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Objective: Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare, childhood 
onset disease caused by mutations in the autoimmune regulator (AIRE) gene. Chronic 
mucocutaneous candidiasis (CMC) is one of the three major disease components and 
is, to date, mainly explained by the presence of neutralizing auto-antibodies against 
cytokines [interleukin (IL)-17A, IL-17F, and IL-22] from T helper 17 cells, which are 
critical for the protection against fungal infections. However, patients without current 
auto-antibodies also present CMC and we, therefore, hypothesized that other immune 
mechanisms contribute to CMC in APS-1.

Methods: Whole blood was stimulated with Candida albicans (C. albicans) in a stan-
dardized assay, and immune activation was investigated by analyzing 46 secreted 
immune mediators. Then, peripheral blood mononuclear cells were stimulated with 
curdlan, a Dectin-1 agonist and IL-23 inducer, and the IL-23p19 response in monocytes 
was analyzed by flow cytometry.

results: We found an altered immune response in APS-1 patients compared with healthy 
controls. Patients fail to increase the essential ILs, such as IL-2, IL-17A, IL-22, and IL-23, 
when stimulating whole blood with C. albicans. A significantly altered IL-23p19 response 
was detected in patients’ monocytes upon stimulation with curdlan.

conclusion: APS-1 patients have an altered immune response to C. albicans including 
a dysregulation of IL-23p19 production in monocytes. This probably contributes to the 
selective susceptibility to CMC found in the majority of patients.

Keywords: autoimmune polyendocrine syndrome type 1, chronic mucocutaneous candidiasis, monocytes, il-17, 
il-22, il-23

inTrODUcTiOn

Autoimmune polyendocrine syndrome type 1 (APS-1) or autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (OMIM 240300) is clinically defined by the presence of two 
of the three major disease components primary adrenal insufficiency, hypoparathyroidism (HP), 
and chronic mucocutaneous candidiasis (CMC) (1). However, the phenotypic expression of the 
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syndrome is highly variable and includes many minor disease 
components (2). All patients present auto-antibodies against 
autoantigens expressed in the affected tissue and/or against 
immune mediators (3–5). The autoimmune regulator (AIRE) 
gene is the disease-causing gene (6–8). AIRE acts as a transcrip-
tion factor and is almost exclusively expressed in the thymus 
(9), where it orchestrates the process of negative selection of  
self-reactive T  cells and contributes to the development of 
regula tory T cells (Tregs) (10, 11).

Candida albicans (C. albicans) is an opportunistic yeast, 
colonizing the skin and mucosa of most healthy individuals 
without causing tissue damage or disease (12). However, it may 
cause superficial mucocutaneous or systemic infections; often in 
individuals with impaired immune functions. In APS-1, CMC 
caused by C. albicans is the most common and earliest main 
manifestation (13) and is reported in 75–100% of patients (1, 4, 
14–17). The clinical course varies from periodic to chronic and 
usually affects the oral mucosa as angular chelitis, or the whole 
mouth with hypertrophic and/or atrophic lesions (1, 2, 13). 
Skin, nails, and genital mucosa in females may also be affected. 
Susceptibility to candidiasis maps to mucosal, not systemic, 
disease in APS-1 (1).

Interleukin (IL)-23 is required for differentiation, func-
tion, and maintenance of T helper 17 (Th17) cells, and this 
signaling axis plays a central role in host defense against 
cutaneous candidiasis (18). In APS-1, neutralizing auto-
antibodies against the Th17 cytokines, IL-17A, IL-17F, and 
IL-22, are suggested to explain the impairment in mucosal 
immunity (19, 20). Noteworthy, patients without auto-
antibodies also present CMC (4), and therefore, it remains 
disputable whether the Th17 cytokine-neutralizing auto-
antibodies are sufficient to precipitate CMC. To gain a better 
understanding of the molecular mechanism of CMC in 
APS-1, we investigated the immune activation in response to  
C. albicans in both whole blood and monocytes of patients 
finding a generally altered immune activation including a 
dysregulation in the IL-23/Th17 pathway.

MaTerials anD MeThODs

Patients and clinical Data
Patients (n  =  18) were included from our National Registry 
of Organ Specific Autoimmune Diseases and were previously 
described in the Norwegian cohort (4, 21, 22). All fulfilled the 
diagnostic criteria of APS-1 (2). Patients received appropriate 
hormone replacement therapy of endocrine deficiencies at physi-
ological doses. In HP, normal levels of calcium were maintained 
with oral administration of cholecalciferol and calcium. However, 
these treatments should not have significant immunomodulatory 
effects. None of the patients or healthy controls was pregnant, 
had acute infections, or received vaccinations at the time of 
sampling. An overview of the patients’ data is given in Table 1. 
Samples from all patients were not available for all experiments. 
Healthy age and gender matched controls (n = 31) were recruited 
from the local blood bank at Haukeland University Hospital. All 
participants gave informed and written consent, and the study 

was approved by The Regional Committee for Medical and 
Health Research Ethics for Western Norway.

