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ABSTRACT 

 

 

Biotic interactions are important drivers of ecological responses to climate change. By 

studying the effects of graminoid removal on forb populations along temperature and 

precipitation gradients, Olsen et al. (2016) concluded that temperature increase shifted the net 

outcome of plant interactions from facilitation to competition in the boreal and alpine semi-

natural grassland ecosystems. The study thus raised the concern that graminoids, the 

dominant plant functional group in these ecosystems, would further outcompete the 

subordinate groups such as the forbs as the climate continues to warm up. This Master´s 

thesis project was an extension to the study, digging deeper into the experimental set-up to 

investigate how soil prokaryotes had responded to five years of the graminoid removal. The 

results showed no significant change to the overall community composition, nor the diversity 

(number of observed OTUs, Chao1, Shannon H’ and Simpson’s E), of the soil prokaryotes 

due to the removal. This could be interpreted as a positive outcome, as the results casted 

doubt over the likelihood of impact of the reverse scenario – increased graminoid dominance 

– on soil prokaryotic communities under a warmer climate. While graminoid removal yielded 

no detectable response, the overall community composition was found to vary significantly 

along both the temperature and precipitation gradients. Redundancy analysis on the 

community composition data at phylum level further revealed that the two climate variables 

combined explained 20.5% of the variation in the data, with 11.1% and 9.34% of the 

variation attributed to precipitation and temperature, respectively. Relative abundance of the 

K-selected acidobacteria increased with increasing temperature and precipitation, while the r-

selected proteobacteria decreased in relative abundance as the temperature increased. This 

change in the ratio of the two dominant soil bacterial phyla was indicative of a shift towards a 

more competitive environment for the prokaryotes as temperature rose – just as it was for the 

plants. All in all, the soil prokaryotic community in these boreal and alpine semi-natural 

grasslands demonstrated a considerable level of ecological resilience to natural and 

anthropogenic environmental changes. It is hoped that such resilience would help impede 

further climate change impacts on the semi-natural grassland ecosystem.  
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INTRODUCTION 

 

 

I. Soil microorganism – plant interactions in the context of climate change 

 

Virtually all terrestrial ecosystems consist of above-ground and below-ground communities 

that interact to drive ecosystem-level processes. In a typical scheme, plants act as the primary 

producers and capture light energy to convert atmospheric carbon into organic carbon, 

leading to biomass growth and provision of habitat and nutrient resources for other organisms 

such as the obligate root symbionts and pathogens. Below-ground microorganisms, in turn, 

act as decomposers to break down dead plant biomass and release nutrients into soil that are 

then taken up by plants (Wardle et al., 2004). Such plant-microbe interactions operate 

through a web of feedback systems. Positive feedback increases the magnitude of a process 

and results in a directional change, whereas a negative feedback decreases the magnitude of 

the process until its effect is stabilized (Ehrenfeld et al., 2005). Plant-microbe interactions 

also operate through a myriad of pathways involving physical, biogeochemical, and 

biological properties and processes. This includes the community compositions of the plant-

microbe biota (Van Der Heijden et al., 2008; Eskelinen et al., 2009; Waldrop et al., 2017). 

Shifts in the composition of a plant community, for example, may alter the chemical 

composition of the organic litter it produces, causing the soil microbial community that 

mediates access to the nutrient pools to respond concordantly. This response may then 

escalate (positive feedback) into a lasting change to the microbial community, or diminish 

(negative feedback). Either way, it depends on further responses from the plant community, 

and vice versa (Reynolds et al., 2003). Plant-microbe interactions have been recognized as a 

major factor in the formation of soil (Jenny, 1941; Ehrenfeld et al., 2005, Lambers et al., 

2009), in the evolution of terrestrial flora (Selosse and Le Tacon, 1998; Lau and Lennon, 

2011), and in shaping community structures (Van Der Putten et al., 2013; Classen et al., 

2015). Because they are fundamental to ecological processes, they are also important drivers 

of ecological responses to global environmental changes.  

 

Anthropogenic activities since the advent of industrialization have been implicated as a 

primary force behind the current acceleration of global warming (Karl and Trenberth, 2003). 
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At the present rate, the average global surface temperature is estimated to keep rising by 4°C 

over the course of the 21st century, with extreme temperature and precipitation events 

projected to become more frequent in many regions (Kharin et al., 2007; IPCC, 2014). An 

ever-increasing number of studies have presented evidence that the climate change has left 

ecological impacts ranging from latitudinal and altitudinal range shifts to coral bleaching 

(Walther et al., 2002; Van der Putten, 2012). Climate modulates these impacts directly 

through physiological responses to factors such as temperature and precipitation and 

indirectly through biotic interactions (Classen et al., 2015; Klanderud et al., 2015; Waldrop et 

al., 2017). 

 

As the driver of the approximately 120 Gt annual flux of carbon in and out of terrestrial 

ecosystems – an amount much greater than that released through the combustion of fossil 

fuels – soil microorganisms have the potential to significantly alter the concentration of 

atmospheric carbon and thus the climate (Classen et al., 2015). Soil microorganisms and the 

ecological processes they mediate are sensitive to temperature. Warming has been 

demonstrated to directly increase soil microbial respiration that channels carbon from soils to 

the atmosphere, but it remains unclear and highly complex how global warming would affect 

soil microorganisms and, ultimately, the global carbon stock in the long term (Bradford et al., 

2008; Hagerty et al., 2014; Karhu et al., 2014).  

 

Numerous studies have investigated and argued for the critical role precipitation plays in 

regulating soil microbial responses to climate change (Castro et al., 2010; Zhang et al., 2013). 

Liu et al. (2009) reported their findings that experimental warming in a semi-arid 

environment, on the contrary, suppressed soil microbial activities and reduced respiration 

rates by inducing water stress. Increased precipitation, on the other hand, consistently 

exhibited positive impacts on respiration rates and other microbial parameters such as growth. 

The results of their study thus suggest that soil water availability may be a more influential 

factor than temperature. This is corroborated by another study looking into the single and 

combined effects of precipitation, warming, and elevated carbon dioxide concentration on the 

plant and soil communities of an old-field in Tennessee (Kardol et al., 2010). The study 

found that precipitation had the largest impact compared to the other two environmental 

factors, and that interactions between the factors in mediating impacts were also largely 
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controlled by changes in water availability. It is also to be taken into consideration that high 

soil water availability may contribute to waterlogged, anoxic conditions such as in peat soils 

(Inisheva, 2006). The lack or absence of oxygen due to poor aeration in such conditions 

would cause the microbial decomposition of organic matter to occur anaerobically and 

potentially produce methane, a greenhouse gas estimated to be 25 times more potent than 

carbon dioxide (Tveit et al., 2013; Tveit et al., 2015). 

 

Another important mechanism behind climate change impacts is the biotic interactions 

between plant and soil microbial communities. Given the influence they mutually have on 

each other, plant-microbe interactions may facilitate or hinder community transitions in 

response to the changes in climate. Classen et al. (2015) presented six different scenarios on 

this (fig. 1) and even proposed that the indirect effects of climate change through such biotic 

interactions may dominate over its direct effects for the soil microbial community. In the case 

of the old-field study mentioned earlier (Kardol et al., 2010), for example, the effect of 

precipitation on the soil community was found to vary depending on the plant the soil was 

associated with. The relative abilities and rates at which plants and soil microorganisms 

respond to the climate change may also come into play. The lack of presence of a root 

symbiont due to differing migration responses, for example, may hinder plant growth and 

invasion into a new area (Nuñez et al., 2009). Yet, much still remains to be understood about 

how climate change affects soil microorganisms and their biotic interactions with plants. 

There is an urgency to fill such knowledge gaps to allow more accurate prediction and better 

mitigation strategies of the imminent global climate change (IPCC, 2014; Classen et al., 

2015).  
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Figure 1. Six potential scenarios of responses of plant and soil microbial communities to 

changes in climate. Source: Classen et al., 2015. 

 

 

II. Background study 

 

After the arctic regions, ecosystems of the alpine regions are amongst those most vulnerable 

to global warming. There is increasing evidence that the altitudinal limits of alpine and sub-

alpine vegetation have risen within the last 100 years (Kullman, 2004). Klanderud and Birks 

(2003), for example, reported that more than half of the vascular plants growing on the alpine 

mountains of Jotunheimen, central Norway, were observed at higher altitudes in 1998 than in 

1930-31, indicating a mean elevational advance of 1.2 m per year over the 68-year period. 

Global warming has also been associated with observed changes in the phenology of alpine 

species (Gallagher et al., 2009; Mohandass et al., 2015). It is feared that such responses may 

lead to the loss – or at its worst, extinction – of species that do not benefit from the climate 

change. Global warming thus pose a threat to biodiversity (Thuiller, 2007; Bellard et al., 

2012).  
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A study by Olsen et al. (2016) explored how the removal of graminoids, the dominant plant 

functional group in the semi-natural grassland ecosystem, affected the population dynamics 

of four subordinate forb species. The study was conducted at 12 field sites in western Norway 

that collectively formed a climate grid with natural temperature (alpine to boreal) and 

precipitation (continental to oceanic) gradients. This allowed for assessment of how climate 

would influence the plant interactions. The study found that the growth rates of three out of 

the four forb populations were lower in the removal plots than in the control plots at the 

colder alpine sites, whereas the opposite outcome (i.e. higher in the removal plots) was 

consistently observed at the warmer boreal sites. This implied that at low temperatures, 

graminoids facilitated the growth of these subordinate species, but this interaction turned into 

competition at higher temperatures. No systematic variation in the effect of graminoid 

removal on population growth was found along the precipitation gradient. It was thus 

concluded that temperature, rather than precipitation, was the primary determinant in the net 

outcome of interactions between dominant and subordinate plant groups in the semi-natural 

grasslands. The study also raised the concern that the dominant groups would further 

outcompete the subordinate ones under global warming, resulting in increased dependence on 

disturbance (i.e. grazing) to maintain biodiversity in the alpine, semi-natural grasslands 

(Olsen et al., 2016).  

 

The above-ground removal of graminoids in the treatment plots since 2011 had also led to a 

natural decline of the graminoid populations over the years (fig. 2), prompting the interest to 

probe further into the experimental study and investigate how the below-ground microbial 

communities had responded to the removal. This may further unravel the role soil 

microorganisms play in the network of biotic interactions within the semi-grassland 

ecosystem. An investigation into how these biotic interactions vary with climate factors may 

also provide insights useful for predicting outcomes of the possible scenario of increased 

graminoid dominance under global warming. 
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Figure 2. Total above-ground biomass (g) of graminoids removed from the treatment plots at 

twelve semi-natural grassland sites varying in temperature (alpine, sub-alpine, boreal) and 

precipitation (four levels from dry to wet) over the period of 2011-2013. Location: western 

Norway. Source: Siri L. Olsen, Vigdis Vandvik.  

 

 

III. Norwegian semi-natural grasslands: soil conditions and microbial biota 

 

Semi-natural grasslands cover an extensive part of Norway and are a major contributor to the 

cultural landscapes of the country. The unsown, wild vegetation of these grasslands is shaped 

and maintained through centuries of low-intensity (i.e. no ploughing) land use and 

agricultural activity. Traditionally, these grasslands are grazed by livestock of most 

commonly sheep and dairy cow. It is also common to cut and harvest the vegetation for 

fodder, sometimes in combination with spring and autumn grazing. Despite the dominance of 

members of the Poaceae (grasses) family, the plant communities of semi-natural grasslands 

are generally considered to be highly diverse and the conservation value of these landscapes 

has long been recognized (Austrheim, 2002; Vandvik, 2002; Helgadòttir et al., 2014).  

 

Large parts of Norway sit on a relatively thin layer of glacial till varying in texture and 

nutrient value. A considerable portion of this is peat soils, which are acidic, poor in nutrients 

and require drainage for cultivation (Helgadòttir et al., 2014). As mentioned earlier, anoxic 



 13 

conditions are common in such soils, potentially harbouring a broad diversity of 

microorganisms ranging from the facultative aerobe Escherichia coli to the strictly anaerobic 

archaeal group of methanogens (Madigan and Martinko, 2006). On the other end of the 

spectrum is calcareous soils, which contain substantial amounts of calcium carbonate and are 

alkaline. The organic matter content of such soils is generally low, and so are the 

availabilities of mineral nutrients such as phosphorus, zinc and iron (FAO, 2018). Plants 

growing in calcareous soils may therefore rely on symbiotic microorganisms to assist in 

nutrient acquisition (Lambers et al., 2009).  

 

Regardless of the soil type, it is important to consider that microbial communities operate at 

very small spatial and time scales due to their minuscule sizes and high turnover rates 

(Sessitsch et al., 2001; Or et al., 2012). One tiny soil aggregate can accommodate numerous 

microenvironments that differ physically and/or chemically, each hosting a microbial 

community that may be distinct from the other. A soil aggregate may also provide shelter 

from a more hostile condition outside. Even the oxygen level within a single soil particle can 

vary dramatically (Madigan and Martinko, 2006). Sampling microbial community at a scale 

that would adequately capture its diversity and function in an ecosystem thus presents a 

practical challenge. 

 

As shown in fig. 3, the soil matrix is a highly heterogeneous and complex environment. A 

typical, mature soil consists of a number of layers or horizons differing in substrate, 

physiochemical conditions and biota. Microbial growth and activity, as well as those of other 

soil organisms, is usually highest at the A (surface) horizon of the soil profile due to the 

accummulation of dark organic matter there and the presence of living roots. Plants secrete 

sugars, amino acids, hormones and vitamins into the soil through these roots. The region 

immediately surrounding these roots, also known as the rhizosphere, is therefore particularly 

dense with microorganisms that feed on these nutrients and form symbiotic or parasitic 

relationships with the plants (Madigan and Martinko, 2006; Lambers et al., 2009; De Vrieze, 

2015).   
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Figure 3. Profile of mature soil. Source: Wilson Biggs, distributed under a CC BY-SA 4.0 

license. 

