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1 Introduction

Overview of the Problem

The development of Riemannian geometry has been highly influenced by certain spaces with maximal
symmetry called model spaces. Their ubiquity presents itself throughout differential geometry from the
classical Gaussian map for surfaces to comparison theorems based on volume, the Laplacian, or Jacobi
fields [Pet16]. Following in the footsteps of Klein’s Erlangen program, model spaces fit with the approach
of investigating the symmetries of a geometric object to understand the object itself. In the Riemannian
setting, work by Wilhelm Killing and Heinz Hopf among others resulted in the complete classification of
the Riemannian model spaces in the celebrated Killing-Hopf theorem. The theorem states that the only
model spaces in Riemannian geometry are the spheres, the hyperbolic spaces, and the Euclidean spaces
with their standard structures. This result is not only influential but also remarkable due to the fact that
all the model spaces were already known and well examined prior to the classification.

In recent years sub-Riemannian geometry has emerged as an active field of research with ties to optimal
control theory, Hamiltonian mechanics, geometric measure theory, and harmonic analysis. Nevertheless,
new results in this subject are often only derived for special classes of structures such as Carnot groups
and contact structures. This is not due to a lack of ability, but rather that the absence of a canonical
connection as present in Riemannian geometry has complicated issues. Thus it is of interest to enlarge
the concept of model spaces to the sub-Riemannian setting to establish reference spaces.

We say that a Riemannian manifold (M, g) is a (Riemannian) model space if it is simply connected,
complete, and has constant sectional curvature. A definition based on sectional curvature, although
advantageous in the Riemannian setting, does not generalize to sub-Riemannian geometries in an obvious
way. There is however an equivalent definition of being a model space by using the isometry group: An
n-dimensional Riemannian manifold (M, g) is a model space if it is simply connected and

dim(Isom(M)) = max(n) :=
n(n+ 1)

2
,

where Isom(M) denotes the Lie group of all isometries of M . This definition gives rigorous weight to the
term “maximal symmetry” as the dimension of any n-dimensional Riemannian manifold’s isometry group
is always less than or equal to max(n). Utilizing this observation is the start of sub-Riemannian model
spaces.

A sub-Riemannian model space is a bracket generating sub-Riemannian geometry (Q,H, g), where
Q is a simply connected manifold satisfying the following symmetry condition: For any points p, q ∈ Q
and any linear isometry φ : Hp → Hq there exists a smooth isometry Φ : Q → Q such that dΦ|Hp = φ.
When H = TQ one can conclude from Theorem 2.52 that this definition reduces to the definition of
Riemannian model spaces. It has been showed in [Gro16, Proposition 3.2] that any sub-Riemannian
model space possesses a canonical partial connection. This fact opens up the study of what is called
the horizontal holonomy of a sub-Riemannian model space. The symmetric nature of the model spaces
ensure that the horizontal holonomy is polarizing in the sense that it is either as large as possible or zero.
These two extreme cases give information about potential Lie group structures and whether its bundle of
orthonormal frames provides us with a new sub-Riemannian model space.

To determine which sub-Riemannian geometries are model spaces, the theory of Gromov-Hausdorff
convergence will be employed to produce a powerful invariant: Roughly speaking, if (M,d,m0) is a pointed
metric space then the tangent cone of M at the point m0 is given by

CTm0M = lim
λ→∞

(λM,m0),

where the limit is in the sense of local Gromov-Hausdorff convergence. This theory is developed in
Gromov’s paper and applied specifically to the sub-Riemannian setting in Belláıche’s paper, both of
which can be found in [BR96]. Applying this procedure to a sub-Riemannian geometry (Q,H, g) where
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the distance is the Carnot-Carathéodory distance dCC gives the resulting space a Carnot group structure.
Actually, when (Q,H, g) is a sub-Riemannian model space then the tangent cone at any point is also a
model space. This provides an invariant which is fundamental when sub-Riemannian model spaces are
classified.

In [Gro16, Theorem 5.6], all sub-Riemannian model spaces of step two are classified. They turn
out to be, up to a technicality, the isometry groups of the Riemannian model spaces with left-invariant
structures. Although a fundamental result, it does not feature the same challenges as one faces for higher
steps. The main goal of the thesis is to obtain some insight into the difficulty with higher steps and rank
by classifying all sub-Riemannian model spaces of step and rank three. In Section 5.6 we have enough
terminology to explain why this is the natural next step to consider for the classification problem of
sub-Riemannian model spaces.

Motivated by tangent cones, the classification procedure will begin in Section 5.1 with the Carnot
groups which are also sub-Riemannian model spaces. This involve understanding how spatial rotations
and reflections can be represented as transformations of the free nilpotent Lie algebra of step and rank
three. The result is captured in Theorem 5.1 and shows existence and uniqueness of three Carnot groups
of step and rank three which are model spaces. They will be denoted by C3,3, A3,3, and N [3, 3] and their
growth vectors are (3, 6, 9), (3, 6, 11), and (3, 6, 14), respectively. Through the tangent cone construction,
this will imply that any sub-Riemannian model space of step and rank three has dimension 9,11, or 14.
The sub-Riemannian model spaces of step and rank three are thus divided into three classes based on
their tangent cone and are classified in Section 5.3. Surprisingly, the number of parameters needed to
describe each class varies. The sub-Riemannian model spaces with tangent cone C3,3 are described by
two parameters. This contrasts the Riemannian model spaces which are specified solely by their sectional
curvature after fixing a dimension.

In [Gro16, Example 4.1] the tangent cone of any sub-Riemannian model spaces with step two and
rank n is showed to be isometric to the free nilpotent Lie Group N [n, 2] with n generators of step two.
However, in Theorem 5.9 we will show that if (Q,H, g) is any sub-Riemannian model space with tangent
cone N [3, 3] then

Q ' N [3, 3].

Hence there are (up to isometry) no nontrivial sub-Riemannian model spaces of step and rank three which
have as tangent cone the free nilpotent Lie group N [3, 3]. We can, somewhat simplistically, summarize
the main results of the thesis in the following theorem.

Theorem 1.1. The sub-Riemannian model spaces with step and rank three have dimension 9,11, or 14.

• Those with dimension 9 are parametrized by a two-parameter family of non-isometric spaces.

• Those with dimension 11 are parametrized by a one-parameter family of non-isometric spaces.

• The free nilpotent Lie group N [3, 3] with three generators of step three is the unique sub-Riemannian
model space of dimension 14.

Prerequisites

The thesis is written assuming the reader is familiar with basic notions in differential topology including
vector bundles and differentiable forms. We have dedicated Appendix A.1 to vector valued forms and
constructions on them, as this topic might be unfamiliar to the reader. The theory of Lie groups will
be employed throughout the thesis, see Appendix A.2 for a short introduction to the central ideas used.
Some representation theory will be needed for Chapter 4 and Chapter 5. Basic definitions can be found
in Appendix A.2, although a general familiarity with representation theory of either finite or continuous
type will make certain arguments clearer. We do not assume any previous knowledge of Riemannian
manifolds or differential geometry in general. The beginning of the thesis is partly dedicated to survey
central notions in differential geometry as well as fixing terminology and notation. We have tried to avoid
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stating results in either excessive categorical language or lengthy coordinate descriptions to cause the
least amount of distress for readers with different backgrounds.