Measurement of immune Mediators
In vitro production of immune mediators in response to  
C. albicans was characterized using the TrueCulture assay system 
(Myriad, RBM, USA). One milliliter of whole blood was taken 
from APS-1 patients (n = 11) and age- and sex-matched healthy 
controls (n = 13) into TrueCulture collection and culture tubes 
(Myriad, RBM) that contained either the supplied media (base-
line response) or media supplemented with C. albicans (ATCC 
10231; Myriad, RBM). Following a 48 h activation period at 37°C, 
the supernatants were frozen and sent to Myriad RBM’s testing 
laboratory where 46 unique analytes or biomarkers of immune 
activation were assessed using the multiplex immunoassay 
Human InflammationMAP 1.0 panel (Myriad, RBM). Mediators 
of special interests (IL-17A, IL-17F, IL-22, and IL-23p19) were 
also assayed with enzyme-linked immunosorbent assay (ELISA) 
(R&D Systems, UK) for all patients included in this experiment 
(n  =  11) and an extended group of healthy controls (n  =  19). 
These ELISAs were done on supernatants from the correspond-
ing TrueCulture tube. Standard sandwich ELISA was performed 
on sera from all patients (n = 18) searching for auto-antibodies 
against IL-23 (PeproTech, USA).

isolation and culture of cells
Peripheral blood mononuclear cells from APS-1 patients (n = 6) 
and healthy controls (n  =  12) were isolated from heparinized 
blood by Ficoll-Paque PLUS (GE Healthcare) density gradient 
centrifugation and stored at −150°C. Cryopreserved periph-
eral blood mononuclear cells (PBMCs) were used in all cell 
experiments. PBMCs (106 cells/mL) were cultured overnight in 
RPMI-1640 medium (Lonza) supplemented with 10% human AB 
serum (Sigma, USA) and 1% penicillin–streptomycin (Sigma) at 
37°C with 5% CO2. For the immune stimulation and activation 
of monocytes, 10 μg/mL of the Dectin-1 agonist beta-1,3-glucan 
(Curdlan AL, InvivoGen, USA) was added to the cell cultures. 
Lipopolysaccharide from Salmonella abortus equi (Sigma-
Aldrich) in a concentration of 1 μg/mL was used as a non-Candida 
positive control for monocyte activation. The protein transport 
inhibitor Brefeldin A (BioLegend, USA) was added at 1 μg/mL 
90–120 min after the start of incubation.

Flow cytometry
After the incubation period, cells were washed with 2 mL buffer 
[phosphate-buffered saline (Sigma) containing 5% fetal bovine 
serum (Life technologies)] and centrifuged at 350 × g for 5 min. 
Cell surface staining of monocytes was done in 0.1 mL buffer for 
30 min on ice with fluorescein isothiocyanate-conjugated anti-
body to human CD14 (clone HCD14, BioLegend) at a dilution of 
1:20. Cells were then washed and fixed in 0.5 mL/tube Fixation 
Buffer (BioLegend) in the dark for 20 min at room temperature 
before centrifugation at 350  ×  g for 5  min and then washed 
again. The fixed cells were re-suspended in 0.1 mL Intracellular 
Staining Perm Wash Buffer (BioLegend) and stained with 
10  μL phycoerythrin-conjugated antibody to human IL-23p19 
(clone #727753; R&D Systems) in the dark for 20 min at room 
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Table 1 | Characterization of the autoimmune polyendocrine syndrome type 1 (APS-1) patients.

Patient 
number

Family 
number

sex Year of 
birth 
(Yob)

age of 
onset

classic triad Other 
manifestations

autoimmune regulator 
(aire) mutations

iFnω auto-
antibodies

Other auto-antibodies

1 I M 1995 3 CMC(3), HP(4), 
PAI(12)

Al(4), TIN(15), 
AT(16), E

c.967_979del13/c.769C>T Positive 21OH, IL-17, IL-22, TGM4

2 I M 1992 2 CMC(2), HP(4) K(11), M(15), E c.967_979del13/c.769C>T Positive AADC, GAD65, IL-17, IL-22,  
TGM4, TH

3 II F 1958 5 CMC(5), HP(9), 
PAI(14)

G(18), AS(43), 
TIN(47), E(53)