 

Soil microorganisms can be classified into a number of taxonomic groups, namely bacteria, 

archaea, viruses, fungi, algae, and protozoa. Bacteria usually form the most abundant group, 

with a single gram of soil estimated to contain up to 10 billion counts of cells belonging to 

thousands of different species (Whitman et al., 1998; Torsvik and Øvreås, 2002; De Vrieze, 

2015). Two of the most common bacterial divisions or phyla in soil are proteobacteria and 

acidobacteria. Proteobacteria is the largest and most diverse phylum of bacteria, all of which 

are gram negative. Many bacteria of medical, industrial, and agricultural significance belong 

to this phylum, including the pathogen Escherichia and the nitrogen fixing rhizobia (Madigan 

and Martinko, 2006). Acidobacteria is also a diverse phylum of bacteria, found in a myriad of 

environments but is particularly abundant in soils. As hinted by its name, many acidobacteria 

are known to be acidophilic. Despite of their abundance and ubiquitous distribution in soils, 

relatively little is known about their physiologies and ecological roles, which is in part due to 

the difficulties in culturing a majority of the phylum members (Quaiser et al., 2003; Kielak et 
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al., 2016). Much of what is currently known about the phylum has therefore been deduced 

through studies on their genetic materials. Smit et al. (2001), for example, analysed available 

16S rRNA sequences to reveal any pattern of abundance of five bacterial divisions, including 

acidobacteria, in relation to the soil nutrient profile. The study found higher abundances of 

acidobacteria in soils with low nutrient input or high content of recalcitrant substrates, 

whereas α- and γ-proteobacteria appeared to thrive better in soils that were rich in readily 

available nutrients. These results thus prompted Torsvik and Øvreås (2002) to comment that 

α- and γ-proteobacteria may be r-selected, which is selection for bacteria with potentially 

high growth rates, whereas acidobacteria may be K-selected, which is selection for bacteria 

with lower growth rates but are typically strong competitors for limited resources.  

 

 

IV. Studying microbial diversity 

 

As Torsvik and Øvreås (2002) put it, “microbial diversity describes complexity and 

variability at different levels of biological organization. It encompasses genetic variability 

within taxons (species), and the number (richness) and relative abundance (evenness) of 

taxons and functional groups (guilds) in communities.” Three levels of assessment of 

microbial – or any ecological – diversity have also been defined: alpha (α) diversity is the 

mean diversity within a site or habitat, beta (β) diversity refers to the difference in diversity 

between two or more sites/habitats, and gamma (γ) diversity is a combination of the two to 

represent the diversity of the region (Whittaker, 1960).  

 

The assessment of microbial diversity, however, has always been a challenging task in 

microbiology. At the root of this is the inscrutable nature of microbial communities from 

natural environments (Øvreås and Curtis, 2011). It is notoriously difficult, if at all possible, to 

culture a vast majority of microorganisms, rendering culture-based methods highly 

inadequate and biased for the assessment of diversity. The incapability to isolate 

microorganisms into pure cultures also means that there is a lack or absence of morphological 

and physiological data necessary for traditional classification of a taxon into a species 

(Rosselló-Mora and Amann, 2001; Handelsman, 2004). The study of microbial diversity and 

ecology have thus largely relied on methods of molecular biology in these last few decades. 
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The extraction of genetic materials directly from environmental samples, by-passing the need 

to first cultivate the microorganisms in the samples, further revolutionized the field and paved 

the way for environmental genomics (Amann et al., 1995; Handelsman, 2004). Operational 

taxonomic unit (OTU) has become a practical alternative to the concept of species, using 

mathematical algorithms to calculate the similarities of microbial DNA sequences and 

‘cluster’ together those that meet a pre-defined threshold (i.e. commonly 97% similarity) 

(Schmidt et al., 2014). In this way, an OTU serves as a proxy for a microbial species when 

describing and comparing microbial communities (Øvreås and Curtis, 2011). 

 

Usually, OTUs are defined from sequences of the prokaryotic 16S ribosomal RNA (rRNA) 

gene or the eukaryotic 18S rRNA gene (Schmidt et al., 2014). rRNA is very useful for 

phylogenetic and taxonomic studies, because it is found across virtually all cells and living 

organisms and contains regions that evolve very slowly and are therefore highly conserved 

(Woese et al., 1990; Madigan and Martinko, 2006). Since the focus of this thesis is on 

prokaryotic communities, there will be no further discussion of the 18S rRNA gene. 16S 

rRNA is one of the components of the prokaryotic ribosome that has an essential function in 

initiating protein synthesis. The gene that encodes 16S rRNA is approximately 1500 

nucleotide base pairs (bp) long and contains nine hypervariable regions in addition to the 

conserved regions (fig. 4). These hypervariable regions (V1-9) are the key to the 

differentiating and identification of the prokaryotic taxa. The conserved regions, on the other 

hand, allow for the design of primers that reliably amplify target sections of the gene across 

different taxa. While it is ideal to obtain and analyse the entire length of the gene, it is often 

not feasible to do so for varying reasons including the constraint of cost. For this reason, 

many studies have chosen the V4 region for analysis, as it is only around 100 bp long, is 

semi-conserved (i.e. less instraspecies diversity), and has been demonstrated to provide 

resolution at the phylum level comparable to that of the full gene (Schmalenberger et al., 

2001; Walters et al., 2015; Yang et al., 2016).          
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Figure 4. Schematic diagram of the 16S rRNA gene, showing its conserved (grey colour) and  

hypervariable (other colours) regions. The pink circles and arrows represent the sites for 

primer binding for DNA amplificiation of the hypervariable V4 region. Source: Petrosino et 

al., 2009 (reproduced with permission from the American Association for Clinical 

Chemistry).    

 

Progress in microbial ecology goes in tandem with developments in the techniques of 

molecular biology. Earlier studies in microbial diversity used the approach of community 

fingerprinting such as denaturant gradient gel electrophoresis (DGGE; Muyzer et al., 1993) 

and terminal restriction fragment length polymorphism (T-RFLP; Liu et al., 1997), both of 

which provided a quick and affordable way to characterize microbial communities (Øvreås 

and Curtis, 2011). DNA sequencing has also played an important role and has come a long 

way since the earliest method of sequencing through two-dimensional gel electrophoresis 

(Min Jou et al., 1972). Soon after, Sanger et al. (1977), with contributions from others in the 

scientific community, pioneered the method of DNA sequencing through primer elongation 

with chain-terminating dideoxynucleotides (ddNTPs). The demand for lower cost and faster 

sequencing since then has led to the current generation of high-throughput sequencing 

methods, which parallelize the sequencing process to achieve an output of thousands to 

millions of sequences (reads) per run (Hutchison, 2007). These high-throughput methods 

vary in the number of reads per run, the average length of reads, accuracy, and cost (Lanzén, 

2013). One such high-throughput method is Illumina, previously knowned as Solexa.  

 

Illumina uses the approach of “sequencing-by-synthesis”, which builds on the process of 

Sanger sequencing by overriding or reversing the chain termination step and allowing the 

chain to continue to elongate. In addition, Illumina massively parallelizes this process by 

running the sequencing of many different, barcoded template strands all at once. Altogether, 
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the modifications to the classical Sanger sequencing have enabled Illumina to generate an 

enormous amount of reads in a single run and at a significantly lower cost (Shokralla et al., 

2012). Illumina, however, produces shorter reads compared to other high-throughput methods 

such as pyrosequencing, although recent protocols involving paired-end reads allow lengths 

up to 600 bp (2 x 300 bp) (Lanzén, 2013; Illumina, 2014). An overview of the steps involved 

in Illumina sequencing is presented below in figure 5.      

 
Figure 5. A summary of the workflow in Illumina sequencing. Firstly, barcoded adaptors are 

added onto both ends of the sequence fragments. Fragments then bind to primers attached 

onto a flowcell, and bridge polymerase chain reactions (PCR) are initiated to amplify each 

fragment into a cluster of fragments. Each fragment in the cluster serves as a template strand 

for sequencing, using ddNTPs that release fluorescent signals. At every sequencing cycle, 

one complementary ddNTP binds to the template strand and the chain is terminated. The 

released signal is then scanned to identify the nucleotide. The chain termination is then 

reversed, allowing the next cycle to start and another ddNTP to be added onto the chain.  

Source: <<http://www.3402bioinformaticsgroup.com/service/>>. 
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Regardless of the choice between community fingerprinting or high-throughput sequencing, 

polymerase chain reaction (PCR) is required for the analysis of 16S rRNA gene in this 

context of diversity assessment. PCR is needed to produce multifold copies of only the 

desired section (e.g. 16S rRNA gene) of the extracted environmental DNA. The method 

involves numerous cycles of repeated heating and cooling to drive the reactions that 

exponentially amplify the target section (Madigan and Martinko, 2006). While PCR is a 

powerful tool, it is not flawless. It is therefore important to consider the errors that PCR may 

introduce, as they may have a significant impact on the profiling of the community (Lanzén, 

2013).        

 

 

V. Project objectives and approach 

 

The objective of this Master´s project was two-fold. The first was to determine the effects of 

five years of graminoid removal on the composition and diversity of below-ground 

prokaryotic communities in boreal and alpine semi-natural grasslands. The second was to 

investigate how these effects vary along the climate gradients of temperature (boreal to alpine) 

and precipitation (coastal to continental). The rationale was that findings from this study may 

provide insights into how below-ground prokaryotic communities would respond to increased 

graminoid dominance at semi-grasslands, as prospected to happen under a warmer climate by 

Olsen et al., 2016. In other words, it was hoped that this study would shed light on the role of 

soil prokaryotes in mediating this graminoid dominance, and further unravel the network of 

biotic interactions within the semi-grassland ecosystem.       

 

A number of research questions were therefore specified as follows: 

• Did the removal of graminoids lead to significant difference in the overall soil 

prokaryotic community composition? 

• Did the impact of graminoid removal on community composition vary along the 

climate gradients of temperature and precipitation? 

• Did the soil prokaryotic community vary along the climate gradients of temperature 

and precipitation? 
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• Did graminoid removal have significant impacts on the OTU richness and evenness 

of the soil prokaryotic community? 

• Did the impacts of graminoid removal on soil prokaryotic diversity vary along the 

climate gradients of temperature and precipitation? 

• Did the OTU richness and evenness of the soil prokaryotic community vary along the 

climate gradients of temperature and precipitation? 

 

In order to answer the questions above, soil samples were collected in the summer of 2016 

from control and graminoid removal plots across twelve semi-grassland sites that formed a 

climate grid with natural temperature and precipitation gradients. The experimental set up 

was established in 2011 by Olsen et al. (2016) and had been maintained since then. The 

samples were frozen immediately after collection to prevent further changes to the microbial 

community contained in the soil. DNA was extracted directly from the soil samples, thus 

capturing a snapshot of the microbial community at sampling time. PCR then amplified a 

target section covering the V4 region of the 16S rRNA gene from the environmental DNA, 

generating barcoded PCR amplicons that were sent to the Norwegian Sequencing Centre for 

Illumina sequencing. Bioinformatics tools were used to process the sequences and ‘cluster’ 

them into OTUs based on the threshold of 97% sequence similarity. The OTUs were 

identified and classified into prokaryotic taxa by matching their representative sequences to 

the Greengenes 16S rRNA gene database. In this way, the OTU composition of the 

prokaryotic community in each soil sample was determined. Bioinformatics tools were also 

used to calculate estimations of prokaryotic diversity for each community or sample, with 

Chao1 and Shannon Diversity Index selected as measures of OTU richness and Simpson´s 

Evenness Index selected as a measure of OTU evenness. Differences in OTU composition 

between communities were quantified by their Bray-Curtis dissimmilarity. Data and 

statistical analyses were then performed on these data. This outline of the methodology is 

described in more details in the next section. 
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MATERIALS AND METHODS 

 

 

I. Sampling sites and experimental design 

 

Twelve semi-natural grassland sites scattered across the fjord landscapes of western Norway 

(fig. 6) were sampled in this study. They were carefully selected to form a climate grid, 

combining three levels of summer temperature (mean of the four warmest months; 

approximately 6.5, 8.5, and 10.5°C) with four levels of annual precipitation (approximately 

0.6, 1.2, 2.0, and 2.7 m), using interpolated climate data from the normal period 1961-1990 

(Skarpaas et al., 2016). The two climate variables were not correlated to each other and other 

variables were kept as constant as possible. The sites were located on south-facing, shallow 

slopes with calcareous bedrock. The plant communities belonged under the plant-sociological 

association Potentillo-Festucetum ovinae (Fremstad, 1997), and could be classified into three 

functional groups: graminoids, forbs, and bryophytes. Common species included the 

graminoids Agrostis capillaris, Anthoxanthum odoratum, Deschampsia cespitosa, Nardus 

stricta, and the forbs Achillea millefolium, Bistorta vivipara, Potentilla erecta (Gya, 2017). 

Specific details regarding the locations, geophysical and climate characteristics of the sites 

are gathered together in table 1. Collectively known as the “SeedClim” sites, they were 

established as research sites in 2009 and had been maintained and subjected to numerous 

studies since then (Meineri et al., 2013; Meineri et al., 2014; Klanderud et al., 2015; Olsen et 

al., 2016; Skarpaas, et al., 2016; Gya, 2017; Klanderud, et al., 2017; Althuizen et al., 2018). 

 

There were five separate blocks at every site, and within each block, a pair of control and 

graminoid removal (treatment) plots measuring 25 cm x 25 cm each were set up. Whilst the 

vegetation in the control plot was left undisturbed, any above-ground growth of graminoid 

species was cut and collected twice – in the beginning and at the end of the growing season. 

This experimental set-up had been maintained every year since 2011.  
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Figure 6. Locations of the twelve “SeedClim” semi-grassland study sites, each having a 

unique combination of mean summer temperature (alpine, sub-alpine, boreal; approximately 

6.5, 8.5, and 10.5°C respectively) and annual precipitation level (approximately 0.6, 1.2, 2.0, 

and 2.7 m). Source: Klanderud et al., 2015. 

 

Table 1. The SeedClim sites, locations (World Geodetic System of 1984 datum), climate and 

geophysical characteristics: altitude (m above sea level), mean summer temperature (°C), 

mean annual precipitation level (m) and types of underlying bedrock.   

 
Site Coordinate 

x 
Coordinate 

y 
Altitude 

(m) 
Temperature 

(°C) 
Precipitation 

(m) 
Bedrock 

Ulvehaugen 
(ULV) 

61°1'27.40" 
N 

8°7'24.30" 
E 

1208 6.17 0.596 Rhyolite, ryodacite, 
dacite 

Låvisdalen (LAV) 60°49'23.10" 
N 

7°16'33.50" 
E 

1097 6.45 1.321 Phyllite, mica 
schist 

Gudmedalen 
(GUD) 

60°49'57.90" 
N 

7°10'32.20" 
E 

1213 5.87 1.925 Phyllite, mica 
schist 

Skjellingahaugen 
(SKJ) 

60°56'0.50" 
N 

6°24'54.10" 
E 

1088 6.58 2.725 Marble 

Ålrust (ALR) 60°49'13.00" 
N 

8°42'16.80" 
E 

815 9.14 0.789 (Meta)sandstone, 
shale 

Høgsete (HOG) 60°52'33.70" 
N 

7°10'36.00" 
E 

700 9.17 1.356 Phyllite, mica 
schist 
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Rambera (RAM) 61°5'11.80" 
N 

6°37'48.90" 
E 

769 8.77 1.848 Phyllite, mica 
schist 

Veskre (VES) 60°32'40.10" 
N 

6°30'52.80" 
E 

797 8.67 3.029 (Meta)sandstone, 
shale 

Fauske (FAU) 61°2'7.50" N 9°4'43.60" 
E 

589 10.3 0.600 Phyllite, mica 
schist 

Vikesland (VIK) 60°52'49.20" 
N 

7°10'11.30" 
E 

474 10.6 1.161 Phyllite, mica 
schist 

Arhelleren (ARH) 60°39'54.60" 
N 

6°20'14.60" 
E 

439 10.6 2.044 Phyllite, mica 
schist 

Øvstedal (OVS) 60°41'24.20" 
N 

5°57'53.50" 
E 

346 10.8 2.923 Ryolite, ryodacite, 
dacite 

  

 

II. Sample collection 

 

Soil samples were collected from all, but one, sites during the period of July 4th to 8th, 2016. 

