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SUMMARY

Aging is associated with tissue-level changes
in cellular composition that are correlated with
increased susceptibility to disease. Aging human
mammary tissue shows skewed progenitor cell po-
tency, resulting in diminished tumor-suppressive
cell types and the accumulation of defective epithelial
progenitors. Quantitative characterization of these
age-emergent human cell subpopulations is lacking,
impeding our understanding of the relationship be-
tween age and cancer susceptibility. We conducted
single-cell resolution proteomic phenotyping of
healthy breast epithelia from 57 women, aged 16–91
years, using mass cytometry. Remarkable hetero-
geneity was quantified within the two mammary
epithelial lineages. Population partitioning identified
asubset of aberrant basal-like luminal cells that accu-
mulate with age and originate from age-altered
progenitors. Quantification of age-emergent pheno-
types enabled robust classification of breast tissues
by age in healthy women. This high-resolution map-
ping highlighted specific epithelial subpopulations
that change with age in a manner consistent with
increased susceptibility to breast cancer.

INTRODUCTION

Adult tissue stem and progenitor epithelial cells generate differ-

entiated daughter cells for tissue remodeling and homeostasis

(Biteau et al., 2008; Mansilla et al., 2011). Evidence suggests

skewed stem cell function contributes to diseases of aging

(Sharpless and DePinho, 2007). Human breast epithelium,

comprised of apical luminal epithelium (LEP) and basal myoepi-

thelium (MEP) cell layers surrounded by a basement membrane,

undergoes remarkable growth and remodeling between puberty
Ce
This is an open access article under the CC BY-N
and menopause and during lactation, supported by stem and

progenitor cells. The greatest risk factor for breast cancer is

age and exclusively genetic explanations are inadequate (LaB-

arge et al., 2016; Stephens et al., 2012). Differentiation-defective

progenitor cells accumulate and tumor-suppressive MEPs

decline with age, while older LEPs display basal properties,

such as nuclear-localized YAP and MEP gene expression

(Chen et al., 2014; Garbe et al., 2012; Pelissier et al., 2014; Ski-

binski et al., 2014). We hypothesize that these age-associated

changes elevate cancer risk. Congruently, LEPs from women

with high cancer risk (e.g., BRCA1/2 carriers) show basal charac-

teristics, and luminal progenitors with a basal phenotype are

suggested cells of origin for murine mammary adenocarcinoma

(Lim et al., 2009; Molyneux et al., 2010; Proia et al., 2011). We

therefore sought to gain insight into molecular changes in the

mammary epithelium during aging and comprehensively catalog

age-emergent phenotypic diversity using mass cytometry (Ban-

dura et al., 2009) in samples from women aged 16–91 years old.

RESULTS

High-Dimensional Analysis of Cellular Heterogeneity
within Human Mammary Epithelia
To measure age-emergent phenotypic diversity in the human

breast, we used mass cytometry to obtain single-cell proteomic

profiles of cryopreserved normal primary human mammary

epithelial cell (HMEC) strains at passage four, from 44 women

of ages 16 to 91 years old (Figure 1; Table S1). A 29-antibody

panel recognizing human mammary epithelial lineage markers

and intracellular signaling proteins was used to establish high-

dimensional phenotypes of single HMECs (Figure S1; Table S2)

(dos Santos et al., 2013; LaBarge et al., 2007; Lim et al., 2009;

Regan et al., 2012; Taylor-Papadimitriou et al., 1989; Villadsen

et al., 2007). Simultaneous analysis of R20,000 HMECs from

each of the women from three age groups (<30 years, n = 16;

>30 years < 50 years, n = 13; and >50 years, n = 15) measured

29 protein epitope dimensions (Ds) (Figure 1A). Non-linear

dimensionality reduction, t-distributed stochastic neighbor
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Figure 1. Mass Cytometry Analysis of Human Mammary Epithelial Cells

(A) Summary of experimental design. 57 samples of HMECs from women aged 16 to 91 years old (comprising 13 uncultured breast epithelia samples and 44

primary cultured HMEC strains at passage 4 [p4]) were barcoded and stained using a panel of 29 antibodies labeled with isotope tags and analyzed using mass

cytometry.

(B) Strategy to analyze high-dimensional single-cell data and identify lineage and age-related phenotypic divergence.

See also Tables S1 and S2 and Figure S1.
embedding (tSNE) (Amir et al., 2013), created a 2D map of the

entire dataset at single-cell resolution with similar phenotypes

proximal to each other (Figure 1B). Distinct LEP (K19+/K7+/K8/

18+/CD133+) and MEP (K14+/K5/6+) cell populations were

distinguishable on the tSNE map (Figure 2A). Several signaling

markers showed lineage dependence, especially in MEPs;

CD44, YAP, phospho-epidermal growth factor receptor

(pEGFR), pStat1, pS6, and p-Phospholipase C Gamma 2

(pPLCg2), previously implicated in myoepithelial function and

contractility (Pasic et al., 2011), were prevalent in the MEP cell

population (Figures 2A, S1B, and S1C). The partial superposition

of K14+ and K5/6+ cell population revealed the high degree of

heterogeneity. A small subpopulation of cells with low marker

expression also was noted, which may have corresponded to

the K14�/K19� epithelia previously described (Villadsen et al.,

2007), and it was not further examined.

