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Abstract 

On the atomic scale the time-dependent Schrödinger equation is used but for systems with three or 
more particles like the helium atom it is not possible to solve the Schrödinger equation exactly. 

The motivation here is to calculate a numerical solution for the helium atom in the ground state. To 
this end a numerical method must be used and the choice is the summations by part method with 
simultaneous approximation terms at any boundaries. We analysed and ran numerical verification 
tests after coding in Matlab on the following PDE's. The transport equation, the heat equation and 
the Schrödinger equation for particle in a box. The results for the transport equation and the heat 
equation seems to verify the code but for the particle in a box we seem to very quickly hit the round-
off limit and this made the verification difficult for higher order. 

We also tested a little on the hydrogen atom before calculating the ground state of helium. 
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Introduction and outline 
The periodic table of the elements [1] includes over 100 known elements and the two lightest elements 
are hydrogen and helium. While hydrogen is reactive and is found in countless stable molecules helium 
is only stable as single atoms and the boiling point of helium is 4.2 K. The lack of reactivity of helium 
motivates taking a closer look on single helium atoms and this is a problem on the atomic scale.  

In quantum mechanics the non-relativistic time-dependent Schrödinger equation has a central role 
and is postulated [2] together with a few other postulates. Quantum mechanics explains experimental 
results for systems on atomic scale, including single sub-atomic particles, atoms and molecules, in 
physics [1] and chemistry. Quantum mechanics seems necessary since Newton's laws of motion does 
not give accurate results for systems on atomic scale and Newton's laws also fails for relativistic speeds. 
The Schrödinger equation also fails for relativistic speeds and is replaced with the Dirac equation [3]. 
Since the time-dependent Schrödinger equation is accurate enough in countless non-relativistic 
experiments including two-particle systems like the hydrogen atom and three-particle systems like the 
helium atom and we will use the time-dependent Schrödinger equation for the helium atom. 

The time-dependent Schrödinger equation is given by 

𝑖ℏ
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
= 𝐻Ψ(𝑥, 𝑡), 𝑥𝜖ℝ , 𝑡 ≥ 0, (1.1) 

where Ψ(x,t) is the wave equation, i is the imaginary unit, ℏ is Planck's reduced constant, 𝐻 is the 
Hamiltonian operator, x is a vector of space coordinates and N is the number of dimensions. The 
Hamiltonian operator depends on the specific problem and for a single particle we use    

𝐻 = −
ℏ

2𝑚
∇ + 𝑉(𝑥), (1.2) 

where m is the mass of the particle, ∇  is the Laplacian and V(x) is the potential. The Hamiltonian 
operator is easily extendable to systems of multiple particles including the helium atom. One of the 
simplest quantum mechanical problems is an electron in one space dimension and the time-dependent 
Schrödinger equation can for this problem be written as 

𝜕Ψ (𝑥 , t )

𝜕𝑡
= 𝑖

1

2

𝜕

𝜕𝑥
− 𝑉 (𝑥 ) Ψ (𝑥 , 𝑡 ), 𝑎 < 𝑥 < 𝑏, 𝑡 ≥ 0, (1.3)  

where a, b ϵ ℝ and one or both of a and b can be ± ∞. The ' indicates that all variables are now reduced 
variables [4] also commonly known as dimensionless variables.  

This equation is a partial differential equation (PDE) and since this PDE is linear it means that any 
multiple of a solution is also a solution. Since infinitely many solutions to the PDE is not very useful the 
PDE must be augmented by some initial and boundary conditions. The augmented problem is well-
posed [5] if the PDE has an unique solution that depends continuously on any initial and boundary 
data. We will use the so-called energy method for proving well-posedness of the PDE [6]. 

While we can find analytical solutions for many different potentials for one-particle problems given by 
equation (1.3), the helium atom is a three-particle system, and none has managed to solve the time-
dependent Schrödinger equation for the helium atom or any atoms with more than three particles 
analytically. We need to use numerical methods instead to solve the time-dependent Schrödinger 
equation for the helium atom. 
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In numerical methods neither time nor space are continuous any longer and instead we define a grid 
where we only know the numerical solution at the grid points and we want the numerical solution to 
be as close as possible to the exact solution in these grid points. In case we make the spacing between 
grid-points smaller and smaller we want the numerical solution at the grid points to get closer and 
closer to the exact solution at the grid points and this is called convergence. We must prove the 
convergence of the numerical method and due to the Lax-Richtmyer theorem [7] we have convergence 
if we have stability and consistency. We will define both terms in chapter 3.3. 

We choose to split the problem in two parts where we use semi-discretisation in space for one of the 
parts and we afterwards use the classical fourth order explicit Runge-Kutta method for the fully 
discretised problem. For the semi-discretised system after choosing the grid of space coordinates we 
need a numerical method that is a good approximation of the PDE at the grid-points and specifically 
we need a method for calculating the numerical derivative. Of the many possible methods we use the 
so-called Summation By Parts (SBP) [8] method. By using the so-called Simultaneous Approximation 
Term (SAT) to handle any boundaries at the end of the grid, and even possible between different grids, 
we can use the energy method for proving the convergence of the SBP-SAT. In SAT instead of setting 
the numerical solution at any grid points at the boundaries equal to the exact solution at the 
boundaries, the SAT instead uses a penalty-term where the numerical solution is dragged closer to the 
exact solution at the grid-point. 

Another advantage with using SBP-SAT for the semi-discretised part of the problem is that since we 
are using a fourth order Runge-Kutta method for the fully discretised problem due to [9] if we prove 
the semi-discretised part converges the fully discretised problem also converges. 

Since we want to find the solution for the helium atom and we must use numerical methods for this 
we need to code this solution on a computer. We code the numerical solution in Matlab and since any 
kind of coding can include mistakes we need a method to verify the code. We will verify the code by 
using the transport equation and the heat equation since both PDE has analytical solutions and these 
are real solutions. We use the time-dependent Schrödinger equation for a particle in a box to verify 
the code also works for functions with imaginary solutions. 

The time-dependent Schrödinger equation for the helium atom includes most of the parts of the 
hydrogen atom and we use the analytical solution for hydrogen atom in the construction of the 
function we expect is close to the true solution. Since none have managed finding the true solution of 
the helium atom we will use the method of manufactured solutions since this makes it possible to do 
numerical calculations even without the analytical solution. 

We have the following outline for the rest of this thesis. 

In chapter 2 we analyse well-posedness for the transport equation, the heat equation and the time-
dependent Schrödinger equation. 

In chapter 3 we start by defining the grid and notation used before we show SBP on matrix form. We 
analyse the convergence for the semi-discretised numerical solutions for the three PDE in chapter 2. 

In chapter 4 we calculate numerical solutions and discuss the results. We start by using the transport 
equation and the heat equation for verifying the code. We progress to the time-dependent 
Schrödinger equation for particle in a box and the hydrogen atom in the ground state and finish with 
the helium atom in the ground state. 

In Chapter 5 we give conclusions and discuss possible future work. 
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Chapter 2: Analysis of well-posedness of PDE's. 
We use the following definition for well-posedness of PDE's for a generic PDE written on the form [10] 

𝑢 (𝑥, 𝑡) = 𝑃 𝑥,
𝜕

𝜕𝑥
, 𝑡 𝑢(𝑥, 𝑡) + 𝐹(𝑥, 𝑡), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 ≥ 𝑡 , 

𝑢(𝑥, 𝑡) = 𝑓(𝑥), 𝐿
𝜕

𝜕𝑥
, 𝑡 𝑢(𝑎, 𝑡) = 𝑔 (𝑡), 𝐿

𝜕

𝜕𝑥
, 𝑡 𝑢(𝑏, 𝑡) = 𝑔 (𝑡), (2.1) 

where u is the vector function with m components, F(x,t) is the forcing function, 𝑔 (𝑡) and 𝑔 (𝑡) are 
boundary data, and the terms P, La and Lb are differential operators.  

Definition 2.1: 

Consider the PDE given by equation (2.1) with F = 0, ga = 0 and gb = 0. We call the problem stable if 
there is an estimator 

‖𝑢(∙, 𝑡)‖ ≤ 𝐾𝑒 ( )‖𝑢(∙, 𝑡 )‖ 

where K and α are constants that do not depend on f and t0. We call it well posed if it has a unique 
smooth solution and is stable. 

Chapter 2.1: Analysis of the transport equation. 
We will here analyse the one-dimensional transport equation on the form given by 

𝑢 + 𝑐𝑢 = 𝐹(𝑥, 𝑡), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 ≥ 0, 𝑐 > 0, 𝑢𝜖ℝ, 

𝑢(𝑥, 0) = 𝑓(𝑥), (2.2) 

𝑢(𝑎, 𝑡) = 𝑔 (𝑡), 

where a, b and c are real constants, t is time, F(x,t) is the forcing function, f(x) is the initial condition 
and ga(t) is boundary data on the left side. All the functions are real functions. 

We define the following energy 

𝐸(𝑡) = ‖𝑢(𝑥, 𝑡)‖ , 

where we will use the L2 norm, ‖𝑢‖ = ∫ 𝑢∗𝑢𝑑𝑥, and * means adjoint, complex conjugate transposed. 
By taking the time-derivative of E this gives 

𝐸 (𝑡) = (‖𝑢(𝑥, 𝑡)‖ ) =
𝑑

𝑑𝑡
𝑢(𝑥, 𝑡)

∗
𝑢(𝑥, 𝑡)𝑑𝑥.   

