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2 Abstract

This thesis explores the possibility of a generic algorithm for systems of linked
rigid bodies using the moving frame method (MFM) in engineering developed
by H. Murakami and T.Impelluso. The project entails the construction of
a generic algorithm for the equations of motion and the validation of the
equations generated by said algorithm. The validation is done by comparing
the equations of motion generated by the algorithm to equations evaluated
manually. Furthermore, the resulting behavior from integration is compared
to those from the Hamilton canonical equations of motion. Finally, a real-life
model is built to see if the theory holds in reality. Naturally, when taking
the step to bring in reality, friction and air resistance will have to be taken
into account. Therefore, the equations of motion were supplemented with
friction models constructed to match the movement of the real-life model.
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3 Introduction

The moving frame method in engineering developed by H. Murakami and T.J.
Impelluso modernizes the mathematics and pedagogy of rigid body mechanics
[7], [8]. It does this by leveraging Lie Group Theory, Cartan’s notion of
moving frames and a new notation from geometrical physics [5], [6]. Next,
it establishes a restriction on the variation of the angular velocity. Together
with the principle of virtual work, the method gives a structured way of
modelling systems of linked rigid bodies. While some may question the need
to revisit the mathematical underpinnings of an established discipline (with
concomitant tried and tested coding implementations), we are now at a dawn
of Artificial Intelligence: machines not only think and communicate, they
will learn. Thus, many of the legacy software used in industry must be
rewritten and in more modular form. The moving frame method [1], with its
streamlining of the equations of motion, empowers robust and agile coding.

As a prelude to a project at Western Norway Univeristy of Applied sci-
ences(HVL) to create an engineering program in order to analyze motion,
loads and bending on dynamical systems, this thesis seeks to explore the
possibilities of a generic algorithm for the equations of motion for systems of
linked rigid bodies, as well as validate the models constructed using this algo-
rithm. The validation is done by comparing the resulting equations from the
algorithm to equations evaluated by hand, as well as comparing the resulting
behaviour to that of the Hamilton canonical equations of motion. Further
more, The author has cooperated with a bachelor group at HVL in order to
build a real-life model to compare the calculations with.

While the model’s prime objective for this thesis is to be used to validate
the result, it also stands on its own as an example on how such a project
could be implemented in teaching. Now that the model itself is built, the
process of predicting the behaviour could and should be implemented in
advanced courses in dynamics to enhance the understanding and motivation
of students. This has culminated into an article, an abstract has been sent
and accepted by IMECE 2018 [11] with publication pending.
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4 Theoretic background

The theoretic background of this thesis relies heavily on the research of H.
Muracami and T.J Impelluso, and borrows from their pending text book in
dynamics [1] to construct the equations of motion.

4.1 Notational convention

All rotation matrices, connection matrices and vectors in this thesis are rel-
ative to something. A rotation matrix describes a rotation from one vector
basis to another, position vectors points to the position of one entity relative
to another. Too keep track of all relative quantities the notational convention
((α + 1)/α) is used. This is read as the α + 1 basis or body ”as seen” from
basis or body α. This notation will stand as a superscript, as in rotation
matrices R((α+1)/α). With the special case when the basis or vector observed
is relative to the inertial frame, in this case the inertial is not explicitly stated
and the notation is as this: R(α).

4.1.1 Some symbols

Following are some basic symbols used in the thesis.

θ(α) Angle vector of the of body alpha

ω(α) Angular velocity vector of body α

ω
(α)
i Angular velocity component i in the angular velocity vector of body α

r(α) Position vector of the centre of mass of the α body

r
(α)
i Position vector component i of the centre of mass of the α body

e(α) Vector basis in R3 corresponding to the orientation of the α body

q(α) Essential generalized coordinate of body alpha associated to the free-
dom of the system

I Identity matrix

3



4.1.2 Hat operator

The hat operator [10, p.363] acts on a vector in R3 and returns the skew-
symmetric matrix representation of said vector. In this thesis, it is most
commonly used as ω̂, which is a skew-symmetric matrix that is isomorphic
to the angular velocity vector of the basis.

(1)

ω1

ω2

ω3

 = ω ⇒ ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The hat operator can be used as a substitute for the cross product, as such
the tangential velocity of a point can be found by:

(2) ω × r =

ω1

ω2

ω3

×
r1

r2

r3

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

r1

r2

r3

 = ω̂r

The hat operator has several identities with the following being used in the
thesis:

(3) [x̂, ŷ] = x̂ŷ − ŷx̂ = x̂× y
where x, y ∈ R3 and [, ] are the Lie bracket of the special orthogonal group.

4.2 Lie Groups

A lie group G is a smooth manifold with a product · such that:

→ (x ·y) ·z = x · (y ·z) Associativity ∀x, y, z ∈ G

→ ∃e ∈ G s.t x·e = e·x = x Identity element ∀x ∈ G

→ ∃x−1 ∈ G s.t x·x−1 = x−1·x = e Inverse element ∀x ∈ G

And the maps x · y and x−1 are smooth

A lie algebra g is a vector space endowed with the bracket operation that
satisfy the following conditions:

[A,B] = −[B,A] Skew symmetry

[αA+ βB,C] = α[A,C] + β[B,C] Bilinearity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 Jacobi Identity

A lie algebra g that arise in conjunction with a Lie Group G, is the linear
space of all tangents to G at the point e on the manifold, g = TeG.
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4.3 Lie Groups Applied to rigid bodies

4.3.1 Special Orthogonal Group

The Lie group central to this thesis is the Special Orthogonal Group applied
to 3D space SO(3), and its Lie algebra. SO(3) is the group of rotational
matrices R(t) ∈ SO(3), that is matrices that are orthogonal and has a de-
terminant equal to 1.

Applying the special orthogonal group to rigid bodies is the act of attaching
vector bases to rigid bodies and using the group elements to relate them.
Using the special orthogonal group this way makes the analysis of compli-
cated system easier by enabling the user to split the systems into smaller
manageable parts. [1, ch1-4]

Figure 1: Two body related bases and an Inertial basis, [1, ch12]

Two rigid bodies, with body attached bases as well as an inertial base of
reference.

(4) e(1)(t) = (e
(1)
1 (t), e

(1)
2 (t), e

(1)
3 (t))

(5) e(2)(t) = (e
(2)
1 (t), e

(2)
2 (t), e

(2)
3 (t))

(6) eI = (eI1, e
I
2, e

I
3) ≡ e(1)(0)

The second basis is given relative to the first and the first basis relative to
the inertial. They are connected by rotational a matrices R(α)(t) ∈ SO(3)

(7) e(2)(t) = e(1)(t)R(2/1)(t)
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(8) e(1)(t) = eIR(1)(t)

The rate of change of the first basis with respect to time can be found relative
to the inertial reference frame.

(9) ė(1)(t) = eIṘ(1)(t)

Stating the rate of change of the basis with the basis itself gives the Lie
algebra of the first basis ω̂ ∈ g.

(10) ė(1)(t) = e(1)(t)R(1)T (t)Ṙ(1)(t) ≡ e(1)(t)ω̂(1)(t)

with:

(11) ω̂(1)(t) ∈ TIM≡ g

The ω̂ is a skew-symmetric matrix that is isomorphic to the angular velocity
vector of the basis. They are connected trough the hat operator, it acts upon
a vector and transforms it to an equivalent skew symmetric matrix.

Continuing, the orientation of the second basis is given relative to the first:

(12) e(2)(t) = e(1)(t)R(2/1)(t)

the rate of change of the second basis

(13) ė(2)(t) = ė(1)(t)R2/1(t) + e(1)Ṙ(2/1)(t)

Relating the rate of change of basis 2 to itself and inserting the rate of the
first:

(14) ė(2)(t) = e(2)(t)(R2/1T (t)ω̂(1)(t)R2/1(t) +R2/1T (t)Ṙ(2/1)(t))

with:

(15) R2/1T (t)ω̂(1)(t)R2/1(t) +R2/1T (t)Ṙ(2/1)(t) ≡ ω̂(2)(t) ∈ TIM≡ g

The rate of change of the second basis given in its own space is:

(16) ė(2)(t) = e(2)(t)ω̂(2)(t)

6



4.3.2 Simplification of the Adjoint operation

The adjoint operation can be simplified when using the special orthogonal
group in 3D. The special case comes from the correspondence between the
angular velocity matrix and the angular velocity vector. By stating the
angular velocity as a vector, the adjoint operation can be replaced by a
group element.

(17) R(α)T ω̂(α−1)R(α) =
̂

R(α)Tω(α−1)

this simplifies the evaluation of the absolute angular velocities for many con-
secutive rotating bodies:

(18) ω(α) = e(1)(t)ω(1) + e(2)(t)ω(2/1) + · · ·+ e(α)(t)ω(α/α−1)

Practical example SO(3)

(a) Pendulum with position vectors (b) Pendulum with the body at-
tached vector bases

Figure 2: Pendulum where the red Column rotates around the inertial third direction, and
the green arm about the local second direction

In this example, the goal is to find an expression for the acceleration of the
centre of mass of the green body in figure 2. The first step is to define two
body attached vector bases. The first is rotated around the third inertial
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axis and related to the inertial with a rotational matrix.

(19) e(1)(t) = eIR(1)(t) = eI

cos(θ(1)) − sin(θ(1)) 0
sin(θ(1)) cos(θ(1)) 0

0 0 1


where the inertial is defined as

(20) eI ≡ e(1)(0)

and the second basis is rotated relative to the first with a rotational matrix
R(2/1) that rotates around the local second axis.

(21) e(2)(t) = e(1)(t)R(2/1)(t) = e(1)(t)

 cos(θ(2)) 0 sin(θ(2))
0 1 0

− sin(θ(2)) 0 cos(θ(2))


Rate of change of the first basis with respect to time
(22)

ė(1)(t) = eIṘ(1)(t) = e(1)(t)R(1)T (t)Ṙ(1)(t) = e(1)(t)

 0 −θ̇(1) 0

θ̇(1) 0 0
0 0 0

 ≡ e(1)(t)ω̂(1)(t)

Rate of change of the second basis with respect to time

ė(2)(t) = ė(1)(t)R(2/1)(t) + e(1)(t)Ṙ(2/1)(t) = e(1)(t)ω̂(1)(t)R(2/1)(t) + e(1)(t)Ṙ(2/1)(t) =

e(2)(t)
(
R(2/1)T (t)ω̂(1)(t)R(2/1)(t) +R(2/1)T (t)Ṙ(2/1)(t)

)
=

e(2)(t)

 0 θ̇(1)sin(θ(2)) θ̇(2)

−θ̇(1)sin(θ(2)) 0 −θ̇(1)cos(θ(2))

−θ̇2 θ̇(1)cos(θ(2)) 0

 ≡ e(2)(t)ω̂(2)(t)

(23)

The position of the centre of mass of the pendulum can be found by stating
the position vectors in figure 2a spanning from the inertial frame of reference
to the points in the respective vector basis and adding them together.

(24) Pcm2(t) = e(1)(t)r(P ) + e(2)(t)r(2/P )

where r(P ) = r(1) + r(P/1).
The tangential velocity is found by differentiating (24) with respect to time.

dPcm2(t)

dt
= vcm2(t) = ė(1)(t)r(P ) + ė(2)(t)r(2/P ) =

e(1)(t)ω̂(1)(t)r(P ) + e(2)(t)ω̂(2)(t)r(2/P )

(25)
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The acceleration is found by differentiating (25) with respect to time.

dvcm2(t)

dt
= acm2 = e(1)(t)

(
ω̂(1)(t)ω̂(1)(t)r(P ) + ˙̂ω

(1)
(t)r(P )

)
+

e(2)(t)
(
ω̂(2)(t)ω̂(2)(t)r(2/P ) + ˙̂ω

(2)
(t)r(2/P )

)(26)

Using the relation between the bases (21) to relate all the components in the
first frame

acm2 =e(1)(t)
(
ω̂(1)(t)ω̂(1)(t)r(P ) + ˙̂ω

(1)
(t)r(P )+

R(2/1)
(
ω̂(2)(t)ω̂(2)(t)r(2/P ) + ˙̂ω

(2)
(t)r(2/P )

))(27)
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4.3.3 Special Euclidean Group

The Special Euclidean group expands upon the Special orthogonal group
to encompass the position of the origin of the basis as well as the orienta-
tion. The bases are denoted with a vector basis and position of the origin
(e(α), r(α)). In SE(3) group elements E(α)(t) are 4 × 4 matrices called con-
nection matrices. They are block matrices that hold a rotational matrix in
the upper left and a position vector in the upper right. Where the rotational
matrix hold the relative orientation between frames and the vector hold the
relative position of the origin. [1, ch13]
(28)

(e((α+1)/α), r((α+1)/α)) = (e(α), r(α))E((α+1)/α) = (e(α), r(α))

[
R((α+1)/α) r((α+1)/α)

0T 1

]
where:

� R(α) ∈ SO(3)

� 0T =
[
0 0 0

]
� r(α) =

r
(α)
1

r
(α)
2

r
(α)
3

 ∈ R3

SE(3) is closed under multiplication:

(29) x · y = z ∈ SE(n) → ∀x, y ∈ SE(n)

the Lie bracket of SE(3) is defined as:

(30) [x, y] = xy − yx

The inverse element of the special Euclidean group in 3D has a known form
and is found the following way:.

Let Eα ∈ SE(3) be the connection matrix, and Multiplying the Connection

matrix with its inverse E(α)−1
=

[
A B
C D

]
:

E(α)E(α)−1
= I

4×4[
R(α) r(α)

0T 1

] [
A B
C D

]
=

[
I 0
0T 1

]
[
R(α)A+ r(α)C R(α)B + r(α)D

C D

]
=

[
I 0
0T 1

](31)
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This gives the elements of the inverse:

� C = 0T

� D = 1

� R(α)A = I ⇒ A = R(α)T

� R(α)B + r(α)D = 0⇒ B = −R(α)T r(α)

and thus the inverse element of SE(3) must be:

(32) E(α)−1
=

[
R(α)T −R(α)T r(α)

0T 1

]

4.3.4 Time Rate of Change of SE(3)

The time rate of change of the Special Euclidean group follows the same
pattern as the Special Orthogonal group. Find the rate of change with respect
to time and relate it to its own basis with the inverse element.

d

dt
(e(α)(t), r(α)

c (t)) = (eI , 0)Ė(α)(t) = (e(α)(t), r(α)
c (t))E(α)−1

(t)Ė(α)(t)(33)

with E(α)−1
(t)Ė(α)(t) ≡ Ω(α)(t) ∈ g

d

dt

(
e(α)(t), r(α)

c (t)
)

= (e(α)(t), r(α)(t))Ω(α)(t) =

(e(α)(t), r(α)
c (t))

[
ω̂(α)(t) ω̂(α)(t)r(α)(t) + ṙ(α)(t)

0T 0

](34)

The rate of change of the (α + 1) basis

d

dt
(e(α+1)(t), r(α+1)(t)) =

d

dt
(e(α)(t), r(α)(t))E(α+1/α)(t) + (e(α)(t), r(α)(t))Ė(α+1/α)(t) =

(e(2)(t), r(2/1)(t))
(
E(α+1/α)−1

(t)Ω(α)(t)E(α+1/α)(t) + E(α+1/α)−1
(t)Ė(α+1/α)(t)

)
(35)

with:

� E(α+1/α)−1
(t)Ė(α+1/α)(t) ≡ Ω(α+1/α)(t) ∈ g

� (E(α+1/α)−1
(t)Ω(α)(t)E(α+1/α)(t) + Ω(α+1/α)(t)) ≡ Ω(α+1) ∈ g

11



The rate of change of the α + 1 basis becomes

d

dt
(e(α+1)(t), r(α+1)(t)) = (e(α+1)(t), r(α+1)(t))Ω(α+1)(t) =

(e(α+1), rα+1))

[
ω̂(α+1) R(α+1/α)T (ω̂(α)r(α+1) + ṙ(α)) + ω̂(α+1/α)r(α+1/α) + ṙ(α+1/α)

0T 0

]
(36)

with

� r(α+1) = r(α+1/α) + r(α)

� ω̂(α+1) = R(α+1/α)T ω̂(α)R(α+1/α) + ω̂(α+1/α)

Example SE(3)

In this example the goal is to find an expression for the tangential velocity
and angular velocity of both bodies in figure 2. To achieve this, the first step
is to find the expression for the position of the centre of mass of both bodies.

Positions

Start by defining the vector bases needed and the position of their origins.
The first vector basis is found relative to an inertial basis by multiplying two
connection matrices together. The first holding the rotational matrix of the
red column (19) and the second holding the vector from the lower bearing to
the centre of mass of the column.

(e(1)(t), r(1)
c (t)) =(eI , 0)

[
R(1)(t) 0

0T 1

] [
I r(1)

0T 1

]
=

(eI , 0)

[
R(1)(t) R(1)(t)r(1)

0T 1

]
= (eI , 0)E(1)(t)

(37)

with the inertial basis and its origin defined as

(38) (eI , 0) ≡ (e(1)(0), 0)

Furthermore the second basis is defined relative to the first by three connec-
tion matrices. The first translates from the first centre of mass to the point

12



P, second rotates around the local second axis (21) and third translates from
P to the second centre of mass.

(e(2)(t), r(2)
c (t)) = (e(1)(t), r(1)

c (t))

[
I r(P/1)

0T 1

] [
R(2/1)(t) 0T

0 1

] [
I r(2/P )

0T 1

]
=

(e(1)(t), r(1)
c (t))

[
R(2/1)(t) r(P/1) +R(2/1)(t)r(2/P )

0T 1

]
= (e(1)(t), r(1)

c (t))E(2/1)(t)

(39)

Velocities

By differentiating the first basis with respect to time, and relating the time
derivative to the first basis, the tangential and angular velocity of the red
column is found.

d

dt
(e(1)(t), r(1)

c (t)) = (eI , 0)Ė(1)(t) = (e(1)(t), r(1)
c (t))E(1)(t)

−1
Ė(1)(t) =

(e(1)(t), r(1)
c (t))Ω(1)(t)

(40)

with:

(41) Ω(1)(t) ≡
[
ω̂(1)(t) ω̂(1)(t)r(1)

0T 0

]
The angular velocity matrix of the first basis can now be extracted from the
upper left and the tangential velocity of the first centre of mass from the
velocity vector in the upper right of Ω(1)(t). Similarly the velocity of the
second body can be found by differentiating the basis of the second body
with respect to time and relate it to its own basis.

d

dt
(e(2)(t), r(2)

c (t)) =
d

dt
(e(1)(t), r(1)

c (t))E(2/1)(t) + (e(1)(t), r(1)
c (t))Ė(2/1)(t) =

(e(2)(t), r(2)
c (t))

(
E(2/1)(t)

−1
Ω(1)(t)E(2/1)(t) + E(2/1)(t)

−1
Ė(2/1)(t)

)
=

(e(2)(t), r(2)
c (t))Ω(2)(t)

(42)

with:

(43) Ω(2)(t) ≡
[
ω̂(2)(t) R(2/1)T (t)ω̂(1)(t)r(2)(t) + ω̂(2/1)(t)r(2/P )

0T 0

]
where:
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� ω̂(2)(t) = R(2/1)T (t)ω̂(1)(t)R(2/1)(t) + ω̂(2/1)(t)

� ω̂(2/1)(t) = R(2/1)T (t)Ṙ(2/1)(t)

� r(2)(t) = r(1) + r(P/1) +R(2/1)(t)r(2/P )

The angular velocity matrix of the second basis can now be extracted from
the upper left and the tangential velocity of the second centre of mass from
the upper right.

4.4 Calculus of Variation

4.4.1 Variation of SE(3)

Taking the variation of a moving frame follows the same pattern as the time
derivative. [1, ch13]

(δe(α), δr(α)) = (eI , 0)δE(α)

(δe(α), δr(α)) = (e(α), r(α))E(α)−1
δE(α)

(δe(α), δr(α)) = (e(α), r(α))δΠ(α)

(44)

where:

(45) δΠ(α) ≡
[
R(α)T δR(α) R(α)T δr(α)

0T 0

]
and:

(46) ̂δπ(α)(t) ≡ R(α)T δR(α)

the variation of the frame becomes:

(47) δΠ(α) =

[
̂δπ(α)(t) R(α)T δr(α)

0T 0

]

4.4.2 Restriction of δΩ(α)(t)

Enforcing the commutativity of the δ and the d
dt

operators give the restriction
of the virtual time rate of the connection matrix Ω(α) by equating the time
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derivative of the variation with the variation of the time derivative of the
frame connection matrix.

(48)
d

dt
(δe(α), δr(α)) = δ(ė(α), ṙ(α))

Evaluating the left hand side gives

d

dt
(δe(α), δr(α)) =

d

dt

{
(e(α), r(α))δΠ(α)

}
=

(e(α), r(α))

{
Ω(α)(t)δΠ(α)(t) +

d

dt
δΠ(α)(t)

}(49)

The right hand side

δ(ė(α), ṙ(α)) = δ
{

(e(α), r(α))Ω(α)(t)
}

=

(e(α), r(α))
{
δΠ(α)(t)Ω(α)(t) + δΩ(α)(t)

}(50)

inserting (49) and (50) into (48).