To address how aging affects the human mammary epithe-

lium, we first demarcated LEP and MEP populations using a

manual K19 gate (Figure 2A). K19, K7, K8/18, CD133, and cKit

expression was high in LEPs, while K14 and K5/6 expression

was higher in MEPs (Figure 2B). LEPs exhibited higher phos-

pho-nuclear factor kB (pNF-kB), which is implicated in mouse

mammary epithelial proliferation and branching (Brantley et al.,

2001). MEPs had increased expression of basal markers (Axl,
1206 Cell Reports 23, 1205–1219, April 24, 2018
pS6, pPLGg2, pEGFR, CD44, pGsk3, and pStat1) involved in

myoepithelial homeostasis (Pasic et al., 2011). The phenotypic

space projections on the tSNE maps were similar among the

three age groups (Figure 2A), however, the expression levels of

a number of markers changed significantly with age (Figures

S2 and S3). The most prominent age-related difference was

observed in the LEP population, where K14 and YAP expression

increased and K19 and K7 decreased with age (Figures 2C

and S3B). Overall these results revealed remarkable phenotypic

heterogeneity within the mammary epithelia.

Intra-lineage and Age-Related Phenotypic Divergence
in HMECs
The tSNE map displayed regions of cell density (Figure 2A) and

K14, K5/6, pRb, and CyclinB1 expression within the MEP line-

age, indicative of distinct cellular subpopulations (Figures 2A

and S1C). Intra-lineage subpopulations were identified as

distinct clusters of cells with shared phenotypes using Pheno-

Graph (Levine et al., 2015) (Figures 3A and S4A). There were

four LEP (LEP1–LEP4) and nine MEP (MEP1–MEP9) clusters

(Figure 3B). One subpopulation, denoted double positive (DP,

between 120 and 503 non-doublet cells), co-expressed K14

and K19 in a separate phenotypic space between the LEP and

MEP populations. This DP population likely comprised epithelial



Figure 2. Collective tSNE Analysis Distinguishes Major Luminal and

Myoepithelial Lineages

(A) The raw data have been transformed with arcsinh with the cofactor of 5.

tSNE maps from HMECs at p4 from women <30 years old (merged and

subsampled at 50,000 cells, n = 16), >30 < 50 years old (n = 13), and >50 years

old (n = 15).

(B) Log2 fold change of marker expression of LEP over MEP manually

gated from tSNE projection map in HMECs from women <30 years

old, >30 < 50 years old, and >50 years old. Data are log2 of ratio of

median ± SD.
progenitors (Villadsen et al., 2007). A small subpopulation of cells

with low marker expression was not further examined (<0.52 ion

counts per cell). The LEP3 cluster showed high levels of pRb and

CyclinB1, indicative of higher proliferation compared to the other

LEP subpopulations (reviewed in Giacinti and Giordano, 2006).

Clusters MEP4 and MEP7 expressed higher levels of CyclinB1

that correlated with higher DNA content (iridium intercalator

counts; Figure S4B) compared to the otherMEP subpopulations.

Age-related changes in marker expression were observed

mainly within the LEP subpopulations. Heatmaps of marker

expression in each PhenoGraph cluster, in HMECs from women

>30 and <50 years old (Figure 3C) andwomen >50 years old (Fig-

ure 3D), were normalized to values from <30-year-old women to

highlight age-related changes. Increased K14 and decreased

K19 expression was observed with age in LEP2, LEP3, and

LEP4 clusters from women >30 and <50 years old and in all

LEP subpopulations from women >50 years old. In addition to

phenotypic changeswith age, the abundance of the LEP clusters

significantly increased, whereas abundance of MEP2, MEP5,

and MEP8 clusters significantly decreased with age (Figure 3E).

This trend was observed at the individual level, with high inter-

sample heterogeneity (Figure 3F). We previously reported age-

related changes in LEP and MEP cells in vivo based on K14/

K19 staining, and 4 lineage markers (Garbe et al., 2012) did not

discern the degree of heterogeneity apparent in this new anal-

ysis. Prominent changes in marker expression and abundance

occurred in three of four LEP types as early as middle age, and

all four types change beyond 50 years. Indeed, the abundance

of LEP1 increased more than 3-fold. Decreased abundance of

MEP also was type specific.

Correspondence analysis (CA) provided a global understand-

ing of the relationships between all PhenoGraph clusters and the

age factor (Härdle and Simar, 2007). CA reduces high-dimen-

sional observations to a smaller set of explanatory components,

allowing visualization of data on each woman and PhenoGraph

subsets in the same space (Figure 3G). Women >50 years old

were associated with LEP1–4 subsets and women <30 years

old were associated with MEP1–9 subsets, probably reflecting

the relative abundance of those lineages with age. The DP sub-

set, which represents progenitor cells, was associated mainly

with older women. The first component, contributing 43.2%

and comprising mainly LEP1, captured the tendency of older

women to have more LEP (Figures 3G and 3H). The second

component (27.5%) provided a different ordering. Altogether,

there was a significant association between an age-dependent

luminal subset and the chronological age of the primary

epithelial cells.

Unsupervised agglomerative hierarchical clustering (Citrus)

was used to examine age-dependent changes in an orthogonal

manner. Multidimensional single-cell data were distilled to a hier-

archy ofmarker expression-related clusters, and cluster-specific

cell frequency changes were determined (Bruggner et al., 2014).

Seven clusters were identified (Figures 4A–4C) that were signif-

icantly more abundant with age (prediction error of 26% as
(C) K19 and K14 expression in LEP as a function of age. 250MK, 90P, 245AT,

173T, and an outlier 42P were excluded from the analysis.

See also Figures S1–S3.

Cell Reports 23, 1205–1219, April 24, 2018 1207



Figure 3. Age-Related Phenotypic Divergence in the Landscape of HMECs
(A) Heatmaps of marker expression in PhenoGraph clusters of HMECs from women <30 years old (Z score scale, merged, n = 16) (excluding 250MK, 90P and

245AT, 173T).

