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AIMS 

GABAergic drugs or compounds that directly and indirectly activate the GABA receptors 

(GABAAR) in CNS typically have anti-anxiety, muscle relaxant, amnesic, sedative, hypnotic, 

euphoriant and anti-convulsive effects. (Chapouthier & Venault, 2001; Foster & Kemp, 2006; 

Olsen & Sieghart, 2008; Uusi-Oukari & Korpi, 2010; Lorenz-Guertin & Jacob, 2017). There 

are many severe problems that are related to the long-term therapeutic use of drugs that affect 

GABAergic system (Uusi-Oukari & Korpi, 2010; Lorenz-Guertin & Jacob, 2017; Olsen, 

2018). GABAAR play a very important role in medicine treatment (Johnston, 1996; 

Chapouthier & Venault, 2001; Möhler et al., 2004; Foster & Kemp, 2006; Santhakumar et al., 

2007; Jacob et al., 2008; Lager et al., 2008; Olsen & Sieghart, 2008; Uusi-Oukari & Korpi, 

2010; Lorenz-Guertin & Jacob, 2017). The active site of the GABAAR is the binding site for 

GABA and several drugs (Johnston, 1996; Santhakumar et al., 2007; Mrunmayee et al., 2010, 

Olsen, 2018). Drugs that act via GABAAR often affect the regulation of various GABAAR 

subunits. Different subunit compositions give the receptor different physiological and 

pharmacological properties (Möhler et al., 2004; Olsen & Sieghart, 2008; Mrunmayee et al., 

2010; Uusi-Oukari & Korpi, 2010). Evidence that GABAARs are present on AII amacrine 

cells has been demonstrated (Boos et al., 1993; Contini & Raviola, 2003; Gill et al., 2006; 

Marc et al., 2014; Zhou et al., 2016). 

 

With a better understanding of GABAAR pharmacological and physiological properties and 

the subunits we can hope to make it possible to design and discover subtype-specific drugs for 

the development of therapeutics with minimal side effects, for example more selective, less 

toxic, less dependence development, less tolerance development, and less addictive, (Rudolph 

& Knoflach, 2011; Tan et al., 2011).  

 

 

The goals of project were:  

1. To acquire laboratory skills including preparing solutions and weighing out chemicals, 

preparing in vitro retina slices from rats, learning and being able to apply the basic principles 

of whole-cell patch-clamp recording. 
2. To study the properties of GABAA receptors by using the patch clamp technique and AII 

amacrine cells in the rat retina.  
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3.  To acquire knowledge about different types of receptors in cells, especially GABA 

receptors, and to evaluate patch-clamp recording as a method suitable to study receptors 

especially related to drug-discovery. 
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SUMMARY 

The cell membrane consists of several membrane receptors, which based on the structure and 

functions, are typically divided in 3 classes: G protein-coupled receptors, enzyme-linked 

receptors and ion channel linked receptors, also commonly referred to as ligand-gate ion 

channels (LGICs) or ionotropic receptors. (Hucho & Weise, 2001; Purves et al., 2001; 

Yeagle, 2016). LGICs can be classified into three superfamilies, depending on the number of 

monomers composing an oligomer: the pentameric, tetrameric and trimeric LGIC: 1) The 

tetrameric superfamily of ionotropic glutamate receptors (iGluR). 2) The pentameric 

superfamily of receptors. 3. The trimeric superfamily ATP-gated purino receptors (P2X) 

(Hucho & Weise 2001; Nasiripourdori et al., 2011). In the pentameric superfamily we have: 

nicotinic acetylcholine receptors (nAChR), glycine receptors, GABAA receptors (GABAAR), 

and some serotonin receptors (5-hydroxytryptamine, 5-HT3R) (Casio, 2004; Jacob et al., 

2008; Nasiripourdori et. al., 2011). GABAARs is a pentameric transmembrane receptor that 

consists of five subunits arranged around a central pore and are constituted from a family of 

over 20 different GABAAR subunit combinations called subtypes, constructed from a family 

of 19 homologous genes divided into eight classes according to sequence homology 

(GABAAR α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3) (Olsen & Sieghart, 2008). GABAAR are the 

binding sites for several drugs and compounds. Some major binding sites to mention include 

the GABA site, the benzodiazepine (BZ) site, the picrotoxin site, and the general anesthetic 

site (Olsen & Sieghart, 2008; Puthenkalam et al., 2016; Lorenz-Guertin & Jacob, 2017; Olsen, 

2018), 

 

One of the main goals in this project was to study the properties of GABAA receptors by using 

the patch clamp technique and AII amacrine cells in the rat retina. I performed whole-cell and 

nucleated voltage clamp recording from AII amacrine cells in an acutely isolated slice 

preparation. GABA was applied to the cells using a puffer pipet and the current responses 

were recorded. 

 

Patch-clamp recording were made from 16 AII amacrine cell in slices cut from rat retina. 

During application of GABA; 8 cells died and were not further analysed. The remaining 12 

cells all respond to application of GABA. Of these 12, five cells are further analyzed for 

reversal potential of the GABA-evoked currents. Data is presented as average ± standard error 

of mean (SEM).  
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As described in section 3.8, 1 mM GABA was applied together with a series of voltage steps 

ranging from -80 mV to + 40 mV with 20 mV increments. A cesium-based intracellular 

solution called IC 6302 and a sodium-based extracellular solution called EC 1000 were used, 

and the reversal potential for chloride was calculated with Nernst equation to be Clrev ~ -0.6 

mV. Results are presented as current-voltage (I-V) curves with the mean peak current-

response evoked at each voltage plotted against the voltage steps (-80 mv to + 40 mV). The 

data was fit with a straight line in an attempt at finding a linear fit for the results. The point 

where the fitted line crosses the x-axis is an estimate of each cell’s reversal potential for 

GABA. The results from analyzing five AII cells gave a reversal potential for GABA-evoked 

currents = of – 2.9 mV ± 1.8 mV. This value is close to the calculated reversal potential for 

chloride with EC 1000 and IC 6302 (-0.6 mV), suggesting that GABA activates a chloride 

current. The slight difference between the calculated and experimentally obtained valued for 

the reversal potential can be explained by experimental error. Other reasons for variations in 

responses are desensitization and rundown and that can affect the response in peak amplitude 

of GABA application. 

 
 

In the pharmaceutical industry, ion channel assays are used frequently in basic research for 

investigating the ion-channel-related phenomena and in drug discovery for screening 

compounds directed to ion-channel related target (Xu et. al., 2001). Patch clamping provides 

high quality and physiologically relevant data of ion-channel function at the single cell or 

single channel level, and therefore is suited as a good method for this purpose. There are four 

major area of using patch clamping in drug discovery. They are: basic research, primary 

screening, secondary screening, and safety screening. Patch-clamping experiments are a 

complicated process that require highly trained and skillful personnel. It requires precision 

micromanipulation under high power visual magnification and vibration damping. 

Throughput of a veteran patch-clamper according to Xu et al. 2001 is, at best, 10–30 data 

points per day. Such low throughput and high labour-cost is not convenient for HTS purposes 

(Xu et al., 2001). Because of this, high-throughput studies required in proteomics and drug 

development have to rely on less informative methods such as fluorescence-based 

measurement of intracellular ion concentrations or membrane voltage (Denyer et al., 1998; 

Gonsalez et al., 1999; Xu et al., 2001). Suffering from low throughput and high cost, 

traditional patch clamp in drug discovery was used mainly in basic research, secondary 
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screening, and safety screening, not so much in primary screening or drug screening. 

However, this is about to change, several studies with patch clamping recently were carried 

out using automated version of whole cell patch clamp. Automated patch clamping has 

showed vastly increased throughput, costs less than the traditional patch clamping and makes 

electrophysiological testing with its many advantages, the option of choice in early screening 

for ion channel active drugs (Dunlop et al., 2008; Jones et al., 2009; Martinez et al., 2010; Py 

et al., 2011; Kodandaramaiah et al., 2012; Billet et al., 2017). 
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1.0 Introduction and theory 

1.1 Nerve cell and signal communication 

A nerve cell or a neuron is an electrically excitable cell that transmits and processes 

information through chemical and electrical signals, so called neurotransmission or synaptic 

transmission. The neurons communicate with each other via synapses (Lodish et al., 2000; 

Sabbatini, 2003; Bennett & Zukin, 2004). The synapse is specialized area of the cell 

membrane where “information” flows from one nerve cell to another (figure 1.1). At electrical 

synapses, two neurons are almost physically connected to each other at a narrow gap between 

the pre- and postsynaptic cells known as a gap junction. Each gap junction consists of several 

transmembrane gap junction channels. The pore of a gap junction channel is wide enough to 

allow ions and medium sized molecules such as signaling molecules to flow from one neuron 

to the next thereby connecting the two cells' cytoplasm, so the two neurons essentially behave 

as one (figure 1.2a). Thus, when the voltage of one neuron changes, ions can move through 

from one neuron to the next, carrying positive charge with them and depolarizing the 

postsynaptic neuron. (Lodish et al., 2000; Sabbatini, 2003; Bennett & Zukin, 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 An illustration of two interconnected neurons. The contact areas where the information is transmitted 

are called synapses. A signal from the presynaptic cell is transmitted through the synapses to the postsynaptic 

cell. The figure is adapted from Thomas, 2013. 
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At chemical synapses, the two neurons are separated by the synaptic cleft. In the synaptic cleft 

there is extracellular fluid and that creates a physical barrier for the electrical signal carried by 

one neuron to be transferred to another neuron. The releasing of a neurotransmitter at synaptic 

cleft, is triggered by the arrival of an action potential or nerve impulse and occurs through an 

extremely rapid process of cellular secretion, also known as exocytosis: Within the pre-

synaptic nerve terminal, vesicles containing neurotransmitter sit "docked" and ready at the 

synaptic membrane. The arriving action potential produces an influx of calcium ions (Ca2+) 

through calcium-selective, voltage-dependent ion channels. Calcium ions then trigger a 

biochemical cascade which results in vesicles fusing with the presynaptic-membrane and 

releasing their contents to the synaptic cleft (figure 1.2b). An electrical synapse is faster than a 

chemical synapse, but chemical synapses are far more common (Lodish et al., 2000; 

Sabbatini, 2003; Bennett & Zukin, 2004). 

 

Figure 1.2 An illustration (a) electrical and (b) chemical synapses. The differences in excitatory transmission 

between electrical and chemical synapses. Chemical synapses transmit signals indirectly using chemical 

transmitters while electrical synapses transmit excitation directly through gap junctions. The figure is adapted 

with modification from Lodish et al., 2000. 

 

1.1.1 Cell membrane  

The cell membrane is a semi-permeable barrier that surrounds the cell’s cytoplasm. Its 

function is to separate the interior of the cell from the exterior of the cell by allowing certain 

substances to enter the cell, while keeping others out (Lombard, 2014; Yeagle, 2016). Cell 

membrane are selectively permeable for ion and organic molecule, and are involve in many 

cellular process such as cell signaling, ion conductivity, cell adhesion, and acted as the 

attachment surface for several extracellular structures. The cell membrane consists mainly of 
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a phospholipid, proteins and carbohydrates, together they form a lipid bilayer with the 

hydrophobic tails packed in the interior of the membrane and the hydrophilic head groups 

facing the cytoplasm and the extracellular fluid. Other components in the membrane are 

cholesterol, glycolipids and glycoprotein (figure 1.3) (Lombard, 2014; Yeagle, 2016).  

 

 

 

 

 

 

 

 

 

Figure 1.3 Illustrate the biological cell membrane structure. The figure is adapted from Lombard, 2014. 

 

1.1.2 The membrane potential 

Ion transporter actively pump ions across the membrane to establish concentration gradient 

across the membrane, and ion channels allow ions to move across the membrane down those 

concentration gradients. The unequal in concentrations of ions between the inside and outside 

of the cell lead to a voltage called the membrane potential or membrane voltage. (Hucho & 

Weise, 2001). Typical values of membrane potential with a negative voltage in the cell 

interior as compared to the cell exterior ranging from –40 mV to –80 mV (Sakmann & Neher, 

1995).     
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1.1.3 The membrane receptors 

Membrane receptors or transmembrane receptors specialized proteins molecules attached to 

or integrated into the cell membrane. These receptors mediate signal transduction for cellular 

responses to extracellular stimuli (Yeagle, 2016).  A signal transduction is a process through 

membrane receptors involve the external reactions, in which the ligand binds to a membrane 

receptor, and the internal reactions, in which intracellular response is triggered (Ullrich et al., 

1990). Through interaction with specific ligands or molecules, e.g. drugs, neurotransmitter, 

grow factor, cytokine, and hormones etc., the receptors facilitate communication between the 

cell and the extracellular environment (Yeagle, 2016). Transmembrane receptors are mainly 

classified based on their three-dimensional structure or so call a tertiary structure. Based on 

the structures and functions, membrane receptors are typically divided in 3 classes: G protein-

coupled receptors, enzyme-linked receptors and ion channel linked receptors, also commonly 

referred as ligand-gate ion channels or ionotropic receptors (figure 1.4) (Hucho & Weise, 

2001; Purves et al., 2001; Yeagle, 2016). 

 

 

1.1.3.1 Enzyme-linked receptors  

Enzyme-linked receptors are either enzymes themselves, or directly activate associated 

enzymes have an extracellular binding site for chemical signals. The great majority of these 

receptors are protein kinases, often tyrosine kinases that phosphorylate intracellular target 

proteins thereby changing the physiological function of the target cells (figure 1.4B) (Purves 

et al., 2001; Yeagle, 2016). 
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Figure 1.4 Illustrate roughly in three steps how the three membrane receptors work A) Channel-linked receptors, 

B) Emzyme-linked receptors and C) G-protein-coupled receptors. The figure is adapted from Purves et al., 2001. 

 

1.1.3.2 G-protein-coupled receptors 

G-protein-coupled receptors (GPCRs) comprise the largest integral membrane protein family 

in the human genome, with over one thousand members (Cherezovet al., 2007). Because these 

receptors all share the structural feature of crossing the plasma membrane seven times, they 

are also called 7-transmembrane receptors (7TM receptors) or metabotropic receptors (Purves 

et al., 2001; Yeagle, 2016). Hundreds of different G-protein-linked receptors have been 

identified. Well-known examples include the, the muscarinic type of acetylcholine receptor, 

β-adrenergic receptor, metabotropic glutamate receptors, receptors for odorant the olfactory 

system, and many types of receptors for peptide hormones. GPCRs actively participate in the 

transduction of signals across cellular membranes in response to a vast variety of extracellular 

stimuli including, hormones, peptides, proteins, light, small molecules, ions and protons. 