(51) Ω(α)(t)δΠ(α)(t) +
d

dt
δΠ(α)(t) = δΠ(α)(t)Ω(α)(t) + δΩ(α)(t)

using the Lie bracket (30) gives the restriction of the virtual time rate of the
frame connection matrix.

(52) δΩ(α)(t) =
d

dt
δΠ(α)(t) +

[
Ω(α)(t), δΠ(α)(t)

]
Expanding (52)[

δω̂(α) δṙ
(α)
c (t)

0T 0

]
=

d

dt

[
̂δπ(α)(t) (R(α)(t))T δr

(α)
c (t)

0T 0

]
+

[[
ω̂(α) (R(α)(t))T ṙ

(α)
c

0T 0

]
,

[
̂δπ(α)(t) (R(α)(t))T δr

(α)
c (t)

0T 0

]](53)

Focusing on the upper left sub matrix of (52)

(54) δω̂(α) =
d

dt
(δ̂π

(α)
) +

[
ω̂(α), δ̂π

(α)
]

15



By the Lie bracket (30) of the special orthogonal group and the identity 3
where the Lie bracket of two components of the lie algebra becomes the skew
symmetric matrix of the cross product of the two as vectors (3).

(55)

[
ω̂(α), δ̂π

(α)
]

= ̂ω(α) × π(α) = ̂̂ω(α)π(α)

(54) becomes

(56) δω̂(α) =
d

dt
(δ̂π

(α)
(t)) + ̂̂ω(α)π(α)

in vector form

(57) δω(α) =
d

dt
(δπ(α)(t)) + ω̂(α)(t)π(α)(t)

The upper right vector gives the trivial relation

lim
ε→0

∂2r
(α)
c

∂t∂ε
= lim

ε→0

∂2r
(α)
c

∂ε∂t

d

dt
δr(α)
c (t) = δṙ(α)

c (t)

(58)

(57) and (58) together in matrix form

(59)

{
δṙ

(α)
c (t)

δω(α)(t)

}
=

d

dt

{
δr

(α)
c (t)

δπ(α)(t)

}
+

[
0

3×3
0

3×3

0
3×3

ω̂(α)(t)

]{
δr

(α)
c (t)

δπ(α)(t)

}

Using the definitions in (4.5) to generalize (59) to a system of n bodies

(60) δẊ(t) =
d

dt
δX(t) +D(t)δX(t)

4.5 Some definitions

Before continuing with the principle of virtual work and the equations of
motion, some definitions must be made. For a system of linked rigid bodies,
the coordinates for each body can be written as a n × 1 vector. Following
are the needed definitions for the equations of motion for a system of linked
rigid bodies.
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The system generalized coordinates:

(61) X(t) =



r
(1)
c (t)
θ(1)(t)

r
(2)
c (t)
θ(2)(t)

...

r
(n)
c (t)
θ(n)(t)


The systems generalized velocities:

(62) Ẋ(t) =



ṙ
(1)
c (t)
ω(1)(t)

ṙ
(2)
c (t)
ω(2)(t)

...

ṙ
(n)
c (t)
ω(n)(t)


The system generalized virtual displacements:

(63) δX(t) =
[
∂
∂ε
X(t, ε)(ε=0)

]
=



δr
(1)
c (t)

δπ(1)(t)

δr
(2)
c (t)

δπ(2)(t)
...

δr
(n)
c (t)

δπ(n)(t)


The system generalized virtual velocities:

(64) δẊ(t) =
[
∂
∂ε
Ẋ(t, ε)(ε=0)

]
=



δṙ
(1)
c (t)

δω(1)(t)

δṙ
(2)
c (t)

δω(2)(t)
...

δṙ
(n)
c (t)

δω(n)(t)


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The system essential generalized coordinates, with n∗ being the degrees of
freedom of the system:

(65) {q(t)} =


q(1)(t)
q(2)(t)

...
q(n∗)(t)


The system essential generalized velocities:

(66) q̇(t) =


q̇(1)(t)
q̇(2)(t)

...
q̇(n∗)(t)



The system essential generalized virtual displacements:

(67) δq(t) =


δq(1)(t)
δq(2)(t)

...
δq(n∗)(t)



The system angular velocity matrix:

(68) [D(t)] =



0
3×3

0
3×3

0
3×3

0
3×3

. . . 0
3×3

0
3×3

0
3×3

ω̂(1)(t) 0
3×3

0
3×3

. . . 0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

. . . 0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

ω̂(2)(t) . . . 0
3×3

0
3×3

...
...

...
...

. . .
...

...
0

3×3
0

3×3
0

3×3
0

3×3
. . . 0

3×3
0

3×3

0
3×3

0
3×3

0
3×3

0
3×3

. . . 0
3×3

ω̂(n)(t)


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The system mass matrix:

(69) [M ] =



m(1)I 0
3×3

0
3×3

0
3×3

. . . 0
3×3

0
3×3

0
3×3

J
(1)
c 0

3×3
0

3×3
. . . 0

3×3
0

3×3

0
3×3

0
3×3

m(2)I 0
3×3

. . . 0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

J
(2)
c . . . 0

3×3
0

3×3
...

...
...

...
. . .

...
...

0
3×3

0
3×3

0
3×3

0
3×3

. . . m(n)I 0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

. . . 0
3×3

J
(n)
c


with I being the identity matrix:

(70) I =

1 0 0
0 1 0
0 0 1


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4.5.1 B Matrix

For a system of n bodies the system generalized velocities and essential gener-
alized velocities defined in (64), are linearly related through the [B(t)] matrix.
It is a 6n × n∗ matrix. Where n is the number of bodies in the system and
n∗is degrees of freedom of the system.

(71) Ẋ(t) = B(t)q̇(t)

The linear relation is a result of the linearity that comes from the chain rule
in derivation and as such, the same matrix consequently relates the virtual
generalized displacements and the virtual essential displacements.

(72) δX(t) = B(t)δq(t)

Furthermore, to facilitate ease in the differentiating of the [B(t)] matrix.
The matrix must be constructed with the tangential velocity components
stated in the inertial basis and the angular velocity components stated in
the respective local basis. Doing this, simplifies the operation down to only
differentiating the respective components, as the rate of change of the frames
drops away. Demonstrating by using the α input to the matrix:

(73) Ḃ(t) =

[
eI v̇(α)

e(α)(t)
(
ω̂(α)ω(α) + ω̇(α)

)] =

[
eI v̇(α)

e(α)(t)ω̇(α)

]
with: ω̂(α)ω(α) = 0 as this is the cross product of two parallel vectors.
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4.6 Principle of Virtual work

To find a general equation of motion for systems of linked rigid bodies, the
principle of virtual work is used. This is to encompass the non-conservative
forces and moments as well as the conservative ones. The action integral for
the principle of virtual work are:

(74)

∫ t1

t0

δK(t) + δW (t)dt = 0

with K(t) being the kinetic energy of the system and W (t) being the work
done on the system by external forces and moments.

4.6.1 Variation of the Kinetic Energy

The kinetic energy of one rigid body can be expressed in matrix form as

(75) K(α)(t) =
1

2

(
ẋ

(α)
c (t)
ω(α)(t)

)T m(α)I 0
3×3

0
3×3

J
(α)
c

(ẋ(α)
c (t)
ω(α)(t)

)

Introducing ε into the functions of time, and taking the variation at ε = 0

δK(α)(t) =
1

2

(
δẋ

(α)
c (t)

δω(α)(t)

)T m(α)I 0
3×3

0
3×3

J
(α)
c

(ẋ(α)
c (t)
ω(α)(t)

)
+

1

2

(
ẋ

(α)
c (t)
ω(α)(t)

)T m(α)I 0
3×3

0
3×3

J
(α)
c

(δẋ(α)
c (t)

δω(α)(t)

)(76)

Since the mass moment of inertia tensor is symmetrical, (76) can be simplified
to:

(77) K(α)(t) =

(
δẋ

(α)
c (t)

δω(α)(t)

)T m(α)I 0
3×3

0
3×3

J
(α)
c

(ẋ(α)
c (t)
ω(α)(t)

)
using definitions at 4.5, (77) is generalized to n number of bodies.

(78) δK(t) = δẊ(t)TMẊ(t)

with the restriction to the virtual generalized velocities (60) and definition
(64) the variation of the kinetic energy becomes:

(79) δK(t) =

(
d

dt
δX +DδX

)T
MẊ(t)
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4.6.2 Virtual work

Work for a system of n bodies is defined as

(80) W (t) = X(t)TF

Where F is a 6n∗ × 1 vector holding all applied forces and moments on the
body.

Virtual work is:

(81) δW (t) = δX(t)TF

with (72)

(82) δW (t) = [B(t)δq(t)]TF

Distributing the transpose and using following definition

(83) F ∗(t) = [B(t)]TF

the virtual work becomes:

(84) δW (t) = δq(t)TF ∗(t)

4.6.3 Equation of motion

Inserting the expression for kinetic energy (79) and the virtual work (84) into
the action integral (74) gives:

(85)

∫ t1

t0

((
d

dt
δX(t) +D(t)δX

)T
MẊ(t) + δq(t)TF ∗(t)

)
dt = 0

Using integration by parts on the first term and the skew symmetry of the
D matrix that givesDT = −D

(86)

∫ t1

t0

(
δXT (t)

(
d

dt

(
MẊ(t)

)
+DMẊ(t)

)
− δq(t)TF ∗(t)

)
dt = 0

Then filling in for δXT and Ẋ using definitions in 4.5.1

(87)

∫ t1

t0

δq(t)T
(
BTMBq̈ +BTMḂq̇ +BTDMBq̇ − F ∗(t)

)
dt = 0

with the definitions
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� M∗(t) ≡ B(t)TMB(t) −→ Reduced mass matrix

� N∗(t) ≡ B(t)T
(
MḂ(t) +D(t)MB(t)

)
the equation of motion for n-rigid bodies with both conservative and non-
conservative forces and moments applied is extracted.

(88) M∗(t)q̈(t) +N∗(t)q̇(t) = F ∗
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4.7 The Hamilton Equation of Motion

The Hamilton equation of motion is derived following the procedure outlined
in [2, ch8]. The Hamilton formulation seek to describe the motion in terms
of first order differential equations. To do this the conjugate momenta is
defined as (89).

(89) pi =
∂L(qj, q̇j, t)

∂q̇i

By applying this to the Lagrange equations below,

(90)
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

the time rate of change of the conjugate momenta is found to be (91)

(91) ṗi =
∂L

∂qi

using (91) the differential of the Lagrange equation (90) can be written as

(92) dL = ṗidqi + pidq̇i +
∂L

∂t
dt

by applying the Legendre transformation [2, ch8,p.335-336] on equation (92)
the Hamilton (93) is found

(93) H(q, p, t) = q̇ipi − L(q, q̇, t)

differentiating (93) yields

(94) dH = q̇idpi − ṗidqi −
∂L

∂t
dt

By inverting the conjugate momenta equations (89), a change of variable
matrix Q(q, t) can be constructed such that:

(95) q̇i = Q−1pi
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By equating (94) with the differential of the Hamilton (96), and applying
the change of variable matrix (95) to the resulting Hamiltonian the canonical
equation of Hamilton can be extracted (97).

(96) dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt

q̇i =
∂H

∂pi

−ṗi =
∂H

∂qi

(97)
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5 Methods

5.1 Manual Evaluation of the Equations of Motion

Validating the resulting equation of motion that the algorithm produces is
done by manually evaluating the same systems as the algorithm. Then by
differentiating the resulting equations and controlling that the result is 0,
it can be concluded that the resulting equation is correct. This is done for
several systems, but only one system is shown explicitly in the thesis, the
other test can be viewed in the appendix C.2. All matrix multiplication is
done in Matlab by use of the symbolic toolbox.

Following system is the same as the constructed pendulum 7a and the one
in figure 2.

5.1.1 Constructing the B matrix

Constructing the [B(q, q̇)] matrix consists of finding the expressions for the
angular velocity and tangential velocity of each centre of mass and stating
them as a system of equations. Note that the tangential velocities must be
stated in the inertial frame and the angular in the respective local frame (73).

Column

Starting with the velocities in the column, extracting the tangential velocity
and angular velocity vector from the first velocity matrix in (41).

ẋ(1) = R(1)ω̂(1)r(1) = −R(1)r̂(1)ω(1) =−R(1)r̂(1)

0
0
1

 0
0
0

[θ̇(1)

θ̇(2)

]
(98)

continuing with the angular velocity:

(99) ω(1) =

 0
0

θ̇(1)

 =

0 0
0 0
1 0

[θ̇(1)

θ̇(2)

]

Arm

Extracting the tangential and angular velocity from the second velocity ma-
trix (43). Starting with the tangential velocity:
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ẋ(2) = R(1)ω̂(1)r(2) +R(1)R(2/1)ω̂(2/1)r(2/P ) =

−R(1)
(
r̂(2)ω(1) +R(2/1)r̂(2/P )ω(2/1)

)
=−R(1)r̂(2)

0
0
1

 −R(1)R(2/1)r̂(2/P )

0
1
0

[θ̇(1)

θ̇(2)

](100)

Continuing with the angular velocity
(101)

ω(2)(t) =

−θ̇(1)sin(θ(2))

θ̇(2)

θ̇(1)cos(θ(2))

 = R(2/1)Tω(1)+ω(2/1) =

R(2/1)T

0
0
1

 0
1
0

[θ̇(1)

θ̇(2)

]

B matrix

Thus by collecting all components in one matrix the relation [Ẋ(t)] = [B(t)] {q̇}
is found:

(102)


ẋ(1)

ω(1)

ẋ(2)

ω(2)

 =



−R(1)r̂(1)

0
0
1

 0
0
0

0 0
0 0
1 0

−R(1)r̂(2)

0
0
1

 −R(1)R(2/1)r̂(2/P )

0
1
0


R(2/1)T

0
0
1

 0
1
0



[
θ̇(1)

θ̇(2)

]
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5.1.2 Ḃ(t) matrix

Differentiating the [B(t)] matrix with respect to time is shown in (73) to be
the time derivative of the components, thus the [Ḃ(t)] becomes:

(103) [Ḃ(t)] =



−Ṙ(1)r̂(1)

0
0
1

 0
0
0

0 0
0 0
0 0

−
[
Ṙ(1)r̂(2) −R(1) ̂Ṙ(2/1)r(2/P )

]0
0
1

 −Ṙ(2)r̂(2/P )

0
1
0


Ṙ(2/1)T

0
0
1

 0
0
0



5.1.3 Mass matrix

(104) M =


m(1) I

3×3
0

3×3
0

3×3
0

3×3

0
3×3

J (1) 0
3×3

0
3×3

0
3×3

0
3×3

m(2) I
3×3

0
3×3

0
3×3

0
3×3

0
3×3

J (2)



5.1.4 D(t) matrix

(105) D(t) =


0

3×3
0

3×3
0

3×3
0

3×3

0
3×3

ω̂(1)(t) 0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

0
3×3

ω̂(2)(t)


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5.1.5 Force Vector

The force vector holds the external forces, for example gravity and driving
moments.

(106) F (t) =



0
0

−gm(1)

0
0

F (1)(t)
0
0

−gm(2)

0
F (2)(t)

0


with F (1)(t) and F (2)(t) being applied moments on the bodies.

5.1.6 Equation of motion for the Pendulum

Using the definitions 4.6.3 and (83) to construct M∗(t) and N∗(t), the equa-
tions of motion can be written as:

(107) q̈ = M∗(t)−1 (F ∗(t)−N∗(t)q̇)

By evaluating this equation in Matlab it can be differentiated with the output
from the algorithm, if the result is 0 then the equations from the algorithm
can be said to be correct.

(108) q̈Manual − q̈Algorithm = 0

5.2 Canonical Equations of Motion

To construct the canonical equations of Hamilton the Lagrangian [L(q, q̇, t) =
K(q, q̇) − V (q)] of the system must be found. In this section of the paper
the equations are differentiated with respect to the generalized coordinates.
The kinetic energy of the system is the sum of the energy of the tangential
velocities due to rotation and the angular velocities of the centre of masses
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of the bodies. To facilitate the change of variable between the generalized
essential velocity and the conjugate momenta (95), the generalized form of
equation (75) for a system of rigid n bodies is used (109).

(109) K(t) =
1

2
Ẋ(q, q̇)TMẊ(q, q̇) =

1

2
(B(q)q̇)TMB(q)q̇

Consequently the main work in setting up the equation for the kinetic energy
is the construction of the [B(t)] matrix 4.5.1. It is constructed in the previous
section (102), from the velocity vectors of the bodies that where found in
4.3.4. Note that the specific matrix multiplication and derivation is done in
Matlab C.5.9.

Potential energy

Before formulating the Lagrangian and subsequently the Hamiltonian, the
expression for the energy due to conservative forces must be found. Potential
energy is formulating by the height of the centre of masses above the lowest
point in the inertial third direction. The first centre of mass does not move
in this direction and are therefore not a part of this equation. As such the
potential energy of the system is given as:

(110) V (θ(2)) =
(
r(2/P ) − sin(θ(2))r(2/P )

)
m(2)g

5.2.1 The Hamiltonian

The Lagrangian is now the difference in the sum of the kinetic energies and
potential energy, with the [M ] matrix being identical to (104).
(111)

L(θ(1), θ(2), ˙θ(1), ˙θ(2)) =
1

2

(
B(θ(1), θ(2))

[
θ̇(1)

θ̇(2)

])T
M

(
B(θ(1), θ(2))

[
θ̇(1)

θ̇(2)

])
−V (θ(2))

Following the steps given in [2, ch8,p 338] to formulate the Hamiltonian from
the Lagrangian the conjugate momenta is defined as

p(1) =
∂L(θ(1), θ(2), ˙θ(1), ˙θ(2))

∂θ̇(1)

p(2) =
∂L(θ(1), θ(2), ˙θ(1), ˙θ(2))

∂θ̇(2)

(112)

Using (111) and (112) the Hamiltonian is formulated:

(113) H =

[
θ̇(1)

θ̇(2)

]
·
[
p(1)

p(2)

]
− L(θ(1), θ(2), ˙θ(1), ˙θ(2))
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Continuing the expressions for the canonical momentas are evaluated and
written as a system of equations:

(114)

[
p(1)

p(2)

]
= Q(θ(1), θ(2))

[
θ̇(1)

θ̇(2)

]
By inverting (114) an expression for the angular velocities are found as a
function of the angles and the canonical momentas.

(115)

[
θ̇(1)

θ̇(2)

]
=

[
p(1)

p(2)

]
Q(θ(1), θ(2))

−1

Applying (115) to the Hamiltonian (113) eliminates the θ̇’s from the expres-
sion and makes it a function solely of the angles and canonical momentas.

(116) H =

[
p(1)

p(2)

]
Q(θ(1), θ(2))

−1 ·
[
p(1)

p(2)

]
− L(θ(1), θ(2), p(1), p(2))

Using the Hamiltonian (116) the canonical equations of motion (97) are
found.

θ̇(1) =
∂H(θ(1), θ(2), p(1), p(2))

∂p(1)

θ̇(2) =
∂H(θ(1), θ(2), p(1), p(2))

∂p(2)

ṗ(1) = −∂H(θ(1), θ(2), p(1), p(2))

∂θ(1)

ṗ(2) = −∂H(θ(1), θ(2), p(1), p(2))

∂θ(2)

(117)

The above equations are evaluated in Matlab and written to a function file
to facilitate the use of the midpoint rule [4, ch1] for solving the differential
equations.
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5.3 Design and Construction

The model is split up into two main parts, the frame and the pendulum.
The pendulum is the dynamic system that the calculation will be applied to,
and the frame is the framework that hold the pendulum safely in place as it
moves.

5.3.1 Frame

When the pendulum moves, it generates substantial dynamic reaction forces.
Thus, a strong, wide and rigid frame is needed to hold it in place. A hexagonal
shape was chosen for the frame 3a, as it would provide the needed stability
and strength. Furthermore, the hexagon will provide a natural boundary in
which the pendulum can move safely.

For the frame 18 m of square 15 mm wide and 1.5 mm thick stainless steel
was used. The bars were cut to create the frame, 6 units of 500 mm length
for the height, and 12 units of 600 mm length cut with 30-degree angle at
the ends for the hexagon at the top and bottom. For the supports at the top
and bottom 6 units of 400 mm length was used, as well as 2 hexagonal plates
with 300 mm radius and 2 mm thickness was cut with a plasma cutter.

The frame was welded together by the author using a mig welding apparatus
with compact tread. An angle grinder was used to smooth any sharp edges.

5.3.2 Pendulum

Figure 4: Pendulum with bearings
as blue objects, this is an outcrop of
figure 29

The two parts of the pendulum, the column
and arm 5a is made by using steel pipes and
rods. The column is a 25Ö2Ö500mm steel
pipe, with 4 10mm steel rods extended out
in the radial direction to hold the arm sup-
port. The support for the arm is composed
of an axle and two cylindrical supports to
hold it. The axle is connected to the arm
with two radial ball bearings. The column
is connected to the frame with 3 bearings.
One thrust ball bearing located at the bot-
tom, to hold the weight of the system as it
rotates. At the top and bottom there are
radial ball bearings for stability 4.
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(a) The Frame for the pendulum (b) The Frame for the pendulum, with
bearing supports

Figure 3: The Frame before assembly with the Strut and Arm

The arm is made up of three parts. A massive 70mm long rod with radius
of 95mm that hold most of the mass in the arm, a 312mm long rod with
radius of 10mm and a cylindrical components that house the bearings and
axle, that connects the arm to the column.