Since u is here real and scalar function we can remove the * in the equation and since a and b are two 
constants independent of time we can take the time-derivative inside the integral and this gives 

𝐸 (𝑡) =
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) 𝑑𝑥 = 2 𝑢 (𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑𝑥     

Since PDE in equation (2.2) can be rewritten as 𝑢 = −𝑐𝑢 + 𝐹 and F have no effect on the stability 
we can use F = 0 and this gives 
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𝐸 (𝑡) = −2𝑐 𝑢 (𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑𝑥. 

By using integration by parts we have 

𝑢 (𝑥, 𝑡)𝑢(𝑥, 𝑡)𝑑𝑥 = 𝑢 | − 𝑢(𝑥, 𝑡)𝑢 (𝑥, 𝑡)𝑑𝑥 ⇒ 2 𝑢(𝑥, 𝑡)𝑢 (𝑥, 𝑡)𝑑𝑥 = 𝑢 | , 

and this gives  

𝐸 (𝑡) = −𝑐𝑢 | = −𝑐 𝑢 (𝑏, 𝑡) − 𝑢 (𝑎, 𝑡) . 

Since the boundary data at the left boundary will not influence the stability we can set this term to 
zero and this gives 

𝐸 (𝑡) = −𝑐𝑢 (𝑏, 𝑡). 

With u2 ≥ 0 and c < 0 from equation (2.2) this means E'(t) ≤ 0 ∀ t ≥ 0. Since the derivative of the energy 
estimate is always negative or zero we know E(t) will be monotonically increasing in this gives 

𝐸(𝑡) ≤ 𝐸(0) = ‖𝑓(𝑥)‖ , 

and we have 

‖𝑢(𝑥, 𝑡)‖ ≤ ‖𝑓(𝑥)‖ . 

and since the norm is always zero or positive we have 

‖𝑢(𝑥, 𝑡)‖ ≤ ‖𝑢(𝑥, 0)‖ = ‖𝑓(𝑥)‖. 

With the choices K = 1, α = 0 and t0 = 0 in definition 2.1 the requirements in this definition is fulfilled 
and this proves the one-dimensional transport equation are well-posed and stable. 

We can easily prove uniqueness by assuming we have a different solution v(x,t) of equation(2.2), 
define w = v-u and we get the following PDE 

𝑤 + 𝑐𝑤 = 0, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 ≥ 0, 𝑐 > 0, 𝑢𝜖ℝ, 

𝑢(𝑥, 0) = 0, 𝑢(𝑎, 𝑡) = 0, 

The energy of w follows the steps of the energy of u and with f(x) = 0 we have 

𝑤(𝑥, 𝑡) ≥ 0, 𝑤(𝑥, 𝑡) ≤ 0 ⇒ 𝑤(𝑥, 𝑡) ≡ 0 ⇒ 𝑢(𝑥, 𝑡) ≡ 𝑣(𝑥, 𝑡), 

and this proves u and v are the same solution. 

Chapter 2.2: Analysis of heat equation and Schrödinger equation. 
The PDE we will analyse is given by 

𝑢 = 𝑐(𝑢 + 𝑉(𝑥)𝑢) + 𝐹(𝑥, 𝑡), 𝑎 < 𝑥 < 𝑏, 𝑡 ≥ 0, 𝑅𝑒(𝑐) ≥ 0, 

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑎, 𝑏, 𝑥𝜖ℝ, (2.3) 

𝑢(𝑎, 𝑡) = 𝑔 (𝑡), 𝑢(𝑏, 𝑡) = 𝑔 (𝑡), 𝑢, 𝐹𝜖ℂ, 
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where V(x) is the real potential in Schrödinger equation, V(x) = 0 in heat equation, 𝑔 , 𝑔 , are boundary 
data, a and b are two real constants where one or both can be ± ∞, c is a constant with c = i/2 for 
Schrödinger equation and c > 0 for heat equation. 

We define the energy by 𝐸(𝑡) = ‖𝑢‖ , and take time-derivative and get 

𝐸 (𝑡) =
𝑑

𝑑𝑡
𝑢∗𝑢𝑑𝑥. 

Since a and b are constants independent of time we can take derivative inside the integral and we get 

𝐸 (𝑡) = 𝑢∗𝑢 + 𝑢∗𝑢 𝑑𝑥. 

Since the F-term and the boundary data will not influence the stability we set these terms to zero and 
use PDE in equation (2.3) and this gives 

𝐸 (𝑡) = 𝑐(𝑢 + 𝑉𝑢)
∗
𝑢𝑑𝑥 + 𝑢∗ 𝑐(𝑢 + 𝑉𝑢) 𝑑𝑥. 

Remember (AB)*=B*A* and we get 

𝐸 (𝑡) = 𝑐∗ 𝑢∗ 𝑢 + 𝑢∗𝑉∗𝑢 𝑑𝑥 + 𝑐 𝑢∗𝑢 + 𝑢∗𝑉𝑢𝑑𝑥. 

Since V is real and scalar we can move the terms around and this gives 

𝐸 (𝑡) = (𝑐∗ + 𝑐)𝑉 𝑢∗𝑢𝑑𝑥 + 𝑐∗ 𝑢∗ 𝑢𝑑𝑥 + 𝑐 𝑢∗𝑢 𝑑𝑥. 

For the heat equation V = 0 and we can remove the first integral. For the Schrödinger equation c = i/2 
and this means c* + c = 0 and we can remove the first integral. For the two remaining integrals we use 
integration by parts and this gives 

𝐸 (𝑡) = 𝑐∗(𝑢∗ 𝑢)| − 𝑐∗  𝑢∗ 𝑢 𝑑𝑥 + 𝑐(𝑢∗𝑢 )| − 𝑐 𝑢∗ 𝑢 𝑑𝑥, 

and since we said the boundary data does not influence the stability we get 

𝐸 (𝑡) = −(𝑐∗ + 𝑐) 𝑢∗ 𝑢 𝑑𝑥. 

Since c* + c = 2Re(c) this gives 

𝐸 (𝑡) = −2𝑅𝑒(𝑐) |𝑢 | 𝑑𝑥 ≤ 0, 𝑅𝑒(𝑐) ≥ 0. 

For the time-dependent Schrödinger equation we get E'(t) ≡ 0, while for the heat equation we get E'(t) 
≤ 0. In both cases we know E(t) are either decreasing or constant and this gives 
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𝐸(𝑡) = ‖𝑢(𝑥, 𝑡)‖ ≤ 𝐸(0) = ‖𝑢(𝑥, 0)‖ = ‖𝑓(𝑥)‖ , 

and since the norms are always zero or positive this means 

‖𝑢(𝑥, 𝑡)‖ ≤ ‖𝑢(𝑥, 0)‖. 

With the choices K = 1, α = 0 and t0 = 0 in definition 2.1 all the requirements of this definition is fulfilled 
and we have proven well-posedness of the heat equation and the time-dependent Schrödinger 
equation. 

Chapter 3: Numerical analysis of PDE's. 
We need some notations for the grid as a starting-point. 

Chapter 3.1: Notation for discretisation. 
On the space domain a ≤ x ≤ b we have N grid points and with fixed step-size we have x = j∆x, j =

0, 1, … , N − 1, ∆x = . For t ≥ 0 we use the fixed time-step, Δt, and 𝑡 = 𝑘𝛥𝑡, 𝑘 = 0, 1, 2, … . We 

can extend to a second space domain by using  𝑦 = l∆y, l = 0, 1, … , N − 1, ∆y = . 

We want the numerical solution, v, to approximate the exact solution, u, on the grid-points and we use 
the following notation 

𝑣 , ≈ 𝑢 𝑥 , 𝑡 , 𝑣 (𝑡) ≈ 𝑢 𝑥 , 𝑡 , 

where first form is for full discretisation and second form is for semi-discretised form. 

We define the following vectors 

𝑣(𝑡) = [𝑣 (𝑡), 𝑣 (𝑡), … , 𝑣 (𝑡)] , 𝑣𝜖ℂ , 𝑣 𝜖ℂ, 

𝑣 = 𝑣 , , 𝑣 , , … , 𝑣 , , 𝑣 𝜖ℂ , 𝑣 , 𝜖ℂ. 

Unless otherwise necessary will use v = v(t) from now on for the semi-discretised form. 

We will frequently use the following basis-vectors and basis matrices given by 

𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
…
1
0
…
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗, 𝐸 = 𝑑𝑖𝑎𝑔 𝑒 , 𝑗 = 0,1, … , 𝑁 − 1, 

where diag(∙) means a diagonal matrix with the contents on the diagonal. 

Note that 𝑒 𝑣 = 𝑣 , 𝑣 𝑒 = 𝑣 , 𝐸 𝑣 = 𝑣 𝑒 , 𝑣 𝐸 = 𝑣 𝑒 . 

Chapter 3.2: The SBP terms. 
We need an estimate of the derivative and one method to construct such an estimate is to use 
central differences given by 

𝑢 (𝑥, 𝑡) =
𝑢(𝑥 + ∆𝑥, 𝑡) − 𝑢(𝑥 − ∆𝑥, 𝑡)

2∆𝑥
, 
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where we can construct these terms by using Taylor series for u(x+Δx,t) and by using two terms in 
each of the Taylor series we get the error in the estimate is of order 𝒪((Δx)2) when Δx → 0. This is the 
truncation error, the error from not including an additional term in Taylor serie, and we have a 
second order estimate of the derivative. We want to use this as a numerical estimate on the grid and 
this means we want the semi-discretised estimate to fulfil 

𝑣 (𝑡) ≈ 𝑢 𝑥 , 𝑡 , 

since if true we will have 

𝑣 (𝑡) ≈
𝑣 (𝑡) − 𝑣 (𝑡)

2∆𝑥
, 

In case the numerical es mate converges to the exact solu on when Δx → 0 we have 

𝑣 (𝑡) =
𝑣 (𝑡) − 𝑣 (𝑡)

2∆𝑥
, ∆𝑥 → 0, 

and this is the SBP term with convergence rate of second order. The convergence rate is a measure of 
how fast the numerical solution converges to the exact solution at the grid points. 

