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1 Abstract 

The phosphoinositide 3-kinase (PI3K) signalling pathway is one of the most altered pathways 

in human cancer. It is a complex pathway, when considering that ubiquitously expressed 

isoforms regulate different routes with their own cellular outcomes. The majority of research 

has been focused on the PI3K p110α isoform, due to frequent findings of mutations in different 

human cancers. The PI3K p110β isoform has received less attention, however it has been found 

to be tumorigenic when overexpressed in its wild-type form, which has been linked to its lipid 

kinase activity. Our group has focused on p110β and shown that the mRNA for the p110β-

coding gene PIK3CB are elevated in endometrial cancer cell lines. Also, our group has 

demonstrated that the nuclear levels of PtdIns(3,4,5)P3 (PIP3), the lipid product of p110β, is 

high in the endometrial cancer cell line RL95-2. Both p110β and PIP3 have been found to 

localise in the nucleus and nucleolus of some cell lines, though their role in the nucleolus is 

still unknown. 

During this study, p110β and its lipid product PIP3 was confirmed to localise within the 

nucleoli of RL95-2 cells. To determine what the purpose of p110β and PIP3 is within nucleoli 

and ribosomal biogenesis, p110β was inhibited by Kin193, a specific p110β inhibitor. The 

results show a decrease in 47S rRNA transcription, the initial ribosomal transcript. Labelling 

nascent rRNA with and without Kin193 showed that inhibiting p110β indeed led to decreased 

rRNA fluorescent signal in human cells. These findings further validate Kin193 as a potential 

anti-cancer drug in patients with endometrial cancer. The experiments were also performed on 

two mouse cell lines, one p110β wild type (WT) and a p110β catalytic mutant (KI), though 

there were no significant differences between them. 

For PIP3 to function as a signalling lipid, it must bind and recruit proteins. During a PIP3 lipid 

pull-down from the nuclei of HeLa cells, our group found a cohort of potential PIP3 effector 

proteins. One of these was poly(ADP-ribose) polymerase I (PARP1), which is involved in 

single stranded DNA break repair, amongst other roles. PARP1 has also been found to localise 

in the nucleolus, along with PIP3, and PTEN-deficient endometrial cancer cells have been 

shown to be sensitised to PARP1 inhibition. PARP1 contains multiple KR-motifs, which are 

known to bind PIP3. The results show that fragments 1, 2 and 3 bind a variety of lipids, 

including PIP3. Fragment 3, which contains a KR-motif, was also analysed in NMR 

spectroscopy, where the KR-motif was confirmed to be part of PIP3 interaction.
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2 Introduction 

2.1 Phosphoinositide 3-Kinase signalling 

The phosphoinositide 3-Kinase (PI3K) signalling pathway has been the subject of a lot of 

attention in recent years due to its involvement in a variety of cellular functions and human 

diseases like cancer and diabetes mellitus type 2. The range of lipid-protein interaction 

managed by PI3Ks has raised an assortment of questions regarding their effects on the cell. 

2.1.1 Polyphosphoinositides 

Polyphosphoinositides (PPIn) are phosphorylated derivatives of the lipid phosphatidylinositol 

(PtdIns), which are involved in a wide array of cell functions. These include protein interaction, 

gene expression, cell cycle progression and signal transduction, to name a few (Di Paolo and 

De Camilli, 2006). PtdIns is a glycerophospholipid consisting of a glycerol backbone 

connected to an inositol headgroup on the 1’ OH group through a phosphodiester bond, along 

with two hydrophobic acyl chains, connected via ester bonds (Figure 2.1). The inositol ring 

can be reversely phosphorylated on the 3’, 4’ and 5’ positions, resulting in one of seven 

different PPIns. These seven variants are divided into one tri-phosphorylated (PtdIns(3,4,5)P3), 

three di-phosphorylated (PtdIns(3,4)P2, PtdIns(3,5)P2 and PtdIns(4,5)P2) and three mono-

phosphorylated PPIn (PtdIns3P, PtdIns4P and PtdIns5P), with the majority PPIn being 

PtdIns4P and PtdIns(4,5)P2 in mammalian cells. PPIn are fairly low-abundance molecules, 

comprising only 1% of the total lipid content in the cell (Viaud et al., 2016). Using the fatty 

acyl chains, PPIn are known to anchor themselves to membranes through hydrophobic 

interactions on the plasma and intra-cellular membranes (Van Meer et al., 2008). The inositol 

headgroup is then exposed to the solvent, allowing it to interact with proteins. Depending on 

the proteins and cellular processes involved, this can elicit a variety of results.  
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Figure 2.1. Phosphatidylinositol structure diagram. The hydrophobic fatty acid chains shown 

(C18:0/C20:4) are attached to the glycerol backbone via ester bonds, which is linked to the inositol 

headgroup through a phosphodiester bond. 

PPIn act as signal transducers by recruiting proteins with phosphoinositide (PI)-binding 

domains to specific sub-cellular membranes. These domains are usually multi-domain proteins 

involved in regulating cellular function, and include the FYVE (named after the four first 

proteins in which it was identified: Fab1p, YOTB, Vac1p and EA1), pleckstrin homology (PH), 

Phox homology, epsin amino-terminal homology, and radixin domains, to name a few 

(Lemmon, 2003). Of these, only the PH domain has been shown to bind PtdIns(3,4,5)P3 

(Lemmon, 2003). However, in addition to these structured PI-domains, unstructured PI-binding 

motifs also exist, which are characterised by their sequence and charge, rather than a defined 

structural domain. These are short stretches of basic amino acids, often denoted as 

lysine/arginine-rich patches or KR-motifs (K/R-(Xn=3-7)-K/R-X-K/R-K/R), and have been 

shown to have PI-binding properties (Martin, 1998). Using specific electrostatic interactions 

provided by this sequence, many actin regulatory proteins are able to bind PPIn (Zhang et al., 

2012). Also, Kumar et al. demonstrated that the first basic residue is especially important, as a 

point mutation in this residue in a KR-motif in the protein villin (Arg138) to alanine led to 

decreased binding to PtdIns(4,5)P2 (Kumar et al., 2004). 

2.1.2 The PI3K/Akt/mTOR pathway  

The family in charge of phosphorylating the 3’ OH of the inositol head group of PtdIns is called 

the phosphoinositide 3-kinase (PI3K) family. The PI3K family is divided into 3 main classes; 

I, II and III, and are responsible for generating PtdIns(3)P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3. 

Class I PI3Ks are heterodimers consisting of a catalytic subunit, either p110α, p110β, p110γ or 

p110δ, and a regulatory subunit of p85α, p85β, p55, p101 or p87 (Vanhaesebroeck and 
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Waterfield, 1999). Class II PI3Ks are monomers and are responsible for producing PtdIns3P, 

though they have been shown to generate PtdIns(3,4)P2 in vitro, and possibly also in vivo (Posor 

et al., 2013). They consist of three isoforms in mammalian cells; PI3K-C2α, PI3K-C2β and 

PI3K-C2γ, and their preferred substrate is PtdIns (Falasca and Maffucci, 2007). The only 

known Class III PI3K, vacuolar protein sorting 34 (Vps34), is bound to its adaptor protein 

Vps15, and produces PtdIns3P (Stack et al., 1995). 

The emphasis in this thesis was on Class I PI3Ks, and so further discussion will be focused on 

this class. In Class I PI3Ks, all four p110 isoforms are transcribed from separate genes, and 

thus can be regulated independently (Sasaki et al., 2009). The p110 subunit consists of an N-

terminal p85 binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a C-

terminal catalytic domain. The p85 regulatory subunit’s core structure contains a coiled coil 

p110-binding domain surrounded by two Src homology domains (Vadas et al., 2011). They are 

activated through either a receptor tyrosine kinase (for p110α, p110β and p110δ) or a G-protein 

coupled receptor (for p110β and p110γ) (Jean and Kiger, 2014).  

The substrate of class I PI3Ks is PtdIns(4,5)P2 in vivo, resulting in the tri-phosphorylated 

PtdIns(3,4,5)P3 (PIP3). Under inactive conditions, the regulatory p85 subunit inhibits the 

catalytic p110 subunit through interaction. Upon binding of p85 to the receptor, the catalytic 

subunit is activated, and the p110 subunit generates PIP3. PIP3 is a crucial signalling molecule, 

and the PI3K/Akt/mTOR signalling pathway is initiated by the binding of PIP3 to Akt, through 

a pleckstrin homology (PH) domain. Akt, also known as protein kinase B, becomes active by 

PIP3 binding and phosphorylation on specific amino acid residues, leading to downstream 

effects including cell differentiation, cell growth, proliferation and cell survival. The activating 

phosphorylations of Akt is carried out by two protein kinases; phosphoinositide-dependent 

protein kinase 1 (PDK1) and mammalian target of rapamycin (mTOR) complex 2, which 

phosphorylate Akt on Thr308 and Ser473 respectively (Sarbassov et al., 2005).  

Due to the capabilities of PPIn as signalling molecules, they are under tight regulation in the 

cell, and the levels of 3’-phosphorylated PPIn are controlled exclusively by different kinases 

and phosphatases. The tumour suppressor phosphatase and tensin homolog (PTEN) is an 

antagonist of the PI3K pathway, in that it dephosphorylates PtdIns(3,4,5)P3 to PtdIns(4,5)P2, 

thus negatively regulating the pathway (Maehama and Dixon, 1998). PTEN is regarded as a 

tumour suppressor due to frequent findings of mutations that lead to loss-of-function in certain 
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human cancers (Wang and Jiang, 2008). Other PIP3 phosphatases include 5’-phosphatases, like 

SH2-containing inositol polyphosphatase type 2 (SHIP2) and inositol polyphosphate 5-

phosphatase (INPP5) (Sasaki et al., 2009), though their role in terminating the PI3K pathway 

is still unclear. 

Class I PI3Ks are further divided into classes IA and IB, where class IA consists of a p85 (α or 

β), p55α, p50α or p55γ subunit and a p110 (α, β and δ) catalytic subunit. Class IB only consists 

of the catalytic p110γ subunit, and the p101 or p84 (also known as p87) regulatory subunit 

(Okkenhaug, 2013). While isoforms p110δ and p110γ are restricted to immune cells, p110α 

and p110β are ubiquitously expressed (Vanhaesebroeck and Waterfield, 1999). p110α and β 

share the same substrate, PtdIns(4,5)P2, have high sequence homology, similar catalytic 

property, can have the same mode of activation, and are both embryonically lethal when 

knocked out (Bi et al., 1999; Bi et al., 2002). Based on this information, it would appear 

redundant to have both these isoforms present at any given time. However, upon closer 

inspection, it becomes clear that they serve dissimilar cellular roles, possibly emanating from 

different sub-compartments of the cell (Benistant et al., 2000; Marques et al., 2009). Indeed, a 

key difference is their sub-cellular localization; both isoforms are present in the cytoplasm, 

however p110β is also found in the chromatin enriched fractions of the nucleus, and in nucleoli 

(Karlsson et al., 2016; Kumar et al., 2011). Another small, but significant difference lies in the 

presence or absence of a nuclear localisation signal (NLS) motif (see Figure 2.2). Though their 

p85- and Ras-binding domains, as well as the helical and catalytic domains are more or less 

equal in size and localisation in the sequence, the PI3K-C2 domain in p110β contains a NLS 

motif that is absent from p110α (Kumar et al., 2011). In the same study, Kumar et al. found 

that there is a nuclear export sequence (NES) within the p85β regulatory subunit, allowing 

p85β/p110β entry to, and exit from, the nucleus.  
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Figure 2.2. Differences in domain structure for p110α and p110β. The boxes include the p85- and 

Ras-binding domains, the PI3K-C2-, helical- and catalytic domains. Information on domain localisation 

gathered from UniProtKB ID number P42336 (for p110α) and P42338 (for p110β). A) Domain structure 

of p110α. B) Domain structure of p110β. Nuclear localisation signal (NLS) motif included in C2 domain 

of p110β. 

 

2.2 Nuclear PPIn and PI3Ks 

The metabolic cycle of PPIn in the cytoplasm was discovered as far back as the 1950s, but 

another 30 years of research was required before the nuclear pool of PPIn was revealed. 

Findings by Smith and Wells in 1983 demonstrated that PtdIns and some of their metabolising 

kinases (class I PI3Ks) were indeed present in the nucleus of rat liver cells (Smith and Wells, 

1983). Slowly but surely, it became clear that not only were PPIn present in the nucleus, but 

they existed independently of the nuclear membrane and the cytosolic PPIn pool (Cocco et al., 

1987). Indeed, studies have documented the presence of all PPIn in the nucleus, except for 

PtdIns(3,5)P2 (Barlow et al., 2010). Based on the presence of lipids within the nucleus there 

must be proteins and receptors also localised here that contain hydrophobic domains that can 

sequester the fatty acyl chains of the PPIn (Blind et al., 2014). This type of interaction is 

different from the effector proteins that bind the inositol ring of the PPIn, however.  

As this thesis has focused on PIP3, the emphasis will be put on this nuclear PPIn for further 

discussion about localisation, metabolism, and interacting proteins and enzymes. Nuclear 

mono- and di-phosphorylated PPIn will not be discussed in detail. 
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2.2.1 Nuclear PIP3 and PI3K pathway  

Several studies have demonstrated that members of the PI3K pathway, both kinases and 

phosphatases, PtdIns(4,5)P2 and PIP3 are indeed localized in the nucleus and have distinct 

functions (Lindsay et al., 2006; Davis et al., 2015), as seen in Table 2.1. For example, 

Boronenkov et al. found that PtdIns(4,5)P2, the substrate of p110β, was found clustered around 

speckles of interchromatin in the nucleus by immunostaining (Boronenkov et al., 1998; 

Osborne et al., 2001). PIP3 was found in the nuclear matrix (Lindsay et al., 2006) and nucleolus 

of human breast cancer cells (Karlsson et al., 2016). The pool of nuclear PPIn is regulated by 

the PI kinases and phosphatases also present in the nucleus, of which class I PI3Ks have been 

shown to localize (Kumar et al., 2010; Karlsson et al., 2016). The generation of PIP3 in the 

nucleus is likely governed by the class I PI3K isoform p110β, but also inositol polyphosphate 

multikinase (IPMK) (Resnick et al., 2005; Kumar et al., 2010). The presence of PI3K in the 

nucleus in different cells comes from the translocation mediated by the regulatory p85 subunit, 

which occurs upon different stimuli (earlier studies reviewed in (Neri et al., 2002)). In a 

previous study, Neri et al. demonstrated that nerve growth factor induced the nuclear 

translocation of p85 in PC12 cells, which also led to increased nuclear p85-dependent PI3K 

activity and nuclear PIP3 synthesis (Neri et al., 1999). It is also important to note that upon 

inhibition by a pan-PI3K inhibitor like wortmannin, the production of the nuclear PIP3 pool 

was blocked (Lindsay et al., 2006), further strengthening the belief that this pool is indeed 

made by p110β. 