c.967_979del13/large del Positive 21OH, 17OH, IL-22, MAGEB2, 
NALP5, SCC, TH

4 II F 2002 7 PAI(7), HP(10), 
CMC

E, M c.967_979del13/
c.967_979del13

Positive 21OH, 17OH, AADC, GAD65, IL-22, 
MAGEB2, NALP5, SCC, TH, TPH1

5 III M 1948 7 CMC(7), HP(9), 
PAI(16)

V(17), Al(21), 
B12(63), E

c.769C>T/c.769C>T Positive 21OH, AADC, IL-17, IL-22 MAGEB2, 
SCC, SOX10, TGM4

6 IV F 1960 9 HP(9), CMC Al(6), G(17),  
AT, E, N

c.22C>T/c.290T>C Positive NALP5, PCA

7 V M 1970 12 PAI(12), CMC(42) E c.967_979del13/
c.967_979del13

Positive 21OH, GAD65, IL-22, SCC

8 VI F 1974 23 PAI(23), CMC(23) E c.879+1G>A/c.879+1G>A Positive 21OH, 17OH, NALP5
9 VI M 1959 43 HP(43), CMC V(15), DM(32), 

E(49), AT(51)
c.879+1G>A/c.879+1G>A Positive 21OH, 17OH, AADC, GAD65,  

NALP5, TH, TPH1
10 VII M 1964 14 HP(14), CMC(22) DM(23), K(25), 

N(25), V(41), 
Al(41), E

c.769C>T/c.1249dupC Positive AADC, GAD65, IL-22, PCA,  
PDILT, TGM4, TH, TPH1

11 VII M 1963 nk CMC? E c.769C>T/c.1249dupC Positive AADC, IL-22, SOX10, TGM4
12 VIII F 1988 3 HP(3) AT(24), E, M c.967_979del13/

c.967_979del13
Positive NALP5

13 IX F 1987 2 CMC(2), HP(15) E(24), Al, E c.1163_1164insA/
c.1249_1950dupC

Positive 21OH, AADC, IL-17, IL-22,  
MAGEB2, NALP5, SOX10

14 X F 1971 5 HP(5) G(19), B12(35), 
M(39), E

c.934G>A/not found Positive NALP5, AADC, GAD, PCA

15 XI F 1976 4 HP(4), C E(14), AT(20), 
V(25)

c.967-979del13/c.967-
979del13

Positive 21OH, 17OH, NALP5, TH, TPH, 
AADC, GAD, SCC, MAGEB2,  
SOX10, PDILT, IL-22

16 XI M 1980 9 HP(9), PAI(12), 
C(16)

E c.967-979del13/c.967-
979del13

Positive 21OH, SCC, TH, AADC, GAD,  
NALP5, TGM4, IL-17, IL-22

17 XII M 1958 Not 
known

PAI(55), HP, C Al, AS, E c.967-979del13/c.967-
979del13

Positive GAD, TPH, MAGEB2, IL-17, IL-22

18 XIII F 1982 5 CMC(3) V(15), PA(13),  
E, M

c.967-976del13/c.977C>T Positive AADC, GAD65, IL-22, PCA,  
PDILT, TPH1

Patient number, family, sex (M, male; F, female), YoB, clinical manifestations, AIRE mutations and auto-antibodies in APS-1 patients. The age of debut denotes the age at which  
the first APS-1 main component appeared. The age at diagnosis is written in parentheses.
21OH, 21-hydroxylase; 17OH, 17-α-hydroxylase; AADC, aromatic l-amino acid decarboxylase; Al, alopecia; AS, asplenism; AT, autoimmune thyroiditis; CMC, candidiasis; 
DM, diabetes mellitus; E, enamel hypoplasia; G, hypogonadism; GAD65, glutamic acid decarboxylase 65-kDA isoform; HP, hypoparathyroidism; IFNω, interferon-omega; IL-17, 
interleukin-17; IL-22, interleukin-22; K, keratoconjunctivitis; M, malabsorption; MAGEB2, melanoma antigen B2; N, nail hypotrophy; NALP5, NACHT leucine-rich-repeat protein 
5; PA, pernicious anemia; PAI, primary adrenocortical insuffiency; PCA, parietal cell antigen; PDILT, protein disulfide isomerase-like testis expressed; SCC, side-cleavage enzyme; 
SOX10, sex-determining region Y-box 10; TGM4, transglutaminase 4; TIN, nephritis; TH, tyrosine hydroxylase; TPH, tryptophan hydroxylase; V, vitiligo.
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temperature. Finally, another washing step was done before 
the fixed and stained cells were re-suspended in 0.3 mL buffer. 
Cells were analyzed on a BD FACS Accuri C6 flow cytometer. 
Individual populations were gated according to forward scatter 
(FSC), side scatter (SSC), and specific markers, and the data were 
subsequently analyzed with FlowJo X software.