Most of the parts where produced at HVL using a Computer Numerical
Controled(CNC) turning machine [3, ch7.3], after the author had designed
and created the necessary part drawings. The axle and main mass of the
pendulum was produced by the author in a semi-manual turning machine.
The pendulum was assembled when all parts where done with the assistance
of the bachelor team at HVL.
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(a) The arm (b) The column, with the arm attached

Figure 5: Arm and Column assembly

5.4 Measurements

Three separate behaviours of the pendulum is measured. Two to construct
the friction functions, and one main measurement to compare with the end
result. First the RPM of the column with the arm fixed, to be used to model
the friction in the Column. Second measurement is of the arm with the
column fixed, to be used to model the friction in the Arm, and last with
both bodies free to move.

5.4.1 Column

Before the measurement is taken the position of the arm is locked in place
relative to the column. The column is then accelerated to approximately
100RPM. It is then allowed to spin freely and decelerate at a natural pace
while the angular velocity is measured constantly using a RPM measuring
tool 6. The RPM measurement tool is filmed using a mobile device with a
camera. The RPM and time of each measurement are read of the films after
completion. This was repeated 4 times.
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(a) Overview of the measurements (b) Measuring the angle

Figure 7: Measuring the angle of the Arm and overview

5.4.2 Arm

Figure 6: Measuring the RPM of the
Column.

The arm is given an initial angle and re-
leased with the column kept at a fixed posi-
tion 7. A mobile device with a camera filmed
the movement and the angle of each of the
top point and time of each swing was mea-
sured until it came to rest. This was re-
peated 4 times.

5.4.3 Main Measurement

Measuring the pendulum as it was moving,
was accomplished by three cameras. One
where filming the Arm 7b, number two was
filming the column from above with a pro-
tractor and an indicator 6 and the third was
giving an overview to match the timing of
the two other measurements 7a. Reading
the measurements of the films where done
by opening the video files in Microsoft pic-
ture, choosing the function ’save pictures’ that creates a series of pictures of
a film and the stepping trough the films frame by frame. To get the timing
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of the measurement of the RPM and the angle correctly, the overview film
was used. The swing of the pendulum where observed and the time point
for each end of the swings where noted. By then matching the point in time
where the Arm drops for the first time, with the video of the Column the
angular velocity measurements where timed correctly.

Angle of the Arm

The angle of the arm is measured using a protractor and a camera, both
fitted to the strut side of the Pendulum 7a. The angle and time is measured
for each endpoint of a swing for the arm.

Angular velocity of the column

Calculating the angular velocity of the column became necessary due to the
fact that the RPM measuring tool only updates its measurement each 0.7
second and thus is too slow to pick up the rapid change in angular velocity
that the pendulum is subject to. Therefore, using the film of the column and
time points from the overview film, the change in angle and the time used was
measured from slightly before and after each time point. Then by dividing
the change in angle with the time, the angular velocity of the column where
calculated for each swing of the Arm.

5.5 Energy Calculation

Computing the energy of the system is done by summing the kinetic and po-
tential energy. The kinetic energy is calculated using the following equation:

(118) K(t) =
1

2
Ẋ(t)TMẊ(t)

where

(119) Ẋ = B(t)q̇

Ẋ is given by the function velocities.mat C.7.2. The equations are created
by the function MFMNumEquMaker C.4.1 and saved to a Matlab file by the
function VelocitySaver C.5.1. Potential energy is calculated for each body
by the equation, using the positions of the centre of mass in the inertial 3
direction.

(120) V =
α∑
i=1

(
r(i)(t)eI3 −min |r(i)(t)eI3|

)
m(i)g
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Where r(i)(t)eI3 is the position of the i’th centre of mass in the third inertial
direction, min |r(i)(t)eI3| is the lowest point the i’th centre of mass can reach
in the third inertial direction and m(i) is the mass of the i’th body. Using
equation (118) and (120) the function EAnalysis C.7.1 calculates the energy
for each time step defined by the solution matrix from integration. Poten-
tial energy for the Arm, when the column was held in place was calculated
straight forward:

(121) V(arm) = (r(2/p) − sin(θ(2))r(2/p))m(2)g

By calculating the initial energy using the initial conditions the energy error
can be calculated by:

(122) Eerr = Etot − Einit

5.6 Friction Models

5.7 Dissipative functions

To account for friction in the bearings and air resistance, two dissipation
functions is needed. One for the column and one for the arm. The functions
is assumed to be on the form of Rayleigh’s dissipation functions and such
being polynomials of order 2 in the essential generalized velocities F(q̇(i))i =

O(q̇(i)2
). Thus the friction force functions become:

(123) F (q̇(i))i =
dFi
dq̇(i)

= O(q̇(i))

Both models is added to the F vector, as moments that act in the opposite
direction of the local angular velocity for each body.

5.7.1 Friction in the Arm

Using the measured angle, the energy and energy change between each oscil-
lation is calculated using (121). Furthermore, by dividing the difference in
angle for each oscillation and the time used, the average angular velocity of
each swing of the Arm is calculated. The change in energy is then plotted
against the average angular velocity of each oscillation 13b. By observing
the resulting plot, there is an indication that the dissipative function might
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behave as a first order polynomial. Thus two dissipative functions is tested
using the data and the Matlab function lsqnonlin.

(124) F(θ̇(2))arm1 = −C1θ̇
(2)2

(125) F(θ̇(2))arm2 = −C2|θ̇(2)|

Where Ci are constants and the absolute value of θ̇(2) in (125) is due to
ensure that the energy change due to friction is always negative, no mater
the direction of the angular velocity of the arm. The resulting dissipation is
plotted in 14, and resulting behaviour due to the two functions in 16 and 15.
By observing the resulting behaviour, it is clear that although the second
order function fits to begin with but does not stop. The first order function
stops, but does not follow the curve at the start. By manually testing for
different values of C1 and C2, it is established that the friction function
behaves as a polynomial at high values in the angle, and more as a constant
at lower angles. As such a third friction function was tested:

(126)
dFArm3

dθ̇(2)
= F (θ̇(2))Arm3 =

(
C3θ̇

(2)2
+ C4

)
n(θ̇(2))

where n(θ̇(2)) is a directional vector pointing in the opposite direction of the
angular velocity. Resulting plots 17, and adjusting C4 to make the pendulum
stop within the time frame 18. The form of the friction force function (126)
is easily recognized as the reaction force of a pendulum where the angular
acceleration has been neglected. Therefore a fourth test is performed, where
the friction force is the reaction force at the bearings times a constant and a
directional vector. Both the fourth and third tests are sent to an optimizing
function and the results plotted 21 19, the argument for also testing the third
being that it would be interesting to see if a simplified friction function could
be used. As the reaction force function would grow to immense sizes as the
amount of bodies in a system is increased.

Reaction Force in the Arm

Modelling the friction with the reaction forces times a friction constant fol-
lows the philosophy outlined in [3, ch2.1 p.44], note that as these are bearings
the resulting direction of the reaction force is of no consequence. To evaluate
the equations for the reaction force on the Arm bearings, both forces and
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(a) Arm, seen from above (b) Arm, seen from the front

Figure 8: The Arm with vector basis and reaction forces

moments on the centre of mass must be found. This is done by formula-
tion Newtons equation and Eulers equation [1, ch7]. Starting with Newtons
equation for the forces using equation (27).

(127)
∑

F (2)
c2

(t) = ˙L(t) = m(2)acm2(t)

Continuing with Euler’s equation for the moments, using the equation for
the angular velocity of the Arm (23).

(128)
∑

Mc = Ḣ(2)(t) = e(1)(t)R(2/1)
(
ω̂(2)(t)J (2)ω(2)(t) + J (2)ω̇(2)(t)

)
By taking the sum of the forces and evaluating for the reaction forces in
bearing 4:

(129) F
(2)
R4

(t) = F (2)
c /2 +

 0
0

m(2)g/2

+

−Ḣ(2)
3 /d
0

Ḣ
(2)
1 /d

+

F (2)
c2 l2/d

0
0


and in bearing 5:

(130) F
(2)
R5

(t) = F (2)
c /2 +

 0
0

m(2)g/2

+

 Ḣ
(2)
3 /d
0

−Ḣ(2)
1 /d

−
F (2)

c2 l2/d
0
0


By taking the norm of the reaction forces, summing up and multiplying with a
friction constant and a directional vector the friction function is constructed.

(131) Farm4 = C10

(
‖F (2)

R4
(t)‖+ ‖F (2)

R5
(t)‖

)
n(θ̇(2))
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5.7.2 Friction in the Column

Figure 9: Column with bearings as
blue objects.

It is assumed that the friction in the
column behaves as the friction in the
Arm, thus two tests are performed. One
with the full reaction force on the bear-
ings and one simplified version (132)
23 24. There are three bearings on
the column, bearing 1 and 2 takes
forces in the xy plane, and bearing 3
takes forces in the third inertial direc-
tion.

(132)

Fbasesimp =
(
C5θ̇

(1)2
+ C6 + C7

(
L1 + l1 + cos(θ(2))l2

)
θ̇(2)2

)
n(θ̇(1))

Reaction Force in the Column

Forces due to acceleration on the first centre of mass:

(133) F (1)
c = m(1)e(1)(t)

(
ω̂(1)(t)ω̂(1)(t)r(1) + ˙̂ω

(1)
(t)r(1)

)
Moments due to the rotation of the first centre of mass

(134)
∑

M (1)
c = Ḣ(1) = e(1)(t

(
ω̂(1)(t)J (1)ω(1)(t) + J (1)ω̇(1)(t)

)
)

Bearing 1

F
(1)
R1

(t) = Fc1/2 + Fc2/2 +

 Ḣ
(1)
2 /L4

−Ḣ(1)
1 /L4

0

+

m(1)gL1/L4

m(1)gL2/L4

0

+

 0

−Ḣ(1)/L4

0

+


(
F

(2)
c3 +m(2)g

)
L1/L4

0
0



(135)
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Bearing 2

F
(1)
R2

(t) = Fc1/2 + Fc2/2 +

−Ḣ(1)
2 /L4

Ḣ
(1)
1 /L4

0

+

−m(1)gL1/L4

−m(1)gL2/L4

0

+

 0

Ḣ(1)/L4

0

+

−
(
F

(2)
c3 +m(2)g

)
L1/L4

0
0


(136)

Bearing 3

(137) F
(1)
R3

(t) =
(
m(1) +m(2)

)
g + F (2)

c3

By taking the norm of all the reaction forces and multiplying with a friction
constant and a directional vector, the friction function for the column is
constructed. Note that Bearing 3 has a different constant that 1 and 2, as it
is a different bearing than 1 and 2.

(138) FBase =
((
‖F (1)

R1
(t)‖+ ‖F (1)

R2
(t)‖

)
C8 + C9‖F (1)

R3
(t)‖

)
n(θ̇(1))

Both friction functions where optimized by adjusting the constants in Matlab
using lsqnonlin and ode45.

5.8 Testing the Algorithm

Testing the algorithm is done by running it several times, with increasing
amounts of bodies. The system tested is a simplified chain. With each link
being one body and modelled as a hollow cylinder. The first body is free
to rotate about the third inertial axis, the second around the local second
axis, the third body rotates around the local third axis and so on. Mass
is calculated using the density of steel and the volume of the models. The
algorithm uses the function simplify to shorten the equations, this function
works well when the equations are sufficiently short. But as the system grows
it will max-out the memory on the computer and fail. Thus the measure-
ments where done twice, one with simplify and one without. The following
measurements where done on the performance of the algorithm:

� The time the algorithm uses to construct the equations of motion

� The size of the resulting func file
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� How long it takes to run the func file for one time step

Time usage is measured using the tic/toc function in Matlab. Testing script
can be viewed in appendix C.1.
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6 Results

6.1 Algorithm for the Principle of Virtual Work

Before starting to construct the algorithm, it is important to note that it
will only be able to handle movement due to rotations, as such the relative
position vectors cannot change. Further more, there will be no other restric-
tions on the movement other that those naturally occurring due to applied
forces and moments. If the algorithm is to be used for modelling impacts or
systems with other geographical restrictions, such as an object hitting the
ground or the piston in an engine, the restriction must be formulated as an
applied force and cannot be enforced in the equation of motion itself.

6.1.1 B matrix

By analysing the equation of motion (87) it is evident that the main com-
ponent is the [B(t)] matrix. Of all the components of the equation it is the
most complex and hard to compute. The matrix itself can be divided into
two main categories, the angular velocity and tangential. Finding a pattern
in how these velocities expand as more bodies are added, is integral to the
construction of the algorithm.

Angular velocity

Using the simplified form of the Adjoint operation 18, and keeping in mind
that the angular velocity must be stated in the local vector basis, the form
of the α velocity is:
(139)

ė(α) = e(α)ω(α) = e(α)(R(α/1)Tω(1)+R(α/2)Tω(2/1)+· · ·+R(α−1/α−2)Tω(α−1/α−2)+ω(α/α−1))

By using the above equation and expanding one body at the time:

ė(1) =e(1)ω(1)

ė(2) =e(2)ω(2) = e(2)(R(2/1)Tω(1) + ω(2/1))

ė(3) =e(3)ω(3) = e(3)(R(3/2)TR(2/1)Tω(1) +R(3/2)Tω(2/1) + ω(3/2))

(140)

As can be seen, the angular velocity takes the previous input to the [B(t)]
matrix and multiplies it with the local rotational matrix transposed. Treating
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the local angular velocity vectors as a special case and inputting them first,
the algorithm for the angular velocity input to the [B(t)] matrix becomes:

(141) Bi,i = ω(i/i−1)/θ̇(i)

and

(142) Bi,j = R(i/i−1)TBi−1,j

where i in (142) goes from 2→ α and j from 1→ i

Tangential velocity

Starting with the local velocity matrix, which coincidently also is the first
input of the tangential velocities, it is shown that the local tangential veloc-

ity is always the last angular velocity matrix times position vector r(α/p
(α)
r )

spanning from the last point of rotation to the last centre of mass:

(143) Ω(α/α−1)(t) = E(α/α−1)−1
Ė(α/α−1) =

[
ω̂(α/α−1) ω̂(α/α−1)r(α/p

(α)
r )

0T 0

]
Since the tangential velocity must be given in the inertial vector basis, the
B(i, i) input to the matrix becomes:

(144) Bi,i = R(i)ω̂(i/i−1)r(i/p
(i)
r )/θ̇(i)

Continuing, to find the other inputs the Adjoint operation of the Special Eu-
clidean group is consulted. Note that the position vectors in the connection
matrices contain a rotation, it is not of importance now but it will be when
constructing the time derivative of [B(t)].

AdE(α/α−1)(Ω(α−1)) = E(α/α−1)−1
Ω(α−1)E(α/α−1) =[

R(α/α−1)T −R(α/α−1)T r(α/α−1)

0T 1

] [
ω̂(α−1) R(α−1)T ẋ(α−1)

0T 0

] [
R(α/α−1) r(α/α−1)

0T 1

]
(145)

Extracting the tangential velocity component and relating it to the inertial.

(146) ẋ(α) = ẋ(α−1) +R(α−1)ω̂(α−1)r(α/α−1)

Expanding the last term:

R(α−1)
(
R(α/α−1)T ω̂(α−1)R(α/α−1) + ω̂(α/α−1)

)
r(α/α−1) =

R(α−1)ω̂(α−1)R(α/α−1)r(α/α−1) +R(α)ω̂(α/α−1)r(α/α−1)
(147)
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Thus the algorithm for the tangential velocities first for i = [2, 3, ..., α] and
j = [1, 2, ..., i− 2], with the input j=i-1 and j=i treated as special cases.

(148) Bi,j = Bi−1,j +R(j)ω̂(j/j−1)R(i/j)r(i/i−1)/θ̇(j)

and for j = i− 1

(149) Bi,j = Bi−1,j +R(i)ω̂(i/j)r(i/j)/θ̇(i)

The algorithm is implemented in Matlab and can be viewed in the appendix
C.4.3.

6.1.2 Time derivative of B

The angular accelerations

The angular acceleration in vector form is:

(150) ë(α) = ė(α)ω(α) + e(α)ω̇(α) = e(α)ω̂(α)ω(α) + e(α)ω̇(α)

where e(α)ω̂(α)ω(α) = 0 since this term is just the cross product of two parallel
vectors. This shows that differentiating the angular velocity part of the [B(t)]
matrix is just the time derivative of the components.

(151) ë(α) = e(α)ω̇(α)

It is important to note that the ω’s that are in the [B(t)] matrix are all just
vectors with two zero components and one 1. Therefore the (i, i) input to the
Ḃ will always be zero, as this input is strictly the local angular velocity vector
ω(i/i−1) (141). Further more, this simplifies the rest of the time derivatives,
as now the derivative of the previous input is known. Differentiating (142)
with respect to time gives:

(152) Ḃi,j = Ṙ(i/i−1)TBi−1,j +R(i/i−1)T Ḃi−1,j

The tangential accelerations

All the linear velocities in [B(t)] is stated relative to the inertial frame, ther-
fore the time derivative simplifies to the components of B. Starting by eval-
uating the special case giving the (i, i) input (144). With both ω̂(i/i−1) and

r(i/p
(i)
r ) being constants, the time derivative becomes:

(153) Ḃi,i = Ṙ(i)ω̂(i/i−1)r(i/p
(i)
r )
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This takes care of the first input to the Ḃ matrix, and simplifies the next
step as the previous time derivative of the input to the B is always known.
Continuing with the special case for (i, i−1) and remembering that r(i/i−1) =

r(p
(i)
r /i−1) +R(i/i−1)r(i/p

(i)
r )

(154) Ḃi,j = Ḃi−1,j + Ṙ(i)ω̂(i/j)r(i/j) +R(i)ω̂(i/j)Ṙ(i/i−1)r(i/p
(i)
r )

and the general input:

Ḃi,j =Ḃi−1,j + Ṙ(j)ω̂(j/j−1)R(i/j)r(i/i−1) +R(j)ω̂(j/j−1)Ṙ(i/j)r(i/i−1)+

R(j)ω̂(j/j−1)R(i/j)Ṙ(i/i−1)r(i/p
(i)
r )

(155)

The algorithm is implemented in Matlab and can be viewed in the appendix
C.4.3.

6.1.3 The Algorithm

To construct the equations of motion, the algorithm takes the physical size
of the system as input. Using these, it constructs the necessary matrices and
vectors, multiply them together and writes the equations to a separate file
called func.mat. This function can then again be used by any generic inte-
gration function to solve the equations of motion. The algorithm is called
MFMNumEquMaker. Below is a quick summary of how the function MFM-
NumEquMaker constructs the equations of motion. The functions are written
in Matlab and can be viewed in the appendix C.

Input

Example of how the input must look like and how the function MFMNumE-
quMaker is called can be viewed in the appendix C.3.1

PreVList List of vectors pointing from the last centre of mass to the next point
of rotation

Axis Axis of rotation for each body

PostVList List of vectors pointing from the last point of rotation to the next centre
of mass

NFrames Number of bodies

Mass Vector with the mass of each body
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Jlist Matrix with the mass moment of inertia tensor for each body

g Gravity constant

MFMNumEquMaker

The algorithm starts by calling SymVMaker C.4.2 to create the symbols for
the angles, angular velocity and moments. Using the output from SymV-
Maker, the D−B−dB−Maker C.4.3 and Fmaker C.4.4 is called to create the
[D(t)] matrix, [B(t)] matrix, the [dB(t)] matrix and the F (t) vector.

Before continuing on the equation of motion the algorithm saves the ve-
locity, the equations that gives the position of the centres of mass and the
coordinates of the rotation points to separate files to facilitate the energy
calculation and plotting of the system. To find the velocities, the algorithm
multiplies the [B(t)] matrix with the essential generalized coordinates, they
are then saved to a file using VelocitySaver.mat C.5.1. The centre of mass
functions and rotation point function are created and saved by PosVector-
FunctionMaker.mat C.5.2. Examples of such files can be viewed in C.7.2,
C.7.3 and C.7.4.