(B) tSNE projection of the PhenoGraph clusters identified with PhenoGraph identified in (A), colored by cluster.

(C and D) Heatmaps ofmarker expression in each PhenoGraph cluster in HMECs from (C) women >30 and <50 years old and (D) women >50 years old, normalized

to values from <30-year-old women.

(E) Plots of cell percentage in each PhenoGraph cluster (excluding 250MK, 90P and 245AT, 173T). Data are mean ± SEM.

(legend continued on next page)
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estimated by cross-validation and a p value < 0.05 using a Stu-

dent’s t test) (Figure 4A; Figure S4D), all of which represented the

LEP compartment. Figure S4C illustrates the agglomerative

clustering. The LEP subpopulations that showed age-dependent

changes had specific marker expression signatures consistent

with acquired MEP/basal-like characteristics (Figures 4A and

4B; Figure S4G). The age-emergent LEP clusters were all higher

in K14 compared with the <30-year LEP. Cluster A, residing at

the apex of the hierarchy, was K19low and K14high (Figures S4E

and S4G). Clusters B, C, and D showed higher YAP, HER2,

cKit, Axl, pS6, pPLCg2, pEGFR, CD44, pGSK3, pNF-kB, pAkt,

pERK1/2, pMEK1/2, pStat1, pStat3, and pStat5 expression

than <30-year LEP. Most of these markers are associated with

proliferation and migration and are mainly expressed in young

MEP. Each cluster had defining characteristics, e.g., cluster B

had the highest pRb and CyclinB1 expression that correlated

with higher DNA content (Figure 4B; Figure S4F). Only

cluster H decreased in abundance with age (Figures 4A, 4C,

and S4D), and it mapped to the MEP compartment of the tSNE

landscape. Those cells expressed low levels of K14, pS6,

CyclinB1, and pRb (Figure S4F), possibly indicative of a

quiescent, terminally differentiated MEP.

Collectively, these results indicated that a subset of LEP

acquires a basal phenotype and accumulates while a subset of

MEP decreases in abundance with age.

Age-Emergent Epithelial Cells in Primary Breast
Epithelia
To confirm our findings, we conducted mass cytometry profiling

using the 29-antibody panel on epithelial cells (R10,000 cells per

sample) derived from uncultured breast epithelia samples ob-

tained from 13 women of different ages (<30 years, n = 7 and

>50 years, n = 6; Table S1). As predicted by the HMEC analysis,

the tSNE map revealed extensive phenotypic heterogeneity in

the breast epithelia (Figure 5A; Figure S5A). Unsupervised clus-

tering identified four distinct phenotypes of LEP (LEP1–4), seven

types of MEP (MEP1–7), a DP subpopulation (between 13 and

719 non-doublet cells), and a low-expressing cell phenotype

(<18.32 ion counts per cell) (Figure 5B). Protein expression pat-

terns were consistent with these phenotypic designations and

with the HMEC analysis (Figure 5C). K19, K7, K8/18, CD133,

and cKit expression was high in LEP, while MEP showed higher

expression of basal markers (K14, K5/6, Axl, pS6, CD44, pEGFR,

and pStat1). The abundance of the LEP1 subpopulation signifi-

cantly increased, whereas the abundance of MEP2 significantly

decreased with age (Figure 5D), a trend also observed at the in-

dividual level (Figure 5E). Citrus analysis identified three clusters

that were significantly more abundant with age (Figure 5F; Fig-

ure S5B), all residing within the LEP compartment of the tSNE
(F) Intra-sample heterogeneity for each woman is represented graphically by a h

assigned to each cluster, colored accordingly (excluding 250MK).

(G) The first two components of correspondence analysis (CA), accounting for 7

different strains. Proximity among women and among clusters indicates simila

origin indicates an association. The angle between women <50 years old and LE

women >30 and <50 years old and LEP (t test, p < 0.001). PhenoGraph subsets

(H) Contributions of the PhenoGraph subpopulations to CA-1 and CA-2.

See also Figure S4.
phenotypic landscape. All three LEP clusters (A, B, and C)

showed age-dependent changes in specific marker expression

signatures, consistent with acquired MEP/basal-like character-

istics (Figure 5G; Figure S5C). To quantify the extent of acquired

MEP-like/basal phenotype, we calculated the geometric dis-

tance between the breast epithelia or HMEC LEP Citrus clusters

and their respective MEP populations. This demonstrated that

the LEP-MEP phenotypic distance was reduced by 26.7% and

32% in the breast epithelia and HMECs with age, respectively

(Figure 5H). Collectively, this finding supports the notion that

age-emergent epithelial cells derived from uncultured breast

epithelia samples showed phenotypes that matched those iden-

tified in the primary cultured HMECs.

Age-Emergent Phenotypes Predict Breast Tissue Age
In Vivo

As the K14highK19low clusters from both breast tissue and

HMECs formed the apex of the age-dependent cluster hierarchy,

we hypothesized that the expression pattern of these cytokera-

tins could be used to predict the approximate age of normal

breast tissue. Human breast sections were stained with anti-

K14 and anti-K19 (<30 years, n = 52 [10 women]; >30 < 50 years,

n = 86 [25 women]; and >50 years, n = 33 [15 women]) (Figure 5I),

and a classification model was built using morphometric context

(Chang et al., 2013). At least 1,000 cells per section were

analyzed. This computational approach relied on automated

cell segmentation, with manual curation, to define different

epithelial cells prior to quantification of single-cell K14 and K19

levels and morphometric features. The machine learning-based

classification model correctly assigned more than 50% of the

samples into their correct age group, as compared with a

random guess of 33.3% (Figure 5J), based on the higher level

of K14 and lower level of K19 in LEP with age, as observed on

the tissue sections (Figure 5I). These data validated predictions

from the mass cytometry data, and the in situ analysis demon-

strated quantifiable age-related changes in LEP in breast tissue.