statistical and bioinformatical analyses
Paired t-tests were used analyzing paired data, and the Mann–
Whitney U test was used when comparing groups. The level of 
significance was defined to a P value less than 0.05. Statistical 
analyses were performed using IBM SPSS Statistics 23 or Prism 
7 (Graph Pad Software, Inc., San Diego, CA, USA). Hierarchical 
cluster analyses were performed using the J-Express (MolMine 
AS, Bergen, Norway) (23), and the alterations analyzed were 
standardized after ratio after/before stimulation and log(2) 

transformed before unsupervised hierarchical clustering with 
Squared Euclidean distance measure with weighted average link-
age was performed (23). Functional annotation and generation 
of the basic framework of the network displayed in Figure S1 
in Supplementary Material were computed using ClueGO 2.3.3 
(24) within the Cytoscape 3.4.0 suite (25). Proteins that in APS-1 
patients failed to be up-regulated in response to C. albicans 
(P > 0.05) while found to be significantly increased in healthy 
controls upon C. albicans exposure (P  <  0.05) were entered 
as group 1. Group 2 includes SERPINA1 and GC, which were 
found significantly down-regulated in APS-1 patients but were 
unchanged in healthy subjects when responding to C. albicans 
stimulation. These two groups were interrogated regarding 
their associations with a  priori-defined biological terms com-
prised in the complete biological process gene ontology (GO) 
(GO:0008150; 23.02.2017). The analysis settings were (i) hits 
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Mediator autoimmune polyendocrine 
syndrome type 1

controls

response to  
C. albicans

P value response to  
C. albicans

P value

coagulation factors
c3 → ns (0.661) ↑ 0.030
F7 → Ns (0.060) → Ns (0.101)
Fga → ns (0.450) ↑ 0.011
vWF → Ns (0.807) → Ns (0.464)

serum proteins
B2M → ns (0.637) ↑ 0.024
FTL ↑ 0.002 ↑ <0.001
HP → Ns (0.562) → Ns (0.967)

Traditional markers
CRP → 0.124 → 0.725

Others
gc ↓ 0.037 → ns (0.974)
serPina1 ↓ 0.028 → ns (0.683)
IL1RN ↑ <0.001 ↑ <0.001
KITL ↑ 0.002 ↑ <0.001
TIMP1 ↑ 0.017 ↑ <0.001
TNFRSF1B ↑ <0.001 ↑ <0.001

The table gives the mediators analyzed in the TrueCulture system and the response to 
C. albicans in both patients and healthy controls. T-test for paired data was used for 
statistical comparison. ↑ indicates a significant up-regulation, ↓ indicates a significant 
down-regulation, and → indicates no significant change in the mediator concentration. 
Mediators with a significant different response in patients and controls are marked bold.
Nd, not detectable; Ns, not significant.
aIL-22 was not included in the TrueCulture system but analyzed with enzyme-linked 
immunosorbent assay.

Table 2 | Change of different immune mediators in response to Candida 
albicans in patients and controls.

Mediator autoimmune polyendocrine 
syndrome type 1

controls

response to  
C. albicans

P value response to  
C. albicans

P value

interleukins
IL-1A ↑ 0.001 ↑ 0.001
IL-1B ↑ 0.001 ↑ <0.001
il-2 → ns (0.115) ↑ 0.001
IL-3 Nd – Nd –
IL-4 ↑ <0.001 ↑ <0.001
IL-5 Nd – Nd –
IL-6 ↑ 0.014 ↑ 0.002
IL-7 ↑ 0.001 ↑ 0.037
IL-10 ↑ 0.008 ↑ 0.003
IL-12p40 ↑ 0.020 ↑ <0.001
IL-12p70 Nd – Nd –
IL-15 Nd – Nd –
il-17a → ns (0.115) ↑ <0.001
IL-18 ↑ <0.001 ↑ <0.001
il-22a → ns (0.240) ↑ 0.002
il-23 → ns (0.342) ↑ 0.035

growth factors
BDNF → Ns (0.463) → Ns (0.203)
CSF2 ↑ 0.007 ↑ 0.002
VEGFA ↑ 0.001 ↑ <0.001

chemokines
CCL2 ↑ 0.002 ↑ <0.001
CCL3 ↑ 0.001 ↑ <0.001
CCL4 ↑ <0.001 ↑ <0.001
CCL5 → Ns (0.514) → Ns (0.072)
CCL11 ↓ 0.014 ↓ 0.004
CXCL8 ↑ <0.001 ↑ <0.001

immunomodulatory cytokines
INFg ↑ 0.003 ↑ 0.014
LTA ↑ <0.001 ↑ <0.001
TNF ↑ 0.002 ↑ <0.001

adhesion molecules
ICAM1 → Ns (0.582) → Ns (0.377)
VCAM1 → Ns (0.401) → Ns (0.546)

