD) equation. The assumptions for PLVD is 

that (i) the vertical momentum is zero, (ii) the in-plane displacement components are constant across the thickness of 

the aquifer and (iii) the out-of-plane displacement component varies linearly. The PLVD equation is similar to the 

ones obtained by Bear and Corapcioglu [1], however, here we treat the aquifer as an embedded region in a fully three 

dimensional environment, accounting for the full stress tensor in the over- and underlying layers, and extend the pore 

fluid to also include two phases [4].

In this study, the performance of the two approaches are compared, and the applicability of the simplified model is 

demonstrated on realistic field data from In Salah. Wells KB-501 and -503 behaves more predictable compared to

KB-502, as they do not show a similar critical feature like fault 12 at KB-502. However, KB-501 also show fracture 

activation [3], so the focus will be on well KB-503.
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3. Governing equations

The physics related to CO2 injection into subsurface can be described by the momentum balance equation under 

quasi-static conditions (neglecting inertial terms) and the mass conservation equations of two-phase fluid (brine and 

CO2) which are given in the following form:

0f (1)

0)(
)(

vs
t

s
(2)

The Darcy flux vector q in a deforming medium is defined as:

g
k

vvq pks rs (3)

The effective stress ' is defined as the part of the total stress that governs the deformation, and using the concept 

of Terzaghi effective stress, Biot [2] modified the normal elastic stress terms in the momentum balance equation so 

the total stress term in Eq. (1) can be written as:

Ipbp' (4)

By inserting Eq. (3) into Eq. (2) and rearranging (following the procedure of Pinder [12], considering the relations 

for change in porosity and change in volumetric strain [18, chapter 1 and 4] and using the mass conservation equation 

for the solid phase) a familiar equation can be obtained for the mass conservation equation for phase :
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(5)

It can be seen that Eq. (5) is the same flow equation obtained by Biot [2] for a single-phase fluid by inserting that 

s = 1 and using that, in the context of multiphase flow, the pore pressure pp in Eqs. (4) and (5) is defined as the 

saturation-weighted average of the phase pressure; pp = swpw + snpn.

In Eq. (5) there are four dependent variables; sw, pw, sn and pn, but only two conservation equations, so two of the 

variables can be eliminated by applying the constraint for a fully saturated rock: sw + sn = 1, and by introducing the 

capillary pressure pc defined as the difference between the phase pressures; pc = pn – pw. Here pc is a Brooks and 

Corey-type function of the non-wetting saturation sn:

2/1
1)( nnc ssp (6)

Eqs. (1) and (5) are the governing equations that are solved with appropriate boundary conditions described in the 

next section. Since the aquifer is considered essentially horizontal, the equivalent governing equations for the 

dimensionally reduced model, using the VE and PLVD assumptions, are the same equations integrated in the vertical 

direction from the bottom to the top of the aquifer, see Bjørnarå et al. [4] for details.
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4. Case study: CO2 injection at KB-503 in In Salah, Algeria

Here we simulate numerically a simplified version of the CO2 injection at KB-503 in In Salah, Algeria as our case 

study to compare the fully resolved solution with the dimensionally reduced model. The case model is inspired by 

Rutqvist et al. [16], but instead of solving it in three dimensions a plane strain (2D) model is solved where a symmetry 

plane is defined perpendicular to the horizontal injection line, see Figure 1 (left) for geometry.

Fig. 1. Left: Geometry sketch of KB-503 injection site in In Salah, Algeria. The colored lines (red, green and blue) indicate the surfaces where the 

vertical displacement is plotted in Figure 2. Right: Finite element mesh in the aquifer used in the fully resolved model (black dots) and the 

dimensionally reduced model (red circles).

The model is 3.6 km deep and 5 km wide, which corresponds to 10 km due to the symmetry plane. The CO2 is

injected into a 20 m thick aquifer between a stiff and low permeable mudstone underburden and a carboniferous 

caprock. The overburden is a low permeable layer consisting of softer cretaceous sandstone and mudstone. The 

boundaries to the right have a constant pressure value corresponding to initial hydrostatic pressure and no horizontal 

displacement. The bottom boundary has no-flow conditions and no vertical displacement, and the top boundary has a 

constant fluid pressure and zero traction. Symmetry boundary conditions are applied to the left boundaries.

The first seven years of injection is simulated with a constant injection rate of 729 ton CO2 /day. For a 1.5 km long 

horizontal injection line, this corresponds to 5.62 10-3 kg/m/s (kg/s CO2 per meter length of the well). It should be 

noted that in the fully resolved model the CO2 is injected along the whole height of the reservoir. In the real application 

is it injected along a horizontal pipeline, perpendicular to the model plane and should, more appropriately, be modelled 

as a point source in this plane symmetric model. However, here the length scale of interest is much larger than the 

near well-bore scale and the aim is to compare the performance of the two approaches. Further, we assume isothermal 

conditions, no hysteresis in the capillary pressure function and no residual saturation of any of the phases.

Some key material properties are given in Tables 1 and 2. The density of the solid material and Biot's coefficient b

is 2200 kg/m3 and 0.7 in all layers, respectively, and the entry pressure pd for the aquifer is 0.9 105 Pa.

Table 1. Mechanical properties used in the case study of KB-503.

Material property
Overburden

(0-900m)

Caprock

(900-1800m)

Aquifer

(1800-1820m)

Underburden

(below 1820m)

Youngs modulus, E [GPa] 1.5 20 6 20

Poisson's ratio, [-] 0.2 0.15 0.2 0.15

Porosity, [-] 0.1 0.01 0.17 0.01

Permeability, k [m2] 1 10-17 1 10-19 13 10-15 1 10-19
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Table 2. Fluid and fluid flow properties for brine and CO2.

Brine CO2

Density,

w [kg/m3]

Viscosity,

w [Pa s]

Compressibility,

cw [1/Pa]

Density,

n [kg/m3]

Viscosity,

n [Pa s]

Compressibility,

Cn [1/Pa]

997 5.5 10-4 4.19 10-10 784 6.9 10-5 1.56 10-8

Here we apply the dimensional reduction approach to the aquifer, hence it is defined to be semi-confined; water is 

allowed to leave/enter the aquifer whereas the CO2 is confined. Thus, the two-phase flow is limited to the aquifer, and 

in the rest of the model only brine is displacing.

As mention earlier, the motivation to derive an integrated poroelastic two-phase flow formulation is to save degrees 

of freedom and save computational time. In order to compare the performance between the fully resolved model and 

dimensionally reduced model a comparable mesh is used, see Figure 1 (right). In this particular case, the fully resolved 

model has 211 kDOFs while the reduced model has 135 kDOFs, a saving of 36% in computational cost. In 

computational time, the reduced model solves 2.7 times faster compared to the fully resolved model (or 36% of the 

solving time of the fully resolved model). Note that a lower resolution is feasible, in both cases, but for the sake of 

getting a nicely resolved solution, a fairly dense mesh is used.

Fig. 2. Left: CO2 saturation in aquifer after seven years of injection. Solid lines are the corresponding contour lines for the saturation calculated in 

the dimensionally reduced model. Note that the axis are not to scale. Right: Injection pore pressure ratio; reduced/fully resolved.

Fig. 3. Left: Vertical profiles of various normalized stress components (normalized to initial values) measured 100 meters away from the 

symmetry line. Black: vertical stress. Red: horizontal stress. Blue: Pore pressure. Dark gray area indicates the reservoir. Right: Vertical 

displacement along the bottom of the aquifer (red line), top of aquifer (green line) and surface (surface heave, blue line), cf. Figure 1 (left). In 

both figure the thin lines are from the simplified model and thick dashed lines are for the fully resolved model.

0 100 200 300
-1820

-1815

-1810

-1805

-1800

Distance, [m]

D
e

p
th

, 
[m

]

Non-wetting saturation

0

0.1

0.2

0.3

0.4

0.5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.98

0.985

0.99

0.995

1

1.005

1.01

In
je

c
ti
o

n
 p

re
s
s
u

re
, 
ra

ti
o

, 
[M

P
a

]

Time, [years]

Aquifer top

Aquifer bottom

1 1.2 1.4 1.6 1.8

-1900

-1850

-1800

-1750

Normalized stress/pore pressure, [-]

D
e

p
th

, 
[m

]

0 1000 2000 3000 4000 5000

0.5

1

1.5

2

2.5

3

3.5

4

Horizontal position, [m]

V
e

rt
ic

a
l 
d

is
p

la
c
e

m
e

n
t,
 [
c
m

] Aquifer bottom

Aquifer top

Surface



3422   Tore Ingvald Bjørnarå et al.  /  Energy Procedia   63  ( 2014 )  3416 – 3424 

The saturation profile after seven years of injection for the two approaches are compared in Figure 2 (left) where 

the colors represent the CO2 saturation in the fully resolved model and the black lines are the equivalent saturation 

contour lines for the reduced approach. It can be seen that the reduced model is capable of accurately capturing the 

CO2 distribution in the aquifer. In general, the applicability of the reduced approach presented here depends on both 

the length- and time-scale of interest. For conditions close to the injection point/line, or at short times, the accuracy 

deteriorates as the underlying assumptions are violated. The match in saturation depends on how fast the phases 

segregate vertically, and for the dimensionally reduced model; the faster the better. Hence, for very short simulation 

times, in locations close to the injection point, and if the density difference between the two phases is low or the 

permeability in the aquifer becomes too low, the VE assumption may no longer be fully justified. However, in the 

realistic (and challenging) case simulated here, it is well within a very good approximate solution. In Figure 2 (right) 

the ratio of the pore pressure at the injection point at the top and bottom of the aquifer for the two models are shown, 

it is close to 1 for the entire simulation time (7 years). The results for the vertical displacement along the faces of the 

aquifer top and -bottom and the surface in Figure 3 (right) and the Vertical profiles of various normalized stress 

components (normalized to initial values) in Figure 3 (left) are coinciding for the two approaches.

The limit for the applicability of the reduced approach is case dependent and has not been investigated here. 

However, it appears (not shown here) that the critical assumption in the dimensionally reduced approach is the VE-

assumption, as the poroelastic effect is little affected by mismatch in the saturation profile. The applicability of the 

VE assumption has been investigated by others, see eg. Court et al. [7].

In this study the simplified model approach through dimensional reduction has proved promising in providing 

significant savings in computational cost and time (2.7 times faster) when faced with a large number of simulations.

It has also been demonstrated that such models can retain reasonable accuracy when applied to realistic field data,

such as the conditions at In Salah.
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Appendix B

Equation of State

Detailed data for the equation of state of water and CO2 can be obtained from the online NIST
database [65]. NIST (National Institute of Standards and Technology) was founded in 1901
and is a part of the U.S. Department of Commerce. Here we present the material properties of
water and CO2 in terms of temperature and pressure and some typically used simplifications
used in the literature. Mavko et al. [71] is also a good reference for analytical expressions for
brine (with varying salinity) and CO2, but here we use the NIST-dataset.

It should be noted that the properties presented here are for pure substances and can
be highly influenced by salinity (increases density of water [71]) and other impurities, e.g.
methane (decreases density of supercritical CO2 [115]). Detailed analysis should evaluate the
importance of impurities.
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B.1 NIST-dataset
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Figure B.1: Density and viscosity of water (left) and CO2 (right) as function of pressure and
temperature.
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Figure B.2: Pressure dependency on viscosity of water (left) and CO2 (right) as function of
pressure and temperature.
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Figure B.3: Temperature dependency on density and viscosity of water (left) and CO2 (right)
as function of pressure and temperature.
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Figure B.4: Compressibility and volumetric expansivity of water (left) and CO2 (right) as
function of pressure and temperature.
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Figure B.5: Thermal conductivity of water (left) and CO2 (right) as function of pressure and
temperature.
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Figure B.6: Heat capacity at constant pressure and volume for water (left) and CO2 (right) as
function of pressure and temperature.

For water, a constant compressibility can often be assumed, for CO2 it is necessary to be more
cautious, see Fig. B.7.
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Figure B.7: Density and viscosity of water and CO2 at 60◦C and 90◦C for various pressures.
For density only: The red dashed lines shows the linearized density values based on com-
pressibility (4.39 ·10−101/Pa and 2.55 ·10−81/Pa) and thermal expansivity (6.65 ·10−41/K and
7.73 ·10−31/K) at p0 = 25MPa and T = 90◦C for water and CO2 (respectively), from the lin-
earized expression for density: ρα = ρ0

α (1+ cα∆pα −βα∆T ). Also, the expansion coefficient
is not constant with temperature, thus the approximated red-dashed line deviates slightly from
the blue line. Better approximations can be obtained by using more appropriate values for
compressibility and expansivity.

