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WORDS TO THE EXPLORER

There is a mine for silver and a place where gold is refined. Iron
is taken from the earth, and copper is smelted from ore.

Man puts an end to the darkness; he searches the farthest recesses
for ore in the blackest darkness. Far from where people dwell he
cuts a shaft, in places forgotten by the foot of man; far from men
he dangles and sways.

The earth, from which food comes, is transformed below as by
fire; sapphires come from its rocks, and its dust contains nuggets

of gold.

No bird of prey knows that hidden path, no falcon’s eye has seen
it. Proud beasts do not set foot on it, and no lion prowls there.

Man’s hand assaults the flinty rock and lays bare the roots of
the mountains. He tunnels through the rock; his eyes see all its
treasures. He searches the sources of the rivers and brings hidden
things to light.

But where can wisdom be found? Where does understanding
dwell?

Job, ancient Hebrew
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Chapter 1

Introduction

Heterogeneities are found at all scales in nature, and the mapping of hetero-
geneities and the study of their effects on physical processes is a fundamental
scientific activity. In geophysical prospecting, measured data is inverted to
create a parameterized model, and this model can subsequently be applied
in forward modelling for predicting data measurements (Menke, 1984). In
popularized language, modelling may thus be regarded as the opposite pro-
cedure of data inversion. It is used to simulate processes found in nature
based on the physical principles for the simulated process and a set of model
parameters.

Wave propagation modelling is a principal and irreplacable tool for visu-
alizing wave propagation and thus testing a model interpreted from real data.
In petroleum geoscience, seismic data has traditionally been used primarily
for geometric mapping of the extent and volume of possible hydrocarbon
reservoirs. However, integration of rock physics modelling, where seismic pa-
rameters are calculated from physical rock parameters, also enables the mod-
eller to study the seismic response of different quantifiable geologic properties
such as sand — shale ratio, porosity, pore fluid composition and permeability.
By perturbating such parameters and modelling the seismic response, a best
fit to the measured seismic data can be found for such parameters. An in-
creased understanding in this area of seismic modelling is required to develop
effective and reliable methods for rock physics data inversion, recognized to
have a great potential for improving the drilling success rate in petroleum
industry.

In my thesis the focus will be on two main issues related to assigning
property values to a spatial model utilized for seismic modelling. The first
issue, which is discussed in chapter 3, is the topic of upscaling a small scale
model representation, while the second issue, discussed in chapter 4, is that
of interpolating between spatially confined data.
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Figure 1.1: The issue of upscaling: Heterogeneous outcrop compared to scale
of a seismic wave. (From Helbig, 1994)

The issue of property upscaling is illustrated by figure 1.1 (from Helbig,
1994) and is related to the different scales involved in the measurement. The
minimum size of features of interest for geophysical mapping has decreased in
scale as the resolution of seismic data has improved. From focusing on map-
ping large scale structures such as the divison of the earth into core, mantle
and crust, now a great effort is put into the study of subtle and microscopic
properties, important e.g. to optimize the oil production in stratigraphic
reservoirs. In reservoir characterization the dimensions of individual hetero-
geneities are very small compared to the applied wavelength A in a seismic
study. Small scale heterogeneities may therefore not be discernable as dis-
tinct units. However, they may have joint effects on the measured wavefield
that are detectable.

Effective medium theory states that a medium that displays property
fluctuations when inspected on small scale, may behave like a nearly homo-
geneous media when measured on large scale, with the deterministic large
scale properties given as functions of the local statistical averages of the small
scale properties (Hudson, 1991).

Parameter upscaling thus involves mapping parameters from the small
scale domain, where property values vary with high spatial frequencies, to
a large scale domain that is more homogeneous and thus appropriate for
efficient simulations of large scale processes. The objects upscaled in this
thesis are well data logs, which are frequently provided with sampling density
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Figure 1.2: The issue of interpolation: Constructing spatial property models
from field data and a priori information.

on the scale of decimeters. Since waves applied in seismic surveys often have
wavelengths of tens of meters when they are probing the reservoir, it is of
great interest to estimate the large scale properties of the well data. In this
thesis I will interpret the log data as representing a thin-layered model, and
I will consider different smoothing operations that may be applied to upscale
such a model. One of these is the classic Backus smoothing (Backus, 1962),
creating a transverse isotropic upscaled medium. I will simulate seismic
wave propagation by finite difference modelling by using some of the small
scale models and their associated upscaled medium versions, comparing the
seismic response. Hence I will be able to make some conclusions regarding
the validity of the different upscaling models.

The second issue of model parametrization, regarding aspects of para-
meter interpolation, is discussed in chapter 4 and illustrated by figure 1.2.
When building a model, measured well data can be included in the model at
the spatial locations where they are available. But well measurements are of
course confined to the well trajectories, while the main objective of seismic
mapping is to estimate how the parameters vary spatially between the wells.
Forward modelling thus involves building a spatial model based on the avail-
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able measurements in wells and necessarily also some a priori information
regarding how these data are to be interpolated or extrapolated. Regarding
the correlation geometry, the most frequent assumption is of course that the
medium comnsists of horizontal strata, but other geometries should also be
considered. In addition to the obvious effect related to different correlation
geometries, effects will be considered related to the use of different inter-
polation functions to interpolate along these correlation lines between the
wells.

Questions related to this last issue are, for example, what the effect on
the resulting model is by linearly interpolating the seismic velocities versus
interpolating the elastic constants, since these properties are related, and
whether properties should be interpolated in the small scale or the small
scale domain.

Preceding the two main chapters, my thesis contains a chapter 2 contain-
ing the fundamental elastic theory needed for describing wave propagation
in a homogeneous and a thin-layered medium. This chapter also gives the
theoretical basis for classifying the media used in the following chapters.

Rounding off my work, the most important conclusions from my obser-
vations in chapter 3 and 4 are stated in chapter 5, which is also brings some
suggestions for further studies of the covered topics.



Chapter 2

Waves in homogeneous and
thin-layered media

2.1 Introduction

Understanding the mechanisms and material properties related to wave prop-
agation in a spatially invariant, i.e. a homogeneous, medium, is the funda-
mental basis for aquiring an understanding of seismic properties in more
complex media. Such a medium is of course a simplification of any medium
found in nature. Even sediments which to the naked eye look homogeneous,
consist of packed grains of different minerals, grains which on the most mi-
croscopic level consist of crystals and atoms, being neither homogeneous nor
continuous.

However, the overall behaviour of a small scale heterogenecous medium
subjected to large scale waves can be described in terms of large scale proper-
ties which are locally homogeneous, socalled effective properties. The elastic
properties and the related wave propagation behaviour in such an idealized
effective medium is the focus of this chapter.

In the following, I will look at the fundamental elastic theory needed for
describing wavepropagation in a completely elastic medium that is either
homogeneous or thin-layered. The thread in this discourse starts at the def-
initions of stress and strain and ends at formulas describing how a wavefield
excited from a point source spreads in a thin-layered medium.

Along this course, medium classification terms such as isotropy and trans-
verse isotropy are explained, and the general elastic wave equation is pre-
sented and then solved for plane waves. From the solutions of this equation,
and by observing how large scale properties of a thin-layered medium are
related to the small scale constituents, the fundament for modelling a long
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Particle a | Deformed
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Particle bz Equilibrium
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Figure 2.1: The definintion of differential particle displacement du in a de-
formed medium. (From Auld, 1990).

wavelength elastic wave in a small scale layered medium is laid.
For a more in depth presentation of the given topics, sec e.g. Auld (1990).

2.2 Principles of elasticity

2.2.1 Particle displacement and strain

The study of elastic waves is the study of time and space varying deformations
in a continous matter. Forces applied to a particle with equilibrium position
L, gives it a particle displacement u (L, t) from L, giving it a new location
1(L,t) . This displacement represents motion of rigid translation and rotation
as well as deformation. To exclude the rigid translation, we consider the
differential of du for a fixed ¢, comparing the displacement of the particle
with equilibrium point L with that of neigbouring particles with equilibrium
points L + dL (see figure (see figure 2.1), i.e.

du (Lt) = dl(L,t) — dL (2.1)

In case of a rigid translation, this expression will vanish since the two differ-
entials on the right hand side are equal. The explicit differential particle dis-
placement in an orthogonal coordinate system where u (L,t) = Xu,+yu,+2u,
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is given by

dug dug dug
L, 0Ly, 0L, dL,

o duy  Ouy  Ouy

du= | 37 8L, OL. dLy | . (2.2)
du du duz dL
9Ly OL, OL- z
A ~ vy
e(L,t)

¢ (L,t) in equation 2.2 is defined as the displacement gradient matrix, in sym-
bolic notation written as ¢ (L,t) = Vu. However, this displacement matrix
does not separate between the effects of deformation and the effects of pure
rotation. This separation is accomplished by defining the scalar deformation

as the A’ = dI? (L;t) — (dL)?. It can be showed that (Auld, 1990)
A" (L,t) = 2S;; (L, t)dL;dL;, (2.3)
with [S] defined as strain:

1 < B’U,Z B’U,j B’U,k 8’U,k

)JiJijZQ:JyJZ? (2'4>

where repeated indices imply summation'. When the displacement gradient
is small, a linear approximation of the deformation is sufficient; cancelling
all negligible quadratic and higher terms in S leads to

1 [/ 0u;  Ouy
Spi===—+=2]. 2.5
2 (aLj * BLZ-> (2:5)
Following the same idea of linear approximation, the distinction between the
equilibrium point vector L and the vector 1 representing the position of the
deformed material when calculating the differentials can be neglected.

By decomposing the displacement gradient matrix into its symmetric and
its antisymmetric part,

£1= (1€1+ ) + 5 (161 - ), (26)

symmetric antisymmetric

it can be shown that the symmetric part of [€] is equivalent with the linear
approximation of [S], while the antisymmetric part of the matrix gives a
description of the rotational component of the differential displacement. In
symbolic writing, strain defined as the symmetric part of the displacement
gradient matrix is often written as [S]| =V, u. Because of the symmetry of

'Summation over repeated indices is assumed from now on. For example: u} = a;;u;

, — 3
means u; ="

j=1 0ij U;
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[S], this 3 X 3 matrix can be represented in abbreviated form as the 6 x 1
vector S = (Sy, S, S3,54,S55,5)". The relationship between the elements in
this vector and those in the strain matrix is simply:

St
1 1 S?
Smm S:z:y sz Sl ESG 555 S
S1=| Sey Sw Sue | =] 3% 2 35 | e=8=] (2.7)
sz Syz Szz %85 %54 S3 S;
L SG -

This abbreviated vector notation will be seen to be beneficient when strain
is related to stress, the other fundamental property of elasticity, by Hooke’s
law, issues covered in the following sections.

When strain is given in vector notation, the measure of strain S = Vgu is
easily found by defining the symmetric gradient operator Vg as the matrix:

VS—7VI]':

O PR © ©

gltl © © ol
oo Provo

thus S[ — V[j’LLj.

2.2.2 Stress

The forces exciting elastic vibrations in a medium may be of two kinds: Body
forces and surface or traction forces. Body forces may be caused by gravi-
tational, electric and magnetic fields, and they act directly on any particles
in the interior of the body. Traction forces, on the other hand, are forces
applied on the boundary of the medium and submitted to the interior by
traction forces between the interior elements. The traction forces are called
stress, and stress is measured in directional force per unit area, while volume
forces are measured in force per unit volume.

In a given stress field, the stress acting on the outer surface of a given
body element is a function of the actual orientation of this surface, given by
its outwards pointing normal n.

The reference stresses T,, Ty, T, are the stresses acting on surfaces ori-
ented normal to the coordinate axes used for defining orientations, and it
can be shown that the stress T, acting on the surface with orientation
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n = (nm,ny,nz) is given by the linear combination n,T, + n, T, + n,T,.
The reference stresses may be used to define the stress acting on any sur-
face at the given location. The matrix [T'] = [T, |T,| T.] is called the stress
tensor, and from the above discussion, the element T;; represents the ith
component of the traction force density acting on the +j face of an infini-
tesimal volume element at the given spatial location. Thus, T, = T;n;. As
will be shown in section 2.3.1, the stress tensor is symmetric, i.e. T;; = T},
as long as no volume torque forces acts on the medium.
Since we have that

T, =[] n, (2.9)

and since [T] is symmetric, if follows from elementary linear algebra that for
; and n;, the stresses acting on the corre-
sponding surfaces are purely normal, 7.e. for these n:

three orthogonal directions n;, n

T,=[T]"n=An. (2.10)

These directions correspond to the directions of the eigenvectors of [T]. For
a given stress field, rotating the coordinate system so that the axes coincide
with the orientations of these eigenvectors, the new reference stresses will be
pure normal stresses and the stress tensor may be written as

T, 0 0
[1'=] 0 T, 0 |. (2.11)
0 0 T

zz

For a surface with an arbitrary orientation (n;, n;, n;) in this new system,
the acting stress is thus given by

T, = Toyn, X +T, n, 5 +T..n,%. (2.12)

Regarding the representation of the stress field, similar to the way the
symmetric strain-matrix [S] is reduced to the vector S, the symmetric stress
matrix [T'] may be represented by a vector T = (T4, Ty, Ts, Ty, T, TG)T by the
following relationship between the matrix and vector elements:

Ty
Ty
Tll T12 T13 Tl TG T5 T3
[T] = T21 T22 T23 = T6 T2 T4 —T= T4 (213)
T31 T32 T33 T5 T4 T3 T,
5
- T6 -
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2.2.3 Hooke’s law

Hooke’s law states that for the case of small derformations, there is a linear
relationship between stress and strain given by fourth rank elasticity tensors
[c] or [s] by: T;; = ¢ijriSk or inversely S;; = ;1 Tw. Focusing on the stiffness
tensor [¢] — the equivalent can be stated for the inverse compliance tensor
— Hooke’s law can be written in symbolic writing as T = ¢ : S, where the
double dot product means summations over pairs of subscripts. Alltogether
[¢] contains 81 elements, but due to the mentioned symmetries of [T] and [S],
[¢] has the following properties:

Cijkl = Cjikl = Cijik- (2-14)

The number of independent linear parameters is hence reduced to 36. We
have shown that the stress and strain matrices can be expressed as 6 X 1
vectors. Observing this, the fourth rank stiffness coefficients c;;z; can be
expressed as a second rank tensor [cr], a 6 X 6 matrix. The elements of this
matrix correspond to those of the fourth rank tensor by:

Cijkl < C1J,

where the pairs 77 and kl relates to [ and J by:

ijorkl |11 22 33 32o0r23 13or3l 12or 21

! !

lorJ |1 2 3 4 5 6

In this abbreviated notation, the socalled Voigt notation, the expression of
Hooke’s law is:

T[ = C[JSJ, (215)

or inversely

S[ = SIJTJ. (216)

From considerations of the elastic potential energy in the medium, (see
Auld, 1990), it can be shown that [cr;] is symmetric, i.e. ¢;; = c¢y7. This
further reduces the number of independent elastic constants to maximum 21
for any medium.

2.2.4 Tensor transformations

I have stated that particle displacement u, strain S;; and stress T;; must be
related to a given coordinate system. If this coordinate system is rotated,
these parameters will be transformated according to the conventions for first
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and second rank tensors. Similarly it can be shown that the stiffness and
compliance coefficients can be transformed by regular 4th rank transforma-
tions.

The regular transformation of a nmth rank tensor due to a rotation of
coordinate axes, is given by

/ _
Pzznmg...mi = Gy Ogoys * ** Qi Pyrya. i (2-17)

where a;; is the directional cosine of the angle between the new axis 7 and

the old axis j]\ Thus the transformations for the given parameters, given by
their full tensor notation form, are:

up = asjuy, (2.18)
T = awauTy, (2.19)
Sij = Sk, (2.20)

c;jkl = QimQinQkoQipCmnop- (2 21)

Evidently these calculations are rather elaborate. For example, the calcula-
tion of any element of [¢] involves 81 summations. However, by using the
Voigt notation for stress, strain and the stiffness tensor, the transformation
can be performed by using the Bond transformation matrix [M], defined as

(Auld, 1990):

r 2 2 2
ayq aiy ais 2a19a43 2a13a11 2a11a19
2 2 2
a21 a22 a23 2&22@23 2@23@21 20421(1.22
a? a2 a? 2a300 2as3a 2a31a
[ M] _ 31 32 33 32033 33031 31032

(2.22)
The transformation formulas are then expressed in Voigt notation as
T = [M]-T (2.23)
and
(] = [M] [e] [M]" (2.24)

or 1n index notation:

Ty = MuiTr,

!
CIJ = MIKMJLCKL-

Q91031 Q92032 Q93033 (99033 + A93A32 A21a33 + A23Q31 A922a31 + A21A39
a31Q11 Q32012 Q33Q13 Q12033 + Q1332 Q11433 + A13Q31 Q11432 + Q12031
| @11G91 Q12Q92 Q13Q93 Q29Q13 + Q12093 Q11Q93 + A13Q21 Q2211 + Q1291
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2.2.5 Symmetric media

With respect to the coordinate dependent elastic properties, rotating the
studied medium is equivalent to rotating the coordinate axes in the opposite
direction. Usually the elastic constants ¢;; of a medium change when they are
subject to a coordinate transformation. However, when there are symmetries
in the elastic properties of the medium for certain transformations, the pa-
rameters remain unchanged. If the elastic constants obey some symmetries,
i.e. they are invariant for certain rotations of the media, the same counts
for the elastic wavepropagation in directions and polarizations according to
these symmetries.

The medium containing the most extensive symmetry properties, is the
isotropic medium, where the elastic constants are completely independent of
the orientation of the coordinate system, that is, the medium can be rotated
in any direction and will still provide the same parameters as the original.
It can be shown that such a system contains only two independent elastic
constants, the Lameé’s constants A and pu:

(2.25)

oCckT oo o
o oo oo
T co oo o

Transverse isotropic media constitutes another frequently encountered sym-
metry class. Such media have one axis of rotational symmetry, and it can
be shown that to have such symmetry the stiffness matrix must contain the
following constants:

ci1 ci2 ¢33 0 0 0

cig ¢ c3 0 0 0

. ci3 c13 ¢33 0 0 0
T 0 0 0 e 0 0| (2.26)

0 0 0 0 Caq 0

0 0 0 0 0 cos

where ¢19 = ¢11 — 2¢g¢. Thus, for an elastic transverse isotropic medium, the
elastic properties are given by five independent parameters.
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2.3 Elastodynamic considerations

2.3.1 The general elastodynamic relations

Consider an infinite small elastic element with volume 6V, surface area 6.5,
density p, acted upon by a bodyforce F and by traction forces from the
adjoining medium. Newtons law gives:

d’u
T -ndS + FdVv = pde. (2.27)
53 5V sv Ot

Letting the volume decrease towards zero, the following limiting formulae
is reached:

o’u
-T=p— —F 2.2
A4 p8t2 , (2.28)
where f T 8dS
‘1
. — Li Jés & T
v-T 51‘}:210 oV ’

For an orthogonal system, the divergence of the stress matrix can be written

as (Auld, 1990)

0 0 0
V.- T= <%TE + 3_yTy + §T2> , (2.29)
or in index notation 5
T, = —T5. 2.
(V1) = 5T, (2.30)

The translational equation of motion can thus be written as

0 0?
Ty = peu; — B 2.31
6$j J patQU ( )
or even more compact

In a similar way, the rotational equation of motion can be deduced, based
on the principles of torque. The moment of inertia vanishes faster than
the volume of the element, thus the applied torques are constrained by the
requirement that

Ty — Ty + Gy = 0, (2.33)

where T;; are shear traction forces and G, is the volume body torque force in
the direction normal to the traction forces. We observe from equation 2.33
that when no body torques are present, the stress matrix is symmetric, a
result that was utilized in the previous sections.
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Combining the translational equation with Hooke’s law,
T (x,t) = Cijkl (x) Sk (x, 1),

the partial differential equation governing wave motion is given as (Aki &

Richards, 1980):

0? 0 0
p(x) ke (x,t) — B, i (x,t) Ba, (xt) = fi(xt), (2.34)
p (X) afui (Xat) — OjCijpg (Xat) Optg (X:t) = fi (Xat) . (2-35>

In abbreviated notation, like the strain-tensor S can be found by the
multiplication of the matrix operator Vg and u, the divergence V- T can be
found by multiplying the following matrix operator [V:] with the vector T

o) 9 o)
BO0 YR
o) o) o)

Here we note that this matrix operator is the transposed of the matrix op-
erator for V,.
Thus in abbreviated notation

In this notation, where Hooke’s law is given by T; = ¢;;S; and the strain is
given by S; = V;u;, the wave equation

—F (2.38)

can be written as

(2.39)

VikexrViju; = PW - I
It can be noted that for the left side of equation 2.39, the matrix [A]Z.j =
Vikck1Vi; is symmetric since cxy, i1s symmetric and the divergence operator
matrix is the transposed of the symmetric gradient operator. This symmetry
will be utilized in the discussion in section 2.3.3, where I will solve the wave
equation for plane waves.
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2.3.2 The general wave solution

Any time-harmonic wavefield with time-independent amplitudes may be ex-
pressed by
u (x,t) = Up (x) 7). (2.40)

Here surfaces where the phase 7 (x) is constant constitutes socalled wave-
planes where the phase given by the exponential is constant for a given time
t. Assuming that 7 (x) is differentiable we have that 7 (x4dx) = V7 (x) - dx.
Thus, for the phase of the wave-function to be the same at x at time ¢ and
x+dx at time t + dt, it is required that

dt — V7 (x) -dx =0, (2.41)
which implies that
dx
\Y = 1. 2.42
T (2.42)

The ﬁ—’t‘—vector denotes the phase velocity of the wave, and equation 2.42 gives

that
1

[V

For plane waves, 7 (x) may be written as (k- x) /w, thus V7 equals k/w
and the phase velocity is given by V' = w/ |k|. The wave number vector
k thus gives the direction of wave propagation and the wavelength A by

|k[ 27 /A, The direction of k may also be expressed by the unit

V| = (2.43)

Vector l letting k = k 1. The components of 1 is the direction cosines of the
wavenumber vector, i.c. 1 = (Ip, 1y, 1) =K/ |k| = (ks, ky, k2) k.

The wave equation is usually solved for plane waves, which approximately
resembles the far-field of a seismic source. Any plane wave propagating in
the direction of 1 may be given as a superposition of harmonic waves with
constant frequency and wavenumber. Each component can be written as

u (x,t) = Ug (w, k) @t k), (2.44)

where the amplitude and phase of the constant Ug is found by Fourier trans-
forming the signal to the w-k domain. If the wavefield represents the particle
displacement, the polarization is given by the direction of the Ug-vector.
Solving the wave equation for a given medium then involves finding the rela-
tion between w and k for possible time independent polarization directions.
This relation can be expressed in terms of e.g. the phase velocity.

