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Abstract

The main focus of this thesis are density forecasts and the corresponding evaluation methods.

A density forecast is an estimate of the probability density of predicted values. Density

forecasts and the related evaluation methods have been little explored compared to point and

interval forecasts, therefore we have chosen to focus on this topic. We go through a detailed

description of three evaluation methods for density forecasts. To measure the performance

of two of the density forecast evaluation methods we perform a Monte Carlo simulation. We

simulate data sets with different data generating mechanisms to measure the size and power

for the chosen evaluation methods. Based on our results from the Monte Carlo simulation,

we continue with one evaluation method and apply it on empirical data, more specifically on

economical, financial and insurance time series data.
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Chapter 1

Introduction

This paper will focus on methods for forecasting and evaluation methods for forecasts in the

framework of time series data. In Chapter 2, we will start by giving a short overview of

important concepts of time series and forecasting, continued with an introduction to three

different types of forecasts: point, interval and density forecasts. In the introduction we

discuss shortly the advantages and shortfalls of the different types of forecasting.

One of the main objectives when discussing time series analysis is forecasting. Fore-

casting, in terms of time series, is trying to estimate the future values of the series based

on the available observations (Chatfield, 2000). A large amount of research has focused on

producing and evaluating point forecasts, for example Fuller and Hasza (1981), Engle and

Yoo (1987) and Gneiting (2001). Point forecasts only provides the most likely outcome for

the predicted variable and doesn’t give any information around the uncertainty around the

predicted outcome (Montgomery, Jennings and Kulahci, 2016). Point forecasts are often the

first-order importance for a forecast user since they are not very difficult to produce compared

to interval and density forecasts and are easy to understand (Christofferesen, 1998). Since a

forecast user can’t be sure about the predicted outcome until it is observed and might want
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to plan different strategies based on different outcomes, a point forecasts can be inadequate.

A first reaction to the lack of description of certainty from the point forecasts are the interval

forecasts (Tay and Wallis, 2000). An interval forecast can produce the most likely range of

outcomes at different confidence intervals and therefore the forecast users can plan different

strategies for different outcomes. In Chatfield’s (1993) article we find a detailed description of

methods for a forecast user to produce interval forecasts based on different assumptions. An

even more descriptive forecast is the density forecast. The density forecast that can provide

a complete description of the probabilities for the different outcomes of a predicted variable

and the interest in these forecasts has increased in the recent years (Tay and Wallis, 2000).

There are different possibilities for a forecast user to produce density forecasts, e.g. based on

assumptions on the error term, based on simulations and based on surveys.

Since evaluation of forecasts are of great importance when discussing forecast, this paper

will focus on different evaluation methods corresponding to the different forecasts. A lot of

literature has focused on how to produce and evaluate point forecasts, therefore we will focus

more on methods for interval and density forecasts. Especially density forecasting has been

little explored compared to point and interval forecasting.

In Chapter 3 we will go through evaluation methods for point and interval forecasts. The

original method for evaluating interval forecasts only evaluate the unconditional coverage.

For time series interval forecasts it is often inadequate to only consider the unconditional

coverage, therefore Christofferesen presented a method for evaluating interval forecasts test-

ing for unconditional coverage, independence and conditional coverage (Wallis, 2003). The

test for conditional coverage uses a likelihood ratio framework and is a combination of the

unconditional coverage and the independence tests.

We will go through the details of three different methods for evaluating density forecasts
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in Chapter 4. The first method we go through was presented by Diebold, Gunther and Tay

(1998). The method is based on the probability integral transformation and uniform distribu-

tion. The test is for unconditional coverage for the distribution and it can be supplemented

with visual tools to investigate independence and coverage by the uniform distribution for the

transformed variables. Berkowitz (2001) recognized that it is difficult to test for uniformity in

small data samples and introduced a method for evaluation density forecasts based on trans-

formation to the normal distribution. His method consists of two tests, one for conditional

coverage and one for independence. The last method we go through was introduced by Li

and Andersson (2018) and it is an extension of Christoffersen (1998) method for evaluation of

interval forecasts. It consists of three tests, one for unconditional coverage, one for indepen-

dence and one for conditional coverage. The test for conditional coverage is a combination

of the independence test and the unconditional coverage test. The method does not need a

parametric specification for the time dynamics.

To see how well various density forecast evaluation methods work we will perform a Monte

Carlo study and present the results in Chapter 5. We will simulate data sets with different

data generating mechanisms, and measure the size and power of the evaluation methods for

density forecasting. We will compare Berkowitz’s (2001) method with Li and Andersson’s

(2018) method to see how well they perform. Since Li and Andersson (2018) also proposed a

test for unconditional coverage, we will compare this test with the Kolmogorov-Smirnov test

(Chkravarti, Laha and Rot, 1967).

In Chapter 6, we will use one of the methods for density forecasting to evaluate economical,

financial and insurance data. We will continue with the tests with the best results from the

Monte Carlo study when evaluating the data sets. We have four data sets we will evaluate in

the empirical studies. We have three financial and economical data sets. The three sets consist

of a data set of a quarterly time series for the real gross domestic product in the US, a data set

3



of a daily time series of the Standard&Poor500 Index and a data set of the transformed log-

returns for a daily time series of the New York Stock Exchange Amex Composite Index. The

fourth set is an insurance time series of compensations amount fire damage incidents caused

by electronic equipment. We will test for the hypotheses of conditional and unconditional

coverage with specified distributions and independence for the four data sets. The final

chapter is a summary of the paper and the results obtained in the different studies.
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Chapter 2

Time Series and Forecasting

2.1 Time Series

2.1.1 Introduction to Time Series

This paper will focus on forecasting with time series and applications in economics, finance and

insurance. We start with an introduction to the main concepts and properties of time series

and some important time series models. A time series is a sequence of stochastic variables,

{Yt}Tt=1, listed in time order. A time series sequence is usually taken at regular time intervals.

There is not a minimum or maximum amount of time that must be included in the sequence,

so the user can gather the data points in a way that provides enough information for the

analysis. Time series often occur naturally in economics, finance and insurance, for example

quarterly data for unemployment, daily exchange rate and monthly rate of traffic accidents

that result in insurance claims etc.

Following is a brief introduction to the main properties of a time series. The following

definitions are from Brockwell and Davis (2016), and these concepts will be used in later
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chapters in this thesis:

Definition 2.1.1. Moments of a Time Series

Let {Yt}Tt=1 be a time series with E(Y 2
t ) < ∞, then the mean, variance, covariance and

correlation functions of {Yt} are defined as :

µt = E(Yt) (2.1.1)

σ2
t = E[(Yt − µt)2] (2.1.2)

γt(j) = E[(Yt − µt)(Yt+j − µt+j)] (2.1.3)

ρt(j) =
γt(j)

σtσt+j
. (2.1.4)

Definition 2.1.2. Lag Operator

The lag or backward shift operator is a linear operator and has the following properties for a

time series {Yt}Tt=1:

LYt = Yt−1 (2.1.5)

L−1Yt = Yt+1 (2.1.6)

LkYt = Yt−k. (2.1.7)

Definition 2.1.3. Difference Operator

Let {Yt}Tt=1 be a time series, then the first, second and d difference operators for {Yt} are

defined as:

∆Yt = Yt − Yt−1 = (1− L)Yt (2.1.8)

∆2Yt = Yt − 2Yt−1 + Yt−2 = (1− 2L+ L2)Yt = (1− L)2Yt (2.1.9)

∆dYt = (1− L)dYt, d > 0. (2.1.10)

Definition 2.1.4. Strict Stationarity

A time series can have many different properties and one of them is that the process

can be stationary. Generally speaking a time series can be viewed as stationary if there is
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no systematic change in variance, no systematic trend and seasonality doesn’t exist. If the

series {Yt}Tt=1 is strict stationary, then the joint distribution of Y (t1), . . . , Y (tn) and the joint

distribution of Y (t1+h), . . . , Y (tn+h) should be equal ∀ t1, . . . , tn and h.

Definition 2.1.5. Weak Stationarity

A less restrictive stationary property is covariance stationarity, also called weak station-

arity. A time series {Yt}Tt=1 is weakly stationary if it has the following properties:

E(Y (t)) = µ ∀ t (2.1.11)

cov(Y (t), Y (t+ h)) = γ(h) ∀ t (2.1.12)

i.e. the first two moments are independent of time t and do not depend on the position of Yt.

Example 2.1.1. White Noise

One example of a stationary time series is the white noise process. The white noise process

{εt}, has the following properties:

E(εt) = 0 ∀ t (2.1.13)

V ar(εt) = σ2 ∀ t (2.1.14)

Cov(εt, εs) = 0 if t 6= s (2.1.15)

i.e. the process has mean zero, constant variance and is uncorrelated.

2.1.2 Time Series Models

We can build different time series models to capture the structure of the time series data, and

one of the more common models is the autoregressive moving average (ARMA) model. The

ARMA model is a combination of the autoregressive (AR) model and the moving average

(MA) model. The models can be used to model the mean, the first order moment, of a time
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series. ARMA models are used to model processes that are stationary. When a process is non-

stationary, which is often the case with economical and financial data, one option is to model

the data with the autoregressive integrated moving average (ARIMA) model. To model the

standard deviation of a process we can use the autoregressive conditional heteroskedasticity

(ARCH) model or the generalized autoregressive conditional heteroskedasticity (GARCH)

model. In later chapters, when we are simulating data for the Monte Carlo simulation and

in the studies of the empirical data sets, we will apply some of these common, popular time

series models.

The following definitions for time series models are from Wei (1990).

Definition 2.1.6. Autoregressive Model

The autoregressive model with order p, AR(p), for a time series {Yt}Tt=1 is defined as

Yt = c+

p∑
i=1

φiYt−i + εt (2.1.16)

where {εt} is a white noise process. We can check if the data is stationary by factoring

(1− φ1L− · · · − φqLq) = (1− λ1L) . . . (1− λqL) (2.1.17)

and it is stationary if |λ1| < 1, . . . , |λq| < 1. Another way to check for stationarity is to see if

all the characteristic roots of the lag operators

(1− φ1z − · · · − φqzq) = 0 (2.1.18)

lie outside the unit circle. The AR model can be used to model time series where the outcomes

in present value depends on the past values and a random shock.

Definition 2.1.7. Moving Average Model

The moving average model with order q, MA(q), for a time series {Yt}Tt=1 is defined as

Yt = µ+ εt +

q∑
j=1

θjεt−j (2.1.19)
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where {εt} is a white noise process. One property of the MA(q) model is that it can be

invertible. If the model is invertible the MA(q) can be written as an AR(∞). To check if the

MA(q) model is invertible, we set the mean to be zero, µ = 0, then Yt = (1+θ1L+· · ·+θqLq)εt.

If we factorize the model

(1 + θ1L+ · · ·+ θqL
q) = (1− λ1L) . . . (1− λqL) (2.1.20)

and |λ1| < 1, . . . , |λq| < 1 the model is invertible. We can also check this property by

controlling that the roots of the lag polynomial

(1 + θ1z + · · ·+ θqz
q) = 0 (2.1.21)

lie outside the unit circle. The MA model can be used to model time series where random

events have an immediate impact and the impact has a short lived effect.

Definition 2.1.8. Autoregressive Moving Average Model

The ARMA(p, q) model of order p and q is a combination of the AR(p) and MA(q) models

and it is defined as for a time series {Yt}Tt=1

Yt = µ+

p∑
i=1

φiYt−i +

q∑
j=0

θjεt−j (2.1.22)

where {εt} is a white noise process. The ARMA model is stationary and invertible for certain

values of φ and θ. The stationary part of the ARMA(p, q) model depends on the autoregressive

part and if the roots of

1− φ1z − · · · − φpzp = 0 (2.1.23)

are all outside the unit circle the model is stationary. For the invertibility we require that the

roots of

1 + θ1z + · · ·+ θqz
q = 0 (2.1.24)
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are outside the unit circle. We combine the AR model and the MA model to the ARMA

model to make a more sophisticated model (Medium, 2018). The ARMA model can capture

both the AR and the MA effects of a time series.

Definition 2.1.9. Autoregressive Integrated Moving Average Model

If the data is generated from a non-stationary process, one option is to use an ARIMA

time series model to model the data. The ARIMA model can include both non-seasonal and

seasonal trends.

A non-seasonal ARIMA(p, d, q) model of order p, d and q for a time series {Xt}Tt=1 is

defined as

(1−
p∑

k=1

φkL
k)(1− L)dXt = (1 +

q∑
k=1

θkL
k)εt

(1− L)dXt =

p∑
k=1

φkL
k(1− L)dXt + (1 +

q∑
k=1

θkL
k)εt (2.1.25)

where d is a non-negative integer. We have that p is the number of autoregressive terms, d is

the number of non-seasonal differences needed for stationarity and q is the number of moving

average terms.

An non-seasonal ARIMA model with integration order d reduces to an ARMA model

when it is differenced d times. If we set Yt = (1−L)dXt, we have that the time series {Yt}Tt=1

can be represented by an ARMA(p, q) model

Yt =

p∑
k=1

φkL
kYt + (1 +

q∑
k=1

θkL
k)εt (2.1.26)

We can extend the ARIMA model to also include seasonal changes. Seasonal changes

in a time series are changes that happen in a regular pattern over S time periods, S is the

number of periods until the pattern repeats itself. For quarterly data there are 4 periods in
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a season and for monthly data there are 12 periods in a season. For a example, for quarterly

data the seasonal difference of Y at time t is Yt − Yt−4.

We denote an ARIMA model with seasonal changes as ARIMA(p, d, q)×(P,D,Q)S where

p, d, q and S are defined as above and P is the number of seasonal autoregressive terms, D

is the number of seasonal differences and Q is the number of seasonal moving average terms.

Example 2.1.2. ARIMA(1, 1, 1)× (1, 1, 1)4 model

Following is an example of the ARIMA(1, 1, 1) × (1, 1, 1)4 model with a seasonal change

for a quarterly time series {Yt}Tt=1

(1− φ1L)(1− Φ1L
4)Yt = (1 + θ1L)(1 + Θ1L

4)εt. (2.1.27)

Definition 2.1.10. Generalized Autoregressive Conditional Heteroskedasticity Model

To model the volatility, the second order moment, of a time series the GARCH model

is widely used. Engle (1982) first introduced the ARCH model and in his article used the

models to estimate the means and variances of the inflation in the U.K.. The ARCH model

models the conditional variance as a function of the past squared returns.

Bollerslev (1986) extended the ARCH model to the GARCH model by also including the

past conditional variance into the conditional variance term. The GARCH(p, q) model of

order p and q for a time series {Yt}Tt=1is defined as

Yt = σtεt (2.1.28)

σ2
t = ω +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjσ
2
t−j (2.1.29)

where ω > 0, αi, βj ≥ 0 and the innovation sequence, {εt}, is independent and identically

distributed with E(εt) = 0 and E(ε2t ) = 1. GARCH can be used to model and forecast

volatility of financial assets among others, and the idea behind the model is that volatility is
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persistent and heteroskedastic, i.e. that large values of volatility are likely followed by large

values and small are followed by small.