In Figs. B.8 and B.9 some material properties are plotted as function of depth for water
and CO2, respectively. The pressure profile is assumed to be linear with depth and with slope
of −1000g. The surface temperature is 10◦C and three profiles are shown for various constant
temperature gradient. The grey shaded area indicates the location of two reservoirs: 1770-1800
m below surface (In Salah) and 800-1100 m below surface (Sleipner).
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Figure B.8: Material properties for water as a function of depth, assuming a linear hydrostatic
pressure profile proportional to 1000g and a surface temperature of T = 10◦C. The grey shaded
area indicates the location of a reservoir between 1770-1800 m below surface (In Salah) and
800-1100 m below surface (Sleipner).
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Figure B.9: Material properties for CO2 as a function of depth, assuming a linear hydrostatic
pressure profile proportional to 1000g and a surface temperature of T = 10◦C. The grey shaded
area indicates the location of a reservoir between 1770-1800 m below surface (In Salah) and
800-1100 m below surface (Sleipner).
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B.2 Phase diagram of carbon dioxide

In Fig. B.10 a phase diagram for CO2 is shown. Beyond the critical point (at 31.3◦C and
7.39 MPa) the CO2 is in a supercritical state where the vapor phase and liquid phase merge
into one single phase: super critical phase. This is of importance to CO2 storage, because the
density and viscosity increases dramatically, allowing more CO2 to be stored in the available
pore space and the CO2 displaces the formation water/brine more effectively (less fingering).
In terms of modeling, it introduces the benefit that one only need to consider one phase; super
critical, instead of a liquid and a vapor phase. Based on the critical pressure (7.39MPa), the
super critical state occurs around 750 meters depth below the water table.

Figure B.10: Phase diagram for CO2 (Copyright c⃝1999 ChemicaLogic Corporation, 99 South
Bedford Street, Suite 207, Burlington, MA 01803 USA. All rights reserved). Critical point for
CO2 is 31.3◦C and 7.39 MPa.

B.3 Effect of salinity

The solubility of CO2 in water and brine varies with salinity, pressure and temperature. Duan
and Sun [42] presented a mathematical model to calculate the solubility of CO2 in water and
brine at various salinity for temperatures ranging between 0-260 ◦C and pressure ranging be-
tween 0-2000 bar, se Fig. B.11. The figure also indicates the salinity at In Salah, Krechba
formation (175 g/L water, Trémosa et al. [113]) and at Sleipner, Utsira formation (33.5 g/L
water, Cavanagh [30]).
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Figure B.11: Solubility of CO2 at various salinity ([mol/kg water]). The salinity at In Salah,
Krechba formation (175 g/L water (175000 ppm), Trémosa et al. [113]) and at Sleipner, Utsira
formation (33.5 g/L water, 33500 ppm, Cavanagh [30]). The Solubility is calculated using the
formula by Duan and Sun [42] at hydrostatic pressure with depth (using specific gravity (brine
density relative to water density) sg= 1) and a temperature gradient of 30 ◦C/km and T = 10
◦C at the surface.

Solubility of CO2 at various salinity, pressure and temperature are shown in Fig. B.12
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Figure B.12: Solubility of CO2 at various salinity, pressure and temperature. The Solubility is
calculated using the formula by Duan and Sun [42].

The solubility of CO2 (obtained from the formula by Duan and Sun [42]) is converted to
volume fractions using the density of water/brine (evaluated of various salinity, temperature
and pressure using the formula by Mavko et al. [71]), the density of the CO2 (evaluated at
various temperature and pressure from the online NIST database [65]) and the molar masses
of water and CO2.
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Figure B.13: Volume fraction cnw of CO2 in water/brine at various salinity, pressure and tem-
perature.

The effect of salinity on the density and viscosity of water/brine is shown in Figs. B.14
and B.15, respectively. The properties are calculated using formula by Mavko et al. [71]. For
temperatures below 250 ◦C the viscosity of water does not change much with pressure and is
ignored [71].
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Figure B.14: Density of water/brine of various salinity at various temperature and pressure.
The density is calculated using formula by Mavko et al. [71].
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Figure B.15: Viscosity of water/brine of various salinity at various temperature. The viscosity
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Appendix C

Elementary poroelasticity problems

Here we present some elementary problems of poroelasticity and their solutions. They serve
not only as validation models for numerical codes, but also as rough estimates for quality
control and evaluation of numerical solutions which should be part of any numerical study.
They also demonstrate key principles of Biot’s poroelasticity and effects such as the Mandel-
Cryer1. A good source of elementary problems in poroelasticity can be found in [117].

There are many models that can be used as first-order approximate solutions, or validation
models for poroelasticity, three of them are:

1. Geertsma’s nucleus of strain model (no fluid flow) [48]

2. Mandels problem, with fluid flow [69]

3. One dimensional (Terzaghi) consolidation, with fluid flow [111]

Sketches of the validation models are shown in Fig. C.1. In the Geertsma model, the
pressure is prescribed, thus no flow equation are solved. In the two other models; Mandels
problem and Terzaghi consolidation, the transient change in pressure is captured and the mass
conservation equation for a single-phase fluid is considered.

∆ p
Symmetry

P

P

P

Figure C.1: Sketch of various poroelasticity validation models (from left to right): Geertsma’s
nucleus of strain model, mandels problem with fluid flow and one dimensional (Terzaghi)
consolidation with fluid flow.

1Effect in consolidation where the pore pressure in a sample of soil loaded by a constant load initially in-
creases, before it later dissipates to a final value.
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C.1 Geertsma’s nucleus of strain model

The nucleus of strain model by Geertsma [48] was derived to calculate how the compaction of
a reservoir propagates through the surrounding over- and underburden. The idea is to calculate
subsidence (or heave) resulting from compaction (or expansion) of a small sphere and then
add the influence of many spheres to calculate the total effect (assuming that superposition
is allowed). The model is limited to cases where there are no contrasts in elastic properties
between the reservoir and the surroundings, the reservoir is assumed confined and the pressure
change is assumed to be uniform. The model is axial-symmetric and the reservoir is disk-
shaped and embedded into a half-space model, see Fig. C.2 (right).
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Figure C.2: Sample applications of Geertsma’s nucleus strain model. Left: Depletion of a
reservoir, causing subsidence at the surface. Center: Injection into a reservoir, causing the
surface to heave. Right: Dimensions used in Geertsma’s nucleus strain model.

The vertical displacement w along the axial symmetry line (r = 0) is given by (from Fjaer
et al. [46]):

w(0,z)=−1
2
Cmhb∆p f

(
3−4ν +

D− z
|D− z|

− D− z√
R2+(D− z)2

− (D+ z)(3−4ν)√
R2+(D+ z)2

+
2R2z

(R2+(D+ z)2)3/2

)
(C.1)

and the horizontal and vertical displacement, u and w, respectively, along the surface (z = 0)
is given by (see [48] for details):

u(r,0) = 2Cm(1−ν)∆p f hR
∫ ∞

0
e−DαJ1(αR)J1(αr)dα (C.2)

w(r,0) =−2Cm(1−ν)∆p f hR
∫ ∞

0
e−DαJ0(αR)J1(αr)dα (C.3)

where z [m] and r [m] are the vertical and radial dimensions, respectively, b [-] is Biot’s
coefficient, ∆p f [Pa] is the change in reservoir pore pressure, ν [-] is the Poissson’s ratio and
the dimensions D [m], R [m] and h [m] are illustrated in Fig. C.2 (right). J0 and J1 are the
Bessel functions of zero and first order, respectively, and the compaction coefficient Cm is
equal to the inverse of the Oedometer modulus H:

Cm =
1

λ +2G
=

1
H

(C.4)
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In a uniaxial displacement, the reservoir strain corresponds to volumetric strain, comparison
with Eq. (3.37) gives (neglecting temperature changes):

∆h
h

= εv =
b∆p f

λ +2G
(C.5)

The results of two examples (from Fjaer et al. [46]) are given in Figs. C.3-C.4. The
application is depletion of a reservoir (∆p f = 10 MPa), causing subsidence at the surface, see
Fig. C.2 (left). The model parameters are given in table C.1.

Table C.1: Model parameters used in example from Fjaer et al. [46, ch. 12.3]. Results are
given in Figs. C.3-C.4.

Description Property Value
Reservoir depth D 2000 m
Reservoir radius R 2000 m
Reservoir height h 100m and 1000m
Shear modulus G 2 GPa
Poisson’s ratio ν 0.25
Biot’s coefficient b 1
Compaction coefficient (Eq. (C.4)) Cm 6 GPa
Depletion, pressure change ∆p f 10 MPa
Reservoir strain (Eq. (C.5)) ∆h/h 0.167% (both)
Estimated (uniaxial) compaction (from Eq. (C.5)) ∆h 0.167m and 1.67m
Subsidence, at r = 0 and z= 0 (Eq. (C.1)) w 7.32cm and 73.2cm

The numerical solution is a static solution of the conservation of linear momentum equa-
tion, Eq. (3.2), with the constitutive relation for the stress defined by Eq. (3.17). The solution
matches almost exactly for thin reservoirs, even for thick reservoirs the match is good (see
Figs. C.3-C.4).
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Figure C.3: Solution from Geertsma’s nucleus model compared to a numerical model (using
finite element method) for a 100 m thick reservoir. Left: Vertical displacement along the axial
symmetry axis (r = 0, Eq. (C.1)). Position of the reservoir is indicated by the grey shaded
area. Right: horizontal and vertical displacement at the surface (Eqs. (C.2) and (C.3)).
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Figure C.4: Solution from Geertsma’s nucleus model compared to a numerical model (using
finite element method) for a 1000 m thick reservoir. Left: Vertical displacement along the axial
symmetry axis (r= 0, Eq. (C.1)). Position of the reservoir is indicated by the grey shaded area.
Right: horizontal and vertical displacement at the surface (Eqs. (C.2) and (C.3)).
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C.2 Mandels problem

Mandel [69] introduced one of the first solutions to Biot’s theory of linear poroelasticity. The
problem that was solved was an infinitely long slab, with a rectangular crossection, of a fully
saturated porous media that is clamped between to rigid and frictionless plates, see Fig. C.5.

p
f=

0

p
f=

0
2F

2F

2Lx

y

z

Figure C.5: Mandel’s problem setup. The slab is infinite in the out-of-plane z-direction. Only
a quarter of the geometry is considered due to the symmetry; shaded area.

The lateral boundaries are stress-free (no shear or normal stress) and drained (fixed fluid
pressure, p f = 0). An instant load 2F [N/m] is applied to the top and bottom plate and drainage
is only allowed on the lateral sides. To derive the analytical solution, the grains in the porous
media and the fluid is assumed to be incompressible, thus the transient term in the fluid flow
equation, e.g. Eq. (4.22), vanishes and Biot’s coefficient b= 1 such that the fluid flow equation
becomes:

∇ ·vs+∇ ·q f = 0 (C.6)

These assumptions also allows the initial pore pressure; immediately after the load is applied
and before the fluid starts to drain, to be expressed as:

p0f = F (C.7)

and the normalized pore pressure can be expressed as [36]2:

p f (x, tnd)
p0f

= 2
∞

∑
n=1

cos(αnx/L)− cos(αn)

αn− sin(αn)cos(αn)
sin(αn)exp(−α2

n tnd) (C.8)

The dimensionless time tnd [-] is defined as:

tnd = t
cv
L2

(C.9)

where t [s] is time and the diffusivity coefficient cv [m2/s] is approximated as [36]:

cv =
k

µ f

1
λ +2G

(C.10)

2The theory presented here is from Coussy [36, ch. 5.4.3]. Other interesting references are: Mandel [69] and
Lee and Gutierrez [63] (and references therein).
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where k [m2] is the permeability of the porous media, µ f [Pa·s] is the fluid viscosity and K [Pa]
and G [Pa] are the bulk and shear modulus of the porous media, respectively. The parameter
αn [-] is determined from the equation [36]:

tan(αn)

αn
=

1−ν
νu−ν

(C.11)

where ν [-] is the Poisson’s ratio of the porous media and νu = 0.5 [-] is the Poissons’s ratio
for the incompressible fluid.

Table C.2: Model properties used in Mandels problem. Results are given in Fig. C.6.

Description Property Value
Poisson’s ratio, [-] ν 0.2
Youngs modulus, [kPa] E 1
Permeability, [m2] k 103

Viscosity, [mPa·s] µ f 0.1
Load, [N/m] F 103

Slab width, [m] L 10

The solution of Eq. (C.8) with the properties given in table C.2 is shown in Fig. C.6.
The assumptions in the model are such that the storage term in the single-phase flow equation
vanish, but the two processes; mechanical and hydraulic, are still fully coupled through the
strain rate terms in the fluid flow equation, Eq. (C.6), and the pore pressure in the constitutive
relation for the stress; Eq. (3.17).
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Figure C.6: Pore pressure in the middle of the slab at two horizontal locations; red and blue
dot in Fig. C.5. Mandel’s analytical solution is compared to a fully coupled numerical solution
(using finite element method) for single-phase flow with poroelasticity.
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The temporary increase in pore pressure at early-times, where p f > p0f , is due to an effect
called Mandel-Cryer; the fluid near the free surface drains faster than deeper inside the slab,
causing a faster decrease in pressure at x= L/2 compared to the center; x= 0 and results in a
shift in effective stress. It can also be seen in Fig. C.6 that the Mandel-Cryer is less pronounced
closer to the free surface.