While it is possible to construct SBP-terms with higher convergence rate than second order by using 
more terms from Taylor series the notation is cumbersome and for this reason we use matrix 
formulation instead. The definition of SBP on matrix form relies on a matrix called the H-matrix and 
we will only use H-matrix on diagonal form. The H-matrix is always positive definite and based on [11] 
and [12] we have the following definition. 

Definition 3.1: 

Let 𝐷 = 𝐻 𝑄 be an SBP operator with internal order 2p and boundary order p. The matrix Q must 
fulfil 𝑄 + 𝑄 = 𝐸 − 𝐸 . The D1 operator approximates the first derivative. 

Corollary 3.2: 

The convergence rate of the solution to equation (2.2) is 𝑚𝑖𝑛(𝑝 + 1,2𝑝). 

Proof: See [13]. 

The matrices for boundary order 1 is given by 

𝐻 = ∆𝑥

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

2
1

⋱
1

1

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑄 =
1

2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 1
−1 0 1

−1 ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱
−1 0 1

−1 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 
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𝐷 =
1

∆𝑥

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 1 0

−
1

2
0

1

2

−
1

2
0

1

2

⋱ ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱

−
1

2

0
1

2

−
1

2
0

1

2
0 −1 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

and for higher orders see [14]. 

Since the Schrödinger equation includes the second derivative we can either use D1 twice or we need 
a new operator D2 as an estimate of the second derivative. We can construct second derivative on 
component form by adding Taylor series instead of subtracting and this gives 

𝑣 (𝑡) =
𝑣 (𝑡) − 2𝑣 (𝑡) + 𝑣 (𝑡)

(∆𝑥)
. 

For the matrix norm based on [14] and [15] we have the following definition. 

Definition 3.3: 

If H is diagonal positive definite, A is symmetric positive semi-definite and fulfils A + AT ≥ 0, S includes 
an approximation of the first derivative operator at the boundary then a difference operator 

𝐷 = 𝐻 (−𝐴 + (𝐸 − 𝐸 )𝑆), 

approximating ∂2/∂x2 is a second derivative SBP operator. 

Lemma 3.4: 

Assume we have diagonal norm H with boundary order p = 1, 2, 3 or 4 and we are using D2. Then the 
convergence rate at the boundary of D2 is p and the global convergence rate is p + 2 except for p = 1 
with the global convergence rate is 2. The internal convergence rate of D2 is 2p. 

Proof: See [16] and [14]. 

The matrices for boundary order 1 is given by 

𝐷 =
1

(∆𝑥)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −2 1
1 −2 1

⋱ ⋱ ⋱

1 −2 1
1 −2 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 
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𝑆 =
1

∆𝑥

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

3

2
2 −

1

2
1

⋱
⋱

⋱
⋱

⋱
1

1

2
−2

3

3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

While we can use the D1 twice one disadvantage is the global convergence rate is in this instance p + 1 
[14] and except for boundary order 1 this gives lower global convergence rate compared to using D2 
instead. 

Chapter 3.3: Analysis of convergence. 
Based on the Lax-Richtmyer theorem [7] we have convergence if we have stability and consistency. 
We will now define stability and consistency and we start with a general numerical estimate on the 
grid. For the discrete case let Fj, fj, ga and gb be the grid-functions and approximate the solution of 
equation (2.1) by 

𝑣 = 𝑄 𝑥 , 𝐷, 𝑡 𝑣 + 𝐹 , 𝑗 = 0, … , 𝑁 − 1, 𝑡 ≥ 𝑡  

𝑣 (𝑡 ) = 𝑓 , 𝐿 (𝐷, 𝑡)𝑣 (𝑡) = 𝑔 (𝑡), 𝐿 (𝐷, 𝑡)𝑣 (𝑡) = 𝑔 (𝑡). (3.1) 

Definition 3.5: 

Consider equation (3.1) with F = 0, ga = 0 and gb = 0. We call the approximation stable if, for all Δx ≤ h0, 
there are constants K and α such that, for all t0 and all v(t0), 

‖𝑣(𝑡)‖ ≤ 𝐾𝑒 ( )‖𝑣(𝑡 )‖  

Definition 3.6: 

Let u(x,t) be a smooth solution of the PDE given by equation (3.1). The approximation given by equation 
(3.1) is accurate of order p, if the restriction to the grid satisfies the perturbed system 

𝑢 = 𝑄 𝑥 , 𝐷, 𝑡 𝑢 + 𝐹 + (𝛥𝑥) 𝐹 , 𝑗 = 0,1, … 

𝑢 (𝑡 ) = 𝑓 + (𝛥𝑥) 𝑓  

𝐿 (𝐷, 𝑡) = 𝑔 (𝑡) + (𝛥𝑥) 𝑔 (𝑡) 

𝐿 (𝐷, 𝑡) = 𝑔 (𝑡) + (𝛥𝑥) 𝑔 (𝑡) 

where 

𝐹 , 𝑓 , 𝑔 , 𝑔 ,
𝑑𝑔

𝑑𝑡
,
𝑑𝑔

𝑑𝑡
 

are bounded independent of Δx. If p ≥ 1 then the approximation given by equation (3.1) is called 
consistent. 
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Since the SBP terms based on corollary 3.2 and lemma 3.4 has global convergence rates p > 1 and the 
SBP-terms is on the form of equation (3.1) definition 3.6 is fulfilled. For this reason we only need to 
prove stability to prove convergence. 

Chapter 3.3.1: Convergence analysis of transport equation. 
We need a SBP scheme to solve the transport equation given by equation (2.2) and we use the 
following scheme where 𝕊 is from SAT. 

𝑣 = −𝑐(𝐷 𝑣 + 𝐻 𝕊) + 𝐹, 𝑣(0) = 𝑓, 𝕊 = 𝜎 (𝑣 − 𝑔 )𝑒 , (3.2) 

where 𝐹 and 𝑓 are two vectors with the same space-discretisation as v and 𝜎  is a constant we must 
specify based on the stability analysis. Remember v is a vector of semi-discretised form and v0 is a 
component of this vector. Since the boundary data and 𝐹 has no effects on the stability we set these 
two terms to zero, 𝑣 𝑒 = 𝐸 𝑣, and definition 3.1 the scheme is given by 

𝑣 = −𝑐𝐻 (𝐸 + (𝜎 − 1)𝐸 )𝑣. (3.3) 

We now define the energy estimate by 

𝐸(𝑡) = ‖𝑣‖ , 

where the H-norm is given by ‖𝑣‖ = √𝑣∗𝐻𝑣, and this gives E(t) = v*Hv. 

By taking the time-derivative this gives 

𝐸 (𝑡) = 𝑣∗𝐻𝑣 + 𝑣∗𝐻𝑣 , 

since H is independent of time. We will not insert the scheme in equation (3.3) and this gives 

𝐸 (𝑡) = (−𝑐𝐻 (𝐸 + (𝜎 − 1)𝐸 )𝑣)∗𝐻𝑣 − 𝑐𝑣∗𝐻(𝐻 (𝐸 + (𝜎 − 1)𝐸 )𝑣), 

Since H and E is real and symmetric and c is a real constant and we assume 𝜎  is real we can write this 
as 

𝐸 (𝑡) = −𝑐(𝑣∗𝐸 𝐻 (𝜎 − 1) + 𝑣∗𝐸 𝐻 )𝐻𝑣 − 𝑐𝑣∗𝐻𝐻 (𝐸 + (𝜎 − 1)𝐸 )𝑣. 

Since H is positive definite matrix we know H is invertible and we can cancel all the H-terms. This gives 

𝐸 (𝑡) = −𝑐(𝑣∗(𝜎 − 1)𝐸 𝑣 + 𝑣∗𝐸 𝑣 + 𝑣∗𝐸 𝑣 + 𝑣∗(𝜎 − 1)𝐸 𝑣), 

and we can immediately reshuffle this into 

𝐸 (𝑡) = −2𝑐(𝑣∗𝐸 𝑣 + (𝜎 − 1)𝑣∗𝐸 𝑣). 

Since v is real we can use the properties of unit vectors and matrices and this gives 

𝐸 (𝑡) = −2𝑐(𝑣 + (𝜎 − 1)𝑣 ). 

With c > 0 and since v2 ≥ 0 to guarantee E'(t) ≤ 0 the term (𝜎 − 1) ≥ 0, and this means must choose 

𝜎 ≥ 1. 

This gives E'(t) ≤ 0 and this means 𝐸(𝑡) ≤ 𝐸(0) = ‖𝑣(0)‖ = 𝑓 . This means definition 3.5 is 
fulfilled with K = 1, α = 0 and t0 = 0 and this proves the stability of the semi-discretisation for the 
transport equation. Since consistency is fulfilled for SBP this proves convergence for the semi-
discretisation based on Lax-Richtmyer theorem [7]. 