Example 2.1.3. ARMA - GARCH model

To model both the mean and the volatility of a time series we can use a combination of the

ARMA and GARCH models. The ARMA part capture the mean trend and the GARCH

part estimates the volatility. For example ARMA(1, 1) − GARCH(1, 1) model for a time

series {Yt}Tt=1 is defined as (Song and Kang, 2018)

Yt = µ+ φYt−1 + εt + θεt−1 (2.1.30)

εt = σtZt where Zt ∼ i.i.d.N(0, 1) (2.1.31)

σ2
t = ω + αε2t−1 + βσ2

t−1 (2.1.32)

2.2 Forecasting

In a nutshell, forecasting is predicting future outcomes and trends based on historical data, and

time series models can be used to predict future values based on past observations (Chatfield,

2000; Investopedia, 2018a). Forecasting is an important tool for predicting future econom-

ical outcomes, and evaluating the outcomes is important for making appropriate plans and

assisting in the design and implementation of economic policies (Montgomery, Jennings and

Kulahci, 2016). Forecasts are produced, studied and evaluated daily by central academia,

banks, consumers, firms and practitioners (Rossi, 2014). For example, central banks base

their monetary policies on the most likely future paths of key variable such as inflation and

exchange rates etc. Firms decide their prices and strategies based on expected, forecasts of

sales and financial firms trade based on the forecasts of assets values. Since forecasting is

very relevant in different areas in economics and finance, evaluating the forecasts predictive
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ability is of much importance. If forecasts are not correctly specified it can lead to poor

investments or not the right actions being taken. Following is a brief introduction to three

types of forecasts, point, interval and density. We begin with the most simple one, the point

forecast, and proceed with an introduction to interval and density forecasts.

2.3 Point Forecast

A point forecast is an estimate for a future value for stochastic variable X, and it is usually its

mean or median (Montgomery, Jennings and Kulahci, 2016). The mean forecast is the value

µ, defined as µ = E(X), and the median forecast is the value m, defined as P (X < m) = 0.5.

The forecast give a guide to immediate action for the forecast user. A bunch of literature has

focused on point forecasting and the evaluation methods (Fuller and Hasza, 1981; Engle and

Yoo, 1987; Gneiting, 2001). Two of the reasons for this could be that the point forecasts are

easy to compute compared to interval- and density forecasts and are easy to understand. Some

shortfalls of the point forecast are that the forecast only describes one possible outcome and

doesn’t give any information about the uncertainty around the forecast such as the interval

and density forecasts does.

When the focus is forecasting using time series data, one way to obtain point forecasts as

a prediction for the future values is through the use of time-series models such as the ARMA

models and the ARCH models. The ARMA models can produce a forecast of the mean

or median, and the models depend linearly on the previous data points. The ARCH and

GARCH models allow for non-linear dependence in the variance and give a forecast of the

data volatility.

To illustrate how to obtain a point forecast through assumptions we will use an AR(1)
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model: yt = α+ βyt−1 + εt. Let the estimates for α and β obtained at time t be denoted by

at and bt, respectively. The parameters are obtained using the full sample of data available

up to the time the forecast is made and re-estimated as time goes by and new information is

added to the sample. The in-sample fitted errors are obtained from ei = yi − at − btyi−1 for

i = 1, 2, . . . , t . The forecasted value yt+1 based on the information up to time t is obtained

as ft+1|t = at + btyt and the forecasts are generated as time goes by. Point forecasting can for

example be used to forecast interest rates, inflation and stock prices etc.

2.4 Interval Forecast

The interval forecast specifies the probability that a predicted variable will fall within a

stated interval. Compared with point forecasts, interval forecasts can be used to assess future

uncertainties and plan different strategies for the different possible outcomes (Chatfield, 1993).

An interval forecast consists of upper and lower limits associated with the probability

covering the future value, and the limits of an interval forecast are often called prediction

bounds (Brockwell and Davis, 1987) or forecast limits (Wei, 1990). The interval is often

referred to as a confidence interval (Granger and Newbold, 1986) or a prediction interval

(PI) (Abraham and Ledolter, 1983).

There are several ways to calculate an interval forecast and Chatfield (1993) describes

several of these methods in his article. One of the methods Chatfield (1993) present is to use

the forecast error to obtain an interval forecast, defined as follows: let {y}nt=1 be an observed

time series containing n observations, and we want to point forecast Yn+k conditional on

data up to time n for k steps ahead. Let this forecast be denoted by Ŷn(k) when it is a

random variable and ŷn(k) when it is a particular value determined by the observed data.
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The conditional forecast error corresponding to ŷn(k) is defined as en(k) = Ŷn(k)− ŷn(k). A

common form of the PI’s is a (100− α)% for Yn+k is given by

ŷn(k)± zα
2

√
var(en(k)) (2.4.1)

where zα/2 is the appropriate critical value given by the standard normal distribution. Equa-

tion (2.4.1) assumes that the forecast is unbiased and that the forecast errors are normally

distributed with mean zero and E(en(k)2) = var(en(k)). Since
√
var(en(k)) usually have to

be estimated some authors have suggested that zα
2

should be replaced by the percentage point

of the t distribution with appropriate degrees of freedom (Harvey, 1989).

A common application of interval forecasting is predicting the Value-at-Risk (V aR) for the

financial risk for corporations or investment portfolios. V aR is the maximal amount that will

be lost with probability p when portfolios are exposed to a random risk (Holton, 2014). V aR is

also called the quantile risk measure and is defined as the inverse of a cumulative distribution

function for a random risk S, V aR(S, p) = F−1
S (p) (Chiu, Lee and Hung, 2005). For V aR

the intervals are one-sided or open intervals. Other applications of interval forecasting in

economics and finance are forecasting unemployment rate, gross domestic product growth

and stock prices.

2.5 Density Forecast

A density forecast is an estimate of the probability density of predicted variables. The point

and interval forecasts can be viewed as by-products of the density forecast, the former being

the mean and the latter the quantiles. Forecasts are estimates therefore there are uncertainty

around them. Interval forecast represent a first response to point forecasts lack of addressing

this uncertainty (Tay and Wallis, 2000). The density forecast is important since it provides a
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complete description of the uncertainty around the predicted value and it provides information

about how sure the forecaster is regarding the precision around the forecasted value (Bao, Lee

and Saltoğlu, 2007). In the recent years, central banks and policy institutions started to realize

the importance of measuring and reporting uncertainty around the predicted variables and as

a result the demand for density increased (Rossi, 2014). Advances in statistical methodology

and increases in computer power also play a part in the increased demand for density forecasts.

The first series of density forecasts that have been produced was made by the Business and

Economic Statistics Section of the American Statistical Association (ASA) and the National

Bureau of Economic Research (NBER) (Tay and Wallis, 2000). The series dates back to 1968

when ASA and NBER combined their efforts and initiated a quarterly survey of macroe-

conomic forecasters in the U.S. Zarnowitz (1969) explained that the purpose of this survey

was to record a suitable record for evaluation for different forecasting assumptions, studies of

density forecasts and to analyze the varying degrees of consensus among forecasters. In the

U.K. the history of density forecasts dates back to 1992 when the Treasury established the

Panel of Independent Forecasters. In addition the panels point forecasts, it was suggested

that the panel should report density forecasts for inflation and growth. It took some time

before the idea was implemented, and only one set of density forecasts was published from

the panel before the panel was dissolved in May 1997. In February 1996 the Bank of England

began publishing density forecasts of inflation in its quarterly Inflation Report.

After this we also see a development in finance and more effort was aimed at producing

forecasts with a detailed description of the uncertainty for asset and portfolio returns (Raaij

and Raunig, 2002). When generating forecasts for financial data the normal distribution

is often inadequate, since financial data is known to be conditionally heteroskedastic and

unconditionally leptokurtic (Diebold, Gunther and Tay, 1998). When we test for normality,

many of the tests rely on the third or the fourth moment and the null hypothesis is rejected if
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there is significant skewness and excess kurtosis (Tay and Wallis, 2000). Since we have many

examples of empirical studies that discovered non-normal higher moments in the distributions

for interest rates, stock returns and other financial data series it suggest that the normal

distribution is not the best fit. One example of a study which found evidence of excess

kurtosis in a financial data series is Fama (1965). In a study of the daily returns of the

stocks listed in the Dow Jones Industrial Average reports evidence of excess kurtosis in the

unconditional distributions of the stocks.

Tay and Wallis (2000) explained that one of many reasons for the interest in more descrip-

tive forecasts in finance is because of risk management. Risk management has grown into a

prominent industry and several news agencies and banks regularly issues density forecasts,

such as J.P. Morgan, Bloomberg and Reuters among others. The idea behind these forecasts

is to have a platform for the user to generate density forecasts of the change in value for

customized portfolios over a set holding period. The main target of these density forecasts

is to measure the V aR, i.e. the nth percentile of the distribution. If we forecast variables

with departures from normality and generate the forecasts inappropriately using the normal

assumption, it will affect the usefulness of the V aR estimates. Especially if a portfolio has

evidence of excess kurtosis and we have a normality based forecasts, then we will probably

underestimate the V aR of the portfolio.

Tay and Wallis (2000) argued that density forecasting in finance began with the literature

that aims to model and forecast volatility. Engle (1982) introduced the ARCH model that

can be used to model conditional volatility based the squares of the past observations, and

this model can produce forecasts with time-varying conditional variances. Compared with the

normal distribution, the ARCH model imply larger kurtosis in the unconditional distribution.

Since the innovation term in an ARCH model often is assumed to be normally distributed,

the ARCH model delivers symmetric density forecasts which is often unsuitable since there
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is often evidence of asymmetries in asset returns. The excess kurtosis generated by the

ARCH models with normal innovations has been found insufficient to explain the degree of

leptokurtosis in many financial time series. Another option for density forecasts for financial

time series is the GARCH model. They are often more appropriate since the GARCH model

can generate skewed and leptokurtic conditional forecasts. This is accomplished by integrating

skew and kurtosis into the distribution of the standardized residuals of the GARCH processes.

Three ways to obtain a density forecast are through a forecast survey, relying on assump-

tions about the error term and through stochastic simulations. In a survey forecast, the

survey respondents give an answer to how likely the target variable will lie between certain

percentage points and will directly provide the density distribution and the quantiles. The

survey forecasts can be presented as a histogram (Rossi, 2014). An example of a density

survey forecast is the Survey of Professional Forecasters (SPF ). It is based on data from the

Federal Reserve Bank of Philadelphia and is a quarterly survey of macroeconomic forecasts.

The survey forecasts real gross domestic product (GDP ) growth, unemployment rate and

consumer price index. Figure 2.1 below is an example of the density survey forecasts from the

SPF . The example is a density forecast of the GDP growth for 2018 and it was produced in

the third quarter of 2017. The red bars is the forecast made in the previous quarter.
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Figure 2.1: SPF Forecast of U.S. Real GDP growth rate made in Q3 2017

An example of the third quarter 2017 Survey of Professional Forecasters. Reprinted from Federal Resevere Bank of

Philadelphia. Retrieved 21. Aug 2017 from https : //www.philadelphiafed.org/research− and− data/real − time−

center/survey − of − professional − forecasters/2017/survq317

To illustrate how to obtain a density forecast through assumptions on the error term we

will use the AR(1) model from the point forecast example. The first step is to estimate a

variance based on the in sample fitted errors, êi = yi − at − btyi−1 for i = 1, 2, . . . , t (Rossi,

2014). Typically, we assume that the error term is normally distributed with mean zero. Then

we can produce a density forecast by assuming that the point forecast up to time t, ft+l|t,

is normally distributed with mean at + btyt, and use the estimated variance to estimate the

density around the mean.

A third option for generating density forecasts are through stochastic simulation methods.

Based on a model for a time series we can simulate future paths for the variable. The future

paths can then be used to estimate the mean, median and quantiles for the time series.

One example of density forecasting is to use it to forecast inflation. Bank of England

has published a density forecast of inflation since 1996 and presented it as a fan chart. The

density forecast is represented graphically as a set of PI covering the 10%, 20%, . . . , 90% of the
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probability distribution, of lighter shades for the outer bounds. Equivalently, the boundaries

for the bands are the 5th, 10th, . . . , 95th percentiles of the density forecasts.

Figure 2.2: Bank of England Fan Chart for Inflation from Nov 2017

An example of the Bank of England fan charts for inflation. Reprinted from the Bank of England. Retrieved 8. Feb

2018 from

https : //www.bankofengland.co.uk/−/media/boe/files/inflation− report/2017/fan− charts−nov−2017.pdf?la =

en&hash = 159F9B672EB07084AC010113B657C4B2487F63DB
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Chapter 3

Evaluation Methods Corresponding to Point and

Interval Forecasting

Evaluating forecasts is important for determining the accuracy of a forecast. Good quality

forecast leads to good decisions, and since forecasting is widely used it is important to evaluate

the quality. Evaluating forecast can have various purposes. For example verify if point

forecasts are, one average, hitting the predicted outcome. In the context of predicting the

Value-at-Risk interval, it could establish if the model used has the right coverage probability.

As in the previous section, we will start with a discussion of evaluation of point and interval

forecasts. We will start with a brief introduction to point forecast evaluation. Then we will

give a more detailed description of a method for interval forecast evaluation since it is a basis

for one method for density forecast evaluation. In the next chapter, we go through a detailed

description of a three different density forecast evaluation methods since it is our main focus.
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3.1 Point Forecast Evaluation

There are several ways to evaluate point forecasts; one is to test if a model satisfies certain

desirable qualities and another is to make comparisons among forecasting models (Rossi,

2014). To illustrate the former evaluation method, we will use a forecasting model, e.g. an

AR(1) model, and show how to evaluate if the model satisfy desirable qualities. One of the

desirable properties is that the forecast is unbiased. An estimator θ̂ is unbiased if the expected

value of the estimator is equal to the true value of the parameter being estimated, E(θ̂) = θ.

For a point forecast this is equal to E(yt) = E(at+btyt−1 +et) = ft|t−1, since the error term is

assumed to have zero mean. The forecast might over- and under predict its target value but

on average the model will do a good job, and the over- and under predictions will cancel each

other out. One way to test if the forecast is unbiased is by evaluating if the forecast error is

zero on average. We can use the one-step ahead forecast error model, et+1|t = yt+1 − ft+1|t,

to test for unbiasedness of the forecast. We can do this by regressing the forecast error on

a constant and test if the forecast error has mean zero. We then estimate the following

regression et+1|t = θ + ut+1,t where ut+1,t is the error in the regression. Based on a t-test we

can determine if the forecast error is zero on average. If we reject the hypothesis that θ is

zero, then we conclude that the forecast is biased.

The second desirable property of the forecast errors is that are not supposed to be pre-

dictable based on the data available at the time (Rossi, 2014). I.e. if we included all the

available data we assume to be significant we should not be able to predict the forecast errors.

If the errors are predictable, we need to include more data in the model which will improve

the forecast. We can evaluate if errors are predictable using a test for forecast rationality.

First we investigate our data and find a variable we think could be a useful predictor. Let

zi−1 denote the omitted variable in our AR model. The next step is to estimate the following
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regression: et+1|t = θ1 + θ2zt + ut+1,t, where ut+1,t denotes the error in the regression. We

can determine if the forecast errors are zero on average with a joint significant test with null

hypothesis: H0 : θ1 = θ2 = 0. If the forecast errors are zero an average, then θ1 and θ2 should

be jointly zero. If we accept the null hypothesis, we conclude that the forecast is rational.

Rossi (2014) illustrated an example of another method to evaluate point forecasts. The

method is to check the models relative forecasting ability, and the objective is to evaluate if

the forecasting ability for two or more models is similar. First step is to choose two or more

different forecasting models then investigate is one has a significantly larger expected loss

function. Examples of loss functions are the mean squared forecast error (MSFE) and mean

absolute error (MAE). The MSFE of a model is defined as: MSFE = P−1
∑T

t=r e
2
t+1|t

where P is the number of forecasts. If we want to compare models based on the MSFE we

compare the models based on their relative average squared values of the forecast error. We

can do this by calculating the difference in the MFSE’s for the two models and evaluate if

the difference is zero using a t-test. If the difference is zero the forecasting abilities are similar.