I will now deduce the Christoffel equation which will be used for solving
the wave equation for the time-and-space harmonic waves.
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2.3.3 The Christoffel equation
The general plane wave solution to the wave equation is given on the form
u(x,t) = Uge™ > (2.45)

and represents the time- and space harmonic wave with polarization in the
direction of Ugy. In component form for the abbreviated Voigt notation, the
wave equation was given in equation 2.39 by

82U,Z‘
viKCKLVLjU,j = pﬁ — E, (246)
corresponding to the vector equation
0u

When the wavenumber vector is directed in direction i, so that k =
kl1=k (Iz,1,,1,), the scalar product in the exponential factor of the wavefield
expression is given by k- x = k (l,z1 + lyxs + L,z3). Accordingly, the partial
derivatives involved in the operators operators above are given by

88; — —iklu (2.48)
and 52
a—t‘; _— (2.49)

Thus in the two matrix operators corresponding to the divergence and sym-
metric gradient, the expressions d/dz; may be replaced by the expression
—ikl;. The operators V;x and V; in equation 2.39 may then be replaced
by the matrices —ikl;x and —ikly; respectively, where

l 0 1

&8
o

0 2 by
liw=10 1 0 I, 0 I (2.50)
0 0L I Il O
and _ _
I, 0 0
0 {4, O
0 0 I
Ir; = 0 1, 1 (2.51)
l, I
_ly Ly i
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Assuming that the body force F is zero, the wave equation then reduces to
k2 (liKcKLle) U; = k2P¢jU,j = prU,z'. (252)

Equation 2.52 is called the Christoffel equation, and the matrix on the left
side,

Fz] = (liKCI(Lle) s (253)
is called the Christoffel matrix. The Christoffel matrix I' is symmetric, since
lix = lg; in the two matrix operators and cgy, is symmetric (see section

2.3.1). The solution to the wave equation can thus be found by solving the
eigenvalue-problem given by

F'u=~yu, (2.54)

simplified to

by cancelling the exponentials. Here v = pw?/k* and Ujg represents the
direction of wave polarization.

The symmetric 3 x 3 Christoffel matrix always has a set of orthonor-
mal eigenvectors Uy, Uy, Uz with corresponding eigenvalues 7y, 7y, v5. If all
the eigenvalues are different, the corresponding Uy, Uy, and Uj define three
different wave modes with phase velocities given by

Vi—w/k = |2 (2.56)
p

For any displacement vector in such a medium, the components parallel to
the corresponding eigenvectors will propagate with different velocities. This
phenomena is called birefringence. On the other hand, if two of the eigenval-
ues are equal, waves with any particle displacement vector in the eigenspace
plane spanned by the eigenvectors of this eigenvalue, forming socalled de-
generate waves, will propagate with the same velocity. Degeneracy provides
the basis for superposition of waves to generate waves propagating with the
same velocity but having different polarizations. Contrary to the constituting
waves which have a 1-D linear polarization, the displacement vector of the
composite wave may also have a circular or elliptical polarization within the
eigenspace, polarization shapes occurring when there is a phase shift between
the constituting waves.
The Christoffel equation may be rewritten as

(T —~T) Uy = 0, (2.57)
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where the eigenvalues for the given direction of propagation are found by
setting the characteristic determinant €2 equal to zero, i.c.

Q(w, k,loy 1y, L) = [K°Ty5 (lay 1y, ) — pw®6i5) =0, (2.58)
where 6;; is the Kroeneker delta defined as
1, g=i
6i; = 0 i (2.59)

We will now look at the solutions of this equation in the isotropic and trans-
verse isotropic case.

2.3.4 Solutions for the isotropic medium

With the properties of the stiffness tensor for an isotropic medium, the
Christoffel matrix for a wave propagating in the direction of 1 is given by

Cnlg + Caa (1 — l?g) (011 — Ca4) loly (011 — caa) Uyl
I'= (e11 — caa) lply Cnlz + Ccaq (1 — lZ) (e11 — caa) Lyl
(611 — cay) bl (011 — ca) lyl, C11l§ + Caq (1 - lﬁ)

(2.60)
Since the medium is isotropic, the same set of eigenvalues are expected from
any choice of 1, and these values can easily be shown to be

Y11= (2.61)
Yo = Ca (2.62)

The eigenvector 7, is a double root, with corresponding eigenvectors normal
to the direction of i, while the corresponding eigenvector of vy, points in the
direction of 1. The wave with polarization in the direction of I thus has a
phase velocity given by
Vo=, |1, (2.63)
P
while the wave with polarization normal to direction of polarization has the
velocity
Vo=, /2 (2.64)
P
The P-wave, called the primary wave because this wave propagates faster
than the S-wave, i.e. the secondary wave, has a curl-free wavefield, V x ug =
0, while the S-wave field is dilatational-free, i.e. V -ug = 0. Among alter-
native names for the P- and S-waves are compressional and shear waves
respectively, since forces acting on a small volume element exposed to the
corresponding wave fields, are purely compressional and shear stresses re-
spectively.
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2.3.5 Solutions for the transverse isotropic medium

In a similar way the Christoffel equation can be solved for a transverse
isotropic medium with the symmetry axis along the z-axis. For waves propa-
gating in the direction of 1 = (I,,1,,1,) in such a media, the Christoffel matrix

is given by
clll?g + CeelZ + C44l3 (c12 + ce6) Il (c13 + caa) Ll
I'= (012 + ce6) Il Cﬁ(slg + C11l§ + C44l§ (013 + ca4) lyl,
(c13 + caa) Ll (c13 + caa) UL, caal? + C44l§ + c33l2
(2.65)

For any direction of propagation i, the eigenvectors and eigenvalues of T
defines the different wave modes in the medium in terms of the associated
allowed displacement polarizations and dispersion relations, i.e. the required
relationship between k and w expressed as phase velocity V =w/ k1 or by
phase slowness k/w = 1/V L

For most directions of I all the eigenvalues Y (i) Vs (i) and 7, (i) will

be different, thus defining three independent wave modes. These modes will
here be described first in terms of polarization and then in terms of velocity.
Prior to this description, however, it can be noted that since the medium
is symmetric about the z-axis, the wave properties of the medium can be
fully described by considering waves propagating in the z-z plane. The unit
wave vector 1 is then fully described by its - and z-coordinate, which may
be written as 1= (£sin 0, £ cos ) where 0 is the angle between I and the
vertical direction in the range [0,7/2]. Obviously waves with wavenumber
vectors 1 and —i, 1.e. waves propagating in opposite directions, have the
same dispersion relation, and this also is valid for vectors symmetric about
the z-axis because of the transverse isotropy. By inspecting the I'-matrix,
the possible negative signs in the i—components and may thus be ignored.
Accordingly, the dispersion functions plotted as polar plots in the z-z plane
are symmetric about both the z-axis and the z-axis.

For the appropriate numbering of the eigenvalue functions, for all direc-

tions 1 in the z-2 plane the function v, (i) will have a eigenspace containing
an eigenvector parallel to the y-axis. This vector is always normal to the
direction of propagation and thus represents a pure shear wave mode. This
wave-mode is called the SH-wave due to the horizontal polarization.

For a few directions 1, in specific where 6 = 0°,0 = 45° and 0 = 90°, the
eigenvector of the eigenfunction vy, (i) will be parallel to L. This resembles the
behaviour of the P-wave in the isotropic case. However, for most directions of

i, the eigenvector associated to that eigenvalue is not parallel to the direction
of 1, thus this wave mode is denoted the quasi- P-wave.
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The polarization of the third wave mode is orthogonal to the other two
polarizations. Thus this polarization is also confined to the x-z plane. For the
propagation directions where the quasi- P-wave is polarized in the direction
of the wave vector, this third wave mode is a pure shear wave. Therefore
this wave is called the quasi-S-wave, often denoted the SV-wave, since its
polarization is in the vertical plane.

Due to the symmetry about the z-axis, vertically shear waves with a
displacement polarization in any direction in the z-y plane must propagate
with identical velocities. Thus, the SH- and SV-wave are degenerate for this
orientation of propagation. It can also be shown from solving the Christoffel
equation, that vertically and horizontally propagating SV -wave must always
travel with identical velocities, still assuming a vertical symmetry axis.

By finding the eigenvectors vy, 7, and 3 from the Christoffel-matrix as
a function of #, where 6 is the mentioned angle between 1 and the symmetry
axis, the phase velocities are given by the following equations (Thomsen,

1994):

1
2

‘/qp (0) = <% |:C33 + cqq + (Cll - C33) SiIl2 0 + D (0)}) s (266)

M=

VSV (6) = <% [633 + cyq + ((311 — C33) Sil’l2 0—D (9)}) s (267)

and .
2

1
Vs (0) = <; (c66 sin? 0 + ¢4y cos? 9)) , (2.68)
where

D (9) = {((333 — C44)2

+2[2 (13 + caa)? — (c33 — ca) (C11 + c33 — 2¢44)] sin” 0

. 1/2
+ [(Cll + C33 — 2(344)2 —4 (013 + C44)2} sin* 9} / . (269)

Plotting the velocities as polar functions of 8, where
(Ve Vi) = V(6) (sin (0) 05 (0)

defines the phase velocity curve or surface for the given medium. Such ve-
locity curves are plotted in figure 2.2 a), where the elastic constants of the
medium is given in the figure. A different but frequently used representation
of the dispersion relation is the slowness curve or surface. The slowness curve
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Figure 2.2: The (a) phase velocity and (b) phase slowness curves in the
symmetry plane of a transverse isotropic medium symmetric about the z-
axis.

is simply given by (S;,S,) = (1/V,,1/V,). In figure 2.2 the corresponding
slowness curve is plotted in panel b).

The phase velocity describes the velocity the wave-surface of a plane wave
propagates in the direction perpendicular to the wave surface, i.e. parallel
to 1. Now let us look at the properties of a wave generated by a point source
in the given medium.

The velocity of which a generated wave propagates away from the point
source location, can be defined as the group velocity Vg.

The corresponding group velocity surface may thus be viewed as a snap-
shot of an expanding wave phase surface generated at origo. Using the for-
mulas that will be given shortly for deriving V, figure 2.3 presents the group
velocities of the transverse isotropic medium of which corresponding phase
velocity curves were plotted in figure 2.2 a). As we notice immediately, the
shape of the phase- and group velocity surfaces are different.

Now let us look at an explanation of the relationship between the phase
and group velocities. A point source may be viewed as a device exciting plane
waves uniformly in all directions. That is — the plane waves has the same
amplitude and polarization mode in all directions 1. From this point of view,
the closed wave surface generated from this excitation, is the constructive
interference of these plane waves.
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Figure 2.3: The group (a) velocity and (b) slownesses for the anisotropic
medium of which dispersion relations were given in figure 2.2.

In an isotropic medium, these plane waves radiate with identical velocity
for all propagation directions 1. The constructive interference of the plane
waves is thus normal to i, generating a circular wave curve identical to the
phase velocity curve. For the isotropic medium, the phase- and group veloc-

ities are thus identical, i.e. V' (i) =V, (%), and 1 = £, where # is the vector

pointing in the direction where the plane wave with wave vector k =k1 con-
tributes to the group velocity curve.

In the anisotropic case the result is different, since phase velocities changes
with 1.

Figure 2.4 displays how plane waves, with wavefronts normal to the di-
rections of propagation 1 given by the dashed lines and located from origo
according to the phase velocity surface, generate the corresponding group
velocity surface. The point on the group velocity surface corresponding to
each visualized i, is indicated by small circles.

The surfaces represents a generalized TT medium. It is seen that for
directions perpendicular and parallel to the symmetry axis the phase and
group velocities are equal, and the angle ¢ between 1 and # is zero. For other
directions of 1, as indicated in panel a) of this figure, V (i) =V, (¥) cos ¢ by
simple trigonometry.

Assuming that the energy triggered by the source is distributed uniformly
to the plane waves for all i, a segment of length dS on the group velocity
curve corresponding to a large angular range of corresponding plane-waves
will contain more energy than a different d.S-interval on the same curve cor-
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Figure 2.4: Relationship between phase velocity and group velocity. (Win-
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responding to a smaller range of corresponding plane-waves. As stated by
Winterstein (1990), consequently the energy triggered by a point source in a
homogeneous but anisotropic medium is not necessarily spread uniformly in
all directions. This point is illustrated by the varying spatial density of the
mentioned circles on the group velocity curve in panel a) in figure 2.4.

Obviously the group velocity can also be derived numerically from the
dispersion relation Q (k,w) = 0 which the phase velocity and slowness sur-
faces are variations of. This characteristic equation implicitely gives w as a
function of k = kI, and the group velocity is given as the gradient of this
function, i.e. (Mavko et al., 1993):

N Ow Ow

Vy (1) = Vo = k5= 4 42 2.70

g F ok, ok, (2.70)

Equation 2.70 implicates that the direction of the group velocity associated

to a given wavenumber vector k, is given by the normal vector to the corre-
sponding point on the slowness-surface, which gives w as a function of k.

Numerically, the gradient in equation 2.70 is given by the implicit function

Vi)

V, = _BQ/Bw (2.71)

where () is the characteristic equation 2.58.

It can be shown from equation 2.70 that the relationships between the
phase velocity V (i) and the associated group velocity V (f) is given by
(Thomsen, 1986):

v wo) =0+ (47) (2.7
g P do ’ '

where 1 is the angle between the z-axis and ¥, and # is the angle between
the z-axis and the wavenumber vector 1, and where

(0 0) = Vou/Vae = BTAAE
- <tan9 + %%) / <1 - ta;9%> . (2.73)

2.3.6 Thomsen parameters for weak anisotropic media

Thomsen (1986) states that most composite rocks contain weak elastic trans-
verse isotropy where the symmetry axis is the vertical axis, and that the
related angular dispersion can be stated in terms of the vertical qP- and
qS-velocity, g and 3, respectively, and three parameters describing the
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anisotropy, the socalled Thomsen-parameters, £,6 and . The angular dis-
persion with these parameters are as follows, where 0 is the angle between
the wavenumber vector and the z-axis:

Ve (0) = o (1 + §sin?0cos? 0 + £sin? 9) , (2.74)
2
Vsv (0) = [, <1 + % (£ — 6) sin? 0 cos® 9) , (2.75)
0
and
VSH (9) = ﬂO (1 —I— ’YSil’l2 9) s (276)
where
o e .
ces — Caa  Vsm (90°) — 5,
= = , 2.78
¥ oo B (2.78)
and

(c13 + 044)2 — (33 — 644)2
2ca3 (033 - C44)
Even though ¢ and 7 are the traditional measurements for transverse
isotropy, since these give the difference between vertical and horizontal ve-
locity of the P- and S-wave, for small angles 6 the parameter § is by far

6:

(2.79)

the most significant on the waveshape, relevant to analysis of near-vertical
waves, which are studied in most seismic surveys. For interested readers, see

Thomsen (1986).

For weak anisotropy, Thomsen shows that the group velocity is given by:
Vo (9) =V (0) (2.80)

where the group- and phase velocities are pairs of the same polarization. The
corresponding angle ¢ = ¢ (0) is for weak anisotropy given by the relation

1 1 dV
t =tanf |1 — 2.81
an¢ = tan l +sin9¢osHV(9) dﬁl’ (2:81)
which fully linearized leads to
tangp = tand, [1 4 26 + 4 (£ — 6) sin’ Hp} , (2.82)

2
tan g, = tanfgy ll + 2% (g —06) (5 — 2sin? Hgv)l , (2.83)
0

and

tan gy = tan gy (1 + 27). (2.84)
The procedure for finding the group velocity surface is thus greatly simplified
compared to the general case for anisotropic media.
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2.3.7 Backus upscaling

Thus far we have considered wave propagation in only a homogeneous medium.
What is really of interest in this study, however, is the behaviour of a thin-
layered medium. As stated by IHelbig (1984), for all layer thicknesses, the
wavefield in the composite medium can be calculated by solving the wave
equation for each homogeneous layer and requiring continuous stresses and
displacements across all layer boundaries. Such exact solutions forms the
basis for the use of propagator matrices, which is discussed briefly in the
following section.

For very long wave lengths, i.e. A\/d >> 1, it is assumed that the stress-
strain state in a representative volume element, containting the different thin
layers, is nearly homogeneous. Thus it should be possible to approximate its
elastodynamic behaviour for such wavelengths by calculating its static stress-
strain relationship. This is the basis idea of the Backus averaging (Backus,
1962). Instead of solving the wave equaton for the composite medium, a
replacement medium is calculated that is valid for the long wavelength to
layer thickness case.

Backus showed that a horizontally thin layered medium, made up of
isotropic or transverse isotropic layers with symmetry axis perpendicular
to the layering, can be replaced by an effective large scale medium that is
transverse isotropic.

Backus averaging is an averaging process where the effective, or upscaled,
parameters are found by an averaging over functions of the elastic constants
of the individual layers to form similar functions of the effective constants of
the upscaled medium. to represent a vertically heterogenous medium as a
long-wave-equivalent transverse isotropic medium.

As explained in Maland (1993) |, such averaging is equivalent to con-
volving the the functions of the small scale parameterization, f (z), with an
averaging window w(z). This average at location z is given by (f (2)) is found
by:

A2
f(2) = / f(2—2)w()d, (2.85)
—A/2

where the averaging window has the properties

“+o00

/ w(z)dz = 1, (2.86)

— 00

“+o00

/z-w(z)dz = 0, (2.87)

— 00
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and

w(z) =0 for |z] > A/2. (2.88)

The effective elastic parameters are found by applying the above men-
tioned averaging on algebraic combinations of the elastic coefficients of the
original medium, and consequently operating on these averages. Given the
stiffness tensor for each single layer by:

(e g i3 0 0 0 ]
ci2 en ci3 0 0 O
ci3 ci3 cz3 0 0 O B l B
0 0 0 e O 0 | Ce6 = 9 (c11 — c12), (2.89)
0 0 0 0 ecq O
0 0 0 0 0 cg |

the effective transverse isotropic medium will have the stiffness tensor:

Cypy Cp Ci3 O 0 0
Cip Cyp Ci3 O 0 0
Cis Ciz Cs3 0 0 0 _l B
0 0 0 Cu O 0 , Ces = 2 (C11 — Cha), (2.90)
0 0 0 0 Cu O
L 00 0 0 0 Ce
where
Cu = <Cll C13C33 > + <C§3 >71 <013C§3 > , (2.91)
Ciz = (12— Cists ) + (Ca >71 (c13cs )", (2.92)
O = (es) (2.93)
Cis = (ez) ' (ensea') (2.94)
Cu = (al) (2.95)
and

Cec = (Ces) - (2.96)

When the components are isotropic, they are described by Lamés con-
stants A and M. C11 = €33 = ()\-I— 2/1), C19g — C13 = )\, Cq4 = Cgg = U. This

leads to:
A+ p 1 N/ o \?
Cyhp = 4 2.97
! <M)\+2M>+<)\+2M> <A+2u>’ (297
1

-1 2
_ p A
“n = <2AA+2u>+<A+2u> <)\+2N> ’ (2.98)
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1 -1
Cs3 = <)\ 2M> ; (2.99)

+

1 -1 A
Cia = 2.100
13 <+2u> <A+2M>’ (2:100)

Cu = < >l, (2.101)

and

Ceo = (1) - (2.102)

If the small scale isotropic medium is given in terms of P- and S-velocity
and density for each layer, Lamé’s constants can easily be derived since

VA ik (2.103)
p
Ve = \/%. (2.104)

The input to the averaging is thus frequently found by

and

C11 = Czz3 = (pVIg) s (2105)
Cqpg — Cgg = (pVS?) s (2106)

and
cr=ciz=(p(VZ —2V2)). (2.107)

2.3.8 The propagator method

In the ray theory or short wavelength limit, the total traveltime for waves
traveling perpendicular to the layering of a layered medium equals the sum of
the traveltimes in each of its constituents. Given that the composite medium
consists of k different types of media, and each material has vertical velocity
Vi and constitutes the volume fraction f; of the entire medium, the ray
theory average velocity Vgr through the medium is given by

1 I
— = —, 2.108
Var zk: Vi ( )

This velocity is thus found by averaging the slownesses of the constituents.
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For a thin-layered medium, i.e. where A >> d, the Backus theory pre-
sented in the previous chapter led to an effective medium velocity Vearr
perpendicular to the layering given by

! => Ji (2.109)

2 2°
paveVEAIT k pkv;c

which is equal to the velocity corresponding to the Reuss averaged small scale
medium.

For intermediate ranges of A/d, the complete waveform of the transmitted
medium can be found by the use of propagator matrices (Aki and Richards,
1980). The wave variables of interest here are those at the top and bottom
of a stack of layers. These are related by a product of propagator matrices,
one matrix given for each layer. For waves travelling perpendicular through
n layers, the relationship of the input and output wave is given by

S n S
e a0y
n 1

where S and W are the Fourier transforms of the wave variables o and w,
where these variables refer to different components of the displacement and
stress variables depending on the polarization of the applied wave mode. For
normal incidence P-waves, ¢ is interpreted as the normal stress across each
interface, and w is the normal component of particle displacement velocity
du, /dt. For normal incidence S-waves, o is the shear traction across each
interface and w is the tangential component of particle velocity, du,/dt or
du,/dt. Of course we are here assuming that the layering is horizontal.
For each layer k,the matrix A; has the form

cos (%) 14/ pp, My sin (“’7‘1’“)

A, = , 2.111
g yp— sin (“)—d&) cos (“’—d&) ( )

where dj, is the thickness of the individual layer and M is the corresponding
elastic modulus for the applied wave. Similar relations can be given for
obliquely incidenting waves, see e.g. Aki and Richards, 1980).

The propagator theory has only been briefly covered in this section, and
will not be used in the following chapter covering the large scale proper-
ties of well data interpreted as thin-layered layered media. However, some
observations of differences between wavefields measured in the thin-layered
model and in the homogeneous replacement medium in that chapter can be
explained by referring to figure 2.5, showing how the wavelet in the measured
signal varies from the small to the large A/d-ratio models:
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Figure 2.5: The transition from ray tracing velocity limit (average slowness)
to effective medium velocity limit (iso-stress), modelled by the wave prop-
agator operator on a two-phase layered medium with increasing A/d ratio.

(From Johansen, 1997).
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All the two-phase layered models in this figure has the same ratio of the
constituting two materials. From one model to the model below, each phase
segment is cut in half and mixed, creating series of models where the layer
thickness decreases exponentially.

For the upper thick-layered model, the recorded wave contains the di-
rectly transmitted wave and succeeding easily identifiable multiples or peg-
legs caused by the intermediate interface. For the models below the number
of internal interfaces increases, and for each added interface, more energy in
the direct wave is reflected. As a result, the amplitude of the direct trans-
mitted wave decreases, resulting in an energy transfer from the front of the
wave and adding it back later in the signal. The result is a phase-change
and time-delay of the recorded signal. For a more detailed description of this
phenomena, see the classic article by O’Doherty and Anstey(1971). Accord-
ing to Marion et al. (1994), if the periodic spacing is a multiple of one-half
wavelength, socalled Bragg scattering occurs, prohibiting the wave to prop-
agate. Frequencies corresponding to such A/d-ratios are thus filtered out.
Bragg-filtering may explain some of the frequency changes observed in the
received signal. Observing the models 1 to 4 in this figure, those with the
largest A\/d-ratios, , it is seen that for all these models the received signal has
a first arrival corresponding to the velocity of the Reuss-averaged medium.
The recorded wavelet in model 1 is identical with the wavelet recorded in
layer 10, except from a larger amplitude in the former due to of the lack of
multiples. The signal wavelet recorded in model 4 has little similarity, how-
ever, with that of model 1. Variations in the recorded wavelet must therefore
be taken into consideration as long as the A/d-ratio does not exceed a suffi-
ciently large value that is far below the A/d-ratio where the Reuss-averaged
velocity is a good estimate of the effective velocity.
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Chapter 3

Upscaling of well data

3.1 Introduction

The medium representations in the previous chapter are all idealizations of
reality. In the idealized case, the infinitesimal homogeneous volume is con-
sidered to be the fundamental element. From this simple medium more
complex models are constructed by assigning different homogeneous proper-
ties to different subspaces, introducing interfaces, and allowing the functions
within each subspace to vary as differential functions. But still, in the ideal-
ized case, when observing infinitesimal elements within any of the subspaces,
such elements may be considered homogeneous.