Samples from the site GUD were collected on August 16th, 2016. Gloves were worn 

throughout the entire procedure, and contact with other surfaces was avoided as much as 

possible. Tools were cleaned and then sterilized prior to every sampling (of a different plot) 

by dousing the surfaces with absolute ethanol and igniting them on fire on a safety plate. 

Tools were then left briefly to cool before a ca. 5 cm slit was cut into the ground within the 

plot and sample from the surface or top layer (O and A) of the soil horizon was scooped to 

fill one sterile MO BIO PowerBead Tube and two sterile, empty cryotubes. A total of three, 

full tubes of soil samples were collected from every plot and kept cold in ice until sampling 

was completed for the site. The samples were then immediately frozen inside a portable tank 

containing liquid nitrogen for a couple days of temporary storage. When the tank was full, 

samples were kept as cold as possible for a few hours until all the samples were transported 

to the research facility. Samples were then transferred to a -80°C freezer for long term storage. 

 

 

III. DNA extraction, quantitation and quality control  

 

Samples from three out of the five blocks at every site were selected for DNA extraction and 

any downstream procedure and analysis. The 72 selected samples, plus one redundant sample, 

are listed in appendix A. Two sets of pseudoreplicates were made to allow for detection of 
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significant inconsistencies in techniques (see appendix A).  

 

Extraction of DNA directly from the soil samples was carried out in separate batches using 

the PowerSoil® DNA Isolation Kit manufactured by MO BIO Laboratories, Inc., following 

the protocol described in the instruction manual (version 02232016). Prior to the start of the 

procedure, frozen samples were left to thaw at room temperature for a few minutes. 0.25–

1.22 g of soil sample was added into a PowerBead Tube using a pre-sterilized spatula (see 

appendix A for exact amounts). Some of the samples were already pre-loaded into the 

PowerBead Tubes, which contained beads and buffer to assist in homogenizing the mixture 

and protect DNA from degradation. Microbial cells in the mixture were then lysed, releasing 

DNA collected in the supernatant. A series of precipitation reactions and centrifugation 

followed, in order to remove non-DNA organic and inorganic materials from the supernatant. 

DNA was then extracted by filtering the supernatant through a silica membrane, which 

trapped only DNA under high salt concentration. The silica-bound DNA was cleaned with 

ethanol solution before it was eluted from the membrane into the provided elution buffer 

twice. DNA extracts were then kept at 4°C for downstream procedures on the same or next 

day, or stored at -20°C until the next procedure.   

 

The concentration of DNA in the solution was quantified through spectrophotometry using 

the Qubit® dsDNA High Sensitivity Assay Kit, following the protocol described in its User 

Guide (Thermo Fisher Scientific Inc., 2015). If the concentration was too high for the high-

sensitivity assay (>600 ng/mL after dilution in the assay tube), the procedure was then 

repeated for that particular DNA extract using the Qubit® dsDNA Broad Range Assay Kit 

(Thermo Fisher Scientific Inc., 2015).  

 

5 µL of the DNA extract solution was then electrophoresed on 1% agarose gel to allow for 

visual evaluation of the quality of the DNA extract. Images of the UV light-illuminated gels 

are presented in appendix B.  
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IV. Polymerase Chain Reaction of 16S ribosomal RNA gene 

 

There were two stages in the preparation of the 16S rRNA gene amplicons for the Illumina 

MiSeq sequencing system. In the first stage, the target V4 region of the gene was amplified 

such to include an overhang of Illumina adapter oligonucleotide. To minimize PCR drift, 

PCR mixtures were first prepared in triplicates for every sample and later pooled together 

after the PCR. Each 20 µL PCR mixture consisted of 10 µL Qiagen HotStarTaq Master Mix, 

1 µL of 10 µM forward primer, 1 µL of 10 µM reverse primer, 0.5 µL 100% BSA, 5–10 ng of 

DNA extract as PCR template, and nuclease-free water.  

The nucleotide sequence of the forward primer ('adapter-N5-519F') was  

5'CTACACTCTTTCCCTACACGACGCTCTTCCGATCT-NNNNN-CAGCMGCCGCGGTAA,  

whereby M=A/C. 

The sequence of the reverse primer ('adapter-806R') was  

5'GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-GGACTACHVGGGTWTCTAAT,  

whereby H=A/C/T, V=A/C/G, and W=A/T.  

 

Positive and blank controls were included in every PCR run. For the positive control, 5 ng of 

Escherichia coli genomic DNA was used as the PCR template, whereas nuclease-free water 

substituted for PCR template in the blank control. The PCR was initiated at 95°C for 15 min 

(denaturation), followed by 25 cycles of thermal conditions at 95°C for 20 sec (denaturation) 

– 55°C for 30 sec (primer annealing) – 72°C for 30 sec (elongation), and then finalized at 

72°C for 7 min (elongation) before termination and cooling at 4°C. 

 

After pooling together the PCR mixtures that corresponded to the same samples, 2 µL of each 

of the mixtures was electrophoresed on 1.5% agarose gel to check for the presence and size 

of the amplicons. The PCR amplicons were then purified through the Zymo Research DNA 

Clean & ConcentratorTM-5 columns following the manufacturer's protocol (version 1.2.0), 

prior to having their DNA concentrations measured using the Qubit® dsDNA High 

Sensitivity Assay Kit (Thermo Fisher Scientific Inc., 2015).  

 

The second stage in the preparation of the final amplicons targeted the overhanging Illumina 

adapter oligonucleotides and added 'barcode' nucleotide sequences into the amplicons. A 
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combination of 8 versions of the forward primer and 12 versions of the reverse primer 

allowed for identification of up to 96 uniquely barcoded amplicons such that they could all be 

sequenced in parallel. Unlike in the previous stage, the PCR was not divided into triplicates 

for every sample. Each 50 µL PCR mixture consisted of 25 µL Qiagen HotStarTaq Master 

Mix, 23 µL of the solution containing the purified amplicons from the first stage, and a 

specific combination of 1 µL barcoded forward primer (10 µM) and 1 µL barcoded reverse 

primer (µM).  

The nucleotide sequence of the barcoded forward primer ('adapter-barcode-linker') was  

5'AATGATACGGCGACCACCGAGATCTACAC-XXXXXXXX-ACACTCTTTCCCTACACGACG,  

and the sequence of the barcoded reverse primer ('adapter-barcode-linker') was  
5'CAAGCAGAAGACGGCATACGAGAT-XXXXXXXX-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT. The different versions of the barcode region 

of the forward and reverse primers are described below in table 2.  

 

Table 2. Different versions of the barcode region of forward and reverse primers for the 2nd 

stage of PCR. 
Forward ID Sequence Reverse ID Sequence 

F1 TAGATCGC R1 TCGCCTTA 

F2 CTCTCTAT R2 CTAGTACG 

F3 TATCCTCT R3 TTCTGCCT 

F4 AGAGTAGA R4 GCTCAGGA 

F5 GTAAGGAG R5 AGGAGTCC 

F6 ACTGCATA R6 CATGCCTA 

F7 AAGGAGTA R7 GTAGAGAG 

F8 CTAAGCCT R8 CCTCTCTG 

  R9 AGCGTAGC 

  R10 CAGCCTCG 

  R11 TGCCTCTT 

  R12 TCCTCTAC 

 

Positive and blank controls were also included in every PCR run, using the same controls as 

in the first stage but with their amounts adjusted accordingly. The PCR was initiated at 95°C 

for 15 min (denaturation), followed by 15 cycles of thermal conditions at 95°C for 20 sec 

(denaturation) – 62°C for 30 sec (primer annealing) – 72°C for 30 sec (elongation), and then 

finalized at 72°C for 7 min (elongation) before termination and cooling at 4°C.  
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The presence and size of the amplicons were verified by running 2 µL of each of the PCR 

mixtures through electrophoresis on 1.5% agarose gel and then visualizing the gel under UV 

light. The amplicons were purified using the Agencourt AMPure XP magnetic beads 

(Beckman Coulter, Inc., 2013) and eluted into 10 mM Tris buffer. 

 

As the final steps before pooling together the 16S rRNA gene amplicons, the DNA 

concentrations of the purified amplicons in solutions were determined using the Qubit® 

dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific Inc., 2015). The purity of the 

amplicons were also measured using the nanoDrop1000 spectrophotometer calibrated with 10 

mM Tris buffer (A260/280 = 1.8–2.1, A260/230 = 1.5–2.9).   

 

 

V. High-Throughput Sequencing: Illumina MiSeq System 

 

45 ng of each sample solution of 16S rRNA gene amplicon was pooled together and shipped 

to the Norwegian Sequencing Centre (NSC)  in Oslo, Norway. Prior to sequencing using the 

Illumina MiSeq V2 system, a well-characterized PhiX library was added as a means for 

quality control. 

 

 

VI. Post-sequencing processing 

 

Sequences received from the NSC were processed and analysed on the Bio-Linux 8 

bioinformatics workstation platform (Field et al., 2006), using the tools BBDuk of BBTools 

(Bushnell, 2014) and QIIME (Caporaso et al., 2010). Pipeline containing the series of 

commands used, along with detailed annotations, is provided in appendix C. The steps 

involved in the processing of the raw sequence reads into community compositions are 

briefly described as follows.  

 

Firstly, the raw sequences were demultiplexed using the QIIME script split_libraries.py, 

based on data provided in a mapping file. Demultiplexing identified the sequence reads based 
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on their barcodes, divided them into separate files for every sample, and subsequently 

removed from the reads the bases that corresponded to the forward and reverse adapters, their 

adjacent barcodes, and any linker sequence. Any control PhiX sequence was then filtered 

away using the multi-functional BBTools script bbduk.sh. Complementary forward and 

reverse (“paired-end”) reads were merged into single consensus sequences using the script 

bbmerge.sh, and then the remaining portions of the forward and reverse primer sequences 

('N5-519F' and '806R', respectively) were trimmed off. The sequence reads were quality 

trimmed and following this, reads shorter than 200 bases were discarded. As the final step in 

the processing of the reads, the FASTQ sequence files were converted into FASTA files 

using the script reformat.sh.  

 

QIIME-compatible labels were individually added to the FASTA files before all the FASTA 

files were concatenated into one, such that sequences from all the samples were merged 

together for the downstream processes. This was particularly important when picking the 

OTUs, which was the next step, as doing this separately would lead to different IDs being 

assigned to the same OTUs and thus overestimate the total number of the OTUs. The QIIME 

script pick_de_novo_otus.py ran a series of processes that led to the construction of a 

phylogenetic tree and an OTU table. In OTU picking, sequences that were at least 97% 

similar were assigned to an OTU de novo using the uclust clustering algorithm (Edgar, 2010). 

A representative sequence was then picked for each OTU, and the representative sequences 

were aligned to the template sequences from the Greengenes Database (DeSantis et al., 2006) 

using the PynaST method. This allowed each representative sequence – or OTU – to be 

assigned to a taxon. The number of times an OTU/taxon appeared in each sample was then 

counted and tabulated into an OTU table. The OTU table was later translated into community 

compositions, specifically the relative abundances of OTUs or taxa, at genus, class and 

phylum taxonomic levels for further analyses. In addition to generating an OTU table, the 

QIIME script also filtered away highly variable and therefore uninformative regions of the 

16S rRNA amplicon sequences, and constructed a phylogenetic tree based on these filtered 

sequences using the FastTree method (Price et al., 2009). 

 

It is to be noted that singletons, which are OTUs formed by single sequence reads, were not 

filtered away from the dataset so as to include as much of the available data as deemed fit for 
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the downstream data analyses, particularly for rarefaction analysis. Theoretically, the choice 

of keeping or removing singletons should not matter for the alpha and beta diversity analyses 

in this study. This is because many of the singletons would have been removed through 

rarefaction (sub-sampling) of the OTU table prior to calculation of alpha diversity estimates 

for the samples. As for the beta diversity analysis, singletons were not included as only the 

common OTUs or taxa (i.e. mean relative abundance of phylum >2%) would be analysed.  

 

 

VII. Data and statistical analyses 

 

Statistical analyses of the microbial community compositions were conducted using R, with 

the packages 'phyloseq' (McMurdie and Holmes, 2013) , 'vegan' (Oksanen et al., 2018) and 

'tidyverse' (Wickham, 2017) added in. 'phyloseq' was chosen specifically for handling and 

analyzing high-throughput microbial community data. Multivariate analysis of the 

community data required the package 'vegan'. 'tidyverse' was a set of compatible packages 

with powerful tools for data manipulation and visualization. Selected sections of the pipeline 

are provided in appendix C. Prior to any analysis, the data was processed such to, among 

others, remove samples 79 ('VES II R2'), 83 ('VES II C2'), and 89 ('ULV III C1'). The 

redundant sample 89 was removed to maintain equal sample size for the analyses, whilst 

samples 79 and 83 were both pseudoreplicates of samples 38 and 31 respectively. The 

pseudoreplicates were removed after a preliminary analysis found no difference to indicate 

any significant technical inconsistency. Removal of the pseudoreplicates was necessary to 

avoid violating the assumption of independence underlying the statistical analyses.   

 

 

Beta diversity analysis 

 

Since the data had more than one outcome variable (i.e. the multitude of OTUs/taxa that 

comprised a community), multivariate methods and statistics were employed for analysis of 

the data. Only OTUs belonging to phyla present at relative abundances greater than 2% were 

included in the analyses. Overall difference between community compositions was quantified 

by calculating their Bray-Curtis dissimilarity (dBC; Bray and Curtis, 1957), based on the 
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following formula:   

𝑑!" =   
Σ!!!!   |𝑝! − 𝑞!|
Σ!!!!   (𝑝! + 𝑞!)

 

where p and q are the OTU/taxa abundance of the first and second community or dataset 

respectively, and R is their combined abundance (Lanzén, 2013).  

 

Firstly, detrended correspondence analysis (DCA), an unconstrained ordination method (Hill 

and Gauch, 1980), was applied on the dataset to uncover the inherent gradients (i.e. directions 

of changes) in the community compositions. The first ordination axis (i.e. the main gradient) 

was found to be less than 3 SD units in length (see Results section). The linear method 

redundancy analysis (RDA; Van Den Wollenberg, 1977) was therefore chosen over unimodal 

methods for constraining the ordination axes to the environmental variables, namely plot type 

(graminoid removal or control), mean summer temperature, and annual precipitation level. 