Once activated, GPCRs trigger a cascade of intracellular responses, primarily through 

interactions with heterotrimeric G-proteins (GTP-binding proteins). GPCRs are major 

contributors to the information flow into cells (figure 1.4 C). Because GPCRs are big protein 

family in human genomes, the receptors are involved in many diseases, and are also the target 

of approximately 34% of all modern medicinal drugs (Purves et al., 2001; Cherezovet al., 

2007; Yeagle, 2016; Hauser et al., 2017) 
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1.1.3.3 Ligand-gate ion channels, with examples 

One of several important features of ion channels is their response to specific signals: at rest 

they are tightly closed and impermeable, but they are opened “gated” either by changes in the 

membrane potential or by such as neurotransmitters or a certain ligand.  According to this 

description, all ion channels are composed of two functional moieties: 1) a selectivity filter, 

which determines which types of ions may pass the membrane, and 2) a gate, which specifies 

under which conditions the channel is opened. Ion channels are then subdivided into two 

major classes according to their gating trigger: the voltage-gated ion channels (VGICs) and 

the ligand-gated ion channels (LGICs) (Hucho & Weise, 2001). VGICs open and close in 

response to the membrane potential while LGICs open in response to specific ligand 

molecules binding to the extracellular domain of the receptor protein. LGICs and VGICs are 

both large and diverse families and comprise great amounts of members. Because LGICs play 

a central role in inter-cellular communication and their receptor channels are major targets 

for drug discovery, and they are involved in numerous human brain diseases, they are the 

focus here.   

 

LCIGs are a group of transmembrane proteins. These proteins are typically composed of at 

least two different domains; a transmembrane domain which includes the ion pore, and an 

extracellular domain which includes the ligand binding location, an allosteric binding site. 

The ion channels are highly selective, distinguish not only between different anions and 

cations, but even between different monovalent and divalent ions. When the membranes 

receptor response to the binding of a chemical messenger, such as a ligand or neurotransmitter 

the channel open and allow specific ions such as Na+, K+, and Ca2+ and/or Cl- to pass through 

(figure1.4A) (Hucho & Weise, 2001; Nasiripourdori et al., 2011; Yeagle, 2016). LGICs can 

be classified into three superfamilies, depending on the number of monomers composing an 

oligomer: the pentameric, tetrameric and trimeric LGIC: 1) The tetrameric superfamily of 

ionotropic glutamate receptors (iGluR); 2) The pentameric superfamily of receptors; 3) The 

trimeric superfamily ATP-gated purino receptors (P2X). According to Hucho and Weise, 

2001 a “family” is defined as receptors that are coded by distinct although similar genes and 

that react through basically the same mechanism to the same neurotransmitter. A 

“superfamily” is a set of receptor families that are diverse in function and mechanism, most 

often reacting to different neurotransmitters, but seem to evolve from a common ancestor 

(Hucho & Weise 2001; Nasiripourdori et al., 2011). 
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The tetrameric superfamily of ionotropic glutamate receptors (iGluR) consists of 

glutamate receptors contains the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate 

(AMPA) receptors (GluA1-4), kainate receptors (GluK1-5) and N-methyl D-aspartate 

(NMDA) receptors (GluN1, GluN2A-D, GluN3A-B). The agonist binding site of tetrameric 

LGIC lies inside monomers. The agonists and alternative binding sites are known from 

biochemical and structural studies (Nasiripourdori et al., 2011). 

 

The trimeric superfamily of LGIC is made by P2X receptors (P2X1-7). The knowledge of 

the binding site is much more restricted compared to that of pentameric and tetrameric LGIC: 

the binding site for ATP has been tentatively localized in a cavity at the interface between 

subunits (Nasiripourdori et al., 2011). 

 

The pentameric super family is subdivided, due to the type of ion that they conduct, anionic 

or cationic, and further into families defined by the endogenous ligand. They are typically 

made up by five subunits arranged around a central pore (figure 1.5B). Each subunit 

comprises four transmembrane domains helices with both the N- and C-terminus located 

extracellularly (figure 1.5 A) (Casio, 2004; Jacob et al., 2008; Nasiripourdori et al., 2011). In 

this super family we have: glycine receptors (GlyR α1-3, β), GABAA receptors (GABAAR α1-

6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3), nicotinic acetylcholine receptors (nAChR; α1-10, β1-4, γ, δ, ε), 

and some serotonin receptors (5-hydroxytryptamine, 5-HT3R). These receptors are also called 

as ionotropic receptors. They combine receptor and channel functions into a single protein 

complex and mediate fast synaptic transmission in the central nervous system. In response to 

neurotransmitter or ligand binding, the channel changes conformation such that it is 

permeable to one or more ions. This ion flux changes the potential across the membrane, 

affecting the activity of voltage-gated channels and the electrical conductivity of the cell. 

These channels are relatively fast, they open and closes rapidly, and their time constants are 

about 0.5 ms (Hucho & Weise, 2001; Casio, 2004; Jacob et al., 2008; Nasiripourdori et al., 

2011; Olsen, 2018; Wallner et al., 2018).  
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Figure 1.6 Illustrate the structure of pentameric ligand-gated ion channels. A) Illustrate the topology of the 
receptor. B) Side view of the receptor showing five subunits arranged around a central with agonist binding sites 
are located at subunit interfaces in the extracellular side of the receptor.  C) Top view of the receptor. D) 
Longitudinal cross section of the receptor, showing the pore domain. The figure is adapted from Nasiripourdori 
et al., 2011. 
 

 

 

1.2 The GABA receptor 

1.2.1 The GABA receptors 

The dynamics of neural networks in vertebrate central nervous system (CNS) are mainly 

shaped by the activity pattern of interneurons, most of which are GABAergic (Paulsen et 

al.,1998; Watanabe et al., 2002; Klausberger et al., 2003; Olsen & Sieghart, 2008; Uusi-

Oukari & Korpi, 2010; Lorenz-Guertin & Jacob, 2017; Wallner et al., 2018). A GABAergic 

neuron produces and releases GABA as a neurotransmitter. A synapse is called GABAergic if 

GABA is used as the neurotransmitter. The GABAergic system is widely used and targeted in 

the medicine treatments. GABAergic drugs or compounds that directly and indirectly activate 

the GABA receptors in CNS typically have anti-anxiety, muscle relaxant, amnesic, sedative, 

hypnotic, euphoriant and anti-convulsive effects. This includes drugs such as benzodiazepines 

(BZs), alcohol, barbiturates, neurosteroids and certain anesthetics. (Chapouthier & Venault, 

2001; Foster & Kemp, 2006; Olsen & Sieghart, 2008; Uusi-Oukari & Korpi, 2010; Lorenz-
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Guertin & Jacob, 2017). Many severe problems are related to the long-term therapeutic use of 

drugs that affect GABAergic system, most significantly involving the loss of efficacy, 

development of dependence, development of tolerance, and finally addiction to at least some 

of these drugs (Uusi-Oukari & Korpi, 2010; Lorenz-Guertin & Jacob, 2017; Olsen, 2018). 

There are two major types of GABA receptors which are targets of the great majority of 

GABAergic drugs. They are the GABA receptors Type A (GABAAR) and Type B (GABABR) 

(Olsen, 2018). The GABAB receptor is a slow metabotropic with heterodimeric G-protein 

coupled sites, which open or close ion channels via intermediaries. The GABAA-receptor is an 

ionotropic receptor and a ligand-gated chloride-ion channel. GABAAR, mediate fast inhibition 

and have a wide distribution throughout the CNS in the mammalian. The receptors are 

activated to the major inhibitory neurotransmitter, GABA. In addition to play important role 

in CNS functions, the GABA described in many peripheral tissues has been implicated 

increasingly in physiological roles and disorders, such as stem cell proliferation (Urrutia et al., 

2016), endothelial cells (Sen et al., 2016), inflammatory disease including regulation of 

immune cell proliferation (Tian et al., 2004), diabetes (Tian et al., 2017; Li et al., 2017), and 

stimulation of cell energy metabolism in the cardiovascular system, including cardiac 

myocytes (Lorente et al., 2000; Zhang et al., 2002). GABA is mainly produced in 

differentiated neurons, i.e. GABA synthetizes from glutamate (a major excitatory 

neurotransmitter in CNS) via enzyme, glutamic acid decarboxylase (GAD) with active form 

of Vitamin B6, pyridoxal phosphate (Rowley et al., 2012). But there are studies that suggest 

that GABA may synthesize from another pathway, (GABA synthetizes from putrescine) 

(Caron et al., 1987; Sequerra et al., 2007). GABAAR, and GABABR proteins differ greatly 

from each other, including the GABA binding site domains, so that the pharmacology of 

isosteric analogues of GABA are different for the two (Bowery et al., 2002; Schousboe et al., 

2007; Olsen, 2018). There is a third type of GABA receptor, GABAC receptors (GABACR) 

(Foster & Kemp, 2006). The GABACR is a member of the LGIC superfamily. These receptors 

are most prominently expressed in the vertebrate retina.  GABACR mediated responses have 

been detected in many types of retinal neurons, including bipolar cells. (Dong & Werblin, 

1994). GABACR exhibit a distinct pharmacology that differs from GABAAR and GABABR 

and were first described by Johnston for bicuculline- and baclofen-insensitive GABA binding 

sites on neuronal membranes (Johnston, 1986, 1996). Although both GABAA and GABACR 

are linked to chloride channels, the channel properties of these two receptors are quite 

different. GABACR also differ from GABAA or GABAB receptors in pharmacological 

response (Woodward et al., 1992; Qian & Dowling, 1995; Chang & Weiss, 1999; Morris et 
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al., 1999; Foster & Kemp, 2006). A short summarize of the differences pharmacological and 

physiological properties of the three GABA receptors is shown in table 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7.A) Illustrate side view of GABAAR subunits consist of four transmembrane domains (TM1–4), with 
TM2 believed to line the pore of the channel. B) Side view of heteropentameric Cl- -permeable channel consist 
of five subunits from seven subunit subfamilies (α, β, γ, δ, ε, θ and π). C) Illustrate different composing of 
GABAAR localization at synaptic and extra synaptic. The subunits α (1–3) together with β and γ subunits are 
typically synaptically localized, whereas α5 β, γ receptors are located mostly at extrasynaptic sites. D) Illustrate 
top view of the GABAAR with five subunits around to the central ion pore with general GABA binding sites 
(yellow circle) and BZs bindings sites (red square). The figure is adapted from Jacob et al., 2008; Lorenz-
Guertin & Jacob, 2017. 
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 GABAB GABAC GABAA 

Family GPCRs LGIC LGIC 

Agonists Baclofen  Gaboxadol, Muscimol, Botenic 

acid, Progabide 

Antagonists Phaclofen TPMPA, Picrotoxin Bicuculline, Gabazine 

Subunits GBR1, GBR2 ρ α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3 

Modulator  Zinc Carisoprodol, Ethanol, Barbiturates 

Benzodiazepine Etc. 

Desensitization No no yes 

 Table 1.1 A short summary of the characteristic differences of the three GABA receptors. 

 

 

1.2.2 Function and Structure of GABAA-receptor 

Mammalian GABAARs are all anion-selective channels. Activation of the GABAA receptor 

increases the intracellular concentration of chloride ions selectively, the increased chloride 

ions conductance drives the membrane potential towards the reversal potential of the chloride 

ion (which is around -70 mV) resulting in hyper-polarization of the neuron and inhibiting the 

firing of new action potential (Payne et al., 2003; Riviera et al., 2005; Olsen & Sieghart, 2008; 

Wallner et al., 2018). This happens because GABA binds to GABAA receptor causing the 

protein change in formation within the membrane and leads to opening the pore and allowing 

chloride anions (Cl-) to pass down an electrochemical gradient, resulting an inhibitory effect 

on neurotransmission by diminishing the chance of a successful action potential occurring. 

GABAARs can exist in at least three different conformations: open, closed, and desensitized. 

With the complete sequence of the genome for human and a few other vertebrate species, it is 

now clear that GABAARs are constituted from a family of over 20 GABAAR subunit 

combinations called subtypes, constructed from a family of 19 homologous genes divided into 

eight classes according to sequence homology (GABAAR α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3) 

(Olsen & Sieghart, 2008). As mention in the earlier section, GABAAR is a pentameric 

transmembrane receptor that consists of five subunits arranged around a central pore (figure 

1.7). GABAAR are typically comprised of two β subunits, two α subunits, and a single γ 

subunit, the most commons GABAAR subtype is α1β2γ2 (Olsen & Sieghart, 2008). 

Occasionally, the γ subunit is replaced by a δ, ε, θ, and π subunit, depending on the neuron 

type and subcellular localization of the receptor. Each subunit consists of four hydrophobic 

transmembrane domains (TM1–4), with TM2 believed to line the pore of the channel. The 
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large extracellular amino terminus is the site of GABA binding, and also contains binding 

sites for psychoactive drugs, for instance benzodiazepines (BZs). Each receptor subunit also 

contains a large intracellular domain (ICD) between TM3 and TM4 that is the site for various 

protein interactions as well as for various post-translational modifications that modulate 

receptor activity (figure 1.7) (Casio, 2004; Tian et al., 2004; Jacob et al., 2008; Olsen & 

Sieghart, 2008; Mrunmayee et al., 2010; Nasiripourdori et al., 2011; Puthenkalam et al., 

2016; Lorenz-Guertin & Jacob, 2017; Olsen, 2018; Wallner et al., 2018). The different 

receptor subtypes have different pharmacological properties, channel kinetic properties and 

topography. Several receptors composing of different subunits has been described (Olsen & 

Sieghart, 2008; Puthenkalam et al., 2016; Lorenz-Guertin & Jacob, 2017; Olsen, 2018), the 

main focus here are some drugs and ligands; major binding site such as GABA site, BZ site, 

picrotoxin site, general anesthetic site, and the expression of  GABAA receptor subunits in 

brain region.  