Structure and Style of the Thesis

We have chosen to go through the classification of Riemannian model spaces in Chapter 2 in reasonable de-
tail for three reasons: Firstly, it serves as a prelude and provides motivation for studying sub-Riemannian
model spaces. Secondly, this allows us to gain familiarity with isometry groups and symmetric spaces
which will be essential for the sub-Riemannian setting as well. Thirdly, how the theory of curvature,
Killing vector fields, and symmetric spaces come together to classify the model spaces in Riemannian
geometry is (in the author’s opinion) one of the success stories of modern mathematics.

Although the main motivation for investigating principal bundles in Chapter 3 is as a technical tool
needed in later arguments, we survey results and ideas making the exposition more complete and interest-
ing. We go as far as presenting the classical Ambrose-Singer theorem on holonomy without loosing track
of the main purpose of the chapter. In the beginning of Chapter 4 we develop theory and examples from
sub-Riemannian geometry, providing gradually the final prerequisites needed for the classification such
as Gromov-Hausdorff convergence and nilpotentization. The rest of the chapter examines the general
properties of sub-Riemannian model spaces. In Chapter 5 we classify all sub-Riemannian model spaces of
step and rank three. We have tried to divide the classification into manageable pieces for the reader as it
has several technical steps. Finally, the thesis ends with a discussion on the results obtained and where
to go next.

Original Results

In the first four chapters with the exception of Section 4.7, the only originality is in some examples and a
choice of exposition. In Proposition 4.41 we classify the sub-Riemannian model spaces which are contact
geometries and give an explicit description using a series of well known identifications. We use this
together with results from [AB12] to give a criterion in Corollary 4.43 for when certain three dimensional
sub-Riemannian geometries are model spaces based on their Reeb vector field. Except for this, the original
part of the thesis is all of Chapter 5. The whole chapter deals with the classification of sub-Riemannian
model spaces of step and rank three. Except for auxiliary lemmas and remarks, the major standouts in
Chapter 5 are Theorem 5.1, Theorem 5.3, Theorem 5.8, and Theorem 5.9. These theorems provide the
classification of sub-Riemannian model spaces of step and rank three, which is the scientific contribution
of this thesis.
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2 Riemannian Geometry and Their Model Spaces

This chapter has three main goals: To develop the language of Riemannian geometry, to study the re-
lationship between symmetric and constant curvature spaces, and to prove the classification of model
spaces in Riemannian geometry. The symmetric space approach will provide us with an equivalent def-
inition of Riemannian model spaces based on their isometry groups suitable for generalization to the
sub-Riemannian setting. It is assumed that the reader is familiar with basic differential topology, a com-
prehensive source is [Lee13]. We moreover use the Einstein summation convention for convenience, see
[Lee97, Chapter 2] for a short explanation. Throughout the thesis a manifold will always refer to a second
countable topological Hausdorff space with a maximal smooth structure.

2.1 Basic Notions in Riemannian Geometry

Everything in this section which is not referred to other sources can be found in [Lee97] or [O’N83]. We
use the notation X(M) for vector fields on M and X∗(M) for the one-forms. The tensor bundles and the
bundles of alternating tensors are denoted by

T kl M =
∐
p∈M

T kl (TpM) and ΛkM =
∐
p∈M

Λk(TpM),

respectively. We follow the convention that T kl (TpM) denotes the space of multilinear maps from l copies
of T ∗pM and k copies of TpM to R. The sections of T kl M will be called tensor fields of type (k, l) while the

sections of ΛkM will be called (differential) k-forms. A tensor field of type (k, 0) will simply be referred
to as a k-tensor field to improve readability. Otherwise, if E → M is a (smooth) vector bundle we will
denote the sections of E over M by Γ(E).

Definition 2.1. A Riemannian manifold (M, g) is a manifold M equipped with a symmetric 2-tensor
field g which is positive definite, that is, gp(X,X) > 0 whenever X ∈ TpM is non-zero. We call the
tensor field g a Riemannian metric. Sometimes the notation 〈·, ·〉 will be used in place of gp(·, ·) if p is
understood and we want to emphasize that g induces an inner product in each tangent space.

2.1.1 Metric Structure and Isometries

The Riemannian metric allows us to measure the length of a curve as follows: Recall that a curve
γ : I = [a, b] → Rn is absolutely continuous if the derivative γ̇(t) exists for almost every t ∈ I (with
respect to the Lebesgue measure) and γ can be recovered from its derivative through the fundamental
theorem of calculus, that is,

γ(t) = γ(c) +

∫ t

c
γ̇(s) ds,

for every c ∈ I. Other equivalent definitions of absolutely continuous curves are used in the literature,
see [Rud87, Theorem 7.18]. This definition is also valid for curves on a manifold due to the fact that if
F : Rn → Rn is a diffeomorphism, then F ◦ γ is still absolutely continuous. We denote the absolutely
continuous curves taking values in M by AC(I,M), where we allow curves with different intervals as
domains even though the notation might suggest otherwise.

Definition 2.2. Let (M, g) be a connected Riemannian manifold. For p, q ∈ M , define the distance
d(p, q) to be

d(p, q) = inf
γ∈AC(I,M)

∫ b

a
‖γ̇(t)‖ dt, γ(a) = p, γ(b) = q,

where each integral is over the domain [a, b] of the curve γ in question.
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With this definition, (M, g, d) becomes a metric space whose topology induced by the metric d is the
same as the original topology. We will refer to the metric d induced by the infimum over absolutely
continuous curves as a distance function, so not to confuse it with the Riemannian metric g. Moreover,
whenever we refer to the distance function it will be implicitly assumed that the manifold in question is
connected.

Example 2.3. A vast class of Riemannian manifolds is provided by the following construction: Let G
be a Lie group with Lie algebra g = Lie(G). Choose an inner product 〈·, ·〉g on g and translate it by left
translations. More precisely, for p ∈ G define

〈v, w〉p = 〈dLp−1(v), dLp−1(w)〉g

for v, w ∈ TpG, where Lp−1 denotes left translation by p−1. This gives a Riemannian metric on G which
is invariant under left translations. The matrix Lie groups GL(n,R), SL(n,R), and O(n,R) can easily
be given such structures by considering the inner product on their Lie algebras which is inherited from
gl(n,R) ' R2n. A bi-invariant metric on a Lie group is a Riemannian metric which is invariant under both
left and right translations. Compact Lie groups always admit bi-invariant metrics, see [Hal15, Appendix
D].

The following three examples are provisionally called the canonical spaces in Riemannian geometry.
Their symmetric nature will determine them uniquely in a sense we shall describe during this chapter.

Example 2.4 (Euclidean Spaces). The most straightforward example of a Riemannian manifold is Rn
with the usual inner product in each tangent space. We have a canonical identification of the tangent
spaces with Rn itself and the Riemannian metric ḡ is given in standard coordinates by ḡ = δijdx

idxj .

Example 2.5 (Spheres). Denote by SnR the n-sphere with radius R. The inclusion SnR ↪−→ Rn+1 induces
a Riemannian metric gR = i∗ḡ on SnR called the round metric of radius R. Because the inclusion is an
immersion we obtain a positive definite metric.

Example 2.6 (Hyperbolic Spaces). The Lorentz metric is a nondegenerate, although not positive definite,
scalar product on Rn+1. It is given in coordinates (ξ1, . . . , ξn, τ) by

m = (dξ1)2 + · · ·+ (dξn)2 − (dτ)2.