 

Table 2.1. Nuclear PtdIns(4,5)P2 and PtdIns(3,4,5)P3, their effector proteins and cellular function. 

Abbreviations: ALY (THO complex subunit 4), EBP1 (ErbB3-binding protein 1), PIKE (PI3-Kinase 

Enhancer), SF-1 (steroidogenic factor-1), Topo IIα (DNA Topoisomerase IIα) 

PPIn PPIn nuclear 

localisation 

Reference Effector 

proteins 

Function of 

interaction 

Reference 

PtdIns 

(4,5)P2 

Nuclear 

speckles 

 

Nucleolus 

 

Nuclear islets 

(Boronenkov 

et al., 1998; 

Osborne et 

al., 2001; 

Sobol et al., 

2018) 

Topo IIα DNA topology (Lewis et 

al., 2011) 

ALY Cell proliferation (Okada et 

al., 2008) 

SF-1 Nuclear receptor 

Steroidogenesis 

(Blind et 

al., 2012) 
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PtdIns 

(3,4,5)P3 

Nuclear 

matrix 

 

Nucleolus 

(Lindsay et 

al., 2006; 

Kwon et al., 

2010; 

Kumar et al., 

2011; 

Karlsson et 

al., 2016) 

Nucleophosmin 

/B23 

Promote cell 

survival 

(Ahn et 

al., 2005) 

ALY Cell proliferation (Okada et 

al., 2008) 

PIKE Cell survival (Ye et al., 

2000) 

Akt ALY Transcription 

factor 

phosphorylation 

(Kwon et 

al., 2010) 

EBP1 Unknown  (Karlsson 

et al., 

2016) 

 

Kumar et al. have  shown that there exists a nuclear localization signal (NLS) within the C2 

domain of p110β, that the isoform concentrates in the nucleus, and that overexpression of the 

kinase is retained in the cytoplasm (Kumar et al., 2011). In the same study, they found that 

nuclear, but not cytosolic p110β was essential for cell survival in mouse cells, and that p110β 

can shuttle in and out of the nucleus to the cytoplasm by way of the regulatory subunit p85β. 

p110β has been shown to be involved in multiple vital cellular functions such as DNA 

replication, cell cycle progression and DNA double strand break (DSB) repair (Marques et al., 

2008, 2009, Kumar et al., 2010, 2011). 

2.2.2 Nuclear PIP3 effector proteins  

As mentioned in section 2.1.1, for PPIn to be effective as signal transducers, they must bind to 

an effector protein with a PI-domain, like the PH-domain or a KR-motif. Only a few PIP3-

binding proteins have been found in the nucleus, however. These include PtdIns(3,4,5)P3-

binding protein (PIP3-BP) found in the brain, PIKE (L-isoform of PI3K enhancer), the mRNA 

export protein ALY (THO complex subunit 4), and the nucleolar protein nucleophosmin, which 

has been reported to associate with PIP3 (Tanaka et al., 1999; Ahn et al., 2005; Hu et al., 2005; 

Wickramasinghe et al., 2013). Also, recently PIP3 was found to interact with Erb-B3-Binding 

Protein 1 (EBP1) in the nucleolus, where interestingly, the nucleolar localization of EBP1 was 

lost when the PIP3 binding motif was mutated (Karlsson et al., 2016). 
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So far, a few nuclear PPIn-interacting proteins have been discovered, studied and characterized 

individually (Schramp et al., 2012; Shah et al., 2013; Hamann and Blind, 2018). In order to 

look at nuclear PPIn and their effector proteins, nuclear fractionation was combined with 

interactomics (Lewis et al., 2011). Using this method, Lewis et al. identified PtdIns(4,5)P2 

nuclear interacting proteins involved in mRNA splicing and protein folding. Nuclear PPIn 

usually regulate their processes by interacting with proteins containing KR-motifs, instead of 

typical PI-binding domains (Hammond and Balla, 2015). Considering that the key signalling 

lipid PIP3, together with its kinase p110β, are present in the nucleus and nucleolus, our group 

performed mass spectrometry based PIP3 interactomics on HeLa nuclei developed by Lewis et 

al. (Lewis et al., 2011). The results identified 219 potential PIP3-binding proteins, involved in 

several cellular processes, including RNA processing, mRNA splicing and DNA repair 

(Mazloumi Gavgani et al., 2017). Of these, 29% belonged to the nucleolar database, including 

PARP1 (Scott et al., 2011). 

2.2.3 PARP1 

ADP-ribosylation is a post-translational modification (PTM) that typically occurs by the 

addition of long chains of ADP-ribose, called Poly(ADP-ribosyl)ation, which are linked 

through glycosidic ribose-ribose bonds (D’Amours et al., 1999). This PTM has been shown to 

be part of many processes, including mitosis, apoptosis, transcriptional regulation and DNA 

damage repair (Kim et al., 2005). 

Poly(ADP-ribosyl)ation is carried out by a family of proteins called Poly(ADP-ribosyl) 

polymerase (PARP), which was first reported more than 50 years ago (Chambon et al., 1963). 

The PARP family contains a highly conserved catalytic domain and other motifs, including 

two N-terminal zinc-fingers, a double nuclear localisation signal (NLS) and a “BRCA1 C-

terminus-like” (BRCT) motif (Amé et al., 2004). In the following years, the founding member 

of the family, PARP1, was extensively studied. PARP1 functions by synthesizing poly(ADP-

ribose) from the donor molecule nicotinamide adenine dinucleotide (NAD+), and adding it onto 

a nuclear acceptor protein (Hassa and Hottiger, 2008). 
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2.3 PIP3 and PI3K in the nucleolus  

2.3.1 An introduction to the nucleolus 

In eukaryotes, the nucleus is divided into several sub-compartments where specific, nuclear 

activities take place during interphase. The nucleolus is one such sub-compartment, and is the 

biggest subnuclear structure (Nemeth and Langst, 2011). Amongst other functions, nucleoli 

oversee the biogenesis of ribosomes, vital in protein translation. Ribosomes are composed of 

four specific ribosomal RNAs (rRNAs) and multiple ribosomal proteins. In humans, expression 

of ribosomal gene loci (18S, 5.8S and 28S) happen on acrocentric chromosomes, namely 

chromosomes 13, 14, 15, 21 and 22, which are mostly tandem repeats of ribosomal genes. 

Nucleoli form around these loci, called nucleolar organizer regions (NORs), which are located 

on the short arms of these acrocentric chromosomes (McStay, 2016).  

Transcription of rRNA is carried out by RNA polymerase I (Pol I). During pro-phase, the 

initiation of mitosis, Pol I transcription is shut down, and nucleoli in many cells disappear 

(McStay, 2016). In the beginning of telophase, Pol I transcription resumes, and numerous small 

nucleoli begin to form around individual NORs (Savino et al., 2001). As the cell cycle 

progresses, nucleolar fusion takes place, resulting in the formation of a few larger, mature 

nucleoli, which contain multiple NORs (McStay, 2016). Due to their low DNA content, 

nucleoli are generally seen as dark spots in DAPI- or Hoechst-stained nuclei (McStay, 2016). 

In mammalian cells nucleoli are comprised of three distinct sub-compartments that can readily 

be seen with an electron microscope. These compartments are the innermost fibrillar centre 

(FC), surrounded by dense fibrillar components (DFC), which are in turn surrounded by 

granular components (GC) (Pederson, 2011; Farley et al., 2015), see Figure 2.3. Ribosome 

biogenesis is regarded as a vectoral process that initiates in FC and proceeds outward toward 

the GC, and is one of the most energetically demanding processes in the cell (Thomson et al., 

2013). The FC contains the ribosomal genes, and rRNA transcription takes place in the border 

between FC and DFC. First, the 47S rRNA precursor is transcribed, flanked by 5’ and 3’ 

external transcribed spacers (ETS), and undergoes multiple maturation steps to eventually 

become the 18S, 5.8S and 28S rRNAs. These then assemble with ribosomal proteins to form 

the 40S and 60S subunits of the ribosome in the GC, together with the 5S subunit, which is 

transcribed outside the nucleolus by RNA polymerase III. The large and small subunits are then 

exported to the cytoplasm for final maturation (McStay, 2016). 
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The nucleolus is surrounded by a heterochromatin shell, which mostly contains silent DNA. 

Also present is the perinucleolar compartment (PNC), which was first described when the 

polypyrimidine-tract binding protein was found to localize there (Ghetti et al., 1992). PNC also 

contains many RNA binding proteins and RNA polymerase III transcripts, like 5S (Pollock and 

Huang, 2010). Generally speaking, the structure of the nucleolus is considered a direct 

consequence of ribosome biogenesis, rather than any skeletal framework, and the architecture 

is dependent on ongoing transcription (Hadjiolov, 1985). This is due to the nucleolar proteins 

being highly dynamic, able to translocate between the nucleolus and nucleus (Misteli, 2001). 

 

 

Figure 2.3. Diagram of the compartments in and around the nucleolus. Transcription of rRNA by 

RNA polymerase I occurs at the boundary between the innermost fibrillar centre (FC) and the dense 

fibrillar components (DFC). The rRNA is processed to yield the 18S, 5.8S and 28S subunits in the DFC 

before fusing with the 5S and other ribosomal proteins in the granular components (GC) to assemble 

the 40S and 60S subunits of the ribosomes. After formation, they are exported from the nucleolus. 

Around the nucleoli lies a heterochromatin shell mostly containing silent DNA, called perinucleolar 

heterochromatin. A small structure also associated with the nucleolar surface is the perinucleolar 

compartment, which contains a lot of RNA binding proteins and RNA polymerase III transcripts. 

Drawing based on Mazloumi Gavgani (2017). 
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2.3.2 PI3K and its involvement in rRNA transcription 

In recent years PPIn and some of their metabolizing enzymes have been reported in the 

nucleolus, see Table 2.2, and our group has recently mapped p110β and PIP3 in the nucleolus 

of the human breast cancer cell line AU565 (Karlsson et al., 2016).  

Table 2.2. PPIns and PPIn-metabolizing enzymes identified in the nucleolus. 

PPIn/PI-enzymes Identified functions in the nucleolus References 

PtdIns(4,5)P2 Promotes Pol I transcription, but not 

as a source for DAG and IP3 

(Yildirim et al., 2013) 

Structural role (Sobol et al., 2013) 

PtdIns(3,4,5)P3 Unknown (Karlsson et al., 2016) 

PI4K230/IIIα Possibly in complex with DNA and 

RNA 

(Kakuk et al., 2006, 

2008) 

PIP5KIα Member of rDNA silencing complex (Chakrabarti et al., 2015) 

p110β Unknown (Karlsson et al., 2016) 

PTEN Contributes to phenotypic changes of 

the nucleolus 

(Li et al., 2014) 

SHIP1 Localises in the nucleolar cavity upon 

proteasome inhibition, unknown 

function. 

(Ehm et al., 2015) 

 

The PI3K pathway regulates key nucleolar proteins, including the upstream binding 

transcription factor (UBF) 1 and transcription initiation factor-I (TIF-I) (Nguyen and Mitchell, 

2013; Yildirim et al., 2013). Drakas et al. demonstrated that insulin receptor substrate 1 (IRS-

1), an important docking protein involved in the Pol I promoter complex, can translocate to the 

nucleolus, where it stimulates phosphorylation of UBF by a PI3K isoform (Drakas et al., 2004). 

Seeing as p110β is present here, it is likely this isoform that is involved. In 2013, a study 

showed that Akt was involved in activating and stabilizing TIF-1, also essential in the Pol I 

promoter. Activation of Akt led to increased rRNA transcription, demonstrating that Akt may 

be involved in promoting tumour cell proliferation (Nguyen and Mitchell, 2013). Yildirim et 

al. found that the PI3K substrate PtdIns(4,5)P2 is a part of the RNA transcriptional promoter, 



   

 

 

12 

 

by binding to UBF and the pre-rRNA processing factor fibrillarin, which in turn allows their 

binding to DNA and RNA respectively (Yildirim et al., 2013). 

2.4 The PI3K pathway and its involvement in cancer 

The PI3K signalling pathway is involved in continued cell survival, and activating mutations 

can lead to diseases like cancer. Meanwhile, inactivating mutations can lead to other kinds of 

diseases, like myopathy and neuropathy (Vanhaesebroeck et al., 2012). The many pathways 

controlled by the different PI3K isoforms and their downstream signalling are vital in 

maintaining the balance required for proper cell development, growth and survival.  

2.4.1 The PI3K pathway in cancer 

The PI3K/Akt/mTOR signalling pathway is one of the most altered pathways in human cancers 

with frequent mutations in several of its components (Cully et al., 2006; Rozengurt et al., 

2014). When regarding the different PI3K isoforms, the most noticeable is the high frequency 

of activating PIK3CA (the gene coding for p110α) mutations in various solid cancers (Samuels 

et al., 2004). In their study, wherein they sequenced the PIK3CA genes from different human 

cancers, Samuels et al. found the mutations occurred later on in tumorigenesis, located on the 

helical and kinase domains of the gene. Mutations in the other isoforms is uncommon, though 

activating mutations of the PIK3CD gene (coding for p110δ) have been linked to diseases of 

the respiratory and immune systems (Angulo et al., 2013). Mutations in the PIK3CB gene 

(coding for p110β) have also been reported in a couple of reports (Dbouk et al., 2013; 

Pazarentzos et al., 2016). 

As mentioned, the natural antagonist to the PI3K pathway is the phosphatase and tensin 

homolog (PTEN), which reverts PIP3 to PtdIns(4,5)P2. Mutations that lead to loss-of-function 

of this protein have been linked to multiple human cancers, including glioblastoma, prostate 

and breast cancer (Li et al., 1997). Interestingly, PTEN-deficient mouse prostate tumours have 

been shown to be dependent on the lipid kinase activity of the PIK3CB gene product, p110β, 

rather than the alpha isoform (Berenjeno et al., 2012). With more research and a better 

understanding, it becomes more and more clear that there exists a need to tailor therapeutic 

approaches based on the specific PI3K isoform, in order to achieve optimal treatment response.  

2.4.2 PI3K and endometrial cancer 

There is a large variety of human cancers, but one of the most common female gynaecological 

cancers in the developed world is endometrial cancer (EC), also known as cancer of the corpus 
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uteri (Ferlay et al., 2015). In Europe and North America, uterine cancers accounted for 6% of 

new cancer cases, and 3% of cancer deaths in 2015 (Murali et al. 2014; Cancer Research UK). 