RDA is the constrained version of the ordination method principal components analysis (PCA; 

ter Braak, 1994). Constrained ordination allowed for statistical testing (i.e. Monte Carlo 

permutation test) of formulated hypotheses. For more details, please refer to appendix C. 

 

 

Alpha diversity analysis 

 

QIIME, through the script alpha_diversity.py, could also provide estimates of alpha, or 

within-sample, diversity by calculating a wide selection of metrics on the OTU table. Prior to 

doing this, the OTU table had to be rarefied to an even sub-sampling depth (i.e. minimum no. 

of sequence reads) to avoid bias in the estimations, considering that there was a considerable 

range in the numbers of sequence reads across the samples (21 772 – 155 222 reads; see 

Result section I). For this study on microbial communities, the metrics Chao1 and Shannon-

Wiener diversity index (H’) were chosen as estimators of richness, whilst the evenness of the 

communities was estimated by Simpson's evenness (E) index. The numbers of OTUs and 

singletons observed in every sample were also computed through the same script. Linear 

mixed-effects models were then built to assess whether graminoid removal, or the mean 

summer temperature and annual precipitation level, had any significant relationship with 

these measures of alpha diversity. For more details, please refer to appendix C. 
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RESULTS 

 

 

I. Sequence reads 

 

A sum of 20 million raw reads were produced from the Illumina sequencing run of 16S rRNA 

gene amplicons from 75 samples (including 1 redundant sample and 2 pseudoreplicates). Out 

of this sum, only 5 409 021 reads remained after processing to obtain high-quality (Phred 

score > 27) paired-end reads more than 200 bases long. An example set of reports from the 

quality control tool FastQC (Babraham Bioinformatics) before and after processing of 

sequence reads are available in appendix D. The processed reads ranged from 21 772 to 155 

222, averaging at 72 120 reads per sample. Clustering of these reads based on 97% sequence 

similarity resulted in a total of 336 493 unique OTUs. Excluding the redundant sample and 

pseudoreplicates, the lowest number of OTUs observed in a sample was 4 867 and the highest 

observed was 28 787. The number of OTUs across the samples averaged at 11 813 (SD = 3 

886). 6% to 24% (mean = 12%, SD = 3.5%) of the OTUs in the samples were singletons. 

Individual data for all the samples are provided in appendix E.      

 

 

II. Microbial community composition 

 

Out of a total of 53 bacterial and archaeal phyla detected in the soil samples (as listed in table 

4), seven were identified to be present at the mean relative abundance of at least 2% in all of 

the soil samples. All of these seven phyla belonged to the bacterial domain. The most 

abundant group of bacteria across all samples belonged to the phylum proteobacteria, 

followed by the phyla acidobacteria, actinobacteria, bacteroidetes, verrucomicrobia, 

planctomycetes, and chloroflexi. In addition, four phyla were detected to be occasionally 

present at the relative abundance of at least 2%. These were nitrospirae, AD3, 

gemmatimonadetes, and firmicutes. 
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Table 4. List of bacterial and archael phyla detected in the soil samples. 
 
Count Kingdom Phylum  Count Kingdom Phylum 

1 Bacteria Proteobacteria  29 Bacteria Spirochaetes 

2 Bacteria Acidobacteria  30 Bacteria BRC1 

3 Bacteria Actinobacteria  31 Archaea [Parvarchaeota] 

4 Bacteria Bacteroidetes  32 Bacteria OD1 

5 Bacteria Verrucomicrobia  33 Bacteria NKB19 

6 Bacteria Planctomycetes  34 Bacteria Chlamydiae 

7 Bacteria Chloroflexi  35 Bacteria FBP 

8 Bacteria Nitrospirae  36 Bacteria MVP – 21 

9 Bacteria AD3  37 Bacteria [Thermi] 

10 Bacteria Gemmatimonadetes  38 Bacteria OP11 

11 Bacteria Firmicutes  39 Bacteria GOUTA4 

12 Bacteria WS3  40 Bacteria Lentisphaerae 

13 Bacteria WPS – 2  41 Archaea Euryarchaeota 

14 Bacteria Armatimonadetes  42 Bacteria GAL15 

15 Bacteria Cyanobacteria  43 Bacteria SR1 

16 Bacteria Elusimicrobia  44 Bacteria PAUC34f 

17 Archaea Crenarchaeota  45 Bacteria ZB3 

18 Bacteria TM6  46 Bacteria WS5 

19 Bacteria TM7  47 Bacteria OC31 

20 Bacteria Fibrobacteres  48 Bacteria SBR1093 

21 Bacteria Chlorobi  49 Bacteria NC10 

22 Bacteria OP3  50 Bacteria SAR406 

23 Bacteria FCPU426  51 Bacteria WS4 

24 Bacteria GN02  52 Unassigned,Other  

25 Bacteria WS2  53 Bacteria  

26 Bacteria Tenericutes  54 Bacteria Other 

27 Bacteria GN04     

28 Bacteria BHI80 – 139     

 
 

Fig. 7 presents a visual comparison of the averaged bacterial phyla compositions in soil 

samples from the graminoid removal (treatment) and control plots, across the different mean 

summer temperatures and annual precipitation levels that characterize the sites. Details 

regarding these averaged phyla compositions, such as the mean and standard deviation values, 

are provided in appendix F. Looking at fig. 7, the stacked bars for the treatment and control 
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plots look rather similar to one another at every site, taking into account natural variations in 

the data. Differences in the stacked bars are more apparent when comparing the different 

temperature and precipitation levels. While it is difficult to visually discern any difference in 

mean relative abundance for many of the phyla, there are a couple clear trends in the figure. 

Actinobacteria appeared to decrease in abundance with increasing precipitation. 

Acidobacteria, on the other hand, appeared to increase in abundance with increasing 

precipitation, particularly at the warmest sites. In regards to comparison between the control 

and treatment plots, only the driest sub-alpine site Ålrust (ALR; precipitation: 0.6 m, 

temperature: 8.5°C) showed a more obvious difference. The phyla appeared to be more 

evenly distributed in the treatment plots than in the control plots. There was also a marked 

increase in the relative abundance of bacteroidetes, and a decrease in the relative abundance 

of acidobacteria, with graminoid removal. More figures showing the microbial compositions 

at class and genus levels for every individual soil sample analysed in this study are provided 

in appendix G. Similar findings can be drawn from studying these figures. With the exception 

of Ålrust, there is hardly any noticeable difference in the stacked bars amongst the replicates 

and between plot types.   

 

To better visualize any correlation between the phyla and mean summer temperature or 

annual precipitation level, the two variables were plotted against each other in fig. 8. The 

scatter plot shows that the following phyla may positively correlate with mean summer 

temperature: acidobacteria, verrucomicrobia, bacteroidetes, planctomycetes, firmicutes, and 

AD3, while proteobacteria and chloroflexi appeared to become less abundant as it got warmer. 

As for the annual precipitation level, the following phyla appeared to correlate positively: 

proteobacteria, acidobacteria, planctomycetes, chloroflexi, and nitrospirae. Actinobacteria 

and bacteroidetes, on the other hand, appeared to negatively correlate with precipitation. 
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Figure 7. Stacked bar charts showing the compositions, in terms of mean relative abundances, 

of common (>0.02) bacterial phyla found in the control and graminoid removal (treatment) 

soil samples (n=3) at twelve sites, each having a unique set of mean summer temperature (6.5, 

8.5, 10.5°C) and annual precipitation level (0.6, 1.2, 2, 2.7 m). 
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Figure 8. Mean relative abundances of common (>0.02) bacterial phyla in soil samples at 

different levels of mean summer temperature (top, n=24) and annual precipitation (bottom, 

n=18). 
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III. Beta diversity analysis: Constrained ordination analysis 

 

Redundancy analysis (RDA) was chosen as the suitable constrained ordination method after 

the community data were found to have short gradients under the method detrended 

correspondence analysis (e.g. length of first axis DCA1 = 0.99691). The RDA found no 

statistically significant difference in the overall composition of the microbial community, 

specifically the common phyla that made up >95% of the community, between the treatment 

and control plots across the sites (F = 0.1847, df = 1, p = 0.945). This result was consistent 

with the visual assessment of the microbial communities between the two types of plot in fig. 

7 (and appendix G). The RDA did, however, reveal significant variation in the microbial 

communities along the gradients of temperature and precipitation (F = 8.7832, df = 2, p = 

0.005). With the plot type partialled out as a covariable, the two constraining variables 

(temperature and precipitation) combined explained 20.5% of the variance. Individually, 

temperature accounted for 9.34% of the variance and precipitation accounted for 11.1% of 

the variance.  

 

The constrained ordination diagrams are presented in fig. 9(a), with the plot for the taxa 

magnified in fig. 9(b). The diagrams show that the first ordination axis (12.1%) was related to 

precipitation, meaning that precipitation was the more dominant factor out of the two climate 

variables in influencing the soil prokaryotic community composition. The ordination of the 

samples in the diagram was deemed to be more or less consistent with what was already 

known about the sites. Samples belonging to the driest sites FAU, ULV and ALR were 

separated out on the left side of the diagram, while samples belonging to the wetter sites 

ARH and OVS were on the right. The second ordination axis (8.5%) was related to 

temperature, with samples from the alpine sites SKJ and LAV separated out on the bottom 

side of the diagram and samples from the boreal sites ARH and OVS separated out on the top. 

The ordination of phyla in fig. 9(b) also revealed results that confirmed some of the 

observations made from fig. 8. For example, acidobacteria were more abundant in soils from 

warmer and wetter sites. The abundance of actinobacteria, on the other hand, was lower at the 

wetter sites. Proteobacteria were found to negatively correlate with temperature. The plot also 

shows that the phyla AD3, firmicutes, planctomycetes and gemmatimonadetes had similar 

occurrence pattern in the soil samples. 
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Fig. 9(a): Ordination diagram based on redundancy analysis (RDA) of 12 bacterial phyla 

(including 1 unassigned group) in 72 soil samples, constrained to the environmental variables 

mean summer temperature and annual precipitation level (arrows). The plot is split between 

samples (colour for site, shape for plot type, C = control, R = graminoid removal) and taxa 

(phyla), and both share the same axis scales. 
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Fig. 9(b): Ordination plot based on redundancy analysis (RDA) of 12 bacterial phyla, 

including one unassigned group, in 72 soil samples, with the constraining variables mean 

summer temperature and annual precipitation levels represented as arrows.  
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IV. Alpha diversity analysis 

 

A number of alpha diversity metrics were calculated on the rarefied (sub-sampled) OTU table 

through the QIIME pipeline. The metrics Chao1, Shannon H’ Index and the number of 

observed OTUs provided estimations of richness, while Simpson´s E provided a measure of 

evenness. Box plots showing how these estimates compare between the two plot types and 

across the different levels of mean summer temperature and annual precipitation are 

presented in fig. 10 – 13. There were a few notable observations that could be derived from 

these figures. Firstly, all of the diversity metrics (richness and evenness) clearly dropped as 

the annual precipitation level increased from 0.6 m (driest) to 1.2 m. Both Shannon diversity 

and Simpson´s evenness also appeared to decrease with increasing temperature. Graminoid 

removal, however, hardly appeared to have any effect on the community richness and 

evenness.    

 

ANOVA testing of the linear mixed-effects models built on these metrics, however, did not 

reveal significant outcome to indicate that graminoid removal, temperature and precipitation 

affected the richness of the microbial community (no. of observed OTUs, Chao1 and 

Shannon diversity). The only significant result from this analysis is the relationship between 

the (Simpson’s) evenness of the microbial community and temperature (F = 6.5241, df = 10, 

p = 0.0287; fig. 13b).   
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Box plots showing the number of OTUs observed in soil samples from (a) 

graminoid removal and control plots (n=36), (b) sites with three levels of mean summer 

temperature (n=24), and (c) sites with four levels of annual precipitation (n=18). 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)     
 
 
 
 
 
 
 
 
 
 
 
 
(c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Box plots of Chao1 richness estimate of soil prokaryotic communities in samples 

from (a) graminoid removal and control plots (n=36), (b) sites with three levels of mean 

summer temperature (n=24), and (c) sites with four levels of annual precipitation (n=18). 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Box plots of Shannon diversity index of soil prokaryotic communities in samples 

from (a) graminoid removal and control plots (n=36), (b) sites with three levels of mean 

summer temperature (n=24), and (c) sites with four levels of annual precipitation (n=18). 
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Box plots of Simpson's evenness of soil prokaryotic communities in samples from 

(a) graminoid removal and control plots (n=36), (b)* sites with three levels of mean summer 

temperature (n=24), and (c) sites with four levels of annual precipitation (n=18).  
*statistically significant 
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DISCUSSION 

 

 

I. Response of soil prokaryotic community to graminoid removal 

 

The results showed that five years of above-ground removal of graminoids had no effect on 

the overall (>95%) composition of the soil prokaryotic community in the boreal and alpine 

semi-natural grasslands. There were a few possible scenarios behind this. Firstly, graminoid 

removal may not have changed the overall nutrient content of the litter the plot produced, 

such that the group of decomposers that broke down this litter remained largely the same. 

This could be ascertained by gathering and analyzing more data on relevant variables, such as 

the carbon and nitrogen content in the undecomposed plant litter and in the soil. Secondly, 

graminoid removal may have initially prompted a more drastic response from the prokaryotic 

community, but the community may have eventually recovered or re-stabilized itself over the 

years. This may be an indication of a negative feedback at work. A comparable study by 

Urcelay et al. (2009) lent support to this recovery hypothesis, as the study found that 

graminoid removal in a woody ecosytem significantly reduced the total colonization of plant 

roots by arbuscular mycorrhizal fungi after five months, but this initial response eventually 

disappeared after 17 and 29 months. Thirdly, no effect of graminoid removal was detected on 

the common taxa that made up the majority of the community and on phylum level. A further 

probe into the rare taxa and individual genuses in these communities may have revealed 

interesting findings to add to this study.  

 

In any case, the results provided evidence to suggest that soil prokaryotic community in the 

semi-natural grassland ecosystem possessed a considerable level of ecological resilience to 

natural or anthropogenic environmental changes. Ecological resilience in this context could 

be interpreted as the ability of the community to resist or recover from the disturbance of 

graminoid removal so as to retain the same structure and functions (Holling, 1973; Hodgson 

et al., 2015). This finding thus concurred with the conclusion drawn from another similar 

study (Marshall et al., 2011) set in a northern Canadian grassland, which also found almost 

no response from the soil microbial community – as measured through their substrate-

induced respiration (i.e. a proxy for metabolic diversity) and phospholipid fatty acid analysis 
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(i.e. a proxy for community composition) – after five years of graminoid removal. This may 

be a positive news, in light of the prospect of increased graminoid dominance under a warmer 

climate (Olsen et al., 2016). If the removal of graminoids did not yield any significant impact 

on the community structure and functions of soil prokaryotes, then the reverse scenario – 

increased graminoid dominance – would likely not either. Such stability may help impede 

further climate change impacts on the semi-natural grassland ecosystems.  