Matrix metalloproteases
MMP3 → Ns (0.740) → Ns (0.247)
MMP9 ↑ 0.003 ↑ 0.004

(Continued )

Table 2 | Continued

4

Bruserud et al. Altered Immune Activation in APS-1

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1074

required to map a GO term ≥1, (ii) percentage of a term covered 
by proteins reliably detected by the MAPs ≥4%, and (iii) GO 
term fusion and GO term grouping was applied based on a kappa 
score of 0.4 (similarity measure between the GO terms). For each 
group of terms, the GO term accommodating the largest number 
of proteins was selected as its leading term. All other settings 
were used as per default.

resUlTs

In the TrueCulture assay, a total of 46 single mediators were ana-
lyzed in supernatants after the activation period of 48 h. Table 2 
gives an overview of all mediators analyzed, the response to  
C. albicans stimuli in patients and healthy controls, and P values 
for paired analyses within each group.

Most chemokines, interleukins, and 
immune regulatory cytokines increase  
in response to C. albicans in both 
Patients and healthy controls
Both APS-1 patients and healthy controls had a significant 
increase in levels of several mediators in response to C. albicans. 
A significant up-regulation in APS-1 and controls was found 
in the analyzed γ-chemokines CCL2, CCL3, and CCL4, the 
α-chemokine CXCL8, and the interleukins IL-1β, IL-4, IL-6, IL-7, 
IL-10, IL-12p40, and IL-18 (Table 2). Similarly, IL-1RN, the three 
immune regulatory cytokines LTA, TNF, and IFNγ and the growth 
factors CSF2 and VEGF were found to be significantly increased 
in both groups. Notably, when comparing the responses in the 
two groups, significant differences were found for 16 mediators 
(Table S1 in Supplementary Material; Figure 1). CCL11 was the 
only mediator analyzed, which significantly decreased in response 
to C. albicans in both groups. Finally, a total of 11 mediators 
analyzed remained unchanged in both groups after stimulation 
of whole blood by C. albicans (Table 2).

aPs-1 Patients have an altered Th17 
cytokine response to C. albicans 
compared to healthy controls
A subset of related mediators failed to increase in response to 
C. albicans in APS-1 patients compared to healthy controls. 
Interestingly, patients fail to increase the essential interleukins 
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FigUre 1 | Mediators with significant different response in Autoimmune polyendocrine syndrome type 1 (APS-1) and controls. The figure shows selected mediators 
from the TrueCulture assay and significant differences were found comparing APS-1 and controls (C). The lines indicate the mean with standard deviation. 
Concentrations are given at the y-axis. LLOQ, lower limit of quantitation. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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IL-17A, IL-22, and IL-23 (Table 2). IL-22 was not included in 
the TrueCulture assay and, therefore, analyzed with standard 
ELISA on the TrueCulture supernatants, and IL-17A and 
IL-23 were analyzed in both assays with comparable results. 
In controls, the strength of IL-22 correlated with IL-17A (cor-
relation 0.869, P  =  0.001) and IL-23 correlated with IL-17F 
(correlation 0.612, P  =  0.026). These correlations could not 
be observed in patients. No APS-1 patients or controls had 
auto-antibodies against IL-23 assayed by sandwich ELISA. 
The other mediators revealing a different response in patients 
were β2-microglobulin (B2M), C3, and FGA, whereas GC 
and SERPINA1 remained unchanged in healthy controls and 
decreased significantly in APS-1 patients. All mediators with a 
significant different response comparing patients and controls 
are highlighted in Table 2.

Unsupervised hierarchical clustering 
based on changes in immune Mediators 
and Functional annotation of the Protein 
Profile characterizing the altered immune 
response in aPs-1 Patients
We used the relative values of the measured levels of all media-
tors analyzed in the TrueCulture assay in an unsupervised 

hierarchical clustering analysis (Figure  2). Patients and con-
trols were divided into two main clusters/subsets, and most 
patients were included in the left cluster (7 of 11) and most 
controls in the right cluster (9 of 13). However, no significant 
difference was found when comparing expected and observed 
frequencies using the Chi-square test (P = 0.107). Figure S1 in 
Supplementary Material shows a protein:gene ontology-(GO) 
term network, which identified four clusters of biological pro-
cesses, each with its leading term, that most efficiently intercon-
nect the nine proteins showing significantly different responses 
to C. albicans among patients and controls. Any regulatory 
relationships between the proteins, as per CluePedia v10.0, are 
displayed as well.