In nature, this assumption of infinitesimal homogeneity is not obvious. In-
deed, what is found, is that apparently homogeneous objects, when inspected
on a finer scale, turn out to be heterogeneous. For example, a sample of silt-
stone appearing to be totally homogeneous to the naked eye, may reveal to
consist of small quarts grains and thin mica flakes and display small-scale sed-
imentary structures when subjected to microscope inspection, as displayed
in e.g. “Atlas of sedimentary rocks under the microscope” by Adams et al.
(1984). Thus, whether a medium is considered homogeneous or heteroge-
neous depends on the resolution of the applied measurements. Large scale
measurements record the average properties of the medium in large volumes
or surfaces at the location of each measurement or sample. If these volumes
contain an equal distribution of small scale heterogeneities in each sample,
the resulting sample values in the large scale measurements indicate that the
medium is homogeneous. Thus a given medium may be considered to be het-
erogeneous on small scale and at the same time homogeneous on large scale,
where the small scale heterogeneities determines the large scale property,
discussed in general by e.g. Hudson (1991).

33
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Modelling and inversion thus involve considering effective media with a
parameterization valid for the scale of measurements. The resolution in the
mapping of effective parameters from seismic inversion is determined by the
wavelength A applied in the seismic survey. The Rayleigh resolution limit
defines the minimum thickness for identifying a layer as a separate unit, dis-
cerning it from adjacent layers, to be A/4. Alternatively the Widess limit of
A/8 may be considered to be the minimum discernable thickness. For any
of these limits, with a dominant frequency in seismic data corresponding to
wavelengths exceeding 100 m in a reservoir zone, the surveyor, interested in
small scale features such as cracks and thin shale layers affecting the pro-
duction properties of the reservoir, is clearly interested in how such features
below the seismic resolution affect the overall properties of the large scale
medium and whether it is possible to get information about the small-scale
features by looking for associated characteristic properties in the large scale
data.

The parameter mapping from small to large scale properties is the sub-
ject of upscaling and is the issue of the current chapter. Basically there
are two reasons for upscaling. The first reason is to study the mentioned
relation between small and large scale properties, making it possible to com-
pare a model represented on a fine scale, generated e.g. from high resolution
borehole measurements, with a model based on interpretation of large scale
seismics. The second reason is the reduction of time and computer capacity
needed for numerically simulating wave propagation through a spatial model
of which the property resolution is reduced by upscaling.

The focus of the upscaling discussion in this chapter, is the transformation
of borehole log data, which is sampled every few decimeters and where each
sample is representative for an accordingly small volume of rock, to a scale
that is more appropriate for low frequency seismic surveys.

For the input data, the discrete samples are interpreted as representing
the properties of thin homogeneous layers. This layered medium may be
smoothed by averaging functions to produce an upscaled medium. I will
study the effect of smoothing the small scale properties in different domains,
such as P- and S-velocity domain versus the domain of elastic constants, as
well as discussing the effect on the upscaled parameters of selecting different
shapes and sizes of averaging windows in the applied smoothing functions,
comparing e.g. the box-car versus the triangle-shape Bartlett window. While
the input media in the provided examples are isotropic, I will consider both
isotropic and transverse isotropic versions of the resulting upscaled media.
The transverse isotropic model is generated by Backus smoothing of the thin-
layered model, of which procedure was discussed in the previous chapter.

Two data sets are operated on in this chapter. The first set is a borehole
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data set from an authentic well, where the given data log is described in
the next section, while the second data set is entirely synthetic, generated
to represent a periodic bi-layered medium. The effect on the effective para-
meters by choosing different smoothing window shapes will be shown on the
real data set only, while both data sets will be used to display effects on the
upscaled medium by choosing different parameter domains for the involved
smoothing of the small scale data. The final part of the chapter contains data
from wave field simulations in the original and the different replacement me-
dia to evaluate the validity of the different proposed upscaling functions. For
this last part, I have chosen to focus on the upscaled models of the synthetic
data, thus focusing on the evaluation of the different upscaling functions ap-
plied on this data, i.e. the comparison of the Reuss-, Voigt-, slowness- and
velocity-smoothed isotropic replacement models and the Backus smoothed
anisotropic replacement model.

3.2 The input borehole data

When wells are drilled, wire-line logs are acquired for a variety of physical
parameters in the borehole. This procedure involves lowering a sonde with
sensors down the hole by a cable, taking samples of electrical, acoustic and
radioactive properties. Properties such as temperature and borehole size are
also measured. The borehole data I will use in the current study are those
directly associated to elastic wave propagation, i.e. the average density log
and the measured P- and S-wave velocity.

Given input data is plotted in figure 3.1. In addition, the calculated
Vp /Vs-ratio is plotted. The depth range of the plotted data is from 3570 to
3900 m, and as observed in the figure, parameter variations occur on sev-
eral scales above the resolution limit given by the sampling density and the
measuring tool. The smallest scale property variations, in terms of spatial
frequency, which are visible in this figure, are those found e.g. in the den-
sity data in the deepest interval I-4. Compared to the rest of the data, this
segment has a nearly constant density of 2.5 g/cm?, except from the very
short wavelength variations. In the depth interval I-3 the same characteristic
small scale features are observed in the density data, but now superposi-
tioned on a function that is slightly increasing with depth. These small scale
variations will be further investigated shortly. Except from the sharp shift
in density values at the interface between I-3 and I-4, the density log has
no large-scale variations in the lower two segments. Large scale variations
are however found in the P-velocity log for these two segments. Here the
velocity function is seen to have a wave-like characteristic, with a wavelength
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Figure 3.1: Original well data. The well is divided into four segments I-1 to
I-4 based on the overall log appearance. The P-velocity data within box (1)
is also plotted in figure 3.2.
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of approximately 75 m. Observing the shallower segments, different shapes
of large-scale variations are found. At about 3600 m, the two velocity logs
indicate the presence of 25 m thick layers with alternating high and low ve-
locities, on which the mentioned small scale variations are superpositioned.

For a geologic interpretation of the data, the Vp/Vs-log is a useful indica-
tor for estimating the underlying rock properties. Contrary to the velocity-
functions themselves, the Vp/Vs-ratio is a function solely of the bulk and
shear moduli of the medium. These properties are determined by lithology
as well as porefluid. For example, shales have low shear rigidity compared
to sandstones, providing a higher Vp/Vg ratio for the former rocks (Tatham,
1982). Also a gas-filled rock has a lower Vp/Vg-ratio than an identical but
brine-filled rock, since the fluid fill affects the effective compressibility of the
rock but leaves the shear modulus unaffected.

Inspecting the displayed Vp/Vs-log, this ranges in value from 1.5 to 1.7
in the intervals I-2 and I-3, indicating possible reservoir properties, while the
ratios in intervals I-1 and I-2 are at values of about 2.0, indicating a different
lithology. Some high amplitude peaks, with a few meters wave length, , are
found in interval I-2. A possible explanation for these peaks would be the
occurence of shale layers present here in the elsewise sand-dominated interval.

The P-velocity for the 6 m interval contained in box (1) in figure 3.1
is also displayed in figure 3.2, now with the input sample points plotted in
addition to the connecting lines that constituted figure 3.1. As seen in this
figure, the sampling density is 8 samples per meter, i.e. a sampling interval
of 12.5 cm. The figure shows that on this small scale, the log data has
variations on the scale of individual log samples as well as on the scale of a
few meters. The variations on the smallest scale may be observed on the left
portion of the figure, in the depth range from 3662 to 3664.5 m. On the larger
scale increase of parameter values in this interval, high frequency oscillations
are imposed with an approximate wavelength of two sample intervals, the
maximum frequency possible to represent in any discrete data. To the right
of this segment the data show a smoother decrease in property values, lasting
for 1.5 m or approximately 12 sample points. Then at 3666 m the log sharply
increases in value before decreasing to the very right in a similar manner as
the function increased to the very left.

The conclusion of the small and large scale log inspections is that the data
may contain variations on decimeter scale, on the scale of a couple of meters
and on the scale of tens of meters. The measured sediments may also have
heterogeneities on smaller scales, but as stated in the introduction of this
chapter, such heterogeneities are impossible to infer from the log data due to
the sampling density and the measurement procedure. According to the sam-
pling theorem, the spatial sampling density limits the maximum frequency
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Figure 3.2: A close-up plot of the P-velocity data plotted within box (1) in
figure 3.1.

of the sampled function. The minimum allowed wavelength of the sampled
function is two times the sampling interval (Stark et al., 1988), corresponding
to the Nyquist frequency. In cases where the input function contains spatial
frequencies exceeding the Nyquist frequency, this must be low-pass filtered,
or anti-aliased, to avoid distortion of the sampled data. It should be noted,
however, that the input signal is already a band-limited signal, with maxi-
mum frequency given by the receiver distance Az used when measuring the
seismic traveltimes, or the bulk density for that matter of fact. At each sam-
pling location the measured velocity of the composite material results from
an averaging of slownesses or appropriate inverse elastic constants over the
interval Az, depending on the applied wavelength, as discussed in chapter 2.
I will discuss the significance of the applied wavelength in the sampling in
subsections 3.3.3 and 3.3.4. As a final remark, it should be noted that from
the given input data, it must be assumed that the medium to be modelled is
isotropic on the scale of sampling, i.e. there is no preferential orientation of
the smaller scale heterogeneities. In subsection 3.3.4 I will discuss the effect
of omitting transverse isotropic properties, caused by smaller scale layering
that are present on the scale of initial sampling. Such anisotropy, however,
only occurs if a sufficient long wavelength is used in the sampling operation.
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Thus, the applied wavelength in the initial sampling may influence both the
measured velocity and the registration of anisotropy. The implications of this
will be better understood after the two-step upscaling procedures performed
in subsections 3.3.3 and 3.3.4. Before this, however, I will study the effect of
the shape and size of the smoothing window applied in the upscaling. This
matter is relevant also for the tuning of the spatial sampling density in the
logging process with the receiver interval Az in the logging tool.

3.3 From small to large scale model

3.3.1 On the interpretation of log data samples

According to the previous chapter, a sampled log represents a discretiza-
tion of a continuous function, of which spatial frequencies are limited by the
process of measurement. With a finite number of samples, this continuous
function cannot be reproduced exactly by applying the sampling theorem
(Stark et al., 1988), but a continuous approximation to this function may
be generated by applying some kind of interpolation technique. However,
for studying the effect of large scale seismic waves by numerical processing,
I find it useful to preserve the discretization given by the provided sam-
pling, and instead of interpreting the log as a smooth continuous property
function, each sample is interpreted as representing a thin layer with ho-
mogeneous properties, with layer thickness equal to the sampling interval in
the log data. In this way, theories assuming homogeneous subspaces may be
applied to simulate wave field propagation and calculate effective properties
on larger scales. Such a layered model corresponds well with the general as-
sumption of layering and stratification of sedimentary basins. This layering
may have various orientations, from horizontal sedimentation, which is usu-
ally observed, to crosslayering, easily incorporated in the numerical model
by assigning dipmeter values to each sample point. Figure 3.3 displays two
such 2-D geometric interpretations of the small log segment from 3662.5 to
3663.5 m, also included in the previous figure, now plotting the P-velocity
samples and the interpreted corresponding layers in the z-z plane.

The physical response of a thin layered model approximation compared
to that of a continuous property function model, may be compared to the
difference between a finite integral of a continuous function in calculus com-
pared to the corresponding Riemann sum of the discrete sampling. Clearly,
the denser the function is sampled, the closer the Riemann sum approaches
the finite integral. Similarly the denser the log is sampled, the more accurate
the model and resulting simulations and upscaled parameters. The given
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Figure 3.3: The samples are interpreted as thin layers in the z-z plane. In
a) the layering is horizontal and in b) dipping.

log data may be resampled using an interpolation function to produce such
a finer partition. However, for focusing on the effects of different upscaling
procedures on a giwen small scale parametrization, I consider the conceptual
model where each log sample is associated with a thin homogeneous layer as
the given underlying small scale model.

3.3.2 Smoothing window effects

Any upscaling involves finding some kind of average vaues of the smaller
scale parameters in the proximity of the location where the medium is to be
upscaled. Since the large scale distribution of small scale parameter values
often is non-uniform, estimating the upscaled properties for the entire large
scale model by averaging the parameters in the entire small scale model is
not a good approach. Such an upscaled model would, as a matter of fact,
be entirely homogeneous. Instead, the upscaling is performed by running a
smoothing window over the small scale model. Only the small scale samples
within the window are included in the calculation of the associated upscaled
sample, which is assigned the spatial location of the centre of the correspond-
ing window, as displayed in figure 3.4.

In this figure 36 densely distributed input sample points are averaged by
a smoothing window averaging four times four input samples for each output
sample. The effect of the filtering function is determined by the size of
the window and the internal weighting of the input samples in the involved
averaging. In this figure, the sample interval of the output function and
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Figure 3.4: The moving average window determines which samples in the
input data that contributes to each sample in the output data.

the smoothing window size are tuned to assure that the smoothing windows
corresponding to adjacent output samples overlap. As I will come to later in
this subsection, this is a matter of preventing possible aliasing of the filtered
function, since the frequency content is specified by the window shape and
size.

In this section, I will study the effect of applying different smoothing
windows shapes and lengths on the well data presented in section 3.2.

Before starting to operate on the log data, a few remarks can be made
from observing the smoothing effect of the four small scale data sets in figure
3.5. This figure is a scetch of four different input small scale functions along
with hypothetical resulting moving average functions. In terms of upscaled
parameters, it is seen that the functions in panel a) and c), respectively b)
and d), are identical. For the set in a) and c¢), the high spatial frequencies in
the input functions totally vanish in the smoothing, returning homogeneous
output functions. For the two other input functions, these contain low fre-
quency variations in addition to the high frequency fluctuations found in the
two other data sets, and the output from the smoothing operations on these
sets are functions with higher values in the intermediate range of the data.

Another feature is evident in this figure, however. Comparing the input
data in panel a) with panel ¢), and similarly panel b) with panel d), though
the output of these are identical, the input functions are different in terms
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Figure 3.5: The effect of running a moving average window over four small
scale functions. The resulting large scale function is unaffected by the small
scale variability in the input functions. (Modified from Isaaks & Srivastava,

1989).

of local variability. The functions a) and b) has a constant variability, while
this is not the case for the two other functions. In terms of elastic composite
media, it is clear that such variations in local variability below the scale of the
output effective medium may still affect the large scale properties. Indeed, a
fundamental observation from the application of Backus smoothing was that
the upscaled properties of a thin layered medium is anisotropic. Such layering
may be produced by perturbing a constant function into increasing local
variability, similar to that seen by traversing from left to the right in panel
c¢). Thus, the overall elastic properties of the medium represented by panel
c), is expected to change from isotropic toanisotropic characteristics from
the left hand of the model and to the right. Accordingly proper upscaling
nesseccarily involves more operation steps than just the smoothing operation.
The smoothing process is nevertheless the focus of this section.

In signal analysis terms, the filtering of the function f (z) to produce the
output function (f) (z) is performed by the convolution of the input function
with the filter response w (z):

() (2) = F(2)xw(2). (3.1)
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In the continuous case, the convolution is defined as

) () = / TS w2 de (3.2)

while in the discrete case it is represented as

(Ni= D fiwij. (3.3)

j=—00

The functions to be discussed here, will involve one variable only. However,
clearly the filtering often is performed on a surface or in a volume, requiring
two or three variables. This extension is trivial, though, and since we will
be focusing on 1-D well data, the one variable filtering is sufficient for our
purpose.

The equivalent of this convolution in the space domain is the multiplica-
tion of the corresponding fourier-transforms. That is

() (k) = F (k)W (K), (3.4)

where I’ (k) and W (k) are the Fourier transforms of the input function f (z)
and the filtering function w (z), and (F') (k) is the Fourier transform of the
output of the filtering. Therefore, by studying the filter function W (k),
information about the effect of the filtering on the different frequencies in
the function given as input can easily be found.

In the continuous case the smoothing functions w (z) with a window
length A conform to the requirements that:

/M:M@m _ (3.5)

/+Ooz ~w(z)dz = 0, and (3.6)
W) =0 for | > A)2, (3.7)

which in the discrete case is equivalent to

dow o= 1, (3.8)

and w; = 0 for |i| > (N —1)/2. (3.10)

N 1s here the number of samples to be operated on by the smoothing function,
and for simplicity I require N to be an uneven number.
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The smoothing function w (z) for calculating the pure arithmetic average
is called the box-car window. This function is simply given by

1/A, ze (—A/2,A)2),
w(z) = { 0, |2 > A2 (3.11)
The discrete equivalent is:
LN, == (N=1) /2, (N = 1) /2,
S TR s (312

again assuming that /N is an uneven number.

A more sophisticated smoothing function involves different weighting of
the input samples dependent on the location of each input sample in the
smoothing window. In this way, the input samples proximal to the location
of the upscaled parameter contribute more to the averaged value than the
peripheral ones. An example of this is the triangle-shaped Bartlett window,
which is given by the function

0 |z > AJ2
4 2
Whart (w) = ﬁz 3 RS (_A/Z’ 0] . (313)
4
—Ez—l—z ,z2 € (0,A/2]

In the frequency domain, the filters corresponding to the two averaging op-
erations are given by

Wo (K) = Sl%:’:" — sine (7 Ak), (3.14)
C mwAr\ 2
sin
_ 9 s TAK
Whart (K) = 2—7TAI{ = sinc <—2 ) (3.15)

From these functions it is clear that increasing the smoothing length A means
compressing the filter function in the frequency domain. Also, Wiget (k) =
W2 (k) if the averaging length of the box-car window is half that of the
Bartlett window. This means that the Bartlett window in the space domain
may be expressed by the autoconvolution of the box-shaped window of half
the smoothing size of the Bartlett window.

The two averaging windows and corresponding Fourier spectra are plotted
in figure 3.6. As observed in panel c) of this figure, the first notch of the

Bartlett filter is twice that of the box-car filter. Also, in the application of



3.3. FROM SMALL TO LARGE SCALE MODEL 45

the Bartlett window, more of the frequency content is contained within this
first filter notch. These differences in the frequency domain are explained in
the space domain by the strong weighting of the central samples of the input
function by the use of the Bartlett window. By increasing the smoothing
length of the Bartlett window to 24, the notches of the two filters will coincide
in the frequency domain. In figure 3.7 the resulting amplitude spectras are
plotted, illustrating that applying smooth averaging windows in the space
domain produces frequency windows with more of the energy concentrated
to frequencies below the first filter notch. In this example, more energy
is found in the sidelobes of the box-car filter than for the Bartlett filter.
Such energies may produce undesirable aliasing when the filtered function is
sampled.

According to the sampling theorem, to prevent aliasing the sampling in-
terval Az of the output function must be less than Az, = 1/ (2fny ), where
fny 1s the maximum frequency of the output function. The input function,
the one being smoothed, has a maximum frequency given by the input sam-
ple interval, and by maintaining this sampling density in the sampling of the
output smoothed function, aliasing will be avoided. However, the point of
upscaling is usually to coarsen the model representation, and thus the spec-
trum of the filter has to be considered to determine the maximum frequency
of the output. Clearly some aliasing will occur when the sampling density
is decreased compared to the input density, since the frequency spectra of
both filters have non-zero amplitude values for frequencies ad infinitum. A
filter cut-off frequency and the associated Nyquist frequency have thus to be
defined to some value that is less than the theoretical maximum frequency
of the output signal before it is samples. For the given filters, this cut-off
frequency can conveniently be set to the first notch of the filter. Accordingly
there may be some aliasing in the sampled output function due to energy in
the filter outsite this cut-off frequency.

With the cut-off frequencies defined to be at the first notch, i.e. Kyypox =
1/A and Knypart = 2/A, the associated minimum sampling intervals of the
output data are

Am111ax,bo:z: = A/Q, (316)
Axmax,bart = A/47 <317)

according to the sampling theorem.

More sophisticated smoothing filters can be found in Meeland (1993).
Obviously, the smoother averaging functions, the less aliasing. However,
the application of smoother windows may require more calculations, thus
reducing the time efficiency. The key here is thus to find the smoothing
window fit for the specific purpose.
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Figure 3.7: Comparison between boxcar window of length A and Bartlett
window of length 2A.
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Figure 3.8: The result of smoothing the velocity log over 5 and 20 meters
with a box-car window.
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Figure 3.8 displays the effect of applying a 5 and a 20 m box-shape aver-
aging window on the P-velocity log of the presented well data. The original
data is plotted to the left, and those smoothed over five and twenty meters
to the middle and right respectively. The effect of the window length on the
decrease of frequency range in the output data is obvious. The five meter
window has the highest cut-off frequency and thus preserves the most of the
frequency content of the data. Here the energy corresponding to a few me-
ters wavelength is filtered out, while the shape of stratigraphic features on
the scale of ten meters and above is preserved. Applying a 20 meter averag-
ing window, the largest scale fluctuations are also smoothed. The larger the
smoothing window, the more homogeneous the output.This is well illustrated
by observing the upper 60 meters of the logs, where e.g. the high velocity
layer at approximately 3590 m is almost entirely smoothed out in the case
of 20 m smoothing.

Since the dominant frequency of surface seismic surveys may be about
30 Hz and average P-velocity often exceed 3000 m/s, the wavelength of the
wave propagating through the model is generally on the scale of 100 meters.
According to the Rayleigh resolution limit, features of smaller scales than 25
m are then below the scale of resolution. Thus no harm is done to the data
in terms of data resolution by smoothing out layers below this scale before
performing wave propagation simulations.

However, the validity of the upscaling, given that the smoothing window
is not too large, depends on that the smoothing is performed correctly, ac-
cording to how the seismic wave “sees” the signal, by somehow preserving
the effect on the propagating wave from the small scale variations that are
filtered away in the large scale model. Referring back to panel ¢) in figure
3.5 on page 42, the large scale property was constant throughout the spatial
model, while the variability was increasing. According to Backus (1962), the
large scale medium will be isotropic on the left side and strongly anisotropic
on the right side. Such features are preserved by smoothing the model in the
appropriate parameter domains, from which effective parameters are calcu-
lated. This issue is the theme of the next section.