 

 

1.2.3 GABAA receptors: drugs, ligands, subunits and binding sites 

The active site of the GABAAR is the binding site for several drugs and compounds (ligands) 

(figure 1.8). Ligand binding sites have been identified with several methods; photolabeling 

studies, radioligand binding, mutagenesis, using homology models of the ECD of the 

acetylcholine binding protein (AChBP), low and high solution structure of LGIC, X-ray 

crystallography-derived structures and among others (Wallner et al., 2018). The ligands can 

be agonists, antagonists, positive allosteric modulators (PAM), negative allosteric modulators 

(NAM), channel blockers and non-competitive channel blockers etc. (Johnston, 1996; 

Santhakumar et al., 2007; Mrunmayee et al., 2010; Olsen 2018). Several binding sites has 

been described (Olsen & Sieghart, 2008; Richter et al.,2012; Puthenkalam et al., 2016; 

Lorenz-Guertin & Jacob, 2017; Olsen, 2018; Wallner et al., 2018). Some major drug sites to 

be mentions are: the GABA sites (agonist/antagonist) in the extracellular domain (ECD); the 

picrotoxin sites (channel blocker), in the transmembrane domain (TMD); the benzodiazepine 

(BZ) sites (positive allosteric modulator, PAM) in the ECD; and general anesthetic sites. 

 

The definition of an agonists are ligands that bind to the main receptor site, the site where 

GABA normally binds, referred to as orthosteric site or active site, and activate it, resulting in 

increased Cl- conductance. Non-competitive channel blockers are ligands that bind to or near 
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the central pore of the receptor complex and directly block Cl- conductance through the ion 

channel. Antagonists are ligands that bind to the main receptor site but do not activate it, 

antagonists compete with GABA for binding and thereby inhibit its action, resulting in 

decreased Cl- conductance. PAM are ligands that bind to allosteric sites on the receptor 

complex and affect it in a positive manner, causing increased efficiency of the main site 

therefore an indirect increase in Cl- conductance. NAM are ligands that bind to allosteric sites 

on the receptor complex and affect it in a negative manner, causing increased efficiency of the 

main site therefore an indirect decrease in Cl- conductance. Open channel blockers modulators 

are ligands that prolong ligand-receptor occupancy, activation kinetics and chloride ion flux in 

a subunit configuration-dependent and sensitization-state dependent manner (Johnston, 1996; 

Santhakumar et al., 2007; Mrunmayee et al., 2010; Lorenz-Guertin & Jacob, 2017; Olsen, 

2018). 

 

Examples of GABAAR agonists are: gaboxadol (THIP), muscimol, ibotenic acid and 

progabide (Johnston, 1996; Santhakumar et al., 2007; Mrunmayee et al., 2010; Olsen, 2018). 

Examples of GABAA receptor antagonists are: gabazine and bicuculline. Examples of 

allosteric modulator are: benzodiazepines (Bz), barbiturates (Barbs), zolpidem, carisoprodol, 

ethanol (EtOH), neuroactive steroids, etomidate (Eto), propofol (Pro), volatile anesthetics 

among others. Examples of negative allosteric modulator are: Ro15-4513, amentoflavone and 

flumazenil among others. Examples of non-competitive channel blockers are: picrotoxin, 

cicutoxin, lindane and thujone among others (Johnston, 1996; Santhakumar et al., 2007; 

Mrunmayee et al., 2010; Lorenz-Guertin & Jacob, 2017; Olsen, 2018). A tentative structural 

model of the GABAARs protein showing the binding sites for the major classes of ligands is 

shown in Figure 1.8, both the ECD sites for GABA, EtOH and BZ, and the TMD showing the 

sites for channel blockers and anesthetics (Olsen, 2018).  

 

 

1.2.3.1 GABAAR subunits expression in brain region 

Drugs that act via GABAAR often affect the regulation of various GABAAR subunits, 

different subunit composition have different physiological and pharmacological properties 

(Möhler et al., 2004; Olsen & Sieghart, 2008; Mrunmayee et al., 2010; Uusi-Oukari & Korpi, 

2010). Some subunits are widespread and expressed almost throughout the brain, other 

express only few GABAAR subunits. Studying in mice, using immunocytochemistry, show 

that the expression of α1 and α2 subunit is highest in mammalian brain, especially the α1 
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(Benke et al., 1994; Piker et al., 2000). GABAAR subunits, α1β2γ2 are highly concentrated in 

areas such as the substantia nigra pars reticulate, the central and medial amygdaloid nuclei, 

the inferior olive and in pallidal areas (Pirker et al., 2000). The α2- containing subtype α2β2γ2 

are highly concentrated in areas such as accessory olfactory bulb, amygdala, hippocampus, 

striatum, molecular dentate gyrus, hypothalamus, accumbens and septum (Benke et al., 1994; 

Piker et al., 2000). Subunit α3- containing subtype α3βγ2 was observed in all over the 

midbrain and pontine nuclei; in the amygdala and cranial nerve nuclei, glomerular and 

external plexiform layers of the olfactory bulb, in the inner layers of the cerebral cortex, the 

reticular thalamic nucleus, superficial layers of the superior colliculus and the zonal (Piker et 

al., 2000). The α4β2γ2 subtype was detected in areas such as in the thalamus, dentate gyrus, 

basal ganglia and olfactory tubercle (Piker et al., 2000). The α4β2δ subtype was express in the 

thalamic relay nuclei (Chandra et al., 2006), The α4β3δ receptor was localize in the dentate 

granule cells (Liang et al., 2006). In the cerebral cortex, α4βδ and α4β3δ are both expressed, 

however α4β3δ are most concentrated in the striatum. The α5 was strongest expressed in 

hypothalamus, Ammon's horn, and the olfactory bulb (Piker et al., 2000).  The α5 containing 

subtypes α5β3γ2 are highly concentrated in CA1 pyramidal neurons and believed to exhibited 

memory enhancing properties (Sternfeld et al., 2004; Chambers et al., 2004). 

Subunit α6 was only present in granule cells of the cerebellum and the cochlear nucleus, this 

include α6βγ2, α6β2δ, α6β3δ GABAAR (Piker et al., 2000; Olsen & Sieghart, 2008).  

 

 

1.2.3.2 GABA binding sites  

The GABA biding sites are located in ECD regions of α and β subunits (interfaces β+/α-), two 

sites per pentamer (figure 1.7b and 1.8). The two GABA sites were not identical in 3-

dimensional structure, and exhibited cooperativity in binding kinetics, but virtually identical 

chemical specificity for ligands. The small differences in 3-dimensional structure is 

significant differences in binding with agonist and antagonist. The selectivities for agonist and 

antagonist is also depended on the differing in subunit composition. The presence of a δ or γ 

subunit altered these ligand selectivities compared to no δ or γ, and from each other. In 

particular the δ subunit imparted higher affinity for many GABA agonists, including GABA, 

muscimol, and gaboxadol, while the γ subunit imparted lower affinity (Olsen, 2018).  
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Figure 1.8. A) Illustrate side view of pentameric GABAAR with some ligand sites. B) and C) illustrate the 

protein structure viewed looking from the extracellular face with locations of some ligand binding sites at 

subunit interfaces. B) Illustrate the localization of some ligand binding sites in transmembrane, while C) 

illustrate the localization of some ligand binding sites in the ECD. B) and C): green-shaded oval indicated the 

two α subunits, the two β subunits by the pink shaded ovals, and the clear oval indicated the one γ/δ. The clear 

oval in B) show an example C-terminus is indicated by a small red circled “C” at the bottom of the TMD of the 

γ/δ subunit; TM1,2,3,4 domains are also labeled in this example subunit, and the N-terminus of the TMD of each 

subunit would attach to its ECD at the position indicated by the small blue oval “ECD.” Ligand binding sites for 

some compounds are indicated by arrows. In ECD the ligands names include: GABA, benzodiazepines (BZ), 

EtOH, and pyrazoloquinolines (Pyr). In the TMD the ligands names include: volatiles, barbiturates (barbs), 

etomidate (Eto), propofol (Pro), octanol. The figure A) is adapted from Chagraoui et al., 2016, the figure B) & 

C) is adapted from Olsen, 2018. 

 

 

1.2.3.3 The benzodiazepine (BZ) site, drugs and subunits 

Benzodiazepines (BZs), the most successful and famous of all drugs, ever. They have been 

widely used for panic attacks, anxiety, muscle relaxation, some types of epilepsy, sleep, and 

pre-anesthesia (Olsen & Sieghart, 2008; Uusi-Oukari & Korpi 2010; Richer et al., 2012; 

Wallner et al., 2018). BZs are typically effective in short-term treatment. However, in long-

term treatment this can associate with severe problems, such as development of tolerance and 

physical and psychological dependence. BZs are also addictive drugs. In some individual 

humans, the effects of addictive may turn into BZ abuse and finally to compulsive drug-

seeking behavior (Dixon et al., 2010; Liu et al., 2011; Lindemeyer et al., 2017). The treatment 

of BZ addiction is very difficult, especially in patients with multiple, complicated drug 
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addictions, and even a reduction of BZ dosing or usage is often a good treatment outcome 

(Vorma et al., 2004; Dixon et al., 2010; Liu et al., 2011; Lindemeyer et al., 2017). The BZ 

binding site were located at the α+/γ- interface (figure 1.7 and 1.8), this indicates that the BZ 

pharmacology of receptor subtypes is mainly determined by the α and γ isoform forming this 

site (Olsen & Sieghart, 2008; Uusi-Oukari & Korpi 2010; Richer et al., 2012; Lorenz-Guertin 

& Jacob, 2017; Wallner et al., 2018). Based on the subunits isoforms and clinical effects 

related to each type, the benzodiazepine receptors (BZR) has been classified into several types 

(Olsen & Sieghart, 2008). The classical BZs, such as flunitrazepam or diazepam (DZ), 

predominantly interact with receptors composed of α1βγ2, α2βγ2, α3βγ2, or α5βγ2. They are 

insensitivity to α4βγ2 or α6βγ2 receptors and a reduced activity on receptors containing γ1 or 

γ3 subunits (Olsen & Sieghart, 2008). Studies in mice show that BZR contains the α1 subunit 

are highly concentrated in the thalamus, cerebellum and cortex (Sieghart, 1994; Rudolph et 

al., 2000), The BZR contains the α2 subunit are highly concentrated in areas such as the 

dorsal horn of the spinal cord, the limbic system, and motor neurons (Crestani et al., 2001, 

2002). Studies on mice with α1 subunits seem to mediate antimyoclonic, sedative, and 

anterograde amnesic actions of diazepam (Rudolph et al., 2000). Anxiolytic activity of BZs is 

mediated by α2-containing αβγ2 receptors, especially in the hippocampus and amygdala, 

whereas some anxiolytic activity is probably mediated by α3-containing receptors (Löw et al., 

2000; Crestani et al., 2001, 2002). Using cell-type and region-specific conditional α2 knock-

out mice, shown that α2 modulates fear and anxiety through different brain circuits in the 

hippocampus (Engin et al., 2016). The α2 subunit is implicated in reinforcing responses etOH 

in the central amygdala (Liu et al., 2011) and to cocaine in the nucleus accumbens (Dixon et 

al., 2010). Studies in point-mutated mice shown that α2 in mediating antihyperalgesia in 

spinal cord, indicating that subtype-selective PAMs could constitute a rational approach to the 

treatment of chronic pain syndromes (Zeilhofer et al., 2015). Muscle relaxant activity of BZs 

is mediated partially by each of the αβγ2 receptor subtypes containing α1, α2, α3, or α5 

subunits (Löw et al, 2000; Crestani et al., 2002). In addition, hippocampal, extrasynaptic α5 

subunit is involved in learning and memory processes, such as trace fear conditioning. The α5 

subunit is also involved in the production of amnesia-inducing actions of general anesthetics, 

localized to the hippocampal CA1 region (Crestani et al., 2002; Collinson et al., 2002; Cheng 

et al., 2006), also stimulation of α5-containing receptors mediates tolerance to sedation 

induced by DZ (van Rijnsoever et al., 2004).  
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The classical BZs cannot distinguish between the BZ sites of different GABAA-R subtypes. In 

contrast, BZs cinolazepan and quazepam, several non-BZs, such as, zaleplon, zolpidem, and 

abecarnil, have high affinity to α1βγ2 receptors and intermediate affinity to α2- and α3-

containing receptors, the affinity of zolpidem to α5βγ2 receptors being very low (Olsen & 

Sieghart, 2008; Uusi-Oukari & Korpi, 2010). More understanding of the subunits of the 

GABAA receptors can we hope to make it possible to design and discover of subtype-specific 

BZs for the development of therapeutics with minimal side effects for example more 

selective, less toxic, less dependence development, less tolerance development, less addiction, 

(Rudolph & Knoflach, 2011; Tan et al., 2011). Selective BZs could have an indication as 

novel therapeutics for the treatment of schizophrenia and chronic pain (Engin et al., 2012), 

treatment of depression (Lüscher et al. 2011), drug abuse (Vorma et al., 2004; Dixon et al., 

2010; Liu et al., 2011; Lindemeyer et al., 2017), cognitive impairment and stroke (Rudolph & 

Knoflach, 2011). 

 
 
1.2.3.4 The picrotoxin site 

Picrotoxin is a natural plant compound, with universal efficacy as blocker of GABAAR 

chloride channels (Olsen, 2018), not a chemical analog of GABA, it does not bind to the 

GABA recognition site in the ECD, but rather to residues in the TMD channel pore (at a 

binding side inside the chloride channel, at the site distinct from GABA site) and display 

convulsive properties (Olsen, 2018). Speculated to physically obstruct the channel, picrotoxin 

needed agonist binding and opening of the channel to enable channel block. Olsen, 2018 show 

that the agents binding to or modulating the picrotoxin site on GABAAR had activity as PAMs 

or NAMs on GABAAR function and pharmacology in vivo. Picrotoxin site is a site for several 

“cage convulsants” and insecticides. These cage convulsants such as trioxabicyclo-octanes 

were synthesized as potential pesticides acting on the nervous system, including some highly 

toxic to vertebrates, such as bicyclophosphorothionate (TBPS). TBPS had extremely high 

affinity ligand tool for the picrotoxin site; the binding was found to be allosterically inhibited 

by GABA agonists, and crude homogenates of tissues or cells containing GABAARs had to be 

washed free of endogenous GABA before binding could be detected (Olsen,2018). Several 

insecticides such as fipronil, lindane and dieldrin were found to inhibit the picrotoxin/ TBPS 

site in GABAARs and mimic their pharmacology, including agents used as human poisons 

(Olsen, 2018).  