Monocytes from aPs-1 Patients have  
an impaired il-23p19 response When 
stimulated with curdlan
We found comparable numbers of monocytes in unstimulated 
PBMCs from patients and controls (Table 3), and no significant 
difference in frequencies of IL-23p19+ cells was found comparing 
unstimulated cultures. Although not significant, patients seem to 
have a greater variability in both numbers of monocytes when 
gating on FSC/SSC and CD14+ monocytes (Table 3; Figure S2 
in Supplementary Material). However, when comparing 
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FigUre 2 | Hierarchical cluster analyses of mediator alteration in control and patients. Unsupervised hierarchical cluster analyses and distance matrix analyses for 
11 patients (red P1–P11) and 13 controls (green C1–C13) were performed. Concentrations of mediators were measured before and after intervention as previously 
described. The alterations were standardized after ratio after/before intervention and log(2) transformed before unsupervised hierarchical clustering with Squared 
Euclidean distance measure with weighted average linkage was performed, resulting in a heat map for visualization and interpretation. The mediator alteration 
profiles identified to main patients/control clusters and two main cytokine clusters.
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unstimulated and stimulated monocytes, the levels of IL-23p19 
were significantly increasing in controls, whereas this was not 
found in APS-1 (Figures  3A,B; Figure S2 in Supplementary 
Material). Moreover, healthy controls had a significant greater 
increase in total IL-23p19+ monocytes upon stimulation with 
curdlan (Figure 3C).

DiscUssiOn

Chronic mucocutaneous candidiasis as a major clinical disease 
manifestation in APS-1 suggests immune defects in mechanisms 
crucial in fungal defense. The aims of the present study were to 
characterize APS-1 patients’ immune activation in response to 
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Table 3 | Monocyte counts in autoimmune polyendocrine syndrome type 1 
(APS-1) and controls.

cells aPs-1 controls P value

Monocytes [forward  
scatter (FSC)/side  
scatter (SCC)]

8.810 (1.98–16.6) 11.70 (8.32–16.00) Ns (0.0978)

CD14+ monocytes 64.9 (29.0–86.90) 79.45 (67.10–87.80) Ns (0.3355)
Interleukin (IL)-23p19+ 
monocytes – 0

0.33 (0.00–1.69) 1.00 (0.078–1.73) Ns (0.4796)

IL-23p19+ monocytes 
– curdlan

0.75 (0.00–2.32) 1.655 (0.28–3.33) Ns (0.0831)

The table gives a comparison of percent monocytes in APS-1 and controls both when 
gated on FSC/SSC and the number of CD14+ monocytes in the current monocyte 
gate. Numbers are given as median (and range). The Mann–Whitney U test was used 
for the statistical comparison.
0, baseline/unstimulated. Ns, not significant.

FigUre 3 | Interleukin (IL)-23p19 responses found in monocytes in autoimmune polyendocrine syndrome type 1 (APS-1) patients and controls. The figure gives  
an overview of the IL-23p19 response found in monocytes in patients versus controls. (a) APS-1 patients; no significant increase in IL-23p19 was detected in 
monocytes. Numbers at the Y-axis gives the percentages of IL-23p19+ monocytes after stimulation with curdlan. (b) Controls; a significant increase in IL-23p19  
was detected in monocytes. The numbers at the Y-axis give the percentages of IL-23p19+ monocytes after stimulation with curdlan. (c) Comparing the increase  
in IL-23p19+ monocytes found in APS-1 and controls at baseline and after curdlan stimulation. NS, not significant.
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C. albicans and our findings clearly state that APS-1 patients 
have an altered immune activation compared to healthy controls. 
IL-23p19, which is required for the formation of Th17 cells, was 
found dysregulated both in whole blood and monocytes upon 
stimulation with C. albicans indicating its contribution to CMC 
in patients.

The overall differences detected in the immune mediators in 
APS-1 patients have relatively broad implications on the qual-
ity of the immune response against C. albicans (Figure S1 in 
Supplementary Material). Importantly, with regard to immune 
responses against Candida, biological processes involving posi-
tive regulation of IL-17- and IL-23 production, as well as posi-
tive regulation of lymphocyte mediated immunity, were clearly 
impaired in patients. The significance of the other enriched 
biological processes impaired in patients, positive regulation of 
T-cell-mediated cytotoxicity, and immunoglobulin-mediated 
immune responses, respectively, is less obvious. However, a 
severely impaired general CD8+ T-cell homeostasis has been 
previously reported in APS-1 patients (26). The importance of 