It arises in the inner lining of the uterus, the endometrium, and due to its abnormal symptoms, 

this cancer is often diagnosed at early stages, with prognosis worsening with later stages. EC 

is more common in women post-menopause, though it also appears in younger women, and the 

incidence of this cancer is increasing for all ages (Evans-Metcalf et al., 1998; Wartko et al., 

2013), with more than 50% attributable to being overweight or obese (Onstad et al., 2016). 

EC was divided into two subgroups, type I and II, by Bokhman in 1983, with type I carcinomas 

being linked to women with obesity, being oestrogen dependent, accounting for approximately 

65% of EC patients, and having high survival rates. Type II EC was observed as less common 

and high grade, arising in approximately 35% of cases, but appearing in women without the 

signs stated above, and being oestrogen independent, with a worse prognosis (Bokhman, 1983). 

This view is slightly outdated and disputed, however, and some claim that EC requires a 

genomic classification of the carcinomas, so as to better create effective, personalized treatment 

(Murali et al., 2014). Due to the unique genetic makeup of each cancer, and the heterogeneity 

of the different molecular subgroups, the risk assessment the patients receive often ends with 

over or under treatment (Stelloo et al., 2016). 

In type I EC tumours, the most common cancer-causing mutations are in the PTEN, PIK3CA 

and KRAS genes (Kandoth et al., 2013). The rate of mutations in the PIK3CB gene is low, when 

comparing it to mutations in PIK3CA. However, in 2016, Pazarentzos et al. showed an 

activating mutation within the kinase domain of p110β in multiple carcinomas, including EC, 

which lead to increased tumour volume (Pazarentzos et al., 2016). Our group has studied the 

PIK3CB mRNA levels in an extensive cohort of patient tumour samples, showing an increase 

early in cancer progression, from complex atypical hyperplasia to grade 1 lesions. mRNA 

levels remain high in grade 2 and 3 lesions as well, in both endometrioid and metastatic lesions 

(Karlsson et al., 2017).  

Because of the high frequency of PI3K mutations in EC, multiple inhibitors of this pathway 

are already in clinical trials, including Pilaralisib, a pan-PI3K inhibitor (Matulonis et al., 2015). 

With the majority of endometrial carcinomas being endometrioid and diagnosed early, 

treatment is often surgical, though treatment of advanced disease is more complex. Treatment 

of these high-risk cases has proven to be difficult with regard to drug- and chemoresistance and 
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eventual recurrence of the cancer (Moxley and McMeekin, 2010). Since so many EC cases 

harbour mutations resulting in PTEN deficiency, a recent clinical trial using a p110β-specific 

inhibitor on PTEN-negative cells showed some advantageous effects on 3 patients with 

endometrial cancer (Mateo et al., 2017). Another study used small interfering RNA to inhibit 

p110β in PTEN-negative EC cells, which resulted in increased apoptosis and decreased tumour 

cell proliferation (An et al., 2007). This is promising, as it shows the potential effects of 

specifically inhibiting this kinase in PTEN-deficient tumours and rationalizes the need to 

further study the mechanism of function of p110β. 

2.5 Aims  

The PI3K pathway is pivotal in many important cellular processes. It regulates and controls 

multiple signalling paths, consisting of a myriad of proteins and lipids. Much of the pathway 

is understood, but the complexity increases due to the distinct subcellular localizations of 

different PI3K isoforms and their lipid products. PIP3 is an important second messenger, and 

both this lipid and its kinase, p110β, have been placed in the nucleolus in a breast cancer cell 

line (Karlsson et al., 2016). Its role in the nucleolus is still poorly understood, however. In a 

recent study, our group has shown that p110β protein levels are elevated in EC cell lines and 

that mRNA levels are increased in grade 1 endometrioid endometrial lesions compared to 

complex hyperplasias (Karlsson et al., 2017). These results combined with the presence of this 

isoform in the nucleolus suggest a possible nucleolar role of p110β in EC. To try to understand 

the possible nucleolar role of PIP3, our group performed mass spectrometry based PIP3 

interactomics on HeLa nuclei developed by Lewis et al.. This study revealed the identification 

of numerous nucleolar proteins in complex with PIP3, including PARP1. These interesting 

findings lead us to wonder if PARP1 indeed does bind PIP3 directly.   

This thesis aims to shed light on some of the nucleolar properties of p110β and its lipid product 

PIP3, with regards to rRNA transcription, with the following aims: 

1. To validate the subnuclear localization of p110β in endometrial cancer cells. 

2. To elucidate if p110β contributes to rRNA transcription. 

3. To discover the lipid binding properties of the PIP3 effector protein PARP1. 
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3 Materials  

3.1 Chemicals 

Chemical Abbrev./ 

Formula 

Grade/ 

Purity 

Supplier Catalog # 

2-[4-(2-Hydroxyethyl)1-

piperazinyl] ethansulfonic acid 

HEPES  Merck 1.10110 

2-amino-2-hydroxymethyl-1,3-

propanediol, Trizma® base 

Tris ANG Sigma-

Aldrich® 

T6066 

30% 

Acrylamide/Bisacrylamide 

  BioRad 161-0158 

4-(1,1,3,3,-

Tetramethylbutyl)phenyl-

polyethylene glycol 

Triton® X-100 MBG Sigma-

Aldrich® 

T8787 

Agarose, SeaKem® LE Agarose ELG Lonza 50004 

Ammonium persulfate APS  BioRad 161-0700 

Ampicillin Amp  Sigma-

Aldrich® 

A9393 

Bovine Serum Albumin BSA  Sigma-

Aldrich® 

A7906 

Bovine Serum Albumin, 

essentially fatty acid free 

BSA essentially 

free 

 Sigma-

Aldrich® 

A8806 

Calcium chloride CaCl2  Merck 1.02083 

Chloroform  CHCl3  Sigma-

Aldrich® 

32211 

Dimethyl Sulfoxide DMSO  Sigma-

Aldrich® 

472301 

Disodium hydrogen phosphate Na2HPO4·2  Merck 1.06580 

DL-Dithiothreitol DTT  Sigma-

Aldrich® 

D9163 

Ethanol EtOH  Kemetyl 600051 

Ethidium Bromide EtBr  Sigma-

Aldrich® 

E1510 

Glycerol, Ultra-pure Glycerol ≥99.5% Thermo Fisher 

Scientific 

15514011 

Igepal CA-630 Igepal  Sigma-

Aldrich® 

32213 

Imperial protein stain  

   

Coomassie  Thermo Fisher 

Scientific 

2461565 

Isopropanol    IPA  Kemetyl 600079 
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Isopropyl-B-D-

thiogalactopyranoside  

  

IPTG  Apollo 

Scientific 

BIMB1008 

LB Agar  MBG Sigma-

Aldrich® 

L2897 

Magnesium Chloride MgCl2 ANG Merck 1.05833 

Methanol MeOH  Sigma-

Aldrich® 

32213 

N,N,N’,N’-

tetramethylethylenediamine 

TEMED  BioRad 161-0800 

Non-fat milk powder   Sainsbury’s - 

Paraformaldehyde PFA  Merck K40988605 

Peptone from casein (Tryptone) Tryptone  Merck 1.07213 

Phenol-chloroform-isoamyl 

alcohol mixture 

  Sigma-

Aldrich® 

77617 

Polyoxyethylenesorbitan 

monolaurate 

Tween®20  Sigma-

Aldrich® 

P1379 

Potassium chloride KCl ANG Merck 1.04936 

RNA Grade Glycogen   Thermo Fisher R0551 

Sodium azide NaN3  Marck 1.06688 

Sodium chloride NaCl ≥99.5% Sigma-

Aldrich® 

31434N 

Sodium dihydrogen phosphate NaH2PO4·H2O  Merck 1.60346 

Titriplex® 

ethylenedinitrilotetraacetic acid 

disodium salt dehydrate 

EDTA ANG Merck  1.08418 

TRI Reagent® Trizol  Sigma-

Aldrich® 

T9424 

Yeast extract   Merck 1.03753 

MBG- molecular biology grade, CCG- cell culture grade, ELG- electrophoresis grade, ANG- 

analysis grade. 

Table 3.2 Cell culture reagents  

Chemical Supplier Catalog # 

Dulbecco’s modified eagles’ medium (DMEM) high 

glucose (containing L-Glu and 4500 mg/L Glucose) 

Sigma Aldrich® D6429 

Dulbecco’s modified eagles’ medium (DMEM) low 

glucose (containing L-Glu and 1000 mg/L Glucose) 

Sigma Aldrich® D6046 

Fetal Bovine Serum (FBS) Sigma Aldrich® F7524 

100x Penicillin-Streptomycin (PEN/STREP) Merck TMS-AB2-C 

Trypsin-EDTA Sigma Aldrich® T4049 
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Table 3.3 Commercial kits and reagents 

Name Supplier Purpose 

SuperSignal® West Pico Chemiluminescence  Thermo Fisher 

Scientific 

Western Blot 

Visualization 

SuperSignal® West Femto Maximum Sensitivity 

Chemiluminescence  

Thermo Fisher 

Scientific 

Western Blot 

Visualization 

Nitrocellulose blotting membrane GE Healthcare Life 

Science 

Western Blot 

Kin193 (5 mg)  Selleck Chemicals p110β 

inhibition 

BMH21 RNA Polymerase I inhibitor Selleck Chemicals Pol I inhibition 

NucleoSpin® Plasmid Macherey-Nagel Miniprep 

NucleoSpin® Gel and PCR Clean-up Macherey-Nagel Plasmid 

purification 

High-Capacity cDNA Reverse Transcription Kit Thermo Fisher 

Scientific 

qPCR 

LightCycler® 480 SYBR Green I Master Life Science / Roche qPCR 

PowerUp™ SYBR™ Green Master Mix Thermo Fisher 

Scientific 

qPCR 

Click-iT™ RNA Alexa Fluor™ Imaging Kit Thermo Fisher 

Scientific 

RNA 

visualisation 

PIP Strip Lot # XCM100316-48 Echelon Lipid overlay 

assay  

InstantBlue Expedeon Coomassie 

staining 

BigDye v 3.1 Thermo Fisher 

Scientific 

Sequencing 

Sequencing buffer Thermo Fisher 

Scientific 

Sequencing 

ProLong® Gold antifade reagent with Hoechst Thermo Fisher 

Scientific 

Cover slip 

mounting 

Goat serum Thermo Fisher 

Scientific 

Blocking 

 

Table 3.4 Bacteria 

Name Supplier Purpose 

Escherichia coli Subcloning Efficiency™ 

DH5α™ competent cells 

Thermo Fisher 

Scientific 

Plasmid purification 

Escherichia coli BL-21 CodonPlus® (DE3)-

RIL Competent Cells 

Agilent Protein expression 
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 Table 3.5 Cell lines 

Name Description Supplier 

RL95-2 Human endometrial 

carcinoma 

Prof. Helga B Salvesen, 

University of Bergen 

MEF p110β WT p110β wild type mouse 

embryonic fibroblast 

Dr Julie Guillermet-Guibert, 

University of Toulouse, 

France 

MEF p110β KI 

(D931A/D931A) 

Kinase inactive for p110β 

mouse embryonic 

fibroblast 

Dr Julie Guillermet-Guibert, 

University of Toulouse, 

France 

 

Table 3.6 Antibodies 

Name Supplier Catalog # Species Dilution 

p110β  Cell Signalling C33D4 Rabbit  1:50 IMF 

1:2000 WB 

p110β Abcam Ab151549 Rabbit 1:50 IMF 

1:2000 WB 

PIP3 Echelon ZP345b Mouse 1:400 IMF 

Nucleolin Cell Signalling D4C70 Rabbit 1:100 IMF 

Nucleophosmin Thermo Fisher 

Scientific 

FC-61991 Mouse 1:1000 IMF 

Fibrillarin Cell Signalling C13C3 Rabbit 1:5000 WB 

α-Tubulin Sigma Aldrich® T5168 Mouse 1:10000 WB 

Lamin A/C (E1) Santa Cruz sc-376248 Mouse 1:10000 WB 

Goat anti-rabbit IgG 

(H+L), horseradish 

peroxidase conjugate 

Life Technologies G21234 Rabbit 

 

1:5000 WB 

Goat α-rabbit IgG1 

(γ1); Alexa Fluor® 

488-conjugated 

Thermo Fisher 

Scientific 

A11008 Rabbit 1:200 IMF 

Goat α-mouse IgG 

(H+L); Alexa Fluor® 

594-conjugated 

Thermo Fisher 

Scientific 

A11005 Mouse 1:200 IMF 

IMF – Immunofluorescent staining, WB – Western blotting. 

Table 3.7 Equipment 

Name Supplier Software Purpose 

ChemiDoc XRS+™ BioRad ImageLab WB imaging 

GelDoc EZ Imager BioRad ImageLab Agarose and SDS-

PAG imaging 
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Epoch microplate 

Spectrophotometer 

BioTek Gen5 DNA, RNA and 

protein 

concentration 

Allegra® X-15R 

Centrifuge 

Beckman Coulter  Centrifugation 

Avanti® J-26 XP Beckman Coulter  Centrifugation 

Fluorescence microscope 

DMI 6000 B 

Leica 

Microsystems 

Leica Application 

suite (LAS) X 

Fluorescent 

imaging  

Confocal microscope SP5 

AOBS 

Leica 

Microsystems 

Leica Application 

suite (LAS) X 

Fluorescent 

imaging  

 

Table 3.8 qPCR primers 

Name Sequence 

Human ETS1 Forward 5’-GTGCGTGTCAGGCGTTCT-3’ 

Human ETS1 Reverse 5’-GGGAGAGGAGCAGACGAG-3’ 

Human β-Actin Forward 5’-TGCGTCTGGACCTGGCTGGC-3’ 

Human β-Actin Reverse 5’-GCCTCAGGGCAGCGGAACC-3’ 

Mouse B2M Forward 5’-CTGCTACGTAACACAGTTCCACCC-3’ 

Mouse B2M Reverse 5’-CATGATGCTTGATCACATGTCTCG-3’ 

Mouse ETS Forward 5’-TTTTGGGGAGGTGGAGAGTC-3’ 

Mouse ETS Reverse 5’-AGAGAACTCCGGAGCACCAC-3’ 

 

Table 3.9 Plasmids 

Plasmids were obtained from Prof. Michael O. Hottiger, University of Zurich, Switzerland 

(Hassa et al., 2005), cloned in pGEX-6P-2 into BamHI and NotI.  