 

 

II. Shifts in soil prokaryotic community along temperature and precipitation gradients 

 

While no response to graminoid removal was detected from the results, this was not the case 

for the climate variables of temperature and precipitation. The prokaryotic community 

composition was found to vary significantly with the two variables. Ordination analysis of the 

data further determined that precipitation predominated slightly over temperature in shaping 

the community composition of soil prokaryotes in the semi-natural grasslands, with 11.1% of 

the observed variance in data attributed to precipitation while temperature explained 9.34% 

of the variance. This left approximately 80% of the variance to be explained by other factors 

and random variation. It was perhaps not a surprise to find that the prokaryotic community 

shifted along the gradients of temperature and precipitation, as prokaryotes – or any living 

organism – were known to vary in the ranges of environmental conditions they could survive 

or grow optimally in (Madigan and Martinko, 2006). In addition to the direct effects, 

temperature and precipitation (or water availability) could also have exerted further effects 

indirectly, through other biotic components of the ecosystem (e.g. plants) that interacted with 

the soil prokaryotic community. 

 

Water availability has been recognized as one of the primary determinants of soil microbial 

community composition and activities (Drenovsky et al., 2004; Madigan and Martinko, 2006). 

The latter, which includes microbial respiration and growth, has been discussed briefly in the 

introduction to this thesis. Water is an essential component of physiological structures and 

processes. Extreme lack of water, such as in dessication experiments, had been demonstrated 

to cause damage to microbial cells, leading to a decline in activity (Potts, 1994). Drought 

conditions may thus select for microorganisms that are able to tolerate the extreme dryness by 
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producing protective molecules such as osmolytes (Warren, 2014). A recent study by Meisner 

et al. (2018) also showed how drought and re-wetting events left impacts on the microbiome 

composition that persisted long after the events. For example, the study found that the 

archaeal phylum Thaumarchaeota, known to thrive in dessert soils and other extreme 

environments, was particularly abundant in soil with a history of drought.    

 

Water also mediates impacts by regulating the oxygen and nutrient availabilities in soils 

(Drenovsky et al., 2004). Water is necessary for microorganisms and plants to access and 

absorb nutrients (Viets, 1972). Adequate amount of water in well drained soil can also sustain 

high level of oxygen for microorganisms. In contrast, the oxygen concentration of soil 

solution in waterlogged condition is usually very low due to the relatively quick consumption 

of dissolved oxygen without sufficient replenishment (Madigan and Martinko, 2006). The 

latter would have been compounded by abundant presence of organic matter or nutrition in 

the soil solution, which further increases the biological demand for oxygen and eventually 

selects for facultative and obligate anaerobic microorganisms (Drenovsky et al., 2004).   

 

Temperature is another important environmental factor affecting microorganisms, 

particularly on microbial growth. Although growth and community assemblage are two 

separate processes, they are ultimately and intimately related. Every microorganism has a 

minimum temperature below which growth cannot occur, an optimum temperature at which 

enzyme-mediated physiological processes occur at maximal rates, and a maximum 

temperature above which proteins denature and the cell lyses (Madigan and Martinko, 2006). 

Although these three cardinal temperatures could differ greatly for different microorganisms, 

it was speculated that many of the soil prokaryotes in this study shared similar or overlapping 

ranges of temperature for growth, such to allow precipitation – or more precisely, water 

availability – to be the more important factor in affecting the prokaryotic communities, at 

least on the phylum level and within the temperature range studied here (mean summer 

temperature = 5.87–10.8°C).  

 

The results revealed that the relative abundance of acidobacteria increased with increasing 

temperature and precipitation. Proteobacteria, on the other hand, were observed to become 

less abundant as the temperature rose. Considering that proteobacteria may be r-selected and 
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acidobacteria may be K-selected (Torsvik and Øvreås, 2002), a parallel could be drawn 

between this result and that of the study by Olsen et al. (2016). Studies have proposed that 

(α-, β-, γ-) proteobacteria are r-strategists and are adapted to thrive in less-crowded 

environments with plentiful resources by growing and reproducing rapidly. Acidobacteria, 

meanwhile, are K-strategists in that they are adapted to compete successfully for limited 

resources at the expense of growth (Smit et al., 2001; Fierer et al., 2007). The observed 

increase in dominance of acidobacteria, and decrease in proteobacteria, could thus be 

indicative of a more competitive environment for the prokaryotes at the warmer sites. This 

would be congruent with the finding by Olsen et al. (2016) that warming brought about a 

shift in the net outcome of interactions amongst the plants from facilitation to competition. 

 

The only statistically significant result from the alpha diversity analysis was the decrease in 

evenness (Simpson’s E) of the community with increasing temperature. This could perhaps 

be linked to the observed increase in dominance of competitive bacteria, particularly 

acidobacteria, and the probable shift towards a more competitive environment in general, as 

the temperature rose. There was also a notable trend, consistent across the calculated 

estimates of alpha diversity, that richness and evenness dropped considerably as the annual 

precipitation level rose from 0.6 m (driest) to 1.2 m. While the statistical test did not find this 

trend to be significant, it was nonetheless an interesting observation worth looking further 

into. It was to be noted that all three of the driest sites (ULV, ALR, FAU) were located at the 

eastern end of the site range, roughly 100 km away from the next driest sites (LAV, HOG, 

VIK) (fig. 6). Considering that these sites were relatively farther away from all of the other 

sites, other factors that differentiated these sites may have a stronger role in influencing the 

diversity of their prokaryotic communities.   

 

 

III. Discussion on uncertainties in data  

 

In any case, it is important to take into account the (un)reliability of the diversity estimates 

when drawing conclusions from the results. Firstly, the diversity estimates analysed in this 

study were calculated from an OTU table that was rarefied only once (i.e. one random sub-

sample of the entire data), which meant that a portion of the available data was not included 
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in calculating the estimates. Repeating the rarefaction multiple times (e.g. 100 times) would 

have improved the reliability of the data and confidence in the results. The choice of alpha 

diversity metrics could also have influence on the findings of this study, as different metrics 

may not be equally sensitive to the underlying distributions of the taxa nor produce the same 

outcome. The non-parametric estimator Chao1 and Shannon H’ and Simpson’s E indices 

were chosen for this study based on recommendation from other studies on bacterial 

communities (Hill et al., 2003; Lanzén, 2013). However, the only and closest possible way to 

verify that these chosen metrics reflected true diversity of the data, or at least capture the true 

differences or trends within the dataset, would be to run the post-sequencing processing and 

analyses on a similar but artificial (mock) community with pre-defined diversity.  

 

As discussed briefly in the introduction to this thesis, the assessment of diversity is 

particularly challenging in microbiology. One aspect that lends to this challenge is in 

obtaining adequate sample size and/or sequencing depth, especially for samples from highly 

complex environments such as the soil. The loss of a substantial portion of the raw sequence 

reads during processing (mean recovery rate = 52.3%) first raised the concern of  insufficient 

sequencing depth. This was confirmed for many of the samples, as their rarefaction curves 

(appendix H) had not even begun to flatten out. This meant that the data would highly 

underestimate the true diversity of the prokaryotic community in the soil samples. 

Fortunately, this may not as severely affect the analysis of trends in community composition 

and diversity, as a study by Lundin et al. (2012) had demonstrated that a relatively small 

number of sequence reads could be enough to uncover the majority of trends when comparing 

compositions (i.e. 1000 denoised sequences per sample to explain 90% of trends in β-

diversity) and diversities (i.e. 5000 denoised sequences per sample to explain 80% of trends 

in α-diversity). 

 

Singletons were found to contribute 6−24% (mean = 12%, SD = 3.5%) of OTUs in the 

analysed samples. Singletons are a subject of contention amongst microbial ecologists, as 

their presence could arise from either genuine rare taxa or errors introduced during PCR or 

sequencing. The latter would have erroneously increased OTU richness of the community. As 

explained earlier in the methodology section of this thesis, the presence of singletons should 

not matter much for most of the analyses in this study, since many of the singletons would 
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have been excluded from the rarefied (sub-sampled) OTU table or filtered out (i.e. mean 

relative abundance of phylum <2%) from the compositional data. 

 

 

IV. The next steps 

 

Time constraint limited the depth of analyses that could be done for this thesis. Much yet 

remains to be uncovered from the millions of sequences obtained from the high-throughput 

sequencing of the 16S rRNA genes. The next step would be to further analyse the community 

data, down to the class and genus levels. This would, for example, reveal which classes of 

proteobacteria dominated in the soil samples and which had responded significantly to the 

climate variables. Analyses at such higher resolutions are likely to unveil valuable or 

interesting findings to add to this study. Another step would be to probe into the rare taxa, 

particularly those that are highly relevant to the carbon flux of the terrestrial ecosystem. One 

such example is the archaeal class methanobacteria, which are known to produce methane as 

an essential part of their metabolism (Madigan and Martinko, 2006). A quick look into the 

data revealed presence of these methanogens in soil samples from the site VES, which 

received on average the highest level of precipitation amongst all of the sites (table 1).           

 

To improve the accuracy of the diversity estimations, the alpha diversity metrics should be 

re-calculated on multiple (e.g. 100) sub-samples of the OTU table. A number of 

bioinformatics tools or methods have also been developed to minimise bias and noise in the 

sequence data (Lanzén, 2013). Examples include AmpliconNoise (Quince et al., 2011) and 

amplicon sequence variants (ASVs) methods (Callahan et al., 2017). It might be worthy to 

explore the usage of such tools or methods on the sequence reads.  

 

Althuizen et al. (2018) had gathered more data characterizing the soils at the study sites, such 

as the soil pH and the carbon and nitrogen content. The addition of such relevant 

environmental variables into the analyses may lead to further insights into the network of 

abiotic interactions in the ecosystem. A number of future studies can also be suggested, 

considering that there are remaining soil samples stored frozen. Analysis of the fungal 

community in the soils, such through amplification and sequencing of the 18S rRNA genes 
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from the environmental DNA, would be a suitable complement to this study. The shift of 

focus onto the active fraction of the microbial communities, such by extracting mRNA from 

the samples, or onto a specific ecological function of interest, such through real-time PCR of 

a specific target (e.g. methanogens), may also pave the way for valuable, new findings.  

 

 

CONCLUSIONS 

 

The lack of response to five years of removal of graminoids in the semi-natural grasslands 

signified some level of resilience of the soil prokaryotic communities to major environmental 

disturbances. In contrast, the soil prokaryotic communities varied significantly along the 

natural gradients of temperature and precipitation across the western Norwegian fjord 

landscapes. Such conflicting responses perhaps give a glimpse into the complexity of biotic 

and abiotic interactions that run the terrestrial ecosystem.  

 

To the best my knowledge, this study is the first to apply the approach of high-throughput 

sequencing of the 16S rRNA gene to examine the composition and diversity of soil 

prokaryotic communities in a plant removal experiment.  
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Appendix A 
 
Table listing all the soil samples analysed in this study. The columns correspond to (l to r): 
sample no. and sequencing ID (No.), sample label, plot ID, plot type, person handling the 
sample (I.I.; JT = Jesslyn Tjendra, WG = William Garcia), soil mass (S.M.; g), concentration 
of 1st elution of DNA extract ([D1]; ng/µL), concentration of 2nd elution of DNA extract 
([D2]; ng/µL), concentration of 1st PCR amplicon ([P1]; ng/µL), concentration of 2nd PCR 
amplicon ([P2]; ng/µL), sample purity A260/280, sample purity A260/230. NA = not available. 
 
No. Label Plot ID Plot Type I.I. S.M. 

 
[D1] [D2] [P1] [P2] 260/ 

280 
260/ 
230 

15 ALR II C1 TTC31 Control JT NA 21,2 4,64 0,88 49,3 1,88 2,17 

25 ALR II R1 RTC Removal JT NA 1,35 0,72 1,39 45,5 1,96 2,4 

56 ALR III C2 (48) TTC37 Control WG 0,25 16,4 5,68 2,46 28,2 1,83 2,22 

55 ALR III R2 (45) RTC Removal WG 0,24 7,48 5,88 3,73 30,1 1,83 2,17 

88 ALR IV C2 (54) TTC45 Control WG NA NA 9,04 6,08 16,7 NA NA 

87 ALR IV R2 (51) RTC Removal WG NA NA 8,2 1,6 24,8 1,93 2,22 

86 ARH I C1 (278) TTC211 Control WG 0,6 23,2 5,4 1,94 22,8 1,93 1,72 

85 ARH I R1 (275) RTC Removal WG 0,6 22,4 4,28 2,51 22 1,99 2,29 

72 ARH II C2 (285) TTC216 
(Cc:216) Control WG 0,27 23,6 6,92 2,37 19,6 1,8 2,17 

68 ARH II R2 (282) RTC Removal WG 0,26 28,4 4,64 1,45 14,5 1,88 2,31 

47 ARH III C1 (293) TTC222 
(Cc:222) Control JT 0,72 24 21,2 1,03 49,9 1,87 2,23 

42 ARH III R1 (290) RTC Removal JT 0,74 95,2 16 1,92 44,6 1,9 2,21 

19 FAU I C1 TTC51 Control JT 0,74 18,6 3,86 0,67 38,9 1,85 2,05 

18 FAU I R1 RTC Removal JT 0,96 19,7 3,16 0,8 38,8 1,93 2,02 

22 FAU II C2 TTC57 Control JT 0,24 1,39 0,89 2,28 40,7 1,94 2,32 

21 FAU II R2 RTC Removal JT 0,25 1,54 1,42 5,8 41,6 1,87 2,26 

58 FAU III C1 (77) TTC61 Control WG 0,84 8,44 8,36 11 23,6 1,87 2,22 

57 FAU III R1 (74) RTC Removal WG 1 5,08 1,72 1,51 27,7 1,88 2,21 

76 GUD II C2 (351) TTC156 
(Cd:156) Control WG 0,51 19,8 4,4 3,78 20,3 1,8 1,82 

75 GUD II R2 (348) RTC Removal WG 0,54 22 5,08 2,35 19,4 1,82 2,11 

35 GUD III C1 (356) TTC165 
(Cd:165) Control JT 0,85 112 10,8 2,26 43,5 1,81 2,12 

36 GUD III R1 (353) RTC Removal JT 0,83 98 11,4 1,8 44,4 1,84 2,12 

78 GUD IV C1 (362) TTC167 Control WG 0,53 23,2 8,88 6,86 17,5 1,77 2,13 

77 GUD IV R1 (359) RTC 
NewSiri Removal WG 0,52 19,8 6,56 2,42 12,3 2,07 1,54 

60 HOG I C2 (96) TTC101 Control WG 0,25 9,72 2,88 2,53 20,4 1,89 2,06 

59 HOG I R2 (93) RTC Removal WG 0,24 9,2 3,22 1,77 24,9 1,9 2,24 

62 HOG II C1 (101) TTC110 Control WG 0,8 42,8 9,28 1,99 31,9 1,83 2,15 

61 HOG II R1 (98) RTC Removal WG 0,84 42 12,2 1,54 13,1 1,94 2,2 

41 HOG III C1 (107) TTC115 Control JT 0,94 27,5 13,2 2,15 45,4 1,9 2,23 

27 HOG III R1 (104) RTC Removal JT 0,89 19 9,36 1,58 40,3 1,88 2,08 

66 LAV I C1 (155) TTC78 Control WG 0,82 101 15,4 0,77 14 1,85 1,89 
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65 LAV I R1 (152) RTC Removal WG 0,69 19,8 18 0,98 16,8 1,93 2,12 