3.3.3 Parameter domain of smoothing

While size and form of the smoothing window are important parameters,
probably the most important issue is the choice of data domains in which
the small scale model is to be smoothed. In rock physics, different parameter
domains are related. In chapter 2 I looked at the relations between parame-
ters such as the elastic constants and the P- and S-velocities. Other data
domains are those of porosity, density, fluid content and so on. Such rela-
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tions may be given for small scale representations as well as for the upscaled
models. However, since the relations between the domains are not linear,
e.g. Vp = y/ca3/p, the parameter domains cannot be smoothed indepen-
dently. Instead, for each relation the dependent and free parameters must be
selected, and the smoothing and subsequent calculations must be performed
on the free variables.

The issue of this section is to observe effects of smoothing different pa-
rameter domains of which the elastic properties of the isotropic small scale
medium and the upscaled medium can be considered to be a dependent func-
tion of. The isotropic model contains three free parameters, e.g. Vp, Vg and
p, and thus three small scale parameter functions must be smoothed. The
procedure may be described in general terms before defining the specific do-
mains in which I will perform the smoothing operations later.

Letting the vector my = (Vp, Vg, p) be the original valid representation of
the elastic small scale medium, other valid representations may be given by a
vector function my (2) = g (my (2)), providing that the three components of
m;, are independent. The my functions are then smoothed by the convolution
with the averaging window, giving

(my) (2) = my (2) xw(2), (3.18)

where the brackets represent a large scale parameter. After the smoothing
process, the original domain large scale parameters may be found by applying
a generalized inverse function g1, i.e.

(my) (z) =g ' ((m2) (). (3.19)

In all the suggested upscaling domain sets, bulk density p constitutes
one of the three free parameters, thus (p) is always found by applying the
smoothing directly on the small scale density. Natural options for the selec-
tion of the remaining two free parameters are either the seismic velocities, the
associated slownesses, the elastic constants or the inverses of these. Thus, I
will consider the effect on the smoothed, directly or indirectly, P-velocity by
smoothing the following parameters:

I

Vb, (3.20a)
= (1/Vp)(2) = Sr(2),
= (V2-p)(2) = (2),
= (L/es) (2),
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The averaged functions are then given by:

2 :; 1; = 2V7> | ((Velocity average)),
o) = {(1/Vp slowness average) ,
(fs) = (V2. p) (Voigt average) , (3.21)
(fo)y=(1/(V;2-p)) (Reuss average),

<VP>1 = (i),
(Ve)y = 1/(f2), (3.23)
(f3)

Vel = o (3.24)

1
Ve)a =4/ T (3.25)

The functions fy, fs, f3 and f; are not linearly related, and the results
of the different smoothing options are therefore different. This will now be

and

illustrated by applying the four smoothing functions on a model of periodic
layers with strongly contrasting velocities. The layers of this model are ten
meters thick, the P-velocities alternates between 5 km/s and 3 km/s, and
corresponding S-velocities are 3 km/s and 1.5 km/s. Though such an ex-
tremely contrasted medium is not likely to be found in reality, a periodic
layering of shale and limestone would produce similar properties. The model
is thus called the lime-shale model. The lime-shale model, which on large
scale is entirely homogeneous, will also be used in the following sections to
illustrate effects of anisotropy caused by the thin layering and the effect of
the different upscaled models on propagating wave fields.

Figure 3.9 displays the P-velocity function of the input lime-shale model,
along with the resulting upscaled velocities. The input model has been
smoothed over the entire depth range, providing homogeneous output func-
tions. Each layer type constitutes half of the entire medium. Therefore, the
average-velocity model has a P-velocity given by

(Vp); = 0.5-5km/s+0.5-3 km/s
4.0 km/s (3.26)

The average slowness is the basis for calculating travel-times in the ray-
tracing cases where the wave length is much shorter than the layer thickness
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and the ray path is perpendicular to the layering. The basis for the applica-
tion of average-slowness smoothing is that the total traveltime for waves is
the sum of the traveltimes through each layer. In section 3.4, where waves
are propagated through the models, we will show that for high frequencies
the wave field in the average slowness model has a good correspondence with
that in the small scale original. The average slowness of the given model
gives the effective P-velocity by:

1/(Vp), = 0.5/(5km/s)+ 0.5/ (3 km/s)

~

<VP>2

3.76 km/s.

On the other hand, this average has also been used for calculating effective
velocities in porous media by weighting the slowness of the matrix and the
pore fluid according to the given porosity (Wyllies equation). This applica-
tion has no theoretical support however, cf. Mavko et al. (1993).

To predict the actual effective properties of a composite medium, in ad-
dition to the volume fractions of the constituting materials and the elastic
properties of these components, the geometric details of how the constituents
are arranged relative to each other must be considered. The upper and lower
bounds for the effective medium when exact arrangements are unknown, are
given by the Voigt and Reuss bounds (Mavko et al., 1993).

The Reuss average involves averaging the inverse of the elastic modulii.
This is termed the isostress average, assuming a uniform stress on the in-
dividual components. This smoothing is proved to be accurate for finding
effective properties of fluid suspensions as given by Wood’s formulae (Mavko
et al., 1993) and also shows a good approximation for “soft pore shapes”.
For example, when long waves propagate perpendicular to the layering of
a thin-layered medium, the stress upon each layer may be considered to be
levelled out as the wave passes, corresponding to Reuss averaging (Marion
et al., 1994). The calculated Reuss average for the given model gives a P-
velocity of 3.64 km /s, approximately 0.125 km /s lower that of the slowness
averaged P-velocity.

On the contrary, for “stiff pore shapes” the effective properties approach
the upper Voigt average found by averaging stiffnesses or elastic constants.
The Voigt limit for the P-velocity in the current example is found to be 4.14
km/s.

The Reuss and Voigt limits make a theoretical range for the effective P
-velocity for models of the given components of as much as 0.5 km/s. Within
this range the two other presented averages are found.

According to Mavko et al. (1993), a requirement for stating that Voigt
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and Reuss constitutes the bounds of possible effective properties, is that
the rock is isotropic. Backus (1962) showed however that a thin-layered
media has transverse isotropic properties on large scale. Thus it can be
questioned whether the given limits actually applies to the thin-layered case.
This question will be raised in the next section considering the result of
Backus smoothing the well data presented in section 3.2.

I will now display the effect of smoothing the given well data in the
four different parameter domains just presented. The smoothing operations
are performed by applying a 5 and a 20 m box-car smoothing window, and
the resulting effective P-velocities are plotted in figure 3.10 along with the
original data for the depth-range 3575 — 3750 m.

From inspecting the curves, it is seen that the difference between resulting
parameter values from smoothing in different domains generally increases
with smoothing length. Compared to the spread of the four curves from
the 20 m smoothing, the curves from the 5 m smoothing appear to coincide
better, except for a few intervals, in specific the segments about 3650 and
3700 m, where the effective P-velocities differ with as much as 0.2 km/s from
one curve to the other.

The reason for the increase in sensitivity of selected smoothing domain
with increasing smoothing length, is believed to be the increased variability
within the smoothing window. That is, with increased window length a larger
proportion of the medium within the window has property values that differ
from the average property value within the window.

This variability exists on several scales as discussed in section 3.2. When
the data is smoothed over 20 m, it is expected that both small scale variabil-
ity, only visible in the original data, as well as intermediate scale variability,
which is visible in the 5 m smoothed data but smoothed out in the 20 m
smoothed data, will contribute to the mentioned sensitivity. The question is
however which of these scales of variations that contribute the most.

To answer this question, I performed four two-step smoothing operations
on the provided data. The data were first Reuss- and Voigt smoothed over 5
m. The resulting two logs were then used as input to 20 m Reuss- and Voigt
smoothing operations, producing four different large scale datasets.

Figure 3.11 displays the resulting P-velocity curves and is used to illus-
trate the ratio between the contribution to the smoothing domain effect from
intermediate scale versus small scale variations. Here the curve couples (1)
and (2) and couples (3) and (4) are the results from Reuss- and Voigt aver-
aging over 20 m the priorly Reuss- and Voigt averaged data over 5 m, while
curves (5) and (6) represent the one-step 20 m Reuss- and Voigt averaged
data, also displayed in the previous figure.

Two main observations are made from this figure: First the Reuss and
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Figure 3.9: A 1-D graphical representation of the P-velocity of the “lime-
shale” bipartite medium and the velocity of the four different replacement
media.
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Figure 3.11: Two-steps smoothing combinations of Reuss and Voigt averaging
shows that the small scale variability contributes the most to the effect of
smoothing with respect to different parameters

Voigt large scale (20 m) upscaled properties of a previously intermediate scale
(5 m) upscaled data set appear to differ less from each other, i.e. are less
sensitive to the domain-effect, than the corresponding one-step upscaled (20
m) properties of the underlying small scale data, and secondly, the curves (1)
and (4) appear to be low-pass filtered versions of the one-step filtered data
given by (5) and (6).

Regarding the second observation, it is known that the sequence order of
filters applied to a signal is arbitrary. Thus, the order of the two smoothing
filters can be switched, applying the 20 m filter prior to the 5 m filter, without
changing the filter response of the composite filter. The log represented by
curve (5) and (6) would thus equal those of curves (1) and (4) by smoothing
the former set with a 5 m smoothing window in the appropriate parameter
domains.

The difference between curve (1) and (4) therefore represents the smooth-
ing domain effects from both small and intermediate scale variations. Iden-
tifying the intermediate variations to account for the differences between the
Reuss and Voigt 20 m smoothed data of the priorly 5 m smoothed data, i.e.
the differences between curves (1) and (2) and curves (3) and (4), and com-
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paring these differences with that between (1) and (4), it is seen that most
of the smoothing domain effect is caused by the small scale variations.

One lesson from the observations of the curves in this figure, is thus that
if a parameter set is to be upscaled by smoothing, but the modeller is unsure
which parameter domain the data set is to be smoothed in, the modeller
should apply the shortest possible smoothing window. Assuming that the
propagating wave senses or “sees” the average properties of the medium
corresponding to a Reuss average over 20 m, using the priorly 5 m Voigt
smoothing data in a simulation model would thus cause the wave to sense
the large scale properties in the simulation model given by curve (3). On the
other hand, had the correct priorly 5 m Reuss-upscaled model been used, the
large scale wave would “sense” the properties given by curve (1). But again,
the starting point for the simulation could be worse could be worse: If the
data have been upscaled by a 20 m Voigt averaging prior to the simulation,
the Reuss smoothing wave would see the 20 m Reuss average of the data
given by curve (6). Obviously the parameters “sensed” by the propagating
wave after such an upscaling, which must be close to curve (4), differs more
from the correct large scale properties represented by curve (1) than the
parameters “seen” by the propagating wave subsequent to the corresponding
upscaling using the smaller window.

The second lesson is a general caution regarding the quality of input data
to a model, an issue I touched on in section 3.2. As we know, all model
parameters are effective properties on some given scale, including the input
data where the scale is determined by the measurement process. Though
they are unmeasurable by the measurements applied, we may assume that
the medium contains heterogeneities on smaller scales than those found in
the input data.

In a hypothetic case we may consider the smallest measurable scale to
be that of the 5 m smoothed data, while the properties in nature itself is
given by the small scale representation of decimeters. The “measured” well
data in this case is thus a 5 m smoothed version of the small scale “nature”.
The process to be studied is a long wavelength wave propagation where the
wave “sees” the Reuss averaged elastic properties within a 20 m window. In
“nature” this wave thus senses the 20 m Reuss average of the actual medium,
i.e. it sees curve (5). On the other hand, in a simulation this wave will sense
the corresponding 20 m average of the intermediate scale model input data.
If the model is given by the 5 m Reuss average, the simulated wave will
thus sense curve (1), a good estimate of curve (5), while if the input data
is the b m Voigt averaged properties of the “true nature”, the propagating
wave in the following simulation will sense the effective properties of curve
(3), producing simulated data differing more from an actual field survey of
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“nature”.

As stated in section 3.2, the sampling of a physical medium at a given
location involves averaging the smaller scale properties within the sampled
volume. Now according to the theory of effective medium velocities, as out-
lined in chapter 2, this average will be different depending on the wavelength
used in the sampling (Marion et al., 1994). From the previous paragraph it
should be obvious that to construct a correct seismic model, the wave used in
the small scale data sampling must smooth the smallest scale heterogeneities
the same way as the large scale wave, which is to be simulated, smooths these
microscopic heterogeneities in the real medium. Thus, if the large scale wave
smooths the medium by Reuss-averaging, a sufficiently long wavelength also
needs to be used in the sampling of the medium to smooth properties on
scales that are averaged out in the sampling accordingly.

To sum up this argument: A large scale Reuss averaging of previously
slowness averaged properties will, according to this two-step upscaling ex-
ample, give a different result than the same large scale upscaling of previ-
ously Reuss averaged properties. Thus an appropriate question that should
be raised is whether given input data from well logs does provide the correct
average of the micro-scale properties and thus provides the basis for success-
full further upscaling and simulations. This question is left open for others
to investigate.

In the following section a similar question will be raised regarding the
matter of isotropy versus anisotropy in the input data. Due to limited mea-
surements, input data are most often presented and processed as if they are
by default isotropic. In the next section I will look at the anisotropic large
scale properties of such isotropic small scale media, but it is also proper to
question what effect omitting intrinsic low scale anisotropy in such upscaling
has on the behaviour of the model.

3.3.4 Applying Backus averaging

As outlined in chapter 2, a thin layered isotropic medium with nearly con-
stant statistical properties when averaged over an interval I, can be replaced
by a transverse isotropic medium with parameters calculated by Backus av-
eraging over this interval. The resulting transverse isotropic medium is then
equivalent to the original medium for wavelengths much larger than [. It
is shown that the velocities along the symmetry axis of this replacement
medium is equal to that of the Reuss averaged medium, while velocities in
other directions are generally different.

Referring to the notation of the introduction of the previous subsection,
Backus averaging involves smoothing the multi-component function g (m;),
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where my represents the low-scale parameters. The elastic properties of the
upscaled medium are then a function of (g (m4)). The smoothing window size
and shape has in the previous sections been shown to influence the upscaled
medium in terms of smoothness, 7.e. in the spatial frequency content. The
size of the smoothing window has also shown to affect the sensibility of the
resulting upscaled medium from the choice of parameter domains, Dg, where
the smoothing is performed. In the current section, I will therefore study
the effect on the anisotropic characteristics of the replacement media by
increasing the smoothing length in the Backus smoothing.

The given well data have thus been Backus smoothed over 5 m and 20
m, and a selected set of the resulting parameters is displayed in figures 3.12
and 3.13.

In panel a) of the two figures the calculated vertical and horizontal P-
velocities are plotted, i.e. the velocities normal and parallel to the small scale
layering. In addition the P-velocity of the corresponding Voigt averaged
medium, found in the previous subsection, is plotted for reference. From
the plotted 180 m long interval, two 10 m segments have been enlarged to
make possible a closer inspection. Note here that the scales of these windows
are not identical everywhere. In the b) panels the corresponding Thomsen
parameters have been plotted.

As expected from the previous sections, in addition to aquiring smoother
effective velocities by applying a larger window, the difference between hori-
zontal and vertical P-velocity is generally greater in the 20 m smoothed case
than in that of the 5 m smoothing. This difference is reflected in the corre-
sponding Thomsen parameters. While the Thomsen parameters from the 5
m smoothing have local peaks exceeding those of the 20 m smoothed medium,
e.g. the case of the ¢ parameter at the depth of 3650 m, for most depths the
Thomsen parameters of the 20 m smoothed medium are the largest.

The vertical P-velocity from applying Backus smoothing is equal to the
velocity of the corresponding Reuss smoothing, since the effective (33 para-
meter in both cases are given by

Css = <(pv,%)1>1. (3.27)

The horizontal P-velocity, Vpgg, of the Backus medium when the vertical
velocity Vpg and the Thomsen parameter ¢ is given, is given by

prgo = pro . (1 + 5). (328)

This relationship accounts for the large differences between vertical and hor-
izontal P-velocities in the 5 m smoothed data at the depths of 3650 and 3700
m, where £ has unusually large values.
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In the upscaled data, the horizontal velocities seem to have an upper
bound by the Voigt average. In some intervals, e.g. the upper 50 meters of
the 20 m smoothed data, the horizontal velocity is close, sometimes almost
equal, to the velocity obtained from Voigt averaging. It never seems to
exceed the Voigt average, though. Regarding a lower bound, at first glance
the vertical velocity seems to be less than the horizontal velocity in the entire
interval. However, from a closer inspection of the velocity plot of the 20 m
smoothed data, I observe that the horizontal P-velocity is actually lower
than the vertical velocity at the depth of 3675 m. For the corresponding
Thomsen parameters it is seen that the epsilon value is negative for this
specific depth value. Similar occurrences of negative values are found for
epsilon values for the 5 m Backus averaged medium. The occurrence of
negative € values imply that the P-velocity normal to the symmetry axis
of the Backus averaged medium is less than the P-velocity parallel to the
axis. This again means that a wave propagates faster perpendicular to the
layering of a thin-layered medium than along this layering. I find this fact
quite remarkable, but I have not looked into possible explanations to this
phenomenon in this thesis. From this observation I conclude, though, that
velocities found by Reuss averaging of a small scale isotropic medium are
not necessarily the absolute lower bounds for the seismic velocities in the
upscaled medium for all directions of wave propagation.

While the epsilon and gamma parameters from the 5 and 20 m smooth-
ing operations are generally positive, the delta parameter is generally nega-
tive. As stated in chapter 2, this delta parameter is decisive regarding the
shape of the wavefront in the transverse isotropic medium and must be taken
into consideration when performing e.g. moveout analysis of reflected waves
(Thomsen, 1986).

To study the effect and validity of the Backus upscaling operations, 1
should have performed a long wave-length simulation in the original small
scale isotropic model as well as in the 5 m and 20 m upscaled transverse
isotropic models. These simulations have not yet been performed, though,
and therefore represents a possibility for future work. But I have studied
similar simulations on the synthetic model — the “lime-shale” model — to
study the validity of Backus upscaling and the different isotropic upscaling
functions when applied to a large scale homogeneous medium.

In the previous section I compared the resulting parameters from one-step
and two-step smoothing operations, and I found that the two corresponded
well when both steps of the two-step smoothing operation were performed
in the same domain as the one-step operation. For example, the two-step
Reuss smoothing over 5 and 20 m produced P-velocities very close to those
from a 20 m one-step Reuss smoothing of the small scale data. Contrary I
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found that the Reuss upscaling of a priorly Voigt averaged dataset resulted
in parameters that differed significantly from the one-step Reuss-upscaled
data, and these observations pointed to the significance of having correctly
measured — in specific correctly averaged — input data when simulating
seismic processes.

In respect to this matter of input data correctness, the significance of
accounting for transverse isotropy should be considered. Following the same
line of thought as in the previous section, I define the intermediate scale (5 m)
to be the finest scale for obtainable input data for making a model for a long
wave-length seismic simulation. “Nature”, the physical object to be mod-
elled, is correspondingly defined to be identical to the small scale log data,
which in this case is not directly accessible for measurements. Assuming now
that Backus smoothing is the most correct upscaling, the wave propagating
through the physical object will sense the 20 m one-step Backus averaged
parameters of the small scale log data, i.e. “nature”, while the simulated
wavefield in the intermediate scale model will sense the Backus average of
this model. Provided then that the intermediate scale data are given cor-
rectly, the modeller should be able to estimate the effective parameters of
the physical object by Backus averaging the intermediate scale properties.

The best representation of the given object on the intermediate scale is
believed to be the transverse isotropic properties identical to those calculated
from the Backus upscaling over 5 m. While the resolution limit prohibits the
measurements of the small scale properties, it is possible to measure the inter-
mediate scale transverse isotropic properties by measuring waves propagating
in different directions (sec e.g. the Cand. Scient thesis of Kvalheim, 1997).
In traditional logging, however, only the vertical velocities are measured,
providing at best the Reuss averaged properties and at worst the slowness
averaged properties, depending on the applied wavelengths.

What I would like to do, is to compare the (a) one-step Backus smoothed
properties of the small scale data, assumably what the physical wave senses in
“nature” , with both (b) the 20 m Backus smoothed parameters of the priorly
5 m Backus smoothed data, assumably what a simulated wave propagating
through the correct intermediate scale model senses, and with (c¢) the 20 m
Backus smoothed parameters of the prior 5 m Reuss averaged model, the
best model if anisotropy has not been included in the intermediate scale
input data. Alas, I have not implemented the algorithms to perform Backus
averaging on an already transverse isotropic medium, though implementation
should be straight-foreward. I hope and expect that the two-step Backus
smoothing (b) will estimate the one-step smoothing (a) quite well, but this
constitutes a loose end to be checked out further. Regarding the isotropic
intermediate scale model, this has been Backus smoothed (c) to produce the
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curves plotted in figure 3.14.

Comparing the results of this latter two-step upscaling, where the anisotropy
in “nature” on the intermediate “input” scale is ignored, with the one-step
averaging of which results are displayed in figure 3.13, I observe that the ver-
tical P-velocities of the two models agree. The two-step vertical velocity is
only a low-pass filtered version of the one-step smoothed version. This iden-
tity follows from the fact that this velocity calculated by Backus-averaging
is always equal to the Reuss average.

Regarding the anisotropy of the upscaled model, this has clearly decreased
by upscaling the Reuss model instead of the transverse isotropic model. This
is seen by comparing the displays of the Thomsen parameters in the two
resulting models. Here the Thomsen parameters are frequently two to three
times larger in the one-step 20 m Backus upscaled model than in the priorly
Reuss averaged model. The effect of this is seen in the plot of the P-velocities,
where the difference between the vertical and horizontal velocities is much
less for the two-step Reuss-Backus smoothing case. Obviously the reason for
this is that only the heterogeneities on the intermediate scale contribute to
the thin-layer anisotropy in the two-step case, while in the other case all the
heterogeneities contribute. As I just stated, if the 20 m Backus smoothing
had also been performed on the priorly 5 m Backus smoothed data, I would
find out if the effect of the low-scale heterogeneities which were smoothed
out in the 5 m average model, is preserved by the intrinsic anisotropy in the
intermediate scale transverse isotropic model. Alas, this question remains
unanswered. The comparison between the two procedures have nevertheless
pointed out that care must be taken to avoid loss of anisotropy in model sim-
ulation when there exist heterogeneities on a smaller scale than the available
resolution in the input data and where these heterogeneities contribute to
the long wavelength transverse isotropic effect of the physical object to be

modelled.

3.3.5 Applying a dynamic smoothing window

Thus far I have used constant shape and size on the smoothing windows when
upscaling specific models. The smoothing window size has been altered from
one upscaling case to another, but within each model the averaging window
has been static. There are good reasons, however, for applying a smoothing
window where the length of this is changed as it is slid along the input well
data. In this subsection I will look into two such reasons. The first is related
to variations of layering geometry and the orientation of the well trajectory
along the borehole, while the second is related to a varying wavelength of the
simulated wave due to changing effective velocities within the model.
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Orientation of layering and well trajectory

When upscaling a thin layered medium to the transverse isotropic equivalent,
the orientation of the small scale layering has to be considered, since this ori-
entation determines the orientation of the symmetry axis of the replacement
medium. In most cases the studied object may be assumed to consist of hor-
izontal layers, since the sediments often are deposited horizontally. However
an oblique orientation of the small scale layers also occurs, for example in the
form of crossbedding, and in the next section I will look at examples of sim-
ulated wavefields through thin-layered models with horizontal and dipping
layers and their transverse isotropic equivalents.