humoral immunity against Candida is suggested to be relatively 
modest compared to cellular defense mechanisms (27). Still, the 
most important mediator in the biological process involving 
immunoglobulin mediated immune responses was the com-
plement factor C3, which APS-1 patients failed to up-regulate 
in response to C. albicans. C3 plays several important roles 
during the early innate responses against Candida, through 
opsonization and subsequently recognition and phagocytosis 
by neutrophils and monocytes (28). Moreover, comparing 
the increase in immune mediators in response to C. albicans, 
significant differences between patients and controls were 
found for several mediators (IL-1β, IL-10, IL-12p40, IL-18, 
and IL-23) involved in the crosstalk between innate immune 
cells and subsets of T cells. This indicates that several cellular 
mechanisms may be involved in altering the immune response 
in patients. NOD-like receptors are cytosolic proteins that 
are implicated in sensing fungi and, once activated, produce 
IL-1β and IL-18 through the formation of inflammasomes (29), 
both of which were less up-regulated in patients compared to 
controls in response to Candida stimulation. IL-1β is crucial 
for the differentiation of Th17  cells and for the activation 
and recruitment of neutrophil granulocytes, while IL-18 is 
important for the induction of IFNγ producing T helper 1 
(Th1) cells. IL-10 is produced by almost all immune cells and 
its major role is to limit the extent of immune activation and 
retain homeostasis (30). IL-12 is a pro-inflammatory molecule 
primarily produced by professional antigen-presenting cells 
(31) and it activates natural killer cells and induces the dif-
ferentiation of naïve CD4+ T lymphocytes to become Th1 cells 
(31). Notably, the IL-12p40 chain of IL-12 can also form a 
dimer with p19 giving rise to IL-23 (32), which is required for 
Th17 differentiation, function and maintenance. Patients failed 
to increase IL-17A, IL-22, and IL-23, which are found critical 
for optimal host defense against cutaneous candidiasis (18) 
and fungal infections (19, 20). Previous studies have reported 
conflicting results about IL-17 production in APS-1 (20, 33), 
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but the finding of reduced IL-22 producing cells in APS-1 
seems more consistent (20, 33, 34). Finally, we also confirm 
a dysregulation of IL-7, which is previously described in a 
Finnish APS-1 cohort (26). Although a more comprehensive 
study of the system biology would generate an even better 
overview of the immune activation and biological pathways 
involved in the response to Candida in APS-1, our findings 
indicate an altered immune activation in APS-1 patients, which 
includes several immune mediators that play important roles 
in immune homeostasis and particularly in the host defense 
against fungi (Figure S1 in Supplementary Material).

Interleukin-23 and Th17 cytokines have been impli-
cated in the pathogenesis of many autoimmune diseases 
(35–37), and we therefore found the total lack of IL-23 in 
APS-1 patients particularly interesting. IL-23 is secreted by 
activated monocytes and dendritic cells (38) and induces the 
differentiation of naïve T cells into Th17 cells and can promote 
the further expansion and maintenance of Th17 cells, and the 
production of Th17 cytokines via IL-23 receptor and STAT3 (38).  
In the literature, there is already conflicting information about 
IL-23 signaling in APS-1. Ryan and collaborators described 
monocyte-derived DCs from APS-1 patients to over-produce 
IL-2, INFγ, TNF-α, and IL-13 and demonstrated both impair-
ment in maturation and hyper activation in response to  
C. albicans (39). However, the IL-23 response was comparable to 
controls (39). Another study assessed Th17 responses of PBMCs 
to Candida and non-Candida species stimuli finding that PBMCs 
from APS-1 patients had a normal or increased IL-17 production 
and Th17 cell proliferation, although only in the absence of their 
own plasma, which had an inhibitory effect on both IL-17 produc-
tion and Th17 cell proliferation (34). This study reported normal 
IL-6 and IL-23 responses in APS-1 patients. Furthermore, expres-
sion levels of all pattern recognition receptors (PRRs) involved 
in anti-candida responses, levels of plasmacytoid and myeloid 
DCs, and monocyte toll-like receptor (TLR)-2/TLR-6 expression 
are described similar in APS-1 and controls (40). Finally, we 
have previously reported reduced numbers of CCR6+CXCR3+  
T helper cells, CD16+ monocytes, and Tregs in patients with 
APS-1 (41). These previous studies have investigated IL-23 from 
DCs and PBMCs in APS-1 (34, 39, 40), but less information 
about monocytes exists. We report comparable numbers of 
monocytes in both patients and controls and similar levels of 
IL-23p19 in unstimulated monocytes. Interestingly, monocytes 
from patients fail to increase IL-23p19 production both when 
comparing the steady-state levels and stimulated levels within 
each group and when comparing the total increase between the 
groups. The reason for the discrepancy in IL-23 production in 
the studies mention above and our current findings could be due 
to differences in cell types studied (PBMCs, DCs, monocytes, 
and whole blood), or that PRRs activate differently to particular 
Candida strains. These important aspects need to be further 
investigated.