71 LAV II C2 (162) TTC85 Control WG 0,52 22 12,2 5,27 21,5 1,83 2,2 

67 LAV II R2 (159) RTC Removal WG 0,53 22 6,84 1,31 16,4 1,92 2,28 

48 LAV III C1 TTC87 Control JT 0,81 91,6 22,4 1,34 41,9 1,89 2,11 

23 LAV III R1 RTC Removal JT 0,75 0,5 1,89 0,53 43,9 1,97 2,33 

34 OVS I C1 (314) TTC286 Control JT 1,02 18,2 11,1 1,8 43,1 1,85 2,26 

39 OVS I R1 (311) RTC Removal JT 1 9,48 5,52 1,46 43,1 1,84 2,21 

50 OVS II C2 (321) TTC291 Control JT 0,66 98 25 2,4 34,1 1,86 2,06 

49 OVS II R2 (318) RTC Removal JT 0,64 129 21,2 1,83 37,6 1,82 2,11 

74 OVS III C1 (326) TTC 297 Control WG 0,55 88,8 21,4 3,51 19,7 1,88 2,01 

73 OVS III R1 (323) RTC Removal WG 0,51 63,6 22 2,38 16,1 1,83 2,27 

33 RAM IV C1 (215) TTC194 Control JT 0,72 56,4 10,1 1,26 48,1 1,8 2,18 

51 RAM IV R1 (212) RTC Removal JT 0,77 121 19,5 2,02 38,6 1,84 2,15 

84 RAM V C1 (221) TTC198 Control WG 0,6 22 NA 8,86 18 2,03 2,24 

82 RAM V R1 (218) RTC Removal WG 0,6 24 20,4 1,75 18 1,98 2,25 

29 RAM VI C2 (228) TTC203 
(Cc:203) Control JT 0,3 43,2 8,2 1,56 48 1,86 2,22 

28 RAM VI R2 (225) RTC 
newSiri Removal JT 0,24 57,6 9 1,52 43,1 1,84 2,15 

45 SKJ I C1 TTC236 Control JT 0,86 142 21,6 1,14 38,7 1,88 2,06 

43 SKJ I R1 RTC 
NewSiri Removal JT 0,81 123 15,8 1,8 39,9 1,88 2,24 

17 SKJ II C2 TTC243 Control JT 0,63 23,6 3,47 0,85 38,9 1,9 2 

44 SKJ II R2 RTC 
NewSiri Removal JT 0,6 123 15,6 1,52 43,8 1,84 2,18 

70 SKJ III C1 (260) TTC246 
(Cd:246) Control WG 0,51 16,8 12,6 11,9 16,5 1,76 2,88 

69 SKJ III R1 (257) RTC Removal WG 0,53 69,2 10,6 4,5 20,3 1,99 2,29 

26 ULV I C1 TTC5 Control JT 0,91 0,49 1 0,62 46,8 1,93 2,41 

24 ULV I R1 RTC Removal JT 0,61 0,61 1,87 0,53 48,1 1,95 2,21 

20 ULV II C2 TTC6 Control JT 0,81 2,78 1,21 0,63 44,8 1,85 2,09 

16 ULV II R2 RTC Removal JT 0,76 23,4 5,2 0,55 33,7 1,9 2,03 

89* ULV III C1 (16) TTC11 Control WG 0,41 22,4 11,7 12 13,2 1,84 2,07 

53 ULV V R2 (2) RTC Removal WG 0,54 21,6 10,5 4,63 30,7 1,88 2,15 

54 ULV V T232 (5) TTC23 Control WG 0,53 21,6 10,9 5,65 28,8 1,87 1,92 

81 VES I C1 (185) TTC263 Control WG 1,12 18 8,8 3,35 19,6 2,03 2,21 

80 VES I R1 (182) RTC Removal WG 0,81 19,9 11 1,27 17,8 2,16 2,56 

31 VES II C2 (192) TTC270 Control JT 0,32 101 8,68 1,12 42,5 1,85 2,1 

83* VES II C2 (192) TTC270 Control WG 0,32 22 16,7 0,87 18,3 1,92 2,18 

38 VES II R2 (189) RTC Removal JT 0,3 22,4 6,16 1,35 31,7 1,96 2,19 

79* VES II R2 (189) RTC Removal WG 0,3 21,2 11,7 1,02 14,1 1,98 2,48 

52 VES III C1 (197) TTC271 Control JT 0,83 24 18,8 1,16 29 1,87 2,11 

46 VES III R1 (194) RTC Removal JT 1,22 139 17 1,19 38,3 1,82 2,11 

32 VIK I C1 TTC126 Control JT 0,84 29,1 10,6 1,94 46,1 1,85 2,13 
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40 VIK I R1 RTC Removal JT 0,75 19,8 5,96 2,38 44,8 1,87 2,1 

30 VIK II C2 TTC134 Control JT 0,25 9,68 3,77 0,76 41,3 1,84 2,17 

37 VIK II R2 RTC Removal JT 0,24 7,6 2,42 1,08 44,2 1,84 2,14 

64 VIK III C1 (137) TTC140 Control WG 0,35 23,7 7,48 0,56 13,9 1,84 2 

63 VIK III R1 (134) RTC Removal WG 0,8 17,1 5,8 0,99 9,88 1,79 1,59 

* Sample 89 was a redundant sample. 
** Samples 79 and 83 were both pseudoreplicates of samples 38 and 31 respectively. 
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Appendix B 
 
Images of UV light-illuminated gels of DNA extracts. 
DNA ladder: Thermo Scientific MassRuler DNA Ladder Mix 
(https://www.thermofisher.com/order/catalog/product/SM0403) 
 

Lane 1: DNA ladder 
Lane 2:  ⎯ 
Lane 3: Sample 25 (ALR II R1) 
Lane 4: Sample 15 (ALR II C1) 
Lane 5: Sample 42 (ARH III R1) 
Lane 6: Sample 47 (ARH III C1) 
Lane 7: Sample 18 (FAU I R1) 
Lane 8: Sample 19 (FAU I C1) 
Lane 9: Sample 21 (FAU II R2) 
Lane 10: Sample 22 (FAU II C2) 
Lane 11: Sample 36 (GUD III R1) 
Lane 12: Sample 35 (GUD III C1) 

 
Lane 1: DNA ladder 
Lane 2: ⎯ 
Lane 3: Sample 27 (HOG III R1) 
Lane 4: Sample 41 (HOG III C1) 
Lane 5: Sample 23 (LAV III R1) 
Lane 6: Sample 48 (LAV III C1) 
Lane 7: Sample 39 (OVS I R1) 
Lane 8: Sample 34 (OVS I C1) 
Lane 9: Sample 49 (OVS II R2) 
Lane 10: Sample 50 (OVS II C2) 
Lane 11: Nuclease-free water 
Lane 12: Escherichia coli genomic DNA (50 ng) 

 
 
Lane 1: DNA ladder 
Lane 2: Sample 51 (RAM IV R1) 
Lane 3: Sample 33 (RAM IV C1) 
Lane 4: Sample 28 (RAM VI R2) 
Lane 5: Sample 29 (RAM VI C2) 
Lane 6: Sample 43 (SKJ I R1) 
Lane 7: Sample 45 (SKJ I C1) 
Lane 8: Sample 44 (SKJ II R2) 
Lane 9: Sample 17 (SKJ II C2) 
Lane 10: Sample 16 (ULV II R2) 
Lane 11: Sample 20 (ULV II C2) 
Lane 12: Sample 24 (ULV I R1) 
 
 
Lane 1: DNA ladder 
Lane 2: Sample 26 (ULV I C1) 
Lane 3: Sample 46 (VES III R1) 
Lane 4: Sample 52 (VES III C1) 
Lane 5: Sample 40 (VIK I R1) 
Lane 6: Sample 32 (VIK I C1) 
Lane 7: Sample 37 (VIK II R2) 
Lane 8: Sample 30 (VIK II C2) 
Lane 9: Sample 38 (VES II R2) 
Lane 10: Sample 31 (VES II C2) 
Lane 11: Nuclease-free water 
Lane 12: Escherichia coli genomic DNA (50 ng) 
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Appendix C 
 
BIOINFORMATICS PIPELINE 
The following pipeline was run on the Bio-Linux 8 bioinformatics workstation platform 
(Field et al., 2006), using the tools BBDuk of BBTools (Bushnell, 2014) and QIIME 1 
(Caporaso et al., 2010). 
 
Processing of sequences 
 
# Demultiplexing 
 
# Repeat the following pipeline until ##### for every sample 
 
# Access the directory containing the raw reads and unzipped all the files. 
gunzip *.gz  
 
# Scan the reads for k-mers of at least 31 bases that match the referred sequence (phiX),  
# allowing 1 base mismatch, and filter those reads away.   
# Override the default setting and specify 2 GB of RAM for this procedure. 
bbduk.sh -Xmx2g in1=R1.fastq in2=R2.fastq out1=unmatched1.fastq out2=unmatched2.fastq 
outm1=matched1.fastq outm2=matched2.fastq ref=/usr/share/bowtie2/indexes/phiX.fasta 
k=31 hdist=1 stats=stats.txt  
 
# Merge together the pairs of complementary or overlapping forward and reverse reads.  
bbmerge.sh in1=unmatched1.fastq in2=unmatched2.fastq out=R1R2merged.fastq 
 
# Scan the merged reads for 12-20 base k-mers that match the referred 'N5-519F' sequence,  
# allowing 1 base mismatch and every possibility of 5 degenerate bases (5 N's). 
# Override the default setting and specify 2 GB of RAM for this procedure. 
bbduk.sh -Xmx2g in=R1R2merged.fastq out=RmergedFA.fastq 
literal=NNNNNCAGCMGCCGCGGTAA ktrim=n k=20 mink=12 hdist=1 copyundefined  
 
# Scan the merged reads for 12-20 base k-mers that match the referred '806R' sequence,  
# allowing 3 base mismatches. 
bbduk.sh -Xmx2g in=RmergedFA.fastq out=RmergedRA.fastq 
literal=GGACTACHVGGGTWTCTAAT ktrim=n k=20 mink=12 hdist=3  
 
# Scan the right and left ends of the merged reads and trim away  
# regions that are scored below 27 by the Phred algorithm. 
# Discard reads that are shorter than 200 bases. 
bbduk.sh -Xmx2g in=RmergedRA.fastq out=Rtrimmed.fastq qtrim=rl minlen=200 trimq=27  
 
# Reformat the FASTQ sequence files into FASTA files. 
reformat.sh in=Rtrimmed.fastq out=Rtrimmed.fasta  
 
Constructing an OTU table and a phylogenetic tree 
 
# Add a copy of the metadata mapping file into the relevant directory. 
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# An example of the mapping file is available at  
# http://qiime.org/_static/Examples/File_Formats/Example_Mapping_File.txt 
# Manually edit the SampleID column of the file. 
# Activate the QIIME environment.  
# Add QIIME-compatible label to the FASTA file   
add_qiime_labels.py -i Sequence_Data -m Sequence_Data/Mapping_File.txt -c SampleID -n 
0 -o Qiime_Formatted  
# Exit Qiime  
 
##### 
 
# Access the directory containing all the FASTA files.  
# Concatenate all the sequences together into one FASTA file using the cat command. 
# Add a copy of the metadata mapping file into the same directory. 
# Manually edit the SampleID column of the file. 
# Activate the QIIME environment.  
 
# Run a workflow script for de novo OTU picking, taxonomy assignment, phylogenetic tree 
construction, and 
# OTU table construction, and store all outputs in a directory (e.g. RockyData) 
# Use the 'nohup &' command to keep the workflow running even after logging out, etc. 
nohup pick_de_novo_otus.py -i RockyData.fasta -o RockyData &  
 
# Access the directory containing the OTU table,  
# and convert the .biom format of the OTU table into a tab-delimited .txt format.   
biom convert -i otu_table.biom -o otu_table.txt --to-tsv  
# Translate the OTU table into tables and stacked bar charts of community compositions.  
# Community composition at genus level  
summarize_taxa.py -L 6 -i otu_table.biom -o otu_summarised_genus  
biom summarize-table -i otu_table.biom -o otu_table_summary_genus.txt  
plot_taxa_summary.py -i otu_summarised_genus/otu_table_L6.txt -l Genus -o 
bar_charts_genus -c bar  
zip -r bar_charts_genus.zip bar_charts_genus  
# Community composition at class level  
summarize_taxa.py -L 3 -i otu_table.biom -o otu_summarised_class  
biom summarize-table -i otu_table.biom -o otu_table_summary_class.txt  
plot_taxa_summary.py -i otu_summarised_class/otu_table_L3.txt -l Class -o bar_charts_class 
-c bar  
zip -r bar_charts_class.zip bar_charts_class  
# Community composition at phylum level 
summarize_taxa.py -L 2 -i otu_table.biom -o otu_summarised_phylum  
biom summarize-table -i otu_table.biom -o otu_table_summary_phylum.txt  
plot_taxa_summary.py -i otu_summarised_phylum/otu_table_L2.txt -l Phylum -o 
bar_charts_phylum -c bar  
zip -r bar_charts_phylum.zip bar_charts_phylum  
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Alpha diversity metrics and rarefaction curves 
 
# Add a copy of the metadata mapping file into the relevant directory. 
# Activate the QIIME environment.  
# Run a workflow script for performing alpha rarefaction and generating rarefaction curves,  
# storing the outputs in a directory (e.g. arare). 
alpha_rarefaction.py -i otu_table.biom -m Mapping_File.txt -o arare -t rep_set.tre  
 
# Rarefy the OTU table to even sampling depth (i.e. minimum sequence reads = 21 772)  
single_rarefaction.py -i otu_table.biom -o otu_table_even21772.biom -d 21772 
# Compute alpha diversity metrics on the rarefied OTU table.  
# The chosen metrics are observed no. of OTUs, chao1 richness estimator, no. of singletons, 
# shannon diversity index, and simpson's evenness index 
alpha_diversity.py -i otu_table_even21772.biom -m observed_otus,chao1,singles,shannon, 
simpson_e  -o adiv.txt -t rep_set.tre 
 
 
DATA ANALYSIS PIPELINE 
The following pipeline was run using R version 3.2.0 via the platform RStudio version 
1.1.414. The packages 'phyloseq' (version 1.22.3), 'vegan' (version 2.4-6) and 'tidyverse' 
(version 1.2.1) were installed prior to running the pipeline.  
 