When studying the effect of Backus averaging, the small scale models are
only allowed to vary in the direction normal to the layering. In this upscaling
study we are thus operating on a 1.5 dimensional model. In each layer, i.e.
along the layering, the model is constant. When we thus are studying the
effect of smoothing this model with different smoothing lengths, the lengths
at issue are those perpendicular to the given layering, a layering which may
be given e.g. from dipmeter logs.

Figure 3.15 displays the relationship between the smoothing length A’
along the borehole and the smoothing length A normal to the layering when
the layering is dipping with an angle  and the borehole has a deviation 7 from
the vertical line. To average the medium over a smoothing length A normal to
the layering, the well data has to be smoothed over the length A" = A/ cos 0
when the well trajectory is vertical, while the required smoothing length is
increased to A" = A/ cos (0 + n) for the deviated case, where the two angles
corresponds to rotations of the layering and trajectory in opposite directions
(see the figure).

In cases where the orientation of the layering and trajectory vary along the
borehole, the required averaging length for maintaining a constant averaging
length normal to the layering becomes a function of depth. Assuming that
the angles are nearly constant within the window range, the dynamic window
applied for a given depth value is given by

A (z) = A/ cos (0(2) +1(z)). (3.29)

Wavelength variations

The validity of the performed Backus smoothing upscaling is dependent on
the wave length of the applied wave in the simulation. According to Backus
(1962), the upscaling model is only valid for seismic waves where:
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Figure 3.15: The relationship between averaging length A’ along borehole and
perpendicular to the layering, A, for dipping layers and a) vertical borehole
and b) deviating borehole.

1 over which the displacements change by an

appreciable fraction of their values, is much larger than ' [i.e.
the averaging length]”.

“the distance xk~

This follows from the assumption that an equal stress is subjected to the
top and bottom of the material involved in the averaging, which requires a
long wavelength. In cases where an effective velocity of the material varies
with depth, the wavelength A of the propagating wave will vary accordingly,
as A and velocity are proportional. In a simulation the frequency of the
propagating wave is assumed to be constant, and varying the smoothing
length with depth as a function of the corresponding P-velocity will thus
provide an upscaled model that is valid for all depths regardless of velocity
variations for frequencies up to a certain maximum.

This upscaling by using a window proportional to the wavelength has
been discussed by Sams and Williamson (1994), stating that the use of such
windows gives a good overall fit between upscaled log data and long scale
seismic data compared to the use of static windows. Finding the correct effec-
tive velocities, the corresponding A and thus the correct smoothing length A
— A is here equal to I’ in the citation from Backus’ article above — for aquir-
ing a constant A/A-ratio smoothing of the data over the entire depth range,
involves repeating the smoothing operation several times. In one way this
operation may be considered to be iterative, because the output P-velocity of
one smoothing operation is used to estimate the smoothing length applied in
the following smoothing operation. The data set to be smoothed is however
identical for all operations, so in this respect the process is not iterative.
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The procedure of the repeated process is explained below, referring to
figure 3.16 where parameters from the operations on the given well data are
plotted.

The goal of the repeated process is to smooth the data so that the input
data at depth zy is averaged over a smoothing length Ag and the smoothing
window length A at other depths z is adjusted according to the relationship
between the effective P-velocities at zg and z. According to these specifica-
tions, the smoothing length A at depth z is given by

A(Z) = Ag . Vp (Z) /VP (Z()) . (330)

Initially the effective velocity is unknown. In the first calculation of the
effective parameters, I therefore let the smoothing length be equal to Ag for
the entire range, i.e.

A (2) = A (3.31)

The use of this static smoothing window gives the first estimation Vp; (2) of
the effective P-velocity as one of its output parameters.
The second smoothing uses the averaging window size calculated from
Vp1 by
Ay (2) = Ao - V1 (2) /Vea (20) (3.32)

to calculate the second estimation of the effective P-velocity Vps (2).

In each repetition of the smoothing, the calculated P-velocity is slightly
modified, but the modification between consecutive steps is assumed to de-
crease with the number of repetitions. Thus, the effective velocities and the
other effective parameters will converge, i.e. Vp nvi1) (2) = Ven (2).

This is illustrated in the current figure. Here Ay is 20 m and 2y = 3580
m. The effective P-velocity from the two first estimations are displayed
in panel a), the corresponding Thomsen parameters in panel b) and the
applied smoothing lengths in panel ¢). For displaying the convergence of the
parameters, curves d) and ¢) show additional numbers of output P-velocity
and applied smoothing window lengths for a 20 m segment of the depth
range.

From panels a) and c) it is seen that the curve of Vp; and Ay have the
same shape. This follows from that Ay = k- Vpv_1). Ay also fullfills
the length requirement at 3580 m. To explain the change in the effective
velocity from the first to the second estimation e.g. at depth z; = 3620 m,
it can be seen in panel a) that the effective velocity Ve is higher at depth
z1 than at depth zg, and, accordingly, As is longer than A; at z1. In fact A
is approximately 2 m longer than A; at z;. When the effective velocity in
the following run is reestimated at this location by using A,, the parameter
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values in a 1 m segment on each side of the interval included in the first
averaging, where A; was used, is added to the volume that is averaged. In
this case, the average of these outermost samples is smaller than the average
within the A; window, and therefore the average velocity of the small scale
data within Aj is less than that within A;. Accordingly, Vps is smaller than
Vp,l at 21

To understand the further convergence observed in panels d) and e); since
Vpo is less than Vp; at 2y, A3 becomes smaller than A,. The average velocity
at z; is however still greater than that found at zy, so Az is larger than A;.
Since the trend of the P-velocity values is decreasing in the directions away
from z; in the intervals within the window of length Ay but outside that of
length A;, both windows positioned with their centre at z;, decreasing the
smoothing window from A to A3z leads to an increased average velocity. The
value of Vp3 is thus within the range limited by Vpy and Vps at z;. This
observations is a general feature of the curves belonging to the four estima-
tions displayed in panels d) and ¢). The averaging length and the resulting
P-velocity associated to one estimation is enclosed by the parameter values
of the two previous. Also, the difference between the values for consecutive
estimations decreases. The data will therefore converge.

The difference between the estimated P-velocity at z; between the first
estimation and the value of convergence is seen on the figure to be approxi-
mately 0.05 km /s, which may be quite significant in a wave simulation case.
Therefore the use of a dynamic averaging window should be considered when
operating on data having large velocity gradients on large scale.

A final remark regarding dynamic smoothing length: In the discussion
above we have only considered the P-velocity values. Thus the smoothing
window length was adjusted as a linear function of the large scale variations in
this velocity. However, for the propagating S-wave, the appropriate smooth-
ing length is less than that for the P-wave, since the S-wave has a lower
velocity. It would therefore be nice to be able to make an upscaled model
where properties determining the behaviour of the S-waves are smoothed over
a shorter distance than those determining the P-wave. Unfortunately, in this
respect, in a transverse isotropic medium the velocities of the P-wave and
the SV-wave both depend on the Thomsen parameters epsilon and delta as
well as the vertical P-velocity (Thomsen, 1984). Thus, to separate the para-
meter sets for the two waves is not possible. Instead, if the synthetic S-wave
data is to be utilized, the applied smoothing length should be selected short
enough so that the wavelength of the S-wave is also considerably longer than
the applied smoothing length.
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3.4 Effects of smoothing and upscaling on wave
propagation

Thus far in this chapter the upscaling has been discussed by pointing to
differenes in the upscaled parameters caused by different smoothing methods.
However, as I have mentioned previously, the validity of the different models
should be tested by simulating wave propagation in the different upscaled
model versions and comparing seismograms and wave-field snapshots from
these simulations with corresponding output from simulations in the original
small scale model.

The remaining part of this chapter contains descriptions and discussions
of the results from such simulations on a small scale bipartite model consisting
of 10 m thin parallel layers of high and low impedance media, the “lime-shale”
model presented in section 3.3.3, and the various upscaled versions of this
model.

Two versions of the model are used, one with a horizontal layering and the
other with a 10 degrees dip. The thin layered and the upscaled replacement
media are all subjected to simulations with two different wavelet frequencies
to check the validity of the different upscaled media for different ratios of
wavelength to layer thickness. Simulating waves in the dipping layers model
will here give an indication of the significance of accounting for the dipping
layers by comparing the wavefields from the small scale models and the cor-
responding transverse isotropic upscaled models.

For performing the simulations, the simulation program Seismod is used,
developed at the University of Bergen by a cooperation project between In-
stitute of Solid Earth Physics and Department of Informatics. This program
is a finite difference implementation of the elastic wave equation and pro-
vides means for simulating waves through gridded isotropic and transverse
isotropic media with constant or varying symmetry axes (Iaveraaen et al.,
1999).

A 1-D representation of the thin layered medium and its corresponding
versions of upscaled isotropic media used in the following simulations was
displayed in figure 3.9 in section 3.3.3. To produce a 2-D horizontally layered
small scale material, the properties from this synthetic data are extrapolated
horizontally, and correspondingly the dipping layer material is produced by
extrapolating the properties according to a dipping correlation line.

The 2-D property and survey geometries are given in figures 3.17 and 3.18.
As seen here, the models are the composite of three large scale slabs. At the
top there is a 150 m thick overburden, representing the elastic properties of
water, followed by a 200 m thick horizontal slab of one of the two thin-layered
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media or one of their large scale replacements, and at the bottom there is
a 150 m thick homogeneous medium. The model is 800 m wide and 500 m
deep, with z-values ranging from 1.1 km to 1.9 km and depth values from
0.35 km to 0.85 km. The upper edge of the model behaves like a free surface
in the simulations, reflecting all the energy, and the z-coordinate of 0.35 km
may thus be considered to represent the sea surface. The other edges of the
model are energy absorbing. The grid size is 2.5 m X 2.5 m. FEach property
grid of the property model thus consists of 64 501 grid nodes.

The simulated survey setup is given by the position of the seismic source
and receivers. The source is placed in the middle of the upper layer repre-
senting the water layer, while 57 receivers are placed along a horizontal line
at depth 0.75 km in the lower medium, symmetric about the vertical line
through the source, and with a 12.5 m distance between adjacent receivers.

The waves to be studied are the directly transmitted P-waves, and to
limited degree the directly transmitted S-wave. The reason for focusing on
P-wave is that S-waves are not generated in the water layer, and P-waves
are only converted to S-waves at the interface at 0.5 km depth for obliquely
incidenting waves. Thus, the wavefront for the S-wave in the vertical direc-
tion vanishes. The P-wave, on the other hand, gives a good picture of the
effective velocities in the medium for all directions of propagation. The waves
are studied both by the use of snapshots of the wavefields taken during the
simulation, describing the absolute particle displacement in the entire spa-
tial model at specific time intervals, and by the use of seismograms recorded
at the positioned receivers. The snapshots will be useful for comparing the
wavefields from different media variations. The snapshots can be contoured
and plotted together in the same figure. In this way the effective velocities in
the different media subjected to the simulation can be compared by simply
comparing the contoured wavefronts.

In real life the means for surveying the wavefield is by recording seis-
mograms at a limited number of geophone or hydrophone locations. The
plotting of the aquired seismograms does not give such an intuitive picture
of the wavefield as the snapshots, however. For example, it is difficult to
identify the different events in the traces, in terms of being reflected or re-
fracted, P- or S-wave, and to get the picture of the “travel-history” of the
waves. However, from the seismograms the arrival times of the different
waves can easily — in theory — be picked, providing a simple test of the
correspondence between the small scale medium and its different upscaled
versions. In specific the seismograms will be used to study the difference in
the effective medium properties from applying different seismic frequencies,
although, as will become evident as going along, to compare the output data
from applying different frequencies is not straightforward.



74 CHAPTER 3. UPSCALING OF WELL DATA

The applied wavelets are Ricker zero phase wavelets of 30 Hz and 100 Hz.
Marion et al. (1994) identified the transition from ray to effective medium
behaviour of a stratified medium, corresponding to the Backus- and slowness
averaged media, to occur at the A/d-ratio of approximately 10, where A is the
length of the propagating wave and d is layer thickness. Since the effective
P-velocity for this model is in the range of 3.6 km/s and 3.8 km/s for the thin-
layered intermediate slab, A becomes longer than 100 m when applying the
30 Hz wave, while the application of a 100 Hz wavelet produces a wavelength
of about 30 — 40 m. The A/d-ratio in the former case is thus greater than 10
and in the range of 3—4 in the latter case. The next section, considering data
from the horizontally layered model, verifies that such a transition actually
exists for the given 10 m layered model for some frequency between the 30

Hz and 100 Hz.

3.4.1 Horizontal layers
30 Hz wavelet

The snapshot-analysis This section contains a description and discus-
sion of the snapshots from the simulations applying the 30 Hz Ricker zero
phase wavelet in the small scale horizontally layered and the upscaled model
versions, cf. figure 3.17.

The displayed snapshots are taken 125 ms after the shot, each consisting
of a grey-scale displacement amplitude map and a selected number of con-
tours. The contours are provided to lineate the wavefronts for comparison
purposes. Being simulated measurements using wavelets with normalized
amplitudes and considering only the differences in the wavefront positions in
the snapshot, the unit of the mapped displacement has not been considered.
The maximum amplitude is identical in all the snapshots, found in the direct
P-wave propagating laterally in the water layer. The amplitude value here
is 3.83 units. Contours are plotted for amplitude values of 0.02 , 0.25 and
0.5 units. The two latter contours are helpful when comparing the position
of the main energy in the different snapshots, while the 0.02 unit contour is
used to locate the head of the wavefront, plotting the locations where the
displacement has reached approximately 0.5 % of the maximum amplitude.

The snapshot from the original thin-layered model is plotted in figure
3.19 a), along with two reference curves which will be commented later. The
major features seen in this snapshot are also found in the snapshots from the
replacement media and are therefore briefly described here. At the capture
moment, much energy has been reflected from the free surface at the top of
the model and from the bottom of the water layer at 0.5 km. The water
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layer also contains a refracted P-wave due to the higher P-velocities in the
underlying composite layer. Thus most of the released energy remains as
P-waves in the upper layer, cf. the location of maximum amplitude in the
snapshots.

At the interface at 0.5 km much energy from the incident P-wave is con-
verted to S-waves for oblique incidenting waves. The S-waves thus contains
the largest amplitudes in the intermediate layer, although due to the larger
geometrical spreading of the corresponding P-wave, the energy relationship
between the two modes is not straightforwardly given. It is also noted that in
the vertical direction the S-wave vanishes and the amplitude of the P-wave
increases accordingly.

The most specific feature of the snapshot from the thin-layered model is
the occurence of ripples in the head of the P-wave front in the intermediate
layer. Obviously these ripples are caused by the internal layers of high and
low velocities. These ripples are small, however, only causing minor differ-
ences from an entirely smooth wavefront. There are neither observed any
reflections from the internal layering. Thus, on the scale of the propagating
wave the composite material may be considered to be homogeneous. My goal
is then to find which of the homogeneous upscaled version that accounts the
best for the behaviour of the small scale heterogeneous medium for this fre-
quency. Therefore, the snapshot from the small scale model is now compared
with the snapshots from the Reuss-, Voigt-, slowness- and velocity averaged
models, and finally with the transverse isotropic Backus averaged model.

The end-members of the presented isotropic versions are the Reuss and
Voigt averages. The corresponding snapshots are plotted in figure 3.19 b) and
3.20 a). The black contours here are those corresponding to the amplitude
maps of the upscaled models, while the red contours are overlayed from the
small scale model snapshot for comparison purpose. For this purpose the
head of the P-wave wavefronts, the outermost contour, in the Reuss and Voigt
snapshots has also been plotted in the small scale medium snapshot, given
as dashed lines marked with circles and triangles respectively. Comparing
the snapshots of these three models, I observe that the vertical going P-wave
in the Reuss replacement medium fits almost exactly with the P-wave in
the thin-layered model. For the horizontally propagating P-wave, the Voigt
averaged model clearly gives the best fit, though the correspondence here is
not as good as the fit between the thin-layered model and the Reuss averaged
medium for the vertical wave. Clearly the thin-layered medium behaves as an
anisotropic medium for the applied wavelength scale. Regarding the S-waves
in the large scale intermediate layer, the effective S-velocity in the small scale
model appear to be somewhere between the Reuss and Voigt average.

The P- and S-velocities in the slowness- and velocity averaged models
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Figure 3.19: Snapshots from thin-layered model and Reuss averaged replace-
ment model, using a 30 Hz wavelet.
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Figure 3.20: Snapshot from a) Voigt-averaged and b) slowness-averaged mod-
els, using a 30 Hz wavelet.
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are enclosed in the range given by the Reuss and Voigt models, and the
corresponding snapshots from these are plotted in figures 3.20 b) and 3.21 a).
Also here the small scale model contours are plotted in red and the enclosing
Reuss- and Voigt wave-front heads are plotted. For the average slowness
wavefield the vertically propagating P-wave is ahead of the wave in the small
scale model, while for horizontally propagating P-waves, the velocity is too
small. Regarding the S-waves, the waves in the slowness averaged model fit
better with those of the small scale model than either the Reuss or Voigt
model. For the velocity averaged model, the head of the P-wave has almost
propagated as far as that of the Voigt averaged model. This model thus
gives a poor estimate of the vertical waves. For the horizontal waves at the
top of the intermediate model, the average velocity model gives an almost
exact reproduction of the P-waves in the small scale model, i.e. a better
reproduction than any of the other upscaled media. As an effect of this, the
critically refracted P-wave in the water layer is also better reproduced by
this model than by any of the others. Regarding the S-waves in the velocity
averaged model, these are slighly ahead of those in the small scale model.
Thus the slowness averaged model turns out to be the one reproducing the
S-waves in the small scale model the best.

The properties of the transverse isotropic replacement medium calculated
by Backus smoothing are given in the table in figure 3.17. The vertical P-
and S-velocities in the intermediate layer are here equal to those of the
Reuss model, and the horizontal P-velocity, given by Vpgo = Ve (1 + ¢),
is approximately 4.15 km/s, slightly higher than the velocity of the Voigt
averaged isotropic medium. Observing the snapshot from the simulation in
the Backus averaged model, in figure 3.21 b), comparing the contours of the
transmitted P-wave with the red contours overlayed from the thin-layered
model, it is seen that there is a very good correspondence for the vertically
propagating wave as well as for obliquely travelling waves. Compared to the
isotropic models, the Backus averaged model is thus by far the best model.
The only exception to this superiority regards the P-wave propagating in
the horizontal direction in the very upper part of the intermediate layer,
corresponding to the critically refracted wave. Here the velocity averaged
model accounts the best for the wave field in the small scale model. From
the observation of the snapshots at the time of 125 ms, the P-wave criti-
cally refracted back to the upper layer is thus modelled the best by using the
average velocity model for the thin-layered section. Regarding the S-wave
generated at the interface below the upper water layer, the snapshots display
a better correspondence between the S-waves in the small scale medium and
in the slowness averaged isotropic replacement medium than the correspon-
dence between the thin-layered medium and the transverse isotropic Backus
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Figure 3.21: Snapshots from a) velocity averaged and b) Backus averaged
“lime-shale”-model, using a 30 Hz wavelet.
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averaged medium.

These observations can be explained by referring to the A/d-ratio for the
thin-layered model. For the P-waves, this ratio is greater than 10 for the
given frequency, and thus the medium behaves as a transverse isotropic ef-
fective medium. Regarding the difference between the effective P-velocity
in the small scale medium and the Backus averaged medium for horizon-
tally propagating waves, this can probably be attributed to influence by the
overlying lower velocity water layer at these locations. For a more thorough
study of the validity of the Backus averaging for the waves travelling in the
direction of the layering, I would suggest to “rotate” the internal layering of
the intermediate layer by 90 degrees. The upscaled replacement media would
be identical, except for the orientation of the symmetry axis of the transverse
isotropic medium, which would be correspondingly rotated. Comparing the
vertically propagating waves in the small and large scale models for such a
case, I would still expect the best correspondence for the Backus averaged
medium. This has however not been tested, yet.

Regarding the S-wave, the wavelength of this wave in the thin-layered
medium is approximately 60 m for the 30 Hz wave. Thus the A/d-ratio is
approximately 6, which is in the transition zone between the short and long
wavelength to layer thickness limit. According to Marion et al. (1994), this
short wavelength limit is given by the average slowness medium, and this is
a tenable explaination of why the S-wave of the slowness averaged version
corresponds the better with the small scale model. As will be displayed
shortly, by replacing the applied 30 hz wavelet with a 100 Hz wavelet, also
the correct effective P-wave velocity of the thin-layered medium is given by
the slowness averaged velocity due to the decreased A/d-ratio.

The seismogram analysis While snapshots are superior for visualizing
the wavefield, the domain in which real experiments are monitored is that
of seismograms. Here the seismograms are used to find and compare the
first break arrival times of the 30 Hz P-waves in the small scale and the
various upscaled model versions. In the next subsection a similar picking of
arrival times is done for the 100 Hz wave, and the effective behaviour of the
thin-layered model is thus compared for the two frequencies.

Figure 3.22 displays the relative shape and length of the recordings of
zero phase Ricker wavelet 30 Hz and 100 Hz wave at a receiver where the
first break of the wave arrives at . The seismograms plotted here are con-
structed by convolving the wavelets with the impulse function é (t — ty,). By
increasing the amplitude of the two inner seismograms 250 times and crop-
ping off everything but the base of the resulting wiggle trace, the outermost
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Figure 3.22: Relative shape and wavelength of a Ricker zero phase 30 Hz and
100 Hz wavelet

traces result. Irom the amplified traces the arrival time ¢, of the waves can
be picked directly. If there had been noise in the seismograms, this would be
more difficult, however. The easiest time-event to pick from the less amplified
traces is the time of maximum amplitude in the main lobe of the wavelet, t,,;.
If the time delay Atygy, from tpy, to tpy, t.e. the delay from the first non-zero
value to the maximum amplitude value of the wavelet, is known, 15, can be
calculated from picking t,,;.

As seen in this figure, the 30 Hz wavelet contains a very small extra
lobe compared to the 100 Hz wavelet. To study possible phase changes of
the applied 30 Hz wavelet in the simulations, the time t;, where the trace
changes sign after this minor lobe is also considered, and the time-delay from
Lfp to tmy is denoted At gp.

In the FD simulations the wavelets of the propagating wave is not nec-
essarily identical with the input wavelets given in figure 3.22, due to signal
distortions e.g. occuring in the source implementation. Thus the time delays
which can be used to estimate the arrival time of the first break of the wave
cannot be found directly from the input wavelets. Neither, which will become
evident especially from the 100 Hz seismograms displayed in the next section,
can the time-delay be easily determined from the seismograms, since energy
leaks ahead of the wave due to numerical effects. The exact arrival time ¢,
in the seismograms can thus only be estimated. In the following plots of the
30 Hz simulations, the time of the maximum amplitude #,,; has been picked
for each trace, and the time-lines ¢y, and ¢y, are calculated by subtracting
the time-delays Aty, = 26.4 ms and Aty, = 22.7 ms from this value. The
values of the time-delays are chosen to fit the assumed waveshape, i.e. ig-
noring supposed dispersion noise, in the traces corresponding to vertically
propagating waves recorded in the upscaled medium models.
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The vertical displacement seismograms from the thin-layered model and
the transverse isotropic model are plotted in figures 3.23 and 3.24.