C.3 Terzaghi consolidation

One-dimensional consolidation is an important problem in geotechnical engineering. A load
is applied on top of a soil column that starts to consolidate, or compact. How fast the soil com-
pacts depends on the drainage which again depends on the mechanical and hydraulic prop-
erties. In one-dimensional problems, the fluid flow equation is reduced to the uniaxial form
(from Eqs. (4.33) and (4.34)):

S
∂ p f

∂ t
+∇ ·q f = 0

where the Darcy flux q f is given by Eq. (4.3) and the effective storage coefficient S [1/Pa] for
uniaxial strain approximation is expressed by:

S=
b−ϕ
Ks

+
ϕ
K f

+
b2

λ +2G

Note that this is sometimes called the modified Terzaghi consolidation model because in the
original problem the volumetric strain rate coupling term in the flow equation (b2/(λ + 2G))
was not included and b was assumed equal to one. The poroelasticity is considered by solving
the equation of equilibrium with the constitutive relation for stress defined by Eq. (3.17).
Details on the solution can be found several places in the literature, e.g. Verruijt [117] and
Jaeger et al. [58], here we present the solution from Jaeger et al. [58, ch. 7.6].

A validation model (of formulation and numerical code) is defined and solved both numer-
ically (using the finite element method) and analytically using expressions from Jaeger et al.
[58, ch. 7.6]. The model setup is illustrated in Fig. C.7.

F

Porous membrane
p(z=0,t)=0

Sample

h

0

z

∂ p/∂ z = 0, fixed

R
o

lle
r R

o
lle

r

Figure C.7: Model setup of Terzaghi’s one dimensional consolidation model.
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The solutions that will be compared is the (vertical) consolidation at the surface of the
sample and the pore pressure at the bottom of the sample as function of time and vertical pore
pressure profiles at various times. The analytical expressions needed are the pore pressure
(Jaeger et al. [58, Eq. 7.107]):

p(z, t) =
bMF

(λ +2G+b2M)

∞

∑
n=1,3,...

4
nπ

sin
(nπz
2h

)
exp
(
−n2π2kt
4µSh2

)
(C.12)

and the vertical displacement (Jaeger et al. [58, Eq. 7.111]):

w(z, t) =
F

(λ +2G)

[
(z−h)+

b2Mh
(λ +2G+b2M)

∞

∑
n=1,3,...

8
n2π2 cos

(nπz
2h

)
exp
(
−n2π2kt
4µSh2

)]
(C.13)

where z [m] and t [s] is the vertical position and time, respectively,M is given by:

S=
1
M

+
b2

λ +2G
(C.14)

The rest of the properties are given in table C.3 and the results are shown in Fig. C.8.

Table C.3: Model properties used in the modified one dimensional Terzaghi consolidation
model. Results are shown in Fig. C.8.

Description Property Value
Porosity, [-] ϕ 0.17
Permeability, [m2] k 10−12

Viscosity, [Pa·s] µ f 3·10−4

Poisson’s ratio, [-] ν 0.2
Youngs modulus, [GPa] E 6
Bulk modulus, grains, [GPa] Ks 10
Bulk modulus, fluid, [GPa] K f 2
Load, [N/m2] F 106

Sample height, [m] h 500
Biot’s coefficient, [-] b 2/3
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Figure C.8: Results from the analytical solution to the modified one dimensional Terzaghi
consolidation model and the corresponding numerical model (using finite element method).
Left: Vertical subsidence at the top surface versus time. Center: Pore pressure at the bottom of
the model versus time. Right: Vertical pore pressure profile at various times: 1, 10, 100, 1000,
104 and 105 seconds.
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Appendix D

Component mass conservation

The general mass conservation equation for a component i in a fluid phase α can be expressed
as

∂ (ϕsαρiα)

∂ t
+∇ · [ϕsαρiαviα ] = Riα (D.1)

where ϕ [-] is the porosity, sα [-] is the saturation of fluid phase α , ρiα [kg/m3] is the density
of component i in fluid phase α , t [s] is time, Riα is the source/sink-term1 [kg/m3/s] and
viα [m/s] is the net velocity of which component i flows through a representative elementary
volume (REV). This velocity is the sum of diffusion jiα [kg/m2/s] and the bulk motion, or
average phase velocity vα [m/s], according to:

ρiαviα = ρiαvα + jiα (D.2)

By neglecting thermal diffusion, barodiffusion (diffusion due to pressure change) and effect of
gravitational potential, diffusion jiα can be described by Fick’s law:

jiα =−Diα∇ρiα (D.3)

where Diα =Dα [kg/(m2s)] is the effective dispersion tensor of phase α and ρiα [kg/m3] is the
mass density of component i in phase α , according to:

ρiα = Xiαρα (D.4)

and ρα [kg/m3] is the fluid phase density. Combining Eqs. (D.1)-(D.4), we obtain the general
mass conservation equation for component i in phase α:

∂ (ϕsαρiα)

∂ t
+∇ · [ϕsαρiαvα ]+∇ · (ϕsα jiα) = Riα (D.5)

The material derivative relative to an arbitrary phase α is given as (for some property denoted
(·)):

dα(·)
dt

=
∂ (·)
∂ t

+vα ·∇(·) (D.6)

Applying Eq. (D.6) on Eq. (D.5) yields [64]:

dα(ϕsαρiα)

dt
+ϕsαρiα∇ ·vα +∇ · (ϕsα jiα) = Riα (D.7)

1Note that the introduced general source/sink-term Riα [kg/(m3s)] can be a complex mix of inter- and in-
traphasial terms that account for (but not limited to) chemical reactions, adsorption and physical sources/sinks
such as injection/production wells.
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The relation between the material derivative of the solid and phase α is given by [64]:

d(·)
dt

=
dα(·)
dt

+(vs−vα) ·∇(·) (D.8)

where vs [m/s] is the volume averaged velocity of the solid phase and the following general
vector identity for velocity v [m/s] holds:

∇ · ((·)v) = (·)∇ ·v+v ·∇(·) (D.9)

Applying Eqs. (D.8) and (D.9) to the mass conservation equation Eq. (D.7), gives:

d(ϕsαρiα)

dt
+∇ · (ρiαqα)+ϕsαρiα∇ ·vs−∇ · (Dα∇ρiα) = Riα (D.10)

In terms of mass fractions:

d(ϕsαXiαρα)

dt
+∇ · (Xiαραqα)+ϕsαXiαρα∇ ·vs−∇ · (Dα∇(ραXiα)) = Riα (D.11)

where qα is the Darcy flux

qα = sαϕ(vα −vs) =−kkrα
µα

(∇pα −ραg) (D.12)

and k [m2] is the intrinsic permeability tensor, krα [-], µα [Pa·s], pα [Pa] and ρα [kg/m3]
are the relative permeability tensor, viscosity, pressure and mass density of fluid phase α ,
respectively, and g [m/s2] is the gravity tensor.

Species in a solution tend to spread more than the pure convective transport can account for
and this spreading is (usually) contributed to molecular diffusion (random fluctuating move-
ments by the atoms) and mechanical dispersion (e.g. splitting and merging of flow paths
through the pores). This diffusion and dispersion in single- and multi-phase flow is described
by several authors, e.g. Bear [9], Chen et al. [31], Civan [33], Helmig [51], Herrera and Pin-
der [52], Lake [62], Pinder and Gray [89], Raffensperger [91], here we adopt the description
by Chen et al. [ch. 2, 31]:

Dα = ϕsαdiαI+ ∥ vα ∥
(
dlαE+dtαE⊥

)
(D.13)

where vα [m/s] is the pore velocity, here defined as: vα = qα/(ϕsα) (from Eq. (D.12)), diα
[m2/s] is the molecular diffusion coefficient of component i in phase α , dlα and dtα [m] are
longitudinal and transverse dispersivity of phase α , respectively, ∥ vα ∥ is the Euclidian norm
of the pore velocity vα and

E=
1

∥ vα ∥2

 v2xα vxαvyα vxαvzα
vyαvxα v2yα vyαvzα
vzαvxα vzαvyα v2zα

 , E⊥ = I−E (D.14)

In 2D the diffusion/dispersion-coefficient in Eq. (D.13) can be expressed as:

Dα = ϕsαdiαI+
dlα

∥ vα ∥

[
v2xα vxαvyα

vyαvxα v2yα

]
+

dtα
∥ vα ∥

[
v2yα −vxαvyα

−vyαvxα v2xα

]
(D.15)
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and in 1D the diffusion/dispersion-coefficient in Eq. (D.13) can be expressed as:

Dα = ϕsαdiαI+dlα ∥ vxα ∥ (D.16)

For immiscible fluids, the mass of all components i in a fluid phase α can be summed to
obtain, from Eq. (D.11):

d(ϕsαρα)

dt
+∇ · (ραqα)+ϕsαρα∇ ·vs = Rα (D.17)

where we have used that:

Rα =
nc

∑
i
Riα (D.18)

nc

∑
i=1

Xiα = 1 (D.19)

and note that

jα =
nc

∑
i=1

jiα = 0 (D.20)

and nc is the number of components.
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Appendix E

Capillary pressure and relative permeability
functions

In order to describe a two-phase (or multi-phase) flow system, it is necessary to know the
relationship between the phase pressures and the phase saturation. The capillary pressure is
the pressure difference across the interface between two immiscible fluids, and is defined as
(here for a wetting and a non-wetting fluid)1:

pc = pnw− pw (E.1)

This pressure difference is also proportional to the interfacial tension, γ [N/m], inversely pro-
portional to the effective radius, r [m], of the interface, and it also depends on the wetting angle
θ [rad] of the liquid on the surface of the (imagined) straight capillary tube with radius r rep-
resenting a pore throat in a porous media (and equivalently for a fracture plane with aperture
r) according to:

pc =
2γ cosθ

r
(E.2)

See for instance Fig. E.1 (left), the liquid is wetting the capillary tube and the capillary forces
and the gravity forces equilibrate:

pc = ∆ρgh− patm (E.3)

where ∆ρ [kg/m3] is the density difference of the two phases across the interface, e.g. water
and air.

θ

h

2r

θ

θ

Figure E.1: Left: Balancing capillary and gravity forces in a capillary tube. Center: A wetting
liquid on a solid with θ < 90◦. Right. A non-wetting liquid on a solid with θ > 90◦.

1The wetting-phase is the fluid phase that is the most attracted to, and sticks to, a solid.
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However, a porous media does not consist of regular tubes, but rather a complex network
of pores with various shapes and sizes and connectivity, resulting in a large distribution of
capillary pressure values at a given average saturation of a porous media sample. Consider-
ing a representative elementary volume (REV), it is possible for a given average saturation to
measure an average capillary pressure value and many mathematical relations have been pro-
posed in the literature that fits to these measurements. They normally have one or more fitting
parameters that, depending on the characteristics of the sample, can represent the capillary
pressure function for a related sample. It is similar for the relative permeability, it can be ob-
tained through laboratory tests and many mathematical relations have also been proposed in
the literature that can be fitted to measured values for a given average saturation.

In the following sections some commonly used relations for capillary pressure and relative
permeability will be reviewed briefly.

E.1 Capillary pressure

E.1.1 Brooks-Corey

The capillary pressure function can be related to the saturation according to the following
relationship [27]:

pc =
pd
s1/λ
ew

(E.4)

sew =

(
pd
pc

)λ
(E.5)

where pd [Pa] is related to the entry pressure of the non-wetting phase and λ [-] is a fitting
parameter related to the pore size distribution where a uniform grain size corresponds to a
large value and a non-uniform grain size distribution corresponds to a small value. Note the
discontinuity at sew = 0.
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Figure E.2: Capillary pressure function as defined by Brooks and Corey [27]. Entry pressure
pd = 105 Pa and λ = 2. Left: Capillary pressure function; Eq. (E.4). Right: the derivative of
the capillary pressure function.
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E.1.2 van Genuchten

The capillary pressure function can be related to the saturation according to the following
relationship [116]:

pc = pd

(
1

s1/mew

−1

)1/n

(E.6)

sew =

(
1+
(
pc
pd

)n)−m

(E.7)

where pd [Pa] is related to the entry pressure of the non-wetting phase and n [-] is a fitting
parameter related to the pore size distribution and m [-] is a fitting parameter related to the
symmetry of the function. For m= 1−2/n Eq. (E.6) is the same as the capillary pressure by
Burdine [29], and for m= 1−1/n Eq. (E.6) is the same as the capillary pressure by Mualem
[78]. Note the discontinuity at sew = 0.
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Figure E.3: Capillary pressure function as defined by van Genuchten [116]. Entry pressure
pd = 105 Pa, n= 2 and m= 1−1/n [78]. Left: Capillary pressure function; Eq. (E.6). Right:
the derivative of the capillary pressure function.

E.1.3 Parker

The capillary pressure function can be related to the saturation according to the following
relationship [86]:

pc = pd

(
1

s1/mew

−1

)1−m

(E.8)

sew =

(
1+
(
pc
pd

) 1
1−m
)−m

(E.9)

where pd [Pa] is related to the entry pressure of the non-wetting phase and 0 < m < 1 [-] is a
fitting parameter related to the pore size distribution. Note the discontinuity at sew = 0.
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Figure E.4: Capillary pressure function as defined by Parker et al. [86]. Entry pressure pd =
105 Pa and m= 1/2. Left: Capillary pressure function; Eq. (E.8). Right: the derivative of the
capillary pressure function.