Next, we used age-dependent phenotypic divergence to build

a second classification model to test the hypothesis that age-

related changes in marker expression from our statistical anal-

ysis would generalize to an independent dataset. This second

model was based on the totality of the mass cytometry data,

and it was not restricted to K14 and K19. In general, classifica-

tion models use cross-validation to avoid testing hypotheses

suggested by the data (type III errors). Using a training set of

5 HMECs each from women in the <30-year and >50-year age

groups, we successfully assigned 13/16 women <30 years old

and 12/15 women >50 years old (Figure 5K). The classification

performance was increased with the number of training samples

(Figure S6A). Strikingly, the HMEC strains that were incorrectly
orizontal bar in which segment lengths represent the proportion of the sample

0% of the co-association structure between PhenoGraph subpopulations and

rity, however, only a small angle connecting a woman and a cluster to the

P was statistically smaller than the angle between women <30 years old and

are displayed as triangles and HMEC samples as circles.
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Figure 4. Evidence of Age-Dependent Phenotypic Divergence in the

Luminal Population

The Citrus algorithm was applied to identify cell populations by hierarchical

clustering of phenotypically similar cells from an aggregate dataset from

all samples (excluding 250MK, 90P and 245AT, 173T). A defining charac-

teristic of each cluster is denoted as follows: cluster A, K14high/K19low;

cluster B, proliferative LEP; cluster C, basal LEP; cluster D, pS6 luminal;

cluster E, Keratinlow; cluster F, Keratin-low S; cluster G, Axlhigh; and cluster H,

sub-MEP.

1210 Cell Reports 23, 1205–1219, April 24, 2018
classified as ‘‘old’’ were derived from tissue peripheral to a

breast tumor, harbored a known high cancer risk mutation, or

had LEP proportions above the mean, while a >50-year HMEC

strain with decreased LEP proportion was incorrectly assigned

as ‘‘young.’’ Hence, the classification model validated the hy-

pothesis that subsets of luminal cells change with age and can

be used as age predictors, and it suggested that this information

could be a relevant indicator for cancer risk.

Age-Emergent Luminal Cells Acquire Increased Basal
Function
Next we investigated the functional consequences associated

with the age-related basal phenotypic changes in the mammary

luminal compartment. MEPs form cell-cell contacts with both

LEPs and other MEPs and adhere to the basement membrane

(Bergstraesser et al., 1995; Pitelka et al., 1973). These adhesive

properties are characteristic of MEP, whereas LEP-extracellular

matrix interactions are relatively minimal (Cerchiari et al., 2015).

We hypothesized that the increased basalness of older LEPs

would affect their cell adhesion and migratory capacity. Cell

migration kinetics was measured by real-time impedance in

LEP and MEP cells, sorted via fluorescence-activated cell sort-

ing (FACS), from 6 different primary HMEC strains. LEPs isolated

from women <30 years old migrated faster than isogenic MEPs

(Figures S6B and S6C). In contrast, LEPs from women >50 years

old migrated much slower and at a rate comparable to the

cognateMEPs (Figures S6B and S6C), consistent with increased

basal adhesion properties.

In addition, EGFR-mitogen-activated protein kinase (MAPK)

pathway activation (pEGFR, pMEK, pErk, and pAkt) was higher

in MEPs than in LEPs (Figure 2A; Figure S1), and it was higher

in the LEP clusters that changed in abundance with age (Fig-

ure 4B). Therefore, we evaluated age-dependent differences

in HMEC responses to EGF. HMECs from 3 women <30 years

old and 3 women >50 years old were treated with EGF com-

bined with vanadate, and signal transduction was measured

by mass cytometry (Figures S6D–S6F). Both LEPs and MEPs

exhibited EGFR pathway activation within the time course (Fig-

ure S1B); however, pStat, pEGFR, pErk, pMEK, and pPLCg2

levels were increased in LEPs from women >50 years old

compared to younger women. tSNE analysis revealed a sub-

population of HMECs with activated EGFR (Figure S6E). LEPs

derived from older women were more prevalent in this popula-

tion, consistent with increased EGF-signaling capacity (Fig-

ure S6F). Thus, older LEPs acquired myoepithelial-like adhe-

sion and migration characteristics, as well as an increased

EGF signaling.
(A) Boxplots of cell abundance in each age-related cluster and its represen-

tative tSNE phenotypic projection. Each data point on these graphs represents

the proportion of the cluster cell number compared to the total cell number in a

single sample. The log10 scale represents an abundance of cells from 0 to 1.

(B) Heatmaps of marker expression of each cluster normalized to LEP

from <30-year-old women for clusters A to G and MEP from <30-year-old

women for cluster H.

(C) Hierarchical tree of agglomerative clusters obtained with the Citrus anal-

ysis. Node sizes are scaled on the basis of frequency of cells in each cluster.

See also Figure S4.



Figure 5. Age-Related Phenotypic Divergence in Uncultured Breast Epithelia

(A) tSNEmaps from dissociated uncultured breast epithelia fromwomen <30 years old (merged and subsampled at 50,000 cells, n = 7) and >50 years old (merged

and subsampled at 50,000 cells, n = 6). The pGsk3 channel was removed from the analysis due to a technical issue.