3.2 Interval Forecast Evaluation

The traditional method to evaluate interval forecast only take into account the coverage and

the first moment, and test if the forecast is correct on average (Intensity, 2017). When using

the traditional method, we first make a track record of interval forecasts and the outcomes

related to the forecasts of a sample of points in time. We can use our observed track record of

the forecasts and related outcome to evaluate the forecasting model. The larger the sample we

have observed, the better our evaluation of our model will be. Say we have a track record for

a (100−α)% interval forecast and the outcome of the corresponding forecasted variable, then

we expect the outcome to fall inside the interval forecast (100− α)% of the time and outside
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α% of the time. Suppose we observe a time series and the corresponding interval forecasts

with α = 0.1. If more than the 10% of the outcomes fall outside the interval forecasts, the

forecast is too narrow on average. Conversely, if the outcomes fall outside less than 10% of

the time, the forecast in too wide on average. A formal test for this is Christoffersen test for

unconditional coverage, explained in detail later in this section.

One large shortfall of the traditional method is that it ignores the information from higher-

order dynamics, such as the volatility. The information from the second moment is crucial

when it comes to forming dynamic interval forecasts, recognizing that the interval should be

narrow in tranquil times and wide in volatile times (Engle, 1982). A result of this is that an

interval forecast that doesn’t take into account higher-order dynamics is that it may be correct

on average, but in periods it will have incorrect conditional coverage, characterized by clusters

of outliers. In order to build a test to evaluate the conditional coverage, Christoffersen (1998)

introduced a framework that combines 3 tests to evaluate interval forecasts: a likelihood

ratio (LR) test for unconditional coverage, a LR test for independence and a joint LR test

for coverage and independence. The tests are based on a testing criterion that is defined

as follows. Let {y}Tt=1 denote an observed sample path of the time series yt and the out-of-

sample interval forecast, {Lt|t−1(p), Ut|t−1(p)}Tt=1, corresponding to the series is also available.

Lt|t−1(p) and Ut|t−1(p) are the upper and lower limits of ex ante interval forecast for time t

at time t− 1 for the coverage probability p.

We can define an indicator variable based on the realizations of the time series and the

interval forecasts. The indicator variable, It, for a given interval forecast (Lt|t−1(p), Ut|t−1(p))

at time t made at time t− 1, is defined as

It =


1 if yt ∈ [Lt|t−1(p), Ut|t−1(p)]

0 if yt ∈ [Lt|t−1(p), Ut|t−1(p)]

. (3.2.1)
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With the indicator variable Christoffersen (1998) established a general testing criterion for

interval forecast defined as: We define the sequence of interval forecasts {Lt|t−1(p), Ut|t−1(p)}Tt=1

as efficient with respect to information set Ψt−1 if E[It|Ψt−1] = p ∀ t. Then we can test if the

interval forecast is efficient by testing if E[It|Ψt−1] = p ∀ t.

Letting the information set consists of the past realizations of the indicator sequence,

Ψt−1 = {It−1, It−2, . . . , I1}, then E[It|Ψt−1] = E[It|It−1, It−2, . . . , I1] = p ∀ t. Then test-

ing E[It|Ψt−1] = p ∀ t is equivalent to testing if {It} ∼ i.i.d. Bernoulli(p), and the se-

quence of interval forecasts {Lt|t−1(p), Ut|t−1(p)}Tt=1 has correct conditional coverage if It ∼

i.i.d. Bernoulli(p) ∀ t.

To test for unconditional coverage Christoffersen (1998) suggested using a LR test and

the test is based on the indicator sequence {It}Tt=1 constructed from a given interval forecast.

To test for unconditional coverage, the null hypothesis E[It] = p should be tested against

the alternative hypothesis that E[It] 6= p given that the sequence is independent. Under the

null hypothesis the likelihood function is L(p; I1, I2, · · · , IT ) = (1 − p)n0pn1 and under the

alternative is L(π; I1, I2, · · · , IT ) = (1−πn0)πn1 . Then testing for unconditional coverage can

be done with a standard likelihood ratio test;

LRuc = −2log
L(p; I1, I2, . . . , IT )

L(π̂; I1, I2, . . . , IT )

= 2[n0log(
1− p
1− π

) + n1log(
p

π
)] ∼ asymptotically χ2(s− 1) = χ2(1) (3.2.2)

where the maximum likelihood estimate (MLE) for π is π̂ = n1/(n1 +n0) and the number of

possible outcomes, s, in the sequence is 2. Out of n observation, we let n1 denote the number

of outcomes falling inside the corresponding interval forecast, let n0 denote the number of

outcomes that fall outside and n = n1 + n0.

The next test for interval forecast is to check for independence. The independence hypoth-

esis is tested against a first-order Markov chain alternative. First consider a binary first-order

25



Markov chain, {It}, with transition probability matrix

Π1 =

1− π01 π01

1− π11 π11

 (3.2.3)

where πij = P (It = j|It−1 = i). Then the approximate likelihood function for the process is

L(Π1; I1, I2, . . . , IT ) = (1− π01)n00πn01
01 (1− π11)n10πn11

11 (3.2.4)

where nij is the number of observations in the state i followed by the state j. Conditioned on

the first observations everywhere the parameters for the maximized log-likelihood functions

are simply the rations of counts for the appropriate cells:

Π̂1 =

 n00
n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

 . (3.2.5)

Then consider the output sequence, {It}, from an interval model and estimate a first-order

Markov chain model on the sequence. To test the hypothesis that the sequence is independent

noting that the transition probability matrix

Π2 =

1− π2 π2

1− π2 π2

 (3.2.6)

corresponds to independence. Then the likelihood function under the null hypothesis is

L(Π2; I1, I2, . . . , IT ) = (1 − π2)(n00+n10)π
(n01+n11)
2 and the MLE for Π2 is Π̂2 = π̂2 = (n01 +

n11)/(n00 + n10 + n01 + n11). Then the LR test is

LRind = −2log
L(Π̂2; I1, I2, . . . , IT )

L(Π̂1; I1, I2, . . . , IT )
∼ asymptotically χ2((s− 1)2) = χ2(1) (3.2.7)

since s denotes the number of possible outcomes and the sequence is binary, we have s = 2.

The test doesn’t depend on the true coverage, p, therefore it only tests for independence.

The last test that Christoffersen (1998) introduced was a test for conditional coverage as

a combination of the unconditional coverage and independence tests. If, conditioned on the
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first observation in the test for unconditional coverage, then π̂ = π̂2 = Π̂2. This implies, if the

first observation is ignored, then the test for conditional coverage is LRcc = LRuc + LRind,

where

LRcc = −2log
L(p; I1, I2, . . . , IT )

L(Π̂1; I1, I2, . . . , IT )
∼ asymptotically χ2(s(s− 1)) = χ2(2) (3.2.8)

since s = 2. This test enables joint testing of randomness and correct coverage, while retaining

the individual hypotheses as subcomponents. The three tests Christoffersen (1998) presented

can be applied in a natural sequence when evaluating interval forecasts. The first step is use

the joint test for goodness of fit and independence LRcc. If we accept the null hypothesis we

can conclude that we have specified the correct interval forecasts model and we don’t have

clusters of outliers. If the null hypothesis is rejected we can investigate why with the LRuc

and LRind tests. Is it because the model failed to capture time dependence or because the

model doesn’t have the correct coverage?

The three tests Christoffersen presented can also be evaluated using the Pearson chi-

squared statistic (Wallis, 2003). One standard way of denoting the Pearson Chi squared

statistic is

∑ (O − E)2

E
(3.2.9)

where O denotes the observed probabilities and the E denotes the expected probabilities

(DeGroot and Schervish, 2012). The equivalent chi-squared statistics for the unconditional

coverage test is

X2 =
n(p− π)2

π(1− π)
. (3.2.10)

For the independence test we first denote the matrix for the for the observed frequencies asa b

c d

 (3.2.11)
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and then the corresponding chi-squared statistics is

X2 =
n(ad− bc)2

(a+ b)(c+ d)(a+ c)(b+ d)
. (3.2.12)

For the joint test for coverage and independence we denote the observed and expected fre-

quencies as, respectively: a b

c d

 and

(1− π)(a+ b) π(a+ b)

(1− π)(c+ d) π(c+ d)

 . (3.2.13)

Each of the Pearson’s chi-squared statistics can be evaluated by comparing them to the

appropriate critical values from the χ2 distribution with the same degrees of freedom as the

corresponding LR tests for interval forecasts.

Wallis (2003) mentioned in his paper that Christoffersen’s method for evaluating interval

forecasts could be extended for density forecasts and he had an introduction to this extension.

He stated that for density forecasts the first question raised is for goodness of fit of the

forecasts. Two classical methods in statistics for measuring goodness of fit is the likelihood

ratio and the Pearson chi squared test. The first step to extend the method to test for

goodness of fit to be valid for density forecasts is to divide the interval range of the predicted

variable into k mutually exclusive classes and analyze if the probabilities of outcomes in each

of the classes for the forecast densities are similar to the observed relative frequencies. In

formal terms, we divide the variable range into k mutually exclusive classes and let ni denote

the outcomes that fall into each of these classes, i = 1 . . . k and
∑
ni = n. We have the

z-transform for a density forecast defined as z = F (y) where y denotes the observed outcome,

F (.) denotes the distribution function for the density and z denotes the forecast probability

of observing an outcome no greater than the actual realized value. The argument used for the

density forecasting method presented by Diebold, Gunther and Tay (1998) is if F (.) is correct

then z has a U(0, 1) distribution. We can use the z-transformation for our variable range in

28



the following manner, the z-transforms can be divided into classes with boundaries j/k where

j = 0, 1, . . . k. Then we can implement the Pearson chi-squared statistics for goodness-of-fit

as

X2 =
∑ (ni − n

k )2

n
k

(3.2.14)

and the likelihood ratio test statistics is

LR = 2
∑

nilog(
kni
n

). (3.2.15)

Under the null hypothesis, both of the X2 and the LR is distributed as χ2 with k− 1 degrees

of freedom. Li and Andersson (2018) further studied the idea of extending the evaluation

tests for interval forecasting to be valid for evaluating density forecasts and the method will

be explained further in the next chapter.
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Chapter 4

Evaluation Methods Corresponding to Density

Forecasting

Until recent years, little attention has been given to the evaluation methods for density fore-

casts. The are several different factors that can be the cause of this neglect (Diebold, Gunther

and Tay, 1998). One of the factors is that historically the construction of density forecasts

has required quite restrictive, even dubious, assumptions such as Gaussian innovations, linear

dynamics and no parameter estimation uncertainty. Because of recent work using numerical

and simulation techniques and improvements in data technology we don’t have to rely on

these assumptions to the same degree and have made it easier to provide credible density

forecasts.

Another factor to why density forecasts haven’t been produced and evaluated is because

of the demand. In the past, point and interval have usually given enough information for the

most users need. However, due to recent developments the situation has changed, especially in

quantitative finance, and the demand has increased. In areas like financial risk management,

they are completely dedicated to providing density forecasts of portfolio values and to tracking

certain parts of the densities, for example Value-at-Risk.
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A third reason is that the evaluation of density forecasts appear to be a difficult task.

It is possible to modify techniques for evaluating point and interval forecasts and use them

for evaluating density forecasts, but this application can lead to incomplete evaluation of

density forecasts. We could use Christoffersen’s (1998) method for evaluating interval forecasts

without extending it. We could use this method to check if the series of 95% PI corresponding

to a series of density forecasts are accurately conditionally calibrated. The issue with this

type of evaluation is that it leaves the question if the corresponding PI at other confidence

levels are accurately conditionally calibrated unanswered. To determine if we have the correct

conditional calibration of density forecasts, all the PI must be simultaneously be correctly

conditionally calibrated for all possible confidence levels.

Because of the increase of demand of density forecasts, the demand for proper evaluation

methods has also increased and we will give a detailed description of different methods of

evaluating density forecasts. Density forecasts can be evaluated using the probability integral

transform (PIT ), the loss function and the standard uniform distribution. A PIT is the

cumulative probability evaluated at the actual, realized value of a target variable. The PIT

measures the likelihood of observing a value less than the actual realized value, where the

probability measured is the density forecast. Diebold, Gunther and Tay (1998) showed that

if a PIT is i.i.d. U(0, 1) if the density forecast is correct. Then to evaluate if the density

forecast is correctly specified is the same as testing if the PIT is i.i.d. U(0, 1).

There is also another method based on the PIT , combining it with the normal distribution

and likelihood ratio test. The test is based on transforming the PIT using the inverse dis-

tribution function of a standard normal, then calculating the log-likelihood and constructing

the likelihood ratio test statistic.

Another method is to extend the Christoffersen testing framework using the Pearson’s
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chi-squared based statistics, multinomial distribution and Markov chains. The extension is a

non-parametric test and no parametric model is needed for the independence test. The test

can evaluate the goodness of fit and independence at the same time. These three evaluation

methods will be explained in more details later in this chapter.

4.1 Loss Functions and Action Choices

Since the problem of evaluating density forecasts can be linked to the forecast user’s loss

function, we will give a short illustration between the relationship between density functions,

loss functions and action choices (Diebold, Gunther and Tay, 1998). First, we define the

decision environment as follows: Let {ft(yt|Ωt)}nt=1 be a sequence of conditional densities

dependent on a series yt, where Ωt = {yt−1, yt−2, . . . }. Let {pt(yt|Ωt)}nt=1 be a corresponding

sequence of 1-step-ahead density forecasts and let {yt}nt=1 denote the corresponding series

of realizations. We denote the forecaster user loss function as L(a, y) where a denotes an

action choice, and the forecast user chooses an action to minimize the expected loss computed

using the density forecast, p(y). Assuming that p(y) being the correct density, the forecasts

user chooses an action a∗(p(y)) =
argmin

a ∈ A

∫
L(a, y)p(y)dy where A denotes all the choices

the forecast user might make. The choice a∗ incurs a loss L(a∗, y) and this loss is a random

variable. The expected loss with respect to the true density f(y) is defined as E[L(a∗, y)] =∫
L(a∗, y)f(y)dy. Different density forecasts will, in general, generate different action choices,

therefore also different distributions of loss. The closer the density forecast is to the true data

generating process, the lower is its expected loss.

Different forecasts can lead to different actions that minimizes the loss and different ranking

of forecasts. Suppose a forecast user has the option between choosing two different forecasts,
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denoted by pj(y) and pk(y) where j and k denotes the different forecasts. Then the user will

prefer forecast pj(y) to pk(y) if E[L(a∗j , y)] ≤ E[L(a∗k, y)], where a∗j denotes the action that

minimized the expected loss based on the forecast j. Ideally, we want a ranking of forecasts

which all the forecasts users agree with, not dependent on their loss functions. Such a ranking

does not exist for incorrect density forecast, i.e. there does not exist a ranking r for arbitrary

density forecasts pj and pk, both different from the true data generating process f , such that

for all loss functions L(a, y) we have

rj ≥ rk ⇔
∫
L(a∗j , y)f(y)dy ≥

∫
L(a∗k, y)f(y)dy. (4.1.1)

This can be illustrated by finding to loss functions L1 and L2, a density function f gov-

erning y, and two density forecasts, pj and pk, such that E[L1(a∗j , y)] < E[L1(a∗k, y)] while

E[L2(a∗j , y)] > E[L2(a∗k, y)]. In other words, the forecast user with loss function L1 does

better on average under forecast j, and the forecast user with loss function L2 does better on

average under forecast k.