 



 33

1.2.3.5 The general anesthetic sites 

General anesthetics are an extremely diverse group of drugs cause reversible loss of 

consciousness (Franks, 2008).  Clinical definitions are also extended to include the lack of 

awareness to painful stimuli, sufficient to facilitate surgical applications in clinical and 

veterinary practice (Franks, 2008; Garcia et al., 2010). General anesthetics primarily act by 

either by blocking excitatory signals or enhancing inhibitory signals (Garcia et al., 2010). By 

2010 none of the clinical general anesthetics are selective for a single ion channel. At clinical 

concentrations, every anesthetic modulates the function of two or more types of channels in 

the CNS. Thus, each different anesthetic agent alters neuronal activity by acting in differing 

degrees at multiple sites (Garcia et al., 2010). In clinical there are five intravenous (i.v.) 

anesthetics and five inhalational anesthetics used to induce or maintain general anesthesia. 

The five i.v. anesthetics are: ketamine, propofol, etomidate include barbiturates derivates; 

methohexital and thiopental. The five inhalational anesthetics are: nitrous oxide, xenon 

include volatile anesthetics; sevoflurane, desflurane, and isoflurane. Sedative BZs such as 

diazepam, lorazepam and midazolam are often used in combination with these 10 general 

anesthetic drugs. Out of these 10 general anesthetics, three drugs such as xenon, ketamine and 

nitrous oxide inhibit ionotropic glutamate receptors, with the strongest effects being seen on 

the NMDA receptor subtype. There have been demonstrated that xenon, ketamine and nitrous 

oxide also have modest effects on GABAARs and many other receptors, but their primary 

action is the blockade of NMDA receptors (Garcia et al., 2010). The 7 other general 

anesthetics targeting mainly GABAAR, but they also have variation in effects on other ion 

channels, including 5-HT3 receptors, glycine receptors, the two pore potassium channels, 

neuronal nicotinic receptors, and glutamate receptors (Garcia et al., 2010).  

 

Site-directed mutagenesis (Mihic et al., 1997), substituted cysteine modification protection 

(SCAMP) (Forman & Miller, 2016), or photoaffinity labeling (Forman & Miller, 2011; Olsen 

& Li, 2011), has been used to identify the anesthetic binding sites on the GABAAR. Mihic et 

al., 1997 showed that certain residues in the TMD of both GABAAR, and the related 

inhibitory glycine receptors (GlyRs), are critical for modulation by long-chain alcohols 

volatile anesthetics, including EtOH. Lobo & Harris 2006 demonstrated that EtOH are only 

active at a concentration higher than 100 mM. They argued that EtOH might act on some 

other GABAAR subtypes when the concentration is less than 100 mM. Li et al., 2006 with 

photolabeling with etomidate analog azietomidate, showed the binding sites of anesthetic 

GABAAR were at the β+/α- interface (α1M236 in TM1 and β3M268 in TM3) (figure 1.8). 
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Rudolph & Antkowiak, 2004; Li, et al., 2010 identified the binding site for the i.v. general 

anesthetics propofol and etomidate to be in TM2 of β subunits, overlapping with, or close by, 

the binding site(s) of volatile anesthetics. Jayakar et al., 2014 showed that propofol do not 

have one binding site, but multiple binding sites at the GABAAR. The binding sites of 

propofol were at the γ+/β-, β+/α-, and α+/β- interfaces. The efficacy and affinity of barbiturate 

are depended on the subunit composition of GABAAR. Thomson et al., 1996 showed the α 

subunit maybe more important than β subunit. Like propofol, barbiturate do not have one 

binding site, but multiple binding sites at the GABAAR. Chiara et al., 2013, 2016; Maldifassi 

et al., 2016a identified the binding sites of barbiturates were at α+/β- and γ+/β- interfaces in 

the TMD a in α1β2γ2 addition to αβ+/α-γ interfaces. The binding sites for barbiturates and 

etomidate at the β+/α–, and at the β+/β– TMD interfaces, at α4β3δ GABAAR subtypes.  

 

 

1.3 Studying the GABAA receptor using patch clamp electrophysiology 

1.3.1 GABAA receptor and patch clamp technique 

When GABAAR are activated by an agonist, the receptor proteins changes formations, the 

pore opens, chloride anions (Cl-) pass down an electrochemical gradient and the intracellular 

concentration of Cl- increases. The increased chloride conductance drives the membrane 

potential towards the reversal potential of the chloride ion (which is around -65 mV) (Payne et 

al., 2003; Riviera et al., 2005; Olsen & Sieghart, 2008). By using a certain concentration of an 

agonist applied near the receptor creates a higher chance that the channel is open at the time 

(Maksay, 1996). Other factors that can also affected the channels opening and closing kinetic 

is temperature, the temperature can prolong or reduce the ion-channels opening time. Hamill 

et al.1983 show that there is another factor that prolongs the ion channels in a closed state, 

that is desensitization, the rapid signal attenuation in response to stimulation of the cell by 

agonists, in another word decrease in the response of an agonist due to frequent applications 

(Hamill et al., 1981,1983). The ionic currents of the ion channel can be measure by patch 

clamp technique. The patch clamp technique is a useful technique in electrophysiology to 

study ionic current in tissue sections, isolated cell membrane and isolated living cell. The 

most studies are on excitable cells such as muscle fibers, pancreatic beta cells, cardio 

myocytes and neurons, mainly electrical activity of single cells or single ion channels (Hamill 

et al., 1981, 1983; Sakmann, 1992; Sakmann & Neher, 1995; Henández-Ochoa & Schneider, 

2012). The technique allows the recording of channel currents in real time, in a biological 
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environment, and with high resolution, and was introduced by Neher and Sakmann in 1976. 

The main purpose with the technique is to impose on a membrane patch with a defined 

voltage with the aim to measure the resulting current for the calculation of the patch 

conductance, patch-clamp in most often means voltage-clamp of a membrane patch. Patch 

clamping could also mean forcing a defined current through a membrane patch, a so call 

current-clamp, with the aim to measure the voltage across the patch, but this application is not 

often used for small patches of membrane. To measure the current a microelectrode which is a 

micropipette, which has been filled with a suitable electrolyte solution, is placed next to a cell, 

and gentle suction is applied through the microelectrode to draw a piece of the cell membrane 

into the microelectrode tip; the glass tip forms a high resistance “seal” with the cell 

membrane, this is called cell attached mode. This mode can be used for studying the activity 

of the ion channels that are present in the patch of membrane. If more suction is now applied, 

the small patch of membrane in the electrode tip can be displaced, leaving the electrode sealed 

to the rest of the cell. This “whole-cell" mode allows very stable intracellular recording. 

(Hamill et al., 1981, 1983; Sakmann, 1992; Sakmann & Neher, 1995). In this study, a certain 

concentration GABA, was applied during patch clamp configurations (see the next section). 

From the current responses we can understand more about the GABAAR properties in AII 

amacrine cell. 

 

1.3.1.1 Patch clamp configurations 

Since the introduction of the patch clamp technique by Neher and Sakmann, the technique has 

been refined and modified for different applications. Several variations in patch clamp 

configurations or modes can be used, which configurations an experimenter decides to use in 

the experiment depend on the research question because each configuration has its own 

limitations and advantages and is used to solve specific problems. Five basic configurations 

normally used are included: the cell-attached patch (CAP); whole cell patch (WCP); the 

inside-out (IOP), outside-out (OOP); and perforated patch (PP) (Sakmann & Neher, 1995; 

Yuan et al., 2011; Jue, 2017). Figure 1.9 illustrate five basic recording configurations.
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Figure 1.9 A) Illustrate five recording modes of patch clamp: cell attached; whole-cell; inside-out; outside out; 

and perforated-patch.  B) Schematic representation of five major configurations of the patch-clamp technique. 

Figure 1.9 A is adapted from Yuan et al., 2011. Figure 1.9 B is adapted with modification from Jue, 2017.

 

 

The cell-attached patch (CAP) configuration is necessary for establishing any other  

patch-clamp configurations, the pipette is sealed onto the cell membrane. To form a seal, slight 

suction applied to the upper end of the pipette results in formation of a tight seal with a 

resistance in the range of gigaohms (109 Ω), called “giga-seal” (figure 1.9) (Hamill et al., 

1981; Hamill et al., 1983; Sakmann & Neher, 1995). This configuration allowed the recording 

of single-channel, or a few, ion channels currents from the sealed patch with the intact cell 

still attached. Formation of a giga-seal is extremely important for reduction of noise during 

single-channel recordings. By only attaching to the exterior of the cell membrane, the cell 

structure was not disturbed, and the interior of the cell was not disrupted (Hamill et al., 1981; 

Hamill et al., 1983; Sakmann & Neher, 1995; Yuan et al., 2011; Jue, 2017). 

 

Whole-Cell patch (WCP), the most used configuration to measure ionic current from single 

cell. In WCP the experimenter can measure the current passing through the plasma 

membrane, which equals the sum of the currents from all the open ion channels. The 

experimenter can obtain WCP by establishing CAP first. When connected to the cell 

membrane with giga seal, it is possible to rupture the membrane under the pipette with two 

different ways: 1) slightly more suction and still maintain the tight seal, resulting in a good 

electrical connection with the interior of the cell, and 2) When connected to the cell 

membrane with giga seal, a large current pulse sent through the pipette. The amounts of 
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current applied and the duration of the pulse also depend on the type of cell. To establish 

WCP sometimes both ways were used (figure 1.9b). The advantage of this configuration is the 

low resistance sharp electrode provide electrode lower resistance and thus better access to the 

inside of the cell (Hamill et al., 1981; Hamill et al., 1983; Sakmann & Neher, 1995; Yuan et 

al., 2011; Jue, 2017). The disadvantage is that the cell’s intrinsic intracellular solution slowly 

replaced with the solution in the pipette, wash-out or dialyzing of the intra cellular contends 

such as ions, second messengers or proteins. The wash out can disturb the cell’s intrinsic 

properties and can cause it to respond in an unusual manner, or even kill it (Hamill et al., 

1981; Hamill et al., 1983). The exchange of intracellular solution desirable in some cases 

because it gives good control over the experiment, by knowing the exact concentration of ions 

inside and outside of the cell, the experimenter can calculate the equilibrium potential of a 

certain ions (see section 1.3.2). It can take up to several minutes (~10 min) before the cell get 

dialyzed, the experimenter can take the measurement at the beginning of a whole-cell 

recording. The experimenter can also slow down the dialyzing by using different types of 

substrates that perforate the membrane and eliminate the need to rupture the membrane 

beneath the pipette tip. (Hamill et al., 1981; Hamill et al., 1983). 

 

Outside-out patch (OOP) is obtained from the whole-cell recording configuration by slowly 

pulling the pipette away from the cell until a small patch of the membrane reseals on the tip of 

the pipette (figure 1.9) (Hamill et al., 1981; Hamill et al., 1983; Sakmann & Neher, 1995). 

The outside-out configuration is normally used for recording the channel activity with a 

possibility of changing external solutions. The membrane area of an outside-out patch is 

usually larger than that of a cell-attached or an inside-out patch obtained using pipettes with 

the same diameters of tip opening (Hamill et al., 1981; Hamill et al., 1983; Sakmann & Neher, 

1995; Yuan et al., 2011; Jue, 2017).  

 

Inside-out membrane patch (IOP) can be directly obtained from the cell-attached mode by 

pulling the pipette away from the cell. Sometimes this can directly result in formation of the 

inside-out patch (Hamill et al., 1981; Hamill et al., 1983; Sakmann & Neher, 1995; Yuan et 

al., 2011; Jue, 2017). In the inside-out configuration, the pipette solution and the pipette 

potential are applied to the extra-cellular surface of the patch membrane, while the 

cytoplasmic side of the membrane is exposed to the bath solution and has the potential of the 

reference electrode. The inside- out patch configuration gives the possibility of solution 

exchange at the cytoplasmic surface of the membrane. 
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Perforated-patch (PP), in this configuration the recording pipette is filled with a small 

amount of antibiotic or antifungal ionophore, such as nystatin, amphotericin and gramicidin. 

After cell attached, the antibiotic/antifungal ionophore slowly diffuses into the membrane 

patch and forms small pores selective for monovalent ions (cytoplasmic proteins and larger 

molecules will not diffuse), providing electrical access to the cell interior without rupture 

the cell membrane. The advantages of PP compared with the WCP configuration, is that PP 

preserving intracellular contents which result a reduced current rundown, and the recording 

can therefore last longer. However, obtaining adequately low series resistance is often a 

technical challenge in the perforated patch configuration (Yuan et al., 2011; Jue, 2017) 

 

Another configuration beside the four major configurations is nucleated patch. An outside-

out patch can also be obtained in the form of a nucleated membrane patch (Sather et al., 

1992). The procedure of obtaining the nucleated patch is similar to that described for the 

outside-out patch. The main difference is that the patch excision from the cell is accompanied 

by an application of suction through the patch electrode. Applied suction attracts the cell 

nucleus to the pipette tip so that the nucleus is extracted from the cell as the pipette is 

withdrawn (figure 1.10). The patch membrane reseals after extraction of the nucleus (Sather et 

al. 1992). There are two advantages of nucleated patches in comparison with standard outside-

out patches: 1) Ionic currents in nucleated patches are much larger and therefore current 

kinetics can be studied without averaging the recordings obtained by repetitive patch 

stimulation; 2) Nucleated patches survive substantially longer after their excision due 

probably to the membrane support provided by the nucleus (Sather et al., 1992). 

 

 

Figure 1.10 Describe how to obtain nucleated patch. Figure is adapted with modification from Gurkiewicz & 

Korngreen, 2006. 
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1.3.2 Electric theory of a neuron 

1.3.2.1 Nernst equations and Goldman –Hodgkin-Katz equation  

Electrical phenomena occur whenever charges of opposite sign become separated or can 

move dependently. Any net flow or movement of charges is called a current. To understand 

the current movement through the ion channels Ohm’s law is central. The simplest definition 

of a voltage is given by Ohm’s law:  

 

U = I*R    (1) 

 

Where U is the voltage measured in volt (V), I is the current measured in ampere (A) and R is 

the resistance measured in ohm (Ω). Electrical signals within biological organisms are driven 

by ions. The ions in biological systems served as carriers of either negative or positive charge 

(Sakmann & Neher, 1995). As mention in section 1.1 the cell membrane serves as both an 

insulator and a diffusion barrier to the movement of ions. The unequal concentrations of ions 

between the inside and outside of the cell lead to a voltage called the membrane potential 

(Em). When positive charges flow out of the cell or negative charges flow into the cell we 

have positive current (outward current). Negative current is defined when positive charges 

flow into the cell or negative charges flow out of the cell (inward current) (Sakmann and 

Neher, 1995). When the transmembrane voltage is equal to the force of diffusion of the ion, 

such that the net current of the ion across the membrane is unchanging and zero, we have 

equilibrium potential or reversal potential of the ion. The equilibrium potential of a single ion 

can be designated by Eion. The Nernst equation (Eq. 2) is used to calculate the equilibrium 

potentials between solutions or across the cell membrane (Sakmann & Neher, 1995; Nicholls 

et al., 2012).  