(B) tSNE projection of the PhenoGraph clusters. The tSNE projection (right panel) of women <30 years old (blue) and women >50 years old (green) is shown.

(C) Heatmaps of Z score of marker expression in PhenoGraph clusters of uncultured breast epithelia from women <30 years old (merged, n = 7).

(D) Plots of cell percentage in each PhenoGraph cluster. Data are mean ± SEM.

(legend continued on next page)
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Age-Dependent Phenotypic Divergence in the Luminal
Progenitor Population
We next asked whether the prominent age-related changes

in LEPs were the result of changes in luminal progenitors

(LPs). Luminal-biased progenitors expressing cKit (Lim et al.,

2009) were FACS enriched from HMEC strains derived from

3women <30 years old and 3women >50 years old at passage 4,

and they were analyzed by mass cytometry using 12 mammary

epithelial progenitor and lineage markers (Figure 6A). Unsuper-

vised agglomerative clustering identified two LP clusters that

were more abundant (A and B) and one cluster that was less

abundant (C) with age (Figure 6B; Figure S7A). These clusters

localized within the luminal compartment of the tSNE phenotypic

space, and they displayed specificmarker signatures (Figure 6C;

Figure S7D): cluster A was K7high while cluster B was K19high.

Both of these clusters displayed high expression of CD133,

cKit, HER2, and YAP, establishing an age-emergent LP marker

signature; thus, cKit+/CD133� and cKit+/CD133+ LP cells

were FACS enriched fromHMECs at passage 4. A higher propor-

tion of cKit+/CD133+ LPs were present in older women (Fig-

ure 6D). The older cKit+/CD133+ LPs generated more acini in a

Matrigel/collagen 3D embedding assay (Figure 6E), which incor-

porated more 5-ethynyl-20-deoxyuridine (EdU), a proxy for cell

proliferation (Figure 6F), compared to the corresponding younger

LPs. In addition, cKit+CD133+ LPs were more luminally biased

than cKit+CD133� LPs in younger women (Figure 6G; Fig-

ure S7B), as demonstrated by a higher proportion of K19+/

K14� cells in the organoids. In contrast, older cKit+CD133+

LPs showed a higher proportion of basal K14+/K19� cells (Fig-

ure 6H; Figure S7C). Overall, the older cKit+/CD133+ LPs had

higher clonogenic activity in vitro and gave rise to cells with

more MEP/basal-like characteristics, which is consistent with

the interpretation that altered LPs give rise to the LEPs that

bear the phenotypic hallmarks of agingmammary epithelial cells.

Aged Epithelial Cells Resemble Immortalized Epithelial
Cells
Normal epithelial cells must bypass tumor-suppressive barriers

to give rise to malignancies. Pre-stasis HMECs can be efficiently

immortalized in a two-step process that bypasses Rb function

(by CCND1 expression or CDKN2A knockdown) and reactivates

telomerase activity (indirectly by MYC expression), while incur-

ring no gross genomic changes (Garbe et al., 2014). Mass cy-
(E) Intra-sample heterogeneity for each woman is represented graphically by a h

assigned to each cluster, colored accordingly.

(F) Boxplots of cell abundance in each age-related Citrus cluster and its represe

(G) Heatmaps of marker expression of each cluster normalized to LEP from <30

clusters D to G.

(H) The geometric distance was calculated using the square root of the sum o

population.

(I) Representative human breast sections immunostained for K14 (red), K19 (green

to right, respectively). Scale bar represents 100 mm.

(J) Plots show classification performance of 171 breast sections from 50 women (

morphometric context with increasing training set size.

(K) Plot shows Citrus classification performance using a training set of 10 wom

whether an incorrectly assigned sample was from a peripheral non-tumor mastect

mean ± SEM.

See also Figures S5 and S6.
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tometry analysis was conducted on 6 immortalized HMEC cell

lines and visualized by tSNE. Immortalization viaCCND1 overex-

pression to bypass stasis was associatedwith a luminal subtype,

whereas knockdown of CDKN2A was associated with a basal

subtype, and age >60 years, independent of CDKN2A, favored

more luminal subtypes to emerge, consistent with our previous

report (Lee et al., 2015) (Figures 7A–7C). Strikingly, five of the

six immortal cell lines exhibited high expression of the basal

markers YAP, Axl, pS6, pPLCg2, pEGFR, CD44, and pGSK3

(Figures 7D and S7E), which is the same protein cluster observed

in the subset of LEPs that accumulated with age (Figures 4B

and 5G). Thus, the specific marker expression signatures found

in age-emergent LEP subpopulations resemble the immortalized

derivatives of older HMECs. This is consistent with the hypothe-

sis that accumulation of altered LPs and LEPs with basal traits

during mammary gland aging reflects a breast cancer suscepti-

bility phenotype.

DISCUSSION

At single-cell resolution, these data show the dynamic pheno-

typic heterogeneity of human mammary epithelia spanning eight

decades of life. Phenotypic diversity is present within all cell pop-

ulations, and en bloc-averaged behavior may not represent that

of individual cells (Altschuler andWu, 2010). Mapping the normal

diversity of cellular phenotypeswithin an adult tissue is key to un-

derstanding organ-level function and cell-level functionality. Us-

ing unbiased computational analyses of 29-parameter mass cy-

tometry, we interrogated epithelial cell lineage diversity in HMEC

and uncultured human breast epithelia samples from 57 individ-

uals. We show that the mammary epithelium comprises a

complex population of cells residing in phenotypically and func-

tionally diverse states that change with age, and it is more dy-

namic and heterogeneous than previously perceived (Santagata

and Ince, 2014; Taylor-Papadimitriou et al., 1989; Villadsen et al.,

2007). This unique data resource provides a repository of single-

cell proteomic data combined with cell functional and in situ tis-

sue validation to better understand the aging process in mam-

mary epithelia. An important outcome of the high-dimensional

comparison, between breast epithelia and primary cultures of

HMEC strains, was the excellent correspondence between line-

age representation and phenotypes of aging. In general, a chal-

lenge of aging research in human tissues is that age-dependent
orizontal bar in which segment lengths represent the proportion of the sample

ntative tSNE phenotypic projection.