When n = 3 the Lorentz metric is also called the Minkowski-metric and is fundamental in describing
Einstein’s special theory of relativity, see [O’N83, Chapter 6]. If we restrict the Lorentz metric to the
upper sheet of the hyperboloid

Hn
R =

{
(ξ1, . . . , ξn, τ) ∈ Rn+1 : τ2 − |ξ|2 = R2

}
,

we obtain a positive definite metric denoted by hR. We call (Hn
R, hR) hyperbolic space of radius R and

simply hyperbolic space when R = 1.

We will only be interested in the canonical spaces where n ≥ 2. These spaces are all simply connected,
see [Hat02, Proposition 1.14] for the less obvious case regarding the spheres. We also mention that our
definition of simply connectedness includes connectedness, which is not always the case in the literature.
The canonical spaces will be returned to several times to illustrate the concepts presented in this chapter.
An underlying theme throughout this chapter is to grasp the apparent symmetric nature of these spaces in
a precise way. To do this we need to define when two Riemannian manifolds should be considered identical.
Two Riemannian manifolds (M, g) and (N,h) are said to be isometric if there exists a diffeomorphism
φ : M → N such that φ∗h = g, where

(φ∗h)p(X,Y ) = hφ(p)(dφ(X), dφ(Y )),
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for every p ∈ M . Thus the differential of an isometry is a linear isometry at each point. It is called a
local isometry if the map is only a local diffeomorphism. Riemannian geometry is mainly concerned with
properties which is invariant under local or global isometries. All isometries from a Riemannian manifold
(M, g) to itself form a group under composition called the isometry group of (M, g) which is denoted by
Isom(M).

2.1.2 Connections and Parallel Transport

Definition 2.7. Let M be a manifold and E → M a vector bundle over M . A connection ∇ on E is a
map

∇ : X(M)× Γ(E) −→ Γ(E), (X,Y ) 7−→ ∇XY

which is linear over C∞(M) in the first component, linear over R in the second, and satisfies the Leibniz
rule

∇X(fY ) = (Xf)Y + f∇XY,

where f ∈ C∞(M), X ∈ X(M), and Y ∈ Γ(E). We call ∇XY the covariant derivative of Y in the
direction of X. If E = TM the connection is called affine.

If ∇ is a connection on a vector bundle E → M , then ∇XY |p only depends on the value of X at
the point p and on the values of Y along a curve tangent to Xp. If {Ei} is a local frame for an open
subset U ⊂ M we define the Christoffel symbols of the connection with respect to this frame to be
Γkij = 〈∇EiEj , Ek〉. Affine connections exist on any manifold and can be constructed in a single chart by
the formula

∇XY =
(
Xi∂iY

k +XiY jΓkij

)
∂k,

and patched together using partitions of unity. Any affine connection ∇ on M admits a unique extension
to a connection on all the tensor bundles. This extension will still be denoted by ∇ and is a derivation
with respect to the tensor product. Given a tensor field F of type (k, l), the extension is given by

(∇XF )(ω1, . . . , ωl, Y1, . . . , Yk) = X
(
F (ω1, . . . , ωl, Y1, . . . , Yk)

)
−

l∑
i=1

F (ω1, . . . ,∇Xωi, . . . , ωl, Y1, . . . , Yk)−
k∑
j=1

F (ω1, . . . , ωl, Y1, . . . ,∇XYj , . . . , Yk),

for X,Y1, . . . , Yk ∈ X(M) and ω1, . . . , ωl ∈ X∗(M).
We say that an affine connection ∇ on a Riemannian manifold is compatible with the metric if

∇X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉,

for X,Y, Z ∈ X(M). Moreover, we can associate the torsion tensor

T∇(X,Y ) = ∇XY −∇YX − [X,Y ]

to the affine connection ∇ for X,Y ∈ X(M). If the torsion tensor is identically zero then the affine
connection is said to be symmetric. Together, compatibility and symmetry is enough to determine a
unique connection which is especially intertwined with the geometry of the Riemannian manifold.

Theorem 2.8. On every Riemannian manifold (M, g) there exists a unique affine connection which is
symmetric and compatible with the metric. This connection will be referred to as the Levi-Civita connection
of (M, g).
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We now give a brief account of geodesics with a view towards Riemannian symmetric spaces in Section
2.5. If γ : I → M is a smooth curve on a manifold M we denote by T (γ) all vector fields along γ, that
is, the smooth maps V : I → TM such that V (t) ∈ Tγ(t)M . If Ṽ is a vector field on M which coincides

with V ∈ T (γ) on Tγ(t)M , then Ṽ is said to be an extension of V . The following lemma enables us to
differentiate vector fields along smooth curves.

Lemma 2.9. Let M be a manifold with affine connection ∇ and let γ : I →M be a smooth curve in M .
Then ∇ determines a unique operator

Dt : T (γ) −→ T (γ)

which is linear over R, satisfies the product rule

Dt(fV ) = ḟV + fDtV,

and has the property that
DtV (t) = ∇γ̇(t)Ṽ

whenever Ṽ is an extension of V . The operator Dt will be called the covariant derivative along γ.

Definition 2.10. Let γ be a smooth curve on a manifold M with an affine connection ∇. We call γ a
geodesic if the vector field Dtγ̇ is identically zero.

If we choose coordinates (xi) on an open set U , then γ : I → U is a geodesic if and only if its
component functions γ(t) =

(
x1(γ(t)), . . . , xn(γ(t))

)
satisfies the geodesic equation

ẍk(γ(t)) + ẋi(γ(t))ẋj(γ(t))Γkij(γ(t)) = 0, (2.1)

for every k = 1, . . . , n. The following existence and uniqueness result ensures us that geodesics exist in
great abundance. By specifying a point, initial time, and initial velocity we can always find geodesics
satisfying these conditions.

Proposition 2.11. Let M be a Riemannian manifold with an affine connection and suppose we are given
p ∈ M , V0 ∈ TpM , and t0 ∈ R. Then there exists a geodesic γ : I → M with t0 ∈ I such that γ(t0) = p
and γ̇(t0) = V0. Moreover, any two such geodesics agree on their common domain.

Hence any V ∈ TpM determines a unique maximal geodesic with initial velocity V passing through p
at time t = 0. We denote this geodesic by γV . If γ : I →M is a smooth curve, then V ∈ T (γ) is said to
be parallel along γ if DtV = 0 for every t ∈ I. Given t0 ∈ I and V0 ∈ Tγ(t0)M there exists a unique vector
field V ∈ T (γ) which is parallel along γ such that V (γ(t0)) = V0. We call this vector field the parallel
translate of V0 along γ. If t1 ∈ I this gives a well defined linear isomorphism

P t1t0 : Tγ(t0)M −→ Tγ(t1)M

sending V0 ∈ Tγ(t0)M to V (t1), where V is the parallel translate of V0 along γ. This map is called parallel
transport and is a linear isometry if and only if the connection ∇ underlying the covariant derivative is
compatible with the metric. From now on, we assume that the underlying connection is the Levi-Civita
connection unless otherwise stated.

Let us view the distance between two points p, q ∈M as a functional acting on absolutely continuous
curves starting at p and ending at q. Then the minimizing curves (those who realize the distance) are
always geodesics, hence smooth. Moreover, geodesics are locally minimizing although not necessarily
globally so. A Riemannian manifold (M, g) is said to be geodesically complete if the domain of every
geodesic can be extended to the whole real line.

Theorem 2.12 (Hopf-Rinow). Geodesic completeness is equivalent to completeness as a metric space
with respect to the distance function. In either case, any two points in the same connected component can
be joined by a geodesic.