Data processing 
 
# Load the relevant packages 
library("tidyverse") 
library("phyloseq") 
library("vegan") 
 
# Set the working directory 
setwd("/home/jesslyn/BIO_399/Analysis/RockyData/") 
# Load the sample ID, OTU composition, and alpha diversity metrics files 
SampleID.df <- read.csv(file = "SampleID.csv") 
OTU_phylum.df <- read.csv(file = "NO_singleton_removal/OTU_Phylum.csv") 
alphadiversity.df <- read.csv(file = "NO_singleton_removal/alphadiversity.csv") 
# Remove Sample89 from the dataframes above 
SampleID.df <- filter(SampleID.df, X!="Sample89") 
alphadiversity.df <- filter(alphadiversity.df, X!="Sample89") 
OTU_phylum.df$Sample89 <- NULL 
 
# Combine the dataframes into a phyloseq object 
 
# Combine the first two taxonomic columns of OTU dataframe into one column 
OTU_phylum.df <- unite(OTU_phylum.df, OTU_phylum, Kingdom:Phylum, sep = ",", 
remove = TRUE) 
# Convert the first column into row names 
OTU_phylum.df <- OTU_phylum.df %>% remove_rownames %>% 
column_to_rownames(var = "OTU_phylum") 
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# Assign the OTU table as a phyloseq object 
OTU_phylum = otu_table(OTU_phylum.df, taxa_are_rows = TRUE) 
 
# And then the sample ID 
# Add two columns of data (mean summer temperature and annual precipitation) into the 
dataframe 
SampleID.df <- SampleID.df %>% 
  mutate(Temperature = as.numeric(if_else(Site %in% c('ULV', 'GUD', 'LAV', 'SKJ'), '6.5', 
if_else(Site %in% c('OVS', 'FAU', 'VIK', 'ARH'), '10.5', '8.5')))) %>% 
  mutate(Precipitation = as.numeric(if_else(Site %in% c('ULV', 'ALR', 'FAU'), '0.6', 
if_else(Site %in% c('LAV', 'HOG', 'VIK'), '1.2', if_else(Site %in% c('GUD', 'RAM', 'ARH'), 
'2', '2.7'))))) 
# Convert the first column into row names 
SampleID.df <- SampleID.df %>% remove_rownames %>% column_to_rownames(var = 
"X") 
# Assign the Sample ID as a phyloseq object 
SampleID = sample_data(SampleID.df) 
 
# And then the alpha diversity metrics 
# Convert the first column into row names 
alphadiversity.df <- alphadiversity.df %>% remove_rownames %>% 
column_to_rownames(var = "X") 
# Assign the alpha diversity metrics as a phyloseq object 
alphadiversity = sample_data(alphadiversity.df) 
 
# Merge all three together 
dataframe <- merge_phyloseq(OTU_phylum, SampleID, alphadiversity) 
 
# Remove pseudoreplicates (samples 79 and 83) from the data 
dataframe <- prune_samples(rownames(sample_data(dataframe)) != "Sample83", dataframe) 
dataframe <- prune_samples(rownames(sample_data(dataframe)) != "Sample79", dataframe) 
 
# For each sample, remove phyla that have relative abundance less than 0.02  
df_ordination = dataframe 
wh0 = genefilter_sample(df_ordination, filterfun_sample(function(x) x > 0.02)) 
dford = prune_taxa(wh0, df_ordination) 
 
Unconstrained ordination – Detrended Correspondence Analysis (DCA) 
 
# DCA on phylum-level data object, using bray-curtis dissimilarity 
df_phylum_dca <- ordinate(dford, "DCA", "bray") 
df_phylum_dca 
 
Beta diversity analysis: Constrained ordination – Redundancy Analysis (RDA) 
 
# Compute the bray-curtis disimilarities for phylum-level data object 
brayphylum <- phyloseq::distance(physeq = dford, method = "bray") 
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# Constrain the ordination to the variable 'Plot_Type' (graminoid removal vs. control), 
# partialling out ‘Temperature’ and ‘Precipitation’ as covariables. 
# Ordinate: ~ Plot_Type + Condition(Temperature,Precipitation) 
df_phylum_rda_2 <- ordinate( 
  physeq = dford, 
  method = "RDA", 
  distance = brayphylum, 
  formula = ~ Plot_Type + Condition(Temperature,Precipitation) 
) 
# Do a permutation test on the ordination 
set.seed(1) 
anova.cca(df_phylum_rda_2, permutations = how(Plots(strata = sample_data(dford)$Site, 
type = "free")))  
# Summary of the model 
summary(df_phylum_rda_2) 
 
# Constrain the ordination to the environmental variables 'Temperature' and 'Precipitation', 
# partialling out ‘Plot_Type’ as a  covariable. 
# Ordinate: ~ Temperature + Precipitation + Condition(Plot_Type) 
df_phylum_rda <- ordinate( 
  physeq = dford, 
  method = "RDA", 
  distance = brayphylum, 
  formula = ~ Temperature + Precipitation + Condition(Plot_Type) 
) 
# Do a permutation test on the ordination 
set.seed(1) 
anova.cca(df_phylum_rda, permutations = how(Plots(strata = sample_data(dford)$Site, type 
= "free"))) 
# Summary of the model 
summary(df_phylum_rda) 
 
# Constrain the ordination to the environmental variable 'Temperature', 
# partialling out ‘Plot_Type’ and ‘Precipitation’ as covariables. 
# Ordinate: ~ Temperature + Precipitation + Condition(Plot_Type,Precipitation) 
df_phylum_rda_3 <- ordinate( 
  physeq = dford, 
  method = "RDA", 
  distance = brayphylum, 
  formula = ~ Temperature + Condition(Plot_Type,Precipitation) 
) 
# Do a permutation test on the ordination 
set.seed(1) 
anova.cca(df_phylum_rda_3, permutations = how(Plots(strata = sample_data(dford)$Site, 
type = "free"))) 
# Summary of the model 
summary(df_phylum_rda_3) 
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# Constrain the ordination to the environmental variable 'Precipitation', 
# partialling out ‘Plot_Type’ and ‘Temperature’ as covariables. 
# Ordinate: ~ Precipitation + Condition(Plot_Type,Temperature) 
df_phylum_rda_4 <- ordinate( 
  physeq = dford, 
  method = "RDA", 
  distance = brayphylum, 
  formula = ~ Temperature + Condition(Plot_Type,Precipitation) 
) 
# Do a permutation test on the ordination 
set.seed(1) 
anova.cca(df_phylum_rda_4, permutations = how(Plots(strata = sample_data(dford)$Site, 
type = "free"))) 
# Summary of the model 
summary(df_phylum_rda_4) 
 
Alpha diversity analysis 
 
# For the following analysis, it does not matter which taxonomic level data is used,  
# since the alpha diversity estimates correspond to the 72 samples instead of the taxa 
dfphylum = dataframe 
df2 <- data.frame(sample_data(dfphylum)) 
 
# Linear mixed-effects model: 
# Observed OTUs ~ temperature + precipitation + plot type 
lme_otu <- lme(observed_otus ~ Temperature + Precipitation + Plot_Type, data = df2, 
random = ~+1|Site) 
# Analysis of variance (statistical testing) 
anova(lme_otu) 
 
# Linear mixed-effects model: 
# Chao1 ~ temperature + precipitation + plot type 
lme_chao1 <- lme(chao1 ~ Temperature + Precipitation + Plot_Type, data = df2, random = 
~+1|Site) 
# Analysis of variance (statistical testing) 
anova(lme_chao1) 
 
# Linear mixed-effects model: 
# Shannon diversity ~ temperature + precipitation + plot type 
lme_shannon <- lme(shannon ~ Temperature + Precipitation + Plot_Type, data = df2, random 
= ~+1|Site) 
# Analysis of variance (statistical testing) 
anova(lme_shannon) 
 
# Linear mixed-effects model: 
# Simpson evenness ~  temperature + precipitation + plot type 
lme_simpsone <- lme(simpson_e ~ Temperature + Precipitation + Plot_Type, data = df2, 
random = ~+1|Site) 
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# Analysis of variance (statistical testing) 
anova(lme_simpsone) 
# Summary of the model 
summary(lme_simpsone) 
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Appendix D 
 
Select sections of an example FastQC report on raw sequence reads. 
Sample 43, forward reads (chosen at random): 
 
Filename 43R1.fastq 
File type Conventional base calls 
Encoding Sanger / Illumina 1.9 
Total Sequences 115097 
Sequences flagged as poor quality 0 
Sequence length 251 
%GC 57 
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Select sections of an example FastQC report on the sequence reads after processing. 
Sample 43 (chosen at random), merged reads: 
 
Filename Rtrimmed_43.fastq 
File type Conventional base calls 
Encoding Sanger / Illumina 1.9 
Total sequences 57938 
Sequences flagged as poor quality 0 
Sequence length 200-275 
%GC 56 
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Appendix E 
 
Table listing the number of raw forward and reverse sequence reads in the sample, the 
percentages of outcomes (joined, ambiguous, no solution) from merging of the forward and 
reverse reads, the final numbers of processed reads, OTUs and singletons in the 75 samples.     
 

    
Merging of Sequences 

    

No. Label 

Raw 
Input 

(reads) 

Raw 
Input 

(pairs) 
Joined 

(%) 
Ambiguous 

(%) 
No solution 

(%) Reads OTUs Singleton 
Singleton 

(%) 
15 ALR II C1 238916 119458 37,16 15,75 47,09 41628 11201 7787 18,71 
25 ALR II R1 242486 121241 54,07 9,60 36,33 60334 11323 8171 13,54 
56 ALR III C2 (48) 362660 181328 60,28 7,76 31,97 100407 13591 9537 9,50 
55 ALR III R2 (45) 444114 222055 64,63 6,78 28,59 132411 15122 9801 7,40 
88 ALR IV C2 (54) 490704 245351 63,96 7,19 28,86 144831 28787 21387 14,77 
87 ALR IV R2 (51) 399656 199825 34,88 17,50 47,63 64580 20399 15701 24,31 
86 ARH I C1 (278) 322020 161008 55,19 9,15 35,66 81551 12179 8626 10,58 
85 ARH I R1 (275) 358634 179315 51,75 10,26 38,00 85293 11598 7905 9,27 
72 ARH II C2 (285) 291288 145643 57,98 8,12 33,90 77514 11661 8246 10,64 
68 ARH II R2 (282) 311594 155796 60,78 7,61 31,61 87023 10014 6620 7,61 
47 ARH III C1 (293) 214582 107291 49,89 10,42 39,68 49420 9217 6556 13,27 
42 ARH III R1 (290) 194556 97277 47,23 11,37 41,40 42418 8521 6172 14,55 
19 FAU I C1 231022 115510 61,13 7,86 31,01 65047 10691 7423 11,41 
18 FAU I R1 207300 103650 58,68 8,52 32,80 55903 10955 7555 13,51 
22 FAU II C2 219030 109511 61,20 7,73 31,08 61765 11959 8518 13,79 
21 FAU II R2 284726 142363 65,47 6,61 27,92 86136 19431 14587 16,93 
58 FAU III C1 (77) 563948 281970 59,78 7,80 32,42 155222 17508 11644 7,50 
57 FAU III R1 (74) 411022 205509 64,52 6,42 29,06 122379 17956 12391 10,13 
76 GUD II C2 (351) 260080 130040 64,03 6,59 29,38 76930 11516 7716 10,03 
75 GUD II R2 (348) 263408 131703 35,25 16,32 48,43 43009 7681 5101 11,86 
35 GUD III C1 (356) 219462 109731 62,35 7,18 30,47 62938 13866 10426 16,57 
36 GUD III R1 (353) 193590 96795 59,52 7,86 32,62 52958 11693 8665 16,36 
78 GUD IV C1 (362) 284144 142072 57,34 8,35 34,32 75008 12327 8447 11,26 
77 GUD IV R1 (359) 264180 132090 65,92 6,01 28,07 80527 10019 6261 7,78 
60 HOG I C2 (96) 290828 145414 56,86 8,24 34,90 76210 9598 6731 8,83 
59 HOG I R2 (93) 308778 154388 61,58 7,00 31,42 87084 10224 7094 8,15 
62 HOG II C1 (101) 337750 168875 58,43 7,77 33,80 90881 12289 8710 9,58 
61 HOG II R1 (98) 244710 122353 54,32 9,22 36,46 61086 13937 10678 17,48 
41 HOG III C1 (107) 220722 110359 59,32 7,23 33,45 60498 10475 7556 12,49 
27 HOG III R1 (104) 199004 99501 38,59 14,84 46,57 35517 6963 5012 14,11 
66 LAV I C1 (155) 275110 137555 58,39 8,62 32,99 73692 9496 5728 7,77 
65 LAV I R1 (152) 308364 154179 66,86 6,12 27,02 95027 10719 6873 7,23 
71 LAV II C2 (162) 257484 128741 60,94 7,64 31,43 72187 10559 7245 10,04 
67 LAV II R2 (159) 303354 151677 64,15 7,23 28,62 89595 11664 7649 8,54 
48 LAV III C1 240622 120311 47,20 11,41 41,39 52494 9428 6770 12,90 
23 LAV III R1 204346 102172 62,55 7,14 30,31 58716 9817 6767 11,52 
34 OVS I C1 (314) 208010 104003 62,41 7,33 30,27 59588 12126 8944 15,01 
39 OVS I R1 (311) 212814 106407 22,03 26,84 51,12 21772 5300 3859 17,72 
50 OVS II C2 (321) 190226 95113 56,05 8,86 35,09 49201 9675 7021 14,27 
49 OVS II R2 (318) 220064 110032 50,12 10,90 38,99 50434 8924 6469 12,83 
74 OVS III C1 (326) 232282 116140 56,30 8,58 35,12 60211 9049 6328 10,51 
73 OVS III R1 (323) 311748 155874 51,11 10,22 38,68 73322 12191 8668 11,82 
33 RAM IV C1 (215) 236468 118232 66,68 6,03 27,29 72638 12551 9164 12,62 
51 RAM IV R1 (212) 210646 105323 34,90 16,84 48,26 33519 8279 6133 18,30 
84 RAM V C1 (221) 299076 149537 56,55 8,38 35,08 77662 9452 6503 8,37 
82 RAM V R1 (218) 279600 139799 58,79 8,07 33,14 75504 9293 6355 8,42 
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29 RAM VI C2 (228) 289192 144596 67,36 6,02 26,63 89264 18493 13786 15,44 
28 RAM VI R2 (225) 216812 108405 65,77 6,50 27,74 65410 13463 9919 15,16 
45 SKJ I C1 501964 250980 53,47 9,75 36,79 124221 21607 15584 12,55 
43 SKJ I R1 230194 115097 54,46 9,45 36,09 57938 13972 10311 17,80 
17 SKJ II C2 174950 87475 67,51 6,26 26,23 54476 10148 7019 12,88 
44 SKJ II R2 190956 95478 48,01 11,59 40,40 42470 9443 6694 15,76 
70 SKJ III C1 (260) 271324 135661 59,79 8,58 31,63 74458 11568 7857 10,55 
69 SKJ III R1 (257) 310726 155363 64,06 6,91 29,03 91978 14336 9817 10,67 
26 ULV I C1 265038 132518 58,24 8,58 33,18 71186 11900 8255 11,60 
24 ULV I R1 295024 147512 60,96 7,61 31,43 82908 11826 8143 9,82 
20 ULV II C2 233658 116828 59,49 8,47 32,05 64145 11511 7792 12,15 
16 ULV II R2 203668 101833 65,13 6,87 28,00 61187 8362 5336 8,72 