-year-old women for clusters A to C and MEP from <30-year-old women for

f the squared differences between the median of each marker for each sub-

), and DAPI (blue) from a 17-year-old, 36-year-old, and 58-year-old woman (left

<30 years n = 52, >30 < 50 years n = 86, and >50 years n = 33), analyzed using

en (<30 years n = 5, >50 years n = 5). The black and white circles indicate

omy (P), milk (MK), a tumor (T), or a tissue with no history, respectively. Data are



Figure 6. Evidence of Age-Dependent Phenotypic Divergence in HMEC Progenitors

(A) tSNEmaps from FACS-enriched HMEC cKit+ progenitors from 3 women <30 years old and 3 women >50 years old (merged and subsampled at 50,000 cells).

The lower right tSNE map shows the spatial projection of women <30 years old (blue) and women >50 years old (green).

(B) Boxplots of cell abundance of age-dependent clusters identified with Citrus and their representative tSNE spatial projection.

(C) Heatmaps of marker expression of each cluster compared to the background.

(D) Proportions of cKit+CD133� and cKit+CD133+ as a function of age (n = 3; t test, young cKit+CD133� versus cKit+CD133+ p = 0.0046, and young

cKit+CD133+ versus old cKit+CD133+ p = 0.037).

(E) Acini formation potential of cKit+CD133� and cKit+CD133+ in Matrigel/collagen I gels as a function of age (n = 3; t test, p = 0.0123).

(F) Proportions of acini that were incorporating EdU as a function of age. Data are means ± SEM. An acinus was quantified as EdU positive if at least one cell was

incorporating EdU (n = 3; t test, p = 0.0452). Data are means ± SEM.

(legend continued on next page)
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changes can be cataloged (e.g., transcriptional, proteomic, and

biochemical), but it is difficult to study the functional conse-

quences of those changes. As shown here, age-related func-

tional changes inmigration, EGF signaling, and 3D colony forma-

tion, which were predicted by measurements of the 29 epitopes

in breast epithelia, could be explored using primary cultures.

Further development of these types of approaches, which

combine careful primary HMEC culture with advanced analytical

instrumentation and computational analysis, represents ameans

of accessing human tissue biology in a new andmeaningful way.

Older women accumulate mammary multipotent progenitors,

the putative cancer cell of origin, with altered differentiation po-

tential, which we and others hypothesize is one of the mecha-

nisms that underlies increased susceptibility to breast cancer

with age (Choudhury et al., 2013; Garbe et al., 2012; LaBarge

et al., 2016; Proia et al., 2011). Their LEP daughters are not fully

lineage committed and acquire a basal phenotype. By using a

test set of appropriate size and machine-learning tools, we iden-

tified a unique subset of LEPs that accumulate with age, which

have skewed differentiation and a basal-like phenotype. These

age-emergent LEPs aremore adherent to the extracellular matrix

(ECM), and they exhibit increased EGF signaling compared to

younger LEPs. An unsupervised classification model based on

these age-related markers validates the hypothesis that specific

age-related changes in LEP subpopulations are good age group

predictors. Concomitant age-related changes in LP cells support

the concept that the altered stem/progenitor cell populations

that accumulate during aging give rise to the age-dependent

LEP populations.

The unique constellation of protein levels and modification

states that enable classification of mammary epithelia according

to age constitutes a signature of aging in the mammary gland.

A primary component that distinguishes LEP clusters by age

is increased expression of the basal cytokeratin K14 with

decreased luminal K19 expression. In situ validation of the

mass cytometry-derived classification model, by K14 and K19

quantification in tissue sections of normal breast, robustly as-

signed most breast biopsy samples into their correct age group,

further supporting the observation that increased basalness of

the LEP compartment is a hallmark characteristic of aging breast

tissue. The reduction of LEP migration rate with age, approach-

ing that of MEP, was consistent with increased ECM engage-

ment. Change in the LEP-ECM binding energy is predicted to

impair the ability to maintain normal epithelial bilayers (Cerchiari

et al., 2015). Indeed, LEP-ECM interactions in older LEP could

inhibit the Hippo pathway (Cordenonsi et al., 2011) and activate

YAP/TAZ (Naylor et al., 2005), which may help explain our previ-

ous observation of increased nuclear YAP in post-menopausal

LEP in vivo (Pelissier et al., 2014).

Accumulation of stem/progenitor cells with skewed differenti-

ation and function is a hallmark of aging in a number of tissues

(Encinas et al., 2011; Garbe et al., 2012; Lugert et al., 2010),
(G and H) Histograms represent log2-transformed ratios of K14 to K19 protein ex

(240L, 19 years) and (H) from a representative woman >50 years old (029, 68 years

(green), K14+/K19+ progenitors (yellow), and K14+/K19�MEP (red). Insets show

DAPI (blue). Scale bar represents 50 mm.

See also Figure S7.
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and it may confer increased susceptibility to oncogenic events.