One of the conditions is often significantly easier to check than the other. A simple application of
the Hopf-Rinow Theorem is that compact manifolds are always geodesically complete, regardless of the
choice of Riemannian metric.
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2.1.3 The Exponential Map

Definition 2.13. Given a Riemannian manifold (M, g) we denote by E ⊂ TM the elements V ∈ TM
such that γV is defined on an interval containing [0, 1]. Then

Exp : E −→M, Exp(V ) = γV (1)

is called the exponential map of (M, g). For each p ∈M , the exponential map restricted to Ep := E ∩TpM
is denoted by Expp.

The exponential map provides a way to collectively examine geodesics and how they behave when we
change the initial point or the initial velocity. We use a capital “E” in Exp to distinguish it from the
Lie group exponential map exp : g → G although they agree for bi-invariant metrics on Lie groups, see
[O’N83, Proposition 11.9]. The domain of the exponential map E ⊂ TM is an open set and Exp : E →M
is smooth. Moreover, the restriction Expp has a star-shaped domain with respect to the origin. For each
V ∈ TM the geodesic γV has the form

γV (t) = Exp(tV ),

whenever either side is defined. The exponential map satisfies the following naturality condition: If (N,h)
is another Riemannian manifold and φ : M → N is an isometry, then the following diagram commutes

Ep Eφ(p)

M N

Expp

dφp

Expφ(p)

φ

for every p ∈ M . From this it follows, using the uniqueness of geodesics, that isometries map geodesics
to geodesics. For every p ∈ M the restricted exponential map is a local diffeomorphism at the origin,
implying that the following definition is never vacuous.

Definition 2.14. A neighbourhood U of p ∈M is called a normal neighbourhood if

Expp

∣∣∣
V

: V → U

is a diffeomorphism, where V is a star shaped neighbourhood of the origin in TpM . If V = Bε(0) ⊂ TpM ,
where Bε(0) denotes the ball in TpM centered at the origin with radius ε, then U is called a geodesic ball.

An important feature of the exponential map is that it furnishes us with normal coordinates which,
although hard to compute explicitly, is useful for ”straightening out geodesics”: Let {Ei} be an orthonor-
mal basis for TpM viewed as a map E : Rn → TpM . Then if U is a normal neighbourhood of p ∈M , the
map

x = E−1 ◦ Expp
−1 : U −→ Rn

is called normal coordinates centered at the point p. In such normal coordinates, the components of the
Riemannian metric g at the point p are gij = δij . Furthermore, the geodesics starting at p with initial
velocity V = V i∂i ∈ TpM have normal coordinates

γV (t) = (tV 1, . . . , tV n).

The following result illustrates the rigidity of isometries and will be used several times throughout the
thesis.

Proposition 2.15. Let φ, ψ : (M, g) → (N,h) be isometries between Riemannian manifolds with M
connected and such that there exists a point p ∈M with dφp = dψp. Then φ ≡ ψ.
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Proof. The proof is a connectedness argument together with using the interplay between isometries and
geodesics. Let

P = {q ∈M : dφq = dψq} .

By assumption P is nonempty and, since isometries are continuous, closed. Given p ∈ P, let U be a
normal neighbourhood centered at p and q ∈ U be arbitrary. Then there exists a geodesic γV starting at
p with initial velocity V ∈ TpM such that γV (t0) = q for t0 ∈ [0, 1]. Since isometries transform geodesics
to geodesics, the smooth curves

φ ◦ γV (t) and ψ ◦ γV (t)

are geodesics which starts at ψ(p) = φ(p) and have initial velocity φ∗V = ψ∗V . Hence by uniqueness
of geodesics they are equal for every t ∈ [0, 1]. Evaluating at t0 we obtain φ(q) = ψ(q). Since the two
isometries are equal on the open subset U , their differential is also equal there. Hence P is open and
φ ≡ ψ.

2.2 Homogeneous Riemannian Manifolds and Curvature

In this section we will investigate a particular type of Riemannian manifolds, namely the homogeneous
ones. They will be related to quotient manifolds formed by Lie groups and we will see how questions
about their geometry can be transformed to questions in Lie group theory. Thereafter, we shall survey the
different notions of curvature in Riemannian geometry leading us to a precise definition of a Riemannian
model space. Basic terminology and results regarding Lie group actions on manifolds is reviewed in
Appendix A.2.2.

Definition 2.16. A Riemannian manifold (M, g) is said to be homogeneous if there exists a Lie group
acting transitively by isometries on (M, g).

Intuitively, homogeneous Riemannian manifolds “look the same at every point”. It is a rather strong
property as it implies completeness by comparing geodesic balls at different points on the manifold, see
[O’N83, Remark 9.37]. We will now provide an alternative view of homogeneous spaces by relating them
to quotient manifolds arising from Lie groups.

Proposition 2.17. Any homogeneous Riemannian manifold (M, g) is isometric to the quotient manifold
of a Lie group G with a compact subgroup K. Moreover, the Lie group G can be taken to be the isometry
group of M and K the isotropy group of any point in M with respect to the action of the isometry group
on M .

Proof. For any Riemannian manifold M there is a unique way to make the isometry group Isom(M) into a
finite-dimensional Lie group such that the natural action of Isom(M) on M is smooth, see [Pal57, Chapter
4]. Fix x0 ∈M and consider the set M = Isom(M)/Kx0 , where Kx0 denotes the isotropy group of x0. We
denote by O(Tx0M) the orthogonal transformations from Tx0M to itself with respect to the inner product
gx0 . Recall that isometries are determined by their differential at a single point by Proposition 2.15. The
isotropy group Kx0 is compact as the embedding Kx0 → O(Tx0M) given by φ 7→ dφx0 exhibits Kx0 as
a closed subspace of O(Tx0M). Two different isotropy groups Kx0 and Kx1 corresponding to different
points are conjugate by an inner automorphism. Hence we omit the subscript from the notation as it is
of minor importance.

Since K is a closed subgroup of Isom(M) the quotient space M is a manifold by [War83, Theorem
3.58]. Moreover, the projection

πM : Isom(M) −→M
φ 7−→ [φ]
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is smooth and admits local sections. The evaluation map π : Isom(M) → M sending an isometry φ to
φ(x0) descends to a map

η : M −→M

[φ] 7−→ φ(x0)

by the definition of K. Assume η ([φ1]) = η ([φ2]) for isometries φ1, φ2 ∈ Isom(M). Then φ−1
2 ◦φ1 stabilizes

x0 and it follows that
[φ2] = [φ2 ◦ (φ−1

2 ◦ φ1)] = [φ1],

showing injectivity of the map η. As M is homogeneous by assumption it is clear that η is also surjective.
To show that η is smooth, let [φ] be an arbitrary element of M. Choose an open set U containing [φ] such
that there exists a map sU : U → Isom(M) with the property that πM ◦ sU = IdU .

Isom(M)

M

U

πM

π

sU

η|U

It follows that
π ◦ sU ([φ]) = η ◦ πM ◦ sU ([φ]) = η ([φ]) ,

which exhibits η as the composition of smooth maps. By the Inverse Function Theorem it suffices to
show that the differential dη is everywhere invertible for η to be a diffeomorphism. This follows from
the Equivariant Rank Theorem given in [Lee13, Theorem 7.25]. By pulling back the metric g on M to a
Riemannian metric gM on M gives that (M, g) is isometric to (M, gM).