Fragment # Name Amino acids Size (kDa) 

1 PARP1 fragment 1 1-214 24 

2 PARP1 fragment 2 215-371 17.7 

3 PARP1 fragment 3 477-524 5.1 

4 PARP1 fragment 4 525-656 15 

5 PARP1 fragment 5 657-1014 40 

 

3.10 Prepared buffers and solutions 

Nucleolar fractionation  

Buffer A 

  10 mM hepes pH 7.9 

  10 mM KCl 
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  1.5 mM MgCl2 

  0.5 mM DTT   

  1x Protease inhibitor cocktail* 

  1% Igepal 

 

Buffer S1 

  0.25 M sucrose 

  10 mM MgCl2 

  1x Protease inhibitor cocktail* 

 

Buffer S2 

  0.35 mM sucrose 

  0.5 mM MgCl2 

  1x Protease inhibitor cocktail*  

* 1 Complete EDTA-free Protease inhibitor 

cocktail tablet from Roche dissolved in       

1 mL H2O, makes a 50x solution 

 

Buffer S3 

  0.88 mM sucrose 

  0.5 mM MgCl2 

  1x Protease inhibitor cocktail* 

 

SDS-PAGE and Western Blotting  

Resolving gel 

  8-12% of 30% acrylamide/ 

bisacrylamide (37.5:1) 

  375 mM Tris-HCl pH 8.8 

  0.1% (v/v) SDS 

  0.1% (v/v) APS 

  0.04% TEMED 

Stacking gel 

  5% of 30% acrylamide/bisacrylamide (37.5:1) 

  125 mM Tris-HCl pH 6.8 

  0.1% (v/v) SDS 

  0.1% (v/v) APS 

  0.04% TEMED 

5x SDS Sample Buffer 

  65 mM Tris-HCl pH 6.8 

  5% SDS (v/v) 

  20% glycerol (v/v) 

  250 mM DTT 

  0.2% Bromophenol Blue (w/v) 

1x Running buffer (TGS) 

  25 mM Tris pH 8.3 

  192 mM Glycine 

0.1 % (w/v) SDS 

 

Blocking buffer WB 

  7% (w/v) powdered skim milk in 1x PBS-T 

1x PBS-T pH 7.4 

  137 mM NaCl 

  2.68 mM KCl 

  8 mM NaH2PO4·H2O 

  0.05% (v/v) Tween 20 

 

1x Transfer buffer (TG)  

  25 mM Tris pH 8.3 

  192 mM Glycine 

  20% (v/v) MeOH 

 

Agarose gel electrophoresis  

1x TAE Buffer 

  40 mM Tris base 

  1 mM EDTA pH 8.0 

  20 mM Acetic acid 

6x DNA Sample Buffer 

  30% Glycerol 

  0.025% Bromophenol Blue 
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Bacterial cultivation  

LB medium 

  1% (w/v) tryptone 

  0.5% (w/v) yeast extract 

  1% (w/v) NaCl 

LB agar 

1.5% (w/v) agar in LB medium 

 

4 Methods 

4.1 Cell culture 

4.1.1 Cultivation 

Cell lines were grown and cultivated in complete media composed of Dulbecco’s modified 

eagles’ medium (DMEM), 10% FBS and 1% PEN/STREP. The cells were cultured in 10 or  

15 cm round cell culture grade dishes, incubated at 37°C with 5% CO2. All cell work was 

performed in a flow bench. 

4.1.2 Passaging 

To passage cells, media was removed, and the cells were washed once with 1x PBS pH 7.4. 

PBS was removed, and 0.25% Trypsin was added (0.5 mL for 5 cm plates, 1 ml for 10 cm 

plates and 2 mL for 15 cm plates) and incubated at room temperature (RT) until cells appeared 

to condense, but not detach from the plate, which was confirmed by checking under a 

microscope. The trypsin was removed, and fresh, complete media was added to the dish, and 

cells were aliquoted in dilutions (1:2, 1:4 or 1:10) to fresh plates, according to need. 

When seeding a specific number of cells, cells were trypsinized, medium was added to stop 

trypsinization, and cells were collected in a 15 mL tube. Cells were centrifuged at 90 x g for 5 

min and resuspended in fresh medium. 10 µl of the suspension was loaded onto a slide and 

inserted into the TC20 automated cell counter from BioRad. The number of cells required was 

calculated, and cell suspensions were transferred to new plates with fresh medium.  

4.1.3 Freezing 

Cells were generally frozen at lower passage numbers to maintain a frozen stock cell line. 

Media was removed from the plate, and the cells were washed once with 1x PBS, before adding 

0.25% Trypsin. Cells were allowed to completely trypsinize, before addition of 2-4 mL fresh 

medium, and collecting into a tube. The cells were centrifuged at 90 x g for 5 min, before 

resuspending in fresh medium containing 10% FBS and 5% DMSO. The mixture was 
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transferred to a CryoPure tube and stored at -20°C for 1-2 h before being placed at -80°C for 

up to 1 month before transfer to liquid nitrogen.  

4.1.4 Thawing 

After retrieval from liquid nitrogen or the -80°C freezer, cells could gently come up to room 

temperature, before being spun down at 90 x g for 5 min, to remove DMSO remnants. The 

pellet was resuspended in 1 mL fresh complete medium, and transferred to a new plate, and 

allowed to grow at 37°C and 5% CO2.  

4.1.5 Cell treatment 

For various treatments performed, initial seeding was the same for both RL95-2 and MEF 

WT/KI cell lines. Cells were seeded onto 35 mm plates with DMEM (200 000 cells for MEF 

WT/KI, and 500 000 cells for RL95-2) containing cover slips and grown at cell culture 

conditions for 24 hours prior to treatment. For serum-free treatment, cells were washed with – 

and incubated in – serum-free (SF), low-glucose medium for 24 hours. The next day, 20% FBS 

was added to plates at 37°C with 5% CO2 for 30 or 60 min, see Figure 4.1.  

 

Figure 4.1. Timeline for starvation experiments. Cells were seeded and incubated for 24 hours before 

changing to serum-free (SF) medium, and incubating a further 24 hours. Cells were then given a boost 

of 20% foetal bovine serum (FBS) for 60 or 30 min, followed by washing with PBS and fixing with 3.7 

or 4% PFA for 10 min. For EU treatment, EU was added to cells 30 min before washing with PBS and 

fixing. 

For specific p110β inhibition with Kin193, 10 µM working solution of Kin193 was used. Cells 

were grown with high glucose DMEM in cell culture conditions. For the 42-hour treatment, 

medium was not changed, and instead the cells were washed with PBS and collected for RNA 

isolation. For 72-hour treatment, medium was changed once, after 42 hours, with new Kin193 

added, and grown until the 72-hour mark, then washed and collected. For Kin193 treatment of 

RL95-2 cells with EU labelling, 10 µM working solution of Kin193 was added to the plates 45 

minutes before re-stimulating with serum. 



   

 

 

23 

 

4.2 Immunofluorescent staining and imaging 

Cells were grown to 70% confluency and seeded onto coverslips 24 h before staining. Media 

was removed, and slips were washed once with 1x PBS. The cells were fixed with 3.7% PFA 

for 10 min at RT and washed three times with PBS, before permeabilization with 0.25% Triton 

for 15 min at RT. This was followed by blocking non-specific epitopes with blocking buffer 

containing 5% goat serum and 0.05% Triton in PBS for 1 h at RT, and subsequent addition of 

primary antibody diluted in blocking buffer (for a list of antibodies used, see section 3.9 

Antibodies). The primary antibody was typically left overnight at 4°C, before washing four 

times with PBS-T (0.05% Tween 20 in PBS), each wash lasting 5 min at RT. After the last 

wash, secondary antibody was added, diluted in PBS-T, and incubated at RT for 1 h before 

washing four times in PBS-T, 5 min each. For double staining, the second primary antibody, 

raised in a different species, was diluted in blocking buffer and added after the last wash, and 

incubated at RT for 1-2 h, before washing with PBS-T as described above. The corresponding 

secondary antibody was added and incubated at RT for 1 h before washing three times with 

PBS-T, followed by washing once with 1x PBS. The DNA dye Hoechst solution (diluted 

1:1000 in PBS) was added to the coverslips for 15 minutes at RT. The slips were then washed 

twice with PBS and dipped in ddH2O and mounted cell-side down onto glass slides on 5 µl 

Gold AntiFade solution and kept in the dark until imaging.  

Epifluorescent imaging was done using the Fluorescence microscope DMI 6000 B from Leica 

Microsystems. More detailed images for studying different cell slices were taken using the 

confocal microscope SP5 AOBS, also from Leica Microsystems. Images from both 

microscopes were processed using the Leica Application Suite X software. When images were 

taken to compare different conditions, treatments or cell lines, acquirement settings (exposure 

time, intensity and gain) were the same for all slips. 

4.3 Nucleolar isolation 

Nucleolar isolation from endometrial cancer cells was adapted from Lam et al. (Lam and 

Lamond, 2006). In brief, RL95-2 cells were grown in 10 x 15 cm dishes until 70% confluent, 

at which point fresh media was added 1 h before harvesting the cells. Plates were trypsinized 

completely and collected, spun down at 90 x g for 5 min and resuspended in 7 mL complete 

medium, and spun down again at 230 xg for 5 min. Cells were then washed three times with 

ice-cold PBS, and centrifuged at 70 x g for 5 min after each wash. The cell pellet was 
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resuspended in 5 mL of buffer A (Table 3.2.1) and incubated on ice for 5 min before they were 

passed through a 23-gauge needle 16 times on ice to disrupt the plasma membrane, and 

centrifuged at 70 x g for 5 min. The supernatant was collected as the cytoplasmic fraction, and 

the nuclear pellet was resuspended in 3 mL buffer S1 (Table 3.2.1), which was carefully 

layered over with 3 mL of buffer S2 (Table 3.2.1), and spun down at 1430 x g for 5 min at 

4°C. The resulting pellet was resuspended in 3 mL buffer S2 and nuclei were sonicated 7 times 

10 sec on/ 10 sec off on ice using the Ultrasonic Homogenizer 4710 from Parmer. The sonicated 

pellet was carefully layed over 3 mL buffer S3 (Table 3.2.1), and spun down at 3000 x g for 

10 min at 4°C. The top 3 mL was collected as nucleoplasmic fraction, and the pellet was 

resuspended in 500 µl of buffer S2, then centrifuged at 1430 x g for 5 min at 4°C. To this, 

buffer S2 or RIPA buffer was added. All fractions were kept at -80°C. 

4.4 EU labelling 

To detect nascent RNA, cells were labelled with 5-ethynyl uridine (EU) and visualized by 

immunofluorescent imaging. Labelling cells with EU was done according to the Click-iT® 

RNA Imaging Kit from Thermo Fisher Scientific, with 1 mM working concentration of EU. A 

2x working solution of EU was prepared from the 100 mM stock in DMEM supplemented with 

PenStrep and FBS, or in serum-free (SF) medium. The solution was added to the cells so that 

the final concentration of EU was 1 mM. Treatment lasted for 30 min, and was done together 

with reboosting with 20% FBS, before washing with 1x PBS and fixing with 4% PFA for 10 

min at RT. For immunostaining, slips were permeabilized and blocked as described above. 

Next, the Click-it reaction cocktail was made as described in the protocol using the Alexa Fluor 

594 azide, 500 µl of which was added to each well containing a slip. The reaction was 

completed in 30 min at RT, and slips were washed with 1 mL of RNA imaging kit reaction 

rinse buffer. For additional immunostaining, primary antibody was added and left overnight. 

The following day, secondary antibody and DNA staining was done, and imaging was 

performed as described, using the Leica confocal microscope SP5 AOBS. 

4.5 RNA extraction  

Harvesting cells for RNA isolation was generally done in 1x 15 cm plate of 80% confluent 

cells. When different culture plates were used, volumes were adjusted proportionally. Media 

was removed, and cells were washed once with PBS before completely trypsinizing and 

collecting into a tube. This was followed by centrifuging at 70 x g for 5 min and kept on ice. 
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Media was removed, and pellet was carefully washed with 5 mL PBS and centrifuged at 300 x 

g for 5 min at 4°C. The cell pellet was resuspended in 1 mL of PBS and centrifuged at 300 x g 

for 5 min at 4°C. PBS was discarded and the previous centrifugation step was repeated, but for 

1 min to remove excess PBS. The pellet was carefully resuspended in 1 mL TRI reagent and 

incubated at RT for 5-10 min, and frozen at -80°C until needed. 

For RNA isolation, all steps were performed at RT, unless otherwise specified. Cells 

resuspended in TRI reagent were thawed, to which 200 µl chloroform was added. The contents 

were vortexed for 1 min, then again for 30 sec, before being incubated for 1 min and centrifuged 

at 12 000 x g for 15 min at 4°C. The top layer was transferred and placed on ice, to which 500 

µl phenol chloroform isoamyl alcohol mixture was added on ice. Contents were vortexed for 1 

min and incubated for 2 min, then centrifuged at 12 000 x g for 10 min at 4°C. Again, the top 

layer was transferred on ice, and 500 µl chloroform was added, vortexed for 1 min and 

incubated for 1 min, then centrifuged at 12 000 x g for 10 min at 4°C. Top phase was collected 

on ice, and 20 µg of RNA grade glycogen was added along with 500 µl isopropanol, before 

vortexing for 10 sec and incubating for 20-30 min. After incubation, the solution was 

centrifuged at 13 000 x g for 20 min at 4°C, and supernatant was discarded. Pellet was 

resuspended in 1 mL ice-cold 70% ethanol, vortexed for 30 sec, and centrifuged at 8000 x g 

for 5 min at 4°C. Supernatant was discarded, and pellet was spun down at 8000 x g for 5 min 

at 4°C to remove any ethanol. RNase free water was added to the pellet (volume depending on 

pellet size) and vortexed for 5 seconds every 5 min for 20 min. RNA concentration was 

measured in an Epoch microplate Spectrophotometer, and total RNA was stored in -80°C until 

needed. 

4.6 cDNA synthesis and RT-qPCR 

4.6.1 cDNA synthesis 

1 µg of total RNA was used to produce 50 ng/µl cDNA with random primers according to the 

protocol given in the High-Capacity cDNA Reverse Transcription Kit. Transcribed cDNA was 

stored at -20°C until real-time quantitative PCR (RT-qPCR) was run. 

4.6.2 RT-qPCR  

RT-qPCR is a technique similar to a regular PCR method, in that it amplifies genes of interest, 

but in real-time. For the experiments performed in this thesis, the SYBR green fluorescent dye 

master mix was used, which fluoresces when bound to double stranded (ds) DNA. When the 
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amount of dsDNA increases, so does the fluorescence. RT-qPCR was performed on a Roche 

Light Cycler 480 using PowerUp SYBR Green Master Mix from either Life Sciences or 

Thermo Fisher Scientific to compare 5’ ETS transcription in different cell lines under different 

conditions. cDNA was diluted 1:200 in RNase free water, to a final concentration of 1 ng/µl. 

cDNA from control cells was used to make standards with concentrations of: 10.0, 2.0, 0.4, 

0.08 and 0.016 ng/µl. These were prepared by making a dilution series from cDNA with RNase 

free water. 1 µl of cDNA from samples and standard was pipetted into a clean 96-well plate in 

triplicates, one triplicate for the target gene, and one for a suitable reference gene. The plate 

was kept on ice for the entirety of the setup. Next, a master mix was made for the target and 

reference genes with forward and reverse primer pairs, as seen in Table 3.11, for human or 

murine 5’ ETS as target and human β-Actin or mouse B2M as reference. Master mix also 

contained LightCycler® 480 SYBR Green I Master and RNase free water, according to the 

protocol for LightCycler® 480 SYBR Green I Master from Roche or Thermo Fisher Scientific. 