89* ULV III C1 (16) 300214 149994 66,42 8,58 25,00 81491 48183 41972 51,51 
53 ULV V R2 (2) 450424 225212 65,12 6,59 28,29 135575 17996 12596 9,29 
54 ULV V T232 (5) 384404 192201 57,80 8,43 33,77 102070 18690 13580 13,30 
81 VES I C1 (185) 282950 141473 63,87 6,61 29,52 83340 11201 7388 8,86 
80 VES I R1 (182) 283374 141687 59,97 7,81 32,22 78376 10548 6942 8,86 
31 VES II C2 (192) 239408 119703 66,32 6,38 27,30 73001 13808 9995 13,69 

83** VES II C2 (192) 292956 146478 58,67 8,02 33,31 79275 10208 6522 8,23 
38 VES II R2 (189) 177244 88622 44,65 12,61 42,75 36623 8261 5999 16,38 

79** VES II R2 (189) 322278 161138 63,64 6,76 29,60 94578 13506 9388 9,93 
52 VES III C1 (197) 229176 114588 63,64 6,80 29,56 67031 11179 7765 11,58 
46 VES III R1 (194) 200642 100321 49,58 10,86 39,56 45901 10374 7378 16,07 
32 VIK I C1 206242 103121 63,05 6,86 30,10 59843 10766 7877 13,16 
40 VIK I R1 199698 99848 56,96 8,31 34,73 52482 10525 7648 14,57 
30 VIK II C2 186834 93416 62,04 7,09 30,87 53245 9600 6889 12,94 
37 VIK II R2 202198 101099 39,39 14,43 46,18 36884 7395 5379 14,58 
64 VIK III C1 (137) 255412 127704 66,17 6,16 27,68 77810 7447 4710 6,05 
63 VIK III R1 (134) 225604 112802 38,12 15,35 46,53 39786 4867 2977 7,48 

* Data pertaining to sample 89 were excluded from post-analyses. 
** Samples 79 and 83 were both pseudoreplicates of samples 38 and 31 respectively and 
were therefore excluded from post-analyses.  
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Appendix F 
 
Table: Mean (with standard deviation, S.D.) relative abundances (%) of common (>2%) 
bacterial phyla found in control and graminoid removal soil samples at the twelve sites. (n=3) 
 

 
Site 

Temperature 
(°C) 

Precipitation 
(m) 

 
Phylum 

Removal Control 

Mean S.D. Mean S.D. 

ULV 6.5 0.6 Proteobacteria 42.74 4.42 44.03 3.48 

   Acidobacteria 13.97 7.12 12.04 4.53 

   Actinobacteria 15.88 7.54 16.26 4.63 

   Bacteroidetes 8.63 4.35 9.28 2.62 

   Verrucomicrobia 6.43 0.57 6.51 1.57 

   Planctomycetes 3.62 0.72 4.02 0.54 

   Chloroflexi 3.26 0.82 2.82 1.38 

   Nitrospirae 0.22 0.16 0.33 0.26 

   AD3 0.09 0.07 0.08 0.13 

   Unassigned 1.19 0.07 1.21 0.26 

   Gemmatimonadetes 0.77 0.18 0.74 0.09 

   Firmicutes 0.23 0.20 0.24 0.19 

ALR 8.5 0.6 Proteobacteria 41.70 4.99 39.58 5.54 

   Acidobacteria 11.90 2.51 20.60 4.07 

   Actinobacteria 12.72 1.91 10.35 0.86 

   Bacteroidetes 12.05 3.56 5.15 0.99 

   Verrucomicrobia 10.33 4.44 11.29 4.87 

   Planctomycetes 3.94 1.10 5.02 2.41 

   Chloroflexi 2.08 0.80 2.07 0.69 

   Nitrospirae 0.05 0.06 0.16 0.14 

   AD3 0.06 0.03 0.19 0.11 

   Unassigned 1.48 0.70 1.73 0.59 

   Gemmatimonadetes 1.16 0.30 1.01 0.29 

   Firmicutes 0.38 0.32 0.39 0.33 

FAU 10.5 0.6 Proteobacteria 38.85 1.93 38.99 0.98 

   Acidobacteria 11.91 2.05 11.00 2.79 

   Actinobacteria 19.43 2.33 19.41 7.60 

   Bacteroidetes 8.13 0.66 10.28 1.57 

   Verrucomicrobia 10.74 0.46 10.12 3.62 

   Planctomycetes 3.59 1.17 3.42 1.24 

   Chloroflexi 2.52 0.72 2.14 0.51 

   Nitrospirae 0.22 0.14 0.19 0.25 

   AD3 0.16 0.15 0.13 0.19 

   Unassigned 1.02 0.14 0.83 0.18 

   Gemmatimonadetes 0.89 0.23 0.80 0.14 

   Firmicutes 0.51 0.53 0.58 0.52 

LAV 6.5 1.2 Proteobacteria 46.92 3.41 45.88 0.90 

   Acidobacteria 18.08 4.48 18.04 7.02 
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   Actinobacteria 8.16 1.22 9.40 2.15 

   Bacteroidetes 4.96 1.43 6.31 0.92 

   Verrucomicrobia 6.43 0.73 7.77 1.65 

   Planctomycetes 3.84 0.69 4.05 0.68 

   Chloroflexi 3.65 1.90 3.57 0.85 

   Nitrospirae 1.52 2.39 0.45 0.44 

   AD3 0.75 1.16 0.11 0.10 

   Unassigned 0.86 0.17 0.96 0.15 

   Gemmatimonadetes 1.22 0.79 0.75 0.23 

   Firmicutes 0.20 0.12 0.49 0.53 

HOG 8.5 1.2 Proteobacteria 37.71 0.72 36.75 1.40 

   Acidobacteria 22.95 3.48 24.77 5.86 

   Actinobacteria 8.55 4.58 8.19 7.32 

   Bacteroidetes 8.75 6.18 6.03 0.49 

   Verrucomicrobia 10.85 2.23 10.95 1.22 

   Planctomycetes 3.99 0.77 4.07 0.41 

   Chloroflexi 2.57 0.69 3.31 0.44 

   Nitrospirae 0.01 0.01 0.01 0.00 

   AD3 0.15 0.11 0.37 0.17 

   Unassigned 1.47 0.51 1.52 0.42 

   Gemmatimonadetes 0.70 0.15 0.82 0.18 

   Firmicutes 0.35 0.20 0.46 0.42 

VIK 10.5 1.2 Proteobacteria 40.41 3.29 39.48 2.86 

   Acidobacteria 18.73 0.80 20.59 2.73 

   Actinobacteria 7.70 4.70 8.22 4.74 

   Bacteroidetes 12.09 6.59 9.57 1.18 

   Verrucomicrobia 10.66 2.46 11.78 2.92 

   Planctomycetes 3.64 0.44 3.48 0.78 

   Chloroflexi 2.50 0.27 2.73 0.60 

   Nitrospirae 0.00 0.00 0.03 0.04 

   AD3 0.03 0.01 0.02 0.01 

   Unassigned 0.83 0.26 0.74 0.21 

   Gemmatimonadetes 0.74 0.19 0.77 0.16 

   Firmicutes 0.78 0.62 0.87 0.52 

GUD 6.5 2.0 Proteobacteria 40.35 4.55 42.08 2.63 

   Acidobacteria 16.81 1.38 15.46 2.57 

   Actinobacteria 8.09 0.44 9.05 0.58 

   Bacteroidetes 6.85 1.27 5.04 0.85 

   Verrucomicrobia 11.95 2.73 11.34 1.46 

   Planctomycetes 4.31 0.94 4.40 1.05 

   Chloroflexi 4.35 0.77 4.38 0.48 

   Nitrospirae 2.06 0.73 2.79 1.28 

   AD3 0.01 0.01 0.05 0.06 

   Unassigned 1.02 0.20 1.17 0.12 

   Gemmatimonadetes 0.99 0.25 1.00 0.17 



 77 

   Firmicutes 0.17 0.02 0.21 0.08 

RAM 8.5 2.0 Proteobacteria 39.69 6.37 39.48 5.59 

   Acidobacteria 17.07 5.60 16.49 2.27 

   Actinobacteria 11.13 3.74 11.69 5.52 

   Bacteroidetes 6.73 3.02 5.88 1.11 

   Verrucomicrobia 9.76 2.62 9.61 2.01 

   Planctomycetes 5.01 1.22 4.77 0.99 

   Chloroflexi 4.61 0.75 5.63 0.87 

   Nitrospirae 0.26 0.29 0.34 0.57 

   AD3 0.09 0.07 0.16 0.14 

   Unassigned 1.71 0.76 1.39 0.17 

   Gemmatimonadetes 0.74 0.18 0.67 0.19 

   Firmicutes 1.02 0.73 1.40 0.93 

ARH 10.5 2.0 Proteobacteria 38.75 4.87 41.49 4.52 

   Acidobacteria 27.25 10.28 22.02 9.70 

   Actinobacteria 5.05 1.28 6.14 2.31 

   Bacteroidetes 5.26 1.91 6.13 2.68 

   Verrucomicrobia 9.40 3.17 9.91 4.63 

   Planctomycetes 5.03 1.45 5.47 1.36 

   Chloroflexi 3.97 0.79 3.21 0.53 

   Nitrospirae 0.12 0.12 0.06 0.03 

   AD3 0.25 0.32 0.16 0.21 

   Unassigned 1.20 0.14 1.65 0.33 

   Gemmatimonadetes 0.68 0.03 0.64 0.255 

   Firmicutes 0.48 0.22 0.78 0.48 

SKJ 6.5 2.7 Proteobacteria 46.59 1.36 44.22 0.64 

   Acidobacteria 13.75 4.13 15.33 3.29 

   Actinobacteria 9.45 3.75 7.71 2.29 

   Bacteroidetes 5.96 1.29 7.47 2.56 

   Verrucomicrobia 6.72 1.43 6.55 1.62 

   Planctomycetes 3.45 0.77 4.00 0.55 

   Chloroflexi 5.62 1.15 5.73 0.23 

   Nitrospirae 2.34 1.80 1.77 0.88 

   AD3 0.06 0.06 0.55 0.85 

   Unassigned 1.34 0.16 1.41 0.08 

   Gemmatimonadetes 1.91 0.54 1.51 0.25 

   Firmicutes 0.14 0.10 0.42 0.36 

VES 8.5 2.7 Proteobacteria 45.93 4.66 46.31 3.62 

   Acidobacteria 16.70 1.90 14.70 1.23 

   Actinobacteria 5.62 1.14 7.24 1.01 

   Bacteroidetes 7.35 1.47 6.17 1.34 

   Verrucomicrobia 10.49 3.47 11.67 1.98 

   Planctomycetes 5.29 1.15 5.33 1.37 

   Chloroflexi 3.11 0.75 2.87 0.41 

   Nitrospirae 1.31 0.44 1.45 0.19 
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   AD3 0.01 0.01 0.02 0.02 

   Unassigned 1.05 0.22 0.96 0.06 

   Gemmatimonadetes 0.65 0.03 0.64 0.19 

   Firmicutes 0.34 0.31 0.82 1.00 

OVS 10.5 2.7 Proteobacteria 38.49 5.57 36.56 1.54 

   Acidobacteria 25.95 4.38 29.28 2.55 

   Actinobacteria 8.40 5.21 7.31 3.13 

   Bacteroidetes 5.38 1.26 5.24 0.74 

   Verrucomicrobia 6.43 1.73 5.76 1.71 

   Planctomycetes 5.28 0.89 4.68 1.60 

   Chloroflexi 3.74 0.88 3.66 0.83 

   Nitrospirae 0.01 0.01 0.05 0.04 

   AD3 0.29 0.13 1.58 2.14 

   Unassigned 1.79 0.10 1.51 0.27 

   Gemmatimonadetes 0.54 0.12 0.57 0.12 

   Firmicutes 0.20 0.07 0.17 0.12 
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Appendix G 
 
Stacked bar charts showing the compositions of prokaryotic communities in 75 soil samples 
(including 1 redundant sample and 2 pseudoreplicates) at genus, class, and phylum taxonomic 
levels. For the phylum level, only the averaged compositions of common taxa (mean relative 
abundance > 2%) are shown.  
 
 
Ulvhaugen (ULV): 6.5°C, 0.6 m 
 
          CLASS                 GENUS 
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Ålrust (ALR): 8.5°C, 0.6 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment         Control        Treatment 
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Fauske (FAU): 10.5°C, 0.6 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment        Control        Treatment 
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Låvisdalen (LAV): 6.5°C, 1.2 m 
 
 
          CLASS                 GENUS 
 

  
  
   Control     Treatment         Control        Treatment 
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Høgsete (HOG): 8.5°C, 1.2 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment         Control        Treatment 
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Vikesland (VIK): 10.5°C, 1.2 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment         Control        Treatment 
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Gudmedalen (GUD): 6.5°C, 2 m 
 
 
          CLASS                 GENUS 
 

  
  
   Control     Treatment         Control        Treatment 
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Rambære (RAM): 8.5°C, 2 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment         Control        Treatment 
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Arhelleren (ARH): 10.5°C, 2 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment         Control        Treatment 
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Skjellingahaugen (SKJ): 6.5°C, 2.7 m 
 
 
          CLASS                 GENUS 
 

  
  
   Control     Treatment         Control        Treatment 
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Veskre (VES): 8.5°C, 2.7 m 
 
 
          CLASS                 GENUS 
 

  
  
   Control     Treatment         Control        Treatment 
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Øvstedalen (OVS): 10.5°C, 2.7 m 
 
 
          CLASS                 GENUS 
 

  
 
   Control     Treatment         Control        Treatment 
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Appendix H 

 

 
Rarefaction curves for the observed number of OTUs in 75 soil samples. The topmost curve 

belonged to Sample 89.  

 