Example 2.18. Let us consider the canonical spaces Rn, SnR, and Hn
R. Regarding Euclidean space the

translations φr(s) = r + s are clearly isometries and act transitively since φs−r(r) = s for any r, s ∈ Rn.
The orthogonal transformations O(n) also acts on Rn by isometries. It is a standard fact in elementary
differential geometry that the isometry group E(n) of Rn is the semi-direct product

E(n) = Rn oO(n)

called the Euclidean group, where Rn represents the translations. The map φ : O(n) → Aut(Rn) which
induces the semi-direct product is simply evaluation.

We will now show that O(n + 1) act transitively by isometries on SnR. Let p, q ∈ SnR and normalize
them such that p̃ = p/R and q̃ = q/R. Take two orthonormal bases {Ei}ni=1 and {Fj}nj=1 for TpS

n
R and

TqS
n
R, respectively. Viewing p̃ and q̃ as vectors in Rn, notice that the collections {E1, . . . , En, p̃} and

{F1, . . . , Fn, q̃} are both orthonormal in Rn. We collect these vectors as columns of the matrices

α =
[
E1 . . . En p̃

]
, β =

[
F1 . . . Fn q̃

]
.

As the columns of both α and β are orthonormal they belong to O(n + 1) and it is straightforward to
calculate that β ◦ α−1(p) = q. Since the action of the orthogonal group on Rn preserves the Euclidean
inner product, the restriction to SnR is an isometric action as well.

Let O(n, 1) be the linear transformations on Rn+1 which preserves the Lorentz metric. Each element
in O(n, 1) preserves the hyperboloid τ2 − |ξ|2 = R2 and we denote by O+(n, 1) the ones which map the
upper sheet to itself. A similar argument as for the spheres shows that O+(n, 1) acts transitively by
isometries on Hn

R, for details see [Lee97, Proposition 3.6].
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Notice that for all three canonical spaces we have something more than the homogeneous property.
Each of them possesses an isometry group which acts transitively on orthonormal frames. Riemannian
manifolds with this additional property will be called frame-homogeneous. This property will be essential
for the description of spaces with maximal symmetry during the chapter. The infinite cylinder S1 × R
with the product metric is homogeneous but not frame-homogeneous, see [O’N06, Chapter 8] for details.

Questions regarding the geometry of homogeneous spaces M ' G/H := Isom(M)/Kx0 can sometimes
be answered by the following procedure: Notice that H acts on its own Lie algebra h via the adjoint
map, see Appendix A.2 for more details. The compactness of H implies that h has an Ad(H)-invariant
complement m in g = Lie(G). Since π : G→M is a submersion with dπe(h) = 0 we get that

dπ
∣∣∣
m

: m −→ Tx0M

is an isomorphism. In effect, we have identified m with the tangent space to M at x0. If we require dπ|m
to be an isometry we get by [O’N83, Proposition 11.22] a one-to-one correspondence between Ad(H)-
invariant inner products on m and G-invariant metrics on M . Since M already came equipped with an
invariant metric, this furnishes m with an Ad(H)-invariant inner product 〈·, ·〉m. If the inner product
satisfies

〈[X,Y ]m, Z〉 = 〈X, [Y, Z]m〉, for X,Y, Z ∈ m, (2.2)

where [X,Y ]m denotes the projection of [X,Y ] onto m, then M is said to be naturally reductive. If
H = {e} then condition (2.2) is equivalent to the bi-invariance of the metric on M = G/{e} ' G by
[O’N83, Proposition 11.9]. If M is naturally reductive then the geodesics on M starting at x0 are given
by projecting one-parameter subgroups arising from vectors in m, see [O’N83, Proposition 11.25]. The
Riemannian symmetric spaces we define in Section 2.5 are all naturally reductive.

Example 2.19. We will now determine the geodesics in the canonical spaces as this is needed to compute
their curvature and, moreover, illustrates the usefulness of frame-homogeneity. In Euclidean space the
Christoffel symbols are all zero. Looking at the geodesic equation (2.1) reveals that the geodesics are
precisely the straight lines with constant speed parametrizations. The computations are similar for spheres
and hyperbolic spaces, so we will only provide a proof for the hyperbolic case. We are content with stating
that the geodesics on SnR are the ”great circles”: the intersections of SnR with 2-planes through the origin
with constant speed parametrizations. The reader should be aware that this can also be deduced through
variational methods, see [vB04, Chapter 2] for the case of S2.

For the hyperbolic space of radius R we now show that the geodesics are the “great hyperbolas”: the
intersections of Hn

R with 2-planes through the origin with constant speed parametrizations. Let us first
consider the geodesic γ : R→ Hn

R determined by

γ(0) = (0, . . . , 0, R), γ̇(0) =
∂

∂ξ1
.

Assume that γ(t0) has a non-zero ξi coordinate for some t0 ∈ R and 2 ≤ i ≤ n. Then the map α ∈ O+(n, 1)
sending ξi to −ξi and fixing the rest of the coordinates will map γ to itself, as it fixes both its initial
point and initial velocity. This is clearly not possible since α(γ(t0)) 6= γ(t0). Hence γ must remain in the
(ξ1, τ) plane and is thus a constant speed parametrization of the hyperbola obtained by the intersection
of this plane with Hn

R. Let νv : R → Hn
R be any other geodesic with ν̇v(0) = v ∈ TpHn

R for p ∈ Hn
R. By

frame homogeneity there is an isometry β ∈ O+(n, 1) such that

β(0, . . . , 0, R) = p, dβ

(
∂

∂ξ1

)
= v.

Since isometries transform geodesics to geodesics we have that β maps γ to νv. Moreover, as β ∈ O+(n, 1)
it also maps the (ξ1, τ)-plane to another 2-dimensional plane Π through the origin. It follows that νv is
the constant speed parametrization of Hn

R ∩Π.
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We will now present the various notions of curvature in Riemannian geometry, with the goal of
describing sectional curvature as a higher dimensional generalization of Gaussian curvature for surfaces.
The proof of all claims presented can be found in [Lee97, Chapters 7 and 8] except for the discussion on
Gaussian curvature where details are given in [O’N06, Section 7.2].

Definition 2.20. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. The map

R : X(M)× X(M)× X(M) −→ X(M)

given by
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M) is called the curvature endomorphism.

The name and notation arises from fixing X,Y ∈ X(M) so that R(X,Y ) : X(M) → X(M) is an
endomorphism in the last input. It is straightforward to show that the curvature endomorphism on
Euclidean space is identically zero. The curvature endomorphism measures how much the Riemannian
manifold deviates from being flat, that is, locally isometric to Euclidean space. It satisfies the Bianchi
Identity

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. (2.3)

By using the Riemannian metric we can also consider it as a 4-tensor field by

Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉,

called the curvature tensor. It satisfies the symmetries

Rijkl = −Rjikl, Rijkl = −Rijlk, Rijkl = Rklij , (2.4)

in any local frame {E1, . . . , En}, where Rijkl is shorthand notation for Rm(Ei, Ej , Ek, El). The curvature
endomorphism and curvature tensor are both invariant under isometries. As they are both difficult to
compute in general we can define the Ricci curvature, denoted by Ric, as the trace of the curvature
endomorphism on the first and last indices. Hence the components of the Ricci curvature are given by

Rij = Rkij
k,

where Rkij
l are the components of the curvature endomorphism. Other equivalent definitions of the Ricci

curvature is also common in the literature by utilizing the symmetries (2.4). We may repeat this process,
obtaining the scalar curvature by first raising the last entry of the Ricci curvature and then taking the
trace again,

S := Ri
i.

Before describing sectional curvature we make a short excursion to look at Gaussian curvature as an
intrinsic property of surfaces.