E.1.4 From Nordbotten and Dahle (2011)

The capillary pressure function can be related to the saturation according to the following
relationship [84]:

pc = α(1− sen)−1/2+β (E.10)

sen = 1−
(

α
pc−β

)2

(E.11)

where α and β [Pa] are fitting parameters and α +β is comparable to the entry pressure in Eq.
(E.4) by Brooks and Corey [27].
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Figure E.5: Capillary pressure function as defined by Nordbotten and Dahle [84]. Entry pres-
sure pd = 105 Pa and α = 0.9pd and β = 0.1pd . Left: Capillary pressure function; Eq. (E.10).
Right: the derivative of the capillary pressure function.
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E.1.5 Comments on stability

An important relation to consider is how the capillary pressure pc change with respect to
change in saturation; dpc/dsew. This is plotted in the right panels of Figs. E.2, E.3, E.4 and
E.5. It can be seen that for the van Genuchten and Parker relations the derivative approaches
infinity as sw → 1 and sw → 0. This can cause numerical problems, for drainage processes
(such as CO2-injection problems), as reservoirs are often considered to be initially fully water
saturated, thus capillary pressure functions defined by Brooks and Corey [27] (or Nordbotten
and Dahle [84]) is often preferred.

E.2 Relative permeability

E.2.1 Brooks-Corey

The relative permeability for the wetting phase and non-wetting phase can be expressed as
[27]:

krw = s(2+3λ )/λ
ew (E.12)

krn = (1− sew)2(1− s(2+λ )/λ
ew ) (E.13)

where λ [-] is the same parameter from the capillary pressure function Eq. (E.4).
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Figure E.6: Relative permeability for wetting and non-wetting phase after Brooks and Corey
[27]. λ = 2.

E.2.2 van Genuchten

The relative permeability for the wetting phase and non-wetting phase can be expressed as
[51]:

krw = sε
ew

(
1−
(
1−S1/mew

)m)2
(E.14)

krn = (1− sew)γ
(
1−S1/mew

)2m
(E.15)

where n and m are the same parameters as in the capillary pressure function Eq. (E.6), and ε
[-] and γ [-] are pore connectivity parameters. Typically ε = 1/2 and γ = 1/3 are used [51].
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Figure E.7: Relative permeability for wetting and non-wetting phase after Helmig [51]. n= 2,
m= 1−1/n, ε = 1/2 and γ = 1/3.

E.2.3 Parker

The relative permeability for the wetting phase and non-wetting phase can be expressed as
[86]:

krw = s1/2ew

(
1−
(
1−S1/mew

)m)2
(E.16)

krn = (1− sew)1/2
(
1−S1/mew

)2m
(E.17)

where m is the same parameters as in the capillary pressure function Eq. (E.8).
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Figure E.8: Relative permeability for wetting and non-wetting phase after Parker et al. [86],
m= 1/2.

E.3 Hysteresis

Capillary pressure and relative permeability are often considered as functions that are uniquely
defined by the saturation in the pores. These correlations are found by experiments, but they
depend on how the experiment is done. This is illustrated in Fig. E.9. Consider for instance
a fully water saturated sample that is drained, the capillary pressure will increase until the
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saturation approaches a residual value, sw = swr. In the reverse process, imbibition, the water is
reintroduced into the pores, but only until a certain limit where a pore volume corresponding to
a residual non-wetting phase saturation. Because the large available pores are drained first, and
similarly, the largest available pores are imbibed first, it results in a different correlation for the
two processes. In between the main drainage and imbibition curves in Fig. E.9 there also exist
an infinite number of intermediate relations, called scanning curves, depending on how far
the drainage/imbibition process has come before the imbibition/drainage process is reversed.
There is also a time-factor involved, such that the correlations will be different depending on
how fast the experiment is performed. Thus the correlation that is used in models are often
some representative correlation for a particular process of interest, e.g. drainage or imbibition.
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Figure E.9: Example of hysteresis in capillary pressure. Capillary pressure curves are often
different in a drainage process compared to an imbibition process. Figure depicts the primary
drainage curve and main imbibition curve.

Hysteresis can be considered by using pc = pc(sw,∂ sw/∂ t), see e.g. Juanes et al. [60] for
details on the impact of relative permeability hysteresis and Doster et al. [41] for the impact of
capillary pressure hysteresis.

E.4 Heterogeneous porous media

Rocks and soils are not homogeneous materials with clearly defined properties. Instead they
are often conceptualized into separate geometrical entities, e.g. layers, of materials that have
similar properties, such as permeability, stiffness, porosity, etc. This can pose challenges when
modeling flow, for instance, that is not confined to one particular entity. Assuming that two
such entities of a porous media are in hydraulic contact but has different capillary pressure
relations, this will have an affect on how the fluids are migrating across the interface. One way
to handle this is to assume the following [51]:

• Continuity in mass flux across the interface

• Continuity in capillary pressure and the pressure of the mobile phases on each side of
the interface (e.g. pw)

• Discontinuity in the phase saturations
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The discontinuity in saturation can be illustrated by looking at the capillary pressure of
the two entities on opposite sides of the interface, see Fig. E.10. Due to a continuity in the
phase pressures, and therefore also the capillary pressure, across the interface, there will be a
discontinuity in the saturation. The jump in saturation can be evaluated by comparing the two
capillary pressure functions.
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Figure E.10: Capillary pressure profiles (Left: van Genuchten, Eq. (E.6). Right: Brooks-
Corey, Eq. (E.4)) for two porous medias with different entry pressure pd . The ratio in entry
pressure between the two porous media is 2.

It can be seen in Fig. E.10 that the discontinuity in the saturation is very sensitive to
the entry pressure. If the difference in entry pressure is big, the non-wetting phase is often
considered confined to the formation with the lowest entry pressure (if it is injected into it).
This can imply that a reservoir is in effect confined when presd ≫ pconfd , where presd is the entry
pressure in the reservoir and pconfd is the entry pressure in the confining formations.



Appendix F

Stress invariant and principal stresses

Details on stress invariants and principal stresses can be found in the literature on elasticity.
Here we refer to material from [80] and [58].

A stress invariant is a stress quantity that is reference-independent. Stress invariants are
convenient for describing the actual state of stress. The principal stresses are examples of
invariant stress and the first principal stress, σ1, is the largest normal stress acting on any plane
through a material particle. Principal stresses are found by rotating the basis for the stress
tensor such that the shear stresses become zero, see Fig. F.1.

y

z

x

σ
xx

σ
xz

 σ
xy

 σ
yy

σ
yz

σ
yx

 σ
zz

 σ
zyσ

zx

y

z

x

σ
1

σ
2

σ
3

Figure F.1: Left: Normal and shear stress components on a cubic element. Right: By rotating
the basis for the stress tensor, such that the shear stresses become zero, reveals the principal
stresses.

In Fig. F.1 (left) we have used the cartesian notation for the various stress components. The
first subscript describes the direction of the unit normal of the face that the stress component
is acting on and the second subscript indicates the direction of the stress component. E.g.
σyx acts on the face whos normal points in the y-direction, and the stress component itself is
pointing in the x-direction. Often the notations are simplified such that the components σxx,
σyy and σzz are simply expressed as σx, σy and σz, respectively.

In the following we will use another common notation where the axes are numbered, e.g.
using 1 instead of x, 2 instead of y and 3 instead f z such that for instance σxy can be expressed
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as σ12.
There are three fundamental stress invariant (e.g. Davis and Selvadurai [38], Nordal [80]):

I1 = tr(σ) = σ11+σ22+σ33 (F.1)

I2 =
1
2
[
(tr(σ)2)+ tr(σ2)

]
= σ11σ22+σ11σ33+σ22σ33−σ2

12−σ2
13−σ2

23 (F.2)

I3 = det(σ) = σ11(σ22σ33−σ2
23)−σ12(σ12σ33−σ13σ23)+σ13(σ12σ23−σ13σ22) (F.3)

Note that σ13 = σ31 and σ23 = σ32. In the case where the principal stresses coincide with the
normal stresses, such that the shear stresses σ12 = σ13 = σ23 = 0, they simplify to:

I1 = σ1+σ2+σ3 (F.4)
I2 = σ1σ2+σ1σ3+σ2σ3 (F.5)
I3 = det(σ) = σ1 ·σ2 ·σ3 (F.6)

The principal stresses are the solution to σ3
i − I1σ2

i + I2σi− I3 = 0, where σi [Pa] is the
principal stress i, and can be expressed as:

σ1 =
I1
3
+

2
3

(√
I21−3I2

)
cosθ (F.7)

σ2 =
I1
3
+

2
3

(√
I21−3I2

)
cos
(

θ +
2π
3

)
(F.8)

σ3 =
I1
3
+

2
3

(√
I21−3I2

)
cos
(

θ +
4π
3

)
(F.9)

where θ [rad] is given by:

θ =
1
3
cos−1

(
2I31−9I1I2+27I3
2(I21−3I2)3/2

)
(F.10)

2D approximations

In 2D we usually have either plane stress or plane strain conditions. Assuming that the
in-plane stresses have the indices 1 and 2 and the out-of-plane (perpendicular direction) stress
has index 3, we have for plane stress that σ33 = σ13 = σ23 = 0 and for plane strain that ε33 =
ε13 = ε23 = 0. Under plane strain conditions we also have that σ33 = ν(σ11+σ22) and σ11
and σ22 are both independent on σ33, therefore the two (remaining) unknown principal stresses
simplifies to:

σ1 =
σ11+σ22

2
+

1
2

√
(σ11−σ22)

2+4σ2
12 (F.11)

σ2 =
σ11+σ22

2
− 1

2

√
(σ11−σ22)

2+4σ2
12 (F.12)

The stresses σ1 and σ2 acts on planes that are perpendicular to each other. The angle the
normal to these planes makes with the x-axis in a (x,y) coordinate system can be expressed as
[e.g. 58]:

tan2θ =
2σ12

σ11−σ22
(F.13)

This is also illustrated in Fig. F.2. Whether the angle 2θ belongs to σ1 or σ2 depends on the
sign of the numerator and denominator of Eq. (F.13) and is summarized in table F.1.
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Figure F.2: Relationships between stress components and the plane the principal stresses act
on in plane problems.

Table F.1: The angle the normal of the plane that σ1 acts on relative to the x-axis, from [32, p.
10], see also Fig. F.2.

σxx−σyy > 0 σxy > 0 0◦ < θ < 45◦

σxx−σyy < 0 σxy > 0 45◦ < θ < 90◦

σxx−σyy < 0 σxy < 0 90◦ < θ < 135◦

σxx−σyy > 0 σxy < 0 135◦ < θ < 180◦
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Appendix G

Navier-Cauchy momentum equation

The conservation equation for linear momentum:

−∇ ·σ = f (G.1)

where σ [Pa] is the stress tensor and f [N/m3] is the body load vector containing body loads
(e.g. due to gravity) and inertial terms (acceleration). To derive the Navier-Cauchy momentum
equations, we have for the stresses in Eq. (G.1) (here only shown for the x-component):

∂σx

∂x
+

∂σyx

∂x
+

∂σzx

∂x
+ fx = 0 (G.2)

where

σx = 2Gεx+λ (εx+ εy+ εz) = 2G
∂u
∂x

+λ
(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)
(G.3)

σyx = Gεyx = G
(

∂u
∂y

+
∂v
∂x

)
(G.4)

σzx = Gεzx = G
(

∂u
∂ z

+
∂w
∂x

)
(G.5)

Substituting these stress components into Eq. (G.2), we get:

∂
∂x

(
2G

∂u
∂x

+λ
(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

))
+G

∂
∂y

(
∂u
∂y

+
∂v
∂x

)
+

G
∂
∂ z

(
∂u
∂ z

+
∂w
∂x

)
+ fx = 0

(G.6)

Upon expanding the equation:

2G
∂
∂x

∂u
∂x

+λ
∂
∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)
+G

(
∂
∂y

∂u
∂y

+
∂
∂y

∂v
∂x

)
+

G
(

∂
∂ z

∂u
∂ z

+
∂
∂ z

∂w
∂x

)
+ fx = 0

(G.7)

and rearranging, it is obtained for the x-component:

(λ +G)
∂
∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)
+G

(
∂ 2u
∂x2

+
∂ 2u
∂y2

+
∂ 2u
∂ z2

)
+ fx = 0 (G.8)
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Similarly can be done for stress in the y- and z-direction to obtain the full set of equations:

(λ +G)
∂
∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)
+G∇2u+ fx = 0

(λ +G)
∂
∂y

(
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)
+G∇2v+ fy = 0

(λ +G)
∂
∂ z

(
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

)
+G∇2w+ fz = 0

(G.9)

and the Navier-Cauchy equation, in terms of λ and G:

(λ +G)∇(∇ ·u)+G∇2u+ f= 0 (G.10)
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Derivation of the VE equations

H.1 Dimensionally reduced two-phase flow equation

To derive the governing equations, the approach by Nordbotten and Dahle [83] and Nordbotten
and Celia [81] is followed. Non-isothermal effects are ignored such that the mass conservation
equation for fluid phase α can be described as (from Eq. (4.48):

ϕρα
dsα
dt

+ sαρα

[
b−ϕ
Ks

dps
dt

+
ϕ
Kα

dpα
dt

+b∇ ·vs
]
+∇ · (ραqα) = Rα (H.1)

where qα is given by Eq. (4.43). Note that the source/sink term is omitted. The volumetric
strain-rate term, ∇ ·vs, is only included when deformations is considered, which is relevant in
section 6.5. Furthermore, the mass conservation equation is integrated in the vertical direction:∫ ζT