The illustration show that is no way to rank to incorrect density forecasts such that all

the users will agree with the ranking, but suppose we have a forecast that agree with the

true data generating process. All forecasts users, regardless of loss function, will prefer this

forecast. Statistically, suppose that we have pj(y) = f(y), so that the action a∗j minimizes the

expected loss corresponding to the true data generating process. Then
∫
L(a∗j , y)f(y)dy ≤∫

L(a∗k, y)f(y)dy ∀ k, since a∗j minimizes the expected loss over all possible actions. The insight

that f(y) dominates all other forecasts all for all users, regardless of loss function, suggests

a useful direction for evaluating density forecasts. The evaluation of density forecasts boils

down to evaluating if {pt(yt|Ωt)}nt=1 = {ft(yt|Ωt)}nt=1.
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4.2 Evaluating Density Forecasts with PIT and Uniform Dis-

tribution

Determining if {pt(yt|Ωt)}nt=1 = {ft(yt|Ωt)}nt=1 appear to be a difficult task since we can ob-

serve yt but never observe the true distribution {ft(yt|Ωt)}nt=1 at time t. Another observation

that also makes the evaluation difficult is that ft(yt|Ωt) may display structural change, as

indicated by its time subscript. Even though the task is challenging, we still have certain

methods for evaluating density forecasts.

Diebold, Gunther and Tay (1998) suggested a way to evaluate density forecasts that is

based on the relationship between the data generating process, ft(yt), and the sequence of

density forecasts, pt(yt). The relationship between the data generating process and the density

forecast is related through the probability integral transform, zt, of the realization of the

process taken with respect to the density forecast. The PIT is the distribution function

corresponding to the density pt(yt) evaluated at yt, zt =
∫ yt
−∞ pt(u)du = Pt(yt). Let denote

the density for zt as qt(zt). This density is significant when it comes to the evaluation. If we

assume that
∂P−1

t (zt)
∂zt

is non-zero and continuous over the support yt and by recognizing that

P−1
t (zt) = yt and pt(yt) = ∂Pt(yt)/(∂yt), then we can see that zt has support on the unit

interval with density

qt(zt) = |∂P
−1
t (zt))

∂zt
|ft(P−1

t (zt)) =
ft(P

−1
t (zt))

pt(P
−1
t (zt))

(4.2.1)

since

pt(yt) =
∂Pt(yt)

∂yt
⇒ pt(P

−1
t (zt)) =

∂Pt(P
−1
t (zt))

∂yt

⇒ ∂yt
∂zt

=
1

pt(P
−1
t (zt))

⇒ ∂(P−1
t (zt))

∂zt
=

1

pt(P
−1
t (zt))

. (4.2.2)

Note that qt(zt) is distributed as U(0, 1) if pt(yt) = ft(yt). The next step is to extend the
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one-period characterization of the density of zt to characterize the density and dependence

structure of the entire zt sequence, in the case of pt(yt) = ft(yt).

Suppose we have a sequence, {yt}nt=1, generated from {ft(yt|Ωt}nt=1 where Ωt = {yt−1, yt−2, . . . }.

Then, if we have a sequence of density forecasts {pt(yt|Ωt)}nt=1 that coincides with {ft(yt|Ωt}nt=1

and under the usual condition of a nonzero Jacobian with continuous partial derivatives, the

sequence of PIT s of {yt}nt=1 with respect to {pt(yt|Ωt)}nt=1 is i.i.d. U(0, 1). In other words,

{zt}nt=1 ∼ i.i.d. U(0, 1).

This property can be illustrated with the following steps. The joint density for the sequence

{yt}nt=1 can be expressed as f(yn, . . . , y1|Ω) = fn(yn|Ωn)fn−1(yn−1|Ωn−1) . . . f1(y1|Ω1). Then

the joint density of {zt}nt=1 can be computed using the change of variables formula:

q(zn, . . . , z1) =

∣∣∣∣∣∣∣∣∣∣∣

∂y1
∂z1

· · · ∂y1
∂zn

...
. . .

...

∂yn
∂z1

· · · ∂yn
∂zn

∣∣∣∣∣∣∣∣∣∣∣
fn(P−1

n (zn)|Ωn)fn−1(P−1
n−1(zn−1)|Ωn−1) . . . f1(P−1

1 (z1)|Ω1)

=
∂y1

∂z1

∂y2

∂z2
. . .

∂yn
∂zn

fn(P−1
n (zn)|Ωn)fn−1(P−1

n−1(zn−1)|Ωn−1) . . . f1(P−1
1 (z1)|Ω1)

(4.2.3)

since the Jacobian transformation matrix is lower triangular. Then we have

q(zn, . . . , z1|Ω) =
fn(P−1

n (zn)|Ωn)

pn(P−1
n (zn))

fn−1(P−1
n−1(zn−1)|Ωn−1)

pn−1(P−1
n−1(zn−1))

. . .
f1(P−1

1 (z1)|Ω1)

p1(P−1
1 (z1))

. (4.2.4)

Then, under the assumptions, each of the ratios above is distributed as U(0, 1) and the product

of the ratios gives an n− variate U(0, 1) distribution for {zt}nt=1. Since the joint distribution

is the product of the marginals, we have that {zt}nt=1 ∼ i.i.d. U(0, 1).

The theory suggests that we can evaluate density forecasts by assessing whether the PIT

series {zt}nt=1 is i.i.d. U(0, 1) or not. One example of test we can use is the Kolmogorov-

Smirnov (KS) test (Chakravarti, Laha and Rot, 1967). One shortfall of this evaluation
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method is that when the rejection occurs there is no indication to why. In other words,

say the KS test rejects the hypothesis of {zt}nt=1 is i.i.d. U(0, 1), is it because of violation of

unconditional uniformity, violation of i.i.d.. or both? Even if we could tell why the hypothesis

was rejected, we would like to know more. I.e. if we know the rejection comes from violation

of uniformity, we would want to know precisely the nature of the violation of uniformity and

how important it is, or if we know the rejection comes from violation of i.i.d., what precisely

is its nature? Is z dependent or is z heterogeneous but independent?

To make up for the shortfalls Diebold, Gunther and Tay (1998) suggested to use less

formal, graphical tools to supplement the formal tests. First, with regard to the unconditional

uniformity we can a graphical tool such as the histogram. Using histograms will do the trick

since they allow for straightforward imposition of the constraint that z has support on the

unit interval. Then we can visually compare the estimated density to the U(0, 1) distribution,

and we can compute the confidence interval under the null hypothesis of i.i.d. U(0, 1), taking

advantage of the binomial structure, bin by bin.

Second, with regard to the i.i.d. part of the hypothesis, we can use another graphical

tool, the correlogram supplemented with confidence intervals. We can use the correlogram to

detect dependence patterns in z. If we detect patterns of correlation in z, it implies that they

are not independent. The converse is not always true. We can not conclude that a data set is

independent purely based on uncorrelatedness even though we can conclude that a data set

is not independent based on lack of uncorrelatedness.
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4.3 Evaluating Density Forecasts with Likelihood Ratio and

Standard Normal Distribution

Berkowitz (2001) developed a method for evaluating density forecasts based on Rosenblatt

(1952) transformation of realizations of variables into a series of i.i.d. random variables and

likelihood ratio test. The Rosenblatt transformation is defined as

xt =

∫ yt

−∞
f̂(u)du = F̂ (yt) (4.3.1)

where yt is the ex post realization of a variable and f̂(.) is the ex ante forecasted density.

With this transformation, xt is i.i.d. U(0, 1), and forecasts users can operate with the forecasts

distribution F̂ (.) this and test for violations in independence and of uniformity. A shortfall

of this evaluation method is that a large sample size is needed to test for uniformity, and

Berkowitz (2001) demonstrated that for sample sizes under a 1000 the test based on uniform

transformation showed low power.

Since it is difficult to test for uniformity with small data samples, Berkowitz (2001) in-

troduced an extension of the Rosenblatt transformation that transform the realizations into

i.i.d. N(0, 1) variates under the null hypothesis. This transformation makes it possible for

estimation of the Gaussian likelihood, then construct the LR, Lagrange Multiplier (LM) or

Wald statistic. Berkowitz (2001) chose to focus on the LR test since it is the uniformly

most powerful (UMP ) test for some classes of model failure. A UMP test has higher power

compared to other test for a fixed confidence level for every value of the unknown parameter

(Casella and Berger, 1990). In some cases we cannot show that a test is UMP , but even when

that is the case the LR test often has desirable statistical properties and good finite-sample

behavior (Hogg and Craig, 1965). Another reason to why focus on the LR test instead of LM

or Wald statistics is that the researcher has broad range of how many and which restrictions
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to test.

The extension of the Rosenblatt transformation is defined as follows: Let φ−1 denote the

inverse of a standard normal distribution, N(0, 1). The following result holds for any sequence

and does not depend on the underlying distribution of portfolio returns.

If we a have a series xt =
∫ yt
−∞ f(u)du that is i.i.d. U(0, 1) distributed, then

zt = Φ−1[

∫ yt

−∞
f(u)du] is an i.i.d. N(0, 1). (4.3.2)

The transformation is well known and is used to for simulating random variates. From the

PIT we know that if we have X, a continuous random variable, with cumulative distribution

function FX , then the r.v. Y = FX(X) is distributed as a standard uniform random variable.

The inverse probability integral transform states that if we have Y , X and FX , then F−1
X (Y ) =

X has the same distribution as X. In our case Y =
∫ yt
−∞ f(u)du, X = zt and F−1

X = Φ−1,

which implies we can transform the observed portfolio relazations to a series that should be

independent and identically distributed standard normal variables, zt = Φ−1[F̂ (yt)]. This is

very useful due to the fact that under the null hypothesis the data follow a normal distribution,

and this allows us to use the convenient tools associated with the Normal likelihood.

In his paper, Berkowtiz (2001) showed that the following property holds: let h(zt) denote

the density of zt and φ(zt) denote the density of a standard normal, then we have the property

log[
f(yt)

f̂(yt)
] = log[

h(zt)

φ(zt)
]. (4.3.3)

The property establishes inaccuracies in the density forecasts will be retained in the trans-

formed data, i.e. if f > f̂ then the same holds for h(zt) > φ(zt).

None of the transformations, Rosenblatt or to normality, is restricted to distributional

assumptions of the underlying data. Thus, if we have the correct density forecast implies that
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we have normality of the transformed variables. This means we can test for non-normality

and serial correlation for zt.

One shortfall of the LR test is that it only has power to detect non-normality through the

first and second moment of the distribution. If we have correctly specified the conditional first

and second moment then the likelihood function is maximized at their true values (Bollerslev

and Wooldridge, 1992). If the LR test fails to reject the null, a solution is to test the stan-

dardized zt to non-parametric test. Another solution is to use the LM test framework instead

of the LR test framework, then it might be possible to test for normality simultaneously with

other restrictions under the null hypothesis.

The basic testing framework is as follows, suppose we have generated the sequence zt =

Φ−1(F̂ (yt)) for a given model. The sequence zt should be normal so we have many possible

tests that can be constructed. One example that we will explore more in the next chapter,

is that the null hypothesis can be tested against a first-order AR alternative with possible

values for the mean and the variance different from 0 and 1.

We can write the model as zt − µ = ρ(zt−1 − µ) + εt. The null hypothesis is then µ = 0,

ρ = 0 and var(εt) = 1 The log-likelihood equation for the model is

−1

2
log(2π)− 1

2
log

σ2

1− ρ2
−

(z1 − µ
1−ρ)2

2σ2

1−ρ2
− T − 1

2
log(2π)− T − 1

2
log(σ2)−

t∑
t=2

(zt − µ− ρzt−1)2

2σ2

(4.3.4)

where σ2 denote the variance for εt. Let L(µ, σ2, ρ) denote the likelihood function for the

function with the unknown parameters.

We can formulate a LR test for independence as

Berind = LRind = −2(L(µ̂, σ̂2, 0)− L(µ̂, σ̂2, ρ̂)) (4.3.5)

where hats denote the estimated values for the parameters. Under the null hypothesis the LR
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test statistic for independence is chi-squared with one degree of freedom since the number of

restrictions is one, Berind ∼ χ2(1).

We can also use the LR framework to jointly test for both independence and that the series

has mean and variance equal to 0 and 1. The combined statistic is formulated as follows

Ber = LR = 2(L(0, 1, 0)− L(µ̂, σ̂2, ρ̂)). (4.3.6)

Under the null hypothesis, the LR test statistic is distributed as chi-squared with three d.o.f.

since the number of restrictions is three, Ber ∼ χ2(3).

4.4 Evaluating Density Forecasts with Likelihood Ratio and

Markov Chains

The methods presented by Diebold, Gunther and Tay (1998) and Berkowitz (2001) to eval-

uate density forecasts require specifying a parametric method and the specification of time

dependence. Li and Andersson (2018) presented a method, based on Christofferesen’s (1998)

method, which can be used to evaluate non-parametric models. The method is constructed

in the following three steps: a goodness of fit test, an independence test and a joint test for

goodness of fit and independence.

The following is the first part of the evaluation method presented by Li and Andersson

(2018), a test for goodness of fit for density forecasts. We can measure the goodness of fit by

using a unconditional test statistic LRud for density forecasts. First step is to consider the

ex-post outcome, Y = (y1, y2, . . . , yt), generated by the distribution f(yt), and the ex-ante

forecasted density s(yt). Let [I0, In] denote the range of yt, i.e. I0 < yt < In, then divide

[I0, In] into k mutually exclusive states as [I0, I1︸ ︷︷ ︸
1

, . . . , Ik−1, In︸ ︷︷ ︸
k

], and let ni denote the number of
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yi which lie in state i. This is an extension of the interval forecasting evaluation and interval

forecasting is a special case where k = 2. As the Diebold, Gunther and Tay (1998) method,

we evaluate if s(yt) have the correct description of the unconditional probabilities of future

values by testing s(yt) = f(yt). Under the null hypothesis, forecasted distribution is equal to

the true data generating process (DGP ), s(yt) = f(yt) and the set of probabilities of yi being

in state i, N = (n1, . . . , nk), follows a multinomial distribution, multinom(T, p1, . . . , pk), with

event probability pi =
∫ Ii
Ii−1

sy(u)du. The likelihood function under the null hypothesis is

L(p) =
T !

(n1! . . . nk!)
pn1

1 . . . pnkk (4.4.1)

where pi =
∫ Ii
Ii−1

sy(u)du, and the likelihood under the alternative hypothesis is

L(p̂) =
T !

(n1! . . . nk!)
p̂n1

1 . . . p̂nkk (4.4.2)

where p̂i = ni/T is the maximum likelihood estimate of the event probability over the whole

parameter space. Therefore can the test statistic for unconditional coverage can be formulated

as a standard likelihood ratio test

LRud = −2 log
L(p)

L(p̂)
(4.4.3)

and under the null hypothesis the statistic is distributed chi-squared with k − 1 degrees of

freedom,

LRud ∼ χ2(k − 1). (4.4.4)

Such as the unconditional coverage test LRuc for interval forecasts, the LRud can be viewed

as a pure goodness of fit test.

The next test for density evaluation is for independence and it is an extension of the test

for independence for interval forecast. The independence hypothesis is evaluated against a

k state first order Markov chain. Let πij = P (yt ∈ state j|yt−1 ∈ state i) and let Π =
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π11 . . . π1k

. . .

... πi,j
...

. . .