For the fully discretised problem we use the following assumptions and theorem. 
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Assumption 3.7: 

If λ = iα, |α| < R1, is a solution of 𝑃(𝜇) = 𝑒 , 𝜙 𝑟𝑒𝑎𝑙, then there is no other purely imaginary root μ = 
iβ, |β| < R1, with 𝑃(𝜇) = 𝑒 . 

Theorem 3.8: 

Assume that the Runge-Kutta method is locally stable and that the conditions of assumption 3.7 are 
satisfied. If the semi discrete approximation is stable in a generalized sense, then the totally discretized 
approximation is stable in the same sense, if ‖𝑘𝐴 ‖ ≤ 𝑅 < 𝑅 . 

Proof: See [9]. 

For the classical fourth order explicit Runge-Kutta method based on [17] R1 is equal 2.58. 

For more about stability in the generalised sense see [9]. 

The matrix A' is a method for writing the Runge-Kutta method but finding the actual matrix is difficult. 
Still where is a connection to the semi-discretised matrix we used in the schema, this is everything in 
front of v-vector meaning for the scheme in equation (3.3) we have a matrix, A, given by 

𝐴 = −𝑐𝐻 (𝐸 + (𝜎 − 1)𝐸 ), (3.4) 

and we use this A in the Runge-Kutta method and construct a new matrix A'. The exact form of A' is 
not important but one important point is if A is positive (semi)-definite then A' is positive (semi)-
definite and a matrix that is positive (semi)-definite where λ is eigenvalues of the matrix have Re(λ) ≥ 
0. If A not positive (semi)-definite, by removing the negative we will have a positive (semi)-definite A-
matrix, unless the matrix is indefinite. Since E'(t) ≤ 0 was fulfilled we know -A must be positive (semi)-
definite. The Runge-Kutta method includes Re(λ) ≤ 0 as a requirement in the following definition. 

Definition 3.9:  

The Runge-Kutta method is called locally stable, if there is an R1 > 0 such that the open half circle 
ℒ(𝑅 ) = {𝜆 𝑤𝑖𝑡ℎ |𝜆| < 𝑅 , 𝑅𝑒(𝜆) < 0} is contained in Ω. 

For a more detailed look on the open half circle and Ω, see [9]. 

The important point here is, we know Re(λ) ≤ 0 based on E'(t), since this can be proven by starting with 
𝑣 = 𝐴𝑣 and multiplying from the left with v*H-1 and after many steps this is proven, we do not know 
the exact form of A' but both Runge-Kutta and theorem 3.8 uses A' and for both A' includes Δt in some 
way. Since A based on first order derivatives goes like 1 / Δx we can expect Δt must decrease with the 
same factor if Δx decreases. Also for second order derivative A goes like 1 / Δx2 decreasing Δx will have 
much larger effect on Δt. 

In all cases, after we have decided on a specific space-discretisation we can always choose a Δt small 
enough for both Runge-Kutta method and theorem 3.8 being fulfilled if we have already proven the 
stability. 

Finding a small enough Δt is not the problem in analysis, this is a practical problem for calculations and 
with these arguments we conclude the completely discretised transport equation is proven 
convergent. 

Chapter 3.3.2: Convergence analysis for the heat and Schrödinger equations. 
Both PDE's are given by equation (2.3) and we start with the SBP scheme. This is now given by 
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𝑣 = 𝑐(𝐻 (−𝐴′′ + (𝐸 − 𝐸 )𝑆) + 𝐻 𝑆 (𝜎 𝐸 + 𝜎 𝐸 ) + 𝑉)𝑣

−𝑐𝐻 𝑆 (𝜎 𝑔 𝑒 + 𝜎 𝑔 𝑒 ) + 𝐹, (3.5)
 

where V is now a diagonal, real matrix. Since F and the boundary terms have no effect on the stability 
we set these terms to zero and this gives 

𝑣 = 𝑐(𝐻 (−𝐴 + (𝐸 − 𝐸 )𝑆) + 𝐻 𝑆 (𝜎 𝐸 + 𝜎 𝐸 ) + 𝑉)𝑣. (3.6) 

We now take the adjoint of both sides of this equation and by using c, σa, σb are constants or on 
component-form and additionally H is real and symmetric and S is real this gives 

𝑣∗ = 𝑐∗(−𝑣∗(𝐴 )∗𝐻 + 𝑣∗𝑆∗(𝐸∗ −𝐸 )𝐻 + 𝑣∗(𝜎∗𝐸∗ + 𝜎∗𝐸∗ )𝑆𝐻 + 𝑣∗𝑉∗). (3.7) 

The energy estimate using H-norm is given by 

𝐸(𝑡) = ‖𝑣‖ . 

By taking the time derivative this gives 

𝐸 (𝑡) =
𝜕

𝜕𝑡
(𝑣∗𝐻𝑣) = 𝑣∗𝐻𝑣 + 𝑣∗𝐻𝑣 . 

By using the terms for vt from equation (3.6) and 𝑣∗ from equation (3.7) this gives 

𝐸 (𝑡) = −𝑐∗𝑣∗(𝐴 )∗𝐻 𝐻𝑣 + 𝑐∗𝑣∗𝑆∗(𝐸∗ −𝐸∗)𝐻 𝐻𝑣 

+𝑐∗𝑣∗(𝜎∗𝐸∗ + 𝜎∗𝐸∗ )𝑆𝐻 𝐻𝑣 + 𝑐∗𝑣∗𝑉∗𝐻𝑣 − 𝑐𝑣∗𝐻𝐻 𝐴 𝑣 

+𝑐𝑣∗𝐻𝐻 (𝐸 − 𝐸 )𝑆𝑣 + 𝑐𝑣∗𝐻𝐻 𝑆 (𝜎 𝐸 + 𝜎 𝐸 )𝑣 + 𝑐𝑣∗𝐻𝑉𝑣. 

Since H is invertible this gives 

𝐸 (𝑡) = −𝑐∗𝑣∗(𝐴 )∗𝑣 + 𝑐∗𝑣∗𝑆∗(𝐸∗ − 𝐸∗)𝑣 

+𝑐∗𝑣∗(𝜎∗𝐸∗ + 𝜎∗𝐸∗ )𝑆𝑣 + 𝑐∗𝑣∗𝑉∗𝐻𝑣 − 𝑐𝑣∗𝐴 𝑣 

+𝑐𝑣∗(𝐸 − 𝐸 )𝑆𝑣 + 𝑐𝑣∗𝑆 (𝜎 𝐸 + 𝜎 𝐸 )𝑣 + 𝑐𝑣∗𝐻𝑉𝑣. 

Since E0, EN-1 and A'' are real and symmetric we can remove all stars on these terms and since S is real 
we have ST = S* and this gives 

𝐸 (𝑡) = −𝑐∗𝑣∗𝐴′′𝑣 + 𝑐∗𝑣∗𝑆∗(𝐸 − 𝐸 )𝑣 

+𝑐∗𝑣∗(𝜎∗𝐸 + 𝜎∗𝐸 )𝑆𝑣 + 𝑐∗𝑣∗𝑉∗𝐻𝑣 − 𝑐𝑣∗𝐴 𝑣 

+𝑐𝑣∗(𝐸 − 𝐸 )𝑆𝑣 + 𝑐𝑣∗𝑆∗(𝜎 𝐸 + 𝜎 𝐸 )𝑣 + 𝑐𝑣∗𝐻𝑉𝑣. 

By some reshuffling of terms this gives 

𝐸 (𝑡) = −(𝑐∗ + 𝑐)𝑣∗𝐴′′𝑣 + 𝑣∗𝑆∗((𝑐𝜎 − 𝑐∗)𝐸 + (𝑐𝜎 + 𝑐∗)𝐸 )𝑣 

+𝑣∗((𝑐∗𝜎∗ − 𝑐)𝐸 + (𝑐∗𝜎∗+𝑐)𝐸 )𝑆𝑣 + 𝑣∗(𝑐∗𝑉∗𝐻 + 𝑐𝐻𝑉)𝑣. (3.8) 

Since A'' is positive semi-definite and Re(c) ≥ 0 we know first term is always ≤ 0. The easiest way to be 
sure E'(t) ≤ 0 is by letting most of the other terms be zero and by requiring the following two terms to 
be zero we have 

𝑐σ − 𝑐∗ = 0, 𝑐𝜎 + 𝑐∗ = 0. 

We now define c = cr +ici and this gives 
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𝑐 𝜎 − 𝑐 + 𝑖𝑐 𝜎 + 𝑖𝑐 = 0, 𝑐 𝜎 + 𝑐 + 𝑖𝑐 𝜎 − 𝑖𝑐 = 0. 

This can be split into the following four equations 

𝑐 (𝜎 − 1) = 0, 𝑐 (𝜎 + 1) = 0, 

𝑖𝑐 (𝜎 + 1) = 0, 𝑖𝑐 (𝜎 − 1) = 0. 

If ci ≠ 0 from the last equation we get 

𝜎 = −1, 𝜎 = 1, 

and we must now have cr = 0. If we instead say cr > 0 this gives 

𝜎 = 1, 𝜎 = −1, 

and we must have ci = 0. Based on this we know the constant c is either real or pure imaginary. For the 
heat equation we have pure real c and by putting 𝜎 = 1, 𝜎 = −1 into equation (3.8) this gives 

𝐸 (𝑡) = −2𝑅𝑒(𝑐)𝑣∗𝐴 𝑣 + 𝑣∗(𝑐∗𝑉∗𝐻 + 𝑐𝐻𝑉)𝑣. 