ζB

(
ϕρα

dsα
dt

+ sαρα

[
b−ϕ
Ks

dps
dt

+
ϕ
Kα

dpα
dt

+b∇ ·vs
]
+∇ · (ραqα)−Rα

)
dz= 0 (H.2)

Assuming constant, or averaged, material properties in the vertical/integration direction, and
applying Leibniz’ rule, integrating term by term result in the following dimesionally reduced
two-phase flow equation:

Φρα
dSα
dt

H+Sαρα

[
b−Φ
Ks

dPs
dt

+
Φ
Kα

dPα
dt

H+b
∂Ev

∂ t

]
+ ∇̃ · (ραQα)+

ρα(qα ·n)|T − ρα(qα ·n)|B = R̃α

(H.3)

where the up-scaled volumetric strain Ev is defined by Eq. (I.4). The average porosity Φ [-] is
defined as

Φ =
1
H

∫ ζT

ζB
ϕdz (H.4)

and the average saturation Sα [-] of phase α is defined as

Sα =
1
H

∫ ζT

ζB
ŝαdz (H.5)

The up-scaled source/sink-term R̃α [kg/m2/s] is defined as:

R̃α =
∫ ζT

ζB
Rαdz (H.6)
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The product of porosity and saturation; sαϕ , constitute the volume fraction of the porous media
where the fluid phase α can flow, see e.g. Eq. (4.43), and here we assume that an average value
is a good representative volume fraction. The integrated Darcy flux is defined as

Qα =
∫ ζT

ζB
qαdz (H.7)

and will be derived later in section H.5. The integrated pore pressure Ps [Pa] is obtained from
Eq. (4.50):

Ps =
∫ ζT

ζB
psdz=

∫ ζT

ζB
(pw+ ŝnpc)dz (H.8)

and its time derivative:

dPs
dt

=
∫ ζT

ζB

d
dt

(pw+ ŝnpc)dz (H.9)

The pore pressure and its time derivative will be derived in section H.4. The two last terms
in Eq. (H.3) are the vertically integrated net flux of the fluid phases leaving and entering the
aquifer, for a confined aquifer (and if flat) these will be zero. A typically useful case that will
be considered here is a partially confined aquifer where the non-wetting phase is confined to
the aquifer, but the wetting phase exists in the aquifer and the surrounding formations and
constitute a continuous phase with a continuous pressure profile across the aquifer. This is
not always the case, but it is a very representative case and does not limit the validity of the
equations derived in the following sections.

By assuming Vertical Equilibrium one can exploit the capillary pressure curve to derive the
non-linear structure of the solution variable ŝα [84]. When ignoring hysteresis in the capillary
pressure function, the inverted capillary saturation can be solved for by inverting the capillary
pressure function such that sα = p−1

c (pn− pw), and, since the capillary pressure is in vertical
equilibrium, the inverted capillary saturation becomes a distribution over the vertical direction
z; ŝα(z). The details will be given in a later section.

H.2 Coarse-scale phase pressure

First we look at how the phase-pressures vary in the vertical direction. The vertical equilibrium
(VE) assumption means that the vertical change in the fluid potential is negligible or constant;
∂ pα/∂ z+ ραg ≈ 0. One interpretation is that the vertical flux is negligible and from this
assumption we can thus evaluate the pressure at position z relative to a datum pressure at
z= ζp by solving the following differential equation:∫ z

ζp

(
∂ pα
∂ z

+ραg
)
dz= 0 (H.10)

After integration and rearranging:

pα(z)− pα(ζp) =−g
∫ z

ζp

ραdz (H.11)

By the definition of the coarse-scale pressure:

Pα = pα(ζp) (H.12)
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the fine-scale pressure can therefore be written in terms of the coarse-scale pressure according
to:

pα(z) = Pα −g
∫ z

ζp

ραdz (H.13)

For the assumption that the density is approximately constant in the vertical direction (across
the direction of integration), it is simply expressed as:

pα(z) = Pα −ραg(z−ζp) (H.14)

In more general terms of independent variables, Eq. (H.14) can be expressed as:

pα(x,y,z, t) = Pα(x,y, t)−ραg(z−ζp(x,y)) (H.15)

where we have made the approximation that the datum is fixed in time (and that Pα(x,y, t) [Pa]
is the fluid pressure of phase α at the pressure datum, see Eq. (H.12)). It has not been investi-
gated where the datum should be, but for convenience it is used throughout this thesis that the
datum is the bottom of the aquifer; ζp = ζB(x,y). Eq. (H.15) is schematically illustrated for a
continuous fluid phase α in Fig. H.1.
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Figure H.1: Vertical Equilibrium (VE) assumption: pressure profile (blue line) of fluid phase
α has a constant gradient: ραg. The white area represents the aquifer and the red lines are the
upper- and lower bounds of the aquifer.

H.3 Coarse-scale capillary pressure and saturation

Due to the assumption of vertical equilibrium, the capillary pressure, pc = pn − pw, must
also be satisfied for coarse scale pressures (using Eq. (H.14) for the wetting and non-wetting
phase), it can be obtained that:

pc = Pcap+∆ρg(z−ζp) (H.16)

where ∆ρ [kg/m3] is the density difference of the phases and Pcap [Pa] is the coarse scale
capillary pressure at the pressure datum:

∆ρ = ρw−ρn (H.17)
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Pcap = Pn−Pw (H.18)

Assuming that the capillary pressure function pc is a monotone function of the saturation
(ignoring hysteresis, see Appendix E), the capillary pressure pc in Eq. (H.16) can be inverted
to give the capillary saturation scapα (in terms of coarse scale variables):

ŝeα(z) = scapeα (Pcap,z) = scapeα (Pcap+∆ρg(z−ζp)) (H.19)

where the hat in ŝeα is used to indicate that it is expressed as a function of coarse scale vari-
ables. Note also that the capillary pressure function can only distinguish effective saturation
defined by Eq. (4.46), hence the capillary saturation is an effective saturation as indicated (by
the lowercase e).

The fine scale capillary pressure is defined as [83]:

pc(sn) = α(1− sen)−1/2+β (H.20)

where it can be seen that γ := α +β corresponds to the entry pressure in the capillary pressure
function give by [27]. Other expressions for capillary pressures, e.g. van Genuchten [116] (see
Appendix E for others). By equating ŝen and sen, Eqs. (H.16) and (H.20) can be compared to
obtain:

α(1− sen)−1/2+β = Pcap+∆ρg(z−ζp) (H.21)

where the interface ζ corresponding to sen= 0 (the bottom of two-phase region) can be defined.
From Eq. (H.21) it is given that

γ = Pcap+∆ρg(z−ζp) (H.22)

To proceed, Nordbotten and Dahle [83] define two dimensionless parameters:

B=
∆ρgH

α
(H.23)

Pcap
∗ =

Pcap−β
∆ρgH

(H.24)

which can be rearranged to give the expression for the coarse-scale capillary pressure:

Pcap = ∆ρgHPcap
∗ +β (H.25)

Combining Eqs. (H.22), (H.23) and (H.24) gives for the interface where sen is zero, ζ :

ζ = H
(
1
B
−Pcap

∗

)
(H.26)

where ζ [m] is the defined as the height above the bottom aquifer; ζB ≤ ζ < ζT . By inverting
the capillary pressure function, Eq. (H.20), the effective capillary saturation is:

scapen = 1−
(

α
pc−β

)2

(H.27)
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Combining Eqs. (H.16) and (H.27), and the dimensionless numbers in Eqs. (H.23) and (H.24),
leads to the expression for the saturation in terms of coarse-scale variables:

ŝen(P
cap
∗ ) =


0, 0≤ ζ

1−B−2
(
Pcap
∗ +

z−ζp

H

)−2

, ζ < z≤ H
(H.28)

It can be seen that the saturation profile across the aquifer is now expressed as a function of the
vertical position z. This is illustrated in Fig. H.2, where the phase pressures, capillary pressure
and saturation can be expressed as function of z and coarse-scale variables on the datum.
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Figure H.2: Schematic comparison of the phase pressure and pore pressure profiles across an
aquifer in vertical equilibriumwith the capillary pressure function. pd [Pa] is the entry pressure
in the capillary pressure function. The horizontal dashed line indicates where sen = 0 and the
light grey area indicates the two-phase region where the CO2 is. Here the aquifer is assumed
to be confining for the non-wetting phase and the dashed blue lines indicate the continuity in
the wetting phase pressure. Figure modified from [25].

From Eq. (H.5) the average effective saturation Sen can now be evaluated explicitly. Inte-
grating across the aquifer, we have that, assuming ζ = 0:

Sen =
1
H

∫ H

0
ŝen(z)dz=

1
H

∫ H

0

[
1− B−2(

Pcap
∗ + z

H

)2
]
dz= 1+

1
B2

[
1

Pcap
∗ +1

− 1
Pcap
∗

]
(H.29)

which can be inverted for Pcap
∗ to give

Pcap
∗ =

1
2

−1±

√
1+

4B−2

1−Sen

 (H.30)

The positive root is plotted in Fig. H.3 (upper left). When ζ > 0:

Sen =
1
H

∫ H

ζ

[
1− B−2(

Pcap
∗ + z

H

)2
]
dz= 1− ζ

H
+

1
B2

[
1

Pcap
∗ +1

− 1

Pcap
∗ + ζ

H

]
(H.31)

and using Eq. (H.26), it can be obtained that

Pcap
∗ =

1
B
+

Sen−2
2

± 1
2

√
S2en+

4Sen
B

(H.32)
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which is plotted in Fig. H.3 (upper center). Note that in both Eqs. (H.30) and (H.32) we are
interested in the positive root. From Eq. (H.26), Eqs. (H.29) and (H.31) the critical dimen-
sionless capillary pressure and critical non-wetting saturation of the fringe corresponding to
ζ = 0 can be derived:

Pcrit
∗ =

1
B

(H.33)

Scriten =
B

B+1
(H.34)

These critical numbers are measures of when the interface ζ reaches the bottom of the aquifer.
When Pcap

∗ ≥ Pcrit
∗ or Sen ≥ Scriten then ζ ≥ ζB and the capillary fringe is within the aquifer. In

Fig. H.3 (upper right) both Eqs. (H.29) and (H.31) are plotted together and the intersections
are indicated with the critical numbers Pcrit

∗ and Scriten .
Eqs. (H.30) and (H.32) are plotted in figure H.3 (upper figures), along with their derivatives

(lower figures).
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Figure H.3: Plot of Pcrit
∗ as function of saturation sen (upper) and their derivatives (lower). Eq.

(H.30) is plotted in the upper left figure, Eq. (H.32) is plotted in the upper middle figure and
in the upper right they are plotted together. The derivatives of the functions are plotted in the
lower figures. The curves are calculated using B= 1/3.
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H.4 Coarse-scale pore pressure

The coarse-scale pore pressure Ps is obtained by solving the integral in Eq. (H.8). Inserting for
the coarse-scale wetting pressure from Eq. (H.14) (assuming constant density in the vertical
direction) and capillary pressure Eq. (H.16), defining datum to be the bottom of the aquifer,
ζP = ζB:

Ps =
∫ ζT

ζB
[Pw−ρwg(z−ζB)]dz+

∫ ζT

ζp

ŝn [Pcap+∆ρg(z−ζp)]dz (H.35)

Using Eq. (H.24) and rearranging

Ps =
∫ ζT

ζB
[Pw−ρwg(z−ζB)]dz+

∫ ζT

ζp

ŝn

[
β +∆ρgH

(
Pcap
∗ +

z−ζp

H

)]
dz (H.36)

Inserting for the reconstructed fine-scale saturation ŝn, using Eq. (H.28) and the correlation
between saturation and effective saturation (see Eq. (4.46)), and using Eq. (H.23):

Ps =
∫ ζT

ζB
[Pw−ρwg(z−ζB)]dz+

∫ ζT

ζp

1− 1

B2
(
Pcap
∗ +

z−ζp
H

)2
[β +αB

(
Pcap
∗ +

z−ζp

H

)]
dz

(H.37)

Evaluation of the first integral (of the wetting-phase pressure) gives:

H
(
Pw−

1
2

ρwg(ζT +ζB)+ρwgζP
)

(H.38)

By expanding the second integral (the ŝnpc-term in Eq. (H.8)) it is obtained that:

∫ ζT

ζp

β +αB
(
Pcap
∗ +

z−ζp

H

)
− β

B2
(
Pcap
∗ +

z−ζp
H

)2 − α

B
(
Pcap
∗ +

z−ζp
H

)
dz (H.39)

which can be evaluated explicitly in terms of constants and coarse-scale variables; Ps =
Ps(Pw,B,H,Pcap

∗ ).
For a water-wet rock or when capillary pressure can be ignored (pc ≪ ps), e.g. when non-

wetting saturation become small, a reasonable approximation is that ps ≈ pw. This greatly
simplifies the integration and expression for Ps. Using the same argument, the time derivative
of Ps can be approximated as (here for ζP = ζB):

∂Ps
∂ t

=
∂
∂ t

(
HPw−

1
2

ρwgH2
)
= H

[
∂Pw
∂ t

+
Pw
H

∂H
∂ t

−ρwg
∂H
∂ t

]
(H.40)

Otherwise, Eq. (H.39) needs to be evaluated and recognising that the derivative now becomes:

∂Ps =
∂Ps
∂Pw

∂Pw+
∂Ps
∂B

∂B+
∂Ps
∂H

∂H+
∂Ps

∂Pcap
∗

∂Pcap
∗ (H.41)

This evaluates to a very large expression that is best evaluated using a symbolic math software
to avoid (human) errors.
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H.5 Coarse-scale flux

Here Qα in Eq. (H.7) will be evaluated. Starting from Eq. (4.21) in [81], and assuming that
the vertical permeability is constant (or can be represented by some representative, effective
value), that the phase density is constant in the vertical (integration) direction and that the
mobility can be expressed by coarse-scale variables, the flux Qα can be expressed as:

Qα =−ΛαK
µα

∫ ζT

ζB
∇̃pαdz (H.42)

where Λα [-] is the average mobility1 (in terms of coarse-scale variables) and K [m·m2] is the
integrated permeability:

Λα :=
1
K

∫ ζT

ζB
kλα(ŝα)dz (H.43)

K=
∫ ζT

ζB
kdz (H.44)

pα [Pa] is the phase pressure in terms of coarse scale pressure from Eq. (H.13), or Eq. (H.14)
for constant density, which will be used here.