πk1 . . . πkk


denote the transition matrix for the Markov chain. The likelihood

function under the alternative hypothesis is

L(Π) = (πn11
11 . . . πn1k

1k ) . . . (πni1i1 . . . πnikik ) . . . (πnk1k1 . . . πnkkkk ) =

k∏
i=1

k∏
j=1

π
nij
ij (4.4.5)

where nij is the number of events where a state i is followed by a state j and π̂ij =

nij∑k
j=1 nij

being the MLE for πij . Under the null hypothesis of independence past informa-

tion does not influence the present outcome. Hence, if an outcome yt is in state j, all the

previous outcome yt−1 has the same probability being in any of the states. This can be

denoted as π1j = π2j = · · · = πkj = π.j and under the null hypothesis we have

(πn11
11 . . . πn1k

1k ) . . . (πni1i1 . . . πnikik ) . . . (πnk1k1 . . . πnkkkk ) =
k∏
j=1

π
nij
.j (4.4.6)

where n.j =
∑k

i=1 nij . Since n.j is the number of outcomes that lies in state j and π.j is the

probability that an outcome lies in state j, the MLE for π.j is π̂.j = n.j/T and nj = n.j .

Under the null hypothesis the likelihood function is

L(Π̂0) =

k∏
j=1

(
nj
T

)nj , (4.4.7)

and the likelihood function under the unrestricted, alternative hypothesis is

L(Π̂1) =

k∏
i=1

k∏
j=1

(
nij∑k
j=1 nij

)nij . (4.4.8)

Hence the likelihood ratio test (LRT ) statistic for independence is

LRid = −2 log
L(Π̂0)

L(Π̂1)
∼ χ2((k − 1)2). (4.4.9)
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By having a closer look at

L(Π̂0) =

k∏
j=1

(
nj
T

)nj =

k∏
j=1

(

∑k
i=1 nij
T

)
∑k
i=1 nij (4.4.10)

and

L(p̂) =
T !

(n1! . . . nk!)
p̂n1

1 . . . p̂nkk =
T !

(n1! . . . nk!)
(
n1

T
)n1 . . . (

nk
T

)nk (4.4.11)

we notice that L(Π̂0) is proportional to L(p̂), i.e. L(Π̂0) ∝ L(p̂). This fact simplifies the next

test, the test for the conditional density.

The next test is to test if the conditional forecasted density distribution based on the

past information, s(yt)|Ωt−1, provides the correct conditional probabilities for events related

to future actual outcomes. The test statistic is similar to the LRcc in terms of interval

forecasting, and the test is a combination of a goodness of fit test and independence test since

we simultaneously test if s(yt) = f(yt) and if {yt}Tt=1 is independent. The test statistic for

this test is constructed using the additivity of the LRT statistic (Bera and McKenzie, 1985).

The sum of the test statistics that test the unconditional hypothesis and the independence

hypothesis separately is the test statistic we use to test the joint hypothesis. We denote the

test statistic for the joint test of independence and goodness of fit as LRcd = LRud + LRid.

We have that

LRud = −2 log
L(p)

L(p̂)
= −2 log

T !
(n1!...nk!)p

n1
1 . . . pnkk

T !
(n1!...nk!) p̂

n1
1 . . . p̂nkk

= −2[log(pn1
1 . . . pnkk )− log(p̂n1

1 . . . p̂nkk )], (4.4.12)

LRid = −2 log
L(Π̂0)

L(Π̂1)
= −2 log

∏k
j=1(

nj
T )nj∏k

i=1

∏k
j=1(

nij∑k
i=1 nij

)
∑k
i=1 nij

= −2[log

k∏
j=1

(
n.j
T

)n.j − log
k∏
i=1

k∏
j=1

(
nij∑k
i=1 nij

)
∑k
i=1 nij ] (4.4.13)
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and p̂j = nj/T . The LRcd = LRud + LRid can be simplified as

LRcd = −2[log(pn1
1 . . . pnkk )− log(

k∏
i=1

k∏
j=1

nij

(
∑k

j=1 nij)
nij

)] ∼ χ2(k(k − 1)) (4.4.14)

where pi =
∫ Ii
Ii−1

sy(u)du. The LRcd can both test for mis-specified density forecast and

internal dependence of the data series, compared to LRud which can only test for biased un-

conditional forecasted density and ignores the potential internal dependence of {yt}Tt=1. As

a result, LRcd can discover time dependence such as autocorrelation or conditional hetere-

oscedasticity in the forecast errors, instead of only testing the unbiasedness of the forecasted

distribution. Under the null hypothesis for the LRcd the forecasted density distribution is

equal to the true DGP , s(yt) = f(yt), and {yt}Tt=1 is independent. The test can be applied

to evaluate the efficiency of the density forecasts.

The three LR tests in this section can be applied in a natural sequence, in the same manner

as we can apply the Chrisofferesen’s (1998) tests for interval forecasts. First we jointly test

for goodness of fit and independence using the LRcd test. If we accept the null hypothesis we

conclude that the forecasting model captures the time dependence in the data and that the

distribution in the null hypothesis is the correct distribution. If we reject the null hypothesis

we further investigate why by applying the LRud and the LRid separately. Then we can

discover if we rejected the null hypothesis due to lack of independence or if we incorrectly

specified the distribution.
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Chapter 5

Monte Carlo Simulation

5.1 Introduction to Size and Power of a Test and Monte Carlo

Simulation

In this chapter we will use a Monte Carlo study to test the size and power of the test proposed

by Berkowitz (2001) and Li and Andersson (2018). To see how well the tests perform we

will compare the size and power of the tests in the study. Both Berkowitz (2001) and Li

and Andersson (2018) proposed tests for independence and conditional coverage, and we will

compare these tests. Li and Andersson (2018) also suggested a test for unconditional coverage,

and to see how well this performs we will compare it to the KS test. Shortly explained, the

KS test is a non-parametric test to measure the equality of one-dimensional, continuous

probability distributions (Chkravarti, Laha and Rot, 1967). It can be used to compare a

sample with a specified probability distribution or compare two samples with each other to

check if they have the same distribution.

When testing hypothesis in statistics, two types of errors can occur. Type 1 error is when

the null hypothesis is rejected when it is true and Type 2 error is when the null hypothesis is

47



not rejected when it is false (Hogg, Craig and McKean, 2013).

Null hypothesis is true Null hypothesis isn’t true

Reject null Type 1 Error OK

Don’t reject null OK Type 2 error

Suppose we have a parameter θ in parameter space Θ and we wish to test the hypothesis

H0 : θ ∈ Θ0 vs HA : θ ∈ ΘA (5.1.1)

where Θ0 and ΘA denote partitions of the parameter space Θ. First we decide the significance

level of a test, denoted by α. The probability of rejecting H0 depends on the true value of

θ and let π(θ) denote the probability of rejecting H0. Then the significance level of a test is

defined as

α =
sup

θ ∈ Θ0

π(θ) (5.1.2)

i.e. α is the largest value of π(θ) when θ ∈ Θ0. The significance level α is an upper bound

on the probability of a Type 1 error and it is set before the test, therefore the Type 1 error

is controlled by α.

We can use a Monte Carlo study to investigate the size of a test, i.e. the empirical Type 1

error rate. The first step is to generate a data sample under the null hypothesis, H0 : θ ∈ Θ0,

and compute the test statistic. Then record how many times the test is rejected and calculate

the proportion. Suppose we replicate a statistical test m times under the null hypothesis and

we reject the null hypothesis k times. Then the proportion is k
m is the empirical Type 1 error

rate α̂ . We want the proportion to approximately be α, k
m ≈ α, and when m is large the

Type 1 error rate will approximate α.
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The power of a test is denoted by π(θ) when θ ∈ ΘA. Then we can measure the Type 2

error as P (Type 2 error) = 1 − π(θ) when θ ∈ ΘA. The power of a test depends particular

value of θ ∈ ΘA, thus the power will be a function of the true value θ. When α is set we prefer

a test with high power, i.e. a test with low probability of a Type 2 error. To evaluate the

power of a test the first step is to generate a data sample under the alternative hypothesis,

HA : θ ∈ ΘA, and compute the test statistic. Then record how many times H0 is rejected

at significance level α and compute the proportion. Suppose we replicate a statistical test m

times under the alternative hypothesis and we reject the null hypothesis l times. Then the

proportion l
m is the empirical power π̂(θ) and when m is large π̂(θ) will approximate π(θ).

The standard error is defined as se(π̂(θ)) =

√
π̂(θ)(1−π̂(θ))

m ≤
√

0.5
m .

The main purpose of the empirical size and power is to assess a test or compare different

tests. This is especially important in the situations where theoretic Type 1 and Type 2 errors

have a non trivial solution or have analytic complications.

5.2 Monte Carlo Simulation for Density Forecast Evaluation

Methods

In the Monte Carlo study the null hypothesis is that the forecasted density distributions is

equal to the true data generating process and the alternative hypothesis is that they are

different;

H0 : s(yt) = f(yt) vs HA : s(yt) 6= f(yt). (5.2.1)

We let s(.) denote the forecasted distribution and let f(.) denote the true distribution of the

DGP .

To illustrate an example of how we can use the Monte Carlo method to measure the size
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and power for the density forecasting evaluation methods we will use the LRud, LRid and LRcd

tests. We can, for example, use the i.i.d. N(0, 1) and i.i.d. t(7) distributions to measure the

size and the power. First for the size property we assume that s(yt) for {yt}Tt=1 is distributed

as a independent standard normal, i.i.d. N(0, 1). To measure the empirical Type 1 error rate,

the first step is to generate 1000 density forecasts from H0 and compute the LRud, LRid and

LRcd test statistics. Then decide on a significance level, for example α = 0.05, and calculate

the critical value. From the previous section we can find the critical value based on the chi-

squared distribution and the k states can be chosen based on Sturges’ rule for deciding the

ideal bin width when constructing a histogram (Sturges, 1926). The rule is that the number of

states is chosen as the integer value of 1 + log2(T ) where T is the sample size and the interval

length from each state is identical. From this we calculate the proportion of rejections and

measure the size of the test, i.e. the empirical Type 1 error rate. For example, if the data

sample consists of a 1000 replicates and the significance level is 0.05, we want around 50

rejections.

For measuring the power of the LRud and LRcd we can continue with the same distributions

as above, i.i.d. N(0, 1) and i.i.d. t(7). For example, we can measure the power when the

distribution f(.) of the DGP is i.i.d. N(0, 1) while s(.) is i.i.d. t(7). First, generate a sample

of density forecasts with the t-distribution and evaluate the hypothesis H0 : s(yt) = f(yt).

The next step is to compare the test statistics to the appropriate critical values, calculate

the number of rejections and measure the power of the test. E.g. say we generate a sample

of 1000 density forecasts under yt ∼ i.i.d. t(7) and our hypothesis is that the density should

be standard normal. We then calculate the proportion of rejections at a significance level

α = 0.05. The proportion of rejections is the empirical power of the test and we want a high

number of rejections, e.g. if we have a sample of a 1000 replicates and we have 900 rejections,

then we have power of 90%.
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Since both the i.i.d. t(7) and i.i.d. N(0, 1) are independent processes and LRid is a pure

independence test, the illustrated Monte Carlo simulations above will measure the size of

this test, not the power. To measure the power of the LRid we have to use a process with

dependence and for this purpose we can, for example, simulate density forecasts with GARCH

dependence.

5.3 Size and Power Table

For the size and power tables, we have divided the forecasted distributions into two cases:

Case 1 : yt ∼ i.i.d. N(0, 1), yt ∼ i.i.d. t(7) (5.3.1)

Case 2 : yt = nt
√
ht; ht = 0.2 + 0.6y2

t + 0.2ht−1 (5.3.2)

nt ∼ i.i.d. N(0, 1); nt ∼ i.i.d. t(7). (5.3.3)

We will use Case 1 to determine the size of the tests and also the power of the LRud and

LRcd test, and we will use Case 2 to measure the power of the three tests. We simulated

samples with Monte Carlo replication of 5000 with sample sizes 250, 500 and 1000. We know

from the previous section that a standard error is se(π̂(θ)) =

√
π̂(θ)(1−π̂(θ))

m , and with this we

can calculate a 95% CI for the estimated size 5%: 0.05± 1.96

√
0.05(1−0.05)

5000 = (0.0469, 0.0531).
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Table 5.1: Size of the tests when s(.) = f(.)

DGP i.i.d. N(0,1) i.i.d. t(7)

N 250 500 1000 250 500 1000

LRud 0.0122 0.0156 0.0170 0.0436 0.0490 0.0482

KS 0.0512 0.0512 0.0484 0.0446 0.0516 0.0474

LRid 0.1124 0.0886 0.0864 0.0676 0.0422 0.0324

Berind 0.0540 0.0474 0.0544 0.0450 0.0448 0.0534

LRcd 0.0748 0.0594 0.0636 0.0634 0.0444 0.0328

Ber 0.0054 0.0054 0.0028 0.0460 0.0498 0.0518

In Table 5.1 the forecasted distribution is the same as the true data generating process,

i.e. s(.) = f(.), and we start with comparing the sizes of the six tests. When s(.) is i.i.d. t(7)

the size of all six tests are unbiased or nearly unbiased, and all six tests perform well.

When the forecasted distribution s(.) is i.i.d. N(0, 1), the LRid and the LRcd tests tends

to be over biased and have a too large rejection rate, especially for the smaller samples. We

see that the size bias decrease as the sample increase, and the rejection rate tends to approach

5% for the LRcd test. The LRud test is under biased, the rejection rate is low and we see a

small increase in the size as the sample sizes increase.

For the KS and Berind tests the size is unbiased or nearly unbiased for all the sample

sizes and both tests perform well when s(.) is i.i.d. N(0, 1). On the other hand, the Ber test

perform quite poorly and the size is very under biased. The rejection rate is lower than 1%

and increase in sample size has little impact on the size distortion.
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Table 5.2: Power of unconditional and conditional tests and size of when s is i.i.d. N(0,1)

DGP i.i.d. t(7)

N 250 500 1000

LRud 0.2090 0.4758 0.8504

KS 0.0630 0.0926 0.1834

LRid 0.0665 0.0466 0.0324

Berind 0.0435 0.0468 0.0456

LRcd 0.1040 0.1904 0.3854

Ber 0.0030 0.0068 0.0064

Table 5.3: Power of unconditional and conditional tests and size of when s is i.i.d. t(7)

DGP i.i.d. N(0,1)

N 250 500 1000

LRud 0.2212 0.5882 0.9712

KS 0.0558 0.0736 0.1438

LRid 0.1080 0.1016 0.0816

Berind 0.0496 0.0554 0.0510

LRcd 0.1876 0.3206 0.6300

Ber 0.5632 0.9114 0.9986

In the Table 5.2 and 5.3 the forecasted distribution are different from the true DGP ,

i.e. s(.) 6= f(.). The forecasted distributions are from Case 1. Since both the processes are

independent we measure the power of LRud and LRcd and the size of LRid.
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In Table 5.2 the Ber test for conditional coverage has barely any power. In his article,

Dowd (2004) shows a deviation from normality of the transformed data and this makes it

difficult to detect deviations from normality. The LRud and the LRcd have better power

properties compared to the KS and Ber tests.

In Table 5.3, the test with the highest overall power is the Ber test. For the LRud and

LRcd the power is low when the sample is small and the power increase as the sample increase.

As we can see both Table 5.2 and 5.3, the KS test shows little power. The power increase

when the sample increase, but even when the sample size is 1000 the power is still lower than

20% for both forecasted distributions.

For the independence tests, we see in Table 5.3 the Berind the size is unbiased or close for

all the sample sizes. The LRid is over biased but the size distortion decrease when we increase

the sample size. In Table 5.2 both the independence tests are unbiased or nearly unbiased.