 

���� = ��	
 ��
 ���ₒ���ᵢ  
Eq. 2 Nernst equation for one single ion. 

 

Eion is the equilibrium potential of a certain ion, measured in volts. The gas constant (R) 

(8.3144 J/mol K), absolute temperature (T), measured in kelvin (K = ˚C + 273.15). Faraday’s 

constant (F) (96,485 C/mol), (z) is the ions’ charge/ valence, and concentration of the ion [K] 

outside the cell (o) and inside the cell (i). 
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In patch clamp experiments, the solution filling the patch pipette, an intracellular solution (IC 

solution), is designed to match the ionic composition of the bath solution as in the case of 

cell-attached recording, or to match the cytoplasm, for whole-cell recording. The solution in 

the bath solution, the extracellular solution (EC solution), is designed to match the 

physiological components of the cytoplasm (Hamill et al., 1981). During whole cell patch 

clamp experiments, the exchange of intracellular solution interior of the pipette to the 

intracellular space of the cell occurs, knowing the exact concentration of ions outside and 

inside of the cell during the solution exchange, the experimenter can calculate the equilibrium 

potential of the different ions with Nernst (Eq. 2) (Hamill et al., 1981; Hamill et al., 1983). 

 

When the cell membrane is permeable for multiple ions, the value of the reversal potential can 

be calculated by the Goldman-Hodgkin-Katz Equation (Eq. 3). This is similar in form to the 

Nernst equation shown above, however Goldman-Hodgkin-Katz Equation also takes into 

consideration the relative permeability for each ion. In this equation the three ions that 

included are: sodium (Na+), chloride (Cl−), and potassium (K+) (Hucho & Weise, 2001). 

    

��� = ��	
 ��
 �����+����+�ₒ+���+� �+!ₒ+��"�−��"�−�ₒ
����+����+�ᵢ+�(�⁺)� �+!ᵢ+��"�−��"�−�ᵢ '   

Eq. 3 Goldman-Hodgkin-Katz Equation for multiple ions. 

 

Eeq is the equilibrium potential, the gas constant (R), absolute temperature (T), Faraday’s 

constant (z) is the ions’ charge/ valence, and concentration of the ions: potassium [K+], 

chloride [Cl-] and sodium [Na+] outside the cell (o) and inside the cell (i). P(Na+), P(K+), and 

P(Cl-) are the permeability for that ion (in meters per second (m/s)).  

 

In order to predict a membrane potential as a result of movement of ions of different kind, we 

need to know the conductance (G) of that ion across the membrane, measured in siemens (S). 

From Ohm’s law (eq. 1), the current (Im) through the membrane potential is: 

 

Im= Em/Rm    (eq. 4) 
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The conductance (Gm) of the membrane is defined as equals the inverse of resistance of the 

membrane (1/Rm). The current through the membrane (Im) for a single ion can then be 

described as:  

 

Im = Gm(Em-Eion)    (eq. 5) 

 

 

(Em-Eion) is the differences between membrane potential (Em) and equilibrium potential Eion. 

(Horowitz & Hill, 1990; Sakmann & Neher, 1995; Barbour, 2014).  

 

 

1.3.2.2 Neurons as electric circuits with capacitance and series resistance 

Patch clamping is an electrical technique, to understand how patch clamp works we must see 

the neuron as an electrical circuit, a resistor-capacitor circuit (RC-circuit). RC-circuit is an 

electric circuit composed of capacitors and resistors driven by a current or a voltage source 

(Horowitz & Hill, 1990). This analogy is a simple model of the real neuron, and obviously it 

cannot describe every aspect of the neuron. The neurons membrane has an ability to store and 

separate a charge therefore can be represent as a capacitor. From electric physics, we know 

that in an electrical circuit, a capacitor possesses two conducting regions with a separation of 

non-conducting material in between (Horowitz & Hill, 1990; Sakmann & Neher, 1995; 

Barbour, 2011). The conducting regions of the capacitor in a neuron are represented by the 

conductive extracellular and intracellular and solutions of the cell. The non-conducting 

membrane of the neuron is the non-conducting insulator of the capacitor in the RC circuit. 

The resistors in an RC circuit represent the passive transport of ions through ion channels, and 

the current flow through ion channels is represented by the inverse resistance, the 

conductance. When ion channel open, more ions flow, and this means decrease in resistance 

or increase in conductance. The sum of the ion channels would be an ohmic resistance in 

parallel with the membrane as a capacitor. The battery in this RC circuit can be represented by 

the concentration gradient different ions in a neuron, in other words the internal to external 

ratio of ion concentrations (Horowitz & Hill, 1990; Sakmann & Neher, 1995; Barbour, 2014). 

Figure 1.11 show a simple electrical analog of the neuron with some basic electrical 

components.  

 



 42

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 A simple electrical circuit of the neuron. Cm = the membrane capacitance, Rm = membrane 

resistance, Rs = series resistance.  

 

 

The speed of the charging of the membrane is defined by a time constant (τ) which involving 

the product of the membrane capacitance (Cm), the membrane resistance (Rm) and the series 

resistance (Rs) (electrode's resistance) (eq.6). The time constant (τ) governs the time it takes to 

reach a steady state response after a change in the voltage across a membrane. In both a 

neuron and an electrical circuit, this voltage rises to the steady state level asymptotically in 

the response to an external current (e.g., from an action potential). Once the external current is 

shut off, the voltage drops in a similar asymptotic way (Sakmann and Neher, 1995). In patch 

clamp recording whole-cell voltage clamp bandwidth is given by τ ≈ RsCm (eq.7) when Rm ≫ 
Rs. With typical values for Rs (5–20 MΩ) and Cm (15–100 pF), τ is (75 µs - 2ms); this is too 

slow to voltage clamp rapid ionic currents (Sherman et al.,1999). A big τ mean instability and 

it makes measurements of rapid ionic currents with the whole-cell patch-clamp configuration 

extremely difficult. In whole cell patch clamping the major factor that limits the voltage 

clamping bandwith is the series resistance (Rs) (Sherman et al., 1999). From the equation, the 

larger the Rs or Rm the longer it takes to change the membrane voltage. Larger Rs can slow 

down the voltage control of the membrane potential making voltage-clamp inaccurate 

(Sakmann & Neher, 1995). 
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Eq.6 describes the time constant (τ). 

 

 

1.3.2.3 Voltage clamp and amplifier 

As mention in earlier section patch clamp often means voltage-clamp of a membrane patch 

because voltage clamp is more used than current clamp. Voltage clamp is used basically to 

measure the membrane potential, and then change the membrane potential to a desired value 

by adding the necessary current. The voltage of the cell membrane is held or “clamped” to a 

certain potential, so that the experimenter enables control of the membrane voltage of the cell. 

The membrane voltage is manipulated independently of the ionic currents, allowing 

the current-voltage relationships of membrane channels to be studied. The voltage that 

experimenter set over the membrane is called “holding potential” or “command potential” and 

is normally set close to the natural “resting potential” of a cell. The electrodes are connected 

to the patch clamp amplifier, which constantly measures membrane potential. Whenever the 

ionic current pass the membrane tries to change the voltage across the membrane, the 

amplifier with a feedback circuit injects current equal and opposite to the ionic current and 

keeps the voltage-clamp at the set potential. The injected current is an exact measurement of 

the ionic current which gives the experimenter an indication of how the cell reacts to changes 

in membrane potential and can be recorded with a computer (Hamill et al., 1981¸1983; Neher 

& Sakmann, 1992). Figure 1.12 illustrate a simple voltage clamp setup with circuit of the 

patch clamp amplifier. 

 

Rs and Rm in series can cause series resistance error in patch recording. During recording the 

current was passed through the cell and electrode, the cell's resistance (Rm) is in series with 

the electrode's resistance (Rs), Ohm`s Law lets us know that this will cause a voltage drops 

across both Rm and Rs. these voltage drops will add. For example, if Rm = Rs, the experimenter 

command a 40mV change from the resting potential, the amplifier will pass enough current 

until it reads that it has achieved that 40mV change. However, in this example, half of that 

voltage drop is across the recording electrode according to Ohm`s Law. The experimenter will 

be tricked to think the cell voltage was changed by 40 mV, but in reality, it was changed only 

by 20 mV. This creates an error in the commanded membrane potential (Sakmann & Neher 
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1995). In patch clamp setup the amplifier can compensate for most part of Rs error. The 

experimenter can reduce Rs error by using as low a resistance electrode as possible and make 

the recording at or near the cell's natural resting potential (Sakmann & Neher 1995).  

 

 

Figure 1.12 A) Illustrates a simple voltage clamp setup where the transmembrane voltage is recorded through a 

voltage electrode, relative to ground, and a current electrode passes current into the cell. B) Illustrates a simple 

amplifier`s current-to-voltage converter circuit which measures current (Ip) through the membrane or voltage 

(Vm) across the membrane. The amplifier varies its output to keep the pipette potential at Vref. Vref is the 

command potential or reference voltage, output is the output voltage, Rf  is the feedback-resistance, Ip  is the 

current through the cell membrane. IpRf   is the voltage drop across the feedback resistor. The amplifier gets an 

input from the signal generator that determines the Vref, and it subtracts the Vm from the Vref (Vref -Vm), 

magnifies any difference, and sends an output to the current electrode. Whenever the ionic current pass the 

membrane tries to change the voltage across the membrane, the amplifier with a feedback circuit injects current 

equal and opposite to the ionic current and keeps the voltage-clamp at the reference voltage. Figure 1.12A) is 

adapted from Yuan et al., 2011, and figure 1.12 B) is adapted with modification from Sakmann & Neher, 1995. 
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1.4 The retina 

1.4.1 Functions of the retina 

The human eye is a sense organ. It reacts to light and allows vision with color and perception 

of depth. The visual system has the ability to handle a light intensity ranging 10 orders of 

magnitude and can distinguish about 10 million colours (Chow & Lang 2001; Masland, 2001; 

Wässle, 2004; Seeliger et al., 2011). The retina is the part of the eye that receives the light and 

converts it into chemical energy. The chemical energy activates nerves that conduct the 

messages out of the eye into the higher regions of the brain. In the adult, the neural retina 

consists of approximately 55 distinct cell types histologically structured into three layers of 

photoreceptors cells (figure 1.13), intermediate neurons and ganglion cells and two layers of 

neuronal interconnections, outer and inner plexiform layers (Curcio et al., 1990; Masland, 

2001). Rod and cone are the two main photoreceptor cells in retina, locate in the outer nuclear 

layer (ONL); which are directly sensitive to light. Rods function mainly in dim light and 

provide black-and-white vision, while cones function in bright light and the perception of 

colors. The average human retina contains 4.6 million cones and 92 million rods (Curcio et 

al., 1990; Masland, 2001). The light perception can be simplified into four main processing 

stages: photoreception, transmission to bipolar cells, transmission to ganglion cells which also 

contain photoreceptors, the photosensitive ganglion cells, and transmission along the optic 

nerve. At each synaptic stage there are also laterally connecting horizontal and amacrine cells. 

Together they form a network of cells in the retina and provide the structural and functional 

basis for light perception by ensuring the capture of photons, the conversion of light stimuli 

into complex patterns of neuronal impulses and the transmission of the initially processed 

signals to the higher visual centers of the brain (Masland, 2001; Clifford & Ibbotson, 2002; 

Wässle, 2004; Seeliger et al., 2011; Hartveit & Veruki, 2012; Goldman, 2014). 
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Figure 1.13 Illustrates the three nuclear layers in the retina. In the outer nuclear layer (ONL) there are 

photoreceptors: Rods and Cones. Horisontal, bipolar and amacrine cells are in the inner nuclear layer (INL) and 

the retinal ganglion cells are in the ganglion cell layer (GCL). The lateral interactions between photoreceptors, 

bipolar cells and horizontal cell are formed in between the inner and outer nuclear layers and is called the outer 

plexiform layer (OPL). The lateral interactions in the OPL are largely responsible for the visual system's 

sensitivity to luminance contrast over a wide range of light intensities. The lateral connections between bipolar, 

amacrine and ganglion cells are formed in between the INL and the GCL and is called the inner plexiform layer 

(IPL). Information flows from photoreceptors to ganglion cells but there are also many lateral interactions. The 

figure is adapted from Clifford & Ibbotson, 2002. 

 

 

1.4.2 The rod and cone pathway in retina 

The complete detail in how the retina works to influence the signals from photoreceptors is 

still not entirely clear. But several different pathways have been described. Anatomically, the 

major cone and rode pathways are best described. In the primary cone pathway, cones 

connect to ON- and OFF-cone bipolar cells, which in turn connect to ON- and OFF-

ganglion cells. In the primary rod pathway, rods connect to rod bipolar cells (ON-RBP). 

These rod signals are then feed into both ON- and OFF channels in the inner retina through 

the connection between the rod cell and the AII-amacrine cell. The AII provides electrical 

input via Connexin36 (CX36) containing gap junctions into ON-cone bipolar cells (ON-CBP) 

and provided inhibitory chemical input via glycinergic synapses into the OFF-pathway, onto 

OFF-cone bipolar cells (OFF-CBP) and OFF-ganglion cells (OFF-GC) (figure 1.14a) 

(Seeliger et al., 2011; Demp & Singer, 2012; Hartveit & Veruki 2012). In the secondary rod 
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pathway, rods connect directly onto cone in the outer retina via Connexin36 (CX36) 

containing gap junctions (figure 1.14b). A third pathway, of unknown significance, has been 

described, where rods connect to certain types of OFF bipolar cells (Seeliger et al., 2011). 

 

 

 

Figure 1.14 a) Illustrate the primary rod and cone pathway. Cone contact either OFF- or ON- cone bipolar cells 

(OFF-CBC, ON-CBC) which contact OFF- or ON-ganglion cells (OFF-GC, On-GC). Rods communicate via the 

rod bipolar cell (ON-RBP) onto the AII-amacrine cell. The AII provides electrical input via Cx36 containing gap 

junctions into ON-cone bipolar cells (ON-CBP) and via glycinergic synapses into the OFF-pathway, OFF-cone 

bipolar cells (OFF-CBP) and OFF-ganglion cells (OFF-GC). b) Illustrate the secondary rod pathway, rods feed 

directly into cones via Cx36 containing gap junctions. The figure is adapted from Seeliger et al., 2011. 