19 µl master mix was added to each well containing cDNA, the plate was covered in a clean 

film and centrifuged at 2000 rpm for 2 min at 4°C.  

The PCR program was set up as described in the LightCycler® 480 SYBR Green I Master from 

Roche or PowerUp™ SYBR™ Green Master Mix from Thermo Fisher Scientific protocol, 

with annealing temperature set at 58°C for all experiments, with the thermal program as stated 

below:  

Table 3.10. Thermal program for qPCR for LightCycler® 480 SYBR Green I Master from 

Roche. The amplification program was performed in 42 cycles. 

 Temperature (°C) Hold Ramp rate (°C/s) 

Pre-incubation 95 5 min 4.4 

Amplification 95 10 sec 4.4 

58 15 sec 2.2 

72 30 sec 4.4 

Melting Curve 95 5 sec 4.4 

65 1 min 2.2 

97 Continuous  - 

Cooling 40 10 sec 1.5 
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Table 3.11 Thermal program for PowerUp™ SYBR™ Green Master Mix from Thermo 

Fisher Scientific. The amplification program was performed in 42 cycles. 

 Temperature (°C) Hold Ramp rate (°C/s) 

Pre-incubation 50 2 min 4.4 

95 2 min 4.4 

Amplification 95 15 sec 4.4 

58 15 sec 2.2 

72 1 min 4.4 

Melting Curve 95 15 sec 1.6 

60 1 min 1.6 

97 Continuous  0.11 

Cooling 40 10 sec 1.5 

 

4.7 Determination of protein concentration 

4.7.1 Bicinchoninic acid (BCA) protein assay 

To determine the concentration of purified proteins from RL95-2 fractionation, BCA protein 

assays were performed, and samples were compared to a linear BCA standard curve. 2 µl of 

sample was pipetted into a 96-well plate in triplicates, along with triplicates of BSA standards 

ranging in concentration from 0.31-5 mg/mL, increasing two-fold for each concentration. For 

standards, BSA was diluted in the same buffer the protein sample was kept in. A working 

solution was prepared using a ratio of 20:1 BCA solution A: BCA solution B. 200 µl working 

solution was added to each of the used wells in the plate and incubated for 10 min at 37 °C. 

Absorbance was read at 600 nm using the Epoch microplate Spectrophotometer.  

4.7.2 Bradford protein assay 

For purified protein samples kept in a DTT-containing buffer, the Bradford method was used 

to determine their protein concentration relative to a BSA standard curve. 2 µl of each sample 

was pipetted into a 96-well plate in triplicate, as well as triplicates of BSA standards ranging 

in concentration from 0.31-5 mg/mL, increasing two-fold for each concentration. For 

standards, BSA was diluted in the same buffer the protein sample was kept in. Bradford reagent 

was diluted 1:4 in distilled Milli-Q™ water, and 200 µl was added to each used well. The plate 
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was incubated at RT for 5-10 min before reading absorbance at 595 nm in an Epoch microplate 

Spectrophotometer.  

For both types of protein concentration assay, a linear standard curve was made in Excel from 

a scatterplot and used to determine the protein concentration of each sample. The X-axis 

showed the protein concentration, and the Y-axis showed absorbance at 600/595 nm. 

4.8 GST-PARP1 expression and purification 

4.8.1 Transformation of competent cells 

DH5α 

The five PARP1 constructs were supplied by Prof. MO Hottiger (university of Zurich) on filter 

paper, see Table 3.12, and the DNA was extracted in ddH2O, before being transformed into 

Subcloning Efficiency DH5α™ Competent Cells. Cells were thawed on ice in 12 µl aliquots, 

into which 1 µl DNA was added and the contents was gently mixed by tapping the tube. The 

cells were incubated on ice for 30 min followed by heat shock treatment at 42°C for 45 sec, 

before immediately incubating on ice for 2 min. Next, 70 µl prewarmed (37°C) SOC medium 

was added, and the cells were incubated at 37°C for 1 h. After recovering, the cells were plated 

on LB agar plates containing ampicillin (100 µg/mL), and grown overnight at 37°C. The 

following morning, clones were picked and inoculated in 5 mL LB medium containing 50 

µg/mL ampicillin overnight at 37°C with 250 rpm shaking. After growing, the plasmids were 

purified using the NucleoSpin® Plasmid mini-prep kit. The DNA concentration was measured, 

and purified DNA was stored at -20°C.  

BL-21 DE3 

To express the desired GST-PARP1 fusion proteins, the purified plasmids were transformed 

into BL-21 Codon Plus® (DE3)-RIL competent cells from Agilent Technologies. Cells were 

thawed on ice in 5 µl aliquots, to which 0.5 µl plasmid DNA (above 100 ng/µl) was added and 

incubated on ice for 30 min. The rest of the transformation was performed as described above, 

until the plating step. The next day colonies were picked for either small or big scale protein 

expression. 

4.8.2 Small scale protein expression 

To check that the fusion proteins could be expressed sufficiently well before being set up for 

big scale protein expression, one construct was tested to see if cells could reliably express GST-
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PARP1. First, 4 colonies were picked from the BL-21 plate and inoculated in 2 mL LB medium 

containing ampicillin (50 µg/mL) and grown overnight at 250 rpm at 37°C. 200 µl pre-culture 

was removed and added to 1.8 mL LB with amp (50 µg/mL) and incubated for 3 h at 37°C at 

250 rpm. After 3 h, 100 µl bacterial culture was transferred and spun down by pulsing for 10 

sec, then adding 40 µl water and 10 µl SDS sample buffer (5X) and boiling at 95°C for 5 min. 

Remaining culture was induced with IPTG (0.5 mM) and incubated for 3 h at 250 rpm at 37°C, 

after which cells were collected and prepared for SDS-PAGE as described with un-induced 

sample. 40 µl un-induced and 20 µl induced bacteria were run on an SDS-PAGE to check 

protein expression. 

4.8.3 Big scale protein expression 

The morning after BL-21 transformation and plating, one colony per construct was picked and 

inoculated in 50 mL LB medium with 50 µg/mL ampicillin overnight at 37°C with 250 rpm. 

From the remaining pre-culture, 2 mL was transferred into 100 mL LB medium containing 50 

µg/mL ampicillin and grown for around 2 h at 37°C with 250 rpm, until the optical density 

(OD) reached 0.6-0.7 (up to 1). After the desired OD was reached, 1 mL culture was removed, 

pelleted and stored for SDS-PAGE. The remaining cultures were induced with 50 mM IPTG 

for 3 h, before OD was read again. 1 mL was taken from the induced culture, pelleted and 

stored, and remaining cells were harvested by centrifuging at 6000 rpm for 10 min at 4°C. 

Bacteria were lysed on ice in 5 mL of 25 mM tris pH 8.0, 500 mM NaCl, 0.5% IgePal and 1x 

bacterial protease inhibitor cocktail. Subsequently, bacteria were sonicated 3 x 30 sec on/30 

sec off, and centrifuged at 13000 x g for 15 min at 4°C. 50 µl supernatant and one pellet was 

kept for SDS-PAGE, the remaining supernatant was pooled and stored at -80°C. 

4.8.4 Soluble protein purification: 

Supernatants were thawed on ice, to which 600 µl of 50% slurry glutathione-sepharose was 

added and left overnight, rotating at 4°C. The following day, beads were washed 4 times with 

10 ml ice cold PBS, centrifuged at 3000 rpm for 5 min at 4°C between each wash. They were 

then washed once with 10 ml 50 mM Tris pH 8.0, 100 mM NaCl, and centrifuged at 3000 rpm 

for 5 min at 4°C. After the last wash, protein was eluted through 4 successive steps with 200 

ul of 50 mM Tris pH 8.0, 100 mM NaCl, 0.5 mM DTT with 0.03 g/10 ml reduced glutathione 

made fresh. Each elution was performed with gentle agitation for 30 min at RT, after which 

OD was read at 280 nm. Eluates with highest OD were pooled and a Bradford protein assay 
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was performed to check concentration. SDS-PAGE was performed with samples from un-

induced, induced, supernatant, pellet and eluted protein. Purified protein was stored at -80°C. 

4.10 Lipid overlay assay 

Lipid blots were performed using PIP strips from Echelon (Lot # XCM100316-48), spotted 

with Lysophosphatidic acid (LPA), Lysophosphocholine (LPC), Sphingosine 1-Phosphate 

(S1P), PtdIns, PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, Phosphatidylethanolamine (PE), 

Phosphatidylcholine (PC), Phosphatidic acid (PA), Phosphatidylserine (PS)  PtdIns(3,4)P2, 

PtdIns(3,5)P2, PtdIns(4,5)P2, and PtdIns(3,4,5)P3. This was used to test which fragments of 

PARP1 bind directly to lipids. Membranes were blocked protected from light for 1 h at RT on 

a shaker with 6 mL TBS-T (TBS with 0.1% v/v Tween 20) containing 3% essentially fatty acid 

free BSA made fresh. To this, 0.5 µg/mL protein was added directly to the membranes and 

incubated at RT on a shaker for 1 h. Next, the membranes were washed 6 times with TBS-T, 5 

minutes per wash, on a shaker at RT. Following washes, anti-GST conjugated to horse-radish 

peroxidase (HRP) diluted in TBS-T was added and incubated on a shaker at RT for 1 h before 

being washed as described above (6x 5 min). After the final wash, visualization was done by 

chemiluminescence using pico or femto kits (See Table 3.5) by incubating the membranes at 

RT for 5 or 1 min at RT respectively, and imaging them using the BioRad ChemiDoc™ XRS+. 

4.11 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments based on size. This is 

accomplished by subjecting the DNA samples to an electric field, with the negatively charged 

DNA traveling toward the positive electrode by passing through a porous agarose gel. Gels 

were made with 1% agarose in 1x TAE buffer, by boiling in a microwave. Once the mixture 

cooled, Ethidium bromide was added to a final concentration of 0.5 µg/mL and mixed. The 

agarose solution was poured into a tray with a comb and allowed to solidify. The 

electrophoresis was started at 70 V and increased to 100 V until the dye front reached about ¾ 

the length of the gel. Agarose gels were visualized using the BioRad GelDoc™ EZ Imager. 

4.12 SDS-PAGE 

For the separation of proteins based on molecular weight, sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed. The protein in the sample 

was denatured and given a negative charge. By applying an electric field, the proteins will 

migrate toward the positive electrode at different speeds, according to their molecular weight. 



   

 

 

31 

 

SDS gels were made with 10% acrylamide/bisacrylamide (37.5:1) in 0.75 or 1.5 mm thickness, 

depending on the amount of sample to be loaded. Protein samples were mixed with 5x SDS 

sample buffer to a final concentration of 1x. Samples were boiled at 100°C for 5 min, spun 

down and kept on ice until loading onto the gel. Electrophoresis was performed in 1x TGS 

buffer. Samples were run through the stacking gel at 70 V, and 170 V through the resolving 

gel, until the dye front left the gel. The gel was either used for staining and imaging with 

Coomassie, or proteins were transferred to a membrane for western immunoblotting. 

4.13 Coomassie staining 

For visualizing proteins from SDS-PAGE, gels were incubated in about 20 mL InstantBlue (a 

Coomassie based stain) for 1 h at RT on a shaker. After an hour, the staining solution was 

replaced with distilled Milli-Q™ water (ddH2O) for 1-2 h on a shaker, before photographing 

in the BioRad GelDoc™ EZ Imager. 

4.14 Western immunoblotting 

Proteins were transferred from SDS gels to a nitrocellulose membrane at 16 V overnight on a 

shaker in 1x TG buffer. After transfer, the membrane was washed several times in 1x PBS-T 

(0.05% Tween20) and blocked with 7% powdered fat-free milk dissolved in PBS-T for 1 h on 

a shaker. This was followed by rinsing once with PBS-T, before adding primary antibody and 

leaving overnight at 4°C on a shaker. The next day, blots were washed three times in PBS-T, 

then incubated with secondary antibody (α-mouse/rabbit-HRP 1:10000) for 1 h at room temp 

on a shaker, kept dark. Secondary antibody was washed off, and blots were rinsed 4 times in 

PBS-T. For visualization, blots were treated with ECL (pico/femto) for 5 or 1 min, depending 

on the kit, and photographed in a BioRad ChemiDoc™ XRS+ and stored in PBS-T at 4°C. 
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5 Results 

5.1 p110β is located within the nucleoli of RL95-2 cells 

Previously, our group has determined that PIK3CB mRNA levels are elevated in endometrial 

tumours, and that levels increase from precursors to low grade primary lesions (Karlsson et al., 

2017). In addition, the protein levels were elevated in a panel of endometrial cancer cell lines 

compared to non-transformed cells. However, how elevated levels of p110β contribute to 

tumour development remain unclear. p110β has previously been found to localise in the 

nucleus in NIH 3T3 cells (a murine cell line) (Kumar et al., 2011), and in nucleoli of human 

breast cancer cells AU565 (Karlsson et al., 2016). The focus of this thesis was to establish the 

localization of p110β in a single EC cell line with high levels of p110β. The PTEN-negative 

human EC cell line RL95-2 was chosen. Our group has preliminary data demonstrating that 

these cells contain a high PIP3 pool and high levels of p110β in the nucleus, and increased pre-

rRNA transcription levels (Mazloumi Gavgani et al., 2017), making this an appropriate cell 

line to study. 

Immunofluorescence staining was performed to establish co-localisation between p110β and a 

known nucleolar protein, in this case nucleophosmin (NPM). NPM is a protein involved in 

rRNA transcription (Murano et al., 2008). Consistently, p110β was shown to co-localise with 

nucleophosmin in the nucleolus, as seen in Figure 5.1 A. p110β could also clearly be seen in 

the cytoplasm in most of the cells, with a weaker signal intensity in the nucleoplasm. 