Table 5.4: Power of the tests when DGP is from case 2 and nt is i.i.d. N(0, 1)

DGP i.i.d. N(0,1) i.i.d. t(7)

N 250 500 1000 250 500 1000

LRud 0.5590 0.8622 0.9934 0.9156 0.9932 0.9998

KS 0.6514 0.9100 0.9974 0.8018 0.9762 1.0000

LRid 0.8316 0.9800 0.9994 0.8310 0.9830 0.9988

Berind 0.2788 0.3336 0.3706 0.2124 0.2428 0.2506

LRcd 0.8826 0.9954 1.0000 0.9812 0.9984 0.9998

Ber 0.1468 0.1934 0.2548 0.8862 0.9572 0.9894
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Table 5.5: Power of the tests when DGP is from case 2 and nt is i.i.d. t(7)

DGP i.i.d. N(0,1) i.i.d. t(7)

N 250 500 1000 250 500 1000

LRud 0.9425 0.9983 1.0000 0.7915 0.9616 0.9974

KS 0.2515 0.4303 0.7386 0.2860 0.4360 0.6706

LRid 0.8855 0.9757 0.9942 0.8815 0.9700 0.9930

Berind 0.4175 0.4813 0.5556 0.2610 0.2952 0.3200

LRcd 0.9820 1.0000 1.0000 0.9600 0.9970 1.0000

Ber 0.3110 0.4227 0.5864 0.6540 0.7298 0.8260

In Table 5.4 and 5.5 the density forecasts are simulated with a GARCH dependence from

case 2 and we will measure the power against incorrect fit and dependence.

In Table 5.4 the three LR tests perform really well. All the tests have high power, even

with small samples, and converges to 1 as the sample increase. The KS also shows good

power properties, both when the DGP is i.i.d. N(0, 1) and i.i.d. t(7). The power for the KS

has a power over 65% when the sample size is 250 and goes towards 1 as the sample size

increases. The Berind and Ber tests shows little power compared to the others when the

DGP is i.i.d. N(0, 1). Especially the Ber shows very little power and even when the sample

size is 1000, the power is less than 30% when we test if the DGP is i.i.d. N(0, 1).

In Table 5.5 the tests with the highest power properties are the LR tests for unconditional

coverage, independence and goodness-of-fit compared to KS, Berind and Ber respectively.

When the sample size is 500 or more, all the LR tests has a power over 90% and again we

see that the power converges to 1 as the sample size increase. The KS test shows little power
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when the sample size is small. The power increases as the sample size increase but the power

is below 75% in all the cases in Table 5.5. The Berind and Ber tests fail to detect dependence

in the case where the DGP is standard normal, and neither of the tests show high power

properties. When the DGP is t(7) the Ber test show good properties, but the Berind still

fail to detect dependence.

Both Table 5.4 and Table 5.5 show that the LR tests shows good power properties, also

in the cases where the error term has the same distribution has the DGP . The LR tests

outperform the KS and Ber tests when it comes to detecting GARCH-type dependence in

the simulated processes.

5.4 Remarks of Monte Carlo Simulations

Based on Table 5.1 to 5.5 we conclude that the LR tests shows good size and power properties.

When we measure the sizes of the tests, the LR, the KS, the Berind and the Ber tests all show

good properties. When we measure power for independent processes, the LR tests usually

outperforms the rest. Especially in the case when the simulated data is normally distributed,

the LRcd tests shows good power properties and the Ber test has barely any power. When it

comes to detecting GARCH simulated dependence in the processes, the LR tests outperforms

the rest and this is the main advantage with this evaluation method. In almost all of the cases

with GARCH dependence the LR has higher power properties. In particular, the Berind test

shows poor power properties when detecting GARCH dependence and the LRid test has very

high power, even with small samples. Also, when we test if the DGP is i.i.d. N(0, 1), both

the Ber and Berind fail to detect dependence.

In the next chapter, where we will see how the LR evaluation method functions for eco-
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nomical, financial and insurance data. Both the test for interval forecasts by Christoffersen

(1998) and for density forecasts by Li and Andersson (2018) can be carried out in a natural

sequence in applications. First, we use the jointly test for goodness of fit and independence

and test for coverage with well known probability distributions, more specifically normal, t

and gamma distribution. If we don’t reject the test, we can conclude that we have specified

the proper distribution for the data set and the time dependence in the data set has been

captured by the specified forecasting model. If we reject this test, we further investigate why

by applying the test for goodness of fit and the test for independence to check if rejected due

to dependence, incorrectly specified distribution or both.
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Chapter 6

Empirical Studies

In the following sections we will see how the LR tests for density forecasts perform while

being used on empirical economical, financial and insurance data. We will continue with the

LR tests based on the Monte Carlo simulation in the previous chapter. In our simulation,

the LR tests showed good size and power properties and performed well overall. Also, we

have no knowledge of this evaluation method being used on empirical data. Both Diebold,

Gunther and Tay (1998) and Rossi (2014) applied the Diebold, Gunther and Tay (1998)

evaluation method on empirical data in their papers. More specifically, on Standard & Poor’s

500 Index (S&P500) returns and real gross domestic product (GDP ) data, respectively. Raaij

and Raunig (2002) applied the Berkowitz (2001) evaluation method on financial data, more

specifically on daily returns for the Financial Times and Stock Exchange 30 and the S&P500.

We start with a study of the real GDP for the U.S. and continue with a study of S&P500

and the log returns for New York Stock Exchange (NY SE) Amex composite index. In the

last empirical study we will use insurance data. We will study a time series of compensa-

tion amount for fire damage claims in Norway. In the following empirical studies we use a

significance level at 5%.
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6.1 Real Gross Domestic Product for the U.S.

In the first empirical study we have used a data set for the real GDP in the US. The data is

collected on a quarterly basis from 01. January 1948 to 01. July 2017.

Figure 6.1: Real Gross Domestic Product from 01. January 1948 to 01. July 2017

First we are interested to figure out of either the normal- or the t-distribution has the cor-

rect conditional coverage for the process. If we reject the hypothesis for conditional coverage

we further investigate the sample with tests for independence and unconditional coverage.

We look at the t-distribution first. With the use of the software R, we have estimated the

degrees of freedom to be 7. The test statistic for LRcd is 1586.833 and the critical value at a 5%

significance level is 74.46832. This means we reject the null hypothesis that the t-distribution

provides the correct conditional probabilities for the process. Further we investigate why

we rejected the hypothesis by investigating the independence and goodness of fit properties

separately. The LRid test statistic is 325.0031 and LRud test statistic is 1261.83. The critical

values are 66.33865 and 14.06714, so we reject the independence and the goodness of fit when

we test for coverage with the t(7) distribution.

Next, we check if the normal distribution yields the correct description for the conditional
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and unconditional probabilities. Since the independence test is not dependent on the process

there is no need to test for independence in this step. We estimate the mean and variance

of the sample, 3.193548 and 6.850534, and use the estimates to calculate the test statistics

for conditional and conditional coverage. The test statistic for LRcd when we use the normal

distribution is 337.2123 and the critical value is 74.46832. Since the conditional coverage

test can be viewed as a combination of goodness of fit and independence and we rejected

the hypothesis for independence, we are not surprised that we reject the null hypothesis

about conditional coverage by the normal distribution also. The next hypothesis we are

interested in is if the normal distribution gives an accurate description for the unconditional

probabilities, and the LRud test statistic is 12.20923. The critical value is 14.06713 and since

12.20923 < 14.06713 we do not reject this hypothesis.

Figure 6.2: Real GDP with fitted normal density

Figure 6.2 is a histogram of the frequencies for the real GDP with an added normal density

61



with the estimated mean and variance. From a visual perspective it looks like the normal

distribution fit the sample well. A possible reason to why we rejected the independence

hypothesis and therefore conditional coverage by the normal distribution is that in the data

we have included periods when the economy took a hit, for example the financial crisis in

2008.

Figure 6.3: Fan chart for real GDP

Using the statistical software R, we estimate an ARIMA model to model the GDP time

series. We have used the function auto.arima in R to select the optimal ARIMA model for

our GDP time series. The function goes through all the possible models for the time series

and chooses the one with the lowest AIC value. The Akaike Information Criterion AIC is

measure of the quality of a statistical model and we choose the model with the lowest the AIC

value (Wang and Liu, 2006). The AIC value for a model is calculated using the following

formula:

AIC = 2k − 2ln(L) (6.1.1)
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where k is the number of estimated parameters and L denotes the log-likelihood of a model.

Based on the AIC value, the optimal model for the data set is an ARIMA(3, 1, 0)×(0, 0, 1)4

model. With the ARIMA model we can simulate paths for n-steps ahead and get a picture of

how the real GDP will develop based on our model. We have chosen to simulate 5000 paths for

5-steps, i.e. 5 quarters ahead. Figure 6.3 shows our predicted development 5 quarters ahead.

The means of the process can be looked at as the point forecasts for 5 following quarters.

Based on the point forecasts, the model predicts a slight increase in the real GDP the first

quarters and then a decrease. The blue fields are the quantiles or the interval forecasts of the

process, where the darkest blue field is the 30% interval forecasts and the lightest blue is the

90% interval forecasts. As expected, it fans out further into the forecasting as the uncertainty

around the forecasts increase.

6.2 Standard & Poor’s 500 Index

Next we study a time series data-set of the average prices for the S&P500 index. The prices are

collected daily in the two year period from 01/01/2015 to 01/01/2017. S&P500 is commonly

viewed as a leading indicator of U.S. equities and it is as an index of 500 stocks (Sen and

Ma, 2015). The stocks are chosen by S&P Dow Jones Indices and their weights are chosen

by a market cap methodology, giving a higher weighting to larger companies (Investopedia,

2018c).
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Figure 6.4: S&P500 Price from 1. Jan 2015 to 1. Jan 2017

From Figure 6.5 we see that the data has a bell curve and we will therefore test if the data

follows a normal- or a t-distribution, using estimated mean, variance and degrees of freedom.

Figure 6.5: Histogram for S&P500

We start with the t-distribution. First we test for conditional coverage using the t-
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distribution with estimated degrees of freedom, 6. The value for the LRcd test statistic is

1166.544 and the critical value is 74.46832, so we reject the null hypothesis. Further, we

investigate if the t-distribution has the correct unconditional coverage for the data and if the

data set is independent. The values for the LRud and LRid test statistics are 15127.17 and

1166.544, and the critical values are 14.06714 and 66.33865, respectively. This suggest that

we reject both hypothesis since both the test statistics are higher than their critical values.

Next we look at the normal distribution with the estimated mean and standard deviation,

2077.86 and 83.18239 respectively. First we check if the normal distribution yields the correct

conditional coverage. Since the conditional coverage test is a combination of the independence

test and the unconditional coverage test, we technically don’t need to apply this test since we

already rejected the independence hypothesis. The test statistic LRcd is 1217.46832 and the

critical value is 74.46832, which, not surprisingly, implies that we reject the null hypothesis.

Next we check if the normal distribution yields the unconditional coverage for the data set.

The LRud test statistic is 50.48608 and the critical value is 14.06714, which means we also

reject the hypothesis that the normal hypothesis has the correct unconditional coverage for

the S&P500 data set.

Not surprisingly we rejected the independent hypothesis. Financial data is rarely indepen-

dent, as recognized by Engle (1982) and Christoffersen (1998), and studies have shown that

the normal distribution is often insufficient for describing the distribution for financial time

series. The standard deviation for financial data is usually heteroskedastic and dependent

on the past, and the rejection of the independent hypothesis suggest that the LR test has

power on real financial data, not just simulated. The rejection on the independence hypothesis

suggest that the S&P500 data can be modeled with an ARMA−GARCH model.
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Figure 6.6: Fan chart for S&P500

With the statistical software R we estimate an ARMA−GARCH model for the dataset.

The model with the lowest AIC value is an ARMA(0, 2) − GARCH(1, 1) model. To try to

predict how the S&P500 will develop, we simulated 5000 paths of 25 future values. Figure

6.6 shows the predicted development based on the ARMA−GARCH model. The grey line

is the mean values or the point forecasts which predicts a decrease for the S&P500. The blue

fields are the interval forecasts, where the darkest blue 30% and the lightest blue is the 90%.

The fan spreads out and shows a whole spectrum of future possible values.

6.3 Log Returns for New York Stock Exchange Composite

Index

As we seen in the previous sections, economical and financial data sets are rarely independent.

Interest rates and prices are usually dependent on the previous period(s). One method of
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transformation a data set to attempt to turn it into a stationary and/or independent time

series is to study the log returns. For a time series {Yt}Tt=1 the logarithm transformation is

defined as

log(1 + rt) = ln(
Yt
Yt−1

) (6.3.1)

where rt denotes the return of the time series variable at time t.

When analyzing financial data using log returns are very popular. To see why, we look at

some of the properties for log returns (Quantivity, 2011). First, we define a return rt at time

t as

rt =
pt − pt−1

pt−1
(6.3.2)

where pt denotes the price at time t. One benefit of using returns, instead of the price, when

analyzing is the normalization of the variables, we measure all the variables in a comparable

metric. For example, we have a $1 increase of a stock price. If the stock’s original price is $10

we have a 10% increase and if the stock’s original price is $100 we have a 1% increase. The

price has increased by the same amount and we can more clearly compare the impact when

we study the returns.

Often in finance one assumption is that prices are distributed log normally, which implies

that the log(1 + rt) is normally distributed since

1 + rt =
pt
pt−1

= exp
log

pt
pt−1 . (6.3.3)

This property is one of the main reasons log returns are so popular, since the normal dis-

tribution is quite common and popular is statistical analysis. Though, the assumption of

log-normality of prices is popular it is not always correct for all stocks, indexes etc.
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Another property that explains the popularity of log returns in finance is the time-

additivity. We have a sequence of n returns and we want to calculate the compounding

return, defined as:

(1 + r1)(1 + r2) . . . (1 + rn) =
n∏
t=1

(1 + rt) (6.3.4)

Since we know from probability theory that a product of normal distributed variables is not

normal the above equation isn’t very useful. Instead, we use recall that the sum of independent

normally distributed r.v. and the logarithmic identity

log(1 + rt) = log(
pt
pt−1

) = log(pt)− log(pt−1). (6.3.5)

We use this and notice that the compounded log returns can be calculated as

n∑
t=1

log(1 + rt) = log(1 + r1) + log(1 + r2) + · · ·+ log(1 + rn) = log(pn)− log(p0). (6.3.6)

Then if the prices are log normally distributed and independent, the sum of the natural

logarithm of the prices will be normally distributed.

For the log returns study we have chosen a data set of the NY SE Amex composite index.

The data set is collected on a daily basis from 28. Jan 2013 to 26. Jan 2018. The NY SE

Amex composite index made up of stocks that represent the NY SE Amex equities market

(Investopedia, 2018b). The index is a market capitalization-weighted index and the weight of

each stock depends on the price of the shares and how many are outstanding.
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Figure 6.7: Logarithm returns for NYSE Amex Composite Index

As in the previous section we start by checking if the normal or the t-distribution has the

right conditional coverage.

Figure 6.8: Histogram of the logarithm returns for NYSE Amex Composite Index

We start with the t-distribution with estimated degrees of freedom 7. The test statistic
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for LRcd is 10845.26 and the critical value is 92.80827, which implies that we reject the null

hypothesis that the t-distribution has the correct conditional coverage. Further we investigate

why, incorrectly specified distribution, lack of independence or both? The test statistics for

these hypothesis are 10764.16 and 81.09181 respectively. The critical value for the goodness

of fit test is 15.50731 so we conclude that the t-distribution does not provide the correctly

specified density. The critical value corresponding to the independence is 83.67526. Since the

test statistic is lower than the critical value we conclude that the sample is independent.