H.5.1 Coarse mobility

The coarse-scale mobilities are derived from power-based relative permeability functions:

λn(sn) = λcspen (H.45)
λw(sn) = λb(1− sen)q (H.46)

where λc and λb [-] are constants describing the maximum value of the relative permeability for
the non-wetting and wetting phase, respectively. The phase mobility in Eq. (H.43) can now be
derived by using the pseudo-capillary-pressure-saturation function, Pcap

∗ , and the reconstructed
saturation ŝen in Eq. (H.28). Assume that the effective relative permeability coefficients λc and
λb are constant (in the vertical direction) and use the following simplifying notations (from
[83])

Q(u, p) =
1
B

p

∑
i=0

(
p
i

)
(−1)i

1−2i
u1−2i, Q(u,q) =

1
B

q

∑
i=0

(
q
i

)
(−1)i

1−2i
u1−2i. (H.47)

where (
k
n

)
=

n!
k!(n− k)!

(H.48)

it is obtained as an example for the non-wetting phase mobility when ζ = 0:

Λn(P
cap
∗ ) :=

1
H

∫ H

0
λn(ŝn)dz=

λc

H

∫ H

0
spendz=

λc

H

∫ H

0

[
1− B−2

(Pcap
∗ + z

H )
2

]p
dz

= λc

∫ 1

0

p

∑
i=0

(
p
i

)
(−1)i(BPcap

∗ +Bu)−2idu

= λc

p

∑
i=0

(
p
i

)
(−1)i

B(1−2i)
[
(BPcap

∗ +B)1−2i− (BPcap
∗ )1−2i] (H.49)

1Normally mobility depends on viscosity, here the term is used for the relative permeability scaled with a
maximum value.
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A similar operation for ζ > 0 gives for the coarse non-wetting phase mobility:

Λn(Sn) =
{

λc
[
Q(BPcap

∗ +B, p)−Q(BPcap
∗ , p)

]
ζ = 0,

λc
[
Q(BPcap

∗ +B, p)−Q(1, p)
]

ζ > 0. (H.50)

And similarly for the coarse wetting phase mobility:

Λw(Sn) =
{

λb∑q
i=0
(q
i

)
(−1)i

[
Q(BPcap

∗ +B, i)−Q(BPcap
∗ , i)

]
ζ = 0,

λb∑q
i=0
(q
i

)
(−1)i

[
Q(BPcap

∗ +B, i)−Q(1, i)
]
+
( 1
B −Pcap

∗
)

ζ > 0.

(H.51)

Note that to account for the mobility of the wetting phase up to the capillary fringe; ζB ≤ z< ζ ,
the term ζ/H = 1/B−Pcap

∗ from Eq. (H.26) is added to the second equation for the coarse
wetting phase mobility.

Example; coarse mobility

Explicit expressions for the wetting and non-wetting phase mobilities, Eqs. (H.50) and (H.51),
respectively can be given for p= 2 and q= 3 as:

Λn(Sen) =


λc

(
Pcap
∗ −B2(2(Pcap

∗ )4+4(Pcap
∗ )3+2(Pcap

∗ )2)+(Pcap
∗ )2+1/3

B4(Pcap
∗ )3(Pcap

∗ +1)3

)
ζ ≤ 0,

λc

(
(B+BPcap

∗ −1)3(B+BPcap
∗ +1/3)

B4(Pcap
∗ +1)3

)
ζ > 0.

(H.52)

Λw(Sen) =


−λb

(
1

5B6(Pcap
∗ +1)5

− 1
5B6(Pcap

∗ )5

)
ζ ≤ 0,

−λb

(
1

5B6(Pcap
∗ +1)5

− 1
5B

)
+

1
B
−Pcap

∗ ζ > 0.
(H.53)

The mobilities are plotted in Fig. H.4. The solid lines are the average mobility in the aquifer
that have the values 0 ≥ Λw ≥ λb and 0 ≥ Λn ≥ λc for the wetting-phase and non-wetting
phase, respectively. It can be seen how the two expressions for wetting and non-wetting phase
mobility tangent to one another at the critical numbers Pcrit

∗ and Scriten .
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Figure H.4: Plots of wetting and non-wetting phase mobility; Eqs. (H.50) and (H.51). Pa-
rameters: p = 2 and q = 3, λb = λc = 1, H = 10 m, γ = 105 Pa, β = 104 Pa and ∆ρ = 300
kg/m3.

H.5.2 Coarse-scale flux, wetting phase

Looking at the wetting phase flux; Qw, and focusing on the integral in Eq. (H.42) for the
wetting phase, and using Leibnitz’ rule, it can be expressed as:∫ ζT

ζB
∇pwdz= ∇

∫ ζT

ζB
pwdz− pw∇ζT |T + pw∇ζB|B (H.54)

By using Eq. (H.14) for pw, it is obtained that:∫ ζT

ζB
∇pwdz=∇

∫ ζT

ζB
[Pw−ρwg(z−ζP)]dz−

[Pw−ρwg(ζT −ζP)]∇ζT +[Pw−ρwg(ζB−ζP)]∇ζB
(H.55)

After evaluating the integral and rearranging it reduces to:∫ ζT

ζB
∇pwdz= H [∇Pw+ρwg∇ζP] (H.56)

where the change in density is ignored because
(
1− 1

2ρwgH2 ∂ρw
∂Pw

)
≈ 1. Thus, the final ex-

pressions for the coarse-scale fluxes are given as (from Eq. (H.42), and using Eq. (H.56)):

Qw =−ΛwKH
µw

[∇Pw+ρwg∇ζP] (H.57)

H.5.3 Coarse-scale flux, non-wetting phase

Looking at the non-wetting phase flux; Qn, focusing on the integral in Eq. (H.42), we have
from the definition of capillary pressure that pn = pw+ pc that it can be expressed as:∫ ζT

ζB
∇pndz=

∫ ζT

ζB
∇pwdz+

∫ ζT

ζB
∇pcdz (H.58)



H.5 Coarse-scale flux 231

The first integral on the right hand side is defined in Eq. (H.56), and focusing on the capillary
pressure-term (last integral):∫ ζT

ζB
∇pcdz= ∇

∫ ζT

ζB
[Pcap+∆ρg(z−ζP)]dz− [Pcap+∆ρg(ζT −ζP)]∇ζT+

[Pcap+∆ρg(ζB−ζP)]∇ζB
(H.59)

After evaluating the integral and rearranging we obtain:∫ ζT

ζB
∇pcdz= H [∇Pcap−∆ρg∇ζP] (H.60)

where the coarse capillary pressure Pcap is given by Eq. (H.24) (Pcap = Pcap
∗ ∆ρgH+β ) such

that Eq. (H.60) can be expressed as:∫ ζT

ζB
∇pcdz= H

[
∇(Pcap

∗ ∆ρgH)−∆ρg∇ζP
]
= ∆ρgH

[
H∇Pcap

∗ +Pcap
∗ ∇H−∇ζP

]
(H.61)

Since Pcap
∗ = Pcap

∗ (Sen,B) and B is defined by Eq. (H.23); B = ∆ρgH/α , the gradient of
the coarse pseudo-capillary-pressure-saturation function is given by:

∇Pcap
∗ =

∂Pcap
∗

∂Sn
∇Sn+

∂Pcap
∗

∂B
∂B
∂H

∇H (H.62)

where ∂Pcap
∗ /∂B is derived from Eq. (H.30) (for ζ = 0):∫ ζT

ζB
∇pcdz= H

[
∆ρg

(
Pcap
∗ ∇H+H

(
∂Pcap

∗
∂Sn

∇Sn+
∂Pcap

∗
∂B

∂B
∂H

∇H
)
−∇ζP

)]
(H.63)

Thus, the final expressions for the coarse-scale fluxes are given as:

Qn =−ΛnKH
µn

[
∇Pw+ρng∇ζP+∆ρg

(
H

∂Pcap
∗

∂Sn
∇Sn+H

∂Pcap
∗

∂B
∂B
∂H

∇H+Pcap
∗ ∇H

)]
(H.64)

remembering that Pcap
∗ is defined by Eq. (H.30) for ζ = 0. Note that, similar to obtaining Eq.

(H.56), the compressibility terms that comes from the derivative of ∆ρ are ignored because
they are usually small (and can be cancelled in the derivation).
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Appendix I

Deriving the LVD equation

To derive the expression for Σ in Eq. (6.23) we solve the following integral (where the stress
tensor for linear elasticity is defined by Eq. (3.8)):

Σ =
∫ ζT

ζB
σdz=

∫ ζT

ζB

[
λ (∇ ·u)I+µ

(
∇u+(∇u)T

)]
dz

= λ
∫ ζT

ζB
(∇ ·u)dzI+µ

∫ ζT

ζB
(∇u)dz+µ

∫ ζT

ζB
(∇u)T dz

(I.1)

The first integral in the right hand side of Eq. (I.1) evaluates to:∫ ζT

ζB
∇ ·udz=

∫ ζT

ζB

[
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

]
dz=

[∫ ζT

ζB

∂u
∂x

dz+
∫ ζT

ζB

∂v
∂y

dz+
∫ ζT

ζB

∂w
∂ z

dz
]

=

[
∂
∂x

∫ ζT

ζB
udz+

∂
∂y

∫ ζT

ζB
vdz+wT −wB

]
−
([

u
∂ζT
∂x

+ v
∂ζT
∂y

+0
]
−
[
u

∂ζB
∂x

+ v
∂ζB
∂y

+0
])

=

[
∂
∂x

∫ ζT

ζB
udz+

∂
∂y

∫ ζT

ζB
vdz
]
−
([

u
∂ζT
∂x

+ v
∂ζT
∂y

−wT

]
−
[
u

∂ζB
∂x

+ v
∂ζB
∂y

−wB

])
= ∇̃ ·U−

([
u

∂ζT
∂x

+ v
∂ζT
∂y

−wT

]
−
[
u

∂ζB
∂x

+ v
∂ζB
∂y

−wB

])
= ∇̃ ·U+(u ·n|T − u ·n|B) (I.2)

where

U=
∫ ζT

ζB
udz (I.3)

Note that Eq. (I.2) is also equivalent to the integrated volumetric strain:

Ev = ∇̃ ·U+(u ·n|T − u ·n|B) (I.4)
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Evaluation of the second integral in Eq. (I.1):

∫ ζT

ζB
∇udz=

∫ ζT

ζB


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂ z

∂v
∂ z

∂w
∂ z

dz=


∫ ζT

ζB

∂u
∂x

dz
∫ ζT

ζB

∂v
∂x

dz
∫ ζT

ζB

∂w
∂x

dz∫ ζT

ζB

∂u
∂y

dz
∫ ζT

ζB

∂v
∂y

dz
∫ ζT

ζB

∂w
∂y

dz∫ ζT

ζB

∂u
∂ z

dz
∫ ζT

ζB

∂v
∂ z

dz
∫ ζT

ζB

∂w
∂ z

dz

=


∂
∂x

∫ ζT

ζB
udz

∂
∂x

∫ ζT

ζB
vdz

∂
∂x

∫ ζT

ζB
wdz

∂
∂y

∫ ζT

ζB
udz

∂
∂y

∫ ζT

ζB
vdz

∂
∂y

∫ ζT

ζB
wdz

uT −uB vT − vB wT −wB

−


u

∂ζT
∂x

v
∂ζT
∂x

w
∂ζT
∂x

u
∂ζT
∂y

v
∂ζT
∂y

w
∂ζT
∂y

0 0 0

−

u

∂ζB
∂x

v
∂ζB
∂x

w
∂ζB
∂x

u
∂ζB
∂y

v
∂ζB
∂y

w
∂ζB
∂y

0 0 0


=


∂
∂x

∫ ζT

ζB
udz

∂
∂x

∫ ζT

ζB
vdz

∂
∂x

∫ ζT

ζB
wdz

∂
∂y

∫ ζT

ζB
udz

∂
∂y

∫ ζT

ζB
vdz

∂
∂y

∫ ζT

ζB
wdz

0 0 0

−


u

∂ζT
∂x

v
∂ζT
∂x

w
∂ζT
∂x

u
∂ζT
∂y

v
∂ζT
∂y

w
∂ζT
∂y

−uT −vT −wT

−

u

∂ζB
∂x

v
∂ζB
∂x

w
∂ζB
∂x

u
∂ζB
∂y

v
∂ζB
∂y

w
∂ζB
∂y

−uB −vB −wB


=

∇̃U−



u

∂ζT
∂x

v
∂ζT
∂x

w
∂ζT
∂x

u
∂ζT
∂y

v
∂ζT
∂y

w
∂ζT
∂y

−uT −vT −wT

−

u

∂ζB
∂x

v
∂ζB
∂x

w
∂ζB
∂x

u
∂ζB
∂y

v
∂ζB
∂y

w
∂ζB
∂y

−uB −vB −wB


=

∇̃U+(nu|T − nu|B) (I.5)