BRCA1 basal-like breast cancers may originate from cKit-ex-

pressing progenitors (Lim et al., 2009; Molyneux et al., 2010).

The key changes in the subpopulations of LPs that accumulated

with age involved a specificmarker signature where cKit, CD133,

YAP, and HER2 expression was increased and CD44 expression

was decreased. These findings are congruent with the observa-

tion that cKit overexpression prevents normal differentiation in

murine mammary epithelial progenitors (Regan et al., 2012),

and they may explain the accumulation of cKit+ LPs with age.

CD133 (Prominin 1), another putative LP marker (Hilton et al.,

2014; Raouf et al., 2008), changed the most with age (increased

18.25- and 6.36-fold and decreased 5-fold in protein abundance

in each respective cluster compared to <30-year cKit+). In some

breast cancers CD133 positivity correlates with a restricted sub-

group of tumor stem cells in BRCA1-deficient mammary tumors

(Wright et al., 2008). YAP expression in LPsmight result in incom-

pletely differentiated LEPs with basal traits (Pelissier et al., 2014).

Amplification ofHER2hasbeenshown toplay an important role in

the development and progression of certain aggressive types of

breast cancer (Ménard et al., 2000). Hence, these age-related

phenotypes correspondwith thecancer-relevant hypothetical ef-

fects of cKit, CD133, HER2, and YAP marker expression signa-

ture. Older cKit+CD133+ LPs formed basal proliferative colonies

in 3D Matrigel/collagen gels, resembling the reported activity of

LPs from BRCA1 carriers (Lim et al., 2009). Moreover, hormone

treatment in luminal breast cancer reduced estrogen receptor a

levels and promoted a cancer stem cell phenotype (CD133high

and CD44low) (Sansone et al., 2016). This observation correlates

well with the fact that augmented CD133high and CD44low cell

proportion is associated with an increase in malignancy (Pece

et al., 2010) and probably breast cancer risk (Garbe et al.,

2012). The cKit+CD133+ LPs are considered potential cells of

origin for breast cancer, and we propose that their accumulation

with age represents an important facet of age-related suscepti-

bility to breast cancer. Moreover, based on the involvement

of these signature proteins (i.e., cKit, CD133, YAP, HER2, and

CD44) in a number of breast cancer-relevant contexts, it is

tempting to speculate that their dysregulation in older LPs also

is related to increased susceptibility to breast cancer with age.

We identified shared expression signatures between age-

emergent luminal cell subpopulations and immortalized deriva-

tives of older HMECs, which have overcome at least two major

barriers to tumor progression. Five of the six immortal cell lines

exhibited high expression of the core markers (YAP, Axl, pS6,

pPLCg2, pEGFR, CD44, and pGSK3 [inactivated when phos-

phorylated]), which defines a putative signature of transformed

HMECs that was also part of the core changes in normally aging

LEPs. All of those core markers were reported to have a role in

breast cancer progression (Gjerdrum et al., 2010; Kassis et al.,

1999; Kim et al., 2015; Ko et al., 2016; Louderbough and

Schroeder, 2011; Masuda et al., 2012; Yanai et al., 2015).
pression in single cells of acini (G) from a representative woman <30 years old

). Histograms are heat mapped to indicate the phenotypes of K14�/K19+ LEP

representative HMEC organoids immunostained for K14 (red), K19 (green), and



(legend on next page)
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Machine-learning algorithms that we used to validate the aging

signature incorrectly classified nine young and middle-aged

primary strains as old. Six of those strains were from women

with mutations in BRCA1 or ATM, or they were derived from

normal-appearing tissue that was peripheral to a tumor, or they

were the normal cells cultured out directly from a tumor. It is

tempting to speculate that epithelia in women who are innately

at higher risk will exhibit an effective age that is older than the

chronological age. A similar idea was proposed by epidemiolo-

gists that took into account breast tissue age, using only mea-

sures of hormones and childbirths (Pike et al., 1983). Here we

provide evidence of a cell- and molecular-level manifestation

of this concept. A biological explanation of advanced effective

age in epithelia could be that molecular states that are associ-

ated with risk exert field effects (Deng et al., 1996), which alter

the epithelia through a dynamic and reciprocal communication

between stroma and epithelia. Ultimately, further investigation

may lead to the development of novel approaches for preven-

tion, patient stratification, and therapeutic interventions to com-

bat age-associated breast cancers.

EXPERIMENTAL PROCEDURES

Cell Culture and Uncultured Breast Epithelia

All cell culture was in M87A medium with 0.1 nM oxytocin (X) and cholera toxin

(CT) at 0.5 ng/mL (Garbe et al., 2009). Primary HMEC strains were generated

and maintained as described (Labarge et al., 2013). All tissues were obtained

with proper oversight from the Lawrence Berkeley National Laboratory institu-

tional review board. Breast tissue from reduction mammoplasty was manually

dissected to enrich for gland-containing material. Stromal tissue was sepa-

rated from epithelial fragments using a brief treatment with collagenase. The

uncultured breast epithelia samples were dissociated as single cells with

trypsin. All the pre-stasis HMEC strains were used at fourth passage

(Table S1). Fibroblasts were removed and collected separately by differential

trypsinization during the first passage. During the functional assay, HMECs

were treated with EGF (Sigma E-9644, 0.1 mg/mL) and sodium orthovanadate

(Sigma 13721-39-6, 12.5 mM) for 1 hr. Samples were harvested with TrypLE,

fixed with 1.6% paraformaldehyde (PFA) for 10 min at room temperature (RT),

and frozen as a pellet at �80�C for further analysis.