In addition, to validate the results shown by immunofluorescence staining, RL95-2 cells were 

fractionated, and equal amounts of protein from cytoplasmic, nucleoplasmic and nucleolar 

fractions were resolved by SDS-PAGE. Western blotting with anti-p110β antibody revealed 

that p110β was present within the nucleolar compartment of these cells, as well as in the 

cytoplasm and nucleoplasm, see Figure 5.1 B. The purity of each fraction was verified using 

antibodies against proteins that should be present in each fraction. α-tubulin, a protein of the 

cytoplasmic cytoskeleton, showed a clear band in the cytoplasmic fraction, and was missing 

from the other two. Fibrillarin, which is associated with maturation of rRNA in the nucleolus, 

is found solely in the nucleolar fraction. Lamin A/C, which is typically localized at the nuclear 

periphery, is also a component of the nuclear matrix (Gruenbaum and Foisner, 2015), and was 

thus present throughout the nucleus, including the nucleolus, and absent from the cytoplasm. 
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Figure 5.1. Detection of p110β in nucleolus by fractionation and immunostaining of RL95-2 cells. 

A) Immunostaining of p110β using Abcam anti-p110β antibody, co-stained with anti-Nucleophosmin 

antibody as a nucleolar marker, and Hoechst DNA stain. Images were taken using epi-fluorescent 

microscopy at 100 x magnification, exposure time 30 ms, gain 5.0 for p110β. White arrows indicate the 

colocalisation of p110β with nucleophosmin. The magnified image represents the white square. Scale 

bar 10 µm. B). Proteins from sub-cellular fractionation of RL95-2 cells were resolved with SDS-PAGE 

using 40 µg protein from each fraction, and transferred to a nitrocellulose membrane. Western blotting 

with anti-p110β antibody. Anti-α-Tubulin, -Lamin A/C and -Fibrillarin antibodies were used to verify 

purity of the fractions. The figure is representative of an experiment performed three times. 
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To confirm the localisation of PIP3 within RL95-2 cells, immunostaining with an antibody 

raised against PIP3 was used, in addition to co-staining with anti-nucleolin antibody. Nucleolin 

is implicated in ribosome biogenesis in the nucleolus (Ginisty et al., 1999). The nucleolin signal 

was unexpectedly excluded from the nucleoli of the cells, and so a merged image of Hoechst 

and PIP3 has been added to show the clear nuclear foci of PIP3, as seen in Figure 5.2. 

 

 

Figure 5.2. Detection of PIP3 within the nucleoli of RL95-2 cells. Immunostaining of RL95-2 cells 

with anti-PIP3 and anti-nucleolin antibodies as a nucleolar marker. DNA was labelled using Hoechst. 

Imaging was carried out using epi-fluorescent microscopy at 100x magnification, exposure time 25 sec, 

gain 6.0 for PIP3. White arrows indicate nuclear foci with PIP3. Scale bar 10 µm. 
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5.2 Inhibiting p110β with Kin193 reduces transcription of rRNA 

This study has demonstrated that p110β is present within the nucleoli of RL95-2 cells. The next 

task was to understand what its function is within the nucleolus with regard to rRNA 

transcription. To this end, a selective p110β inhibitor, Kin193, was used to see the effects of 

this kinase on transcription of 47S rRNA, by RT-qPCR.  

To test this, primers matching the 5’ external transcribed spacer (ETS) of human 47S rRNA 

were used in RT-qPCR. This was performed on cDNA made from total RNA isolated from 

RL95-2 cells. Figure 5.3 illustrates that the ETS1 primer is placed across the initial cleavage 

site (01/A’ for human, A’ for mouse) on the 47S rRNA precursor transcript. This allowed us 

to specifically target 47S rRNA transcripts, before maturation. Cells were treated with Kin193 

for 42 and 72 hours, prior to the observed decrease in the number of cells following p110β 

inhibition occurring from 72 hours of treatment in RL95-2 cells (Karlsson et al., 2016). It is 

reasonable to assume some time will pass between delayed rRNA transcription and an 

observable effect on cell proliferation to occur. 

The data shown in Figure 5.4 shows a statistically significant decrease in pre-rRNA 

transcription of 20% and 16%, 42 and 72 hours respectively after p110β inhibition by Kin193. 

BMH21, an RNA Pol I inhibitor, was used as a positive control, and as expected, it disrupted 

all Pol I RNA transcription. The statistical significance was validated using a t-test.  

 

 

Figure 5.3. Diagram of human and murine 5’-ETS 47S rRNA initial maturation step. The ETS1 

primer location is shown to span the initial cleavage site (01/A’ for human, A’ for mouse). 

Abbreviations: ETS – external transcribed spacer. The nucleotide numbering corresponds to the 

GenBank sequences U13369.1 (human rRNA) and BK000964.3 (mouse rRNA).  
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Figure 5.4.  Effect of p110β inhibition on rRNA transcription in RL95-2 cells. RL95-2 cells were 

incubated 24 h after plating with 10 µM p110β inhibitor Kin193 (Kin) for 42 and 72 h or with 1 µM 

BMH21 for 3 h. The cells were then harvested, RNA was extracted, and cDNA was transcribed. qPCR 

was run on the cDNA, targeting 47S rRNA transcripts, and normalised to human β-Actin acting as a 

reference gene. Results were collected from three separate experiments run in triplicates, with both 

DMSO samples used as negative control, and BMH21 (a RNA polymerase I inhibitor) being used as 

positive control. Relative fold changes compared to DMSO controls are shown. The symbols (*) used 

on the graph show the different levels of probability, where * indicates p<0.05, ** is p<0.01 and *** is 

p<0.001. 

  

5.2.1 Inhibiting p110β with Kin193 reduces RNA levels in acute serum induction in RL95-2 

cells 

In order to assess the contribution of p110β on nascent RNA transcription, a different method 

was performed. p110β inhibition by Kin193 was combined with 5-ethynyl uridine (EU) 

labelling. Incubation of cells with the alkyne-containing EU leads to its incorporation into 

nascent RNA. Subsequent chemoselective ligation of an azide-containing dye with the alkyne 

allows for easy detection in a fluorescent microscope (Jao and Salic, 2008). The treatment is 

simple to perform and can be used in addition to regular antibody staining, and so nucleolin 

was chosen. Using this method, nascent RNA was detected when it appeared in dark spots in 

Hoechst signalling, as the nucleolin pattern observed when co-staining with PIP3 persisted in 

these experiments as well (Figure 5.2). 
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Inhibition of p110β induced a decrease in transcription in actively growing cells (see Figure 

5.4). This lead to questions regarding conditions where RNA transcription could be monitored 

acutely. The treatment involved starving the cells in serum-free and low-glucose medium, 

before giving them a boost of serum for a short period of time. By starving the cells, they are 

forced to slow down production of ribosomes to conserve energy. Subsequent re-stimulation 

of the cells should then kickstart rRNA production and reformation of nucleoli (McStay, 2016). 

To this end, RL95-2 cells underwent starvation for 24 h before receiving a boost of 20% FBS 

for 30 or 60 min with EU labelling, with and without Kin193. The experiment was performed 

twice, and the images were chosen to best represent the results. The effects on RNA intensity 

in serum-free (SF) treated cells compared to control (log) cells can be seen in Figure 5.5 A. In 

the log cells, RNA could be detected clearly not only in the nucleoplasm but also within several 

nuclear foci, surrounded by nucleolin, observed in a circular pattern. The RNA foci were 

considered to be nascent rRNA. For the SF-treated cells, however, the signal intensity of rRNA 

went down overall in the nucleoplasm, and the intensity of the foci showing rRNA decreased 

substantially. Again, the nucleolin staining in the SF-treated cells seemed to avoid the nucleoli 

altogether.  

When stimulating the cells with FBS for 30 or 60 min (Figure 5.5 B), the detected rRNA in 

the foci seemed to increase in intensity when compared to SF cells, in particular after 60 min 

of treatment. For cells additionally treated with Kin193, no clear spots of rRNA were visible 

within the nuclei for either time point post-stimulation. Both the rRNA and nucleolin detected 

were distributed equally throughout the nuclei, though the signal intensity of nucleolin seems 

to have decreased in cells treated with Kin193. 
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Figure 5.5. Effect of p110β inhibition by Kin193 on RNA intensity 30 and 60 min after reboosting 

with 20% serum. This caption belongs to the figure on the preceding page. RL95-2 cells were seeded, 

500 000 cells per well. A) After 24 h, the growth medium was replaced with serum-free and low-glucose 

medium, and incubated a further 24 h. B) Cells were then re-stimulated with 20% foetal bovine serum 

(FBS) for 30 and 60 min, together with EU labelling (total EU treatment time was 30 min), in the 

presence or absence of Kin193. The slips were co-stained for nucleolin. DNA was stained using 

Hoechst, and imaged using confocal microscopy. Scale bar 10 µm. The image acquisition parameters 

were kept the same for all conditions to allow for comparison.  

 

5.3 Inactivating p110β may affect RNA transcription in MEF cells 

In addition to studying the human endometrial cancer cell line RL95-2, the effects of the PI3K 

p110β isoform on RNA transcription was also tested in mouse cells, with a p110β wild type 

(WT) cell line, and a cell line that had this isoform inactivated (KI). The KI cell line was 

immortalised with a point mutation, D931A, in the catalytic domain of p110β, which leads to 

expression of the protein, albeit without its ATP binding capability (Berenjeno et al., 2012).  

As with the RL95-2 cells, MEF WT and KI were serum- and glucose-starved for 24 hours, 

before being stimulated with 20% serum for 30 or 60 min, alongside with EU treatment to 

specifically target nascent rRNA. The control (log) and serum-free (SF) cells can be seen in in 

Figure 5.6. For both cell lines, several nuclear foci appeared with high signal intensity for EU 

in log cells. In WT cells, the amount of foci seemed to decrease, albeit marginally, with SF 

treatment. For KI, the foci disappeared almost altogether, with nearly no clear foci appearing 

in SF-treated cells. The nucleolin signal in KI log cells was unexpectedly excluded from the 

nucleoli in about 50% of cells on the slip. The remaining 50% had either some spots of 

nucleolar signal, or an even, dark distribution of nucleolin throughout the nucleus. In the SF-

treated cells, however, nucleolin again appeared nucleolar. Nucleolin signal in WT seemed to 

change from full coverage within nucleoli in log cells, to being more perinucleolar in SF-treated 

cells.  

The effect of stimulating the cells with serum can be seen in Figure 5.7. Unfortunately, during 

mounting, the slip containing the MEF KI cells 30 min after reboosting with 20% FBS was 

placed upside-down on the glass slide. Another 5 µl mounting solution and an additional cover 

slip was carefully placed on top of the slip. The signal intensity of EU 30 min after stimulation 

in MEF WT was slightly increased, when comparing to WT SF-treated cells. In KI 30 min after 

stimulation, the signal intensity was very low, with no clear foci, as with SF-treated cells. For 

both cell lines, several foci become clearer after 60 min of stimulation, when compared to SF. 
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Figure 5.6. Effect of serum on acute RNA transcription in MEF p110β wild type (WT) and kinase 

inactive (KI). The images are representative of an experiment performed twice. MEF WT and KI cells 

were plated with 250 000 cells per well and either kept in growth medium throughout the experiment 

(log) or incubated in serum-free (SF) low glucose medium 24 h after plating, and incubated a further 

24 h, together with EU labelling (total EU treatment time was 30 min). The slips were co-stained for 

nucleolin. DNA was stained using Hoechst, and imaged using confocal microscopy. The image 

acquisition parameters were kept the same for all conditions to allow for comparison.  Scale bar 10 µm. 
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Figure 5.7. Comparing the effect of serum on RNA transcription in MEF WT and KI 30 and 60 

min after reboosting with 20% FBS. The images are representative of an experiment performed twice. 

MEF WT and KI cells were plated, 250 000 cells per well. After 24 h, growth medium was replaced 

with serum-free (SF) low glucose medium, and incubated a further 24 h, after which cells were 

stimulated with 20% foetal bovine serum (FBS) for 30 and 60 min, together with EU labelling (total 

EU treatment time was 30 min). The slips were co-stained with anti-nucleolin antibody. DNA was 

stained using Hoechst, and imaged using confocal microscopy. The image acquisition parameters were 

kept the same for all conditions to allow for comparison. Scale bar 10 µm. 
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To assess 47S rRNA transcription in the MEF cells, RT-qPCR was performed in a similar 

fashion to the RL95-2 cells, though with mouse ETS primers. The RT-qPCR was performed 

three times with the same target gene, the murine 47S rRNA transcript, but using different 

reference genes. Initially, human β-Actin was used, which is almost identical to the murine β-

Actin, because our group has previously used it successfully in RT-qPCR using mouse cDNA. 

Usually, housekeeping genes like GAPDH or parts of the cytoskeleton are reliable as reference 

genes, because they tend to remain stable and mostly unaffected by experimental factors 

(Kozera and Rapacz, 2013). However, the serum starvation affected β-Actin too much, as seen 

in Figure 5.8 A, and so a different reference gene was chosen. β2-microglobulin (B2M) is a 

small protein involved in immune surveillance and modulation, and is expressed at constant 

levels in many cells (Li et al., 2016). B2M unfortunately didn’t work as a reference gene either, 

shown in Figure 5.8 B, where the Cp values varied too much between the samples, and in a 

different pattern as with human β-Actin (Figure 5.8 A). 

Analysis of the 47S transcription Cp values was therefore done without including the Cp values 

for either of the reference genes, as shown in Figure 5.9. The data suggests that 47S rRNA 

transcription is very similar in log samples of both MEF WT and KI. There is a drop in 

transcription in the KI SF-treated cells however, when compared to the SF-treated WT cells. 

After stimulating the cells with serum for 30 min, both cell lines have about the same 

transcription levels. The increase in transcription 60 min after boosting is slightly less in KI 

when compared to WT. 
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Figure 5.8. Effect of serum starvation and serum induction on different reference genes by qPCR. 

MEF WT and KI cells were serum-starved with low glucose DMEM for 24 h before being given a boost 

of 20% foetal bovine serum (FBS) for 30 or 60 min. The cells were then harvested, RNA was extracted, 

and cDNA was transcribed. qPCR was run on the cDNA, targeting human β-Actin (A) and mouse B2M 

(B) as reference genes. Only the threshold cycle (Cp) values, normalised to the respective primer 

efficiency value from the reference genes are shown. e^-(Cp X) indicates that the Cp values are 

normalised to the primer efficiency or the experiment. For hβ-Actin, primer efficiency was 1.96, for 

mB2M it was 1.932. 
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5.9. Effects of restimulating MEF WT/KI cells with 20% FBS on pre-rRNA 47S transcription 

with qPCR. MEF WT and KI cells were serum-starved with low glucose DMEM for 24 h before being 

given a boost of 20% foetal bovine serum (FBS) for 30 or 60 min. The cells were then harvested, RNA 

was extracted, and cDNA was transcribed. qPCR was run on the cDNA, targeting 47S rRNA transcripts. 