For the heat equation V ≡ 0 and c = Re(c) > 0 and this gives 

𝐸 (𝑡) = −2𝑐𝑣∗𝐴 𝑣 ≤ 0. 

With E'(t) ≤ 0 we know E(t) is monotonically increasing or constant and this gives 

𝐸(𝑡) ≤ 𝐸(0) = ‖𝑣(𝑥, 0)‖ = ‖𝑓(𝑥)‖ , 

and this proves we can choose K, α and t0 such that definition 3.5 is fulfilled and this proves the semi-
discretisation for the heat equation is stable. 

For the Schrödinger equation c must be pure imaginary and by putting 𝜎 = −1, 𝜎 = 1 in equation 
(3.8) this gives 

𝐸 (𝑡) = −0𝑣∗𝐴′′𝑣 + 𝑣∗𝑆∗((−𝑖𝑐 + 𝑖𝑐 )𝐸 + (𝑖𝑐 − 𝑖𝑐 )𝐸 )𝑣 

+𝑣∗((𝑖𝑐 − 𝑖𝑐 )𝐸 + (−𝑖𝑐 +𝑖𝑐 )𝐸 )𝑆𝑣 + 𝑣∗(−𝑖𝑐 𝑉∗𝐻 + 𝑖𝑐 𝐻𝑉)𝑣. 

This means we have 

𝐸 (𝑡) = 𝑖𝑐 𝑣∗(𝐻𝑉 − 𝑉∗𝐻)𝑣. 

Since V is real and diagonal and since H is real and symmetric we have  

(𝐻𝑉)∗ = 𝑉∗𝐻∗ = 𝑉𝐻. 

We only use diagonal norm H and with H and V both diagonal we know HV is also diagonal and this 
gives 

(𝐻𝑉)∗ = 𝐻𝑉 = 𝑉𝐻. 

With H and V both diagonal this means we have 

𝐸 (𝑡) = 0, 

and this means E(t) is constant for the Schrödinger equation. We have 

𝐸(𝑡) ≤ 𝐸(0) = ‖𝑣(𝑥, 0)‖ = ‖𝑓(𝑥)‖ , 
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and we can again choose K and α such that definition 3.5 is fulfilled and we have stability for the semi-
discretised Schrödinger equation. 

With the same arguments as for the transport equation the semi-discretised problem is convergent 
and the completely discretised problem also fulfils all requirements. This means we have proven the 
convergence for the heat equation and the Schrödinger equation.  

Chapter 3.4: The Kronecker product. 
For the helium atom we need a second dimension and we need a method to handle this. 

The Kronecker product is used to multiply two arbitrary sized matrices together [18] and we have 

𝐴 ⊗ 𝐵 =
𝑎 𝐵 ⋯ 𝑎 𝐵

⋮ ⋱ ⋮
𝑎 𝐵 ⋯ 𝑎 𝐵

, 𝐴𝜖ℝ × , 𝐵𝜖ℝ × , 

and the dimension of 𝐴 ⊗ 𝐵𝜖ℝ × . The Kronecker product has the following feature given by 

(𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷, 

as long as the two matrix products AC and BD are defined. Two other features if the Kronecker product 
are given by 

(𝐴 ⊗ 𝐵) = 𝐴 ⊗ 𝐵 , 

(𝐴 ⊗ 𝐵) = 𝐴 ⊗ 𝐵 , 

where the last hold as long as the two matrices A and B are both invertible. 

We use the notation where for space discretisation we use Nx grid points in x-direction and Ny grid 
points in y-direction. We use the notation for the one-dimensional SBP-terms given by 

𝐷 , 𝐷 , 𝐷 , 𝐷 , 

where D1x is first derivative SBP in x-direction, D2x is first derivative SBP in x-direction, D1y is first 
derivative SBP in y-direction etc. We use similar notation for unit vector, unit matrices and identity 
matrix and this gives 

𝑒 , 𝐸 , 𝐼 , 𝑒 , , 𝐸 , , 

𝑒 , 𝐸 , 𝐼 , 𝑒 , , 𝐸 , . 

We can now construct second order matrices by using 

𝐷
( )

= 𝐼 ⊗ 𝐷 , 

where 𝐷( ) is now a two-dimensional SBP-term. The other SBP-terms and SAT can be constructed in 
a similar fashion. 
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Chapter 4: Numerical results. 
For the SBP-terms based on diagonal norm H the analytical orders we will be using is given in table 
4.1 and they are based on corollary 3.2 and lemma 3.4. 

Table 4.1: Table of theoretical convergence rates for D1 and D2 SBP operators: 

Boundary order Internal order D1 global order D2 global order 
1 2 2 2 
2 4 3 4 
3 6 4 5 
4 8 5 6 

 

Based on the numerical results for two different number of grid-points for the same space-domain 
we can calculate the numerical convergence rate called the q-factor by using the following equation 

𝑞 =
𝑙𝑜𝑔

‖𝑣 − 𝑢‖
‖(𝑣 − 𝑢)‖

 

log (
𝑁
𝑁

)
, 

where 1 is for the smaller number of grid-points and 2 is for the larger number of grid-points. We will 
use the H-norm and the infinity-norm in the calculations. Remember, the infinity norm for a vector is 
given by ‖𝑣‖ = max 𝑣 . 

We use the classical fourth order Runge-Kutta method for time-stepping. This method is given by 

𝐹 = ∆𝑡𝐿(𝑣 , 𝑡), 𝑘 = 0,1, …, 

𝐹 = ∆𝑡𝐿(𝑣 + 0.5𝐹 , 𝑡 + 0.5∆𝑡), 

𝐹 = ∆𝑡𝐿(𝑣 + 0.5𝐹 , 𝑡 + 0.5∆𝑡), 

𝐹 = ∆𝑡𝐿(𝑣 + 𝐹 , 𝑡 + ∆𝑡), 

𝑣 = 𝑣 +
𝐹 + 2𝐹 + 2𝐹 + 𝐹

6
, 

where vk is a vector and L is a function we need to supply to Runge-Kutta. We construct L from the 
semi-discretisation and we use the SBP scheme shown previously. We construct L from 

𝐿 = 𝐴𝑣 + 𝑐 , 

where A is a matrix and c' is a vector. For the transport equation we have already constructed A in 
equation (3.4) and this is given by 𝐴 = −𝑐𝐻 (𝐸 + (𝜎 − 1)𝐸 ). The full scheme is given in 
equation (3.2) and the part not included in A is given by 

𝑐 = 𝑐𝐻 𝜎 𝑔 𝑒 + 𝐹, 

and this is the part of SBP-SAT that is not multiplied with vk. The L for the transport equation is now 
given by 

𝐿 = −𝑐𝐻 (𝐸 + (𝜎 − 1)𝐸 )𝑣 + 𝑐𝜎 𝑔 𝑒 𝐻 + 𝐹. 

From the analysis we found the semi-discretisation was stable for 𝜎 ≥ 1 and we use the choice 𝜎 =

1, since in this case the L is simplified to 
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𝐿 = −𝑐𝐻 𝐸 𝑣 + 𝑐𝑔 𝑒 𝐻 + 𝐹. (4.1) 

The stability for the Runge-Kutta method follows from the analysis we did in chapter 3. 

Chapter 4.1: Verification of transport equation. 
We use the one-dimensional transport equation given in equation (2.2) and since u is the exact 
solution we use the following 

𝑢(𝑥, 𝑡) = sin 4.1𝜋(𝑥 − 𝑡) , 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 < 100, 

𝑓(𝑥) = 𝑢(𝑥, 0), 𝑔 (𝑡) = 𝑢(0, 𝑡), 𝐹 = 0, 𝑐 = 1, 

and for time discretisation we use Δt = 7.8×10-5. We use L given by equation (4.1). The number of 
grid-points in space coordinate are given in table 4.2. 

Table 4.2: Results for one-dimensional transport equation showing difference from exact solution. 

 ‖𝑣 − 𝑢‖  for boundary order ‖𝑣 − 𝑢‖  for boundary order 
N 1 2 3 4 1 2 3 4 

16 1.05E+00 2.06E-01 1.59E-01 1.56E-01 2.30E+00 4.04E-01 4.03E-01 3.26E-01 
32 1.80E-01 1.39E-02 1.32E-02 5.34E-03 4.42E-01 2.85E-02 2.84E-02 1.25E-02 
64 4.01E-02 1.41E-03 9.74E-04 1.70E-04 9.71E-02 2.69E-03 1.60E-03 4.45E-04 

128 9.67E-03 1.63E-04 6.22E-05 4.82E-06 2.33E-02 3.40E-04 8.55E-05 1.07E-05 
256 2.39E-03 1.97E-05 3.86E-06 1.43E-07 5.75E-03 4.28E-05 5.29E-06 2.75E-07 
512 5.93E-04 2.43E-06 2.40E-07 4.35E-09 1.43E-03 5.37E-06 3.28E-07 8.40E-09 

1024 1.48E-04 3.02E-07 1.50E-08 1.34E-10 3.57E-04 6.72E-07 2.04E-08 2.59E-10 
2048 3.70E-05 3.77E-08 9.33E-10 4.17E-12 8.92E-05 8.41E-08 1.28E-09 8.13E-12 

We see from table 4.2 where is a significant advantage in using the fourth order at the boundary 
method for space-discretisation compared to the first order at the boundary method.  

The calculated q after 100 seconds is shown in table 4.3. 

Table 4.3: Numerical convergence rate q for transport equation. 