Next we check if the normal distribution has the correct conditional coverage for the esti-

mated probabilities. The test statistic for LRcd is 135.5251 and the critical value is 92.80827,

therefore we reject the null hypothesis and we conclude that the normal distribution does not

provide the right coverage. Since we already know that the sample is independent and the

LRcd test is a combination of goodness of fit and independence, we know that the normal

distribution does not provide the right unconditional coverage. The test statistics for good-

ness of fit LRud is 54.43333 and the critical value is 15.50731, and as expected we also reject

the null hypothesis of unconditional coverage by the normal distribution. Since we reject the

hypothesis for coverage by the normal distribution it implies that the prices are not log normal

and the theoretical assumption about log normal prices does not always hold for empirical

data.

6.4 Compensation amount for fire damage claims in Norway

In this section we will study compensation amounts for fire damage claims caused by electronic

equipment in Norway. The amounts are measured monthly from 1985 to 2017 and the value is

in 100,000 NOK. Insurance companies can use density forecasting for various purposes, such

as predicting the claim amount for different insurances, the rate of traffic accidents resulting

70



insurance claims etc. With these predictions insurance companies can plan different strategies

for different probable outcomes.

Figure 6.9: Compensation amount for fire damage claims in Norway

From a visual perspective of Figure 6.9 the claim amounts look quite random and there is

no obvious pattern. We will study this further by checking if the sample is independent. In

addition we will also look at known probability distributions to see if any of them contribute

the right coverage for the claim amount probabilities.
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Figure 6.10: Histogram of claim amounts for fire damage

From Figure 6.10 we see that the claims are positively skewed which is quite common in

insurance. Incidents that result in smaller claims happen more often, therefore they have a

higher probability. The distribution for the claims often have a long tail since an insurance

company can experience incidents that have very high claims. Usually these incidents have

a low probability. The skewness suggest that the normal- and t-distribution will not supply

the correct coverage for the claim probabilities since they are symmetric distributions. In

the same procedure as the previous section we will first check if the normal distribution has

the correct coverage and if the sample is independent. The LRcd statistic when the null

hypothesis is normal distribution has the correct coverage is 98.21342 and the critical value is

58.12404, which implies that we reject the null hypothesis of correct conditional coverage by

the normal distribution. Next we investigate the goodness-of-fit and independence separately.

The test statistic for goodness-of-fit is 47.77471 and the critical value is 12.19159. We reject the
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hypothesis of goodness-of-fit by the normal distribution, which is not surprising by looking at

the skewed shape of the histogram. The LRid test statistics is 50.43871 and the corresponding

critical value is 50.99846 hence we accept the null hypothesis of independence.

Since the claim amounts are skewed we will check if one of the skewed and continuous

distributions has the correct conditional coverage. We have chosen the gamma distribution

and with the help of the software R we have estimated the shape to be 1.39 and the rate to be

0.17. The test statistic for conditional coverage is 55.09666 and the critical value is 58.12404,

therefore we conclude that the gamma distribution has the correct conditional coverage for

the claim amounts. Even though it is not necessary, we also check if the gamma distribution

has the correct unconditional coverage. Since we already accepted the null hypotheses of

conditional coverage and independence, we should also accept the null hypothesis of uncondi-

tional coverage by the gamma distribution. The unconditional test statistic LRud is 4.657952

and the corresponding critical value is 12.59159. Hence, we accept the null hypothesis of

unconditional coverage as expected.

Figure 6.11: One-step ahead forecast for the claim amount
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In Figure 6.11 we have made a one-step ahead forecasts for the claims amount based the

gamma distribution. The mean value is 8.17 and can be viewed as a point forecast for the

claim amount for the next period. The quantiles for 25% and 75% are 3.13099 and 11.23726

respectively. These limits can be viewed as a interval forecast for a 50% level, and there is an

estimated 50% probability that the claim amount for the next period should be within these

limits.
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Chapter 7

Summary and Concluding Remarks

Forecasting future values of variables plays a central and important role when discussing and

analyzing time series data. Forecasts are produced and studied daily to attempt to make the

best strategies for the future. Since forecasts play an important role in economics and finance,

as well as other areas, a natural consequence is that the evaluation of the forecasts play an

important role.

Historically, most attention has been focused on construction and evaluating of point

forecasts. Point forecasts are simple to understand and compute, and they give a guide to

immediate implementation for the forecasts user. Recently, the interest and demand for fore-

casts that give a description of the uncertainty around the forecast has increased. The interval

forecasts can be viewed as the first reaction to the increasing demand for more descriptive

forecasts. An interval forecast describes the intervals for the most likely outcomes at different

confidence levels and the forecast user can plan different strategies based on the intervals for

the forecasted variable. As we have had advances in computer power and statistical method-

ology, the interest for density forecasts also increased. With technological advances we can

produce more advanced density forecasts and don’t have to rely on dubious assumptions to
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the same degree. Since a density forecast provides a complete description of the uncertainty

and since the point- and interval forecasts is merely by-products, the density forecast satisfies

all the forecasts users needs. If a user is interested in the point forecasts the mean or the

median of the density forecast will suffices, and if a user is interested in the V aR the quantiles

of the density forecast is adequate.

A lot of past literature has focused on point forecasts therefore we only gave a brief

introduction to evaluating the point forecasts. When evaluating point forecasts, we can look

at the forecasting model to see if it satisfies certain desirable properties and we can compare

several forecasting models to see if they outperform one another.

Engle (1982) recognized the need for dynamic interval forecasts around the point forecasts,

and Christoffersen (1998) identified that if we have dynamic forecasts, we can’t evaluate them

purely based on unconditional coverage. Since the traditional method for evaluating interval

forecasts failed to identify clusters of outliers in the interval forecasts, Christoffersen (1998)

developed a method that would identify this issue. The test for conditional coverage is a

combination of an independence test and an unconditional coverage test, which identifies if

there exist clusters of outliers in the time series.

As the demand for density forecasts increased, we also have seen an increase in the demand

for evaluation methods. Evaluation methods for density forecasts has been little explored

compared to the point forecast and we chose to focus more on this subject. The three methods

we have discussed have all been presented in the interval from 1998 to the present date. The

first method we discussed was developed by Diebold, Gunther and Tay (1998). It is based

on the PIT of the density forecasts and the uniform distribution. They argue, that if the

forecasts densities is correctly specified, then the PIT should be distributed as i.i.d. U(0, 1)

and there are several tests available to test for uniformity to check this property.
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Berkowitz (2001) pointed out that it is difficult to test for uniformity when the sample is

small, and proposed a evaluation method based on transformation into the standard normal

distribution. If we have specified the right distribution for the density forecasts then the

Rosenblatt transformation will transform realizations into i.i.d. N(0, 1) variates and use the

log-likelihood equation to formulate LR tests for independence and conditional coverage.

Li and Andersson (2018) extended Christoffersen’s method for interval forecast evaluation

to density forecast evaluation. The three tests they presented are for unconditional coverage,

independence and conditional coverage and all three tests are non-parametric. The three tests

are based on the likelihood ratio, and the conditional coverage tests is constructed based on

the additivity of LRT and is a combination of the independence and unconditional coverage

test.

In the Monte Carlo study we compared two methods for density forecasts. Both methods

showed good size properties and nearly all the sizes are unbiased for the largest sample size.

When we estimate the power of the tests coverage tests using independent processes, the tests

proposed by Li and Andersson (2018) perform better than the KS and the test proposed

Berkowitz (2001) overall. Especially when the simulated distribution is normal, the Ber test

has barely any power while the LRcd test shows increasing power as sample increases. We

also measured the power of the tests based on simulating density forecasts with GARCH-

dependence. The LR tests proposed by Li and Andersson (2018) perform really when the

simulated processes has a GARCH dependence, and the main advantage of this evaluation

method is its ability to detect GARCH-dependence in the processes. The Ber and Berind

test failed to detect dependence, especially when the DGP is i.i.d. N(0, 1).

In the empirical studies used the LR tests to evaluate economical, financial and insurance

data. When we studied the real GDP and the S&P500 Index we rejected the conditional
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coverage by the normal and the t-distribution hypothesis and the independence hypothesis.

This is not surprising since the economical and financial data is usually dependent on the

recent realized values. When evaluating the log-returns we did not reject the null hypothesis

for independence, but we rejected the hypothesis of goodness of fit for the normal and t-

distribution.

The last empirical study was a data set of compensation amounts for fire damage claims

caused by electronic equipment in Norway. From a visual perspective, we could see that the

claims amounts were quite right skewed which is not unusual for insurance data. We checked

first if the normal distribution has the right conditional coverage for the probabilities and we

rejected the null. After we checked why by evaluating the independence hypothesis and the

goodness-of-fit separately, which led to the conclusion that the sample was independent and

the normal distribution did not have the correct unconditional coverage. Since the sample

was skewed we checked if the gamma distribution had the correct coverage for the claims,

and we accepted the hypothesis. Based on the gamma distribution contributing the correct

conditional coverage for the claims, we predicted the claim amount for one-step ahead based

on this distribution.

There are several topics that could be interesting to study further. For example to investi-

gate further the evaluation method proposed by Li and Andersson (2018) since we have seen

that this evaluation method density forecasts perform well. Since economical and financial

data often are dependent on past realization of the target variable and the GARCH model

is quite popular, further studies of the density forecast evaluation method with GARCH

dependence could be interesting. For example, use a Monte Carlo study to simulate density

forecasts with GARCH dependence and measure the size with a testing if true DGP is the

same GARCH process. Also measuring the power between different GARCH density fore-

casts by simulating density forecasts with GARCH dependence and measure the power with
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testing if GARCH process with different parameters is the true DGP .

Another more practical study would to look further into the the assumption of log dis-

tributed prices for stocks, indexes etc. We can use density forecasting evaluation to investigate

this assumption. Our suggestion for further research is to first do a Monte Carlo simulation

with the log-normal distribution to measure the size and power of the methods with this dis-

tribution. The second step would be testing and evaluating financial data with an evaluation

method for density forecasts. Finally, if one don’t reject the null hypothesis of log-normal

prices, further study the log-returns of this stock or index.
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Appendix A

R-Code

A.1 R-Code for Simulation

# AR(1)−LIKELIHOOD

l o g l=function ( th , z )

{

m=th [ 1 ] ; s=th [ 2 ] ; r=th [ 3 ]

n=length ( z )

l l =−0.5∗log (2∗pi )−0.5∗log ( s ˆ2/(1− r ˆ2))−( z [1]−m/(1− r ) )ˆ2/(2∗s ˆ2∗(1− r ˆ2) )

l l=l l −((n−1)/2)∗log (2∗pi )−((n−1)/2)∗log ( s ˆ2)

for ( i in 2 : n)

{

l l=l l −(z [ i ]−m−r∗z [ i −1])ˆ2/(2∗s ˆ2)

}

n l l=− l l

return ( n l l )

}

berkowitz=function ( z , a l t e r n a t i v e=a l t )

{

th=c ( 0 , 1 , 0 )

i f ( a l t e r n a t i v e==” ar1 ” )

{
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meanhat=as .numeric ( arima ( z , order = c ( 1 , 0 , 0 ) , i n c lude .mean=TRUE)$coef [ 2 ] )

varhat=as .numeric ( arima ( z , order = c ( 1 , 0 , 0 ) , i n c lude .mean=TRUE)$sigma2 )

ar1hat=as .numeric ( arima ( z , order = c ( 1 , 0 , 0 ) , i n c lude .mean=TRUE)$coef [ 1 ] )

l lH1=l o g l (c ( meanhat , varhat ˆ0 . 5 , ar1hat ) , z=z )

} else

{

#ths=c (1 , 0 . 1 , 0 . 5 )

#opt=nlminb ( ths , l o g l g11 , z=z )

#l lH1=opt$ o b j e c t i v e

l lH1=as .numeric ( garchFit (˜garch ( 1 , 1 ) , i n c lude .mean=FALSE, data=z , trace=FALSE) @f i t$ l l h )

}

l lH0=l o g l (c ( 0 , 1 , 0 ) , z=z )

l lH0 ind=l o g l (c (mean( z ) , sd ( z ) , 0 ) , z=z )

LRind=2∗ ( l lH0ind−l lH1 )

LR=2∗ ( l lH0−l lH1 )

return ( l i s t ( LRind=LRind ,LR=LR) )

}

#################

##I1=1: dependent garch , I2=1: independent i i d##

##D1=1: s i s t d i s t r i b u t i o n , D2=1: s i s normal d i s t r i b u t i o n##

##M1=1: DGP i s t d i s t r i b u t i o n , M2=1:DGP i s normal d i s t r i b u t i o n##########

Densi=function (D1 , D2 ,T, df ,w, a , b , k0 , I1 , I2 ,M1,M2, a l t , rep ){

LRberind=numeric ( 0 ) ; LRber=numeric (0 )

LRber indtest=numeric (0 ) ; LRbertest=numeric (0 )

LRuc=numeric ( 0 ) ; LRind=numeric ( 0 ) ; LRcc=numeric (0 )

ks=numeric ( 0 ) ; PIT=numeric (0 )

LRuctest=numeric ( 0 ) ; LRindtest=numeric ( 0 ) ; LRcctest=numeric (0 )

k s t e s t=numeric ( 0 ) ; PITtest=numeric (0 )

k0 <− round(1 + log2 (T) )
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for (n in 1 : rep ){

y=numeric (0 )

y1=numeric (0 )

h1=numeric (0 )

n1=rt (T, df )

y1 [1 ]= rt (1 , df )

h1 [ 1 ]=0 . 1

for ( i in 2 :T){

h1 [ i ]=(w)+a∗ ( y1 [ i −1])ˆ2+b∗h1 [ i −1]

y1 [ i ]=n1 [ i ]∗ ( h1 [ i ] ) ˆ 0 . 5 ∗ I1+n1 [ i ] ∗ I2

}

y2=numeric (0 )

h2=numeric (0 )

n2=rnorm(T, 0 , 1 )

y2 [1 ]=rnorm( 1 , 0 , 1 )

h2 [ 1 ]=0 . 1

for ( i in 2 :T){

h2 [ i ]=(w)+a∗ ( y2 [ i −1])ˆ2+b∗h2 [ i −1]

y2 [ i ]=n2 [ i ]∗ ( h2 [ i ] ) ˆ 0 . 5 ∗ I1+n2 [ i ] ∗ I2

}

y=y1∗M1+y2∗M2 ##DGP##

p i t=numeric (0 )

p i t 1=rep (0 . 00001 ,T)

xt=numeric (0 )

for ( i in 1 :T) {

xt [ i ]=pt ( y [ i ] , df )

}

xnorm=numeric (0 )

for ( i in 1 :T) {

xnorm [ i ]=pnorm( y [ i ] ,mean( y ) , sd ( y ) )

}

p i t=xt∗D1+xnorm∗D2
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## I f p i t i s 1 , r ep l a ce with 0.999 s ince qnorm(1) i s i n f i n i t y

for ( i in 1 :T){

i f ( p i t [ i ] == 1.000000 e+00){

p i t [ i ] = 0 .999

}

}

ro s=qnorm( p i t )

LRberind [ n]=as .numeric ( berkowitz ( ros , a l t e r n a t i v e=a l t )$LRind )

LRber [ n]=as .numeric ( berkowitz ( ros , a l t e r n a t i v e=a l t )$LR)

## Calcu la t e number o f r e j e c t i o n s

i f ( LRberind [ n]>=qchisq ( 0 . 9 5 , 1 ) )