Let M ⊂ R3 be a smooth surface equipped with the induced metric g from (R3, ḡ). Recall from
elementary differential geometry that the principle curvatures at p ∈ M , denoted by κ1 and κ2, are
the minimum and maximum curvatures of M -geodesics passing through p. They depend on the specific
embedding and are not intrinsic properties of the surface; consider for instance curling a sheet of paper
slightly. Nevertheless, Gauss made the remarkable discovery that their product K = κ1κ2 is an isometry
invariant of (M, g). This result, known as Theorema Egregium, follows from the fact that the Gaussian
curvature can be expressed via the curvature tensor as

K =
Rm(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2
,
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where X and Y constitute any basis for TpM . Although Gaussian curvature is only applicable to smooth
surfaces it has a higher dimensional analogue: sectional curvature.

Let us return to the setting where (M, g) is an arbitrary n-dimensional Riemannian manifold with
p ∈M . We will define sectional curvature as Gaussian curvature of certain 2-dimensional submanifolds of
M containing p. Let Π be a 2-dimensional subspace of TpM and choose a neighbourhood of zero V ⊂ TpM
where the restricted exponential map is a diffeomorphism. Then

SΠ := Expp(Π ∩ V)

is a 2-dimensional submanifold of M containing p called a plane section. Define the sectional curvature
of M associated with Π at p to be the Gaussian curvature of SΠ at p with the induced metric from M .
The notation K(Π) or K(X,Y ) will be used when X,Y is any basis for Π. We regain the formula

K(X,Y ) =
Rm(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2
,

which is nontrivial since the curvature tensor here is the one corresponding to M .
Two 4-tensor fields R1 and R2 which have the same symmetries as the curvature tensor (2.4) and

satisfies
R1(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2
=

R2(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2
,

for any two linearly independent vectors X,Y ∈ TpM are equal. Hence sectional curvature recovers all the
information in the curvature tensor. It also gives the following geometric interpretation of Ricci and scalar
curvature: For any unit vector E1 ∈ TpM , extend it arbitrarily to an orthonormal basis {E1, . . . , En}.
Then we have

Ric(E1, E1) = Rk11
k =

n∑
k=1

Rm(Ek, E1, E1, Ek) =
n∑
k=2

K(E1, Ek).

Hence the Ricci curvature Ric(E1, E1) is the sum of the sectional curvatures of the planes spanned by E1

and the other elements of the orthonormal basis. Notice that the Ricci curvature is a symmetric 2-tensor
field, hence completely determined by Ric(V, V ) where V runs through all unit vectors. Similarly, the
scalar curvature can be written as

S =
∑
j 6=k

K(Ej , Ek).

Henceforth, when we speak about curvature without specifying which type it will always be assumed to
be sectional curvature.

Example 2.21. Let us compute the sectional curvatures of the canonical spaces Rn, SnR, and Hn
R. Since

all the canonical spaces are frame-homogeneous, they all have constant sectional curvature since it is
preserved by isometries. The sectional curvature of Rn is zero since its curvature tensor is zero. The
argument for spheres and hyperbolic spaces is again similar, so we will only derive the sectional curvature
of the sphere SnR and simply state that the sectional curvature of Hn

R is − 1
R2 . Any plane section SΠ

on the sphere SnR is isometric to S2
R. The usual parametrization of the great circles on S2

R show that
κ1 = κ2 = ± 1

R , depending on whether an inward or an outward unit normal is chosen. Anyhow, the
Gaussian curvature is K = 1

R2 which implies that the sectional curvature of SnR is 1
R2 .

Definition 2.22. A Riemannian model space is a simply connected Riemannian manifold which is com-
plete and has constant sectional curvature.

Notice that our work so far has shown that the canonical spaces Rn, SnR, and Hn
R are Riemannian

model spaces. Much of the remaining chapter will be dedicated to showing uniqueness of the Riemannian
model spaces; any Riemannian model space will be isometric to one of the canonical spaces. Without
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the requirement of connectedness given implicitly through simply connectedness, disjoint unions of Rie-
mannian model spaces would again be Riemannian model spaces. It is straightforward to check that the
unit ball in Rn with the induced Riemannian metric from Rn satisfies all the conditions of a Riemannian
model space except completeness. The abstract torus S1 × S1 with the product metric is only lacking
simply connectedness, as its fundamental group is two copies of the integers. Lastly, a straightforward
computation shows that the product metric on S2 × S2 does not have constant sectional curvature even
through it is complete and S2 × S2 is simply connected. Hence all of the conditions in the definition of a
Riemannian model space are independent.

2.3 An Infinitesimal Model of Symmetry

In this section we shall describe an “infinitesimal model of symmetry” using Killing vector fields and see
how this relates to the isometry group of a homogeneous Riemannian manifold. Through an identification
with the Lie algebra of the isometry group, this will provide an upper bound on the dimension of the
isometry group. We shall see that having an isometry group with maximal dimension is equivalent with
a previously encountered property: frame-homogeneity. Firstly, we develop some theory on Jacobi fields
we need both in this and the next section.

2.3.1 Jacobi Fields

The theory of Jacobi fields arises from trying to understand how geodesics spread apart. The proof of any
statement in this subsection can be found in [Lee97, Chapter 10]. Given a geodesic segment γ : [a, b]→M
and ε > 0, we say that a map

Γ : (−ε, ε)× [a, b] −→M, Γ(0, t) = γ(t)

is a variation through geodesics for γ whenever Γs(t) is a geodesic segment for each s ∈ (−ε, ε). We call
the vector field J(t) = ∂sΓ(0, t) along γ the variational field of Γ as it provides an infinitesimal measure
of how the geodesics spread apart. The following equation characterizes variational fields of variations
through geodesics.

Proposition 2.23. Let γ be a geodesic and J a vector field along γ. Then J is a variational field of a
variation through geodesics for γ if and only if J satisfies the equation

D2
t J +R(J, γ̇)γ̇ = 0.

The equation above is called the Jacobi equation and vector fields along curves which solves the Jacobi
equation are called Jacobi fields. Let γ : I →M be a geodesic segment with p = γ(a) for some a ∈ I and
X,Y ∈ TpM . Then there exists a unique Jacobi field J along γ such that J(a) = X and DtJ(a) = Y .
Hence the set of Jacobi fields Jac(γ) along γ is a 2n-dimensional subspace of T (γ). The vector fields γ̇ and
tγ̇ are always Jacobi fields along γ, and represent variations corresponding to simple reparametrizations
of γ. In the following proposition we use the identification Tx(TpM) ' TpM for p ∈M and x ∈ TpM .

Proposition 2.24. Let M be a Riemannian manifold with p ∈M , x ∈ TpM , and vx ∈ Tx (TpM). Then

dExpp(vx) = J(1),

where J is the unique Jacobi field along the geodesic γx such that J(0) = 0 and DtJ(0) = vx.

Remark. It is worthwhile to point out that although we will use Jacobi fields as a technicality for dealing
with Killing vector fields and locally symmetric spaces, the theory of Jacobi fields could be given a much
more prominent role in proving the classification of Riemannian model spaces, see [Lee97, Chapter 11]
for such an approach. Our choice of going through symmetric and locally symmetric spaces for proving
uniqueness of Riemannian model spaces is motivated by the sub-Riemannian case. This route will pave
the way to define sub-Riemannian model spaces which are the main objects of interest in this thesis.
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2.3.2 Killing Vector Fields

We now define Killing vector fields and work towards providing an upper bound for the isometry group
of a homogeneous Riemannian manifold.