 

 

 

1.5 AII-amacrine cells 
 

1.5.1 AII-amacrine cells 

Amacrine cells have been categorized into at least 33 different subtypes based on their 

dendritic morphology and stratification (Balasubramanian & Gan, 2014). Amacrine cells can 

be either GABAergic, glycinergic or neither depending on what inhibitory neurotransmitter 

they express (GABA, glycine, or another transmitter). Based on a measurement of their 

dendritic field diameter (abors), the amacrine cell types are group into the narrow field (~70 

µm in diameter), the medium-field (~170 µm in diameter) and the wide-field (~350 µm in 

diameter) (Kolb et al., 1981; MacNeil et al., 1999; Masland, 2001, 2011). The AII amacrine 
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cell is a narrow field, axon-less interneuron, the most common of the different amacrine cells 

in the retina, seems to be found in the retina of all mammals (Hartveit & Veruki, 2012), and 

makes up 8-9 % of the amacrine cell population in the rat retina (Wässle et al., 1993). The AII 

amacrine cell plays an important role in visual signal processing in scotopic and photopic 

conditions (Wässle and Boycott, 1991; Protti et al., 2005; Demp & Singer, 2012; Hartveit & 

Veruki, 2012). Evidence that GABAA receptor are present on AII amacrine cells has been 

demonstrated (Boos et al., 1993; Contini & Raviola, 2003; Gill et al., 2006; Marc et al., 2014; 

Zhou et al., 2016). 

 

 

 

Figure 1.14 A) Example of AII amacrine cell morphology from cat retina with Golgi methods with its typical 
shape and localization in the retina. B) AII amacrine cell morphology from rat retina with multi-photon 
excitation (MPE) microscopy. Both A) and B) INL = inner nucleated layer, IPL= inner plexiform layer, GCL = 
ganglion cell layer. Scale bar 5 µm. B) IPL has been divided into five equally thick strata (stratum 1 (S1)–S5), 
with S1–S2 corresponding to sublamina a and S3–S5 corresponding to sublamina b. The figure A) is adapted 
with modification from Famiglietti & Kolb, 1975, figure B) is adapted from Zandt et al., 2017.  

 

 

 

1.4.2 AII amacrine classification and localization 

AII amacrine cells are classified as inhibitory glycinergic narrow-field interneurons, because 

they release the neurotransmitter glycine onto OFF-cone bipolar cells and ganglions cells.  

The AII amacrine cell has its soma localized in the inner nuclear layer (INL) (Famiglietti and 
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Kolb, 1975; Boos et al., 1993). It has heavily branched lobular dendrites proximally in the 

inner plexiform layer (subluminal a figure 1.14) and arboreal dendrites in the distal part of the 

inner plexiform layer (sublamina b figure 1.14). AII amacrine cells are present primarily in 

the INL and are rarely found in the GCL (Hartveit & Veruki, 2012; Goldman, 2014; Zandt et 

al., 2017). A morphometric analysis on 43 AII amarine cell with multi-photon excitation 

(MPE) microscopy showed us better images of the AII amarine cell morphology than earlier 

(Zandt et al., 2017). We now have a good understanding of the surface area, branching 

pattern, dendritic lengths and diameters, and number and distribution of dendritic varicosities 

(Zandt et al., 2017).  Figure 1.14A illustrate the AII morphology from cat retina with Golgi 

methods and fig. 1.14B with multi-photon excitation (MPE) microscopy, both figures 

illustrate the typical shape and localization in the retina. Figure 1.15 adapted from Zandt et al., 

2017 to illustrate the similarities and differences in the morphologies of AII amcrine cells in 

the rat retina. 
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Figure 1.15 Illustrates similarities and differences in AII amacrine cell morphologies of the rat retina. Scale 

bar 10 µm. Adapted from Zandt et al., 2017. 
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2.0 MATERIALS 

2.1 Solutions 

The retina is kept in a number of different solutions from the time it is dissected out of the 

eye. These are referred to as extracellular solutions. The solutions used inside the patch-clamp 

recording pipettes (with access to the cytoplasm of the cell) are called intracellular solutions. 

A list of extracellular and intracellular solutions used in this thesis given in Table 2.1 

 

2.1.1 Extracellular solution, EC 1000 

An extracellular solution (EC 1000) was freshly made in the morning right before recording 

for each experiment. The compounds were measured on a scale with an accuracy of 0.001 

gram. The amount was rounded down to the closest 0.001 gram and mixed with distilled and 

filtered water (Milli Q water). 25 mM NaHCO3
-  is the buffer, and the solution was mixed 

well and then bubbled with 95%O2/5%CO2 for approximately 30 minutes before adding 

calcium (slowly) to prevent calcium from precipitating. EC 1000 was used to perfuse the 

retina slices during recording and was continuously bubbled with 95%O2/5%CO2. 

 

2.1.2 Extracellular solution, EC 3000 

EC 3000 solution is a HEPES-based solution, used for dissecting the rat retina. The EC 3000 

was mixed in the laboratory and kept in the refrigerator for storage up to 7 days. The pH of 

solution was measured and adjusted to pH 7.4. EC 3000 was used as dissection bath for the 

dissection of the retina from the eye. HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid) is a zwitterionic organic chemical buffering agent, a nontoxic substance for the cell 

(Baicu & Taylor, 2002). HEPES is good at maintaining physiological pH despite changes in 

CO2 concentration (produced by cellular respiration) when compared to bicarbonate buffers, 

which are also commonly used in cell culture. Characteristic of HEPES is that it has pKa at 

room temperature (25 °C) 7.5, and is useful at pH range between 6.8 to 8.2. 

 

2.1.3 Ames solution 

To support the retinal tissues and keep it in healthy condition during the experiments day, a 

medium call Ames solution is used. Ames & Nesbett, 1981 have shown that rabbit retina in 

Ames medium over two days maintained its metabolism and ability to respond to photopic 

stimuli (Ames & Nesbett, 1981). Pieces of retina can be stored in bubbled Ames solution for 

up to 12 hours. Ames solution was continuously bubbled with 95%O2/5%CO2. 
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2.1.4 Intracellular solution, IC 6302 

IC 6302 is an intra-cellular solution with symmetrical chloride relative to EC 1000 Clrev ~  

-0,6 mV (calculate with eq. 2 section 1.3.2), liquid junction potential of IC6302 is 3.3 mV. Cs+ 

(in CsCl) has replaced the physiological K+ to inhibit voltage- gated K+ current. The liquid 

junction potential (LJP) is a potential created by the interface between two solutions with 

different electrolytes. The LJP for the solution enter in the PatchMaster program before 

recording so that PatchMaster can calculate the correct the holding potential accordingly. 

 

 

Table 2.1 IC and EC solution 

Extra cellular solution Intra-cellular solution 

EC 1000 Conc. (mM) EC 3000 Conc. (mM) IC 6302 Conc. (mM) 

NaCl 125 NaCl 145 NaCl 8.0 

KCl 2.5 KCl 2.5 CsCl 125 

CaCl2 2.5 CaCl2 2.5 Ly-K2 4.0 

MgCl2 1.0 MgCl2 1.0 Mg-ATP 15 

Glucose 10 Glucose 10 TEA-Cl 5.0 

NaHCO3
- 25 HEPES 5 EGTA 5.0 

    HEPES 1.0 

 

 

2.2 Chemicals and drugs 

2.2.1 GABA  

GABA was dissolved at a concentration of 1 mM GABA in HEPES solution and applied from 

an application pipette or a multi-barrel pipette. 

 

2.2.2 Isoflurane 

Isoflurane (2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane is used for inhalational 

anesthesia to anesthetize the rat. 
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2.3 Dissection equipment 

Vannas-type Micro Scissors   General Laboratory Scissors, Curved 

 

 

 

 

 

 

 

 

Iris Dissection Forceps   Dissection Forceps, Smooth Jaws 

 

 

 

 

 

 

Scapels     Petri dishes  

 

 

 

 

 

Dissection microscope   Air tight gas chamber 
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2.4 Technical equipment 

 

Tabell 2.2 Lab-equipment 

Lab equipment Supplier Model/ description 

Analog-digital, digital-

analog converter 

 

Instrutech, US 

 

ITC-16 

Borosilicate glass pipettes Harvard Apparatus, Uk  

Electrode puller Narishige, Japan PP-83 

IR-camera TILL photonics, Germany VX55 

Lens Zeiss, Germany 40x/0.7NA 

Manual seal sucker Sigma Elektronik, Germany  

Microscope Zeiss, Germany Axioskop FS 

Patch-clamp amplifier HEKA Elektronik, Germany EPC 9 dual 

Computer Apple, US G5 

UV- camera Photometrics, US CoolSnap 

Narishige manupulator Narishige, Japan  

Newport manual 

manipulator 

Newport, US  

 

 

Tabell 2.3 Software 

Software Supplier Version  

PatchMaster HEKA Elektronik, Germany Version 2.67 

FitMaster HEKA Elektronik, Germany Version 2.69 

Microsoft Office Microsoft 2010 edition 

Paint.NET Paint.NET, US Version 3.5.6 

IGOR PRO WaveMetrics, USA Version 5x 

 

 

 

 



 55

3.0 METHODS 

3.1 Methods involving handling the rat and dissection of the rat’s retina. 

3.1.1 Anesthetizing and enucleating the rats eye 

In the experiments we used albino rats (Wistar Hantac: 4-7 weeks postnatal). The rat was 

carefully handled to minimize stress. An airtight chamber was used to saturate the rat’s blood 

with perfused 100% oxygen for 10 minutes, and then the rat was anesthetized with isoflurane 

in oxygen. After verification of the depth of anesthesia as determined by the absence of 

withdrawal and palpebral reflexes, the rat was killed by cervical dislocation. The procedure 

has been approved under the surveillance of the Norwegian animal research authority. The 

eye was quickly and carefully enucleated with scissors and forceps and transferred to a Petri 

dish with EC 3000 and placed under a dissection microscope. 

 

 

3.1.2 Cutting the retina into four quadrants 

Under the dissection microscope, the connective tissues and muscles of rat were removed 

from the eye ball with the forceps. The anterior segments of the eye including cornea, iris and 

lens were carefully removed, by dividing the eye into two halves with the micro scissors. The 

corpus vitreous was then carefully removed from the cup with the retina part with the forceps, 

so there is only the retina part left. The retina part was then cut into four quadrants with the 

scalpel and transfer into a container with constantly bubbled with 95% O2 – 5% CO2 and 

Ames solution (figure 3.1 show an illustration of the dissection). To prevent cells from dying 

of hypoxia, the procedure was done as quickly as possible. From enucleation of the eye to 

transfer into 95% O2 – 5% CO2 and Ames solution was done within 15 minutes. 

 

Take out the eye     Cutting the eye    Cutting retina into quadrants 

   

 

   →    →     

            

  

Figure 3.1 An illustration of the dissection of the rat retina. The pictures are adapted with modification from 

Pitulescu et al., 2010. 
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3.1.3 Retinal slices 

The retina quadrants were kept in a container with Ames solution and constantly bubbled with 

95% O2 – 5% CO2 during the experiment day. One quadrant at the time was taken out for the 

experiment. In a Petri dishes with EC 3000 the edges of the quadrant was trimmed with the 

scalpel after desired shape and cut to about 10 slices approximately 200 µm thick by carefully 

rolling the scalpel blade across the retina under the dissection microscope (figure 3.2 A). The 

slices were then carefully sucked out with a glass pipette and aligned in a row in a glass 

chamber. The slices were hold into its place by a small grid place on top of them. The grid 

was made from platinum-iridium-wire shaped as an open rectangle, with fine parallel nylon 

threads glued to it (figure 3.2 C). 

  

A) Quadrant             B) Retinal slice  C) Slices under grid in chamber 

 

 

 

 

 

 

Figure 3.2 A) Illustrates a quadrant trimmed and cut into slices. B) A single slice. C) Retinal slices aligned in a 

row under the grid in a perfusion chamber. 

 

 

 

3.2 Patch clamping set-up 

3.2.1 Set-up, microscope and visualization 

Each patch-clamp set-up requires specific instruction. The heart of the set-up is the cell 

chamber on the stage of the microscope (Zeis Axiskop FS) with the small patch-clamp 

preamplifier box (probe or head-stage) above the cells. The head-stage is held and 

manipulated by a micromanipulator and has a connector for connecting the pipette-holder. 

The retina was visualized using infrared video microscopy with a 40x water immersion 
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objective and differential interference contrast. An infrared camera that was coupled to the 

microscope was used during experiments to visualize the retina on a black and white TV 

monitor. When an AII amacrine cell was identified, the recording pipette was filled with IC 

solution and attached to the amplifier head-stage. It was then moved by a micromanipulator 

with three servomotors, each working the x,y or z – plane which was controlled by a joystick. 

The application pipette was then localized under the microscope and kept to the left side of 

the microscope visual field to avoid collision with the recording pipette which kept on the 

right field. Figure 3.3 is adapted from Davie et al., 2006 to illustrate a typical patch clamp 

setup. 

 

Figure 3.3 a) Photograph of a typical patch-clamp setup, in a Faraday cage.  b) Schematic illustration of the 

picture in a. blue are electrode manipulators and pressure controlling equipment; Red are imaging equipment; 

green are vibration isolation table; black are perfusion system. 1) an upright microscope equipped with a 40 

objective and IR-DIC optics, mounted on an XY stage; 2) magnifier; 3) video camera; 4) black and white video 

monitor; 5) 7 micromanipulators (oriented so that each pipette can be changed independently); 6) 

micromanipulator remote control panels, mounted on a bench which is well separated from the vibration 

isolation table (boxes containing micromanipulator controller electronics are below the vibration isolation table);  

7) manometers; 8) switchable pressure valves;  9) reservoir of EC 1000 with 95% O2 – 5% CO2 -bubbled ; 10) 

oxygen-impermeable Teflon tubing providing inflow to the recording chamber (heating jacket prior to chamber 

inflow not visible);  11) dripper, interrupting solution inflow;  12) outflow from chamber, connected to suction 

via a collection reservoir; 13) temperature monitor (connected to a thermocouple element placed in the recording 

chamber, not illustrated); 14) vibration isolation table. The figure is adapted from Davie et al., 2006. 
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3.2.2 Perfusion chamber setup 

After lining up the slices and placing the grid on top in the perfusion chamber, the chamber 

was placed carefully under the microscope. The chamber with slices was constantly perfused 

with EC 1000 at a rate of 1-3 ml/min. The EC 1000 solution was kept in a 2 litre reservoir that 

constantly bubbled with 95% O2 – 5% CO2. All experiments were carried out at room 

temperature, 19-25 ºC. Figure 3.4 illustrates the arrangement of retina slices, suction tube, 

perfusion tube, pipettes and ground electrode in the perfusion chamber under the microscope 

during patch clamp recording. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Schematic illustration of how the different equipment arrange in the perfusion chamber under the 

microscope during patch clamp setup: 1) Application pipette, 2) The recording pipette, 3) The retina slices in the 

middle, 4) Suction tube to drain the EC solution from the chamber, 5) Perfusion tube adding EC solution to the 

chamber and 6) A silver wire acting as ground electrode.  