N q based in H-norm for boundary order q based on infinity-norm for order 
16 1 2 3 4 1 2 3 4 
32 2.550 3.892 3.587 4.872 2.381 3.826 3.826 4.699 
64 2.167 3.305 3.759 4.971 2.186 3.404 4.153 4.817 

128 2.052 3.111 3.970 5.140 2.060 2.985 4.225 5.378 
256 2.019 3.044 4.007 5.080 2.017 2.991 4.015 5.283 
512 2.007 3.019 4.008 5.037 2.007 2.995 4.009 5.030 

1024 2.003 3.009 4.005 5.017 2.003 2.998 4.005 5.018 
2048 2.002 3.004 4.003 5.008 2.002 2.999 4.003 4.995 

 Note, in the table the calculated q in a given row is based on N in this row and in the row above. 

From table 4.3 we detect some differences in the calculated convergence rates q and the theoretical 
convergence rates for D1 in table 4.1. With more than 256 gridpoins the calculated convergence rates 
q and the theoretical convergence rates for D1 in table 4.1 agrees and this verifies the D1 is correctly 
coded. 

We also look on stability over time by calculating the norms of the error between exact and 
numerically calculated result. The error as a function of time is calculated for every 0.1 seconds. Since 
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all the results except one result follows the same pattern we only include two of error functions. One 
is the error based on H-norm for order 1 given in figure 4.1 and the other is the error based on 
infinity-norm for order 4 given in figure 4.2. 

 

Figure 4. 1: Error as function of time for transport equation. 

 

Figure 4. 2: Error as a function of time. 

All the results for H-norm follows the pattern in figure 4.1 with good time stability with horizontal 
graphs but with some small oscillations around these horizontal graphs. All graphs gets more 
accurate as the number of nodes in space-discretisation increases. The results for infinity-norm 
follows a similar pattern but with larger oscillations around the horizontal as shown in figure 4.2. One 
discrepancy is for the fourth order at the boundary the error for N = 2048 is larger than the error for 
N = 1024 but still looks time stable. Since having a difference around 10-10 is a long way from machine 
epsilon around 10-15 we are a long way from this. Still for a single Runge-Kutta time-step by a rough 
estimate we do around 105 calculations and if the errors accumulate we are close to machine epsilon. 
This indicates where is a maximum number of gridpoints and increasing further will not give any 
more improvements. 
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Based on these results we have verified the SBP scheme for the transport equation given in equation 
(3.2). 

We now change the initial condition to 𝑓(𝑥) = 1.5𝑢(𝑥, 0), and using N = 100 for first order at the 
boundary after t = 0.5 we have a perturbation of the exact solution and calculated solutions are given 
in figure 4.4 and we see from this figure running for 0.5 is too short since the influence from initial 
condition is not fully cancelled. This indicates the method is robust. 

 

Figure 4. 3: Perturbed problem. 

 

Chapter 4.2: Verification of the heat equation. 
We will use the one-dimensional heat equation given by equation (2.3) and we choose the following 
exact solution given by 

𝑢(𝑥, 𝑡) = 0.25 sin(2𝜋𝑥 − 𝑡) + sin(𝑡) , 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 < 100 

𝑓(𝑥) = 𝑢(𝑥, 0), 𝑔 (𝑡) = 𝑢(0, 𝑡), 𝑔 (𝑡) = 𝑢(1, 𝑡), 𝑐 = 1. 

One problem with this choice of exact solution u is this is not an analytical solution. One method to 
handle this is to use the method of manufactured solutions [19]. We will use the PDE in equation 
(2.3) for explaining the main steps in the method of manufactured solutions. The first step is to add 
a new function F to one of the sides in the PDE but since the PDE already have the function F we take 
step two and move terms until F is alone. This gives 

𝐹 = 𝑢 − 𝑐𝑢 , (4.2) 

and the next step is to choose a solution u and calculate all the necessary derivatives given in the 
PDE. This means we have 

𝑢 = −0.25 cos(2𝜋𝑥 − 𝑡) + cos(𝑡), 

𝑢 = −0.25(2𝜋) cos(2𝜋𝑥 − 𝑡), 

and the last step in the method of manufactured solutions is to put these derivatives into equation 
(4.2) and this gives 

𝐹 = −0.25 cos(2𝜋𝑥 − 𝑡) + cos(𝑡) + 𝜋 cos(2𝜋𝑥 − 𝑡), 

𝐹 = (𝜋 − 0.25) cos(2𝜋𝑥 − 𝑡) + cos(𝑡). (4.3) 
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We also need to construct the L-function for the Runge-Kutta method. With the SBP scheme given in 
equation (3.5) we get the following 

𝐴 =  𝑐(𝐻 (−𝐴 + (𝐸 − 𝐸 )𝑆) + 𝐻 𝑆 (𝜎 𝐸 + 𝜎 𝐸 ) + 𝑉)𝑣 , 

𝑐 = −𝑐𝐻 𝑆 (𝜎 𝑔 𝑒 + 𝜎 𝑔 𝑒 ) + 𝐹, (4.4) 

𝐿 = 𝐴𝑣 + 𝑐 , 

For the heat equation V = 0, 𝜎 = 1, 𝜎 = −1, and we use F from equation (4.3). The complete L for 
the heat equation is now 

𝐿 = 𝐴𝑣 + 𝑐 , 

𝐴 = 𝑐 𝐻 (−𝐴 + (𝐸 − 𝐸 )𝑆) + 𝐻 𝑆 (𝐸 − 𝐸 ) 𝑣 , 

𝑐 = −𝑐𝐻 𝑆 (𝑔 𝑒 − 𝑔 𝑒 ) + (𝜋 − 0.25) cos(2𝜋𝑥 − 𝑡) + cos(𝑡). 

We use Δt = 1.4×10-5 and the grid size in table 4.4. From the table we detect a significant advantage 
by going to higher orders. The calculated convergence rates q is shown in table 4.5 and in figure 4.4. 
From these we see the calculated convergence rates based on H-norm agrees with the theoretical 
convergence rates in table 4.1. The calculated convergence rates based on infinity-norm are on the 
other hand too high compared to the analytical convergence rates in table 4.4 for second order at 
the boundary and for fourth order at the boundary. 

Table 4.4: Results for the one-dimensional heat equation showing the error. 

N ‖𝑣 − 𝑢‖  for boundary order # ‖𝑣 − 𝑢‖  for boundary order # 
0 1 2 3 4 1 2 3 4 

20 1.75E-02 1.22E-02 6.39E-03 1.53E-03 2.60E-02 2.60E-02 5.69E-03 1.80E-03 
40 3.05E-03 8.03E-04 1.44E-04 1.58E-05 4.32E-03 1.55E-03 1.97E-04 3.00E-05 
60 1.29E-03 1.60E-04 1.68E-05 1.31E-06 1.85E-03 2.68E-04 2.52E-05 2.45E-06 
80 7.18E-04 5.06E-05 3.77E-06 2.31E-07 1.01E-03 7.74E-05 5.84E-06 4.08E-07 

100 4.59E-04 2.07E-05 1.20E-06 6.01E-08 6.38E-04 2.97E-05 1.88E-06 1.00E-07 
120 3.19E-04 9.93E-06 4.73E-07 2.00E-08 4.37E-04 1.37E-05 7.44E-07 3.16E-08 
140 2.35E-04 5.34E-06 2.16E-07 7.89E-09 3.18E-04 7.11E-06 3.41E-07 1.19E-08 
160 1.80E-04 3.12E-06 1.10E-07 3.53E-09 2.42E-04 4.05E-06 1.73E-07 5.14E-09 
180 1.43E-04 1.95E-06 6.06E-08 1.73E-09 1.90E-04 2.47E-06 9.55E-08 2.45E-09 
200 1.16E-04 1.27E-06 3.56E-08 9.18E-10 1.53E-04 1.59E-06 5.61E-08 1.27E-09 

 

Table: 4.5: Calculated q for the heat equation. 

 q for H-norm and order # q for infinity-norm and order # 
20 1 2 3 4 1 2 3 4 
40 2.523 3.920 5.468 6.597 2.590 4.069 4.850 5.903 
60 2.127 3.977 5.305 6.134 2.087 4.326 5.074 6.178 
80 2.033 4.005 5.194 6.046 2.095 4.320 5.088 6.230 

100 2.004 4.015 5.135 6.034 2.081 4.291 5.083 6.305 
120 1.993 4.018 5.101 6.032 2.070 4.262 5.075 6.320 
140 1.988 4.018 5.080 6.032 2.067 4.236 5.068 6.316 
160 1.987 4.018 5.065 6.031 2.057 4.215 5.062 6.305 
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180 1.986 4.018 5.054 6.030 2.051 4.197 5.057 6.292 
200 1.986 4.017 5.047 6.030 2.050 4.181 5.052 6.278 

 

Figure 4. 4: Plotting of q for the heat equation. 

We again calculate the difference between numerical and exact solutions for every 0.1 time and the 
results using H-norm is given in figures 4.5 and figure 4.6 and for infinity-norm in figure 4.7. Since all 
follows the same pattern with time stability horizontally but some oscillations we will not include the 
other plots. These oscillations is fairly large and they have they increase for larger number of grid-
points. This gives larger gap between two different grids and this is likely the reason for the 
calculated q being larger than the expected analytically. 

 

Figure 4. 5: Error over time for the heat equation. 
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Figure 4. 6: Error over time for the heat equation. 

 

Figure 4. 7: Error over time for heat equation. 