Continuing with the equation of motion, the only component missing is the
mass matrix [M ], it is constructed by NumMassMatrixMaker.mat. Num-
MassMatrixMaker takes the mass and mass moment of inertia of the system
and saves them to the correct positions in the [M ] matrix. Thus the M∗,
N∗ and F ∗ is calculated using (83) and the definitions given in (4.6.3). The
M∗ is then inverted using C.4.6 and the equation of motion is evaluated and
simplified before being saved to a file by SaveNumEndEqu.mat C.4.7. An
exapmle of one such file is given in the appendix C.4.8.
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6.2 Hamilton equations of motion

Following is the results from Hamiltons canonical equations of motion and
the result from the same system solved with the algorithm. Presented are
the angular velocity of the first body, and both angle and angular velocity of
the second body. Angle of the first body is not shown as it is only a straight
line, and does not add anything significant to the thesis.
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Figure 10: Resulting behaviour from Hamiltonian equations of motion and the algorithm

48



Presenting the energy error of the system, when solving with the midpoint
rule. It shows how the energy changes overtime due to numerical instability.
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Figure 11: Energy error from midpoint rule

6.3 Measurements

The measurements taken of the pendulum are divided into two categories,
the needed measurement for the modelling of the friction functions and the
measurements of the main behaviour of the pendulum. Modelling the friction
of the arm is done in steps, to see what functions that seems to fit the best.
They are assumed to be of the form described by Lord Rayleigh [2, ch1,p.23],
where the frictional force is proportional to the velocity.

6.3.1 Measurements For Friction Models

Arm

The column is held in place as the arm is raised and released. The angle is
measured each time the pendulum reaches an end point 12. Measurement
repeated 4 times.
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Angle Measurement 1

(a) Angle of the arm from first measure-
ment
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Angle Measurement 2

(b) Angle of the arm from second mea-
surement
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Angle Measurement 3

(c) Angle of the arm from third measure-
ment
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(d) Angle of the arm from fourth mea-
surement

Figure 12: The four measurements of the angle, for use in the arm diffusion function

The potential energy is calculated using the measured angles in 12 and equa-
tion (121). With r(2/P ) = sin(θ(2)(t))0.126m and m(2) = 4.6811kg. Physical
values given by Creo Parametric A.1. Using the difference in angle, and time
used between the measurements, the average angular velocity is calculated
and plotted against the change in energy between each oscillation 13.

0 10 20 30 40 50 60

time(s)

0

1

2

3

4

5

6

7

8

9

10

E
n

e
rg

y
(J

)

Energy Measurements

Measurment 1

Measurment 2

Measurment 3

Measurment 4

(a) The measured energy in the arm
over time

-8 -6 -4 -2 0 2 4 6 8

Angular velocity(rad/s)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

E
n

e
rg

y
 C

h
a

n
g

e
(J

)

Change in energy VS angular velocity

Measurments

(b) Energy change in the arm plotted
against angular velocity

Figure 13: The diffusion of energy in the Arm
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By observing figure 13, two diffusion functions are made using lsqnonlin,
plotting results together with measured diffusion 14.
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Figure 14: Energy change in the arm plotted against angular velocity, with first diffusion
tests
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Testing of friction models

Presenting the resulting behaviour of the arm with different friction func-
tions. In the following section the Ci is different constants and n(θ̇(2)) is the
direction vector dependent on the angular velocity.

First test

First friction test with FArm1 = −C1θ̇
(2)

(a) The measured and approximated
angle in the arm with
FArm1 = −C1θ̇

(2) over time

(b) The measured and approximated
energy in the arm with
FArm1 = −C1θ̇

(2) over time

Figure 15: The results after testing the friction force FArm1
= −C1θ̇

(2)
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Second Test

Second friction test with friction function FArm2 = −C2n(θ̇(2)).

(a) The measured and approximated
angle in the arm with
FArm2 = −C2n(θ̇(2)) over time

(b) The measured and approximated
energy in the arm with
FArm2 = −C2n(θ̇(2)) over time

Figure 16: The results after testing with the friction force as a constant
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Third test

Third friction test with F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2))

(a) The measured and approximated
angle in the arm with

F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2) over time

(b) The measured and approximated
energy in the arm with

F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2) over time

Figure 17: The results after testing the friction force F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2))
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Fourth test

Fourth friction test with F =
(
C3θ̇

2
2 + (C4 − 0.02)

)
n(θ̇(2))

(a) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) over time

(b) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) over time

Figure 18: The results after testing the friction force F =
(
C3θ̇

2
2 + (C4 − 0.02)

)
n(θ̇(2))

Friction function test after optimization by lsqnonlin with friction force F =(
C3θ̇

2
2 + C4

)
n(θ̇(2))

(a) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + C4

)
n(θ̇(2)) over time

after optimization

(b) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + C4

)
n(θ̇(2)) over time

after optimization

Figure 19: The results after testing the friction force F =
(
C3θ̇

2
2 + C4

)
n(θ̇(2)) after

optimization
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Reaction force as friction

Friction function test with the equations for reaction forces on the bearings,
before optimization.

(a) The measured and approximated
angle in the arm with friction force
modelled on reaction forces on the
bearings over time before optimization

(b) The measured and approximated
energy in the arm with friction force
modelled on reaction forces on the
bearings over time before optimization

Figure 20: The results after testing the friction modelled on the reaction forces on the
bearings before optimization

Friction function test with the equations for reaction forces on the bearings,
after optimization.

(a) The measured and approximated
angle in the arm with friction force
modelled on reaction forces on the
bearings over time after optimization

(b) The measured and approximated
energy in the arm with friction force
modelled on reaction forces on the
bearings over time after optimization

Figure 21: The results after testing the friction modelled on the reaction forces on the
bearings after optimization
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The Column

Continuing on the column, it is assumed that the friction force on the column
is of the same form as the ones on the arm. This is done on the basis that
the bearings that are used to hold the column are of the same type as the
ones on the arm, albeit a couple of sizes bigger.

The column is accelerated to approximately 100RPM 4 times and released.
While it is decelerating freely the RPM is measured at time intervals of
approximately 0.7 seconds 22a. Using the Measured RPM, the energy of the
column is calculated using (118).
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(b) The resulting energy in the column

Figure 22: Measured data from the Column

Friction force

Two test are performed and both are optimized, one with the full force equa-

tion the bearings and one simplified with FColumn =
(
C7θ̇

(1)2
+ C8

)
n(θ̇(1)).

The resulting behaviour is plotted with the measured values. Only the first
comparison is presented here, the rest can be viewed in the appendix B.2.
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(a) The measured and approximated
angular velocity in the column with
friction force modelled on reaction
forces on the bearings over time
before optimization

(b) The measured and approximated
energy in the column with friction force
modelled on reaction forces on the
bearings over time before optimization

(c) The measured and approximated
angular velocity in the column with
friction force modelled on reaction
forces on the bearings after optimization

(d) The measured and approximated
energy in the column with friction force
modelled on reaction forces on the
bearings over time after optimization

Figure 23: The results after testing the friction modelled on the reaction forces on the
bearings before and after optimization
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(a) The measured and approximated
angular velocity in the column with
friction FColumn =(
C7θ̇

(1)2
+ C8

)
n(θ̇(1)) before

optimization

(b) The measured and approximated
energy in the column with
friction FColumn =(
C7θ̇

(1)2
+ C8

)
n(θ̇(1)) before

optimization

(c) The measured and approximated
angular velocity in the column with
friction FColumn =(
C7θ̇

(1)2
+ C8

)
n(θ̇(1)) after

optimization

(d) The measured and approximated
energy in the column with
friction FColumn =(
C7θ̇

(1)2
+ C8

)
n(θ̇(1)) after

optimization

Figure 24: The result after testing the friction FColumn =
(
C7θ̇

(1)2 + C8

)
n(θ̇(1)), before

and after optimization
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6.3.2 Main Behaviour Measurements

The Pendulum is accelerated with the arm held in place. When the measured
RPM of the column reach approximately 100 RPM, the arm is released. At
that point the angular velocity of the Column where 91.7 RPM, and the
angle of the arm were 3.6477 rad. Measurements are taken at each top point
of the arm 25. Using the angular velocity of the Column and the angle of
the Arm, the energy of the Pendulum is calculated using (75) and the height
of the arm above the lowest point it can reach in the inertial third direction.
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Figure 25: The measured behaviour of the Pendulum
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Figure 26: The resulting energy of the Pendulum
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6.4 Comparing theory and reality

The resulting plots from the numerics and the real pendulum is presented,
following is the results from when the friction is modelled on the reaction
forces and the simplified version.

(a) The RPM of the column, approximated and mea-

sured after optimization

(b) The angle of the Arm, approximated and mea-

sured after optimization

(c) The energy of the Pendulum, approximated and

measured after optimization

Figure 27: The measured and approximated behaviour of the Pendulum with friction force
as reactions at bearings
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(a) The RPM of the column, approximated and mea-

sured after optimization

(b) The angle of the Arm, approximated and mea-

sured after optimization

(c) The energy of the Pendulum, approximated and

measured after optimization

Figure 28: The measured and approximated behaviour of the Pendulum, with simplified
friction force

6.5 Testing the Algorithm

Testing of the algorithm is done by running it with increasing number of
bodies. The time the algorithm uses, size of the resulting file and time it
takes to call said file once is measured for each run. It was assumed that
the simplifying the inverse of [M∗] and the end equation, would shorten the
equations. Therefore the algorithm is run two times for each number of
bodies. One time with simplify and one without. This was done for bod-
ies up to 3. For equations involving 4 or more bodies, simplify maxed out
the memory of the computer (15GB) and stopped. As such the last tests
where run without simplifying the inverse of [M∗] and the end equation.
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nr of bodies Time used by algorithm file size time to call func note
1 3.2sec 79 byte 0.001sec with simplify
1 2.7sec 79 byte 0.002sec without simplify

2 3.65sec 299 byte 0.002sec with simplify
2 2.4sec 287 byte 0.002sec without simplify

3 12.2sec 9,60 kB 0.05sec with simplify
3 5.16sec 11,3 kB 0.07sec without simplify

4 11.05sec 446 kB 2.3sec without simplify

5 88.4sec 13,0 MB 14.4sec without simplify

6 1597.3sec 298 MB N/A without simplify

In the last test Matlab was unable to call the func file. The operation was
terminated with the following error: Out of memory
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7 Evaluation

7.1 Validation

First step of the validation was to manually evaluate the equations of motion
and comparing these with the equation given from the algorithm. This test
was successful in showing that the pattern found in the B(t) and Ḃ(t) is cor-
rect and that the algorithm found does reproduce the equations of motion for
systems of linked rigid bodies. Furthermore, the Hamilton canonical equa-
tions of motion gives the same behaviour when applied to the pendulum with
friction less movement. By observing the figures in figure 10, it is clear that
the different equations of motion reproduce the same behaviour. Although
at the end of the integration the frequency of the arm differs somewhat this
is the result of inaccuracies in the integration and not a bug in the algorithm
itself.

Lastly, there is the replication of the movement of the pendulum. By ob-
serving the figures in 27 and 28, it can be said that the equations of motion
constructed by the algorithm does replicate the actual motion of the pen-
dulum. Although the friction models does have a visible error from the
measurements, it should be pointed out that the measurements themselves
are rough at best. Furthermore, Rayleigh’s diffusion function seems to be too
simple to be of use in the modelling of systems of linked rigid bodies. Even
in a simple system as the pendulum the centrifugal force and gravity are the
biggest contributors, and thus the friction must be modelled thereafter.

7.2 Performance

By evaluating the performance of the algorithm shown in table 6.5, a clear
limitation is apparent. For 4 bodies with rotational axes that are perpendic-
ular to each other the end equation becomes so big that it takes 2.3 seconds
to call the acceleration file. When integrating numerically this file will be
called millions of times, and thus using several seconds to run one time step
would slow the integration down significantly. For reference the midpoint
rule integration method used to produce the figures in 10 uses 2 400 001
time-steps. That would mean a time consumption of a total 63 days to finish
integrating, and that does not take into account the fixed point iteration
used for each time-step. Therefore the algorithm as it is with constructing
the needed parts as symbolic functions and then evaluating them to get the
equations of motion is limited to 3 bodies.
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7.3 Pendulum and friction models

By looking at the modelling of the pendulum as a project on its own, the
measuring of the pendulum and subseqent modelling of the friction did work.
The method used in measuring and modelling of the pendulum, are simple
enough that a small group of students could perform them as a class project.
It should be pointed out that it is possible to find the friction models by only
using the main measurements. This is due to the friction in the bearings are
a functions of both angular velocities, and thus must be optimized for the
full behaviour. Furthermore, by only focusing on the main measurements
the project would shorten in the sense that the students would not have to
take as many different measurements and thus save a lot of time else used to
stare at a video and write numbers in Microsoft xls.

8 Conclusion

8.1 Algorithm

This thesis has used the symbolic toolbox in Matlab to construct the equa-
tions of motion as a symbolic function, then by turning the equation into
strings it has been saved to a separate file. While this facilitates the use of
generic integration schemes like ode45 and the midpoint rule, it has shown it-
self to be highly ineffective as the size of the resulting file grows exponentially
as the number of bodies in the system is increased.

Although the symbolic approach to solving for the equations of motion has
shown itself to be too ineffective, the critical components needed has been
identified. As shown in 6.1, the equations follow a predictable pattern and can
thus be coded in a generic manner. While the algorithm itself is complicated,
it only relies on a set of basic components to be able to run. That is the
rotational matrix, the time derivative of the rotational matrix and the angular
velocity matrix for each body. While there can be many bodies, for known
rotational axis’s there is only three distinct versions of the matrices. Thus it
can be concluded that there is indeed a way to handle full 3D motion, with
applied non-conservative forces and moments.
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8.2 Pendulum and friction incorporated in teaching

As mentioned in the introduction, the constructed model stands on its own as
an example on how a practical project could be incorporated in the teaching
of mechanics to enhance learning and motivation among students. As shown
in the method and results, even simple and rough measurements as the ones
done during this project enables the modelling of a real world contraption.
By having students in small groups performing the measurements to find the
frictional constants and then modelling the behaviour of the pendulum will
induce an enhanced sense of accomplishment and thus increase the likelihood
of them remembering the theory.

For students, to see how the theory they are presented with can be applied
directly to reality is highly motivational. Furthermore, an argument can be
made that students see too much of a blackboard and too little reality during
their studies in science and engineering in particular. By incorporating prac-
tical projects such as this in teaching, the effect of discussing phenomenon
such as centrifugal force and the conservation of angular momentum will be
higher when student see the effects in real life.

9 Future Work

9.1 Future of the algorithm

The next step of the algorithm will be to find alternate ways to model the
systems using the found pattern in the equations of motion. With the critical
components identified, they can be supplemented by pre scripted functions.
Thus the equation of motion could be evaluated for each time step, making
the need to save absurdly long strings obsolete. Although the efficiency of
such an approach could be in question, it would make the modelling of bigger
systems possible.

9.2 Enhancing the pendulum

Moving on with the model itself will be to install digital measuring devices
onto both bodies. The natural choice is inductive censors equivalent to the
ones used in the ABS systems in cars and trucks. Censors such as these will
enable much more accurate measurements of the angular velocities of the
bodies and thus actual accuracy of the mathematical models can be discussed.
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Further more, the pendulum should be expanded with more bodies. With
more accurate measurements the next step would be to model more chaotic
systems, and the double pendulum being a well known chaotic system it is
the natural next step. As such the addition of another body on the end of
the pendulum is a good choice as a next expansion.
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A Data from Creo Parametric

A.1 Arm Data

Data on the Arm given from Creo Parametric.

VOLUME = 6.0014229e+05 MM^3

SURFACE AREA = 5.7600335e+04 MM^2

DENSITY = 7.8000000e-09 TONNE / MM^3

MASS = 4.6811099e-03 TONNE

CENTER OF GRAVITY with respect to ROTPNKT coordinate frame:

X Y Z 1.2675638e+02 0.0000000e+00 0.0000000e+00 MM

INERTIA at CENTER OF GRAVITY with respect to ROTPNKT

coordinate frame:(TONNE*MM^2)

INERTIA TENSOR:

Ixx Ixy Ixz 4.1857344e+00 0.0000000e+00 0.0000000e+00

Iyx Iyy Iyz 0.0000000e+00 1.9213110e+01 0.0000000e+00

Izx Izy Izz 0.0000000e+00 0.0000000e+00 1.9778369e+01

PRINCIPAL MOMENTS OF INERTIA: (TONNE * MM^2)

I1 I2 I3 4.1857344e+00 1.9213110e+01 1.9778369e+01

ROTATION MATRIX from ROTPNKT orientation to PRINCIPAL AXES:

1.00000 0.00000 0.00000

0.00000 1.00000 0.00000

0.00000 0.00000 1.00000

ROTATION ANGLES from ROTPNKT orientation to PRINCIPAL AXES (degrees):

angles about x y z 0.000 0.000 0.000

RADII OF GYRATION with respect to PRINCIPAL AXES:

R1 R2 R3 2.9902770e+01 6.4065529e+01 6.5001117e+01 MM
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A.2 Base Data

Data on the Base, given by Creo Parametric.

VOLUME = 4.3134681e+05 MM^3

SURFACE AREA = 2.2608337e+05 MM^2

DENSITY = 7.8000000e-09 TONNE / MM^3

MASS = 3.3645051e-03 TONNE

CENTER OF GRAVITY with respect to CS1 coordinate frame:

X Y Z 1.1705442e+02 3.0102662e+02 1.9696113e+01 MM

INERTIA with respect to CS1 coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

Ixx Ixy Ixz 3.8939946e+02 -1.2208736e+02 -1.5436827e+01

Iyx Iyy Iyz -1.2208736e+02 1.0913135e+02 -2.0542999e+01

Izx Izy Izz -1.5436827e+01 -2.0542999e+01 4.6662300e+02

INERTIA at CENTER OF GRAVITY with respect to CS1 coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

Ixx Ixy Ixz 8.3212803e+01 -3.5339833e+00 -7.6799028e+00

Iyx Iyy Iyz -3.5339833e+00 6.1726572e+01 -5.9466628e-01

Izx Izy Izz -7.6799028e+00 -5.9466628e-01 1.1564199e+02

PRINCIPAL MOMENTS OF INERTIA: (TONNE * MM^2)

I1 I2 I3 6.1097854e+01 8.2114024e+01 1.1736949e+02

ROTATION MATRIX from CS1 orientation to PRINCIPAL AXES:

0.16941 -0.96074 -0.21971

0.98494 0.17287 0.00353

0.03459 -0.21700 0.97556

ROTATION ANGLES from CS1 orientation to PRINCIPAL AXES (degrees):

angles about x y z -0.207 -12.692 80.000

RADII OF GYRATION with respect to PRINCIPAL AXES:

R1 R2 R3 1.3475732e+02 1.5622411e+02 1.8677426e+02 MM
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A.3 Exploded model of the pendulum
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Figure 29: Exploded view of the pendulum
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B Friction function trials

B.1 Arm

Presented below are the resulting behaviour of the numerical solution when
different friction models are tested.

B.1.1 First test

In the following section the Ci is different constants and n(θ̇(2)) is the di-
rection vector dependent on the angular velocity. First test with friction
function FArm = −C1n(θ̇(2)).

(a) The measured and approximated angle

in the arm with FArm = −C1n(θ̇(2)) nr. 1

(b) The measured and approximated angle

in the arm with FArm = −C1n(θ̇(2)) nr. 2

(c) The measured and approximated angle

in the arm with FArm = −C1n(θ̇(2)) nr. 3

(d) The measured and approximated angle

in the arm with FArm = −C1n(θ̇(2)) nr. 4

Figure 30: The resulting angle after testing with the friction force as a constant
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(a) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 1

(b) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 2

(c) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 3

(d) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 4

Figure 31: The resulting energy after testing with the friction force as a constant

B.1.2 Second test

Second test with friction function FArm = −C1θ̇
(2)
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(a) The measured and approximated angle

in the arm with FArm = −C2θ̇(2) nr. 1

(b) The measured and approximated angle

in the arm with FArm = −C2θ̇(2) nr. 2

(c) The measured and approximated angle

in the arm with FArm = −C2θ̇(2) nr. 3

(d) The measured and approximated angle

in the arm with FArm = −C2θ̇(2) nr. 4

Figure 32: The resulting angle after testing with the friction force as FArm = −C2θ̇
(2)

B.1.3 Third test

Third friction test with F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2)
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(a) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 1

(b) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 2

(c) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 3

(d) The measured and approximated energy

in the arm with FArm = −C1n(θ̇(2)) nr. 4

Figure 33: The resulting energy after testing with the friction force as FArm = −C2θ̇
(2)

B.1.4 Fourth test

Fourth friction test with F =
(
C3θ̇

2
2 + (C4 − 0.02)

)
n(θ̇(2))
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(a) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 1

(b) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 2

(c) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 3

(d) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 4

Figure 34: The resulting angles after testing the friction force F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2))

B.1.5 Fourth test after optimization

Fourth friction test with F =
(
C3θ̇

2
2 + (C4)

)
n(θ̇(2)) after optimization
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(a) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 1

(b) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 2

(c) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 3

(d) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + C4)

)
n(θ̇(2) nr. 4

Figure 35: The resulting energy after testing with the friction force as F =(
C3θ̇

2
2 + C4)

)
n(θ̇(2))

B.1.6 Friction Force as reactions at bearings before optimizing

Friction function test with the equations for reaction forces on the bearings,
before optimization.
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(a) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr. 1

(b) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr. 2

(c) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr. 3

(d) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr. 4

Figure 36: The resulting angles after testing the friction force F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2))

B.1.7 Friction Force as reactions at bearings after optimizing

Friction function test with the equations for reaction forces on the bearings,
before optimization.
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(a) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr 1

(b) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr 2

(c) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr 3

(d) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4 − 0.02)

)
n(θ̇(2)) nr 4

Figure 37: The resulting energy after testing the friction force F =(
C3θ̇

2
2 + (C4 − 0.02)

)
n(θ̇(2))
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(a) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 1

(b) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 2

(c) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 3

(d) The measured and approximated

angle in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 4

Figure 38: The resulting angles after testing the friction force F =
(
C3θ̇

2
2 + C4)

)
n(θ̇(2))
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(a) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 1

(b) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 2

(c) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 3

(d) The measured and approximated

energy in the arm with

F =
(
C3θ̇22 + (C4)

)
n(θ̇(2))

over time after optimization 4

Figure 39: The resulting energy after testing the friction force F =
(
C3θ̇

2
2 + (C4)

)
n(θ̇(2))

after optimization
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(a) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 1

(b) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 2

(c) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 3

(d) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 4

Figure 40: The resulting angle after testing the friction modelled on the reaction forces
on the bearings before optimization
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(a) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 1

(b) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 2

(c) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 3

(d) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time before optimization 4

Figure 41: The resulting energy after testing the friction modelled on the reaction forces
on the bearings before optimization
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(a) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 1

(b) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 2

(c) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 3

(d) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 4

Figure 42: The resulting angles after testing the friction modelled on the reaction forces
on the bearings after optimization
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(a) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 1

(b) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 2

(c) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 3

(d) The measured and approximated

angle in the arm with friction force

modelled on reaction forces on the

bearings over time after optimization 4

Figure 43: The resulting energy after testing the friction modelled on the reaction forces
on the bearings after optimization
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B.2 Column

Two test are performed to approximate the bahaviour of the column, and
both are optimized. The first with the full force equation the bearings and one

simplified with FColumn =
(
C7θ̇

(1)2
+ C8

)
n(θ̇(1)). The resulting behaviour is

plotted with the measured values below.