Definition 2.25. A vector field X on a Riemannian manifold M is said to be a Killing vector field if the
stages ψt of its local flow are isometries.

We interpret Killing vector fields as an infinitesimal model for isometries, a viewpoint which will be
given rigorous weight in Proposition 2.30. Recall that a vector field is said to be complete if its maximal
integral curves are defined on the whole real line. Some care has to be taken in the definition of a Killing
vector field when it is not complete. Then the domain of the local flow is a proper open subset of R×M
and the notion of isometry has to be adapted to this restriction, see [dC92, Exercise 3.5]. However, it
follows from [O’N83, Proposition 9.30] that every Killing vector field on a complete Riemannian manifold
is complete. As we will primarily be interested in homogeneous spaces, these technicalities will not play
a role on our exposition. Many authors, e.g. [O’N83], define Killing vector fields by property (2) in the
proposition below.

Proposition 2.26. For a vector field X on a Riemannian manifold (M, g) the following are equivalent:

(1) X is a Killing vector field,

(2) LXg ≡ 0, where L denotes the Lie derivative,

(3) X〈Y,Z〉 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉, for Y, Z ∈ X(M),

(4) 〈∇YX,Z〉 = −〈∇ZX,Y 〉, for every Y,Z ∈ X(M).

The equivalence between property (2),(3), and (4) is straightforward by using that the Lie derivative
is a derivation as explained in A.2. We refer the reader to [O’N83, Proposition 9.23] for the equivalence
between property (1) and (2). Property (4) implies that parallel vector fields are Killing vector fields.
Denote the Killing vector fields on a Riemannian manifold M by i(M). The fact that

L[X,Y ] = [LX ,LY ],

for X,Y ∈ X(M) shows that i(M) is a subalgebra of X(M) under the Lie bracket. The following Lemma
gives the relationship between Killing vector fields and Jacobi fields.

Lemma 2.27. Let M be a Riemannian manifold, γ a geodesic on M , and X ∈ i(M). Then the restriction
of X to γ is a Jacobi field.

The proof of Lemma 2.27 can be found in [O’N83, Lemma 9.26]. Its main use is in the following
theorem, which is an infinitesimal version of Proposition 2.15. It will later give us a quantitative bound
on how many isometries a Riemannian manifold can have.

Proposition 2.28. Let X and Y be Killing vector fields on a connected Riemannian manifold M and let
p ∈M . If Xp = Yp and (∇X)p = (∇Y )p, then X ≡ Y . Moreover,

dim(i(M)) ≤ n(n+ 1)

2
.

Proof. It suffices to prove that X ≡ 0 whenever Xp = 0 and (∇X)p = 0 by linearity. Let A be the set
of points in M where both X and ∇X vanish. It is clearly closed and it is non-empty by assumption.
The first statement will be proved if we can show that A is open. Let p ∈ A be arbitrary, U a normal
neighbourhood centered at p, and τ a radial geodesic in U . Then X restricted to τ , denoted by Xτ , is
a Jacobi field by Lemma 2.27. Our assumptions imply that both Xτ (0) and X ′τ (0) are zero. Hence the
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uniqueness of Jacobi fields ensures that Xτ is identically zero. Both X and DX are zero on U since U is
filled with radial geodesics.

For the second statement, define the linear map

ψ : i(M) −→ TpM ⊕ o(TpM)

X 7−→ (Xp, (∇X)p),

where o(TpM) denotes the skew-symmetric linear maps from TpM to itself. It follows from what we just
proved that ψ is injective. Therefore

dim(i(M)) ≤ dim(TpM) + dim(o(TpM)) = n+
n(n− 1)

2
=
n(n+ 1)

2
.

Example 2.29. On R3 it is straightforward to check using property (3) in Proposition 2.26 that the
following vector fields are Killing vector fields:

X1 =
∂

∂x
, R1 = −y ∂

∂z
+ z

∂

∂y
,

X2 =
∂

∂y
, R2 = −z ∂

∂x
+ x

∂

∂z
,

X3 =
∂

∂z
, R3 = −x ∂

∂y
+ y

∂

∂x
.

It follows from Proposition 2.28 that these vector fields span i(R3). Since R1, R2, and R3 restrict to
Killing vector fields on (S2

R, gR) they span i(S2
R). Let us consider the median geodesic γ : R→ S2

R given
by

γ(t) = (R cos(t), R sin(t), 0).

Restricting R1, R2, and R3 to γ gives the Jacobi fields

η1(t) := R1

∣∣∣
γ
(t) = −R sin(t)

∂

∂z
,

η2(t) := R2

∣∣∣
γ
(t) = R cos(t)

∂

∂z
,

η3(t) := R3

∣∣∣
γ
(t) = −R cos(t)

∂

∂y
+R sin(t)

∂

∂x
.

Notice that η3(t) = −γ̇(t). Since the dimension of all Jacobi fields along γ is four we have

Jac(γ) = span {η1(t), η2(t), γ̇(t), tγ̇(t)} .

Recall that we can transform the geodesic γ into any other geodesic on the sphere with an orthogonal
transformation. Thus we obtain all Jacobi fields on all geodesics on S2

R by considering the image of Jac(γ)
under orthogonal transformations.

Given a Riemannian manifold M , let us use the temporary notation g for the Lie algebra of Isom(M).
Let X ∈ g have ψt in Isom(M) as its one-parameter subgroup. By the properties of the isometry group
the map R ×M → M sending (t, p) to ψt(p) is smooth. We define X+

p to be the initial velocity of the
curve t 7→ ψt(p). Then X+ is a smooth vector field on M such that the stages of its flow are given by ψt.
Since one-parameter groups are defined on the whole line, X+ is complete. Moreover, it is a Killing vector
field since ψt is an isometry. The proof of the following proposition can be found in [O’N83, Proposition
9.33].
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Proposition 2.30. Let M be a complete Riemannian manifold and g the Lie algebra of its isometry
group. Then the assignment X 7→ X+ mapping g into i(M) described above is an anti-isomorphism, that
is,

[X+, Y +] = −[X,Y ]+, X, Y ∈ g.

If M is not complete, it is an anti-isomorphism onto all complete Killing vector fields.

Thus we have a more rigorous interpretation of Killing vector fields as infinitesimal isometries and
this justifies the notation i(M). The following bound is immediate from Proposition 2.28 and Proposition
2.30.

Corollary 2.31. Let M be any Riemannian manifold. Then

dim(Isom(M)) ≤ n(n+ 1)

2
.

Homogeneous Riemannian manifolds have enough isometries to move between any two points via
isometries. The following proposition quantifies this property by extending tangent vectors to Killing
vector fields.

Proposition 2.32. Let M be a homogeneous Riemannian manifold and p ∈ M . Every tangent vector
v ∈ TpM extends to a Killing vector field on M .

Proof. The map π : Isom(M)→M given by ψ 7→ ψ(p) is a submersion, see [War83, Theorem 3.58]. Hence
for v ∈ TpM there exists a vector w ∈ TeIsom(M) such that dπ(w) = v, where e is the identity of Isom(M).
The Killing vector field W+ which corresponds to w through the identification i(M) ' TeIsom(M) given
in Proposition 2.30 satisfies W+

p = v.

Let M be a homogeneous Riemannian manifold. Then one can deduce, either from Proposition 2.32
or from the fact that π : Isom(M) → M is a submersion, that the dimension of Isom(M) can not be
smaller than the dimension of M . Putting together the previous results; any n-dimensional homogeneous
Riemannian manifold M satisfies

n ≤ dim(Isom(M)) ≤ n(n+ 1)

2
.