And the third integral (in Eq. (I.1)):∫ ζT

ζB
(∇u)Tdz= (I.6)

∂
∂x

∫ ζT

ζB
udz

∂
∂y

∫ ζT

ζB
udz 0

∂
∂x

∫ ζT

ζB
vdz

∂
∂y

∫ ζT

ζB
vdz 0

∂
∂x

∫ ζT

ζB
wdz

∂
∂y

∫ ζT

ζB
wdz 0

−



u

∂ζT
∂x

u
∂ζT
∂y

−uT

v
∂ζT
∂x

v
∂ζT
∂y

−vT

w
∂ζT
∂x

w
∂ζT
∂y

−wT

−

u

∂ζB
∂x

u
∂ζB
∂y

−uB

v
∂ζB
∂x

v
∂ζB
∂y

−vB

w
∂ζB
∂x

w
∂ζB
∂y

−wB



=

(∇̃U)T −




u

∂ζT
∂x

u
∂ζT
∂y

−uT

v
∂ζT
∂x

v
∂ζT
∂y

−vT

w
∂ζT
∂x

w
∂ζT
∂y

−wT

−

u

∂ζB
∂x

u
∂ζB
∂y

−uB

v
∂ζB
∂x

v
∂ζB
∂y

−vB

w
∂ζB
∂x

w
∂ζB
∂y

−wB



=

(∇̃U)T +(un|T − un|B) (I.7)

Collecting the terms, and rearrange, it is obtained that:

Σ = λ
[
∇̃ ·U

]
I+µ

[
∇̃U+(∇̃U)T

]
+[λ (u ·n|T − u ·n|B)I+µ (nu|T − nu|B)+µ (un|T − un|B)]

(I.8)
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And the complete LVD-equation:

∇̃ ·Σ+[σ ·n|T + σ ·n|B]+
∫ ζT

ζB
fdz= 0 (I.9)

I.1 LVD-equation: Example in 2D

Below follows the derivation of Σ in the LVD-equation, Eq. (I.9):

Σ =
∫ ζT

ζB

[
λ (∇ ·u)I+µ

(
∇u+(∇u)T

)]
dz (I.10)

=
∫ ζT

ζB

[
λ [∇ ·u]I+µ [∇u]+µ

[
(∇u)T

]]
dz (I.11)

=λ
[

∇̃ ·U−
([

uT
∂ζT
∂x

−wT

]
−
[
uB

∂ζB
∂x

−wB

])]
I+

µ

∇̃U−

uT ∂ζT
∂x

wT
∂ζT
∂x

−uT −wT

−
uB∂ζB

∂x
wB

∂ζB
∂x

−uB −wB

+
µ

(∇̃U)T −


uT ∂ζT

∂x
−uT

wT
∂ζT
∂x

−wT

−
uB∂ζB

∂x
−uB

wB
∂ζB
∂x

−wB



 (I.12)

=λ
(
∇̃ ·U

)
I+µ

(
∇̃U+(∇̃U)T

)
−

λ
([

uT
∂ζT
∂x

−wT

]
−
[
uB

∂ζB
∂x

−wB

])
I−

µ

uT ∂ζT
∂x

wT
∂ζT
∂x

−uT −wT

−
uB∂ζB

∂x
wB

∂ζB
∂x

−uB −wB

−

µ


uT ∂ζT

∂x
−uT

wT
∂ζT
∂x

−wT

−
uB∂ζB

∂x
−uB

wB
∂ζB
∂x

−wB


 (I.13)

Σ =λ
(
∇̃ ·U

)
I+µ

(
∇̃U+(∇̃U)T

)
−

λ
([

uT
∂ζT
∂x

−uB
∂ζB
∂x

]
−
[
wT −wB

])[1 0
0 1

]
−

µ

uT ∂ζT
∂x

−uB
∂ζB
∂x

wT
∂ζT
∂x

−wB
∂ζB
∂x

−uT −−uB −wT −−wB

−[0 0
0 0

]−

µ


 uT

∂ζT
∂x

−uB
∂ζB
∂x

−uT −−uB

wT
∂ζT
∂x

−wB
∂ζB
∂x

−wT −−wB

−[0 0
0 0

] (I.14)
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Σ =λ
(
∇̃ ·U

)
I+µ

(
∇̃U+(∇̃U)T

)
−

λ


[
uT

∂ζT
∂x

−uB
∂ζB
∂x

− (wT −wB)

]
0

0
[
uT

∂ζT
∂x

−uB
∂ζB
∂x

− (wT −wB)

]
−

µ

uT ∂ζT
∂x

−uB
∂ζB
∂x

wT
∂ζT
∂x

−wB
∂ζB
∂x

−uT −−uB −wT −−wB

−
µ

 uT
∂ζT
∂x

−uB
∂ζB
∂x

−uT −−uB

wT
∂ζT
∂x

−wB
∂ζB
∂x

−wT −−wB

 (I.15)

Σ =λ
(
∇̃ ·U

)
I+µ

(
∇̃U+(∇̃U)T

)
−λ

[
uT

∂ζT
∂x

−uB
∂ζB
∂x

− (wT −wB)

]
0

0 λ
[
uT

∂ζT
∂x

−uB
∂ζB
∂x

− (wT −wB)

]
−

µ
(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB) −µ (wT −wB)

−
 µ

(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
−µ (uT −uB)

µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (wT −wB)

 (I.16)

Σ = λ
(
∇̃ ·U

)
I+µ

(
∇̃U+(∇̃U)T

)
−λ

[
uT

∂ζT
∂x

−uB
∂ζB
∂x

− (wT −wB)

]
+2µ

(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB)

µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB) λ

[
uT

∂ζT
∂x

−uB
∂ζB
∂x

− (wT −wB)

]
−2µ (wT −wB)


(I.17)

Σ =λ
(
∇̃ ·U

)
I+µ

(
∇̃U+(∇̃U)T

)
−(λ +2µ)

(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
−λ (wT −wB) µ

(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB)

µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB) λ

(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
− (λ +2µ)(wT −wB)


(I.18)
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Σ =(λ +2µ)
∂U
∂x

µ
∂W
∂x

µ
∂W
∂x

λ
∂U
∂x

−
(λ +2µ)

(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
−λ (wT −wB) µ

(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB)

µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
−µ (uT −uB) λ

(
uT

∂ζT
∂x

−uB
∂ζB
∂x

)
− (λ +2µ)(wT −wB)


(I.19)

Σ =(λ +2µ) ∂U
∂x − (λ +2µ)

(
uT

∂ζT
∂x −uB

∂ζB
∂x

)
+λ (wT −wB) µ ∂W

∂x −µ
(
wT

∂ζT
∂x

−wB
∂ζB
∂x

)
+µ (uT −uB)

µ ∂W
∂x −µ

(
wT

∂ζT
∂x −wB

∂ζB
∂x

)
+µ (uT −uB) λ ∂U

∂x −λ
(
uT

∂ζT
∂x −uB

∂ζB
∂x

)
+(λ +2µ)(wT −wB)


(I.20)

Finally, for a two-dimensional case (plane strain assumption), the integrated stress tensor Σ
can be expressed as:

Σ =(λ +2µ)
(

∂U
∂x −uT

∂ζT
∂x +uB

∂ζB
∂x

)
+λ (wT −wB) µ

(
∂W
∂x −wT

∂ζT
∂x +wB

∂ζB
∂x

)
+µ (uT −uB)

µ
(

∂W
∂x −wT

∂ζT
∂x +wB

∂ζB
∂x

)
+µ (uT −uB) (λ +2µ)(wT −wB)+λ

(
∂U
∂x −uT

∂ζT
∂x +uB

∂ζB
∂x

)

(I.21)

I.2 LVD-equation: 3D

Σ =

Σx Σxy Σxz
Σyx Σy Σyz
Σzx Σzy Σz

 (I.22)
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where

Σx = (λ +2µ)
(

∂U
∂x

−uT
∂ζT
∂x

+uB
∂ζB
∂x

)
+λ

(
∂V
∂y

− vT
∂ζT
∂y

+ vB
∂ζB
∂y

+(wT −wB)

)
(I.23)

Σy = (λ +2µ)
(

∂V
∂y

− vT
∂ζT
∂y

+ vB
∂ζB
∂y

)
+λ

(
∂U
∂x

−uT
∂ζT
∂x

+uB
∂ζB
∂x

+(wT −wB)

)
(I.24)

Σz = (λ +2µ)(wT −wB)+λ
(

∂U
∂x

−uT
∂ζT
∂x

+uB
∂ζB
∂x

)
+λ

(
∂V
∂y

− vT
∂ζT
∂y

+ vB
∂ζB
∂y

)
(I.25)

Σxy = µ
(

∂V
∂x

− vT
∂ζT
∂x

+ vB
∂ζB
∂x

)
+µ

(
∂U
∂y

−uT
∂ζT
∂y

+uB
∂ζB
∂y

)
(I.26)

Σxz = µ
(

∂W
∂x

−wT
∂ζT
∂x

+wB
∂ζB
∂x

)
+µ (uT −uB) (I.27)

Σyz = µ
(

∂W
∂y

−wT
∂ζT
∂y

+wB
∂ζB
∂y

)
+µ (vT − vB) (I.28)

noting that the stress-tensor is symmetric: Σxy = Σyx, Σxz = Σzx and Σyz = Σzy.



Appendix J

Dispersion properties

Hydrodynamic dispersion in porous media is often attributed to the stream splitting of a fluid
flowing through the pores. As the fluid flows through a porous network it can not follow
a straight line but is forced to follow the pore conduits and bypassing grain obstacles in a
sequence of splitting and merging and spreading out. The various shapes and sizes of the
pore throats and pore space slows down and speeds up and diverts the fluid, contributing to
a complex transverse and longitudinal flow mechanism of the fluid. Longitudinal flow is the
main flow direction and transverse flow is in the direction perpendicular to the main flow
direction.

In the following discussion a brief review of dispersion is given. A simplified evaluation,
as will be presented here, can give an indication of whether dispersion processes are important
to consider or if they can be (safely) neglected. The Peclet number (described later) is a
useful quantity that can often give an indication if a process can be satisfactorily described by
neglecting dispersion and this typically occurs at Pe> 2500 [85].

When considering a solute A of concentration c in a flowing system the two main transport
mechanisms are convection; the bulk movement of the fluid, and dispersion; the spreading of
the solute by (molecular) diffusion and hydrodynamic dispersion. Assuming a system where
diffusion is negligible compared to hydrodynamic dispersion, the transport of A can, simpli-
fied, be described by the convection-dispersion equation (here ignoring any source/sink term):

∂c
∂ t

+∇ · (−D∇c)+u∇c= 0 (J.1)

where c [kg/m3] is the concentration of solute A, u [m/s] is the fluid velocity vector and D
[m2/s] is the dispersion tensor that is often defined as:

D=

DL 0 0
0 DT1 0
0 0 DT2

 (J.2)

where DL [m2/s] is the longitudinal dispersion coefficient and DT1 and DT2 [m2/s] are the two
transverse dispersion coefficients. In 1D transport, Eq. (J.1) becomes:

∂c
∂ t

−DL
∂ 2c
∂x2

+u
∂c
∂x

= 0 (J.3)

where u [m/s] is the velocity component in the x-direction and together with the following



240 Dispersion properties

boundary and initial conditions, Eq. (J.3) expresses an initial-boundary value problem:

c(x,0) = c0 (J.4)
c(0, t) = ci (J.5)

c(∞,0) = c0 (J.6)

The solution to Eqs. (J.3)-(J.6) is given by [see e.g. 85, 87]:

c=
ci
2

[
erfc

(
x−ut
2
√
DLt

)
+ e

ux
DL erfc

(
x+ut
2
√
DLt

)]
(J.7)

which can be approximated to

c≈ ci
2
erfc

(
x−ut
2
√
DLt

)
(J.8)

Eqs. (J.7) and (J.8) are plotted in Fig. J.1 (left) in terms of the dimensionless coordinates:

xD =
x
L

(J.9)

cD =
c− c0

ci− c0
(J.10)

tD =
ut
L

=
qt
ϕL

(J.11)

where L [m] is a characteristic dimension of the particular system (here it is length L of in-
terest), q [m/s] is the Darcy flux (volumetric flow rate per area) and ϕ [-] is the porosity of
the porous domain. Notice that the thin lines (from Eq. (J.8)) in Fig. J.1 represent a good
approximation to Eq. (J.7) (thick lines).