(a) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings over time

before optimization 1

(b) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings over time

before optimization 2

(c) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings over time

before optimization 3

(d) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings over time

before optimization 4

Figure 44: The resulting angular velocity after testing the friction modelled on the reaction
forces on the bearings before optimization
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(a) The measured and approximated

energy in the column with friction force

modelled on reaction forces on the

bearings over time before optimization 1

(b) The measured and approximated

energy in the column with friction force

modelled on reaction forces on the

bearings over time before optimization 2

(c) The measured and approximated

energy in the column with friction force

modelled on reaction forces on the

bearings over time before optimization 3

(d) The measured and approximated

energy in the column with friction force

modelled on reaction forces on the

bearings over time before optimization 4

Figure 45: The resulting energy after testing the friction modelled on the reaction forces
on the bearings before optimization
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(a) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings after optimization 1

(b) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings after optimization 2

(c) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings after optimization 3

(d) The measured and approximated

angular velocity in the column with

friction force modelled on reaction

forces on the bearings after optimization 4

Figure 46: The resulting angular velocity after testing the friction modelled on the reaction
forces on the bearings after optimization
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(a) The measured and approximated energy

in the column with friction force modelled

on reaction forces on the bearings over time after

optimization 1

(b) The measured and approximated energy

in the column with friction force modelled

on reaction forces on the bearings over time after

optimization 2

(c) The measured and approximated energy

in the column with friction force modelled

on reaction forces on the bearings over time after

optimization 3

(d) The measured and approximated energy

in the column with friction force modelled

on reaction forces on the bearings over time after

optimization 4

Figure 47: The resulting energy after testing the friction modelled on the reaction forces
on the bearings after optimization
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(a) The measured and approximated angular

velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 1

(b) The measured and approximated angular

velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 2

(c) The measured and approximated angular

velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 3

(d) The measured and approximated angular

velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 4

Figure 48: The resulting angular velocity after testing the friction FColumn =(
C7θ̇

(1)2 + C8

)
n(θ̇(1)), before optimization
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(a) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) before

optimization 1

(b) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) before

optimization 2

(c) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) before

optimization 3

(d) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) before

optimization 4

Figure 49: The resulting energy after testing the friction FColumn =(
C7θ̇

(1)2 + C8

)
n(θ̇(1)), before optimization
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(a) The measured and approximated

angular velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 1

(b) The measured and approximated

angular velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 2

(c) The measured and approximated

angular velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 3

(d) The measured and approximated

angular velocity in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 4

Figure 50: The resulting angular velocity after testing the friction FColumn =(
C7θ̇

(1)2 + C8

)
n(θ̇(1)), after optimization
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(a) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 1

(b) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 2

(c) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 3

(d) The measured and approximated

energy in the column with friction

FColumn =
(
C7θ̇(1)

2
+ C8

)
n(θ̇(1)) after

optimization 4

Figure 51: The resulting energy after testing the friction FColumn =(
C7θ̇

(1)2 + C8

)
n(θ̇(1)), after optimization
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C Matlab

C.1 Testing Algorithm

%% Chaine with 4 identical links

%Links are moddeled as hollow cylinders

%Gravity constant. Is by default negative.

Gravity=9.81;

%Size of the bodies:

rmin=0.2;

rmaks=0.4;

h=0.1;

%Volume of a link

V=pi*h*(rmaks^2-rmin^2);

%The mass of the bodies.

M=V*7750;%density of steel times volume

Mass=[M,M,M,M,M,M];

%Mass moment of inertia tensors for each body

J1=[Mass(1)*(3*(rmaks^2+rmin^2)+h^2)/12 0 0

0 Mass(1)*(3*(rmaks^2+rmin^2)+h^2)/12 0

0 0 Mass(1)*((rmaks^2+rmin^2))/2];

J2=[Mass(1)*(3*(rmaks^2+rmin^2)+h^2)/12 0 0

0 Mass(1)*((rmaks^2+rmin^2))/2 0

0 0 Mass(1)*(3*(rmaks^2+rmin^2)+h^2)/12 ];

J3=J1;

J4=J2;

J5=J1;

Jlist=[J1,J2,J3,J4,J5,J2];

%Vectors from last centre of mass to the point of rotation

PreVList = [ 0, rmin, rmin,rmin,rmin,rmin,0

0, 0, 0, 0,0,0,0

0, 0, 0, 0 ,0,0,0];

%Axis of rotation for the frames

Axis = [ 3, 2 ,3,2,3,2];

%Vector pointing from last point of rotation to next centre of mass

PostVList= [rmaks, rmin ,rmin,rmin ,rmin ,rmin
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0, 0 , 0 ,0 ,0,0

0, 0 ,0 ,0,0 ,0 ];

%Initial values to test func file with.

Init=randi(2,18,1);

%% 1 Body

%Create the function giving the angular accelerations of the system

NFrames=1;

tic

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity )

toc

%test func file

tic

ddth=func(0,Init);

toc

%Elapsed time is 3.269385 seconds. with simplify

%Func size 79 byte

%To run func one time 0.0014041 seconds.

%Without simlify

% Elapsed time is 2.703553 seconds.

% Elapsed time is 0.002504 seconds.

% Size: 79 byte (79 byte)

%% 2 Bodies

NFrames=2;

%Create the function giving the angular accelerations of the system

tic

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity )

toc

%test func file

tic

ddth=func(0,Init);

toc

%Elapsed time is 3.654462 seconds.

%299 byte

%Time used: Elapsed time is 0.002808 seconds.

%without simplify

% Elapsed time is 2.438575 seconds.

% Elapsed time is 0.002712 seconds.

%287 byte (287 byte)
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%% 3 bodies

NFrames=3;

%Create the function giving the angular accelerations of the system

tic

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity )

toc

%test func file

tic

ddth=func(0,Init);

toc

%Elapsed time is 12.205891 seconds.

%9,60 kB (9 840 byte)

%Time to evaluate one timestep:Elapsed time is 0.051221 seconds.

% Elapsed time is 5.163580 seconds.

% Elapsed time is 0.076503 seconds.

%11,3 kB (11 593 byte)

%% 4 bodies

NFrames=4;

%Create the function giving the angular accelerations of the system

tic

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity )

toc

%test func file

tic

ddth=func(0,Init);

toc

%Without simplify

%Elapsed time is 11.057459 seconds.

%Size: 446 kB (456 841 byte)

%Time to evaluate one timestep :Elapsed time is 2.359062 seconds.

%% 5 bodies

NFrames=5;

%Create the function giving the angular accelerations of the system

tic

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity )

toc

%Test func file

tic
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ddth=func(0,Init);

toc

%Elapsed time is 88.447121 seconds.

%SIze: 13,0 MB (13 684 736 byte)

%Time to evaluate: Elapsed time is 14.432317 seconds.

%% 6 bodies

NFrames=6;

%Create the function giving the angular accelerations of the system

tic

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity )

toc

%Test func file

tic

ddth=func(0,Init);

toc

%Elapsed time is 1597.289072 seconds.

%Size: 298 MB (313 408 093 byte)

%Time to evaluate one timestep: NA-Out of memory

C.2 Validating algorithm manually

C.2.1 Planar Pendulum

clc

clear all

%{

This sets up the equation for a 2D pendulum to compare with the symbolic

solver

%}

% syms L1 m1 j1 F1 dTh1 g Th1(t)

% E1=EMatrixMaker([0,0,0],2,[L1,0,0],Th1(t));

%OMG1=simplify(expand(InvE(E1)*diff(E1,t)));

% OMG1=[ 0, 0, dTh1, 0;

% 0, 0, 0, 0;

% -dTh1, 0, 0, -L1*dTh1;

% 0, 0, 0, 0];

%EInert=E1*OMG1(1:4,4)
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% EInert=[-L1*dTh1*sin(Th1(t))

% 0

% -L1*dTh1*cos(Th1(t))];

%

syms L1 m1 J11 J15 J19 F1 g dTh1 Th1 real

B=[ -L1*sin(Th1);

0;

-L1*cos(Th1);

0;

1;

0];

dB=[-L1*cos(Th1)*dTh1;

0;

L1*sin(Th1)*dTh1;

0;

0;

0];

M=[ m1 0 0 0 0 0

0 m1 0 0 0 0

0 0 m1 0 0 0

0 0 0 J11 0 0

0 0 0 0 J15 0

0 0 0 0 0 J19];

D =[ 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, dTh1

0, 0, 0, 0, 0, 0

0, 0, 0, -dTh1, 0, 0];

F=[0;0;-g*m1;0;F1;0];

dthV=dTh1;

syms L1 m1 j1 F1 g dTh1 Th1 real

MStar=B’*M*B;

FStar = B’*F;

NStar = B’*(M*dB+D*M*B);
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Mstar=simplify(MStar);

NStar=simplify(NStar);

InvMStar= InvMStarMatrixMaker(1,MStar);

ddTh=simplify(expand(InvMStar*(FStar-NStar*dthV)));

%% Algoritm

PreVList = [ 0, 0 ;

0, 0 ;

0, 0 ];

PostVList= [ L1

0

0 ];

Axis=2;

NFrames=1;

IsMassLess=0;

IsPerfBalance=1;

filename=’2DPendulum’;

ddThAlg=MFMSymEquMaker( PreVList,Axis,PostVList,NFrames,IsMassLess,...

IsPerfBalance,filename );

diff=simplify(expand(ddTh-ddThAlg));

%{

Result from comand window

diff =

0

%}

C.2.2 Constructed Pendulum

clc

clear all

%Defining the symbols to be used

syms Th1 Th2 dTh1 dTh2 J11 J12 J13 J14 J15 J16 J17 J18 J19 J21 ...

J25 J29 m1 m2 g L11 L12 L13 l1 l3 L21 F1 F2 real

FileName=’PendulumOnAStickManualEqu’;

%The temporary angular velocities in a vector

dthV=[dTh1;dTh2];

%Make the rotational matrises
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R1=RotMaker(3,Th1);

R21=RotMaker(2,Th2);

%Make the time derivatives of the rotational matrices

dR1=dRotMaker(3,Th1,dTh1);

dR21=dRotMaker(2,Th2,dTh2);

%Defining the angular velocity matrises

omg1M=[ 0,-dTh1,0;

dTh1, 0,0;

0, 0,0];

omg21M=[ 0,0,dTh2;

0,0, 0;

-dTh2,0, 0];

omg2M=simplify(expand(R21’*omg1M*R21+omg21M));

%The angular velocity vectors

omg1=[0;0;dTh1];

omg2=UnSqewThis(omg2M);

%Defining the position vectors

r1=[L11;L12;L13];%Position of centre of mass 1 from inertial

rp1=[l1;-L12;l3];%Position of the Rotational point between arm and column

r2p=[L21;0;0];%Position of centre of mass 2 from the joint

r2=r1+rp1+R21*r2p;

%% D matrix

D=sym(zeros(12));

D(4:6,4:6)=omg1M;

D(10:12,10:12)=omg2M;

%% Mass matrix

M= sym(zeros(12));

%Mass of the first body

M(1:3,1:3) =[m1, 0, 0;

0, m1, 0;

0, 0, m1];

%Mass of the second body

M(4:6,4:6)=[J11,J12,J13;J14,J15,J16;J17,J18,J19];

%Massmoment of inertia of the first body

M(7:9,7:9)=[m2, 0, 0;

0, m2, 0;

0, 0, m2];

%Massmoment of inertia of the second body

M(10:12,10:12)=[J21,0,0;0,J25,0;0,0,J29];
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%%

%Construct the B matrix

B=sym(zeros(12,2));

B(1:3,1)=-R1*SqewThis(r1)*sym([0;0;1]);

B(4:6,1)=sym([0;0;1]);

B(7:9,1)=-R1*SqewThis(r2)*sym([0;0;1]);

B(7:9,2)=-R1*R21*SqewThis(r2p)*sym([0;1;0]);

B(10:12,1)=R21’*sym([0;0;1]);

B(10:12,2)=sym([0;1;0]);

%% Time derivative of B

dB=sym(zeros(12,2));

dB(1:3,1)=-dR1*SqewThis(r1)*sym([0;0;1]);

dB(7:9,1)=-dR1*SqewThis(r2)*sym([0;0;1])-...

R1*SqewThis(dR21*r2p)*sym([0;0;1]);

dB(7:9,2)=-dR1*R21*SqewThis(r2p)*sym([0;1;0])-...

R1*dR21*SqewThis(r2p)*sym([0;1;0]);

dB(10:12,1)=dR21’*sym([0;0;1]);

%% F vector

F=sym(zeros(12,1));

F(3)=-m1*g;

F(6)=F1;

F(9)=-m2*g;

F(11)=F2;

%% Equation of Motion

MStar=B’*M*B;

FStar = B’*F;

NStar = B’*(M*dB+D*M*B);

Mstar=simplify(MStar);

NStar=simplify(NStar);

InvMStar= InvMStarMatrixMaker(2,MStar );

ddTh=simplify(expand(InvMStar*(FStar-NStar*dthV)));

%Create the function, must add symbolic comand manually

%{

syms Th2 dTh1 dTh2 J11 J12 J13 J14 J15 J16 J17 J18 J19 J21 ...

J25 J29 m1 m2 g L11 L12 L13 l1 l3 L21 F1 F2 real

%}

SaveSymEndEqu( ddTh,2,FileName );

%% Evaluate with algorithm

syms L11 L12 L13 L21 l1 l3

%Total number of frames in the system

NFrames=2;
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filename=’PendulumOnAStickByCode’;

%Vectors from last centre of mass to the point of rotation

PreVList = [ 0, l1, 0 ;

0, -L12, 0 ;

0, l3, 0 ];

%Axis of rotation for the frames

Axis = [ 3, 2];

%Vector pointing from last point of rotation to next centre of mass

PostVList= [ L11, L21

L12, 0

L13, 0 ];

%Only needed if you want a end equation with only symbols

IsMassLess=logical([0,0]);

IsPerfBalance=logical([0,1]);

%-------------------------------------------------------

%Create the function, must add symbolic comand manually

%{

syms Th2 dTh1 dTh2 J11 J12 J13 J14 J15 J16 J17 J18 J19 J21 ...

J25 J29 m1 m2 g L11 L12 L13 l1 l3 L21 F1 F2 real

%}

MFMSymEquMaker( PreVList,Axis,PostVList,NFrames,IsMassLess,...

IsPerfBalance,filename )

%% Comparison section

Diff=simplify(expand(PendulumOnAStickManualEqu-PendulumOnAStickByCode));

%Result from command window:

%{

Diff =

0

0

0

0

%}
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Manual equation

function [dY]=PendulumOnAStickManualEqu

syms Th2 dTh1 dTh2 J11 J12 J13 J14 J15 J16 J17 J18 J19 J21 ...

J25 J29 m1 m2 g L11 L12 L13 l1 l3 L21 F1 F2 real

dY=[dTh1;

(F1 - J21*dTh1*dTh2*sin(2*Th2) + J29*dTh1*dTh2*sin(2*Th2) +...

L21^2*dTh1*dTh2*m2*sin(2*Th2) + 2*L21*dTh1*dTh2*l1*m2*sin(Th2) + ...

2*L11*L21*dTh1*dTh2*m2*sin(Th2))/(J19 + J21 + L11^2*m1 + L11^2*m2 +...

L12^2*m1 + l1^2*m2 - J21*cos(Th2)^2 + J29*cos(Th2)^2 + 2*L11*l1*m2 + ...

L21^2*m2*cos(Th2)^2 + 2*L11*L21*m2*cos(Th2) + 2*L21*l1*m2*cos(Th2));

dTh2;

-((J29*dTh1^2*sin(2*Th2))/2 - (J21*dTh1^2*sin(2*Th2))/2 - F2 - ...

L21*g*m2*cos(Th2) + (L21^2*dTh1^2*m2*sin(2*Th2))/2 + ...

L21*dTh1^2*l1*m2*sin(Th2) + L11*L21*dTh1^2*m2*sin(Th2))/(J25 + L21^2*m2)];

end

Equation By Algorithm

function [dY]=PendulumOnAStickByCode

syms Th2 dTh1 dTh2 J11 J12 J13 J14 J15 J16 J17 J18 J19 J21 ...

J25 J29 m1 m2 g L11 L12 L13 l1 l3 L21 F1 F2 real

dY=[dTh1;

(F1 - J21*dTh1*dTh2*sin(2*Th2) + J29*dTh1*dTh2*sin(2*Th2) +...

L21^2*dTh1*dTh2*m2*sin(2*Th2) + 2*L21*dTh1*dTh2*l1*m2*sin(Th2) +...

2*L11*L21*dTh1*dTh2*m2*sin(Th2))/(J19 + J21 + L11^2*m1 + L11^2*m2 + ...

L12^2*m1 + l1^2*m2 - J21*cos(Th2)^2 + J29*cos(Th2)^2 + 2*L11*l1*m2 + ...

L21^2*m2*cos(Th2)^2 + 2*L11*L21*m2*cos(Th2) + 2*L21*l1*m2*cos(Th2));

dTh2;

-(J29*dTh1^2*sin(2*Th2) - J21*dTh1^2*sin(2*Th2) - 2*F2 -...

2*L21*g*m2*cos(Th2) + L21^2*dTh1^2*m2*sin(2*Th2) + ...

2*L21*dTh1^2*l1*m2*sin(Th2) + ...

2*L11*L21*dTh1^2*m2*sin(Th2))/(2*m2*L21^2 + 2*J25)];
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Figure 52: Double pendulum attached at the end of a rod.

end

C.2.3 Rotated Double Pendulum

%Solving the system for a dpuble pendulum rotated around the 3 inertial

%axis. Comparing equations solved manually and by algorithm.

clc

clear all

%Defining symbols

syms L1 L2 L3 dTh1 dTh2 dTh3 m1 m2 m3 J11 J15 J19 J21 J25 J29 J31 J35...

J39 g r1 rp1 r2p r32 R1 R1T R21 R21T R32 R32T dR1 dR21 dR32 omg1...

omg21 omg32 Th1 Th2 Th3 F1 F2 F3 real

NFrames=3;

FileName=’DoublePendulumOnAStickByHand’;

%Vectors

rr1=[L1,0,0]’;

rrp1=[L1,0,0]’;

rr2p=[L2,0,0]’;

rr32=[L3,0,0]’;

%Rotation matrices
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RR1=RotMaker(3,Th1);

RR21=RotMaker(2,Th2);

RR2=RR1*RR21;

RR32=RotMaker(2,Th3);

%Time derivative of the rotational matrices

dRR1=dRotMaker(3,Th1,dTh1);

dRR21=dRotMaker(2,Th2,dTh2);

dRR32=dRotMaker(2,Th3,dTh3);

%% Mass matrix:

%Creating the mass matrix

MH=sym(eye(3*6));

I=sym(eye(3));

MH(1:3,1:3)=I*m1;

MH(7:9,7:9)=I*m2;

MH(13:15,13:15)=I*m3;

J1V=[J11;J15;J19];

J2V=[J21;J25;J29];

J3V=[J31;J35;J39];

MH(4:6,4:6)=diag(J1V,0);

MH(10:12,10:12)=diag(J2V,0);

MH(16:18,16:18)=diag(J3V,0);

E1=[R1,0;0,1]*[1,r1;0,1];

E21=[1,rp1;0,1]*[R21,0;0,1]*[1,r2p;0,1];

E32=[1,0;0,1]*[R32,0;0,1]*[1,r32;0,1];

%% B matrix

%Omg1=[R1T,-R1T*r1;0,1]*[dR1,dR1*r1;0,0]

Omg1=[omg1,omg1*r1;0,0];

%Omg2=[R21T,-R21T*(rp1+R21*r2p);0,1]*Omg1*E21+...