Since the q is explained with the larger dips this is a good indication we have verified the one-
dimensional heat equation. 

Chapter 4.3: Verification of the Schrödinger equation. 
The nondimensional Schrödinger equation for an electron in a one-dimensional box is given by 

𝑢 =
𝑖

2
𝑢 , 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 < 𝑡 , 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, 𝑢(𝑥, 0) =
2

𝐿
sin

𝑛𝜋𝑥

𝐿
, 𝑛 = 1,2, …, 

where tmax is the largest time. The analytical solution is given by 
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𝑢(𝑥, 𝑡) =
2

𝐿
sin

𝑛𝜋𝑥

𝐿
𝑒 , 𝐸 =

𝜋 𝑛

2
, 𝑛 = 1,2, … 

We use the following limitations given by 

𝐿 = 1, 𝑛 = 1, 0 ≤ 𝑡 < 100, ∆𝑡 = 4.3 × 10 , 

where Δt is used for time discretisation. 

We use the same scheme as for the heat equation given in equation (3.5) with one change since F is 
now zero. The L from equation (4.4) is now given by 

𝐿 = 𝐴𝑣 + 𝑐 , 

𝑐 = −𝑐𝐻 𝑆 (−𝑔 𝑒 + 𝑔 𝑒 ), 

𝐴 =  𝑐(𝐻 (−𝐴 + (𝐸 − 𝐸 )𝑆) + 𝐻 𝑆 (𝜎 𝐸 + 𝜎 𝐸 ) + 𝑉)𝑣 . 

The space discretisation is shown in table 4.6. We see from this table the fourth order at the 
boundary norms increases when number of grid-points increases past 100 instead of decreasing. This 
also shows up for the calculated convergence rates in table 4.7 and figure 4.8. 

Table 4.6: Error for particle in a box. 

N ‖𝑣 − 𝑢‖  for boundary order # ‖𝑣 − 𝑢‖  for boundary order # 
0 1 2 3 4 1 2 3 4 

20 1.06E+00 1.40E-03 3.51E-04 1.08E-05 1.49E+00 1.96E-03 4.94E-04 1.56E-05 
40 2.66E-01 1.45E-04 2.96E-06 3.36E-08 3.76E-01 2.06E-04 4.20E-06 4.87E-08 
60 1.16E-01 3.30E-05 1.76E-07 8.32E-10 1.65E-01 4.68E-05 2.50E-07 1.21E-09 
80 6.50E-02 1.11E-05 2.38E-08 1.15E-10 9.19E-02 1.57E-05 3.48E-08 1.96E-10 

100 4.14E-02 4.72E-06 5.16E-09 4.31E-11 5.85E-02 6.68E-06 7.61E-09 6.75E-11 
120 2.87E-02 2.33E-06 1.39E-09 1.09E-10 4.05E-02 3.29E-06 2.02E-09 1.55E-10 
140 2.10E-02 1.28E-06 2.39E-10 8.77E-11 2.97E-02 1.81E-06 8.72E-10 1.25E-10 

 

Table 4.7: Calculated q for particle in a box. 

 q H-norm for order # q for infinity-norm for order # 
20 1 2 3 4 1 2 3 4 
40 1.994 3.269 6.892 8.333 1.990 3.252 6.876 8.320 
60 2.034 3.653 6.963 9.118 2.033 3.657 6.962 9.125 
80 2.027 3.783 6.944 6.885 2.027 3.783 6.849 6.306 

100 2.022 3.843 6.860 4.393 2.022 3.842 6.816 4.786 
120 2.018 3.877 7.190 -5.066 2.018 3.880 7.275 -4.541 
140 2.015 3.901 11.431 1.379 2.015 3.901 5.449 1.399 
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Figure 4. 8: Calculated q for particle in a box. 

From table 4.7 we see the two smallest calculated convergence rates are two and close to four and 
these corresponds to the analytic convergence rates in table 4.1. The next calculated convergence 
rate is close to seven instead of the analytic convergence rate at six. The highest calculated 
convergence rate is not stable for either H-norm or infinity-norm. 

The difference between numerical results and exact results calculated every 10 timesteps for H-norm 
is shown in figures 4.9 – 4.12, and for infinity-norm in figures 4.13 – 4.16. 

 

Figure 4. 9 
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Figure 4. 10 

 

Figure 4. 11 

 

Figure 4. 12 

From all these plots one major difference are the error increases with time while for transport 
equation and heat equation where are only some oscillations with time. The initial increase before 
the graphs are stable are also much longer and especially third and fourth order at the boundary for 
infinity-norm is very wide band of errors for fourth order at the boundary the result comes in the 
wrong order based on increasing number of grid-points. 
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Figure 4. 13 

  

Figure 4. 14 

 

Figure 4. 15 
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Figure 4. 16 

With these results for Schrödinger equation we seem to need large max time, fairly small number of 
grid-points and the numerically calculated convergence rates are likely off especially for third and 
fourth order at the boundary. Based on these numerical results we have verified the Schrödinger 
equation for particle in a box for the two lowest convergence rates at the boundary. 

Chapter 4.4: The hydrogen atom. 
The hydrogen atom is a two-particle system with a nucleus fixed in origin of a spherical coordinate 
system and with an electron moving relative to this nucleus. Any atomic ions with a single electron is 
called a hydrogen-like atom and with the elemental charge on the nucleus given as Z the Schrödinger 
equation in spherical coordinates are given by 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

 ℏ

2𝜇

𝜕

𝜕𝑟
+

2

𝑟

𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜃
+

1

𝑡𝑎𝑛𝜃

𝜕

𝜕𝜃
+

1

sin 𝜃

𝜕

𝜕𝜙
Ψ −

𝑍𝑒

4𝜋𝜖
Ψ, 

where Ψ = Ψ(𝑟, 𝜃, 𝜙, 𝑡) is the wavefunction in spherical coordinates, μ is the reduced mass of the 

system,  is a constant in Coulomb potential and e is the elementary charge. The spherical 

coordinates have radial distance r, 0 ≤ r < ∞, polar angle θ, 0 ≤ θ ≤ π, and azimuthal angle ϕ, 0 ≤ ϕ < 
2π. Everything inside (∙) is the Laplacian, ∇ , written in spherical coordinates. The reduced mass, μ, 
can be written on the form μ = , where mc is the mass of the nucleus. Since the mass of a proton 

is roughly 1836 times the mass of an electron and all hydrogen atoms includes at least one proton we 
use the approximation 𝜇 ≈ 𝑚 . Since all other atoms than hydrogen have an even heavier nucleus 
this approximation works for all atoms. The wavefunction in hydrogen-like atoms is specified with 
the tree quantum numbers n, l and ml and we choose l = 0 since we can write the normalised radial 
Schrödinger equation given by 

𝜕𝑢

𝜕𝑡
=

𝑖

2

𝜕 𝑢

𝜕𝑟
+

2𝑍

𝑟
𝑢 , 𝑢 = 𝑟Ψ , 0 ≤ 𝑟 < ∞, 

where Ψ  means we have the wavefunction with l = 0 and ml = 0. The energy for hydrogen-like 
atoms only depends on the quantum number n and is given by  

𝐸 = −
1

2

𝑍

𝑛
, 𝑛 = 1,2, …. 

With n = 1 and Z = 1 the exact solution of the Schrödinger equation for the hydrogen atom is given by 

Ψ (𝑟, 𝑡) =
1

√𝜋
𝑒 𝑒 , 𝐸 = −

1

2
. 
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When we discretise the space-coordinate we also remove the singularity for r = 0 in equation above 
by using 

1

𝑟
=

1

𝑟
−

1

∆𝑟
, 𝑟 ≥ ∆𝑟, 

1

𝑟
= 0, 𝑟 < ∆𝑟, 

where Δr is the size between grid-points in space discretisation. 

We use the following when we numerically solve the Schrödinger equation for the hydrogen atom 

𝑢 = 𝑟Ψ , 0 ≤ 𝑟 ≤ 6, 0 ≤ 𝑡 ≤ 12.566, 

𝑢(0, 𝑡) = 𝑢(6, 𝑡) = 0, 𝑢(𝑟, 0) = 𝑟Ψ (𝑟, 0). 

Since we use a small domain in space-coordinate while the wavefunction is normalised to infinity we 
must add a forcing function F(r,t) and we find it by the methods of manufactured solutions. The 
Schrödinger equation is given by 

𝜕𝑢

𝜕𝑡
=

𝑖

2

𝜕 𝑢

𝜕𝑟
+

2𝑍

𝑟
𝑢 + 𝐹. 

We use the same scheme as before for the Schrödinger equation given in equation (3.5). 

We need the F and this is given by 

𝑣 = −𝑖𝐸 𝑟
1

√𝜋
𝑒 𝑒 , 

𝑣 = −
1

√𝜋
𝑒 𝑒 , 

𝐹 = −𝑖𝐸 𝑟
1

√𝜋
𝑒 𝑒 +

𝑖

2

1

√𝜋
𝑒 𝑒 − 𝑖𝑉𝑣, 𝑉 =

1

𝑟
−

1

∆𝑥
, 

where V is the adjustment for removing the singularity. 

We use Δt = 2.1×10-5 and number of grid-points are given in table 4.8. Since we do not have an 
analytical solution any longer we do not have any meaningful convergence rates. 

Table 4.8: Error for the hydrogen atom. 