 

 

3.3 The pipettes 

3.3.1The recording pipettes 

The recording pipettes and application pipettes were pulled with a two stages vertical glass 

electrode puller. Thin borosilicate glass capillary tubes were placed in the puller and got 

heated and pulled apart. After being pulled, each recording pipette tip was approximately 1 

µm in diameter. The pipettes used for the recordings have a resistance between 4,5-8,5 MΩ. 

To ensure that the pipettes does not have sharp and uneven tip rims that affects stable sealing, 

all pipettes were fire polished after pulling. The tip of the pipette was positioned 10-20 µm 
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away from the filament heated to a dull red glow. The whole procedure lasted a few second 

and was performed under a microscope, so it can observe as the glass wall at the pipette tip 

got thicker and the rim is smoothed. Dust and other particles in the air at the pipette tip can 

make it impossible to get giga-ohm seal resistance with the cell membrane so all pipettes were 

always pulled on the same day as the experiment and kept in a closed box.   

 

 

3.3.1.1 Filling the recording pipettes 

The recording pipette tip was then filled with IC-solution according to the experiment, 

backfilled with using a standard syringe with a fine-diameter needle. A filter (0.2 µm) was 

inserted between the needle and the syringe used for backfilling the pipette and filling the 

beaker with the IC-solution to avoid contamination of the tip by dust. The filled part of the 

pipette was about 1/5 of the length of the pipette. The filling of the tip could last from several 

second to 1-2 minutes. Air bubbles remaining in the pipette tip after filling were removed by 

gently flicking the pipette shank with fingernail. 

 

3.3.1.2 Connecting the pipette to the set-up 

The filled pipette with IC-solution was then mounted in a pipette holder and fixed by a screw 

cap. The pipette was attached to an electrode holder connected to the initial part of the patch 

clamp circuitry so called “head stage” (figure 3.5). It was important to control whether a 

rubber ring fixing the pipette fits tightly so that the system would not lose pressure and 

formation of the seal. Negative and positive pressure was applied to the system via silicone 

tubing connected to the electrode holder, either by mouth or by a manometer. In order to 

prevent contamination of the pipette tip, a small positive applied to the system, so that the 

solution streams out of the pipette tip while crossing the air-solution border and moving the 

pipette towards the cell. A new pipette was always used for each attempt from a cell. 
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Figure 3.5 Illustrates the set-up how (6) the pipette mounts to (4) electrode holder fixed by (5) a screw cap to (2) 

BNC plug and to (1) the head stage. (3) is the air connection. 

 

 

3.3.2 The application pipettes 

To apply the agonist or the drug, different pipettes were been used. The application pipettes 

were connected via silicone tubing connected to the electrode holder at the opposite side of 

the recording pipette which could apply 1 bar air pressure. Both the recording and the 

application pipettes were mounted at an angel approximately 15º to the horizontal plane. The 

application pipette was pulled with the same electrode puller as the recording pipette, but with 

lower temperature so that the application pipette tip can have a larger diameter, approximately 

2-3 µm. 

 

3.3.2.1 The multi-barrel pipette 

To apply more than just one agonist or drug solution, another type of pipette, a so-called 

multi-barrel pipette, was used. Multi-barrel pipettes were constructed in the laboratory from 7 

borosilicate glass capillary tubes closely united and held tighter with glue and metals rings 

(figure 3.6). This bundle of glass capillary tubes were pulled at the same time in special made 

electrode puller (Narishige). As the heated glass was stretched in the pulling process and then 

slowly and manually twirled 270 º so that the thin tips glued into each other. The tip was then 

refined and adjusted with a scissor to the desired diameter under microscope, approximately 

30 µm. Each chamber in the multi-barrel pipe could be filled with up to 7 different kinds of 

solutions or drugs. 
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Figure 3.6 Pictures of A) application pipette and B) multi-barrel pipette. 

 

 

3.4 The recording configurations used for the experiments 

3.4.1 Whole-cell and nucleated patch 

There are several recording configurations (or modes) of the patch clamp technique (see 

section 1.3.1.1). The method that been used in the experiments here are whole cell and 

nucleated patch. After having identified an AII amacrine cell in the retina slice the recording 

pipette was slowly carefully lowered onto the cell. Positive pressure applied to the pipette as it 

was moved towards the cell kept the pipette from getting clogged. When the pipette was close 

to the soma of the cell, the positive pressure got turned off and gentle suction applied through 

the silicone tube. The positive pressure was applied by manually sucking into the silicone 

tube, gently. A Manual Seal sucker was used to keep track of the pressure strength and to hold 

the pressure at desired values. The suction resulted immediately or after few seconds a tight 

seal between the rim of the pipette and the cell membrane. To break into the cell, 0,5 - 1 

second pulses of negative pressure were applied, while a 4 ms long 400 mV high voltage 

square pulse through the pipette tip a so called a “zap”. The suction pulses were applied in 

rapidly together with electric pulses with progressively more negative pressure, starting at 

approximately 30 mbar and increasing up to 200 mbar until the membrane under the pipette 

tip ruptured. A series resistance (Rs) below 50 MΩ is desirable because it indicated a good 

electrical connection with the interior cell (e.g. there were no dust particles or pieces of 

membrane clogging the pipette tip that increasing the Rs). To obtain nucleated patch 
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configuration, after breaking into the cell, suction applied and attracted the cell nucleus to the 

pipette tip so that the nucleus was extracted from the cell as the pipette was withdrawn.  

 

3.5 The drug application 

The application pipette or multi-barrel pipette was mounted and located at a known distance 

above the slice preparation. The reason was to make it easier to find and lower it down to the 

cell. The cell was slowly deteriorating when in nucleated patch because of intracellular wash-

out (dilution of the intra cellular components), altered membrane potentials and mechanical 

instability that caused trauma to the cell, but a cell would normally stay stable in nucleated 

patch for approximately 30 minutes. The application pipette or multi-barrel pipette placed 

approximately 20-30 µm away from the soma of the cell recorded from. Figure 3.7 is a picture 

of nucleated patch with application pipette above the retina slice. The focus was on the 

recording pipette and application pipette, the cell slices is beneath and therefore not visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Picture of nucleated patch with cell recording and drug application in focus. 
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3.6 The recording software 

PatchMaster program (HEKA Eletronik) was been used with a Mac G5 computer. 

PatchMaster is a software package made for patch clamp amplifiers. The software can control 

the application of solutions or drugs, recording parameters and has an oscilloscope window 

that shows online activity the recorded current. For more detail of PatchMaster program see 

www.heka.com. All recordings were done using PatchMaster and the data were stored 

digitally. The amplifier provided the computer with raw analogue data, which then converted 

with an AD converter (Analog → Digital). 

 

3.7 The recording parameters 

The resistance through the open recording pipette tip in the bath was approximately 5 - 7 MΩ. 

Measured series resistance (Rs) ranged from 10 - 24 MΩ.  Recordings with Rs above 50 MΩ 

were not included in the analysis. A 30 kHz bandwidth Bessel filter (integrated in the 

amplifier) with -3 dB corner frequency was used to filter the analogue signal before 

digitalization. The sampling frequency of the recording was set to 20 µs (50 MHz) with a 

filter factor at 5 creating a recording bandwidth of 4 KHz. 

 

3.8 The application protocol 

The application of drugs was done with three different application protocols: 

1) A short pulse of drug solution was applied to the retina slice near the recorded cell by 

the application pipette. 

2) An application pipette or multi-barrel application pipette was used to apply several 

solutions consecutively. 

3) A current-voltage (I-V) protocol was used in combination with drug application. With 

an AII amacrine cell in nucleated patch configuration, 7 second voltage steps from -80 

mV to + 40 mV with 20 mV increments were applied to the cell while GABA was 

applied at each voltage step.  For each voltage step 50 ms pulse of GABA 1 sec after 

the initiation of each step. Recording from each voltage step lasted total 7 seconds 

before next step was initiated. The stimulation protocol is shown in figure 3.8. 
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Figure 3.8 Illustrate the applied voltage step protocol with GABA application. Black scale bar representing time 

of 1 s GABA application and each horizontal line representing a voltage step with 20 mV increments. The 

longest horizontal line is the baseline holding potential at -60 mV. 

 

 

3.9 Measurement and analysis 

The analysis program FitMaster (HEKA elektronik) was used to extrapolate data from the 

response curves from the recordings, and to export it to the analysis program Igor Pro. The 

complete raw data set from recording was opened in FitMaster. I-V GABA response curves 

with 7 voltages steps (from -80 mV to + 40 mV, 20 mv increments) were superimposed on 

each other and the steady state current offset (measured in the 1000 ms before application of 

the GABA but after voltage step) was measured (figure 3.9). Next, the peak-current response 

for each of the response curves was done by FitMaster by choosing approximately 400 ms 

area of the peak response for each of the response-curves of each the voltage step see figure 

3.10. The baseline current was subtracted from the current response between the cursors (in 

Excel) to get the peak response. The data traces were then data was exported from Fitmaster 

to Igor Pro and stored as waves. Each wave contained a string recorded current –values 

relative to time. The average current-responses were then read directly from Igor Pro and put 

it in a table. All graphing and linear fit and mathematic calculations were done with Microsoft 

excel. 
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Figure 3.9 Superimposing the response curves. The figure shows 7 different response curves superimposed. 

Measurement made between 0 and 1 sec for “baseline” current (to be subtracted from peak measurement), 

indicates by two black arrows. 

 

 

 

 

Measurement made between cursors for “peak” current response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Show how the mean peak-current was done from 7 superimposed-curves. Each of the response-

curves was averaged between the black vertical lines (~ 400ms interval) to get a value for the current response 

for each of the response curves from each voltage steps. The baseline current was then subtracted from this value 

to get the peak response for each application of GABA at each voltage step. 
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4.0 RESULTS 

4.1 Identification of the AII amacrine cells 

AII amacrine cell s could be identified by the position of their soma in the inner nuclear layer 

(INL) as illustrated in figure 4.1. These are one of the few cell types that can be recognized 

before filling the cell with fluorescent dye that was included in the recording pipette (figure 

4.2). 

 

                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The pictures of AII cell was taken during cell attached with infrared microscopy.  AII amacrine cell 

inside the white square. Scale bar (black) 10 µm. 
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Figure 4.2 Maximum intensity projection of fluorescent dye filled AII amacrine cell taken after patch clamp 

recording. Scale bar (white) 10 µm. Figure from Zhou et al., 2016. 

 

 

 

4.2 The GABA-response current 

The data showed that application of 1 mM GABA on AII amacrine cell gave a large inward 

current-response with ECl = 0 mV. The response in amplitude varied between the AII cell. A 

typical phenomenon that was observed during recording was that the response to GABA 

showed a reduction in amplitude over time. Figure 4.3 illustrates three response curves 

created by a one second application of 1 mM GABA (indicate by a black line in figure 4.3). 

The response curve in figure 4.3 A was recorded first followed by 4.3B and last response 4.3 

C. The figures show that amplitude of the response to GABA decreases over time and with 

repeated application. The time between applications was 1 minutes and 20 seconds between A 

and B.  And 6 minutes between B and C. 
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Figure 4.3 Three GABA responses from nucleated patch recording from the same cell. The three individual 

traces were done with the interval 1 minutes and 20 seconds between A and B.  And 6 minutes between B and C. 
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4.2.1 Desensitization and run down 

From figure 4.3 we can see that the GABA response of the showed that AII amacrine cell was 

reduced in amplitude during repeated application of GABA. This may be the result of 

rundown, where the receptors on the cell respond less to GABA over time. Cells cannot 

recover from run down. It might also reflect that the cell is not so healthy after time. It can 

also be seen that the response to GABA begins to decrease during the 1 s application of 

GABA. This is called desensitization. It means the GABA receptors begin to close, even 

though the GABA is still present. The cells can recover from desensitization given time. This 

is a property that depends on the specific subunits of the GABAAR and was not studied 

further here. 

 

 

 

4.2 The results and current-voltage curves (I-V-curves) 

Recordings were made from 16 amacrine cells. Four cells died shortly after the application of 

the GABA solution. The average capacitance of the 16 cells was 15 ± 3 pF. This capacitance 

is expected from AII amacrine cells and reflects the size of the cell. Series resistance (Rs) was 

monitored throughout the recording. The average Rs was 16 ± 5 Ω, the cells with Rs > 50 MΩ 

were not included for further analyses. Of the12 AII amacrine cells that survived, all 

responded to GABA. For 5 of cells the recording was maintained long enough to perform the 

series of voltage steps needed to obtain an I-V series. The average data were presented as ± 

standard error of measurement. As described in section 3.8, GABA was applied together with 

a series of voltage steps ranging from -80 mV to + 40 mV with 20 mV increment. 

Intracellular solution IC 6302 and extra cellular solution EC-1000 were used, that together 

give a calculated Clrev ~ -0.6 mV. I-V curve in figure 4.4 show 5 different cells and their mean 

peak current-response plotted against 7 voltage steps (-80 mv to + 40 mV). The straight 

diagonal line is an attempt to linear –fit the results. The point where the linear-fit line crosses 

the x-axis is an estimate of each cell’s reversal potential for chloride. 
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Figure 4.4 Shows 5 graphs or I-V curves 

of the mean peak current related to the 

voltage steps of 5 different AII cell. The 

point where the linear-fit line crosses the 

x-axis is an estimate of each cell’s 

reversal potential for chloride. 
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The value, average Vrev for GABA responses, measured from normalized each of mean peak 

current response points from I-V curves 1-5 and plotted against voltage steps. Figure 4.5 

shows a linear fitting to estimate the average Vrev for GABA response, chloride reversal 

potential, was measured to be – 2.9 mV ± 1.8 mV. The result differs a little bit from the 

calculated value (- 0.6 mV) but it is very close. 