Furthermore, there are conflicting information about 
the clinical relevance of monocyte-specific IL-23 signaling 
and CMC. Patients with autosomal recessive IL-12RB1 or 
IL-12p40 deficiency suffer from CMC and, therefore, indicate 
that impairment of IL-23 signaling can be the molecular 

pathogenesis of CMC (42, 43). On the other hand, CMC is 
not well described in patients with GATA2 deficiency, which 
severely impairs monocytes (44). Our findings suggest a 
monocyte-specific IL-23 deficiency in APS-1 patients, which 
resonates well with a previously published study reporting an 
extrathymic role of AIRE in monocytes (45). Specifically, that 
study described how AIRE interacts with CARD9, SYK, and 
Dectin-1 in healthy monocytes and thus plays a major role 
in activation of the Dectin-1 pathway by stimulation with 
curdlan. Consequently, PBMCs from AIRE-deficient APS-1 
patients produced significantly less TNF in response to cur-
dlan stimulation compared to healthy controls. Noteworthy, 
the expression and biological role of the AIRE protein in 
peripheral blood cells are controversial (46, 47), and the inter-
pretation of our data in this context should be approached with 
caution until the expression of AIRE in monocytes has been 
further verified. Based on the above, a general impairment in 
immune activation and an altered monocyte response prob-
ably contribute to CMC found in APS-1 and is likely to involve 
the Dectin-1 pathway.

Auto-antibodies play a key role in CMC in APS-1, and 
auto-antibodies against IL-6, IL-17A, IL-17F, IL-22, and 
IFNω are previously described (19, 20, 48). We searched for 
auto-antibodies against IL-23 in all patients without any posi-
tive findings, confirming a previous report (48). All patients  
included in our study present auto-antibodies against INFω, 
and about 60% have auto-antibodies against IL-22. To spe-
culate, these auto-antibodies may influence the difference 
in immune response found in whole blood by interacting in 
autocrine and paracrine signaling loops and thereby disturb 
cellular responses. These speculations are supported by the 
finding that APS-1 patients failed to up-regulate the interferon 
regulated serum inflammation marker B2M after C. albicans 
stimulation. The inhibition of interferon regulated genes by 
APS-1 patient auto-antibodies is well established (49), and the 
importance of type I interferons in immunity against Candida 
was recently demonstrated (50).

Our study has some limitations. First, the rarity of APS-1 makes 
biological samples limited. We therefore had to strictly prioritize 
our samples and chose to focus on stimulation assays in the search 
of differences in the protein expression using flow cytometry, rather 
than for example detecting RNA transcripts using quantitative 
polymerase chain reactions. Our cell assays were also more robust 
compared to pilot experiments of culturing PBMCs or whole 
blood with C. albicans, and analyzing supernatants for signaling 
molecules using ELISA. Second, in our cell assay, few monocytes 
produced IL-23p19 when stimulated with curdlan and some cells 
were border line positive for IL-23p19 after stimulation. However, 
we carefully optimized our assay regarding incubation time, 
concentration of Dectin, and Brefeldin A stimulation. Moreover, 
samples from two patients and two controls were always stimu-
lated and analyzed together, we used a consistent gating strategy 
when analyzing data, and our findings regarding IL-23 were 
comparable in both the cell assay and the TrueCul ture system. 
In general, whole blood assays probably mirror the in vivo condi-
tions of inflammation more precisely than PBMC assays regard-
ing interplay between subsets of immune cells and mediators.  
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We found significantly altered IL-23p19/IL-23 signaling in both 
our assays making the findings reliable.

In summary, in order to gain further insights into the molecu-
lar mechanisms of CMC in APS-1, we used different approaches 
to investigate the immune activation in APS-1 in response to C. 
albicans. Our findings indicate that patients have a significant 
altered immune activation with broad implications on the qual-
ity of the immune response to C. albicans and that monocytes 
contribute to a dysregulation of the IL-23/Th17 axis, which is 
crucial for proper immunity to fungal infections.
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FigUre s1 | Functional annotation of the protein profile characterizing the 
altered immune response to C. albicans in APS-1 patients versus healthy 
individuals. This protein:gene-ontology-(GO) term network identified four clusters 
of biological processes, each with its leading term, that most efficiently 
interconnect the nine proteins here relevant. Any regulatory relationships between 
the proteins, as per CluePedia v10.0 are displayed as well.

FigUre s2 | Gating strategy for flow cytometric analyses.
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