N H-1 H-2 H-3 H-4 inf-1 inf-2 inf-3 inf-4 
16 0.03234 0.02522 0.03101 0.02858 0.02626 0.01752 0.02709 0.02373 
32 0.05539 0.05453 0.05472 0.05454 0.05099 0.04956 0.04951 0.05052 
64 0.01146 0.01156 0.01156 0.01147 0.01296 0.01240 0.01193 0.01041 

128 0.01459 0.01430 0.01431 0.01429 0.01533 0.01405 0.01397 0.01456 
256 0.00428 0.00447 0.00437 0.00435 0.00694 0.01199 0.01149 0.00975 

 

In figure 4.17 we have the radial solution for 256 grid-points and order 1 at the boundary and we see 
the abrupt cut-off for the numerical result at the right boundary. We divide the numerical solution 
with r and the same for exact solution and plot this in figure 4.18. The results for the hydrogen atom 
is as good as can be expected with the early cut-off with radius 6. 
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Figure 4. 17: Radial solution for the hydrogen atom. 

 

 

Figure 4. 18: Wavefunction for hydrogen. 

Chapter 4.5: The helium atom. 
The Helium atom have a heavy nucleus surrounded by two electrons and any other type of atoms 
ionised to having two electrons is called helium-like atoms. By placing the nucleus in origin and by 
assuming we can label one of the electrons with 1 and the other electron with 2 we can easily write 
the Hamiltonian operator given by 

𝐻 = −
ℏ

2𝜇
 ∇ −

𝑍𝑒

4𝜋𝜖 𝑟
−

ℏ

2𝜇
 ∇ −

𝑍𝑒

4𝜋𝜖 𝑟
+

𝑒

4𝜋𝜖 𝑟
, 𝑟 , 𝑟 𝜖ℝ , 𝑟 = |𝑟 − 𝑟 |,  

where r1 and r2 is the radial distances from nucleus to electrons labelled 1 and 2 and r12 is the 
distance between the two electrons. We use the approximation 𝜇 ≈ 𝑚  for each of the electrons. 

The last term, , is the Coulomb repulsion between the two electrons. If we neglect this 
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repulsion term we can separate the variables and solve each electron as a hydrogen-like atom. Since 
the Coulomb repulsion term is not negligible we must include this term and we have an analytically 
unsolvable three-particle problem. We must use a numerical solution instead and where are no exact 
solution to compare with. We will use the method of manufactured solution after we choose our 
solution. 

We are only interested in the ground state and this simplifies the problem in a similar way as for the 
hydrogen atom. By averaging the spherical component [20] and by using the radial function 𝑢 =

𝑟 𝑟 Ψ, we get the nondimensionalised Schrödinger equation for helium-like atoms is given by 

𝜕𝑢

𝜕𝑡
= 𝑖

1

2

𝜕

𝜕𝑟
+

𝜕

𝜕𝑟
+ 𝑍

1

𝑟
+

1

𝑟
−

1

𝑟
𝑢 + 𝐹, 𝑟 = max(𝑟 , 𝑟 ), 

and we use the limits and boundary data given by 

0 ≤ 𝑟 , 𝑟 ≤ 10, 0 ≤ 𝑡 ≤ 4.413, 

𝑢(0, 𝑟 , 𝑡) = 𝑢(𝑟 , 0, 𝑡) = 𝑢(10, 𝑟 , 𝑡) = 𝑢(𝑟 , 10, 𝑡) = 0. 

We assume a similar form of the solution as for hydrogen-like atoms and this gives 

𝑢 =
𝑍

√𝜋
𝑟 𝑟 𝑒 ( )𝑒 , 

and we use this u for the initial condition at t = 0. 

While the nuclear charge in the helium atom is 2, part of the time one electron will shield for the 
other electron and we use Z = 27/16 for the helium atom. We use Δt = 6.3×10-5 for the time-
discretisation. We use the number of grid points given in table 4.9. 

Table 4.9: Error for the helium atom. 

Nx Ny H-1 H-2 H-3 H-4 inf-1 inf-2 inf-3 inf-4 
16 24 3.05E-01 3.58E-02 1.93E-02 7.80E-03 2.92E-01 3.07E-02 2.23E-02 1.50E-02 
32 48 1.54E-02 1.61E-02 2.55E-03 2.38E-03 1.44E-02 9.85E-03 1.59E-03 1.51E-03 
64 96 3.61E-03 4.20E-03 1.41E-04 4.11E-04 1.77E-03 1.77E-03 7.09E-05 2.68E-04 

128 192 1.86E-03 5.53E-04 1.18E-06 2.00E-06 8.41E-04 3.44E-04 2.12E-06 9.55E-07 
 

With no exact solution any plotting of convergence rates are meaningless. 

The radial solution of the Schrödinger equation for the helium atom in the ground state for 32 × 48 
grid points is given in figure 4.19 and the numerical solutions for the orders 1 – 4 are shown in figures 
4.20 – 4.28. 
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Figure 4. 19: Our guess for exact solution 

  

Figure 4. 20: Our guess for exact solution. 

 

Figure 4. 21: calculated order 1 
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Figure 4. 22: Calculated order 1. 

 

Figure 4. 23: Calculated order 2. 

 

Figure 4. 24: Calculated order 2. 
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Figure 4. 25: Calculated order 3. 

 

Figure 4. 26: Calculated order 3. 

 

Figure 4. 27: Calculated order 4. 
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Figure 4. 28: Calculated order 4. 

From these figures we see the two lowest orders are markedly different from the exact solution 
while the two highest orders seem to include all the major features of the exact solution. All 
numerical solutions include some contours outside the region with contours for the exact solution. 
This is likely due to the abrupt cutoff we used. 

Increasing to 128 × 192 gives similar results and only show the exact in figure 4.29 and the calculated 
for order 1 in figure 4.30. 

 

Figure 4. 29: Exact for 128 x 192. 

 

 

Figure 4. 30: Calculated order 1. 
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These does show it is possible to use the Schrödinger equation for calculations on the helium atom 
numerically. 
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Chapter 5: Conclusions and future work. 
We have shown it is possible to calculate a numerical solution of the helium atom with the help of 
numerical methods. 

This included programming in Matlab and we used the one-dimensional transport equation, the heat 
equation and the particle in a box solution of the Schrödinger equation for verifying the code. 

The code seems fast in one-dimensional problems but quickly goes very slow for two-dimensional 
problems. 

Trying to optimize the code or possibly use something different than Matlab is one of the possible 
future work. 

Another is to see if it's possible to calculate on atoms in something else than the ground state and 
possibly extend to even more particles than the three in the helium atom. 

 

  



44 
 

References: 
1. P. A. Tipler and R. A. Llewellyn, Modern physics, W.H. Freeman, New York, 2008. 
2. P. W. Atkins and R. S. Friedman, Molecular quantum mechanics, Oxford University Press, 

Oxford, 2011. 
3. P. C. Hemmer, Kvantemekanikk, Tapir akademisk forl., Trondheim, 2005. 
4. A. Hinchliffe, Molecular modelling for beginners, Wiley, Chichester, 2008. 
5. L. C. Evans, Partial differential equations, vol. vol. 19, American Mathematical Society, 

Providence, R.I, 2010. 
6. B. Straughan, The energy method, stability, and nonlinear convection, vol. 91, Springer, New 

York, 2004. 
7. P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, 

Communications on Pure and Applied Mathematics 9 (1956), no. 2, 267-293. 
8. H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic 

equations, Tellus 24 (1972), no. 3, 199-215. 
9. H. O. Kreiss and L. Wu, On the stability definition of difference approximations for the initial 

boundary value problem, Applied Numerical Mathematics 12 (1993), no. 1, 213-227. 
10. B. Gustafsson, H. Kreiss and J. Oliger, "Time dependent problems and difference methods," 

Pure and Applied Mathematics, Wiley, Hoboken, N.J., 2013. 
11. D. C. Del Rey Fernández, J. E. Hicken and D. W. Zingg, Review of summation-by-parts 

operators with simultaneous approximation terms for the numerical solution of partial 
differential equations, Computers and Fluids 95 (2014), no. C, 171-196. 

12. T. Lundquist and J. Nordström, The sbp-sat technique for initial value problems, Journal of 
Computational Physics 270 (2014), 86-104. 

13. M. Svärd, A note on $$l^{\infty }$$ l ∞ bounds and convergence rates of summa on-by-parts 
schemes, BIT Numerical Mathematics 54 (2014), no. 3, 823-830. 

14. K. Mattsson, Summation by parts operators for finite difference approximations of second-
derivatives with variable coefficients, Journal of Scientific Computing 51 (2012), no. 3, 650-
682. 

15. K. Mattsson, M. Svärd and M. Shoeybi, Stable and accurate schemes for the compressible 
navier–stokes equations, Journal of Computational Physics 227 (2008), no. 4, 2293-2316. 

16. J. Gong and J. Nordström, Interface procedures for finite difference approximations of the 
advection–diffusion equation, Journal of Computational and Applied Mathematics 236 
(2011), no. 5, 602-620. 

17. B. Gustafsson, "High order difference methods for time dependent pde," vol. 38, Springer 
Berlin Heidelberg, 2008. 

18. J. Nordström and T. Lundquist, Summation-by-parts in time, Journal of Computational Physics 
251 (2013), 487-499. 

19. K. Salari, P. Knupp and E. United States. Department Of, "Code verification by the method of 
manufactured solutions," Sandia National Laboratories, 2000. 

20. C. G. Barraclough and J. R. Mooney, Higher-order finite difference solutions of the schrödinger 
equation for the helium atom, The Journal of Chemical Physics 54 (1971), no. 1, 35-44. 

 