The results are collected from two individual experiments. Only the threshold cycle (Cp) values, 

normalised to the primer efficiency value from the ETS gene is shown. e^-(CpETS) indicates that the 

Cp were normalised to the primer efficiency of each experiment, then the average was calculated. ETS 

primer efficiency for experiment 1: 1.91, experiment 2: 1.96.  
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5.4 GST-PARP1 binds PIP3 

PPIn act by binding and recruiting proteins. Previously, our group has identified PARP1 as a 

PIP3 binding protein by mass spectrometry of PIP3 lipid pull-down from nuclear extracts 

(Mazloumi Gavgani et al., 2017). In the same study, PARP1 and PIP3 were shown to colocalise 

in the nucleoli, by immunofluorescence staining. Furthermore, a direct in vitro interaction of 

PARP1 with PPIn was shown. However, which part of the protein is involved in PPIn-

interaction is hitherto unknown. To discover this, GST-fused fragments of PARP1 were 

expressed and purified, and a lipid overlay assay was performed to assess the lipid-binding 

properties.  

5.4.1 Expression and purification of GST-PARP1 fragments 

To discover the binding interaction to PPIn, PARP1 was expressed as five separate fragments, 

obtained from Prof. Michael O. Hottiger, University of Zurich. A diagram of the relevant 

domains can be seen in figure 5.10 A. The first fragment contains the first 214 amino acids, 

which include the two zinc-finger domains, and parts of the first of two nuclear localisation 

signals (NLS). This fragment is also the main part of the DNA-binding domain. Fragment 2 

covers the second NLS motif, and ends before the beginning of the BRCA1 C-terminus like 

(BRCT) domain. It also has 5 helices, 2 β-turns and 4 β-strands. Fragment 3 contains the 

automodification domain, thought to be part of protein-protein interaction (Tao et al., 2009), 

though large parts of the secondary structure remains unknown for this portion of the protein. 

Fragment 4 contains no domains of interest, and fragment 5 is the rest of the protein, containing 

an α-helical domain and the catalytic domain.  

The expression and purification of GST-PARP1 fragments was monitored by SDS-PAGE, see 

Figure 5.10 B-F. The protein eluates are pure in all fragments, except for some impurity 

observed for fragment 1 (Figure 5.10 B), which is likely some co-purified protein. For 

fragments 1, 3, 4 and 5, a band corresponding to the size of GST can clearly be seen at around 

25 kDa. The expression levels varied slightly between the fragments, with the greatest 

difference in fragment 2. 
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Figure 5.10. Purification of GST-PARP1 fragments. This caption belongs to the figure on the 

preceding page. A) Diagram of PARP1 domains. The catalytic and DNA binding domains are shown 

with brackets. Domains and secondary structure information were collected from UniProtKB for 

Human PARP1; P09874. B-F) GST-PARP1 was expressed using BL-21 Codon Plus® (DE3)-RIL 

competent cells, and soluble protein was purified using glutathione-sepharose beads. The Bradford 

protein concentration assay was utilized to determine protein concentration. The following was loaded 

onto SDS-PAGE; 7 µl Precision Plus Protein™ Dual Color standard from BioRad, 15 µl uninduced 

culture, induced culture with OD corresponding to uninduced, 5 µl induced supernatant, 4 µl bacterial 

pellet, and lastly, 2 and 10 µg of purified protein. GST-PARP1 fragments 1-5 (B-F respectively) are 

shown, the amino acid sequence being the following: fragment 1: 1-214, fragment 2: 215-371, fragment 

3: 477-524, fragment 4: 525-656, fragment 5: 657-1014. GST has a MW of 25 kDa. Abbreviations: ZF 

(I and II) – Zinc Finger, NLS – Nuclear Localization Signal, BRCT – BRCA1 C-Terminus like domain.  

 

5.4.2 GST-PARP1 fragments 2 and 3 bind PIP3  

Lipid binding properties of each of the GST-PARP1 fragments were assessed using PIP strips 

from Echelon. Each strip is spotted with 100 pmol of each of the seven PPIns and other lipids, 

as indicated in Figure 5.11 A. Purified protein from each fragment elution was incubated on 

the membranes, and visualized with ECL. The results can be seen in Figure 5.11 B, with red 

arrows pointing to the relevant binding of fragments 2 and 3 to PIP3. This is not the only PPIn 

the fragments bind, however. Fragments 1, 2 and 3 all bind a variety of lipids, with different 

interaction patterns. Fragment 3 also binds very strongly to PtdIns(3,5)P2 and PA. Fragments 

4 and 5 didn’t seem to bind any lipids on the membranes. 
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Figure 5.11. Lipid overlay assay of GST-PARP1 fragments 1-5 to demonstrate lipid binding 

properties. A) Illustration of PIP strips. Each strip is spotted with 100 pmol of the following lipids: 

Lysophosphatidic acid (LPA), Lysophosphocholine (LPC), Phosphatidylinositol (PtdIns), 

Phosphatidylinositol(3)phosphate (PtdIns(3)P), Phosphatidylinositol(4)phosphate (PtdIns(4)P), 

Phosphatidylinositol (5) phosphate (PtdIns(5)P), Phosphatidylethanolamine (PE), Phosphatidylcholine 

(PC), Sphingosine 1-Phosphate (S1P), Phosphatidylinositol(3,4) bisphosphate (PtdIns(3,4)P2) , 

Phosphatidylinositol(3,5)bisphosphate (PtdIns(3,5)P2), Phosphatidylinositol(4,5)bisphosphate 

(PtdIns(4,5)P2), Phosphatidylinositol(3,4,5) trisphosphate (PtdIns(3,4,5)P3), Phosphatidic acid (PA) 

and Phosphatidylserine (PS). B) GST-PARP1 DNA sequence was expressed as five fragments as the 

following (in amino acid sequence): fragment 1: 1-214, fragment 2: 215-371, fragment 3: 477-524, 

fragment 4: 525-656, fragment 5: 657-1014. PIP strips were used to demonstrate the lipid binding 

properties of PARP1 fragments. 0.5 µg/mL purified GST-PARP1 fragments 1-5 (Frag 1-5) was added 

to the lipid blots and incubated for 1 h at RT. Visualization was done by adding anti-GST conjugated 

HRP and imaging using chemiluminescence.  
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6. Discussion 

The PI3K pathway has been studied extensively, however each new discovery is accompanied 

by more questions. With so many components and possible cellular outcomes, how does it all 

work together? This problem escalates when taking into account the different PI3K isoforms 

being implicated. Most of the research performed on this pathway has been devoted to the Class 

I PI3K p110α isoform, due to frequent mutations found in the p110α-coding PIK3CA gene in 

many human cancers.  PI3K p110β has received less attention but has been observed to be 

tumorigenic when overexpressed in its wild type form, without the need for an activating 

mutation (Kang et al., 2006). However, the mechanism with which p110β promotes cell 

proliferation and tumour growth is still unknown.  

Our group has compiled substantial evidence to suggest the existence of a link between p110β 

and the nucleolus. Therefore, discovering the nucleolar function of p110β was the focus of this 

thesis. p110β is overexpressed in some cancers, including endometrial cancer (Karlsson et al., 

2017), and tumorigenesis has been shown to be dependent on its lipid kinase activity (Wee et 

al., 2008). p110β has been shown to localise in the nucleus and nucleolus of human breast 

cancer cells, and inhibition of this particular isoform has been linked to decreased cell 

proliferation (Karlsson et al., 2017). Among other functions, the nucleolus is responsible for 

production of ribosomes, which are vital in cell proliferation (Derenzini et al., 2017). Since 

p110β kinase activity is seen in non-cancerous cells in addition to cancer cells, it is likely 

involved in normal nucleolar function. It would be interesting to test if overexpression of this 

isoform leads to cancerous cell division as a result of increased rRNA production to satisfy the 

need for more ribosomes. The results of this thesis indeed suggest that p110β has a positive 

effect on rRNA transcription in the PTEN-negative endometrial cancer cell line RL95-2. 

However, the underlying molecular mechanism could not be determined within this study. 

PARP1, involved in DNA repair and localised in nucleoli, was found to be a PIP3 effector 

protein as a result of PIP3 lipid pull-down from nuclear extracts of HeLa cells (Mazloumi 

Gavgani et al., 2017). The results of this study confirm that fragments of GST-PARP1 bind a 

variety of PPIn, including PIP3. Further research is required to assess whether PARP1 is 

regulated by PIP3 in the nucleolus. 
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6.1 p110β and PIP3 are nucleolar in RL95-2 cells 

During the course of this study, p110β and its lipid product PIP3 were shown to localise in the 

nucleoli of the endometrial cancer cell line RL95-2. This is consistent with previous studies 

from our group validating the localisation of p110β in AU565 cells (Karlsson et al., 2016) and 

HeLa cells (unpublished paper in: (Mazloumi Gavgani et al., 2017)). In addition, high grade 

endometrial tumours correlate with high nuclear p110β levels (Mazloumi Gavgani et al., 2017). 

This would suggest that p110β contributes to development of this type of tumour in a nuclear 

and perhaps also in a nucleolar dependent manner. 

The localisation of p110β in the nucleolus was confirmed by immunostaining and cell 

fractionation following western immunoblotting. When assessing the purity of the sub-cellular 

fractions of RL95-2, Lamin A/C was used to confirm the purity of the nucleoplasmic fraction. 

However, this protein is also present in the nucleoli of these cells. This is consistent with 

previous findings, which demonstrate that A-type lamins interact with several nucleolar 

proteins (Legartova et al., 2014). Finding a pure nucleoplasmic marker that is not also nucleolar 

turned out to be a challenge. One example could be to try one of the nucleoporins. These 

proteins assemble into the nuclear pore complexes, found on the nuclear envelope (Nofrini et 

al., 2016). Antibodies for various nucleoporins have previously been used as markers for the 

nuclear membrane in western blotting and immunofluorescent staining (Lizotte et al., 2005; 

Huang et al., 2013). One issue with using such a marker, however, could be contamination in 

the cytoplasmic fraction, due to parts of the nuclear membrane being transferred to the 

cytoplasm fraction during the fractionation procedure. Also, nucleoporins do not represent the 

entire nucleoplasm, only the envelope.   

The specificity of the p110β and PIP3 antibodies used in this study have been validated by our 

group. siRNA knock down following western blotting and staining with p110β antibody 

validated the specificity of the antibodies used in this thesis. The specificity of the PIP3 

antibody was also validated by competition assays using free lipids (PtdIns3P, Ptdins(3,4)P2 

and PIP3). In addition, the nucleolar presence of PIP3 has been confirmed by liquid 

chromatography–mass spectrometry (LCMS) and a lipid blot (Mazloumi Gavgani et al., 2017). 

Our group has regularly used an anti-nucleolin antibody as a nucleolar marker, as it is an 

abundant protein in this sub-nuclear structure. However in RL95-2 cells, nucleolin, which is 

known to take part in rDNA transcription and rRNA maturation (Ginisty et al., 1999), was not 
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detected in the nucleoli of these cells when using immunofluorescent staining. NPM, on the 

other hand, was clearly seen as being nucleolar in the same cell line (Figure 5.1). Consistently, 

the nucleolin signal appeared to be excluded from the nucleoli, instead appearing rather 

strongly in the nucleoplasm, or as circles or in caps around nucleoli. The nucleolin pattern was, 

for the most part, not found in the MEF WT or KI cells, which are PTEN-positive and don’t 

harbour a hyperactive PI3K pathway, which were stained using the same antibody. However, 

determining if the cause of this unexpected pattern was due to the antibody or the cells remains 

unknown. It is also possible that it is instead located in the granular component or dense fibrillar 

component. In this case, it could be verified by using a granular component marker, like 

fibrillarin. To our knowledge, the use of this antibody for staining this cell line has not 

previously been described, and so there could be some underlying mechanism that displaces 

nucleolin. Indeed, the localisation of nucleolin may be dependent on the expression of different 

isoforms of PTEN (Liang et al., 2017). It could also be that PTEN-deficiency leads to unstable 

nucleolin in the nucleolus. However, this signal pattern was not found in a study that used 

nucleolin as a marker in both PTEN-positive and negative human prostate cancer cell lines. 

Here, the pattern was unchanged between the cells (PC3 or LNCaP cell lines) (Li et al., 2014). 

In the same paper, HeLa cells were transfected with short hairpin RNA against PTEN, but the 

nucleolin pattern remained unchanged. 

6.2 Inhibition of p110β leads to decreased rRNA transcription 

Since the best-known processes within nucleoli are rRNA transcription and maturation 

(Pederson, 2011), and ribosome assembly, p110β and PIP3 may participate in one or many of 

these processes. Investigating the effects of p110β on rRNA transcription has not yielded any 

published research, to our knowledge, and so these findings are novel and lead to more 

questions regarding the detailed mechanism with which p110β and PIP3 may be involved. 

Indeed, Drakas et al. have observed that a Class I PI3K (likely p110β) can activate rDNA 

transcription by interacting with, and phosphorylating UBF (Drakas et al., 2004). They did not 

study the lipid kinase capability of this p110 isoform, however. UBF is a transcription factor 

involved in rRNA transcription, as part of the pre-initiation complex (Kwon and Green, 1994). 

Possible interaction between UBF and p110β strengthen the hypothesis that p110β is involved 

in ribosome biogenesis. This could be tested by performing immunoprecipitation (IP) using a 

specific antibody against p110β or UBF, to see if they interact.  
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Both chronic and acute rRNA expression in RL95-2 was assessed by RT-qPCR and EU 

labelling respectively. Acute rRNA transcription was monitored by starving the cells to 

synchronise their growth and subsequently stimulating them with serum for a short period of 

time. As opposed to this, for RT-qPCR experiments RNA was isolated from actively growing 

cells. The findings of this thesis demonstrate a statistically significant decrease in rRNA 

transcription in RL95-2 cells upon inhibition of p110β by Kin193. Kin193 selectively inhibits 

p110β and the PI3K/Akt pathway (Edgar et al., 2010; Jamieson et al., 2011), and our group 

has shown that inhibition of this kinase leads to a decrease in the nuclear PIP3 pool in these 

cells (Mazloumi Gavgani et al., 2017). Also, Kin193 has been observed to inhibit tumour 

growth in PTEN-negative mouse tumour cells (Ni et al., 2012). Ni et al. accentuate that Kin193 

could be used as a potential anti-cancer drug. Ideally, Kin193 would disrupt the effects of 

p110β and the PI3K/Akt pathway, leading to less overall ribosome production, resulting in 

decreased cell proliferation.  