Antibodies Used for Mass Cytometry Analysis

Antibodies were obtained in carrier protein-free PBS and then prepared using

the MaxPAR antibody conjugation kit (Fluidigm), according to the manufac-

turer’s protocol. After determining the percentage yield by measurement of

absorbance at 280 nm, the metal-labeled antibodies were diluted in Candor

PBS Antibody Stabilization solution (Candor Bioscience) for long-term storage

at 4�C (Table S2). Antibodies were titrated and validated beforehand using

both positive and negative cell controls (Table S2; Figure S1). Extensive anti-

body validation has been performed and published previously (Chevrier

et al., 2017; Giesen et al., 2014).

Cell Barcoding and Antibody Staining

HMEC strains were incubated with cisplatin (WR International, Cat# 89150-

634, 25 mM) for 1 min to assess cell viability (Fienberg et al., 2012), fixed in

1.6% PFA for 10 min at RT, and washed once with Cell Staining Media
Figure 7. Aged Epithelia Resemble Immortalized Epithelial Cells

(A) tSNE map of immortalized HMECs (left, merged, 6,000 cells per sample, n =

(B) Five selected markers are shown (K19, K4, K7, Axl, and YAP), with knockdow

(C) Plots show percentage of LEP and MEP in each strain according to the gatin

(D) Heatmap of Z score of median of marker expression of each strain.

See also Figure S7.
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(CSM, PBS with 0.5% BSA and 0.02% NaN3 with 0.03% saponin). The cells

were then resuspended in PBS, and DMSO stocks of the barcoding reagent

were added as described (Bodenmiller et al., 2012; Zivanovic et al., 2014).

The cells were incubated at RT for 30 min, washed three times with CSM,

and then pooled into a single FACS tube for staining with metal-labeled anti-

bodies for 1 hr at RT. A staining volume of 800 mL was used (�30 3 106

cells/mL). After antibody staining, the cells were washed twice with CSM

and once with PBS, and then incubated for 20 min at RT or overnight at 4�C
with an iridium-containing intercalator (DVS Sciences) in PBS with 1.6%

PFA. The cells were then washed three times with CSM and once with PBS,

diluted with water to �106 cells/mL, and filtered through a 40-mm membrane

just before analysis by mass cytometry.

Data Analysis

The scale used before analysis is the arcsinh with the cofactor of 5 (x_transf =

asinh(x/5)). After gating out viable and iridium-labeled events, the data

were analyzed by applying tSNE. This non-linear dimensionally reduction

technique is implemented via Barnes-Hut approximations in the MATLAB

toolbox cyt (Amir et al., 2013). We used the default parameters (initial

dimensions, 110; perplexity, 30; and theta, 0.5). Each sample contained

20,000 cells, whenmerged, 320,000 cells fromHMEC <30 years, 260,000 cells

from HMEC >30 < 50 years, and 300,000 cells from HMEC >50 years. In tSNE,

each cell is represented as a point in high-dimensional space. Each dimension

is one parameter (the expression level of each protein in our case).

The unsupervised PhenoGraph algorithm in cyt has been used to group cells

that are phenotypically similar and cluster these subpopulations using modu-

larity optimization (Levine et al., 2015). tSNE and PhenoGraph were performed

only on surface markers. A number of neighbors of 800 was selected. This

parameter was chosen based on prior knowledge of the underlying cell types.

Lower values for nearest neighbors result in an overclustering and higher

values an underclustering.

The Citrus toolbox in R was used to identify clusters that changed in abun-

dance with age (Bruggner et al., 2014) in an unsupervised manner. Therefore,

clusters were identified using a hierarchical clustering and linked to clinical

data for characterization. The minimal selected cluster size was 0.1% of the

total analyzed data. Stratifying clusters were learned by using regularized

unsupervised learning methods. Heatmaps were obtained with MATLAB and

Cytobank. The results were reproduced with strains obtained from reduction

mammoplasties (RMs) only.

Classification

Citrus was implemented in the PAM package for R and used nearest shrunken

centroids as a predictive model to identify properties that are predictive of

sample class. The prediction model was based on the initial training data

model. Therefore, new samples were mapped and later assigned to the initial

clusters for prediction. Using a training set of 5 HMECs fromwomen <30 years

old and 5 women >50 years old (n = 10), Citrus efficiently assigned most of

the test set to young or old. The training set was changed to n = 8 and to

n = 12 with similar efficiency. After randomization of the training set, the

classification failed. The R code is found in the Supplemental Experimental

Procedures.

Classification Using Morphometric Context

Each image was represented as its Cellular Morphometric Context (Chang

et al., 2013), which was constructed as the histogram of cellular morphometric

subtypes derived from the cellular morphometric features (K14/K19 signals)

through K-Means (dictionary size = 1,024). Homogeneous kernel map

(Vedaldi and Zisserman, 2012) was then applied on the Cellular Morphometric
6). Right: each color represents a strain.

n of CDKN2A: p16sMY and overexpression of CCND1: D1MY.

g strategy.



Context representation, so that linear support vector machine (SVM) (Yang

et al., 2009) could be adopted for efficient and effective differentiation among

age groups.

Statistical Analysis

GraphPad Prism, R, and MATLAB were used for all statistical analyses.

Standard linear regression and t tests were used. Grouped analyses were

performed with Bonferroni-Holm correction for multiple comparisons. Signifi-

cance was established when *p < 0.05, **p < 0.01, and ***p < 0.001.

DATA AND SOFTWARE AVAILABILITY

The accession number for the CyTOF data reported in this paper is Mendeley

Data: https://doi.org/10.17632/j7mrbgt3hh.1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.03.114.
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