% [R21T,-R21T*(rp1+R21*r2p);0,1]*[dR21,dR21*r2p;0,0]

Omg2=[omg21 + R21*R21T*omg1, R21T*omg1*(rp1 + R21*r2p)...

+ R21T*dR21*r2p + R21T*omg1*r1;0,0];

Omg3=[R32T,-R32T*(R32*r32);0,1]*Omg2*E32+...

[R32T,-R32T*(R32*r32);0,1]*[dR32,dR32*r32;0,0];

BH=sym(zeros(18,3));

BH(1:3,1)=-RR1*SqewThis(rr1)*[0,0,1]’;

BH(4:6,1)=[0,0,1]’;
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BH(7:9,1)=-RR1*SqewThis(rrp1+RR21*rr2p)*[0,0,1]’-RR1*SqewThis(rr1)*[0,0,1]’;

BH(7:9,2)=-RR2*SqewThis(rr2p)*[0,1,0]’;

BH(10:12,1)=RR21’*[0,0,1]’;

BH(10:12,2)=[0,1,0]’;

BH(13:15,1)=-RR1*(SqewThis(rrp1+RR21*rr2p)*[0,0,1]’...

+SqewThis(rr1)*[0,0,1]’)+RR1*SqewThis([0,0,1])*RR21*RR32*rr32;

BH(13:15,2)=-RR2*SqewThis(rr2p)*[0,1,0]’+...

RR1*RR21*SqewThis([0,1,0])*RR32*rr32;

BH(13:15,3)=-RR1*RR21*RR32*SqewThis(rr32)*[0,1,0]’;

BH(16:18,1)=RR32’*RR21’*[0,0,1]’;

BH(16:18,2)=RR32’*[0,1,0]’;

BH(16:18,3)=[0,1,0]’;

BH=simplify(expand(BH));

%% Time derivative of B

dBH=sym(zeros(18,3));

dBH(1:3,1)=-dRR1*SqewThis(rr1)*[0,0,1]’;

dBH(7:9,1)=-dRR1*SqewThis(rrp1+RR21*rr2p)*[0,0,1]’-...

RR1*SqewThis(dRR21*rr2p)*[0,0,1]’-dRR1*SqewThis(rr1)*[0,0,1]’;

dBH(7:9,2)=-dRR1*RR21*SqewThis(rr2p)*[0,1,0]’-...

RR1*dRR21*SqewThis(rr2p)*[0,1,0]’;

dBH(10:12,1)=dRR21’*[0,0,1]’;

dBH(13:15,1)=-dRR1*(SqewThis(rrp1+RR21*rr2p)*[0,0,1]’+...

SqewThis(rr1)*[0,0,1]’)-RR1*SqewThis(dRR21*rr2p)*[0,0,1]’+...

dRR1*SqewThis([0,0,1])*RR21*RR32*rr32+...

RR1*SqewThis([0,0,1])*dRR21*RR32*rr32+...

RR1*SqewThis([0,0,1])*RR21*dRR32*rr32;

dBH(13:15,2)=-dRR1*RR21*SqewThis(rr2p)*[0,1,0]’-...

RR1*dRR21*SqewThis(rr2p)*[0,1,0]’+...

dRR1*RR21*SqewThis([0,1,0])*RR32*rr32+...

RR1*dRR21*SqewThis([0,1,0])*RR32*rr32+...

RR1*RR21*SqewThis([0,1,0])*dRR32*rr32;

dBH(13:15,3)=-dRR1*RR21*RR32*SqewThis(rr32)*[0,1,0]’-...

RR1*dRR21*RR32*SqewThis(rr32)*[0,1,0]’-...

RR1*RR21*dRR32*SqewThis(rr32)*[0,1,0]’;

dBH(16:18,1)=dRR32’*RR21’*[0,0,1]’+RR32’*dRR21’*[0,0,1]’;

dBH(16:18,2)=dRR32’*[0,1,0]’;

dBH=simplify(expand(dBH));

%%

omg1=simplify(RR1’*dRR1);

omg2=simplify(RR21’*omg1*RR21+RR21’*dRR21);

omg3=simplify(RR32’*omg2*RR32+RR32’*dRR32);

106



%D matrix

DH=sym(zeros(18));

DH(4:6,4:6)=omg1;

DH(10:12,10:12)=omg2;

DH(16:18,16:18)=omg3;

%F vector

FH=sym(zeros(3*6,1));

FH(3,1)=-m1*g;

FH(9,1)=-m2*g;

FH(15,1)=-m3*g;

FH(5,1)=-F2+F3;

FH(6,1)=F1;

FH(11,1)=F2-F3;

FH(17,1)=F3;

%%

MstarH=BH’*MH*BH;

NstarH=BH’*(MH*dBH+DH*MH*BH);

FstarH=BH’*FH;

%%

for i=1:sum(length(MstarH))

MstarH(i)=simplify(MstarH(i));

NstarH(i)=simplify(NstarH(i));

end

InvMstarH=InvMStarMatrixMaker(NFrames,MstarH);

parfor i=1:9

simplify(InvMstarH(i));

end

%%

dThVector=[dTh1;dTh2;dTh3];

EndEq=InvMstarH*(FstarH-NstarH*dThVector);

for i=1:3

EndEq(i)= simplify(EndEq(i));

end

%%

%% Algorithm

%Function creator section:
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%Total number of frames in the system

NFrames=3;

filename=’DobblePendulumOnAStickByCode’;

%Vectors from last centre of mass to the point of rotation

PreVList = [ 0, L1, 0, 0;

0, 0, 0, 0;

0, 0, 0, 0];

%Axis of rotation for the frames

Axis = [ 3, 2, 2];

%Vector pointing from last point of rotation to next centre of mass

PostVList= [ L1, L2, L3

0, 0, 0

0, 0, 0];

IsMassLess=logical([0,0,0]);

IsPerfBalance=logical([1,1,1]);

%-------------------------------------------------------

ddThAlg=MFMSymEquMaker( PreVList,Axis,PostVList,NFrames,IsMassLess,...

IsPerfBalance,filename );

%% Comparing

Diff=simplify(expand(EndEq-ddThAlg));

% Output from command window.

Diff =

0

0

0
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C.3 Optimization Function

C.3.1 Main Optimization

This script optimizes the friction functions stated in the funcDiff.mat using
lsqnonlin and plots the results.

Contents

� Equation of Motion
� Measured energy calculation
� Optimization section
� Integrating section
� Plot results
� Calculate error

clc

clear all

%Read measurments from file

[NumM,~,~]=xlsread(’MainBehToBUsed.xls’);

%Set correct 0 point and change to radians, as the measuring tool was

%fitted 180deg wrong.

NumM(:,2)=(NumM(:,2)+7+180)*2*pi/360;

%Change RPM to rad/s

NumM(:,1)=NumM(:,1)*2*pi/60;

%Set solution to a matrix to facilitate energy calculation

MeSolM=[zeros(1,size(NumM,1));NumM(:,1)’;NumM(:,2)’;zeros(1,size(NumM,1))];

Equation of Motion

% How many basises there is

NFrames=2;

%Gravity constant in m/s^2

g=9.81;

% Mass of the bodies in kg

Mass=[3.3645051,4.6811];

%Mass moment of inertia of the bodies in kg*m^2
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J1=[0.0832128030 0.00767990280 -0.00353398330

0.0076799028 0.11564199000 0.00059466628

-0.0035339833 0.00059466628 0.06172657200 ];

J2=[4.1857*10^(-3) 0 0

0 1.9213*10^(-2) 0

0 0 1.97783*10^(-2)];

Jlist=[J1,J2];

%Vectors from last centre of mass to the point of rotation in meters

PreVList = [ 0, 0.13294558, 0

0, 1.9696113e-02, 0

0, -0.00897338, 0];

%Axis of rotation of the bodies

Axis = [ 3, 2 ];

%Vector pointing from last point of rotation to next centre of mass

%in meters

PostVList= [ 1.1705442e-01, 0.12675638

-1.9696113e-02, 0

3.0102662e-01, 0];

% Create the equation of motion and save it to a file called func.mat

MFMNumEquMaker( PreVList,Axis,PostVList,NFrames,Mass,Jlist,g )

Measured energy calculation

%Lowest point the centre of masses can reach in meters, for energy

%calculation

LP=[0.30102662, 0.16529686];

[ MeKinEn,MePotEn,MeEnergy] = EnergyFunc( MeSolM,NFrames,Jlist,Mass,g,LP);

Optimization section

%{

Constants found by the other optimalizations, and manually adjusted to

save time in the actual optimalization.
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%}

%Constants for the analysis with full force

% X1=[ 0.001523114066306, 0.001282456249998];

% X2=[ 0.001592442688858, 0.000394592000684];

%Constants for analysis for simplified force

X1=[ 0.000301026806606, 0.001303840754625, 0.000185026806606 ];

X2=[ 0.00023091557841332, 0.000309473598742528, 0.00156091557841332];

K=[X1,X2];

%Set options for lsqnonlin

optionslsq=optimoptions(’lsqnonlin’,’StepTolerance’,10e-8,...

’MaxIterations’,5000);

%Run the optimalization, constants must be positive.

X=lsqnonlin(@OptiMain,K,[0,0,0,0,0,0],[],optionslsq);

Integrating section

%Set out of bound values in measurments

SafeNumA=size(NumM,1);

SafeNumV=41;

%Initial Step size for the integration.

h= (2.5000e-04);

% Start and end time.

TimeSpan=[0,60];

%Set initial values

InitVal=[0,NumM(1,1),NumM(1,2),0,0,0];

acc=funcDiff(0,InitVal,K);

InitVal(1,5:6)=acc(5:6,1)’;

%Set options for ode45, define event function

options=odeset(’Events’,@MainEvent,’InitialStep’,h);

%Solve the equations of motion

[T45,SolM45,T45e,Y45e,~]=ode45(@funcDiff,TimeSpan,InitVal’,options,X);

%Calculate enery for each timestep

[ ApKinEn,ApPotEn,ApEnergy] = EnergyFunc( SolM45’,NFrames,Jlist,Mass,g,LP);

Plot results

figure(1)

plot(T45(),SolM45(:,2),NumM(1:SafeNumV,3),NumM(1:SafeNumV,1),’.’)

title(’Measured and approximated Angular velocity 1’)

ylabel(’Angular velocity(rad/s)’)
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xlabel(’Time(s)’)

legend(’Approximated’,’Measured’)

figure(2)

plot(T45,SolM45(:,3),NumM(:,3),NumM(:,2),’.’)

title(’Measured and approximated Angle 2’)

ylabel(’Anlge(rad)’)

xlabel(’Time(s)’)

legend(’Approximated’,’Measured’)

figure(3)

plot(NumM(:,3),MeEnergy,T45,ApEnergy)

title(’Measured and approximated energy’)

ylabel(’Energy(J)’)

xlabel(’Time(s)’)

legend(’Measured’,’Approximated’)

ErrT=T45e(2:SafeNumA)-NumM(2:end,3);

AvgTerr=sum(abs(ErrT))/numel(ErrT);

figure(4)

plot(ErrT)

title(’Time Error’)

ylabel(’Error(s)’)

legend(’Time Error’)

xlabel(’Measurment nr’)

ErrAngV=Y45e(2:SafeNumV,2)-NumM(2:SafeNumV,1);

AvgAngVErr=sum(abs(ErrAngV))/numel(ErrAngV);

figure(5)

plot(abs(ErrAngV))

title(’Angular Velocity 1 Error’)

ylabel(’Error(rad/s)’)

legend(’Angular Velocity Error’)

xlabel(’Measurment nr’)

ErrAng=Y45e(2:SafeNumA,3)-NumM(2:end,2);

ErrAngErr=sum(abs(ErrAng))/numel(ErrAng);

figure(6)

plot(abs(ErrAng))

title(’Angle 2 Error’)

ylabel(’Error(rad)’)
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legend(’Angle Error’)

xlabel(’Measurment nr’)

%-------------------------------------------------------------------------

C.3.2 OptiMain

function [Error]= OptiMain(K)

%This function takes in the friction konstants and returns the error.

%Read measured values for error calculation

[NumM,~,~]=xlsread(’MainBehToBUsed.xls’);

NumM(:,2)=(NumM(:,2)+7+180)*2*pi/360;

NumM(:,1)=NumM(:,1)*2*pi/60;

%Out of bounds values

SafeNumA=size(NumM,1);

SafeNumV=42;%This number is ’the Answer’ by coincidence, not design.

%Set a known value for End, used as a sequrity chech.

End=[9001,9001];

%Pre allocate error matrix

Error=zeros(SafeNumA,5);

%Initial Step size for the integration.

h= (2.5000e-04);

% Start and end time.

TimeSpan=[0,60];

%Wheight for error norm

Weight=10;

%Set initial values

InitVal=[0,NumM(1,1),NumM(1,2),0,0,0];

acc=funcDiff(0,InitVal,K);

InitVal(1,5:6)=acc(5:6,1)’;

%Set options for ode45, set event function

options=odeset(’Events’,@MainEvent,’InitialStep’,h);

[~,~,T45e,Y45e,~]=ode45(@funcDiff,TimeSpan,InitVal’,options,K);

Calculate error

%Find ’end point’, where the pendulum should have stopped.

for i=1:numel(T45e)

if Y45e(i,3)<pi/2+0.01 && Y45e(i,3)>pi/2-0.01
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End=[T45e(i),Y45e(i,3)];

break

end

end

%If the pendulum did not stop within the time span given to ode45

if End(1)==9001

End=[T45e(end),Y45e(end,3)];

end

%Calculate error

Error(1:SafeNumV,1)=(Y45e(1:SafeNumV,2)-NumM(1:SafeNumV,1));

Error(1:SafeNumV,2)=(T45e(1:SafeNumV,1)-NumM(1:SafeNumV,3));

Error(1:SafeNumA,3)=(Y45e(1:SafeNumA,3)-NumM(1:SafeNumA,2))*Weight;

Error(1:SafeNumA,4)=T45e(1:SafeNumA,1)-NumM(1:SafeNumA,3);

Error(1,5)=(End(1)-NumM(122,3))*Weight;

end

C.3.3 MainEvent

function [ value,isterminal,direction ] = MainEvent(t,Y,K )

%This function takes the result from ode45 and returns the angular velocity of the arm.

value=[Y(4),0];

isterminal=0;

direction=0;

end

C.4 Algorithm for the equation of motion

C.4.1 MFMNumEquMaker

function MFMNumEquMaker(PreVList,Axis,PostVList,NFrames,Mass,Jlist,Gravity)

%{

Moving Frame Numeric Equation Maker creates the equation of motion for a

system of linked rigid bodies that is ready to be used in a numerical

integrater. The equation of motion is saved to a file in the folder

TempFiles with the name func.

%}

%{
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Input:

PreVList - The list of vectors pointing to the next point of rotation

from the previous frame

Axis - The directions of the rotational axises for each frame

PostVList - The list of vectors pointing to the next frame from the

point of rotation

NFrames - The total number of frames

Mass - The mass of the bodies

Jlist - Matrix containing the mass moment of inertia of the bodies

Gravity - Gravity constant

%}

%Create the needed symbols

[ SymThV,SymdThV,MomList,~,~] = SymVMaker( NFrames );

%-------------------------------------------------------------------------

% D matrix, B matrix and the time derivative of B

[ D, B, dB ]=D_B_dB_Maker(NFrames, SymThV,SymdThV,Axis,PreVList,PostVList);

%-------------------------------------------------------------------------

%Create the F vector

F = Fmaker( Axis,NFrames,MomList,Mass,Gravity );

%Save the velocities as a function, it is needed for energy analysis.

Velocities=B*SymdThV;

VelocitySaver( Velocities, NFrames );

%-------------------------------------------------------------------------

%Save the functions giving the positions of the centre of mass. Needed for

%energy analysis

PosVectorFunctionMaker( NFrames,PreVList,PostVList,Axis )

%-------------------------------------------------------------------------

%Create the mass matrix

MassMatrix = NumMassMatrixMaker( NFrames,Mass,Jlist );

%-------------------------------------------------------------------------

%Evaluate the F*, M* and N* matrices

FStar = B’*F;
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MStar = B’*MassMatrix*B;

NStar = B’*(MassMatrix*dB+D*MassMatrix*B);

%-------------------------------------------------------------------------

%Simplify M* and N*. And show a progress message

parfor i=1:numel(MStar)

disp(strcat(’Simplifying M and N number’,num2str(i)))

MStar(i)=simplify(MStar(i));

NStar(i)=simplify(NStar(i));

end

%Create and simplify the inverse of M*

InvMStar=InvMStarMatrixMaker(NFrames,MStar );

for i=1:numel(InvMStar)

disp(strcat(’Simplifying M^(-1) number’,num2str(i)))

simplify(InvMStar(i));

end

%-------------------------------------------------------------------------

%Evaluate the equation of motion

ddTh=InvMStar*(FStar-NStar*SymdThV);

%-------------------------------------------------------------------------

%Simplify the equation of motion, if the number of frames is below 4.

if NFrames<5

for i=1:numel(ddTh)

disp(strcat(’Simplifying EndEqu number’,num2str(i)))

ddTh(i)=simplify((ddTh(i)));

end

end

%-------------------------------------------------------------------------

%Saving the end equation to a .m file with the name stated by filename.

disp(’Saving EndEqu’)

SaveNumEndEqu( ddTh,NFrames );

%-------------------------------------------------------------------------

end
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C.4.2 SymVMaker

function [ SymThV,SymdThV,MomList,MassList,Gravity ] = SymVMaker( NFrames )

%SymVMaker

% This function creates the neccesary symbols that the functions

%MFMNumEquMaker and MFMSymEquMaker needs to construct the equations of

%motion

%Gravity symbol

syms g

Gravity=g;

%Pre allocate

SymThV = sym(zeros(NFrames,1));

SymdThV = SymThV;

MomList=SymThV;

MassList=SymThV;

%Create the angle, angular velocity, mass and moment symbols.

for i=1:NFrames

% Theta

Theta = strcat(’ Th’,num2str(i));

String =strcat(’syms’,Theta,’ real’);

eval(String)

SymThV(i,1) = eval(Theta);

% --------------------------------------------------------------------

% dTheta

dTheta = strcat(’ dTh’,num2str(i));

String =strcat(’syms’,dTheta,’ real’);

eval(String)

SymdThV(i,1) = eval(dTheta);

% --------------------------------------------------------------------
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% Momets

F=strcat(’ F’,num2str(i));

String=strcat(’syms’,F,’ real’);

eval(String)

MomList(i)=eval(F);

%---------------------------------------------------------------------

% Mass

M=strcat(’ m’,num2str(i));

String=strcat(’syms’,M,’ real’);

eval(String)

MassList(i)=eval(M);

end

end

C.4.3 D-B-dB-Maker

Contents

� Pre allocating
� Angular parts of B
� dB and Linear parts of B
� J loop
� The D matrix
� Simplify

function [D, B, dB] =D_B_dB_Maker(NFrames,SymThV,SymdThV,Axis,PreVList,PostVList )

%{

D_B_dB_Maker

This function takes the physical definition of the multibody system as

input and constructs the D, B and dB matrices.

Input:

NFrames : Number of bodies

SymThV : Vector containing the Symbols of the angles in the system
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SymdThV : Vector containing the symbols for the angular velocities

Axis : Vector containing the rotational axis for the rotations

PreVlist : Matrix with the vectors pointing from the last

centre of mas to the next point of rotation

PostVList: Matrix containing the vectors from the last point of

rotation to the next centre of mass

Output:

D : Matrix containing the angular velocity matrises every second 3X3

position alng the diagonal. Starting with [4:6,4:6]

B : Matrix containing the factorized velocities of the system

dB: Time dreivative of the B matrix.