The three hyperbolic time curves in these figures are those of ¢4, 15, and
tmi- As can be seen in figure 3.24, the correspondence between the traces
and the time-lines is very good for the transverse isotropic upscaled medium.
This follows directly from the setting of Aty and Atg,. A minor detail
when observing the amplified seismograms recorded on the left side in this
figure is that the first lobe in the arriving wave is slightly shorter here than
for the vertically propagating waves. This difference is however insignificant.
Observing the seismograms in the thin-layered model displayed in figure 3.23,
however, it is seen that the wavelet here is different from the case for any of
the replacement media. For the vertically propagating wave, the first minor
lobe in the wavelet has a smaller amplitude than that recorded in the upscaled
media. This lobe also arrives slightly ahead of the calculated ¢s,. The second
lobe in the trace also arrives ahead of the time given by the calculated .
For the traces of the obliquely travelling wave displayed in the left window,
the minor first lobe has totally vanished, and the second lobe of opposite
sign constitutes the first break of the signal. This lobe arrives at time close
to 1. This difference in wave-shape recorded in the thin-layered medium
compared to that recorded in any of the isotropic replacement media, can be
explained from figure 2.5 in chapter 2, related to the change of wave-shape
as the \/d-ratio varies from the ray-trace to the effective medium limit. For
example, in this figure the composite material consisting of 128 thin layers
(Model 4), has an effective velocity very close to that of the medium with
1024 layers (Model 1). The waveshapes of the two transmitted waves are
however quite different. By decreasing the layer thicknesses of the small scale
model, the wavelet difference between the wave measured the homogeneous
replacement medium and the thin-layered medium is expected to vanish, just
as the wavelet measured in figure 2.5 is similar for the end members.

Because of this different wave-shape, it may be argued that choosing the
tpp-curve, which has been generated on the assumption of the waveshape
measured in the homogeneous medium models, does not constitute the cor-
rect arrival time for the wave propagated through the thin-layered model. I
have nevertheless chosen to use this line for comparing arrival times for the
seismograms from all the different models. I think this can be justified by
the very small amount of energy found ahead of this time-line for the central
receivers in figure 3.23. The energy here is so small that it qualifies to be
estimated as numerical noise, cf. the energy found ahead of the arriving 100
Hz wave propagated through the transverse isotropic medium in figure 3.28.
Indeed, for the obliquely travelling wave there is no such first lobe ahead of
the ¢ s;-line.
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Figure 3.23: Synthetic seismogram from a 30 Hz Ricker wavelet passing
through the thin-layered “lime-shale”-model.
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Figure 3.24: Seimogram from a 30 Hz zero-phase Ricker wavelet propagating
through the TT replacement medium of the lime-shale model.
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Figure 3.25: Comparison of travel times for the 30 Hz frequency through the
thin-layered and the various replacement models.

The ¢ p-lines from the thin-layered model and the four versions of up-
scaled media are plotted together in figure 3.25. In order to discern the
individual curves, a more detailed plot of three of the curves, together with
corresponding lines from the 100 Hz modelling, is given in figure 3.30. In
these figures it is seen that for the 30 Hz simulations, the time-curve from
the thin-layered model coincides the best with the curve from the Backus
averaged transverse isotropic model. Furthermore, these two curves have a
good fit with the curve from the Reuss averaged isotropic medium for the
vertically propagating waves and they approach the results from simulation
in the slowness averaged replacement medium for the outermost receivers.
All these observations agree with the observations from the snapshots earlier
in this chapter.

A comparison with 100 Hz

Comparing snapshots To test the effect from the A/d-ratio in the small
scale model for the correctness of different effective media, I also performed
simulations using a Ricker zero phase wavelet of 100 Hz. This modelling
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provides a A/d-ratio for the P-wave of approximately 3.6 for the thin-layered
model. Snapshots are taken of the wavefields after 125 ms in the thin-layered,
the Backus averaged and the slowness averaged models. I do not provide
such a thorough presentation of the 100 Hz snapshots as I did for the 30 Hz
snapshots. The question of interest is how the 100 Hz wavefront propagat-
ing through the thin-layered model fits with those propagating through the
Backus averaged and the average slowness upscaled models.

For this comparison, the generated snapshots are contoured, and the out-
ermost contours, marking the first break wavefront, from the three models
are plotted together in one figure. The corresponding display is provided for
the 30 Hz seismograms, and the two resulting panels are displayed in fig-
ure 3.26. This figure verifies that for the 30 Hz wave, involving the largest
A/d-ratio, the Backus averaged model has the better fit with the thin-layered
medium for the direcly transmitted P-wave, while for the 100 Hz model, with
a smaller \/d-ratio, the slowness averaged medium has the better fit.

Comparing seismograms The seismograms from the 100 Hz simulations
through the thin-layered medium and the Backus averaged medium are plot-
ted in figures 3.27 and 3.28, and a similar seismogram has been generated
from a simulation in the slowness averaged model. Again, the time t,, of
maximum amplitude in the arriving waves is picked. Assuming that the 100
Hz wavelet comnsists of one sidelobe ahead of and behind the central maxi-
mum amplitude lobe, cf. figure 3.22, inspecting the traces in the two given
figures corresponding to the vertically propagating waves gives an estimate
of the time delay At g, of 6.0 ms for the 100 Hz wave. Plotting the t p-curve
with this delay seems to fit well for the vertically propagating waves in both
the thin-layered and the upscaled model. Amplifying the traces 250 times
displays however that there is energy ahead of the ¢s-curve in terms of ad-
ditional sidelobes. This energy is visible both from the thin-layered and the
homogeneous upscaled model. It is therefore not the result of the small-scale
layering but must be attributed to numerical effects, probably caused by too
large grid-cells in the spatial model or too large time steps in the simulation.
This phenomena has not been studied further, however, nor what conclusions
that can be drawn from the observation that the wavelet for obliquely travel-
ling waves in the thin-layered medium is different than that of the vertically
travelling waves in the same model, also observed when applying the 30 Hz
wavelet.

For comparing the arrival times of the 100 Hz wave from the simulations
in the thin-layered, the Backus averaged and the slowness averaged model,
the t p-curves from the three simulations are plotted in figure 3.29. Again, as
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Figure 3.26: Superpositioned wavefronts from the thin-layered, Backus- and
slowness averaged media, using a) 30 Hz wavelet and b) 100 Iz wavelet. The
figure displays which of the replacement media that is the correct effective
medium for the two frequencies.
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Figure 3.29: Comparison of travel times for the 100 Hz frequency through
the thin-layered and the Backus- and slowness averaged replacement models.

I expected from the A /d-ratio for the 100 Hz wave and the given layering, the
arrival-line from the thin-layered model almost coincides with the arrival-line
from the slowness averaged model, while the difference between the former
and the Backus averaged model is substantial, especially for vertically prop-
agating waves.

To conclude, figure 3.30 displays the ¢ s-curves for both frequencies from
the thin-layered, Backus averaged and slowness averaged models together.
As seen in this figure, the thin-layered model behaves like the Backus aver-
aged model for the 30 Hz wave and like the slowness averaged model for the
100 Hz wave. This conclusion, supported by the observations from the snap-
shots, is in good correspondence with the statements of Marion et al. (1994)
regarding the scale effects on velocity dispersion. This effect of the different
A/d-ratios also explains the good correspondence between the S-waves in the
thin-layered and slowness averaged models for the 30 Hz wave case, since the
S-waves are shorter than the P-waves. For this frequency the Swave thus
has a A/d-ratio below the effective medium limit.
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3.4.2 Dipping layers

Finally I will consider the effect of dipping layers in the thin-layered model in
terms of large scale behaviour by comparing snapshots of wavefields generated
in the two thin-layered models, with horizontal and ten degrees dipping layers
correspondingly, and compare these with the wavefields generated by some of
the upscaled models, in specific with the corresponding transverse isotropic
models with vertical and dipping symmetry axes respectively.

Figure 3.18 displayed the 2-D model of containing the intermediate slab of
10 degrees dipping thin layers. Compared to the horizontally-layered model,
the properties are identical except from the orientation of the layering. Thus,
the isotropic upscaled models are identical for the two models. Regarding
the transverse isotropic upscaled media, in terms of material properties these
will also be identical for the two small-scale models, except from the direction
of symmetry axis which will be dipping 10 degrees to the left, corresponding
to the dip of the layers.

Figure 3.31 a) shows the wavefield in the original dipping layer medium.
This wavefield is compared to that of horizontal layering in figure 3.31 b),
where the contours of the latter is superpositioned in red on the snapshot
of the former contoured in blue. The most obvious difference is the anti-
clockwise skew of wave energy. For example the 0.25 contour of the direct
P-wave propagating downwards shows this effect clearly. Likewise, the char-
acteristics of the near horizontal P-wave in the middle layer, in terms of
energy, correspond to a anti-clockwise rotation, seen the best on the left
side.

Careful inspection of the P-wavefronts also shows that in the direction
down to the left, the dipping layers wavefront is ahead of that of the hori-
zontal layers, while in the direction down to the right the horizontal layers
wavefront takes the lead. This is actually what we would expect, since max-
imum and minimum velocity in thin-layered media is normal and parallel to
the symmetry axis of the medium. Since the wave propagating down to the
left moves more parallell to the layering of the dipping layer medium than to
the horizontally layered medium, the wavefronts of the former will propagate
faster. The opposite is the case for the wave that moves to the right in the
figure.

The wavefield of the transverse isotropic replacement medium with dip-
ping symmetry axis is plotted in figure 3.32 a). The simulation shows a good
reconstruction of the wavefield, especially regarding the P-wave, showing the
same skew of the direction of the maximum energy in the head P-wave in
the anti-clockwise direction. Concerning the locations of the wavefronts, the
TI-medium clearly fits better than any of the isotropic replacement media,
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Figure 3.31: Snapshot of 30 Hz wavefield propagating through dipping thin-
layered model (a) versus horizontal thin-layered model (b).
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Figure 3.32: Snapshots from 30 Hz wavefield propagating through dipping
transverse isotropic replacement media (a) versus non-dipping transverse
isotropic media (b).
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and better than the TI-medium with vertical symmetry axis, which is plotted
together with the original field in figure 3.32 b).

The wavefield simulation in the TI-medium with dipping properties is
time and memory-consuming, however, since the orientation of the symme-
try axis has to be stored, and the elastic parameters have to be transformed
from a local rotated system to the global coordinates by applying the Bond
transformation described in chapter 2. However, even though wave simula-
tion in transverse isotropic medium is time-consuming, there are good reasons
for operating on an upscaled medium instead of the fine-scaled medium. This
dipping medium upscaling gives a recipe for how to represent a horizontal
package of cross-layered sediments. The small scale layering may then be
dipping, while the large scale properties can be extrapolated horizontally.
This leads to the subject of the next chapter, focusing on the interpolation
of well data. The subject of upscaling and that of interpolation or extrapo-
lation are related, and one of the primary reasons for upscaling is to get to
a scale on which we have good indications on how the parameters correlate
between wells.

3.5 Conclusions

Heterogeneities in the object of seismic investigation are found on every scale
from the microscopic scale to the scale of basins. Small scale heterogeneities
below resolution limit is represented by an effective medium. Well measure-
ments sampled at desimeter scale can be upscaled to surface seismic scale
by considering log samples to be thin layers that can be upscaled by moving
average smoothing.

The simulations of the bi-periodic medium for large wave-length to layer
thickness ratios show that Reuss averaging the thin layer parameters gives
the best result of the isotropic effective media. For small A /d-ratios averaging
slowness gives the best results.

It was shown that Backus averaging gives an improved upscaled model
compared to isotropic upscaled media for large ratios of wavelength to layer
thickness. The improvements are specificly in the non-vertical directions.
Along the symmetry axis the velocities of the TI and Reuss averaged re-
placement medium are equal, and for studying waves propagating close to
vertically in a horizontally layered medium, an isotropic effective medium
may be sufficient.

The A/d-ratio is smaller for the S-waves than for P-waves. We observed
in the 30 Hz simulation through the 10 m layering model that for the S-wave
slowness averaging gives the best simulation while Backus-averaging gives
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the best simulation of the P-wave. This raises a question of whether it is
possible to construct a replacement medium compatible to both the P- and
S-wave in such a case. This question is open for more research.

For layers that are non-horizontally oriented, the dip effect is maintained
in the upscaled medium by using a transverse isotropic representation with
a corresponding orientation of the medium symmetry axis.

Since any measurement can be considered as an upscaling of the under-
lying medium given on an even smaller scale, a conclusion from the two-step
upscaling experiments on the real well data is that the large scale upscaled
medium is significantly affected by ignoring anisotropy present in the small
scale medium because of microscopic heterogeneities. Upscaling of a layered
transverse isotropic small scale medium causes a different anisotropy than
the result of upscaling an isotropic layered medium. The common assump-
tion that the sampled well is isotropic on log scale may be false, and this
may cause serious errors in further upscaling.

The filtering effect of the smoothing function is given by the length and
shape of the averaging window. The transfer function bandwidth gives the
needed sampling density of the upscaled log to avoid aliasing.

We have also considered filtering effects of variations in inclination of
layers and variations in wave velocity requiring a dynamic window size for
maintaining a constant windowlength to wavelength ratio in the averaging.

We also observed that the vertical velocity of the Backus averaged well
data was not always confined by the Voigt and Reuss limits. At a few seg-
ments the Thomsen parameter epsilon was negative, which means that the
velocity along the symmetry axis is greater than that of waves propagation
perpendicular to this. This seems to contradict the (unsupported) assump-
tion that the Reuss and Voigt averages defines the lower and upper limits on
medium stiffness for any medium.



Chapter 4

Effects of interpolation of well
data

4.1 Introduction

In the previous chapter the focus was on upscaling the reservoir model, i.e.
reducing the spatial resolution of the model while attempting to preserve its
overall behaviour related to e.g. low frequency wave propagation. Appar-
ently, the focus of the present chapter is the opposite, that is to increase
the amount of information in the model. It will be evident though, that
there is no contradiction in claiming that both operations are necessary for
constructing a reliable model.

We have seen that log measurements provide information on the scale
of decimeters at the locations of wells, giving a detailed description of the
geology along the borehole. However, provided with no additional informa-
tion, the complementary volume of the reservoir is unknown. The task of the
modeller is then to estimate reasonable property values to this non-sampled
volume. The methodology involved in this operation is to utilize available
data from well and surface measurements and assure that the assigned values
relate to this information.

Seismic inversion, applying modern methods such as AVO-analysis, will
give an estimate of the properties in the inter-well volume. As have been
stated in previous chapters, the data resolution of such methods often is on a
coarser scale than what is requested. In addition the derived parameters from
seimic inversion are the elastic parameters, from which the transformation
to parameters such as porosity, permeability and hydrocarbon content not
necessarily is one-to-one. Both these factors, the requested model resolution
and the different parameter domains, suggest the application of a different

97
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approach: to determine the unknown values based on nearby well measure-
ments. This interpolation involves making different choices, such as deciding
on the geometry of spatial correlation and choosing interpolating functions.
Both these clearly affect the resulting model, and the goal of this chapter
is to study the effect of different parameters involved in the interpolation
process.

Historically interpolation has been a most important issue. Names of
fameous scientists such as Gauss, Newton and Bessel are all associated with
it. In the sixteenth and seventeenth century the matter of interest was that of
determining the locations of the planets and other heavenly bodies at times
between those of observation. In this application some a priori assumptions
regarding their motion were held, like that the bodies were moving in cir-
cular or elliptical orbits according to the law of gravity. Likewise, in the
earth sciences, a general assumption widely held in the interpolation of rock
properties between locations of observation, is the principle of stratification,
i.e. that sediments are deposited in layers. William Smith, when surveying
the geology of western England in the beginning of the nineteenth century,
for the purpose of constructing new channels, observed that the studied sed-
iments were found to be ordered “like slices of bread and butter.” The
layers were stacked in a sequence that was unvarying from location to lo-
cation. Equipped with this basic stratigraphic principle, a simple geologic
model could be constructed by interpolating the identified layers between the
sample locations.

However, this principle of stratification alone is not a good enough basis
for constructing a realistic model. First we need the correlation geometry of
the assumed stratification in the object. Secondly, since measurements show
that rock properties may vary from location to location within an identified
layer, we need a function for interpolating the measured parameter values
along the stratification geometry between the provided samples. Influencing
both the choice of geometry and interpolator is the matter of scale or resolu-
tion of the model. In this chapter we will show that scale indeed is not just an
issue of economical model representation and correct and efficient computer
simulation, as we looked on in the previous chapter, but also related to the
procedure of model construction by interpolation.

For the sceptical reader who may consider conventional interpolation as
obsolete in reservoir characterization, I would like to give a few remarks in
defence of its application before addressing its main issues. My first remark
is to acknowledge that the modeller has no a priori correct choice in the
selection of parameters. In principle the relationship between the sampled
material in a well and its surroundings is indeed unknown. The principles of
stratification makes no claims that there are not internal variations within
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Figure 4.1: Three different interpretations of the relations between a well
and its surrondings. (From Haldorsen and van Golf-Racht, 1992)

sedimentary units. For example in an alluvial environment, fluvial channel
sands and flood plain shales will both be present, merging into each other
and the one pinching out into the other. On a finer scale, e.g. within the
sand bodies, internal variations will also be present. Thus, as illustrated in
figure 4.1, many geologic models are possible to deduce from a given set of
well measurements. In such cases, proper scaling is an important issue. For
example, in the alluvial deposition case, that may not support interpolation
of sand and shale units separately, a solution could be to interpolate the
overall average properties of the two components, i.e. the upscaled parame-
ters. A problem with this upscaling, however, is that the resulting spatial
model might not comply to the purpose of constructing the model, due to
the resulting coarseness in its resolution.

An alternative approach to classical interpolation, acknowledging the un-
certainties involved in the procedure, is that of geostatistics. In this case
the internal spatial variations in the units are estimated and quantified in
terms of spatial correlation functions to be used for obtaining geostatisti-
cal realizations of the reservoir. For a brief introduction to the concepts of
geostatistes, see Journel (1989) or Isaaks & Srivastava (1989). IHere funda-
mental concepts such as variograms and covariance and basic procedures for
obtaining realizations of the stochastic model are explained. A general class
of such procedures is that of sequential simulation, which includes different
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Figure 4.2: Three geostatistical realizations of the Statfjord formation.

(From Dubrule et al., 1998)

methods of kriging.

The Association of American Petroleum Geologist publication “Stochastic
Modeling and Geostatistics”, edited by Yarus and Chambers (1994), contains
an additional list of useful books and articles on the topic. In addition to
this it includes several case studies illustrating the usefulness of the stochastic
method.

Regarding the predictive ability of stochastic modelling compared to tra-
ditional interpolation, Laslett (1994) has performed a comparison conclud-
ing that “in the cases examined, kriging sometimes outperforms splines by a
considerable margin, and it never performs worse than splines”. When geo-
statistics was introduced, it was, according to Laslett (1994) “countered by
widespread negative reactions ranging from mild to total scepticism”. How-
ever, recognizing that different modellers, despite presented identical data,
will produce different models, and also recognizing that there is a need for
quantification of the uncertainties involved, geostatistics has now been widely
accepted as part of the modelling toolbox.

Figure 4.2 from Dubrule et al. (1998) shows three realizations of a geo-
statistical model, based on spatial continuity parameters from the Statfjord
formation model of Johnson and Krol (1984) and constrained by two wells
indicated on the figure as vertical lines. These well constrainments imply
that all realizations have equal property values at these locations, while at
different locations the properties generally may differ from one realization
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to the other. The overall properties of the three models are the same, e.g.
with respect to the sand-shale ratio and the spatial correlation functions.
Thus, based on the given presumptions, the realizations are equally valid.
In their recent article, Dubrule et al. (1998) present a general algorithm for
geostatistical modelling that includes seismic modelling to guide the applied
sequential simulation towards the most reliable realization. Geostatistical
parameters are supplied from 3-D seismic interpretation, a priori assump-
tions and well data analysis, and initial constraints are provided by the well
measurements. In short, their simulation is performed as follows: A ran-
dom location in the horizontal plane is selected, for which a great number
of realizations of “synthetic wells” are produced according to the stochas-
tic parameters. A synthetic seismogram is produced from each realization
and compared to the actual seismic trace from this location. The synthetic
well whose seismogram agrees the best with the seismic data is selected and
added to the set of constraining wells. From this point the process is re-
peated for a next location, now having increased the number of constraining
wells with one, repeating this untill the whole model is filled. Dubrule et
al. (1998) has thus presented a procedure that incorporates seismic inversion
with geostatistical modelling.

This promising advance of stochastic modelling, supported with the men-
tioned conclusion of Laslett (1994), may cause one to wonder whether tradi-
tional interpolation is obsolete and thus not worth studying. This proposition
I will like to challenge. The first such reason is that in many cases the model
has such a strong spatial correlation of properties that the introduction of
geostatistics seems to be unnecessary. A traditional interpolation will surely
do. The second reason is simply that interpolation may be useful even if
the primary method for model construction is geostatistical. This is so be-
cause the general assumption that the geostatistical parameters are constant
throughout the layer to be modelled may only be a first approximation. For
example, when studying an object, the overall spatial continuity, either its
range or its orientation, may change from one part of the object to the other.
The geostatistical parameters may then be calculated over a sufficiently large
volume in different parts of the object and then interpolated. I believe the
similarities to moving window statistics and interpolation of upscaled para-
meters are evident.

Thus, though new metods of model construction may have arisen, the
concepts of interpolation are still very important. And these concepts are
the issues of the following sections.
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4.2 The basic interpolation algorithm

A prerequisite for discussing the effect of choosing different parameters in-
volved in the interpolation procedure, is to give an account of the principles
of interpolation or extrapolation algorithm. For the following discussion, the
consepts will be illustrated in figure 4.3.

I will only consider the two dimensional model construction, but the con-
cepts may casily be extended to 3-D. Panel a) of the referred to figure illus-
trates the input data to the algorithm. It consists of well data and corre-
lational horizons. This figure panel displays three wells and three horizons.
The wells are given as discrete samples, with spatial position parameters and
sampled property values. The samples together constitute the well trajectory.
In this example, one of these is vertical while the others are deviating.

The correlation horizons are given by a set of sample points containing
their spatial position. In cases where the samples of a horizon do not form a
simple straight line and the horizon is sparsely sampled, an input parameter
is needed stating the type of interpolating function to be used to draw the
line between the samples. The available options here are the linear and the
spline interpolator.

I will later show that the wells generally are resampled as part of the
initial step of the procedure to form equal number of samples in each well
involved in the spatial interpolation. Therefore, each well given as input
needs to be accompanied with parameters specifying the type of interpolation
performed in this preparing resampling of spatial location and parameter
values. As the trajectory of the wells usually are nearly linear at the scale
of the resample interval, the effect on the trajectory, in terms of spatial
parameters, of choosing different interpolators is only moderate. However,
regarding the property values at the resampled locations, these may indeed
be influenced by the selection of different interpolators, as property values,
in the case of a thin layered medium, may vary significantly on the scale of
sampling, only assumed to be constrained by the Nyquist frequency.