{LRber indtest [ n]=1}

else

{LRber indtest [ n]=0}

i f ( LRber [ n]>=qchisq ( 0 . 9 5 , 3 ) )

{LRbertest [ n]=1}

else

{LRbertest [ n]=0}

## Markov Chain Test

low=as .numeric (min( y ) ) ##lowes t va lue o f s imula ted y##

upp=as .numeric (max( y ) ) ##h i gh e s t va lue o f s imula ted y#

wide=(upp−low )/k0 #in t e r v a l width##

d iv id=seq ( low , upp , wide )

d iv id

d iv id1=d iv id ##i n i t i a l d i v i d e po in t with l owes t and h i g h e s t end va lue##

x0=numeric ( )
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x0 [1 ]=count (y<=div id [ 2 ] )

for ( i in 2 : ( k0 ) ){

x0 [ i ]=count ( d iv id [ i ]<y&y<=div id [ i +1]+0.00001) ##count the number o f

##data f a l l in each i n t e r v a l##

}

nonzero=which( x0 !=0) #i f the i n t e r v a l conta ins 0 data set , we do not

#need t h i s i n t e r v a l#

dividnew=numeric ( ) ## new d i v i d e po in t garante non−zero dev id ing##

for ( i in 1 : length ( nonzero ) ){

dividnew [ i ]= d iv id [ nonzero [ i ]+1]}

k1=length ( dividnew ) ##number o f new d i v i d i n g po in t##

div=numeric ( )

for ( i in 1 : ( k1−3)) {

div [ i ]= dividnew [ i +2]

}

k2<− length ( div )

x=numeric ( )

x [1 ]=count ( y <= div [ 1 ] ) ##number o f ob s e r va t i ons below the l owes t d i v i d e po in t#

for ( i in 2 : ( k2 ) ){

x [ i ]=count ( div [ i−1]<y&y<=div [ i ] )

} ##number o f ob s e r va t i ons i n s i d e each d i v i d e i n t e r v a l##

x [ k2+1]=count (y>div [ k2 ] ) ##number o f ob s e r va t i ons above the h i g e s t

#d i v i d e point , means n i in the paper##

cdf0 <− numeric ( )

cdfnorm <− numeric ( )

c d f t <− numeric ( )
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##empir i ca l cumulated dens i t y based on d i f f e r e n t d i s t r i b u t i o n

#assumptions##

for ( i in 1 : k2 ) {

cdfnorm [ i ]= pnorm( div [ i ] , mean( y ) , sd ( y ) )

}

for ( i in 1 : k2 ) {

c d f t [ i ]= pt ( div [ i ] , df )

}

cdf0 = c d f t∗D1 + cdfnorm∗D2

p0=numeric ( ) ##

p0 [1 ]= cdf0 [ 1 ]

for ( i in 2 : ( k2 ) ) {

p0 [ i ]= cdf0 [ i ]− cdf0 [ i −1]

}

p0 [ k2+1]=1−cdf0 [ k2 ]

LRuc [ n ] <− −2∗sum( x∗log ( p0∗T/x ) ) ##LRud in the paper##

## We now ca l c u l a t e LRind #

Loguc0 <− sum( x∗log ( p0 ) )

Loguc1 <− sum( x∗log ( x/T) )

s t a t e=numeric (T)

for ( t in 1 :T){

i f ( y [ t ] <= div [ 1 ] )

{ s t a t e [ t ]=1}

for ( k in 2 : k2 ) {

i f ( div [ k−1]<y [ t ] & y [ t]<=div [ k ] )

s t a t e [ t ]=k
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}

i f ( y [ t ]>div [ k2 ] )

{ s t a t e [ t ]=k2+1}

}

Pi1=matrix ( 0 , ( k2 +1) ,( k2+1)) ##cacu l a t e matrix p i∗T based on ob s e r va t i ons##

for ( t in 2 :T) {

for ( i in 1 : ( k2+1)){

for ( j in 1 : ( k2+1)){

i f ( s t a t e [ t]== j & s t a t e [ t−1]== i )

Pi1 [ i , j ]=Pi1 [ i , j ]+1

}

}

}

Pi1 ## counts how many times s t a t e i i s f o l l owed by s t a t e j

PI1=matrix (0 , k2+1,k2+1) ##ge t r i d o f 0 by s e t t i n g the 0 va lue in p i to

#0.1 , as i t w i l l be used in l o g va lue#

for ( i in 1 : ( k2+1)){

for ( j in 1 : ( k2+1)){

i f ( Pi1 [ i , j ]==0)

PI1 [ i , j ]=Pi1 [ i , j ]+0.1

else

PI1 [ i , j ]=Pi1 [ i , j ]

}}

pi=numeric ( )

for ( i in 1 : ( k2+1)) {

pi [ i ]=sum( Pi1 [ i , ] )

}

PI=numeric ( )

for ( i in 1 : ( k2+1)) {

i f ( p i [ i ]==0)

PI [ i ]=0.1
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else

PI [ i ]= pi [ i ]

}

PI2=matrix (0 , k2+1,k2+1)

for ( i in 1 : ( k2+1)){

for ( j in 1 : ( k2+1)){

PI2 [ i , j ]=PI1 [ i , j ]/PI [ i ] ## t r an s i t i o n matrix

}

}

LRind [ n ] <− −2∗ ( Loguc1 − sum( Pi1∗log ( PI2 ) ) ) ## LRind ##

LRcc [ n ] <− LRuc [ n]+LRind [ n ]

### Measuring Empirica l S i ze

i f ( LRberind [ n]>=qchisq ( 0 . 9 5 , 1 ) )

{LRber indtest [ n]=1}

else

{LRber indtest [ n]=0}

i f ( LRber [ n]>=qchisq ( 0 . 9 5 , 3 ) )

{LRbertest [ n]=1}

else

{LRbertest [ n]=0}

i f (LRuc [ n]>=qchisq ( 0 . 9 5 , k2 ) ){

LRuctest [ n]=1

}

else {LRuctest [ n]=0}

i f ( LRind [ n]>=qchisq ( 0 . 9 5 , k2 ˆ2)){

LRindtest [ n]=1

}

else {LRindtest [ n]=0}
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i f (LRcc [ n ] >= qchisq ( 0 . 9 5 , ( k2+1)∗k2 ) ) {

LRcctest [ n]=1

}

else {LRcctest [ n]=0}

ks . norm <− ks . t e s t (y , ”pnorm” )

ks . t <− ks . t e s t (y , ”pt” , df=df )

p . va l <− M2∗ks . norm$p . va lue + M1∗ks . t$p . va lue

i f (p . va l >= 0.05 ){

k s t e s t [ n ] = 0

}

else { k s t e s t [ n]=1}

}

## Resu l t s from the s imulat ion , r e j e c t i o n ra t e

print ( ” LRbertest ” ) ; print (sum( LRbertest )/rep )

print ( ” LRber indtest ” ) ; print (sum( LRber indtest )/rep )

print ( ”LRuc t e s t ” ) ; print (sum( LRuctest )/rep )

print ( ”LRind t e s t ” ) ; print (sum( LRindtest )/rep )

print ( ”LRcc t e s t ” ) ; print (sum( LRcctest )/rep )

print ( ”KS t e s t ” ) ; print (sum( k s t e s t )/rep )

}

A.2 R-Code for Empirical Study

e m p i r i c a l <− function (M1, M2){

LRuc <− numeric ( ) ; LRind <− numeric ( ) ; LRcc <− numeric ( )

h1 <− numeric ( ) ; h2 <− numeric ( ) ; h3 <− numeric ( )

y <− data

T <− length (data )

k0 = round(1 + log2 (T) )

low=as .numeric (min( y ) ) ##lowes t va lue o f the data##

upp=as .numeric (max( y ) ) ##h i gh e s t va lue o f the data#
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wide=(upp−low )/k0 #in t e r v a l width##

d iv id=seq ( low , upp , wide )

d iv id

d iv id1=d iv id ##i n i t i a l d i v i d e po in t with l owes t and h i g h e s t end va lue##

x0=numeric ( )

x0 [1 ]=count (y<=div id [ 2 ] )

for ( i in 2 : ( k0 ) ){

x0 [ i ]=count ( d iv id [ i ]<y&y<=div id [ i +1]+0.00001) ##count the number o f

##data f a l l in each i n t e r v a l##

}

nonzero=which( x0 !=0) #i f the i n t e r v a l conta ins 0 data set , we do not

#need t h i s i n t e r v a l#

dividnew=numeric ( ) ## new d i v i d e po in t guarantee non−zero d i v i d i n g##

for ( i in 1 : length ( nonzero ) ){

dividnew [ i ]= d iv id [ nonzero [ i ]+1]}

k1=length ( dividnew ) ##number o f new d i v i d i n g po in t##

div=numeric ( )

for ( i in 1 : ( k1−3)) {

div [ i ]= dividnew [ i +2]

}

k2 <− length ( div )

x=numeric ( )

x [1 ]=count ( y <= div [ 1 ] ) ##number o f ob s e r va t i ons below the l owes t d i v i d e po in t#

for ( i in 2 : ( k2 ) ){

x [ i ]=count ( div [ i−1]<y&y<=div [ i ] )

} ##number o f ob s e r va t i ons i n s i d e each d i v i d e i n t e r v a l##
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x [ k2+1]=count (y>div [ k2 ] ) ##number o f ob s e r va t i ons above the h i g h e s t

#d i v i d e point , means n i in the paper##

cdf0 <− numeric ( )

cdfnorm <− numeric ( )

c d f t <− numeric ( )

##empir i ca l cumulated dens i t y based on d i f f e r e n t d i s t r i b u t i o n

#assumptions##

for ( i in 1 : k2 ) {

cdfnorm [ i ]= pnorm( div [ i ] , mean( y ) , sd ( y ) )

}

for ( i in 1 : k2 ) {

c d f t [ i ]= pt ( div [ i ] , dof )

}

cdf0 = cdfnorm∗M1 + c d f t∗M2

p0=numeric ( ) ##

p0 [1 ]= cdf0 [ 1 ]

for ( i in 2 : ( k2 ) ) {

p0 [ i ]= cdf0 [ i ]− cdf0 [ i −1]

}

p0 [ k2+1]=1−cdf0 [ k2 ]

LRuc<− −2∗sum( x∗log ( p0∗T/x ) ) ##LRud in the paper##

## We now ca l c u l a t e LRind #

Loguc0 <− sum( x∗log ( p0 ) )

Loguc1 <− sum( x∗log ( x/T) )

s t a t e=numeric (T)

for ( t in 1 :T){

i f ( y [ t ] <= div [ 1 ] )
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{ s t a t e [ t ]=1}

for ( k in 2 : k2 ) {

i f ( div [ k−1]<y [ t ] & y [ t]<=div [ k ] )

s t a t e [ t ]=k

}

i f ( y [ t ]>div [ k2 ] )

{ s t a t e [ t ]=k2+1}

}

Pi1=matrix ( 0 , ( k2 +1) ,( k2+1)) ##cacu l a t e matrix p i∗T based on ob s e r va t i ons##

for ( t in 2 :T) {

for ( i in 1 : ( k2+1)){

for ( j in 1 : ( k2+1)){

i f ( s t a t e [ t]== j & s t a t e [ t−1]== i )

Pi1 [ i , j ]=Pi1 [ i , j ]+1

}

}

}

Pi1 ## counts how many times s t a t e i i s f o l l owed by s t a t e j

PI1=matrix (0 , k2+1,k2+1) ##ge t r i d o f 0 by s e t t i n g the 0 va lue in p i to

#0.1 , as i t w i l l be used in l o g va lue#

for ( i in 1 : ( k2+1)){

for ( j in 1 : ( k2+1)){

i f ( Pi1 [ i , j ]==0)

PI1 [ i , j ]=Pi1 [ i , j ]+0.1

else

PI1 [ i , j ]=Pi1 [ i , j ]

}}

pi=numeric ( )

for ( i in 1 : ( k2+1)) {

pi [ i ]=sum( Pi1 [ i , ] )

}
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PI=numeric ( )

for ( i in 1 : ( k2+1)) {

i f ( p i [ i ]==0)

PI [ i ]=0.1

else

PI [ i ]= pi [ i ]

}

PI2=matrix (0 , k2+1,k2+1)

for ( i in 1 : ( k2+1)){

for ( j in 1 : ( k2+1)){

PI2 [ i , j ]=PI1 [ i , j ]/PI [ i ] ## t r an s i t i o n matrix

}}

LRind <− −2∗ ( Loguc1 − sum( Pi1∗log ( PI2 ) ) ) ## LRind ##

LRcc <− LRuc+LRind

### Comparing s t a t i s t i c s and c . v , see i f we accept nu l l

i f (LRuc [ 1 ] < qchisq ( 0 . 9 5 , k2 ) ) {

h1 [ 1 ] <− 0

}

i f (LRuc [ 1 ] >= qchisq ( 0 . 9 5 , k2 ) ){

h1 [ 1 ] <− 1

}

i f ( LRind [ 1 ] < qchisq ( 0 . 9 5 , ( k2 )ˆ 2 ) ) {

h2 [ 1 ]<− 0

}

i f ( LRind [ 1 ] >= qchisq ( 0 . 9 5 , ( k2 )ˆ2 ) ){

h2 [ 1 ] <− 1

}

i f (LRcc [ 1 ] < qchisq ( 0 . 9 5 , ( k2+1)∗k2 ) ) {

h3 [ 1 ] <− 0

}

i f (LRcc [ 1 ] >= qchisq ( 0 . 9 5 , ( k2+1)∗k2 ) ){
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h3 [ 1 ] <− 1

}

# Resu l t s : Test s a t i s t i c s , c . v . , r e j e c t or not

print ( ”LRuc + CV” )

print (LRuc)

print (qchisq ( 0 . 9 5 , k2 ) )

print ( ”LRind + CV” )

print ( LRind )

print (qchisq ( 0 . 9 5 , ( k2 )ˆ 2 ) )

print ( ”LRc + CV” )

print (LRcc )

print (qchisq ( 0 . 9 5 , ( k2+1)∗k2 ) )

s i z e . uncon <− sum( h1 )

s i z e . ind <− sum( h2 )

s i z e . con <− sum( h3 )

print ( s i z e . uncon∗100)

print ( s i z e . ind∗100)

print ( s i z e . con∗100)

}

99


	Introduction
	Time Series and Forecasting
	Time Series
	Introduction to Time Series
	Time Series Models

	Forecasting
	Point Forecast
	Interval Forecast
	Density Forecast

	Evaluation Methods Corresponding to Point and Interval Forecasting
	Point Forecast Evaluation
	Interval Forecast Evaluation

	Evaluation Methods Corresponding to Density Forecasting
	Loss Functions and Action Choices
	Evaluating Density Forecasts with PIT and Uniform Distribution
	Evaluating Density Forecasts with Likelihood Ratio and Standard Normal Distribution
	Evaluating Density Forecasts with Likelihood Ratio and Markov Chains

	Monte Carlo Simulation
	Introduction to Size and Power of a Test and Monte Carlo Simulation
	Monte Carlo Simulation for Density Forecast Evaluation Methods
	Size and Power Table
	Remarks of Monte Carlo Simulations

	Empirical Studies
	Real Gross Domestic Product for the U.S.
	Standard & Poor's 500 Index
	Log Returns for New York Stock Exchange Composite Index
	Compensation amount for fire damage claims in Norway

	Summary and Concluding Remarks
	Bibliography
	Appendices
	R-Code
	R-Code for Simulation
	R-Code for Empirical Study