%}

Pre allocating

B=sym(zeros(6*NFrames,NFrames));

dB=B;

D=sym(zeros(6*NFrames));

OmgVList=sym(zeros(3,NFrames));

LocalOmegaVList=OmgVList;

R=sym(zeros(3,3*NFrames));

OmegaMatrix=R;

dAbsR=R;

dR=R;

RListfB=sym(zeros(3,NFrames*3));

dRListfB=RListfB;

Angular parts of B

SymOne=sym(1);

for i=1:NFrames

%Counter for the different rotation matrix lists

Rc=-2+3*i:3*i;

%-------------------------------------------------------------------------

R(1:3,Rc) =RotMaker(Axis(i),SymThV(i));

[dR(1:3,Rc)]=dRotMaker( Axis(i), SymThV(i) , SymdThV(i) );

%-------------------------------------------------------------------------

%Ready a list of the correct local omegas for both the B matrix and the D
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%Insert the moments into the Force vector

switch Axis(i)

case{1}

OmgVList(1,i)=SymOne;

LocalOmegaVList(1,i)=SymdThV(i);

case{2}

OmgVList(2,i)=SymOne;

LocalOmegaVList(2,i)=SymdThV(i);

case{3}

OmgVList(3,i)=SymOne;

LocalOmegaVList(3,i)=SymdThV(i);

end

%-------------------------------------------------------------------------

%Calculate the omegas and put them into the B matrix

OmegaMatrix(1:3,Rc)=SqewThis(OmgVList(1:3,i));

%Vertical B counter

VBc=-2+i*6:6*i;

%Insert the last local omega vector

B(VBc,i)=OmgVList(1:3,i);

for j=1:i-1

%Pull out the omega vector above, update and insert

B(VBc,j)=R(1:3,Rc)’*B(VBc-6,j);

end

end

%-------------------------------------------------------------------------

%Simplify the B matrix before further use

B=simplify(expand(B));

dB and Linear parts of B

%Absolute rotation matrix, updated for each frame

AbsR=R(1:3,1:3);
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%Time derivative of the absolute rotation matrix, updated for each frame

dAbsR(1:3,1:3)=dR(1:3,1:3);

%-------------------------------------------------------------------------

%First linear input to the B matrix, omegatilda multiplied with the post

%position vector and given in the inertial frame by the absolute rotation

B(1:3,1)=AbsR*OmegaMatrix(1:3,1:3)*PostVList(1:3,1);

%Time derivative of the first input. Note that omega does not hold theta

%dot, and only the rotation matrix is a function of time

dB(1:3,1)=dAbsR(1:3,1:3)*OmegaMatrix(1:3,1:3)*PostVList(1:3,1);

%-------------------------------------------------------------------------

%First update of the rotation matrises and the time derivative of them

%Used to calculate the linear velocities

RListfB(1:3,1:3)=R(1:3,1:3)*OmegaMatrix(1:3,1:3);

dRListfB(1:3,1:3)=dR(1:3,1:3)*OmegaMatrix(1:3,1:3);

%-------------------------------------------------------------------------

for i=2:NFrames

Ric=i*3-2:i*3; %Counter dependent on i for the rotation matrix lists below

%Update the time derivative of the absolute rotation matrix for the alpha

%frame

dAbsR(1:3,Ric)=dAbsR(1:3,Ric-3)*R(1:3,Ric) + AbsR*dR(1:3,Ric);

%Update the absolute rotation matrix for alpha+1 frame

AbsR = AbsR*R(1:3,Ric);

%-------------------------------------------------------------------------

LBc=i*6-5:6*i-3;%Counter for the linear part of B and dB

ABc=-2+i*6:6*i; %Counter for the angular part of B and dB

%B and dB section

%The last terms of the linear velocities calculated using the local omegas

B(LBc,i)=AbsR*OmegaMatrix(1:3,Ric)*PostVList(1:3,i);

%The last terms of the time derivative of the linear parts of the B matrix

dB(LBc,i)=dAbsR(1:3,Ric)*OmegaMatrix(1:3,Ric)*PostVList(1:3,i);

%-------------------------------------------------------------------------

J loop

for j=1:i-1

Rjc=j*3-2:j*3;%Counter dependent on j for the rotation matrix lists below
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%The linear velocities calculated and put into the B matrix

B(LBc,j)=B(LBc-6,j)+RListfB(1:3,Rjc)*...

(PreVList(1:3,i)+R(1:3,Ric)*PostVList(1:3,i));

%Time derivative of the angular part of the B matrix calculated.

dB(ABc,j)=dR(1:3,Ric)’*B(ABc-6,j) + R(1:3,Ric)’*dB(ABc-6,j);

%The derivative of the linear parts of the B matrix calculated and inserted

%into dB

dB(LBc,j)=dB(LBc-6,j)+dRListfB(1:3,Rjc)*(PreVList(1:3,i)+...

R(1:3,Ric)*PostVList(1:3,i))+...

RListfB(1:3,Rjc)*(dR(1:3,Ric)*PostVList(1:3,i));

%Update the rotational and time derivative of the rotatons for the linear

%parts of B and dB.

dRListfB(1:3,Rjc)=dRListfB(1:3,Rjc)*R(1:3,Ric)+...

RListfB(1:3,Rjc)*dR(1:3,Ric);

RListfB(1:3,Rjc) =RListfB(1:3,Rjc)*R(1:3,Ric);

end

%The i’th input calculated as a special case for each frame

RListfB(1:3,Ric)=AbsR*OmegaMatrix(1:3,Ric);

dRListfB(1:3,Ric)=dAbsR(1:3,Ric)*OmegaMatrix(1:3,Ric);

end

The D matrix

OMG=LocalOmegaVList(1:3,1);

D(4:6,4:6)=SqewThis(OMG);

for i=2:NFrames

%Counters

Rc=i*3-2:i*3;

Dc=i*6-2:i*6;

%-----------------------------------------

%Calculate the omega and insert into D

OMG=R(1:3,Rc)’*OMG+LocalOmegaVList(1:3,i);

D(Dc,Dc)=SqewThis(OMG);

end
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Simplify

%Simplify the matrises before output

D=simplify(expand(D));

B=simplify(expand(B));

dB=simplify(expand(dB));

end

C.4.4 Fmaker

function [ F ] = Fmaker( Axis,NFrames,MomList,MassList,g )

%Fmaker This function constructs the force vector for the MFMEquMaker

%functions

%Pre allocate

F=sym(zeros(NFrames*6,1));

FC=6;

%Set the forces and moments

for i=1:NFrames

F(i*6-3,1)=-g*MassList(i);

switch Axis(i)

case{1}

F(FC-2,1)=MomList(i);

case{2}

F(FC-1,1)=MomList(i);

case{3}

F(FC,1)=MomList(i);

end

FC=FC+6;

end

% Set the driving moments to the previous bodies, with oposite sign.

FC=6*NFrames-6;

for i=1:NFrames-1

F(FC-2:FC,1)= F(FC-2:FC,1)- F((FC+6)-2:(FC+6),1);

FC=FC-6;

end

end
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C.4.5 NumMassMatrixMaker

function [ MassMatrix ] = NumMassMatrixMaker( NFrames,Mass,Jlist )

%NumMassMatrixMaker takes the size of the system, the mass and mass moment

%of inertia for each body and setts them to the correct positions in the

%mass matrix.

%Pre allocating

MassMatrix=zeros(NFrames*6);

I=eye(3);

%Construct the mass matrix:

for i=1:NFrames

Mc=i*6-5:i*6-3;

Jc=i*6-2:i*6;

Jlistc=i*3-2:i*3;

MassMatrix(Mc,Mc)=I*Mass(i);

MassMatrix(Jc,Jc)=Jlist(1:3,Jlistc);

end

end

C.4.6 InvMStarMatrixMaker

function [ InvMStarMatrix ] = InvMStarMatrixMaker( TotalNumberOfFrames,MStarMatrix )

%{

%Note:

%MstarMatrix is used in a eval function, but matlab does not recognize this.

%}

%This function takes the Mstar matrix as imput and inverts it using a

%general matrix of the same size

% Preallocate

SymMatrix = sym(zeros(TotalNumberOfFrames));

%------------------------------------

% Create Generic symbolic matrix

Counter = 0;

for i = 1:TotalNumberOfFrames
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for j = 1:TotalNumberOfFrames

Counter = Counter+1;

Symbol = strcat(’ Symb’,num2str(Counter));

String =strcat(’syms’,Symbol);

eval(String)

SymMatrix(i,j) = eval(Symbol);

end

end

%------------------------------------------------

% Create determinant and inverse of generic symbol matrix

DetSym = det(SymMatrix);

InvSymMatrix = inv(SymMatrix);

%--------------------------------------------------

% Create inverted generic matrix multiplied with the determinant

InvSymMatrixDetMultiplied = InvSymMatrix*DetSym;

%-------------------------------------------------------------------

% Preallocate

StringCell = cell(TotalNumberOfFrames);

%----------------------------------------------

% Create command strings

parfor i = 1:TotalNumberOfFrames

for j = 1:TotalNumberOfFrames

String = char(SymMatrix(i,j));

String2 = strcat(’MStarMatrix(’,num2str(i),’,’,num2str(j),’)’);
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StringCell{i,j} = strcat(String,’=’,String2,’;’);

end

end

% ----------------------------------------------------------

% Evaluate command strings

for i = 1:TotalNumberOfFrames

for j = 1:TotalNumberOfFrames

eval(StringCell{i,j});

end

end

% ----------------------------------------------------------

% Evaluate Matrices

InvMStarDetMultiplied = eval(InvSymMatrixDetMultiplied);

DetSym = eval(DetSym);

%--------------------------------------

% Return to inverse form by dividing by previously multiplied determinant

DetSymDivided =1/DetSym;

InvMStarMatrix = InvMStarDetMultiplied*DetSymDivided;

%------------------------------------------------------------------------

end

C.4.7 SaveNumEndEqu

function SaveNumEndEqu( ddTh,NFrames )

%SaveSymEndEqu: This function takes the equation of motion created by

%MFMNumEquationMaker and saves it to a file witht the name func.mat

%The equations are saved on the form as a vector:

%{

dY=[dY1;ddY1,dY2;ddY2;...DYn;ddYn]

%}
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%Create header

Header=’function [dY]=func(t,Y)’ ;

%Create the file

fid=fopen(’C:\Users\Thorstein\Dropbox\Master\Master\Matlab\TempFiles\func.m’,’wt’);

%Save the header

fprintf(fid,’%s \n\n’,Header);

%Save the equations of motion

Yc=2;

fprintf(fid,’%s’,’dY=[’);

for i=1:NFrames

%Save the velocity from input

fprintf(fid,’%s;\n’,strcat(’Y(’,num2str(Yc),’)’));

Yc=Yc+2;

%Prepare acceleration string

ddThStr=char(ddTh(i));

InitdThc=2;

InitThc=1;

%Replace Symbols with input name

for j=1:NFrames

ddThStr=regexprep(ddThStr,strcat(’dTh’,num2str(j)),...

strcat(’Y(’,num2str(InitdThc),’)’));

InitdThc=InitdThc+2;

ddThStr=regexprep(ddThStr,strcat(’Th’,num2str(j)),...

strcat(’Y(’,num2str(InitThc),’)’));

InitThc=InitThc+2;

ddThStr=regexprep(ddThStr,strcat(’F’,num2str(j)),...

strcat(’Y(’,num2str(j+NFrames*2),’)’));

end

%Save acceleration string

fprintf(fid,’%s;\n’,ddThStr);

end

%Last moment input strings

for i=1:NFrames-1

fprintf(fid,’%s;\n’,strcat(’Y(’,num2str(i+NFrames*2),’)’));
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end

fprintf(fid,’%s’,strcat(’Y(’,num2str(NFrames*2+NFrames),’)’));

fprintf(fid,’%s\n\n’,’];’,’end’);

fclose(fid);

end

C.4.8 func.mat

This function is generated by the function MFMNumEquMaker. It takes the
position and velocity as input and returns the acceleration and velocity.

function [dY]=func(t,Y)

dY=[Y(2);

(3653754093327257295509212081790707549139831357440000*Y(5) + ...

1083994468089262244572772935841904524244046986608640*Y(2)*Y(4)*sin(Y(3))...

+ 663555911011310750262591741879663738638691490332672*Y(2)*Y(4)...

*cos(Y(3))*sin(Y(3)))/...

(1083994468089262244572772935841904524244046986608640*cos(Y(3))...

+ 331777955505655375131295870939831869319345745166336*cos(Y(3))^2 ...

+ 1483006911929803967409527443548496397633963394237775);

Y(4);

(202824096036516704239472512860160000*Y(6))...

/19151680620562571391122957362441979 ...

+ (1180609580315257410416131865265600000*...

cos(Y(3)))/19151680620562571391122957362441979 -...

(481390246815599385043059815033352555*Y(2)^2*sin(Y(3)))/...

306426889929001142257967317799071664 -...

(18417376263271965926643140617481979*Y(2)^2*...

cos(Y(3))*sin(Y(3)))/19151680620562571391122957362441979;

Y(5);

Y(6)];

end

C.5 General Symbolic functions

C.5.1 VelocitySaver

function VelocitySaver( Vel, NFrames )
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%VelocitySaver

%This function takes the equations that give the velocities

%of the bodies and saves them to a file called velocities.mat.

% The equations are saved such that the resulting function can take the

% entire solution matrix in one go, without the need for a for loop.

%Create the file and save the function header to it

fid=fopen(’C:\Users\Thorstein\Dropbox\Master\Master\Matlab\TempFiles\Velocities.m’,’wt’);

fprintf(fid,’%s\n\n’,’function [V]=Velocities(InP)’);

%Start the velocity vector

fprintf(fid,’%s’,’V=[’);

% Fix the equations so that they can be used as a function

for i=1:NFrames*6-1

%If a velocity is 0, make sure the position follows the size of the

%input matrix.

if Vel(i,1)==0

fprintf(fid,’%s;\n’,’zeros(1,size(InP,2))’);

else

%Set the equation to be evaluated and saved

VelStr=char(Vel(i,1));

Thc=1;

dThC=2;

%Switch the symbols with input numbers.

for k=1:NFrames

VelStr=regexprep(VelStr,strcat(’dTh’,num2str(k)),strcat(’InP(’,num2str(dThC),’,:)’));

VelStr=regexprep(VelStr,strcat(’Th’,num2str(k)),strcat(’InP(’,num2str(Thc),’,:)’));

Thc=Thc+2;

dThC=dThC+2;

end

%Save the expressions

VelStr=regexprep(VelStr,’*’,’.*’);

fprintf(fid,’%s;\n’,VelStr);

end

end

%The last input

Thc=1;
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dThC=2;

%If a velocity is 0, make sure the position follows the size of the

%input matrix.

if Vel(end,1)==0

fprintf(fid,’%s];\n\n’,’zeros(1,size(InP,2))’);

fprintf(fid,’%s’,’end’);

else

%Set the equation to be evaluated and saved

VelStr=char(Vel(end,1));

%Switch the symbols with input numbers.

for i=1:NFrames

VelStr=regexprep(VelStr,strcat(’dTh’,num2str(i)),strcat(’InP(’,num2str(dThC),’,:)’));

VelStr=regexprep(VelStr,strcat(’Th’,num2str(i)),strcat(’InP(’,num2str(Thc),’,:)’));

Thc=Thc+2;

dThC=dThC+2;

end

%Save the last expression

VelStr=regexprep(VelStr,’*’,’.*’);

fprintf(fid,’%s];\n\n’,VelStr);

fprintf(fid,’%s’,’end’);

end

end

C.5.2 PosVectorFunctionMaker

function PosVectorFunctionMaker( NFrames,PreVList,PostVList,Axis )

%{

PosVectorFunctionMaker writes two functions and saves them to the active

folder. The two functions take the angles as input and gives the position

of the centre of masses and the position of the points of rotations as

output respectively. They are to be used to plot the system.

Started by MFMNumEquMaker

%}

%{

Input:

NFrames: The total amount of frames/bodies in the system

PreVList: The list of position vectors pointing to the points of rotation

from the last frame
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PostVList: The list of position vectors pointing from the last point of

rotation to the next centre of mass

SymThV: The list containing the thetas as symbolic variables.

Axis: The axis of rotation for the frames

%}

%Create the theta symbols

[ SymThV,~,~,~,~] = SymVMaker( NFrames );

%-------------------------------------------------------------------------

%MAke the first connetction matrix

EMatrix=EMatrixMaker(PreVList(:,1),Axis(1),PostVList(:,1),SymThV(1));

%Pre allocate

CMPosVFunc=sym(zeros(3*NFrames,1));

RotPosFunc=sym(zeros(3*NFrames+6,1));

%-------------------------------------------------------------------------

%Set the first positions

CMPosVFunc(1:3,1)= EMatrix(1:3,4);

RotPosFunc(4:6,1)= PreVList(:,1);

RotPosFunc(7:9,1)= EMatrix(1:3,1:4)*[PreVList(:,2);1];

%-------------------------------------------------------------------------

%Kontroll vector, incase the Cm or points of rotaion does not move with

%respect to the X, Y and Z axis.

CMControl=zeros(NFrames*3,1);

RotControl=CMControl;

CMControl(1:3,1)=PreVList(:,1)+PostVList(:,1);

RotControl(1:3,1)=CMControl(1:3,1)+PreVList(:,2);

for i=2:NFrames

CMControl(i*3-2:i*3,1)=CMControl((i-1)*3-2:(i-1)*3,1)+PreVList(:,i)...

+PostVList(:,i);

RotControl(i*3-2:i*3,1)=CMControl(i*3-2:i*3,1)+PreVList(:,i+1);

end

%-------------------------------------------------------------------------

%Set the positions of the centre of mass and the points of rotation and the

%last end point for the last body
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for i=2:NFrames

EMatrix=EMatrix*EMatrixMaker(PreVList(:,i),Axis(i),PostVList(:,i),...

SymThV(i));

CMPosVFunc(i*3-2:i*3,1)= EMatrix(1:3,4);

RotPosFunc(i*3+4:i*3+6,1)=EMatrix(1:3,1:4)*[PreVList(:,i+1);1];

end

%-------------------------------------------------------------------------

%Simplify the equations

CMPosVFunc=simplify(CMPosVFunc);

RotPosFunc=simplify(RotPosFunc);

%-------------------------------------------------------------------------

%Prepare the header strings for the functions

HeaderCM=’function [CMPosVList]=CMPosFunction(Thetas)’;

HeaderRot=’function [RotPosVList]=RotPosFunction(Thetas)’;

%-------------------------------------------------------------------------

%Print the header,the variable names and prealocation comand for the

%functions

SavePath=’C:\Users\Thorstein\Dropbox\Master\Master\Matlab\TempFiles\’;

FileNaAmeCM=’CMPosFunction.m’;

FidNameCM=strcat(SavePath,FileNaAmeCM);

FileNaAmeRot=’RotPosFunction.m’;

FidNameRot=strcat(SavePath,FileNaAmeRot);

fidCM=fopen(FidNameCM,’wt’);

fidRot=fopen(FidNameRot,’wt’);

fprintf(fidCM,’%s \n\n’,HeaderCM);

fprintf(fidCM,’%s’,’CMPosVList=[’);

fprintf(fidRot,’%s \n\n’,HeaderRot);

fprintf(fidRot,’%s’,’RotPosVList=[’);

%-------------------------------------------------------------------------

%Print the function that gives the position of the centre of masses

for i=1:numel(CMPosVFunc)-1
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if CMPosVFunc(i)==0

fprintf(fidCM,’%s;\n’,’zeros(1,size(Thetas,2))’);

elseif CMPosVFunc(i)==CMControl(i)

fprintf(fidCM,’%s;\n’,strcat(’ones(1,size(Thetas,2))*’,...

char((CMPosVFunc(i)))));

else

CmPosString=char(CMPosVFunc(i));

InC=1; %Input counter

for j=1:NFrames

CmPosString=regexprep(CmPosString,strcat(’Th’,num2str(j)),...

strcat(’Thetas(’,num2str(InC),’,:)’));

InC=InC+2;

end

CmPosString=regexprep(CmPosString,’*’,’.*’);

fprintf(fidCM,’%s;\n’,CmPosString);

end

end

if CMPosVFunc(end)==0

fprintf(fidCM,’%s];\n\n end’,’zeros(1,size(Thetas,2))’);

elseif CMPosVFunc(end)==CMControl(end)

fprintf(fidCM,’%s];\n\n end’,strcat(’ones(1,size(Thetas,2))*’,...

char((CMPosVFunc(end)))));

else

InC=1;

CmPosString=char(CMPosVFunc(end));

for j=1:NFrames

CmPosString=regexprep(CmPosString,strcat(’Th’,num2str(j)),...

strcat(’Thetas(’,num2str(InC),’,:)’));

InC=InC+2;

end

CmPosString=regexprep(CmPosString,’*’,’.*’);

fprintf(fidCM,’%s];\n\n end’,CmPosString);

end

%-------------------------------------------------------------------------

%Print the function giving the points of rotations

fprintf(fidRot,’%s;\n’,’zeros(1,size(Thetas,2))’,...

’zeros(1,size(Thetas,2))’,’zeros(1,size(Thetas,2))’);

for i =4:6
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if RotPosFunc(i)==0

fprintf(fidRot,’%s;\n’,’zeros(1,size(Thetas,2))’);

else

fprintf(fidRot,’%s;\n’,strcat(’ones(1,size(Thetas,2))*’,...

char((RotPosFunc(i)))));

end

end

for i=7:numel(RotPosFunc)-1

if RotPosFunc(i)==0

fprintf(fidRot,’%s;\n’,’zeros(1,size(Thetas,2))’);

elseif RotPosFunc(i)==RotControl(i-6)

fprintf(fidRot,’%s;\n’,strcat(’ones(1,size(Thetas,2))*’,...

char((RotPosFunc(i)))));

else

InC=1;

RotString=char(RotPosFunc(i));

RotString=strcat(’ones(1,size(Thetas,2))*’,RotString);

for j=1:NFrames

RotString=regexprep(RotString,strcat(’Th’,num2str(j)),...

strcat(’Thetas(’,num2str(InC),’,:)’));

InC=InC+2;

end

RotString=regexprep(RotString,’*’,’.*’);

fprintf(fidRot,’%s;\n’,RotString);

end

end

if RotPosFunc(end)==0

fprintf(fidRot,’%s];\n\n end’,’zeros(1,size(Thetas,2))’);

elseif RotPosFunc(end)==RotControl(end)

fprintf(fidRot,’%s];\n\n end’,strcat(’ones(1,size(Thetas,2))*’...