If the dimensionless concentration cD is plotted against zD given by

zD =
xD− tD√

tD
(J.12)

it can be seen that the solution to Eq. (J.7) (and Eq. (J.8)) collapses to essentially one curve,
see Fig. J.1 (right). This is true for Eq. (J.8) because the solution is symmetric and independent
of scale. However, this is only partly true for the convection-dispersion equation, Eq. (J.7) and
some small discrepancy from symmetry can be seen in Fig. J.1 (right). This discrepancy is
amplified at large scale, e.g. reservoir scales, as heterogeneity in the porous media in reservoir
scale contributes to additional dispersion [87].
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Figure J.1: Left: Plot of Eqs. (J.7) (thick lines) and (J.8) (thin lines) for scaled coordinates.
Right: The curves in left figure collapse to one curve when plotted against zD (Eq. (J.12)).

According to Peters [87], Eq. (J.8) has been shown to be related to the cumulative normal
probability distribution. This is interesting because for tD = 0.5 (note that tD is also dimen-
sionless time in pore volumes injected) some characteristic attributes of the cumulative normal
probability distribution function can be applied to the convection-dispersion equation, see ta-
ble J.1 and Fig. J.2. Pe in table J.1 is the Peclet number which expresses the ratio of two
transport mechanisms, here convection and dispersion, and can be expressed as

Pe=
uL
DL

=
qL

ϕDL
(J.13)

where we have used that:
u=

q
ϕ

(J.14)

A high Peclet number indicates that transport by convection is more significant compared to
dispersion.

Table J.1: Attributes of the cumulative normal probability distribution function applied to the
convection-dispersion equation approximated by (J.8) [87].

Dimensional Dimensionless
Mean ut tD
Variance 2DLt 2tD/Pe
Standard deviation

√
2DLt

√
2tD/Pe
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Figure J.2: Attributes of the cumulative normal probability distribution function at tD = 0.5.

At tD = 0.5 the advection front has moved xD = 0.5. It can also be observed from Fig.
J.2 that the width of the mixing zone ∆xD, caused by dispersion, at the advection front is
approximately two times the standard deviation. When molecular diffusion can be neglected,
it can further be shown that [87];

DL = dlu, DT = dtu, Pe=
L
dl

(J.15)

where dl and dt [m] are longitudinal and transverse dispersivity, respectively.
In the following section the method described above will be applied to an illustrative ex-

ample to estimate dispersion properties from a flow experiment.

J.1 Example: Obtaining longitudinal hydrodynamic dispersion prop-
erties

In this particular example an immiscible two-phase flow problem has been solved where a
wetting phase is injected into a non-wetting phase. For application to real examples see Peters
[87]. The idea of the procedure is to quantify the dimensionless width ∆xD of the mixing zone
at tD = 0.5 at the advection front to obtain the Peclet number and dispersion coefficient DL
(using the expression for the standard deviation in table J.1) and then estimate the longitudinal
dispersivity dl from Eq. (J.15).

In Fig. J.3a three profiles at different times are shown. The distance L = 0.85 [m], the
Darcy flux q = 0.0183 [m/s] and porosity ϕ = 0.3 [-]. At t = 10 [s] the dimensionless time
tD = 0.72 [-] can be obtained from Eq. (J.11), see Fig. J.3b (top). The profile that corresponds
to tD = 0.5 [-] is also shown. Next step is to evaluate ∆xD of the mixing zone and three values
were derived by considering the gradient of the profile, Fig. J.3b (bottom). The three zones
are indicated by the colored areas and the values in Fig. J.3b (top).
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Figure J.3: Analyzing the mixing zone in a two-phase flow problem, Profiles of three times
are given in (a). Curves from (a) in dimensionless form in shown in Fig. (b, top).

Once the width of the mixing zone ∆xD has been determined, the Peclet number, dispersion
coefficient DL and dispersivity dl can be determined using the formulas in table J.1 and using
that ∆xD/2 is approximately equivalent to the standard deviation. The results are given in table
J.2.

Table J.2: Dispersion properties corresponding to three mixing zones.

Width mixing zone Peclet number Dispersion coefficient Dispersivity
∆xD Pe, [-] DL, [m2/s] dl , [mm]

0.0586 1167 6.131·10−5 0.730
0.0354 3200 2.237·10−5 0.266
0.0155 16579 0.432·10−5 0.0514

J.1.1 General procedure

The general procedure to obtain the equivalent longitudinal dispersivity of a saturation profile
is given below:

• Pick a simulation time t and calculate characteristic length L from Eq. (J.11) equivalent
to one pore volume (tD = 1): L = qt/ϕ . It should be noted that this is assuming a
well-defined saturation front and the actual characteristic length is longer because the
average saturation behind the front is less than unity. But, for this estimate-calculation
we assume unity.

• Plot saturation profile as a function of dimensionless distance xD = x/L and estimate
mixing length ∆xD on the dimensionless length scale. If the front is "smeared" this can
be difficult to determine accurately.
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• Using Eq. (J.15) and that ∆xD/2 is equivalent to standard deviation in Tab. J.1, it can be
obtained that the longitudinal dispersivity is:

dl =
L
Pe

=
L(∆xD/2)2

2tD
(J.16)



Appendix K

Model definitions, from main chapters

K.1 Single-phase, comparison model

To compare the various formulations for single-phase flow in chapter 4.2, a model originally
defined as a conceptual model for CO2 storage by Rutqvist and Tsang [97] is used. The
geometry is shown in Fig. K.1.

The mechanical and hydraulic properties of the various layers in the model are given in
Table K.1 and the fluid properties are given in Table K.2. For simplicity the temperature is
assumed constant.
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Figure K.1: Geometry of the two dimensional conceptual CO2 injection model defined by
Rutqvist and Tsang [97].
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Table K.1: Mechanical and hydraulic properties in two dimensional conceptual injection
model.

Property Overburden Caprock Aquifer Underburden
Permeability, [m2] 10−15 10−17 10−13 10−17

Porosity, [-] 0.1 0.01 0.1 0.01
Youngs modulus, [GPa] 5 5 5 5
Poissons ratio, [-] 0.25 0.25 0.25 0.25
Density, [kg/m3] 2260 2260 2260 2260
Biot’s coefficient, [-] 0.9 0.9 0.9 0.9

Table K.2: Material data of water in two dimensional conceptual injection model.

Density, [kg/m3] Viscosity, [mPa·s] Compressibility, [1/GPa]
1000 0.8 0.43

K.2 Non-isothermal, two-phase

Model to evaluate non-isothermal effects in a two-phase flow model, see chapter 5.3.
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Figure K.2: Geometry of non-isothermal injection model. Note that the dimensions are not to
scale. Aquifer thickness H = 20 m.

The injection rate is 0.0028111 kg/s/m (CO2), equivalent to a yearly injection of 133 kton-
s/year along a 1.5 km long injection well, residual saturation of wetting phase is swr = 0.25.
Initial temperature is 30◦C at surface with a 30◦C/km temperature gradient, such that the tem-
perature in the reservoir is approximately 84◦C:

T0 = 30+0.03(D−D0) (K.1)

where D [m] is the vertical elevation and D0 [m] is the reference elevation (surface).
Mechanical and hydraulic properties and thermal properties in the two dimensional non-

isothermal injection model are given in table K.3 and K.4, respectively. Thermal properties
for the solid phase are defined as typical values for rocks obtained from Schön [99]. The fluid
properties are evaluated from the equation of state from the online database [65] described in
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App. B. For the HM and THM models in chapter 5.3 they are obtained by using the initial
pore pressure (Eq. (5.4)) and temperature gradient profiles (Eq. (K.1)). For the models in
chapter 7 the initial values are also obtained from the initial pore pressure (Eq. (5.4)) and
temperature gradient profiles (Eq. (K.1)), but they are updated with change in pore pressure
and temperature.

Table K.3: Mechanical and hydraulic properties in the two dimensional non-isothermal injec-
tion model.

Property Shallow Main Lower Tight Aquifer Underburden
aquifer caprock caprock sandstone

Permeability, [m2] 10−17 10−19 10−19 10−19 25·10−15 10−19

Porosity, [-] 0.1 0.01 0.01 0.01 0.17 0.01
Youngs modulus, [GPa] 1.5 20 20 20 6 20
Poissons ratio, [-] 0.2 0.15 0.15 0.15 0.2 0.15
Density (solid), [kg/m3] 2200 2200 2200 2200 2200 2200
Biot’s coefficient, [-] 1 1 1 1 1 1
Entry pressure, [kPa] 19.9 621 621 621 90 621

Table K.4: Thermal properties for fluids and rocks used in the non-isothermal models in chap-
ter 5.3 and 7. Thermal properties for the fluids are approximated from App. B, assuming initial
reservoir conditions, for the solid phase the values are typical values for rocks obtained from
Schön [99]. Specific heat capacity is for constant pressure.

Specific heat Thermal conductivity Thermal expansion
Phase α capacity,Cα [J/kg/K] κα [W/m/K] coefficient (volumetric), βα [1/K]
Solid 1000 2.5 36·10−6

Water 4200 0.67 6.6·10−4

CO2 2100 0.1 8·10−3

K.3 VE, single-phase flow

The two geometries that are evaluated are shown in Figs. K.3 and K.4. Model and material
properties are given in tables K.5 and K.5.
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Figure K.3: Geometry of VE, single-phase flow model described in chapter 6.3. Note that the
dimensions are not to scale. Reservoir has a topographic top boundary.
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Figure K.4: Geometry of VE, single-phase flow model described in chapter 6.3. Note that the
dimensions are not to scale. Reservoir has a topographic bottom boundary.

Table K.5: Hydraulic properties used in VE single-phase flow model.

Property Overburden Caprock Reservoir Underburden
Permeability, k [m2] 10−15 10−18 10−12 10−18

Porosity, ϕ [-] 0.2 0.2 0.3 0.2

Table K.6: Model parameters used in VE single-phase flow model.

Property Value
Density, water, ρw [kg/m3] 1000
Dynamic viscosity, water, µw [mPa·s] 1
Injection rate, qin j[kg/s] 0.1
Biot’s coefficient, b [-] 0.8
Compressibility, water, cw [1/GPa] 0.1
Compressibility, solid, cs [1/GPa] 0.1
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K.4 VE, two-phase flow

Description of models evaluated in chapter 6.3.2 (confined reservoir, two-phase flow only) and
6.6.2 (unconfined reservoir, two-phase flow and poroelasticity).
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Figure K.5: Geometry of the validation model to compare a fully resolved model with a di-
mensionally reduced model. Note that the dimensions are not to scale. This geometry is only
evaluated in chapter 6.6.2
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Figure K.6: Geometry of the aquifer when topography is considered, H = 30±10 m. Left: To-
pographic top boundary. Right: Topographic bottom boundary. Both geometries are evaluated
in chapter 6.3.2 and 6.6.2.

Injection rate qn = 0.002811 [kg/s] and srw = srn = 0 [-]. Initial non-wetting saturation
s0n = 0. Capillary pressure function is defined according to Nordbotten and Dahle [84] (see
App. E.1.4) and relative permeability is defined according to Brooks and Corey [27] (see App.
E.2.1).

Mechanical and hydraulic properties are given in table K.7. The fluid properties are eval-
uated from the equation of state from the online database [65] described in App. B using
T = 50◦C and p0w = 20 MPa and are given in table K.8.
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Table K.7: Mechanical and hydraulic properties in two dimensional conceptual injection
model. Note that the permeability is anisotropic, such that the vertical component is ten times
lower than the value given in the table (except in the aquifer).

Property Shallow Main Lower Aquifer Underburden
aquifer caprock caprock

Permeability, [m2] 10−17 10−19 10−17 10−13 10−17

Porosity, [-] 0.1 0.01 0.01 0.17 0.01
Youngs modulus, [GPa] 1.5 20 20 6 20
Poissons ratio, [-] 0.2 0.15 0.15 0.2 0.15
Density (solid), [kg/m3] 2200 2200 2200 2200 2200
Biot’s coefficient, [-] 0.7 0.7 0.7 0.7 0.7
Entry pressure, pd , [kPa] - - - 500 -
Capillary pressure par., α , [Pa] - - - 0.9pd -
Capillary pressure par., β , [Pa] - - - 0.1pd -

Table K.8: Material data for wetting- and non-wetting phases in VE-validation model.

Phase Density, [kg/m3] Viscosity, [mPa·s] Compressibility, [1/GPa]
Water 996.5 0.55 0.42
CO2 784.3 0.069 15.6

K.5 PLVD, static
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Figure K.7: Geometry of the aquifer with topography: ∆H = 20 m, H = 30± 10 m. (left)
Topographic top boundary. (right) Topographic bottom boundary.

Table K.9: Mechanical properties.

Overburden,
Property underburden Aquifer
Youngs modulus, [GPa] 20 6
Poissons ratio, [-] 0.25 0.2
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