 

 

 

Figure 4.5 Average peak current responses of GABA, the linear fitting line crosses x-axis at - 2.9 mV, reversal 

potential for chloride in the experiment is – 2.9 mV ± 1.8 mV. 
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5.0 DISCUSSION 

In this study the aim was to explore and investigate the physiological and pharmacological 

properties of GABAA receptors on AII amacrine cells in rat retina using technique of patch 

clamp electrophysiology. 1 mM GABA was applied from an application pipette, together with 

voltage steps to verify that GABA activated a chloride conductance. Analyses from 5 AII 

amacrine cells resulted in an experimental reversal potential for chloride of 2.9 mV ± 1.8 mV. 

The calculated reversal potential for chloride with EC 1000 and IC 6302 was at -0.6 mV. The 

potential reasons for the small difference between experimental and calculated results, as well 

as the challenges of the patch clamp technique, and using patch clamp as a method in drug 

discovery will be discuss here. 

 

 

5.1 The application of GABA 

5.1.1 Variations in concentration of GABA reaching the GABAA receptors 

The GABA concentration at the GABAA receptors produced by application of GABA could 

be affected by many different factors; the concentration of the drug in the application pipette, 

the size of the pipette tip opening, and the distance of application pipette to the receptors and 

the availability of the receptors. In this experiment a single or a multi-barrel pipette were used 

to apply the GABA solution. The solution inside the application pipette was driven by 1 bar 

air pressure. The variations of the tip diameter of application pipette (varied between 2-3 µm) 

and the varying distance between the pipette tip and the recorded cell might result in uneven 

concentration of GABA distributions at the cell’s receptors. The heterogeneous or uneven 

distribution of the perfused EC solution due to the rough surface of the retina slice could also 

make a different concentration of GABA at the cell receptor. The dilution of GABA in the 

pipette tips could create or produce lower response amplitude (but only in the initial 

application) since consecutive application would release undiluted GABA solution. To avoid 

dilution in the pipette tip a positive pressure was applied inside the pipette.  

 

Another consideration is the distribution of GABAA receptors on the AII and our ability to 

determine where the maximum response is to GABA. In an earlier study with AII amacrine 

cells, Boos et al., 1993 observed a 20% differences in whole-cell currents recording when 2 

µM muscimol (a GABAA receptor agonist) solutions were applied from different barrels of 

six-barreled air driven multi-barrel pipettes.  Boos et al., 1993 claimed that changing position 
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of the pipettes by 20-30 µm along the dendrites did not significantly change the response to 

GABA. The multi –barrel pipette that Boos et al., 1993 used had a tip diameter of 10 µm, 

such large pipette opening created large flow of applied solution that would be less sensitive 

to changes in position and cover a large area. Tamalu & Watanabe, 2007 came to a different 

conclusion; they claimed that a change of approximately 30 µm relative to the cell soma 

induced prominent change in the cells response. Tamalu & Watanabe, 2007 used narrow tip 

application pipettes with tip diameter 1 µm and recorded conductances produced by 

application 20 µM glutamate in AII amacrine cell in the rat retina. It is important to note 

experimental differences between our experiments, Boos et al., 1993, and Tamalu & 

Watanabe, 2007. Boos et al., 1993, and we were looking at activation of GABAA receptors 

using GABAA receptor agonists (GABA and muscimol) but Tamalu & Watanabe, 2007 used 

glutamate. The distribution of different types of receptors on the membrane varies, and 

glutamate receptors are thought to be concentrated around the AII amacrine cells arboreal 

dendrites because of it glutamatergic synapses with rod bipolar cells (Boos et al., 1993; 

Contini & Raviola, 2003; Veruki et al., 2003). Thus, it is possible that GABAA receptors are 

distributed more evenly along the dendrites of AII amacrine cells. This is an area for future 

work. 

 

 

5.2 Desensitization and rundown 

Desensitization and rundown might have affected the response in peak amplitude of GABA 

application and the variations in the results. It was observed during the experiments that 

GABAA receptors on AII amacrine cell desensitized during a 1 second GABA application 

(figure 4.3). A continued decrease in response amplitude can also be explained with a process 

call run down, which is a reduction of the cells ability to respond (e.g. opening of chloride 

channels). Washout of the cell’s intracellular constituents could also happen, and lead to the 

cell no longer sustaining its normal activity (e.g. phosphorylation of chloride channels). 

Several things were done to prevent or reduce rundown in these experiments, for instance in 

the IC solution Mg-ATP was included (table 2.1).  
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5.3 Sensitivity of patch clamp methods and technical challenging 

5.3.1 Dissection of the retina slices 

Getting a good useful retina slice for recording is not a simple task, and dissection of the eyes 

and the retina slices required steady and accurate hands, and needs many hours of practice. 

The retina is very fragile and easily gets damaged if one is not careful enough when handling. 

All cells in the retina preparation were therefore closely observed to not have unusual shapes, 

bright edges, visible nucleus or other damages which would indicate an unhealthy cell before 

recording. 

 

 

5.3.2 Identification of the AII amacrine cells 

The amacrine cells in the retina constitute a diverse class of cells with very different 

morphologies so it was crucial to be sure that it was AII amacrine cells that was recorded 

from (Famiglietti & Kolb, 1975; Masland, 2001; Zandt et al., 2017). The AII amacrine cells in 

the retina was located at the interface between INL and IPL (the cell body at the border of the 

INL and the IPL and the thick apical dendrite descending into the IPL) by using infrared 

video microscopy and by using the capacitance measurement that PatchMAster automatically 

estimated (right after establishing whole-cell). The cells capacitance gave an early indication 

of what type of cell it was. The AII amacrine cells have a characteristic “electronic signature” 

that we always test to ensure that there was AII amacrine cell we work with. Right after 

establishing whole-cell, a small positive voltage step (5 mV depolarizing test pulses with 5 ms 

duration, from a holding potential of -60 mV) was applied and we could see the fast ”action 

currents” which are the result of voltage-gated sodium channels in the AII (Mørkve et al. 

2002; Veruki et al., 2003).  To see the morphology of the AII amacrine cell addition to the 

visualization, the capacitance measurement, and the voltage step test we always have 

fluorescent dye such as Lucifer yellow included in the intracellular solution and could 

examine the cell and draw it to be sure it was an AII. Sometimes we could photomicrograph 

the cell after recording if there were a camera on the set-up.  

 

 

5.3.3 Vibration isolation table 

Mechanical stability of all setup components is crucial in patch clamp experiments. A 

slightest vibrations or relative movement of the pipette to cell can ruin the recording, so all 
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microscopic movements were damped out by a vibration isolation table. Even with the 

vibration isolation table and all microscopic movements damped, a common problem that was 

experienced during recording was that it was very easy to cause the mechanical vibrations, 

directly or indirectly. For instance, an unintentional coughing or sneezing by the experimenter 

during recording lead very quickly to loss of the seal and cell death. So, experiments should 

only be carried out in optimal health conditions. 

 

 

5.3.4 Electrical noise 

To shield the electrical noise, the recording set-up had a Faraday–cage surrounding it. But the 

system does not shield for all electromagnetic noises. An active mobile phone right outside 

the experiments room or next door can disturb the recording. During the recording all electric 

equipment that may disturb the recordings was kept to the minimum. 

 

 

5.4 Data which were not included 

Cells that changed in seal resistance or series resistance during recording, cells that suddenly 

died or loss of seal during recording were not included in the analysis. The cells with too 

small current responses which is too small to accurately measure, were not included in the 

analysis. 

 

 

5.6 Patch clamp in drug-discovery 

In the pharmaceutical industry, ion channel assays are used frequently in basic research for 

investigating the ion-channel-related phenomena and in drug discovery for screening 

compounds directed to ion-channel related target (Xu et. al., 2001). Patch clamping provides 

high quality and physiologically relevant data of ion-channel function at the single cell or 

single channel level, and therefore suited as a good method for this purpose. There are four 

major area of using patch clamping in drug discovery. They are: basic research, primary 

screening, secondary screening, and safety screening.  
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5.6.1 Basic research 

In basic research one tries to understand how a biological system works in its normal 

physiological condition, how its physiology is affected a pathological condition, and how new 

therapeutic intervention might be used to alter the pathological state. Target identification and 

target validation are two aspects of basic research to which ion-channel assay technologies 

can be applied. Basic research needs assay methods that offer high flexibility, but demand less 

in throughput. Patch clamping is traditionally one of these methods (Xu et. al., 2001). 

 

 

5.6.2 Primary screening 

In primary screening a large amount of chemical or biological compounds is tested against an 

ion-channel target to rapidly identify hits from compound libraries (a hit is a chemical 

compound that produces a result in a preliminary biochemical test indicating that the 

compound merits further study as part of a drug discovery project), which compounds bind to 

or inhibit targets of interest, to what degree of affinity. The screening data are used to 

construct structure–activity relationships (SARs), which result in the identification of lead 

compounds. Throughput and robustness are crucial for assays in primary screenings. Because 

patch-clamping experiments are a complicated process that requiring highly trained and 

skillful personnel. It is requiring precision micromanipulation under high power visual 

magnification and vibration damping. Throughput of a veteran patch-clamper according to Xu 

et al. 2001 is, at best, 10–30 data points per day. Such low throughput and high labour-cost is 

not convenient for HTS purposes (Xu et al., 2001). Because of this, high-throughput studies 

required in proteomics and drug development have to rely on less informative methods such 

as fluorescence-based measurement of intracellular ion concentrations or membrane voltage 

(Denyer et al., 1998; Gonsalez et al. 1999; Xu et al., 2001). Hower this is about to change, 

several studies with patch clamping recently were carried out by automate version of whole 

cell patch clamp. Automated patch clamping has showed vastly increase throughput, cost less 

than the traditional patch clamping and make electrophysiological testing with its many 

advantages, the option of choice in early screening for ion channel active drugs (Dunlop et al., 

2008; Jones et al., 2009; Martinez et al., 2010; Py et al., 2011; Kodandaramaiah et al., 2012; 

Billet et al., 2017). 
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5.6.3 Secondary screening 

During this stage of drug discovery, the chemical or biological structure of an obtained hit is 

refined to improve its drug characteristics with the goal of producing a preclinical drug 

candidate. The physical, chemical and physiological properties are unknown in this stage of 

drug discovery and need to be explored further. Assay methods that offer great sensitivity, 

selectivity and temporal resolution such as patch clamping are normally preferred for 

secondary screening (Xu et al., 2001). 

 

 

5.6.4 Safety screening 

A compound may be toxic for the human body, so it needs to be tested for hepatotoxicity, 

nephrotoxicity and cardiotoxicity. Patch clamping using in safety screening is associated with 

cardiotoxicity. Since the late 1990s, many approved drugs have been found to prolong cardiac 

repolarization (long QT). Many patients developed polymorphic ventricular dysrhythmia 

which known to cause ventricular fibrillation and sudden death. This results that many drugs 

were withdrawal from the market and termination of several of compounds (De Ponti et al. 

2000).  HERG, one of many cardiac potassium channels, was shown to regulate cardiac 

repolarization (Curan et. al., 1995; Taglialatela et al., 1998; Sanguinetti et al., 1999) and was 

identified as the target for many for the compounds that prolong QT.  The Committee for 

Proprietary Mecinal Products for Human Use (CHMP is the European Medicines Agency’s 

committee responsible for elaborating the agency’s opinions on all issues regarding medicinal 

products for human use), recommended ion-channel assays to be performed on all drug 

candidates, from whole-cell to whole tissue level, to collect relevant toxicological data. Patch 

clamping is one of the methods is currently used for HERG screening. 
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6.0 FURTHER WORK 

GABAA receptors play a very important role in medicine treatment (Chapouthier & Venault, 

2001; Foster & Kemp, 2006; Jacob et al., 2008; Johnston, 1996; Lager et al., 2008; Möhler et 

al., 2004; Santhakumar et al., 2007; Olsen & Sieghart, 2008; Uusi-Oukari & Korpi, 2010; 

Lorenz-Guertin & Jacob, 2017). More understanding of the GABAA receptor’s 

pharmacological and physiological properties and the subunits of the GABAA receptors will 

make it possible to design more selective and less toxic hypnotics, anxiolytics, 

anticonvulsants, and muscle relaxants (Möhler et al., 2004). One of the main aims of this 

project to study the properties of GABAA receptors by using the patch clamp technique and 

AII amacrine cells in the rat retina but only a small part of this was investigated. Further 

experiments to investigate more of the pharmacological and physiological could be done by 

testing out other GABAA receptor agonists like: gaboxadol, muscimol, ibotenic acid and 

progabide (Johnston, 1996; Santhakumar et al., 2007; Mrunmayee et al., 2010), by testing 

with GABAA receptor antagonist like: bicuculline and gabazine. Testing with positive 

allosteric modulator like: barbiturates, benzodiazepines, ethanol, nonbenzodiazepines among 

others. Testing with negative allosteric modulator like: flumazenil, Ro15-4513, Sarmazenil 

and zinc. Testing with non-competitive channel blockers like: cicutoxin, picrotoxin among 

other (Johnston, 1996; Santhakumar et al., 2007; Mrunmayee et al., 2010; Mrunmayee et al., 

2010; Lorenz-Guertin & Jacob, 2017; Olsen, 2018. Not the least experiments to investigate 

the subunits compositions of GABAA receptors in AII amacrine cell in rat retina are important 

to perform. Since evidences of GABAA receptors are present on AII amacrine cell has also 

been demonstrated (Boos et al., 1993; Contini and Raviola, 2003; Gill et al., 2006; Marc et al., 

2014; Zhou et al., 2016) we could apply highly subunit- selective drugs or compounds to AII 

amacrine cells and measure the current responses and kinetic properties such as activation, 

desensitization and deactivation. Examples of such highly subunit- selective drugs or 

compounds are: 3-acyl-4-quinolones (selective for α1 and α3), CL-218,872(selective for α1 ), 

QH-ii-066 (full agonist selective for α5 ), SL-651,498 (full agonist selective for α2 and α3 and 

as a partial agonist α1 and α5), zolpidem (agonist selective for α1) among others (Lager et al., 

2008; Möhler et al., 2004; Olsen & Sieghart, 2008; Mrunmayee et al., 2010; Uusi-Oukari & 

Korpi, 2010; Lorenz-Guertin & Jacob, 2017; Olsen, 2018). 
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