Our group has shown that p110β protein and mRNA levels (for PIK3CB) increase in EC cell 

lines, including RL95-2, which has high nuclear p110β (Mazloumi Gavgani et al., 2017). This 

would indicate that they are good candidates for selective p110β inhibition. However, the 

decrease in rRNA transcription brought on by p110β inhibition was only 20%. p110β inhibition 

may prevent the production of new PIP3, but it does not take into account pre-existing PIP3 

present in the cells. This assumption is based on PIP3 being produced in the nucleolus by 

p110β. However, at this stage we cannot rule out that PIP3 can potentially be made elsewhere 

and translocate to the nucleoli.  RL95-2 cells are PTEN-deficient, meaning that PIP3 

catabolism is slow to begin with. It could also be that the inhibitor doesn’t have the capacity to 

fully enter the nucleolar p110β pool, thus lowering its potential power of inhibition. Treating 

the cells for a longer period might show further reduction in 47S rRNA transcription than is 

seen after 72 hours of treatment. Also, the nuclear PIP3 pool has been shown to be resistant 

toward metabolisation by PTEN in mouse Swiss 3T3 cells (Lindsay et al., 2006), and it could 

be that this pool is instead metabolised by a 5-phosphatase like SHIP2. This has since been 

disputed however, with others claiming that treatment with PTEN help regulate the nuclear 

PIP3 pool in PC12 cells, by disrupting PIP3 interaction with NPM and Akt (Kwon et al., 2010). 

Even though the catalytic activity of p110β is through lipid phosphorylation, speculations 

around other properties of the protein have come to light. This becomes evident when 

considering that inhibition of p110β leads to decreased cell proliferation (Karlsson et al., 2017), 



   

 

 

53 

 

whereas p110β knock-down leads to apoptosis in endometrial cancer cells (An et al., 2007).  

p110β has been associated with kinase-independent functions including activity within 

autophagy by sensing growth factor availability (Dou et al., 2013), metabolic regulation and 

glucose homeostasis (Jia et al., 2008), and as a scaffolding protein in insulin signalling (Jia et 

al., 2008). Interestingly, Kumar et al. have proposed a kinase-independent function for p110β 

in DNA double strand break repair (Kumar et al., 2010). Taken together, these findings suggest 

that the role of p110β in the nucleus and perhaps nucleolus might be kinase-independent, or 

multifunctional. 

There seems to be some differences when comparing the effects of inhibiting p110β with 

Kin193 in RL95-2 cells to the inactivating mutation present in the MEF KI cells. Inhibiting 

p110β using the drug seems more effective than the mutation, with regard to rRNA 

transcription. When comparing MEF WT to KI in rRNA transcription, both chronic (RT-

qPCR) and acute (EU labelling), the effect of the mutation in KI seems minimal. This would 

suggest that there is no inherent difference between MEF WT and KI regarding this process. 

Indeed, the only difference between the WT and KI cell lines is an inactivating mutation present 

in the KI cells; a single point mutation from an aspartic acid residue to alanine (D391A) which 

is involved in ATP binding, by stabilizing the enzyme structure. It could be that the catalytic 

mutant is still partially active in some cells. This could be due to how the ATP kinase 

mechanism of a phosphotransferase works, which is similar for many kinases. In this 

mechanism, the most important conserved amino acid in ATP binding is a lysine residue, along 

with other charged amino acids like glutamate and aspartate (Gibbs and Zoller, 1991; Wang 

and Cole, 2014). Perhaps the structure is disrupted, but still partially functioning with the 

mutation. In another study, where p110β was inactivated with a point mutation in the conserved 

lysine residue (K805R), Marqués et al. saw a reduction in phosphorylated Akt, a downstream 

target of p110β (Marques et al., 2008). It could also simply be that the MEF model is not suited 

for studying rRNA transcription in the manner performed in this study. Instead, a knock-out 

cell line could be used. 

We observed additional problems with RT-qPCR regarding finding a suitable housekeeping 

gene to be used as a normaliser for growth arrested cells. Cell treatment involved starvation, 

which has an impact on most pathways and processes in the cell. A study from 2016, which 

assessed the effects of serum starvation on a variety of housekeeping genes in colon 

adenocarcinoma cell lines, found that both β-Actin and B2M, which were used in our study, 
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were unstable when afflicted with starvation and re-stimulation (Krzystek-Korpacka et al., 

2016). The authors concluded this due to transcription levels being significantly up-regulated 

upon re-supplementation of serum, for both genes. In their study, they concluded that the most 

stable gene to be used in this treatment was ribosomal protein large P0 (RPLP0), a component 

of the 60S ribosomal subunit. However, we would prefer not to use a nucleolar or ribosomal 

related protein in this experiment. Indeed, the results of this thesis indicate that both β-Actin 

and B2M varied so much in the different cell conditions, that they were deemed unsuitable to 

be used as reference genes.  

The levels of B2M mRNA expression vary in a different pattern compared to human β-actin 

and 47S rRNA transcription in MEF WT/KI cells. Here, transcription in KI is lower overall, 

for all cell conditions, compared to WT. This could indicate another purpose for p110β in the 

nucleolus. After all, this subnuclear structure is not only involved in rRNA transcription, but 

also other functions, such as stress response and cell cycle progression (Pederson, 2011; Ogawa 

and Baserga, 2017). Instead of solely being involved in rRNA transcription, p110β and PIP3 

could instead have a different nucleolar purpose, maybe in general transcription or processing. 

6.3 In vitro binding of PARP1 to PIP3 

Our group has shown direct interaction between PARP1 and PIP3 (Mazloumi Gavgani et al., 

2017), the lipid product of p110β. PAPR1 is an interesting candidate, because it is found in the 

nucleolus (Meder et al., 2005), and contains 3 KR-motifs throughout its sequence (see 

Appendix 1). This thesis shows that fragments 2 and 3 of expressed and purified GST-PARP1 

bind PIP3. Fragment 2 contains an NLS motif and one KR-motif, and fragment 3 contains one 

KR-motif. If the interaction between PARP1 and PIP3 changes the activity of PARP1, this 

could have implications. PARP1 has been linked to ribosomal biogenesis in Drosophila 

nucleoli (Boamah et al., 2012), and PARP1 and PARP2 have been shown to interact with NPM 

(Meder et al., 2005). 

Among other roles, PARP1 is involved in single stranded break (SSB) repair of DNA (Satoh 

and Lindahl, 1992). Disrupting the SSB repair pathway will lead to an accumulation of double 

strand breaks (DSB), which need to be repaired by a DSB repair mechanism like DNA 

homologous repair (HR). Inhibiting PARP will thus lead to a build-up of DSB in HR-deficient 

cells, for example BRCA1/2-mutated cells. The result of this is toxic, and leads to apoptosis, 

an effect known as synthetic lethality (Farmer et al., 2005). There already exists a PARP-
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inhibitor in clinical trials, though it is restricted to patients with BRCA1/2 mutations. It has 

been shown, however, that PTEN-deficient tumours are sensitized to PARP-inhibitors in other 

cancers as well, including endometrial cancer (Shen et al., 2013; Koppensteiner et al., 2014). 

This was also demonstrated by Dedes et al. who treated EC cells with PARP and PI3K 

inhibitors in concert, and concluded that the cells treated with a pan-PI3K inhibitor became 

sensitized to PARP inhibitors (Dedes et al., 2010). Also, inhibition of PI3K by BKM-120 has 

been shown to impair BRCA1/2 mRNA transcription, leading to HR repair dysfunction 

(Ibrahim et al., 2012). Though the inhibitors used in these studies were pan-PI3K inhibitors, it 

would be interesting to see if similar results could be reproduced using a p110β specific 

inhibitor. Perhaps limiting the supply of PIP3 by inhibiting p110β could impede the effects of 

PARP1, thus leading to sensitivity to PARP1 inhibition, and subsequent apoptosis by synthetic 

lethality. 

When expressing GST-PARP1, one fragment was not included. However, this fragment 

contains no KR-motifs or other PI-binding domains and may not be involved in PPIn binding. 

The fragment is currently being characterised by our group. The PPIn binding pattern of the 

different fragments vary quite substantially (see Figure 5.11). Fragments 1, 2 and 3 bind lipids, 

and fragment 3 binds quite strongly to PtdIns(3,5)P2, PtdIns(4,5)P2 and PA. It is known that 

PtdIns(4,5)P2 is found in the nucleolus, and that it promotes Pol I transcription through 

interaction with UBF and fibrillarin (Yildirim et al., 2013). Since this is a precursor to PIP3, 

there might exist an interplay between the two lipids with PARP1. 

Our group has expressed fragment 3 of GST-PARP1 for use in interaction studies in nuclear 

magnetic resonance (NMR) spectroscopy. Preliminary NMR results further confirm that 

fragment 3 does indeed bind PIP3, and the amino acids involved include the polybasic region 

KR-motif, as seen in Appendix 1. This fragment was chosen as a test because it is the smallest 

fragment, hence more amenable for NMR studies, and binds many PPIn, including PIP3. These 

results were analysed from HSQC spectra, and concluded based on an observation of displaced 

peaks when comparing spectra from free PARP1 versus PARP1 bound to PIP3. The amino 

acids thought to be involved in PIP3 binding are highlighted in red in Appendix 1. Three KR-

motifs have been found within the sequence of PARP1, all shown in blue in the same appendix. 

It would be interesting to see if the other fragments show similar results. 
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6.4 Is the nucleolar role of p110β linked to tumorigenesis?  

Changes in nucleolar structure and function have been shown to correlate with cancer, with 

larger nucleoli being linked to increased Pol I transcription activity (Farley et al., 2015). 

Indeed, a growing tumour is in high demand of protein translation, and so all aspects of 

amplified ribosome biogenesis would benefit the cancer cells. p110β mainly functions as a lipid 

kinase, and oncogenic transformation in PTEN-negative cells has been shown to depend on 

this activity (Wee et al., 2008). It could be that the increase in PIP3 by p110β activity in the 

nucleolus promotes tumorigenesis in endometrial cells through up-regulation of ribosome 

biogenesis. Increased ribosome production has also been linked to development of 

endometriosis, a disease causing abnormal growth in the endometrium and infertility, and is a 

precursor to uterine cancers (Chang et al., 2016). A correlation between increased activity of 

the PI3K/Akt pathway and endometriosis has been established (Yin et al., 2012). Activation of 

the pathway prevents endometriotic stromal cells from undergoing decidualization, which is 

necessary for pregnancy (Gellersen et al., 2007). However, this study did not look into which 

isoform was involved. With the findings of this thesis, we suggest that it is p110β that is 

implicated here, and that increased p110β activity promotes initiation of tumorigenic 

transformation. 

Taken together, the results of this thesis on p110β indicate that Kin193 could be further pursued 

as a potential anti-cancer drug in PTEN-negative endometrioid endometrial cancers. Inhibiting 

or inactivating the lipid-kinase activity of p110β seemingly influences the nucleoli of both 

human and mouse cells, though details are hard to determine. Whether or not the mechanism 

with which p110β is involved in rRNA transcription and ribosome biogenesis is kinase-

dependent is still unknown. Future experiments might include longer treatment of cells with 

Kin193, to see if there is a continued decrease in 47S transcription after 72 hours. One could 

also try mutating a different amino acid residue within p110β, to further disrupt ATP binding. 

As discussed above, the hypothetical interaction between UBF and p110β could be tested by 

IP experiments and the role of p110β/PIP3 in rRNA transcription can be tested through 

chromatin IP (ChIP) experiments. Another idea could be to use small interfering RNA to 

silence the p110β gene. This has been attempted by our group, though preliminary results lead 

to cells dying. 
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The binding of PARP1 to PIP3 leads to questions regarding further regulation of PARP1 by 

p110β. Is there a deeper link between p110β, PIP3 and PARP1? DNA damage can occur from 

vast amounts of sources, both internal and external. The nucleolus has been shown to house 

several proteins involved in not only ribosome biogenesis, but also DNA-binding proteins, and 

DNA-repair proteins (Ogawa and Baserga, 2017). With PARP1’s presence in the nucleolus 

and involvement in DNA repair, it is possible that some crosstalk occurs between p110β/PIP3 

and PARP1 to regulate this function. Further investigation into this theory might strengthen the 

idea of using a specific p110β inhibitor together with PARP1 inhibitors as a treatment option 

for patients with PTEN-negative endometrial cancers. 
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Appendix 

Amino acid sequence of GST-PARP1 fragments. The polybasic KR motifs are highlighted in 

blue, and the amino acid residues thought to be involved in PIP3 binding are highlighted in 

red: 

Frag 1 (1-214) - MAESSDKLYR VEYAKSGRAS CKKCSESIPK DSLRMAIMVQ 

SPMFDGKVPH WYHFSCFWKV GHSIRHPDVE VDGFSELRWD DQQKVKKTAE 

AGGVTGKGQD GIGSKAEKTL GDFAAEYAKS NRSTCKGCME KIEKGQVRLS 

KKMVDPEKPQ LGMIDRWYHP GCFVKNREEL GFRPEYSASQ LKGFSLLATE 

DKEALKKQLP GVKSEGKRKG DEVD  

Frag 2 (215-371) - GVDEVA KKKSKKEKDK DSKLEKALKA QNDLIWNIKD 

ELKKVCSTND LKELLIFNKQ QVPSGESAIL DRVADGMVFG ALLPCEECSG 

QLVFKSDAYY CTGDVTAWTK CMVKTQTPNR KEWVTPKEFR EISYLKKLKV 

KKQDRIFPPE TSASVAATPP P  

Missing fragment 372-476 

Frag 3 (477-524) - ILSP WGAEVKAEPV EVVAPRGKSG AALSKKSKGQ VKEEGINKSE 

KRMK 

Frag 4 (525-656) - LTLKGG AAVDPDSGLE HSAHVLEKGG KVFSATLGLV 

DIVKGTNSYY KLQLLEDDKE NRYWIFRSWG RVGTVIGSNK LEQMPSKEDA 

IEHFMKLYEE KTGNAWHSKN FTKYPKKFYP LEIDYGQDEE AVKKLT 

Frag 5 (657-1014) - VNPG TKSKLPKPVQ DLIKMIFDVE SMKKAMVEYE 

IDLQKMPLGK LSKRQIQAAY SILSEVQQAV SQGSSDSQIL DLSNRFYTLI 

PHDFGMKKPP LLNNADSVQA KVEMLDNLLD IEVAYSLLRG GSDDSSKDPI 

DVNYEKLKTD IKVVDRDSEE AEIIRKYVKN HATTHNAYD LEVIDIFKIE 

REGECQRYKP FKQLHNRRLL WHGSRTTNFA GILSQGLRIA PPEAPVTGYM 

FGKGIYFADM VSKSANYCHT SQGDPIGLIL LGEVALGNMY ELKHASHISK 

LPKGKHSVKG LGKTTPDPSA NISLDGVDVP LGTGISSGVN DTSLLYNEYI 

VYDIAQVNLK YLLKLKFNFK TSLW. 

 