Additional parameters to be given for performing the model building are
the parameters defining the final grids to be generated. This involves stating
the spatial range of the grid and the sample density in the z- and z-direction.

Before performing any kind of interpolation or resampling, the correlation
field has to be defined based on the provided horizons. At any point in the
model, the path of correlation must be possible to calculate. This establish-
ment is fundamental for drawing correlation lines between the given wells;
lines along which the sample values are to be interpolated or extrapolated.

The definition of the correlation field depends on the number of horizons
given as input parameters. If one single horizon is given, the field is defined
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such that the vertical distance from any correlation line to the given horizon
remains constant along this line. In this case all correlation lines in the corre-
lation field are parallel. If the input is two horizons, the field is defined such
that along the path of any correlation line, the ratio of the vertical distances
to the two provided horizons is constant. For example, the correlation line
[ passing through a point A at (x1,21), at which point the vertical distance
between the horizons hy and hy is di and the vertical distance from A to
hy is s1, the vertical distance s between [ and h; at any position z is given
by d - s1/dy, where d is the corresponding distance between hy and hy. A
special case occurs when this distance d as a function of z is constant, where
the given horizons are parallel, causing all the correlation lines will be paral-
lell. If more than two horizons are provided, the principle of using two of the
given horizons is still used. Two of the horizons are then selected, which ones
depending on the location of calculation. When the location is between two
given horizons, these are selected, while the nearest two horizons are selected
in the case where the location is above or below respectively the upper or
lowest given horizon.

The vertical extent of the provided wells constrains the area where the
correlation field can be utilized. If only one well is given, the correlation line
passing through the uppermost sample defines the upper limit of this area,
while the line passing through the lowermost sample defines the lower limit.
If more than one well is provided, these limits are defined to be the upper
and lower lines passing through all provided wells. Surely, an interpolation or
extrapolation outside this area would be meaningless if only one well is given,
but also in the multiple well case interpolation outside this region should be
avoided. This is so because generally a discontinuity is generated in the
resulting property field at these borders if interpolation is performed also
outside it. This discontinuity is generated because there are fewer samples
governing the interpolation along each correlation lines outside this border
than inside of it, related to the fewer wells that are intersected.

Having defined the correlation field with its spatial borders, the interpo-
lation or extrapolation procedure can be performed in three steps:

The first step is to generate a finite number of correlation lines and to
resample the given wells at the locations of intersection with these lines. The
result of this step is illustrated in panel b).

Then second step is to interpolate or extrapolate the independent prop-
erty functions along each of the correlation lines. The interpolated functions
are then sampled at the z-positions where grid samples are requested for the
final regular grid. If k is the number of correlation lines and 7 is the number
of grid-nodes along the z-axis for the requested m x n grid, the output of this
correlation step of the process is a generated k X n grid. The geometric struc-
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ture of this grid is illustrated in the upper half of panel ¢). At each z-location
of this grid, property values are thus provided at k depths corresponding to
the correlation lines.

The final step is performed by interpolating property values vertically at
each of these z-locations, based on the k calculated property samples. The
inferred property functions are then, as illustrated by the lower part of panel
c¢) and d), resampled at the z-values of the requested regular grid, providing
property samples at the grid nodes specified by the requested regular property
grid. The circle shaped samples in the upper part of figure 4.3 d) thus
illustrate the final result of the interpolation procedure.

In the described steps, three main parameters determine the output of
the total operation.

The first is the geometry of the correlation field, the issue to be discussed
in the next section. The second issue is that of selecting the functions of
interpolation, the parameter domain of interpolation and the interpolator
itself to be used along the generated correlation lines. The third issue is
that related to model sampling and the effect on the model information by
different sampling densities in the three sampling steps in the operation.

In the first resampling, the given wells are resampled. Then the interpo-
lated function along each correlation line is sampled at regular x-values, and
finally the resulting skew grid is resampled at regular z-values. According to
the sampling theorem, a spatial function has to be sampled at a minimum of
twice per wavelength to prevent distortion by aliasing. The issue of aliasing
relates to the first and third sampling step of the full operation; the vertical
or near to vertical resampling.

To prevent aliasing in the first step, the wells have to be resampled with
a sufficient density. The resample points are determined by the intersection
points between the instantiated correlation lines and the wells. To prevent
aliasing, a sufficient number of correlation lines has to be generated in the
correlation field.

In the final step, where the skew grid is resampled vertically to produce
the requested regular grid, the aliasing issue is related to the requested sam-
pling density of the output grid compared to the vertical signal frequency
of the input grid. This frequency must not exceed the spatial Nyquist fre-
quency determined by the output sampling density. Thus, here somewhat
the converse constraints to that of the first step is put on the density of
the generated correlation lines. If not the signal represented by the columns
of the skew grid is oversampled, the final step requires a minimum allowed
separation on the corresponding correlation lines.

In some cases the maximum allowed separation of the correlation lines
due to the signal frequency in the input wells may still cause undersampling
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in the final step. In such cases one solution is to perform upscaling of the
input wells before performing the interpolation procedure, the subject of the
previous chapter. An alternative option is of course to increase the sample
density of the output grid.

The sample issue can be illustrated by the already referred to figure illus-
trating the interpolation concepts, figure 4.3. Let us assume that the three
input wells are given with sample density equal to the resampled outer wells
in panel b), and that the maximum frequency of each of the three wells
corresponds to this input sampling density, i.c. none of the wells are over-
sampled. According to the correlation field, a selection of correlation lines
then has been generated, and the wells have been resampled. From the above
discussion and the mentioned frequency assumptions, it should be clear that
the two outer wells are well represented by this resampling. The middle well,
however, is clearly undersampled in its lower part for the given selection of
correlation lines, due to the expansion of the correlation field in this part
of the object. To avoid a distortion of the information given in this well,
more correlation lines should be generated in this lower section of the field,
producing a sampling density equal to that of the outer wells. Surely this
increase of correlation lines will increase the sampling density of the lower
parts of the outer wells too, but an oversampling does not distort the signal
of the wells. Similarly, a proper sampling of the outer wells in their upper
parts causes an oversampling of the corresponding part of the middle well
due to the compression of the correlation field in this part of the object.

In panel d) the resulting skew grid is resampled. In this example, the
vertical sample interval of the regular grid is approximately equal to the
vertical sample interval of the skew grid on the left and right hand side of
the grid. In the middle of the object, where the skew grid is compressed
and stretched, the vertical sample density of the regular grid is respectively
smaller and greater. In cases where the sampling density is larger for the skew
grid, there is a possibility of undersampling in the generation of the regular
one. In this example, however, the upper middle portion will not suffer from
aliasing, since we already know that the spatial frequencies in this region is
mainly dependant on the corresponding frequencies of the input middle well,
which we assumed were upper band limited causing a non-aliased signal when
sampled at the density of the resampled left and right well in panel b). The
vertical sampling density of the final grid exceeds this density, and thus the
skew grid will not be aliased by the final resampling. In other words: the
initial oversampling exceeded the final undersampling.

The information contained in the lower middle part of the skew grid is
not distorted by the final resampling. However, the information here already
suffer from aliasing due to the unsufficient resampling of the middle well in
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a previous step of the interpolation. Surely no operation can restore this
distortion, so the final regular grid will still contain an aliased parameter
field in this part.

Before leaving this issue, imagine that only the outer wells were given as
input to the previous example. In this case the interpolation lines generated
in the previous example and displayed in panel b) are sufficient to preserve the
information given in the two wells, and there is no aliasing in the resampled
wells and the resulting skew grid. However, when this grid, represented in
panel ¢), is resampled to construct the final grid, the property field is likely to
be distorted by aliasing in the compressed region, where the vertical sampling
interval of the input grid is less than that of the output. To prevent this,
either the input wells must be upscaled, or the vertical sample interval of the
output grid has to be decreased.

4.3 Geometric correlation effects

From the discussion of the interpolation algorithm above, it is evident that
the correlation horizons given as input to the procedure are of vital im-
portance for the result. The horizons define the general orientation of the
stratification of the object. From the discussion of the sampling issues of the
spatial model, it is also obvious that geometric features of the correlation
field affect this.

To study the mere effects of geometry, the case of extrapolation, where
only one well is given, is the most illustrative one. The effects of interpolation,
involving more than one well, is the theme of the next section.

A model constructed by pure extrapolation contains no variations along
the provided correlation lines. Clearly this is a strong simplification of reality,
but it serves well as a first approximation of the object.

If seismic interpretations of the reservoir are available, these will give guid-
ance for the correlation geometry. In figure 4.4 data from one provided well
is extrapolated according to three different geometries. Assuming property
variations along the well borehole, differing models result from the extrap-
olations. The sediment package to be determined is confined by an upper
and lower surface, forming a wedge shaped package to be filled by correlating
values from the well. The upper correlation geometry is defined by entering
these two surfaces as input to the correlation procedure, forming a divergent
wedge structure of the internal stratigraphy. The stratification displayed be-
low is created by entering only the top horizon as input to the correlation
procedure. Thus, the stratification of the package is created parallel to the
top of the layer, causing a downlapping structure with the sediment lay-
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a) Divergent wedge
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b) Onlap or downlap (baselap)

Top of layer
Base of layer 2
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Base of layer

Figure 4.4: Different geometries of correlation

ers terminating against the lower surface. In the final example, the lower
horizon in entered as input, causing the sediments to terminate against the
upper surface, a structure that can be interpreted as an erosional truncation.
Clearly the effect of the different choices are strong on the resulting model.
For example, in the case of downlap the properties at the very left hand side
of the wedge are identical to those measured in the upper part of the given
well, while in the truncation case, the properties in the left part of the model
are equal to those found in the lower part of the well.

4.3.1 Multiple scales of interpolation

Generally the correlation information related to the layering geometry aquired
from seismic interpretations provides information about the large scale struc-
tures in the object, such as formations and groups. Smaller features, found in-
ternally in these structures, such as foresetting structures and cross-layering,
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may be observable in high resolution seismic surveys, but these structures
may also be indicated by borehole measurements. Measurements providing
such information are e.g. dipmeter logs and core samples showing small scale
stratification. These small scale structures may have a different orientation
of stratification than the encapsulating structure, and in this case the issue
to be considered is what set of correlation lines should be used for the inter-
polation or extrapolation routine. The modeller has to decide what scale he
is to interpolate on.

A conceptual model illustrating the issue is given in figue 4.5.  Three
vertically stacked large scale strata are identified from seismic data, each
containing internal structures. Information from a given well indicates that
the internal structures of the upper and lower layer are horizontal, while
the structures within the middle layer are dipping. The upper and lower
layers are easily extrapolated, as the orientation of the correlation lines for
the large and small scale features are equal. This geometric equivalence is
however not the case for the middle layer. While on large scale the layer
is horizontal, 7.e. the overall properties may be extended horizontally out
from the well, the small scale stratification has a different geometry. Clearly
the effect of the dipping layers on elastic wave propagation will vanish if the
large scale correlation lines are used directly to extrapolate the intermediate
layer. On the other hand, if the well data belonging to the middle layer is
extrapolated according to the correlation characteristics of the small scale
features, parameters can only be assigned to the area of the spatial model
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indicated by the grey parallelogram displayed in the figure. Outside this
area, properties cannot be correlated to well measurements belonging to the
proper well interval, and thus the lateral correlation applying this correlation
information is limited.

However, referring to the previous chapter addressing the issue of upscal-
ing, it should be obvious that the middle layer can be extrapolated by first
upscaling the medium, obtaining a transverse isotropic replacement medium
with symmetry axis normal to the small scale correlation structure. This
medium may then be extrapolated horizontally, or in any other direction,
and still preserve the large scale effect of the orientation of the internal lay-
ering.

From this example it is clear that upscaling is a useful tool in case of
multiple scales of correlation. Also, interpolation or extrapolation of upscaled
values produces a more statistical reliable description of the material than
what interpolation on small scale does. I will return to this benefit in the
next section, addressing aspects of interpolation between two and more wells.

In the previous section, from the last example it can be concluded that
there is a relationship between the correlation geometry, the spatial frequency
content in the wells and the required sampling density of the output grid,
and the present section concludes by elaborating a bit more on that issue.
If the skew grid is generated by extrapolation from one well only, it will
contain identical sets of property values in each of its columns. The only
parameter that will differ along the non-vertical rows is the vertical position
of each sample, as the correlation horizons given as input may cause the grid
to be compressed and extended vertically. A result of these compressions or
dilatations is that the spatial frequency of the signal may differ from column
to column as the sample points are moved closer or more distant from each
other. Where the columns are compressed, the necessary sample density to
prevent aliasing of the regular output grid, increases. The required sampling
density is reduced, however, if the number of correlation lines in the skew grid
is reduced. One problem here is however that the frequency content in the
given wells may require a minimum sampling density in the prior resampling
of the wells to prevent aliasing at that step. In consequence a minimum
number of correlation lines is required.

If a limit of maximum sampling density of the output regular grid is given,
the dilemma of having too dense correlation lines for avoiding aliasing in the
final grid or having too sparse correlation lines to avoid aliasing in the prior
resampling of the wells, can be solved by upscaling the input wells before the
correlation is initiated.
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4.4 Interpolation effects

The previous section considered the case of pure extrapolation. However,
a correlation with no variations along the correlation lines is clearly only
a first approximation of a more realistic model. If more than one well is
given as input, lateral variations in the strata of the object can be modelled
by interpolating along the correlation lines between the intersected sample
values of different wells. As a result, the grid nodes of the resulting skew
grid will contain different property values along the rows corresponding to
the correlation lines.

The issue of the current section is to study the effect of choosing different
functions in the interpolation step of the correlation procedure. The issue
will be discussed under two separate headings. The first regards different
functions of interpolation, while the second regards the parameter domains
that may be interpolated.

4.4.1 The choice of parameter interpolators

In theory an infinite number of different functions can account for the sample
values of a finite set of sample points along a correlation line. Accordingly,
there is no a priort given answer to which function that most accurately
predicts measurements at yet unsampled locations.

One assumption that could be made is that the interpolator is quite sim-
ple. For example, if only two sample points are given along the correlation
line, the natural assumption is that the predicting function is linear. If the
two sample points have equal values, thus the only reasonable function will
be constant along the correlation line. Clearly this does not mean that the
property variations in nature has to conform to this assumed function. In-
deed an additional sample taken in the middle of the two samples of identical
values could reveal a very different value, but such an observation cannot be
expected and thus predicted on the basis of the provided data.

In some cases, the modeller may do better that assuming a linear inter-
polation between two given sample points. Given information regarding the
geologic environment where the data is sampled may suggest that the inter-
polated property varies in a different way, e.g. that rather than the function
itself varies linearly along the correlation line, the logarithm of the function
is linear. This examples touches however the topic of the next subsection,
which covers the topic of parameter domain in which to operate on in the
interpolation step. Clearly to operate the interpolation on the logarithm of
the function generates a different parameter field than interpolating the func-
tion directly. The point we make here is that where the measurements are
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identified to belong to a specific sedimentary facies, e.g. a river delta deposit,
this may advocate the application of some other interpolation model than
the linear for estimating property variations between the proximal and distal
part of the unit.

Disregarding the possibility of choosing a non-linear function to interpo-
late between two sample points, still the question regarding the spatial ar-
gument of the interpolation has to be decided on. The modeller may choose
between the horizontal z-parameter and the curvelength s traversed along
the correlation line.

As long as the correlation line constantly traverses in one direction lat-
erally, allowing the correlation line to be represented by a functions of the
form z = I (x), property values p along the correlation lines may be given as
functions of the horizontal z-coordinate. The properties along the correlation
line may thus be given as p = f; ().

The other possible spatial argument for the property functions along the
correlation line is the parameter of curve-length. The curvelength along the
correlation line from a position (zg, z0) to a position (z,z) along the curve
defined by z =1 (z) is given by

s(z) = / 1+ (X)%dX (4.1)

Since the integrand here is always positive, the s-value of each point along the
correlation line is unique. The s-variable may therefore be used as the spatial
argument for any property p along the line, defining the function p = f5 (s).
For the actual object, the mapped property is the same regardless of which
spatial argument that is used for its representation. Thus

p=/fi(z)=fros(x). (4.2)

However, when interpolating properties between a finite set of samples,
the result will generally differ depending on the argument of interpolation.
We will now consider the case of interpolating along a correlation line z =
I (x) between two sample points (21, 21) and (x9, 29) with property values py
and ps:

A linear interpolation of p with respect to x is given by

r — To r— I
Pz (T) = p1 ( ) + P2 5 (4.3)
X1 — X9 To — X1
while a linear interpolation of p with respect to s is given by
S — 89 S — 81
ps (s) = p1 + o (4.4)

81 — 82 82—81’
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where g1 and sy are the curvelength parameters corresponding to the hori-
zontal parameters x; and x5 according to equation 4.1. Since s is a function
of z, equation 4.4 can be written as

8(.’13)—82+ 8(13)—81. (45)

DPs («T:) =D 2

81— 52 81— 52
Now it should be observed that in case the correlation line is straight, i.e
z = k -z + a, the curvelength function s (z) will be linear. As a result, the
function p, (x) will also linear as well. Since p, (z) and p, (x) now both are
linear functions passing through the identical two sample points, these two
functions must be identical. On the other hand, in the case where z =1 (z) is
non-linear, the curvelength function s(z) and thus p, (z) will be non-linear
as well. The two functions py and p, will thus be different.

Figure 4.6 displays the effect of interpolating linearly with respect to the
two spatial variables along a strongly curved horizon. The geometry of the
correlation line is displayed in panel a), and the relationship between the z
and s parameter calculated on the basis of equation 4.1 is displayed in panel
b). Panel ¢) displays the difference between the predicted parameter values
for different x-values. This difference becomes quite large for some parts of
the functions. For example, for z = 100, the property values differ with
approximately 0.03 units, which is 6% of the 0.5 units difference between the
two given sample points. In cases of strongly curved correlation lines, the
effect of interpolation argument is clearly significant.

Regarding the question of what spatial argument that will produce the
most reliable result, there are at least two reasons for preferring the curve-
length function. The first reason is based on a geological assumption that
many parameters of rocks are determined by the location of the rock at the
time of deposition. If a reliable predictive function of e.g. lithology properties
along the original usually flat layering is available, selecting this parameter
as a function of curve length allows the modeller to use the same function to
correlate the property values in space if the layers are deformed by folding.

The second reason is that by defining the property function with re-
spect to the traversed length along the correlation line, the geometry of the
correlation lines need not to be expressed as a function of the horizontal z-
parameter. A more general parameter representation of the lines [ in the form
I(t) = (z(t),z(t)), will also allow lines of more general shape, resembling
the shape of e.g. overturned folds.

The reason for choosing the opposite option, interpolating with respect
to the z-axis, is clearly of economical character. When the curvelength is to
be used, for each correlation line the curvelength value given by equation 4.1
must be calculated for the z-locations of the input sample points as well as for
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the z-values of the resample points before the interpolation. This calculation
clearly delays the execution of the interpolation algorithm, so in cases where
the line curving is small, time is saved by using the xz-parameter directly.

If more than two samples are given along each correlation line, regard-
less of what parameter that is the argument of the property functions, it is
generally not possible to draw a straight line through the sample values.

A simple interpolating function accounting for a given set of n+1 samples
is a nth degree polynomials. As we known from calculus, there exist a unique
such function for a such a set of sample points. The problem with this is the
great oscillations that often occur between the sample points in such poly-
noms. Generally these functions are also badly conditioned for extrapolating
parameter values outside the outermost given samples, especially if a high
order function has to be used, quickly approaching plus or minus infinity.

By using composite functions, the oscillations of the nth order polynomals
are avoided. On the other hand some discontinuity in the function must be
expected, either in the function itself or its derivatives, at the sample points
being the connection points between the different functions.

Figure 4.7 displays four given sample values taken in a vertically homo-
geneous sediment layer. T'wo lateral composite functions are constructed as
interpolating functions. The linear interpolator designed by pulling a straight
line between adjacent sample values, is continous, but its first derivative is
discontinous where the property gradient changes. A different frequently used
interpolation function is the spline, which is the other function displayed in
the figure. Like the piecewise linear function, the spline is a composite of
different functions whose argument is defined between adjacent samples. The
difference is that higher order functions are used, with higher order deriva-
tives also continous at the given samplepoints. A frequently used spline is
the cubic splines, composed of third degree polynomials having a continious
second derivative at all the jointing points. Requiring the second derivative
at the outer points of the composite function to be zero produces the what
is termed a natural cubic spline, a uniquely determined function defined by
the sample points. If the spline requested is not the natural spline, different
cubic splines may be generated by setting the tangent slope of the function
to specific values at the outermost points.

The referred to figure illustrates that the choosing of a linear composite
versus a spline function affects the parameter values to be predicted. Com-
paring the two, the linear interpolation is surely the most time efficient, but
the sharp changes in parameter gradient at the sample points is surely a
disadvantage for this procedure.

A significant question occuring in the interpolation step is regarding the
assignment of values at locations outside of the outermost borehole measure-
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Parameter value

Figure 4.7: Interpolation between well measurements by linear interpolation
and a spline function

ments, i.e. the issue of extrapolation.

Naturally one possibility is to apply the function that was used for the
interpolation between the outermost sample point also for the extrapolation.
The problem with this solution is however that the function values of the ap-
plied function usually quickly drifts far away from the sampled values. This
is especially the case when a high order polynomial is used, as mentioned in
the paragraphs above discussing the use of a nth order polynomial for inter-
polating between n+1 samples. The use of such a function for extrapolation,
may easily give non-rational values, i.e. negative bulk density or velocities.

In the programmed correlation routines, two options of extrapolation are
offered to prevent such drift-off.

The first option is to extrapolate to the edges by simply copying the
property values of the outer wells to the exterior resampling points. This
is similar to the procedure performed on the entire correlation lines in the
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one-well extrapolation case. If a spline is used to interpolate in the interior
of the model, by setting the first derivative of the spline to zero at the outer
input samples, the composite constant-and-spline function has a continous
first derivative for the entire correlation line.

The other option is to assign some specific parameter value at the lateral
edges of the model and include these values to the set of input samples to
interpolate in between. By assigning such values, the issue of extrapolation is
transformed to interpolation. The equivalent of this assignment is of course
to input equivalent well data positioned on the very edge of the model. In
such a case the matter of extrapolation vanishes.

The issue of extrapolation is also of interest in the final step of the grid
generation, where the skew grid is resampled vertically at the z-values of
the requested regular grid. This resampling was displayed in the lower part
of panel c¢) and d) of figure 4.3. In cases such as that illustrated in that
figure, where the correlation field does not extend to the top and bottom
of the output grid, extrapolation has to be performed. Observing the short
distance between the input samples in this step — due to the correlation
geometry this distance may be shorter than the sample density of the input
wells — and expecting some value difference between these input samples,
within a few resample intervals of extrapolation the estimated function values
may be be quite different from the range of the input values.