,char((RotPosFunc(end)))));

else

RotString=char(RotPosFunc(end));

RotString=strcat(’ones(1,size(Thetas,2))*’,RotString);

InC=1;

for j=1:NFrames

RotString=regexprep(RotString,strcat(’Th’,num2str(j)),...

strcat(’Thetas(’,num2str(InC),’,:)’));
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InC=InC+2;

end

RotString=regexprep(RotString,’*’,’.*’);

fprintf(fidRot,’%s];\n\n end’,RotString);

end

%-------------------------------------------------------------------------

%Close the files

fclose(fidCM);

fclose(fidRot);

end

C.5.3 RotMaker

function [ RotMatrix ] = RotMaker( axis, ang )

%RotMaker:

%Uses the axi defined by axis and the symbol in ang to create the

%rotational matrix.

sym(ang);

if axis==1

RotMatrix=sym([1,0,0;0,cos(ang),-sin(ang);0,sin(ang),cos(ang)]);

elseif axis==2

RotMatrix=sym([cos(ang),0,sin(ang);0,1,0;-sin(ang),0,cos(ang)]);

elseif axis==3

RotMatrix=sym([cos(ang),-sin(ang),0;sin(ang),cos(ang),0;0,0,1;]);

else

error(’axis must be 1, 2 or 3’)

end

C.5.4 dRotMaker

function [ dRotMatrix ] = dRotMaker( axis, ang , dang )

%dRotMaker This function sets up the time derivative of the Rotation matrix

%denoted by axis and ang. It is used by B_dB_D_Maker, in the creation of dB

%Create the time derivative of the rotational matrix
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sym(ang);

sym(dang);

switch axis

case{1}

dRotMatrix=sym([0,0,0;0,-sin(ang),-cos(ang);0,cos(ang),-sin(ang)]*dang);

case{2}

dRotMatrix=sym([-sin(ang),0,cos(ang);0,0,0;-cos(ang),0,-sin(ang)]*dang);

case{3}

dRotMatrix=sym([-sin(ang),-cos(ang),0;cos(ang),-sin(ang),0;0,0,0;]*dang);

end

end

C.5.5 SqewThis

function [ SqewdMatrix ] = SqewThis( Vector )

%This function takes a vector and returns the hat map of the 3 first

%entries

SqewdMatrix=[0 ,-Vector(3), Vector(2);

Vector(3), 0 , -Vector(1);

-Vector(2),Vector(1) , 0 ];

end

C.5.6 UnSqewThis

function [ UnSqewedVector ] = UnSqewThis( SqewMatrix )

%V map of a 3X3 matrix

if size(SqewMatrix,1)==3 && size(SqewMatrix,2)==3

UnSqewedVector=[-SqewMatrix(2,3);SqewMatrix(1,3);-SqewMatrix(1,2)];

else

error(’The matrix must be a 3X3 matrix’)

end

end
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C.5.7 EMatrixMaker

function [ EMatrix ] = EMatrixMaker( PreV,axis,PostV,ang )

%EMatrixMAker:

%THis function takes the vector befor the rotation, the axis of rotation

%and the vector after to create the corresponding connection matrix

sym(ang);

%Pre allocate

PreM=sym(eye(4));

RotM=PreM;

PostM=PreM;

%set vectors

PreM(1:3,4)=PreV;

PostM(1:3,4)=PostV;

%Construct rotational matrix

RotM(1:3,1:3)=RotMaker(axis,ang);

%Evaluate connection matrix

EMatrix=PreM*RotM*PostM;

EMatrix=simplify(EMatrix);

end

C.5.8 InvE

function [ InvertedE ] = InvE( EMatrix )

%Invert the E matrix using the closed form.

InvRot=inv(EMatrix(1:3,1:3));

InvPos=-InvRot*EMatrix(1:3,4);

InvertedE=sym(eye(4));

InvertedE(1:3,1:3)=InvRot;

InvertedE(1:3,4)=InvPos;

InvertedE=simplify(InvertedE);

end
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C.5.9 Canonical Equations of Motion

%Defining the symbols to be used

syms Th1 Th2 p1 p2 dTh1 dTh2 J11 J12 J13 J14 J15 J16 J17 J18 J19 J21 ...

J22 J23 m1 m2 g L1 L2 L3 l11 l12 l13 l2 real

%The temporary angular velocities in a vector

dqTemp=[dTh1;dTh2];

%Make the rotational matrises

R1=RotMaker(3,Th1);

R21=RotMaker(2,Th2);

%Defining the angular velocity matrises

omg1M=[ 0,-dTh1,0;

dTh1, 0,0;

0, 0,0];

omg21M=[ 0,0,dTh2;

0,0, 0;

-dTh2,0, 0];

omg2M=simplify(expand(R21’*omg1M*R21+omg21M));

%The angular velocity vectors

omg1=[0;0;dTh1];

omg2=UnSqewThis(omg2M);

%Defining the position vectors

r1=[L1;L2;L3];%Position of centre of mass 1 from inertial

rp1=[l11;l12;l13];%Position of the Rotational point between arm and column

r2p=[l2;0;0];%Position of centre of mass 2 from the joint

r2=r1+rp1+R21*r2p;

M= sym(zeros(12));

%Mass of the first body

M(1:3,1:3) =[m1, 0, 0;

0, m1, 0;

0, 0, m1];

%Mass of the second body

M(4:6,4:6)=[J11,J12,J13;J14,J15,J16;J17,J18,J19];

%Massmoment of inertia of the first body

M(7:9,7:9)=[m2, 0, 0;

0, m2, 0;
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0, 0, m2];

%Massmoment of inertia of the second body

M(10:12,10:12)=[J21,0,0;0,J22,0;0,0,J23];

%Potential energy

V=(l2 -sin(Th2)*l2 )*m2*g;

B matrix

B=sym(zeros(12,2));

B(1:3,1)=-R1*SqewThis(r1)*sym([0;0;1]);

B(4:6,1)=sym([0;0;1]);

B(7:9,1)=-R1*SqewThis(r2)*sym([0;0;1]);

B(7:9,2)=-R1*R21*SqewThis(r2p)*sym([0;1;0]);

B(10:12,1)=R21’*sym([0;0;1]);

B(10:12,2)=sym([0;1;0]);

Canonical momenta

dX=B*dqTemp;

L=expand(simplify((1/2).*((dX)’*M*(dX))-V));

P1=simplify(expand(diff(expand(L),dTh1)));

P2=simplify(expand(diff(expand(L),dTh2)));

P=[P1;P2];

%Construct the Q matrix

Q=sym(zeros(2));

Q(1,1)=simplify(expand(diff(P1,dTh1)));

Q(1,2)=simplify(expand(diff(P1,dTh2)));

Q(2,1)=simplify(expand(diff(P2,dTh1)));

Q(2,2)=simplify(expand(diff(P2,dTh2)));

%simplify(Q*dqTemp-P) %Test to make sure Q is correct.

%Prepare for use in the Hamiltonian

InvQ=simplify(expand(inv(Q)));

dq=simplify(expand(InvQ*[p1;p2]));
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Hamiltonian

H=simplify(expand(dq’*[p1;p2]-((1/2)*(dq’*B’*M*B*dq)-V)));

Equations of motion

dP1=-simplify(expand(diff(H,Th1)));

dP2=-simplify(expand(diff(H,Th2)));

dq1=simplify(expand(diff(H,p1)));

dq2=simplify(expand(diff(H,p2)));

%The equations are copy/pasted from the comand window to the function funcH

C.6 The numerical schemes

C.6.1 Symplectic Midpoint

Contents

� Set physical Values
� Pre allocate
� Integration loop

function [T,SolM ]=IntSMid(StepSize,Tfin,InitVal,NFrames,MaksErr,SaveStep)

%{

%IntSMid integrates the canonical equations of motion saved in funcH by use

of the midpoint rule.

Innput:

StepSize : The size of the time step.

Tfin : End time for the integration

InitVal : Initial values for the integration on the form

InitVal=[th1;dth1;th2;dth2]

NFrames : The number of frames in the problem

MaksErr : Maximum global error

SaveStep : The interval of solution points wanted, incase not

all solution points is needed to the output
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Output:

T : Time vector as a hx1 vector

SolM : Solution matrix size(NFrames*3,Steps). It is on the form

Th1

dTh1

Th2

dTh2

P1

P2

%-------------------------------------------------------------------------

%}

Set physical Values

%Mass

m1=3.3645051;

m2=4.6811099;

%Mass moment of inertia

J19= 0.06172657200;%kg*m^2

J21= 4.1857*10^(-3);%kg*m^2

J22= 1.9213*10^(-2);%kg*m^2

J23= 1.97783*10^(-2);%kg*m^2

% Lengths

l2=0.1267;%m

L1=1.1705442e-01;

L2=-1.9696113e-02;

l11=0.13294558;

l12=1.9696113e-02;

%The thetas

Th1=InitVal(1);

dTh1=InitVal(2);

Th2=InitVal(3);

dTh2=InitVal(4);

%Calculate the generalized momentas, equations generated by Hamiltonian.mat

P1 = J19*dTh1 + J21*dTh1 - J21*dTh1*cos(Th2)^2 + J23*dTh1*cos(Th2)^2 + ...

L1^2*dTh1*m1 + L1^2*dTh1*m2 + L2^2*dTh1*m1 + L2^2*dTh1*m2 + ...
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dTh1*l11^2*m2 + dTh1*l12^2*m2 + dTh1*l2^2*m2*cos(Th2)^2 + ...

2*L1*dTh1*l11*m2 + 2*L2*dTh1*l12*m2 + 2*L1*dTh1*l2*m2*cos(Th2) + ...

L2*dTh2*l2*m2*sin(Th2) + 2*dTh1*l2*l11*m2*cos(Th2) + ...

dTh2*l2*l12*m2*sin(Th2);

P2 = J22*dTh2 + dTh2*l2^2*m2 + L2*dTh1*l2*m2*sin(Th2) +...

dTh1*l2*l12*m2*sin(Th2);

h=StepSize;

%Find the local maks error

LocEr=MaksErr*h/Tfin;

%-------------------------------------------------------------------------

Pre allocate

NSteps = round(Tfin/h);

y0=[Th1;Th2;P1;P2];

y1=y0;

SolM=zeros(NFrames*3,round(NSteps/SaveStep)+1);

T=zeros(round(NSteps/SaveStep)+1,1);

SaveCount=1;

SaveStepC=SaveStep;

ThC=1:2:NFrames*2;

dThC=2:2:NFrames*2;

SolM(ThC,1) =y0(1:NFrames);

SolM(NFrames*2+1:end,1) =y0(NFrames+1:end);

%Set First angular velocities;

dTh=funcH(0,y1);

SolM(dThC,1)=dTh(1:NFrames);

it100C=0;

Integration loop

for i = 1:NSteps

%Prepare for the next loop

nit=0;

t=i*h;
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err=1;

while err>LocEr && nit<100

%{

Loop runs until the error is smaller than requiered, with a max of 100

itterations

%}

yprev = y1; %Save previous result

y1= y0+(h)*funcH(t,(y0+y1)/2);%Calculate new result

err = norm(y1-yprev);%Calculate local error

nit = nit+1;%Increase iteration counter

end

if nit==100

it100C=it100C+1;

end

if i==SaveStepC || i==NSteps

dTh=funcH(t,y1);

SolM(dThC,SaveCount+1)=dTh(1:NFrames);%Save the angular velocities

SolM(ThC,SaveCount+1)=y1(1:NFrames);%Save the angles

%Save the canonical momentas

SolM(NFrames*2+1:end,SaveCount+1)=y1(NFrames+1:end);

T(SaveCount+1)=t;%Increase time counter

SaveCount=SaveCount+1;

SaveStepC=SaveStepC+SaveStep;

end

y0=y1;%Save new start value

end

end

C.6.2 Midpoint rule

function [ T, SolM ] = IntMid(StepSize,Tfin,InitVal,Mom,NFrames,MaksErr )

%{

Integrator using the trapezoidal method scheme.

Input:

Stepsize = The size of the timestep to be used.

Tfin = The stop time for the calculation
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InitVal = The initial values for the integration. Given as a vector.

Mom = The external moments applied to the system

NFrames = The number of frames in the system.

MaksErr = The maximum global error allowed during the fixed point

itteration

Output

T = The time steps as a vector

SolM = The solution matrix

%}

%-------------------------------------------------------------------------

%Find the local error

LocEr=MaksErr/Tfin;

%Only use the needed initial values, in case the vector is too long.

InitVal=InitVal(1:NFrames*2);

Mom=Mom(1:NFrames);

h=StepSize;

%-------------------------------------------------------------------------

%Size of the initial values

InSize=size(InitVal);

%Check that the initial values and moment is a column vector, else

%transpose it

if InSize(1)==1

InitVal=InitVal’;

end

MoSize=size(Mom);

if MoSize(1)==1

Mom=Mom’;

end

%-------------------------------------------------------------------------

%Pre allocate and prepare for integration

y0 = [InitVal;Mom];

y1=y0;

NSteps = round(Tfin/h);

SolM=zeros(NFrames*3,NSteps+1);

SolM(:,1) =y0;

T=zeros(NSteps+1,1);

%Integration loop

for i = 1:NSteps

%Prepare for the next loop
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nit=0;

t=i*h;

err=1;

while err>LocEr && nit<100

%{

Loop runs until the error is smaller than requiered, with a max of 100

itterations

%}

yprev = y1; %Save previous result

y1= y0+(h)*(func(t,(y0+y1)/2));%Calculate new result

err = norm(y1-yprev);%Calculate local error

nit = nit+1;%Increase iteration counter

end

y0=y1;%Save new start value

SolM(:,i+1)=y1;%Save the solution

SolM(NFrames*2+1:end,i+1)=Mom;%Update moments

T(i+1)=t;%Increase time counter

end

end

C.7 Other functions

C.7.1 EAnalysis

function [ TotEnCh,Energy] = EAnalysis( SolM,NFrames, Jlist,Mass,Gravity,LP )

%EAnalysis

%This fuction takes the solution matrix from integration, the mass, mass

%moment of inertia, gravity constant and lowest points for the centres of

%mass and resturns the energy of each timestep in SolM

%{

Input:

SolM : Solution matrix from integration, typicaly ode45

NFrames : Number of bodies

JList : Mass moment of inertia of the bodies

Mass : Mass of the bodies

Gravity : Gravity constant

LP : Lowest point the repspective centre of masses can reach in the

inertial 3. direction.
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Output:

ENergy: Vector containing the energy for each timestep in SolM

TotEnergyCh : Total energy change

%}

%Pre allocate

Size=size(SolM);

Energy=zeros(1,Size(2));

CmPC=3:3:NFrames*3;

g=Gravity;

I=eye(3);

Zero=zeros(3);

M=zeros(NFrames*6);

%Get the velocities and centre of mass positions for the system, generated

%by MFMNumEquMaker.

Vel=Velocities(SolM);

CmP=CMPosFunction(SolM);

%Create the M matrix

for i=1:NFrames

MC=i*6-5:i*6;

JC=i*3-2:i*3;

M(MC,MC)=[Mass(i)*I,Zero;Zero,Jlist(1:3,JC)];

%LP(i)=min(CmP(i*3,:))

end

%Calculate energy

for i=1:Size(2)

TempEk=0.5*(Vel(:,i)’*M*Vel(:,i)); %equ 13.22b ch13 in the book by Thomas

TempEp=g*Mass(1:NFrames)*(CmP(CmPC,i)-LP(1:NFrames)’);

Energy(i)=TempEk+TempEp;

end

TotEnCh=sum(diff(Energy));

end
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C.7.2 Velocities

function [V]=Velocities(InP)

%{

Velocities:

Takes the solution matrix from integration and returns the

generalized velocities

%}

V=[InP(2,:).*((1419254514679155.*cos(InP(1,:)))/72057594037927936 -

(8434659876705113.*sin(InP(1,:)))/72057594037927936);

InP(2,:).*((8434659876705113.*cos(InP(1,:)))/72057594037927936 +

(1419254514679155.*sin(InP(1,:)))/72057594037927936);

zeros(1,size(InP,2));

zeros(1,size(InP,2));

zeros(1,size(InP,2));

InP(2,:);

- (InP(2,:).*sin(InP(1,:)).*(9133759771757328.*cos(InP(3,:)) +

18014398509481985))/72057594037927936 -

(570859985734833.*InP(4,:).*cos(InP(1,:)).*

sin(InP(3,:)))/4503599627370496;

(InP(2,:).*cos(InP(1,:)).*(9133759771757328.*cos(InP(3,:)) +

18014398509481985))/72057594037927936 -

(570859985734833.*InP(4,:).*sin(InP(1,:)).*sin(InP(3,:)))/

4503599627370496;

-(570859985734833.*InP(4,:).*cos(InP(3,:)))/4503599627370496;

-InP(2,:).*sin(InP(3,:));

InP(4,:);

InP(2,:).*cos(InP(3,:))];

end

C.7.3 CMPosFunction

function [CMPosVList]=CMPosFunction(Thetas)

%CMPosFunction

%This function takes a matrix of angles, and returns the centre of mass

%positions of the system. The function is created by PosVectorFunctionMaker
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CMPosVList=[(8434659876705113.*cos(Thetas(1,:)))/72057594037927936 +...

(1419254514679155.*sin(Thetas(1,:)))/72057594037927936;

(8434659876705113.*sin(Thetas(1,:)))/72057594037927936 - ...

(1419254514679155.*cos(Thetas(1,:)))/72057594037927936;

ones(1,size(Thetas,2))*169462921707575/562949953421312;

(cos(Thetas(1,:)).*(9133759771757328.*cos(Thetas(3,:)) +...

18014398509481985))/72057594037927936;

(sin(Thetas(1,:)).*(9133759771757328.*cos(Thetas(3,:)) + ...

18014398509481985))/72057594037927936;

84178615221526153/288230376151711744 -...

(570859985734833.*sin(Thetas(3,:)))/4503599627370496];

end

C.7.4 RotPosFunction

function [RotPosVList]=RotPosFunction(Thetas)

%RotPosFunction

%This function takes a matrix of angles, and returns the position of the

%rotation points positions of the system. The function is created by

%PosVectorFunctionMaker, and used by MFMPlotter.

RotPosVList=[zeros(1,size(Thetas,2));

zeros(1,size(Thetas,2));

zeros(1,size(Thetas,2));

zeros(1,size(Thetas,2));

zeros(1,size(Thetas,2));

zeros(1,size(Thetas,2));

ones(1,size(Thetas,2)).*(18014398509481985.*cos(Thetas(1,:)))...

/72057594037927936;

ones(1,size(Thetas,2)).*(18014398509481985.*sin(Thetas(1,:)))...

/72057594037927936;

ones(1,size(Thetas,2)).*84178615221526153/288230376151711744;

ones(1,size(Thetas,2)).*(cos(Thetas(1,:)).*(9133759771757328.*...

cos(Thetas(3,:)) + 18014398509481985))/72057594037927936;
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ones(1,size(Thetas,2)).*(sin(Thetas(1,:)).*(9133759771757328.*...

cos(Thetas(3,:)) + 18014398509481985))/72057594037927936;

ones(1,size(Thetas,2)).*84178615221526153/288230376151711744 -...

(570859985734833.*sin(Thetas(3,:)))/4503599627370496];

end

C.7.5 MFMPlotter

function MFMPlotter( sol,NFrames )

%MFMPlotter This function takes the solution matrix from integration and

%plots the solution as a simple animation.

%Counters to get all X direction coordinates, all Y and all Z in one go.

XcCM=1:3:NFrames*3;

YcCM=2:3:NFrames*3;

ZcCM=3:3:NFrames*3;

%Get the position vectors for the centre of masses and points of rotation

CMPoV =CMPosFunction(sol);

RotPoV=RotPosFunction(sol);

LimAx=max(max(RotPoV));

for i=1:100:size(sol,2)-1

plot3(CMPoV(XcCM,i),CMPoV(YcCM,i),CMPoV(ZcCM,i),’r*’)

grid on

hold on

for J=2:NFrames+2

plot3([RotPoV(J*3-5,i),RotPoV(J*3-2,i)],...

[RotPoV(J*3-4,i),RotPoV(J*3-1,i)],...

[RotPoV(J*3-3,i),RotPoV(J*3,i)])

end

plot3(RotPoV(end-2,1:i),RotPoV(end-1,1:i),RotPoV(end,1:i))
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axis([-LimAx,LimAx,-LimAx,LimAx,-LimAx,LimAx]);

%view([0,90]);

xlabel(’X’)

ylabel(’Y’)

zlabel(’Z’)

drawnow

hold off

end

end
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