Possible solutions to the drift off in the vertical extrapolation are equiva-
lent to those for the lateral extrapolation, as discussed in the previous para-
graphs. These solutions have not yet been implemented in the well correlation
program. Initially the vertical extrapolation issue was ignored due to the as-
sumption that the correlation lines with associated well samples would be
provided for the area to be gridded. The interpolation example in section
4.5 will show, however, that this assumption do not always hold.

4.4.2 Parameter domain effects

An obvious remark was made in the previous subsection that a linear interpo-
lation of a function and the equivalent interpolation of its logarithm produces
quite different results. This observation serves well as an introduction to the
issue of which domain to interpolate property parameters in.

A rock at a specific location has different properties related to the different
processes, operations or investigations imposed on the object. The rock has
a specific mineral composition and texture, from which properties such as
density, porosity and permeability, elastic and magnetic properties in theory
should be possible to be deduced. The various parameter domains are thus
related, since they are deterministic functions of the same actual medium.
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Figure 4.8: a) P- and S-velocity interpolated linearly and predicted from
clastic constants linearly interpolated. b) Difference in velocity caused by
interpolation method.

Some of the parameter domains may be mapped directly from each other. A
known such relationship is that between shear modulus, bulk density and S-
velocity in an isotropic homogeneous medium, such as inferred in the second
chapter. Other parameters are consided to be independant. For example the
porefluid is generally independant of the lithology.

For a set of independent parameters, these are interpolated separately.
On the other hand, for any set of dependant parameters, the modeller has
to choose which domains to operate on in the interpolation. For example,
for the set of related density, shear modulus and S-wave velocity, two of the
parameters may be interpolated, while the third is calculated based on the
resulting interpolated functions, requiring the relation

Ve = \/% (4.6)

Since the relationship between the elastic constants and velocities are
non-linear for both P- and S-velocity, the result of interpolating velocities
linearly compared to that of predicting the velocity from interpolated elastic
constants, will differ.

to hold at all sample points.

The differences between interpolating in the two parameter domains, are
displayed in figure 4.8. Two sample points are given as input at 2y = 100 and
9 = 200. At z; the P- and S-velocities are respectingly 2.19 km/s and 1.10
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Interpolation of model parameters from two wells
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Figure 4.9: Independent parameters may be interpolated along different cor-
relation lines.

km/s, while at 25 the corresponding values are 4.00 km/s and 2.45 km/s.
The density is 2.5 g/cm® throughout the model. Panel b) illustrates that the
difference between the interpolated velocities and the predicted velocities
from interpolated elastic constants, is about 0.13 km/s at the most for the
intermediate points, equivalent to 12 % of the total difference in S-velocity
between the two given sample points. Thus, clearly the choice of parameters
for the interpolation is significant for interpolating along layers with a large
difference in property values from one sample location to the other.

When correlating independent properties, such as pore fluid and lithology,
even the correlation geometry for the various parameters may be selected in-
dependently. The application of such an approach is illustrated in figure 4.9.
Here the lithology stratification is dipping while the porefluid has a close to
horizontal stratification. Property grids representing these parameters are
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thus generated separately. As the elastic properties of the object depend on
both these properties, the elastic properties cannot be interpolated by corre-
spondingly simple correlation geometry and interpolation functions as those
applied for the lithology and pore fluid. Instead, the elastic properties must
be calculated as a function of the two mentioned rock domains, generating a
composite model, such as the lowermost model displayed in this figure.

A given parameter domain, e.g. the P-velocity, is related to a specific
scale of measurement. This was covered in the previous chapter, discussing
the transformation of parameters from small to large scale. In the current
discussion about operating an interpolation in different domains, it is appro-
priate to look at an example of interpolating on different scales. As stated in
the previous chapter, upscaling of a small scale layered isotropic medium pro-
duces an anisotropic medium, where the spatial variability is reduced while
additional parameters has been added for accounting for anisotropic effects.

The effect of interpolating on the various scales is illustrated in a similar
way as that used for illustrating the effect of selecting velocity versus elastic
constants as the interpolation domain in figure 4.8. The starting point for
the interpolation comparison is a set of wells and correlation lines. The first
option is to upscale the wells and then interpolate the upscaled parameters
according to some interpolator along the correlation lines. The second option
is to interpolated the well at the original given scale. For comparing the effect
of the two, the small scale interpolated model must be upscaled, mapping
the gridded parameters to the domain of the other model.

Figure 4.10 is a constructed example to illustrate this issue. The model
input is two given wells and a horizontal correlation geometry, as displayed
in panel a). The two wells are identical, except from a vertical shift equal
to the thin layer thickness, causing the high values in one well to correlate
with the low values of the other and vice versa. In panel b), an example
of the upscaled properties of the two wells are plotted. The medium of the
upscaled wells is transversely isotropic, and the properties in the two wells
are absolutely identical, since the ratio between the two materials within
cach input well is identical. Panel c) displays the resulting small scale veloc-
ity field by interpolating the input given in panel a). To compare this field
with the result of the interpolation of upscaled well data, the property grids
are upscaled. The P-velocity of this upscaling is displayed in panel d). As
seen here, the velocity increases in the middle of the wells, corresponding to
the area where the vertical contrasts in the small scale interpolated medium
vanish. The difference in large scale P-velocity between that displayed in
d) and the velocity field generated by interpolation of the upscaled prop-
erties displayed in b), is displayed in panel €). The anisotropic properties
will also differ between the two approaches. The difference in the Thomsen
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epsilon parameter between the two approaches is displayed in panel f). The
decreased vertical contrasts in the middle between the wells in the fine scale
interpolation corresponds to the lack of anisotropy in this part.

From this example, it can be concluded that clearly the procedure of
upscaling and then interpolating does not produce the same result as that of
interpolating and then upscaling.

The exception to this observation is the bulk density. The difference
of upscaling the well density log according to Backus smoothing and then
interpolate, versus first interpolating and then upscale, is zero, as illustrated
in figure g). The reason why the two approaches produce identical results,
is that in this case both the interpolation and the upscaling operations of
the density parameter are linear. For the other parameters this is not the
case, cf. the upscaling formulas of Backus, and thus the results of the two
approaches differ.

On which scale, then, should the interpolation be performed? To answer
this question, it should be recalled from section 4.3 that the model may have
a different correlation geometry on different scales. Thus, if the correlation
geometry is drawn from large scale observations, the well data should be
given on a corresponding scale.

The given example is really an example of what may happen if the mod-
eller fails to do so. Imagine that the mapped reservoar unit consists of very
thin layers of highly contrasted material. The layers are nearly horizontally
oriented, except from a tiny structural distortion somewhere between the
wells. At the well locations, the dip of layering is measured to be horizontal.
This assumption of horizontal layering is also supported by large scale seismic
data interpretation over the area. However, the small vertical displacement
of the corresponding layers in the two wells leads to a miscorrelation when
the large scale horizontal correlation lines are applied on the small scale log
data. Contrary, by first upscaling the data before the interpolation, the over-
all properties, identical in both wells, are correlated correctly, except from
not being able to account for for the mentioned small deformation that must
be somewhere within the medium.

Large scale properties, resulting from an averaging of small scale prop-
erties, are naturally easier to correlate than properties given on small scale.
In some cases a rock unit may be considered to be homogeneous on a cer-
tain scale, but studied more in detail internal heterogeneities are revealed.
The exact function of the variances on small scale may be very chaotic com-
pared to the simple functions describing the large scale properties. Indeed,
to interpolate any sedimentary rock on a microscopic scale would be mean-
ingless. The modeller is thus encouraged to interpolate the rock properties
on a sufficiently large scale, where the properties are ordered.
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Figure 4.10: A patologic example of the effect of not upscaling before inter-
polation when log variations are present on a smaller scale than the accuracy

of correlation.
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On the other hand, all upscaling procedures causes some loss of informa-
tion content in the given data, as the data is low pass filtered as part of the
process. With respect to the purpose of the generated model, i.e. a seismic
survey simulation, the information loss may be compensated by including ad-
ditional parameters, such as the anisotropic Thomsen parameters. But still,
the filtering makes the upscaling transformation non-reversable, i.e. the large
scale properties are unique functions of the small scale properties while the
opposite functions are underdetermined. Thus, the small scale properties
cannot be uniquely estimated from the large scale representation. Since an
infinite number of different small scale models may have identical large scale
property values in some domain, e.g. that of elastic constants, while the
same set of small scale models may produce a wide range of different prop-
erty values in a different large scale domain, a transformation of parameters
from one large scale domain to another, without additional knowledge about
the small scale model, in most cases is not possible.

To produce a model that both agrees with measured data, e.g. a seismic
survey, and that is reliable for prediction of properties in different domains
not yet measurable, e.g. the production parameters of a reservoir not yet in
production, the model should thus be constructed in the most fundamental
parameter domain available. A small scale model, describing every tiniest
feature unambiguously, from which all parameters in any domain could be
calculated, would be the ideal, except from the unmanagable size of infor-
mation such a description would require.

My suggested answer then to the question of what scale to interpolate
and represent a model in, is to encourage a balance between on the one hand
keeping the model on a fine scale, permitting subsequent unique transforma-
tions to the different large scale domains for various simulation purposes, and
on the other hand performing the interpolation on a sufficient large scale to
trust the hypothesis of correlation geometry and the validity of the selected
interpolating functions.

4.5 An illustrative example

Many of the issues discussed in the previous sections, regarding correlation
geometry, vertical extrapolation of properties, and scale and domain of in-
terpolation, will be illustrated in a final constructed example.

The input data and different grids generated in the interpolation process
are illustrated in figures 4.11 and 4.12.

The model to be generated is 100 meters wide and 35 meters deep.

Well data are provided from two vertical wells, each located five meters
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from the edges of the model, containing density, P- and S-velocity and dip-
meter data for the entire vertical range with a sampling interval of 12.5 cm.
The model is interpreted to consist of two different units. The upper unit
ranging from 500 to 507 meters, while the lower from 507 to 535 meters. The
two units are recognized in the well data by the character of property values
and the dip of layering. Dipmeter logs indicate horizontal layering for the
upper unit in both wells, while the lower unit is dipping down to the right
in the left well, and down to the left in the right one. From the density data
displayed in panel a) in figure 4.11, it can be observed that the property
values in the upper part is more constant and generally lower than in the
lower part of the model.

From interpreting the well data, the natural assumption is that the upper
section is horizontally layered, while the lower section represents a syncline.
Geometric information from seismic interpretation supports the horizontal
assumption of the upper section, while structural information from seismic
data indicates that the intermediate part of the lower section actually consists
of two synclines separated by an anticline. The dividing interface between
the two units is a horizontal unconformity. Thus the correlation geometry of
the object is fully given by the two plotted lines in panel a). The straight
upper line defines the unconformity interface between the two units and
the corrrelation geometry of the upper section. Below this interface the
correlation field is parallel to the curved lower line.

Since the object to be modelled consists of two separate units, the in-
terpolation of the units should be performed independently. The generated
parameter fields of the lower region should not be affected by the correla-
tion lines and well data of the upper section and vice versa. Thus, only the
well data from 500 to 507 meters and the horizontal correlation line is used
as input for the interpolation of the upper part of the object, while the log
segments below and the curved correlation line are used in the other interpo-
lation procedure. The resulting grids are then spliced at the given interface
at 507 meters.

The combined density grid from the two separate interpolation opera-
tions is displayed in panel b) in figure 4.11. Visually this grid clearly reflects
the assumed correlation geometry. However, in the core of the synclines,
the calculated properties appear to drift off from the property values in the
given wells. The reason for this is the vertical extrapolation involved in
assigning values to this areca. In panel a) the reason for this becomes ev-
ident. The uppermost correlation line in the lower section that intersects
both the corresponding segments of the wells, is the curved line displayed in
this panel. This line thus represents the upper limit of the correlation field
in the interpolation of the lower section, cf. the discussion of the extent of
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the correlation field in section 4.3. The values above this line are thus not
directly corrrelated to the well data, but rather a result of an extrapolation
of the skew grid in the last step of the generation of a regular grid. The
problems with such extrapolation was discussed in the last part of section
4.11. In this case no constraints are put on this extrapolation, resulting in
rather extreme values below the horizontal interface and above the displayed
curved correlation line. The values here do not correspond with the expected
medium properties, which are assumed to be similar to that of the underlying
material.

At least three possible solutions exist to improve the model representation
in the discussed area.

One solution is based on the assumption that the lower section has been
eroded prior to the sedimentation of the upper section.

A reconstruction of the wells above the erosional surface to their pre-
erosion state thus provides the necessary well data to extend the correlation
field to also cover the internal upper part of the lower section.

Of course this extrapolation of well segments is not bound to succeed.
Observing the variances in the lower sections of the two logs plotted in figure
4.11 a), to predict exactly how these sections should be extended upwards
is not trivial. Both wells contain large scale trends in the data, as well as
local variability, which have to be considered to produce a tenable pre-erosion
model.

However, this process involves the extrapolation of only a couple of wells,
which can be performed manually by a “copy and paste” procedure. Com-
pared to letting a computer automatically perform an extrapolation on every
column in the skew grid later in the correlation procedure, this manual ex-
trapolation of the wells is preferable.

Figure 4.11 ¢) displays the result of assigning constant values to the top
of the lower segments before interpolating. Clearly the failure to include
the local variability in the well-log extrapolation produces an interpolated
medium of a different character than the case would be if this variability is
incorporated. While most of the lower model has a thin-layered appearance,
that behaves like a transverse isotropic medium when propagated by low
frequency waves, the generated “patch” to replace the mentioned vertically
extrapolated values remain isotropic also for long wave-lengths.

This problem of getting a differing anisotropy property in the part of the
unit that cannot be correlated directly from the original well data, can be
avoided by upscaling the well log segments prior to the extension of these and
following correlation. The low spatial frequencies contained in the upscaled
data may more easily be extrapolated than the high frequency variations in
the original data when extending the wells vertically.
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Interpolating the upscaled and then vertically extrapolated wells along
the correlation field generates a grid with similar properties in the entire
unit, which is more what is requested than the state aquired in figure 4.11

)

segments by averaging over the entire intervals in the wells. The resulting
log segments are then constant, making it trivial to extend the lower log-
segments sufficiently upwards before the interpolation.

When correlating these upscaled well data, as noted in section 4.3, we
might also choose a different correlation geometry than the one given by the

Figure 4.12 a) displays the density grid aquired by upscaling the well log

curved horizon in figure 4.11 a). On large scale, a natural choice for the
correlation geometry would be parallel to the horizontal interface, for two
reasons. First, but not most importantly, the small scale curved correlation
line might be interpreted as oscillating about the horizontal line, thus on a
sufficient scale the correlation line may be considered to be straight. Second,
when the wells are upscaled to the scale of no vertical variations within the
layers, cf figure 4.12 a), and the interface between the two layers is horizontal,
the partial derivative of the properties in the z-direction will be zero within
the layers. Thus the natural choice of correlation geometry in this case will
be in the direction parallel to the horizontal interface. Indeed, selecting an
interpolation of property values along the curved correlation field, with the
r-axis as the interpolator argument, cf. section 4.4.1, produces exactly the
equivalent property field as interpolating linearly along a horizontal corre-
lation field. By choosing the horizontal large scale interpolation geometry,
there is no need to vertically extrapolate the lower well segments prior to
correlation.

The Thomsen anisotropy parameters resulting from the upscaling of the
provided wells are plotted in panel b) of figure 4.12. The grid in this panel
displays the horizontally interpolated Gamma parameter, showing the re-
lationship between shear wave velocities parallel and perpendicular to the
symmetry axis of the medium.

The orientation of the symmetry axis in the 2D modelling case may be
represented in a separate grid, plotting the angle of inclination between the
vertical axis and the symmetry axis. The medium of the upper section, in-
terpolated horizontally on both small and large scale, clearly has a vertical
symmetry axis. Regarding the lower unit, a strong simplification would be
to assume the symmetry axis to be vertical. However, if the oscillations in
the small-scale geometry were smaller compared to the overall scale, this as-
sumption might be justified. A second, and most accurate assumption, is to
assume that the symmetry axis of the lower unit is perpendicular to the small
scale undulating correlation field. A grid of this parameter is already pro-
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duced in the process of generating the grid in figure 4.11 b). The inclination
field is plotted in figure 4.12 c¢), where positive values indicate a dip down
to the left, i.e. a rotation of the horizontal layering in the counter-clockwise
direction.

Now imagine the different situation that the only input for the model
construction is the two wells with its two correlated sections. In this case
the correlation horizons displayed in 4.11 are not provided, and the only
information about the layering orientation is given by the dipmeter logs.
On large scale, the parameters may still be interpolated horizontally, but in
this case, the orientation of the symmetry axis of the transverse isotropic
medium between the wells is not given explicitly. In this case the symmetry
orientation also has to be interpolated, and clearly, this interpolation will
fail to represent the hidden crest between the wells. The best interpretation
would be to assume the sediments to form a single syncline between the wells,
constructing a simple curve, e.g. a parabola, to fit the positions and layering
dip of e.¢. the uppermost samples in the lower section, and use this line as the
basis for determining the inclination of the symmetry axis. A different and
more simple approach, is to interpolate the symmetry inclination values in
the same manner as the other property values. Figure 4.12 d) shows the result
of interpolating the inclination angle of the symmetry axis of the transverse
isotropic upscaled wells linearly with respect to the z-axis between the wells.
In such an interpolation, the choice of parameter to be interpolated and what
interpolator function to be used is again an issue. That line is thought is not
pursued here, however.

To conclude this section, three possiblities for interpolating the well data
has been presented:

1. The data is interpolated on small scale according to the correlation
geometry supplied from seismic interpretation. The resulting grids may
subsequently be upscaled.

2. The data is upscaled before interpolation. While the symmetry orien-
tation of the upscaled medium is given by the small scale correlation
geometry, the large scale data may be interpolated horizontally accord-
ing to a large scale correlation geometry.

3. Both the rock properties as well as the symmetry orientation are inter-
polated according to the large scale correlation geometry.
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4.6 Conclusions

The theme of this chapter has been to correlate property values from locations
of given data to locations with no measurements. The correlation is based
on a set of well data and geometric information.

The conceptual basis for the interpolation is the assumpton of stratifi-
cation. Though a real object might not be unambiguously layered on all
scales, this principle is useful for correlation of properties laterally between
separated wells.

The principles of a general correlation routine have been presented. The
following correlational parameters are seen to affect the resulting model:

1. Correlation geometry:

e Different correlation geometries reflects different sediment pat-
terns, cf. figure 4.4.

e The proper correlation geometry is scale dependent and may also
be property domain dependent.

e The shape of correlation geometry and the requested sampling
density combined may require upscaling of data to prevent alias-

ing.

2. Interpolation function, i.e. the parameter domain and interpolator
type. Different aspects here are:

e The choice of parameter domain used as spatial argument for the
property functions. When interpolating along a curved correlation
line, the selection of horizontal z-coordinate versus curvelength s-
coordinate as argument for the interpolation, may produce prop-
erty differences at intermediate locations exceeding a tenth of the
value difference between given input samples.

e The choice of interpolator. Among an infinite number possible
functions, two functions have been considered — the linear and
spline function.

e The choice of independent parameter domain to interpolate on,
from which other rock properties are calculated. Interpolating
elastic constants and then calculate velocities versus interpolating
seismic velocities directly, using the same interpolator, may pro-
duce velocity differences at intermediate locations up to a tenth
of the total velocity difference of the input samples.
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e The relationship between property domain of interpolation and
correlation geometry. The property domains with simple correla-
tion geometries and functions should be selected.

e The choice of scale for parameter representation. The resulting
model from interpolating on small scale and consequently upscal-
ing versus interpolating already upscaled parameters may signifi-
cantly differ.
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Chapter 5

The main conclusions

The objective of the present work has been to estimate the effect of differ-
ent upscaling and interpolation functions for assigning property values to a
spatial seismic model on the scale appropriate for large scale seismic mod-
elling. In addition to pointing to differences between the procedures, for the
upscaling case my goal has been to find the upscaling functions that most ac-
curately reproduce the behaviour of the small scale medium. This evaluation
involves simulations of wave propagation, which require an understanding of
the fundamentals of elasticity and wave field propagation in simplified media.

The necessary theory of elasticity was covered in chapter two, while up-
scaling and interpolation were discussed in chapter three and four respec-
tively.

An important observation in chapter three concerned the validity of the
proposed upscaling functions as a function of the wavelength to layer thick-
ness ratio. The studied alternative functions either produced isotropic up-
scaled media by smoothing on seismic velocities, slownesses, wave modulii
(Voigt averaging) or their inverse (Reuss averaging), or produced transverse
isotropic media by Backus averaging. For thin-layered models with large
AJd-ratio (larger than 10), the Backus smoothed medium by far gave the
best representation, especially for waves propagating non-parallel with the
associated symmetry axis. However, for waves propagating normal to the
layering, the Reuss averaged isotropic model also gave a good estimate of the
wave velocity. For smaller A/d-ratios, the slowness averaged medium gives
the best large scale representation of the wavefield. It is also observed that
since the S-wave has a smaller wavelength than the P-wave, the large scale
models appropriate for modelling the P-wave may give wrong large scale
properties for the S-wave and conversely.

The other important observation is from the experiment of two-step up-
scaling, where the small-scale medium was first upscaled to an intermediate
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scale, before being upscaled to a large scale. The observation here is that
the upscaling procedure used on the smallest scale upscaling strongly affects
the consequent large scale model. This must be taken into concideration
when actual measurements or samples are taken of a medium, because any
sampling involves some kind of upscaling of heterogeneities on a finer scale.
For example, ignoring the transverse isotropy of the small scale medium will
give notably different upscaled properties.

From chapter four a main observation is that the choice of parameter
domain used to interpolate parameters, e.g. interpolating elastic properties
in the seismic velocity domain versus in the stiffness tensor domain, causes
the interpolated properties to differ at intermediate locations with up to
10 % of the difference in property values between the sample points being
interpolated between. This raises serious questions regarding which domain
that is the most appropriate to interpolate in. A similar observation is that
the choice of scale for the parameter representation may affect the resulting
interpolated model. For different scales, different correlation orientations
may even be appropriate.

Both these chapters show that choices made when constructing a large
scale model from a small scale parameterization of and spatially constrained
data, considerately affects the large scale properties of the model. In e.g.
reservoir monitoring, an accurate velocity parameterization is required for the
successful use of the constructed model, and the issues of model construction
should therefore be given its deserved attention. The large scale anisotropy
caused by large A/d-ratios between the propagating wave and the sediment
structures, also has significance when interpreting data in a seismic survey,
for example for AVO-analysis and depth conversion. A calculated depth with
an error of 20 m may sometimes be crucial.

This thesis contains some loose threads that call for further investiga-
tions. For example, wave simulations should be performed in a model based
on original and upscaled non-synthetic data to study the effect of different
window shapes in the upscaling procedure by comparing wave fields. Related
to this I would also suggest performing Backus smoothing on the transverse
isotropic intermediate scale models to validate the relations between one-
and two-step Backus upscaling. Someone woul maybe also like to look into
the reasons why the Backus averaged well data in a few cases has a negative
epsilon Thomsen parameter, which seems very peculiar. Regarding inter-
polation issues, now being aware of the effect of interpolating in different
parameter domains, it would be natural to look more into aspects of inter-
polating geologic rock properties and study similar effects of variations by
interpolating method in this set of domains.
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