The following proposition implies that the manifold has constant curvature whenever the dimension of
the isometry group is maximal.

Proposition 2.33. For an n-dimensional homogeneous Riemannian manifold M , the following are equiv-
alent:

(i) dim(Isom(M)) = n(n+1)
2 ,

(ii) dim(i(M)) = n(n+1)
2 ,

(iii) M is frame-homogeneous.

Proof. The equivalence between the first two statements has already been established. Let Kp denote the
isotropy group at p ∈M . If we assume that (iii) holds, then the map

Kp 3 φ 7−→ dφp ∈ O(TpM)

is an isomorphism by Proposition 2.15. Thus

dim(Isom(M)) = dim(M) + dim(Kp) = n+
n(n− 1)

2
=
n(n+ 1)

2
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and (i) follows.
Proving the converse, namely that (i) implies (iii), is significantly more difficult and we will only

provide a roadmap to this. One starts by proving that any Riemannian manifold (M, g) satisfying (i)
has in fact constant sectional curvature, see [KN96, Theorem 6.3.3]. From there, it follows from [KN96,
Appendix, Theorem 10.1] that any connected Riemannian manifold (M, g) with

dim(Isom(M)) =
n(n+ 1)

2

necessarily has to be isomorphic to one of the canonical spaces Rn, SnR, Hn
R or projective space RPnR '

SnR/{±I}. Projective space is here given the Riemannian metric induced from the covering map π : SnR →
RPnR, see [Lee97, Chapter 3]. By lifting the problem from RPnR to SnR, one can show by similar methods
as in Example 2.18 that RPnR is frame homogeneous. This shows that (i) implies (iii) which finishes the
proof.

Remark. We have in this section focused on Riemannian manifolds with large isometry groups. It is
worthwhile mentioning a theorem of Bochner [KN96, Theorem 5.3] at the other side of the spectrum.
It states that on a Riemannian manifold with negative definite Ricci curvature, non-zero Killing vector
fields can not obtain a relative maximum. If the manifold in addition is compact, this will force every
Killing vector field to be zero. Thus Proposition 2.30 implies that the isometry group is finite and hence
zero-dimensional.

2.4 Locally Symmetric Spaces and Isometries

Let ∇ be an arbitrary affine connection on a Riemannian manifold (M, g). We also use the notation ∇
for the total covariant derivative defined for an arbitrary tensor field F of type (k, l) by

(∇F )(ω1, . . . , ωl, X1, . . . , Xk+1) = (∇Xk+1
F )(ω1, . . . , ωl, X1, . . . , Xk),

for ω1, . . . , ωl ∈ X∗(M) and X1, . . . , Xk+1 ∈ X(M). Any tensor field F such that ∇F ≡ 0 is said to be
parallel. The property that ∇ is compatible with the metric can be restated as ∇g ≡ 0, that is, that the
Riemannian metric g is parallel. The question we will answer in this section is the following:

How does the assumption that the curvature tensor is parallel affect the geometry?

Understanding this will give us insight into the local nature of symmetric spaces defined in the next section.
As usual, we will only consider the Levi-Civita connection to get an association with the geometry of the
manifold.

Definition 2.34. A Riemannian manifold is said to be locally symmetric if ∇R ≡ 0, where ∇ is the
Levi-Civita connection and R is the curvature tensor.

Proposition 2.35. For a Riemannian manifold M the following are equivalent:

• The Riemannian manifold (M, g) is locally symmetric.

• If γ is a curve in M and X,Y, Z ∈ T (γ) are parallel along γ, then R(X,Y )Z is parallel along γ.

• Sectional curvature is invariant under parallel translation.

A proof of Proposition 2.35 can be found in [O’N83, Proposition 8.10]. Examples of locally symmetric
spaces are the canonical spaces Rn, SnR and Hn

R, as well as S1 × S1 with the product metric. A common
theme in Riemannian geometry is that curvature plays a prominent role in the behaviour of nearby
geodesics. We will work towards showing that this role is so dominant for locally symmetric spaces that
it will imply the local version of the uniqueness of Riemannian model spaces in Corollary 2.39. Given two
Riemannian manifolds M and N , we will first try to understand when a linear isometry ψ : TpM → TqN
is the differential of an isometry defined on a normal neighbourhood of p ∈M .
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Definition 2.36. If ψ : TpM → TqN is a linear isometry and U a normal neighbourhood of p ∈M such
that Expq is defined on ψ(Exp−1

p (U)), then

Pψ = Expq ◦ ψ ◦ Exp−1
p : U −→ N

is called the polar map of ψ on the neighbourhood U .

Notice that if we choose U sufficiently small it follows that

Expq

∣∣∣
ψ(Exp−1

p (U))
: ψ(Exp−1

p (U)) −→ V

is a diffeomorphism onto a normal neighbourhood V of q, hence Pψ : U → V is a diffeomorphism as well.
Moreover, Pψ is defined on any normal neighbourhood of p ∈ M whenever N is complete since Expq is
then defined on the whole of TqN .

Lemma 2.37. In the notation above, Pψ maps radial geodesics to radial geodesics. Moreover, the differ-
ential of Pψ at the point p ∈M is ψ.

Proof. If γv(t) = Expp(tv) with v ∈ TpM it follows that

Pψ(γv(t)) = Expq(ψ(tv)) = Expq(tψ(v)),

for all t such that γv(t) is in U . This shows that Pψ transforms radial geodesics to radial geodesics. For
v ∈ TpM we have

dPψ(v) = dPψ(γ̇v(0)) =
d

dt

∣∣∣
t=0

Expq(tψ(v)) = ψ(v).

We can conclude from Lemma 2.37 and Proposition 2.15 that if we seek an isometry defined on a normal
neighbourhood U of p which extends ψ, then it has to be a polar map. Although we can always find polar
maps which extend ψ, they are only diffeomorphisms (on suitably small normal neighborhoods) and not
necessarily isometries. The following theorem, which is the main result in this section, gives a concrete
condition under when a linear isometry can be extended to an isometry on a normal neighbourhood for
locally symmetric spaces.

Theorem 2.38. Let M and N be locally symmetric Riemannian manifolds with ψ : TpM → TqN a linear
isometry that preserves curvature, that is,

K(Π) = K(ψΠ)

where Π is a plane in TpM and K is the sectional curvature. Then if U is a sufficiently small normal
neighbourhood of p, there exists a unique isometry Pψ : U → V where V is a normal neighbourhood of
q ∈ N such that (dPψ)p = ψ.

Corollary 2.39. If M and N are Riemannian manifolds of the same dimension and they both have the
same constant curvature, then any two points p ∈ M and q ∈ N have isometric neighbourhoods. In
particular, Riemannian model spaces are locally isometric if they have the same curvature.

Corollary 2.39 follows from Theorem 2.38 since constant curvature spaces are locally symmetric by
Proposition 2.35. We will extend Corollary 2.39 to a global result for Riemannian model spaces in Section
2.6. Let us turn to the proof of Theorem 2.38, which will utilize the theory we built up regarding Jacobi
fields.
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Proof. We have already established uniqueness and showed that if the isometry exists, then it has to be a
polar map. Hence the result follows if we can show that every polar map Pψ is a local isometry under the
curvature assumption on ψ. We are going to compare the growth of Jacobi fields on the two manifolds.
Let Ũ be the neighbourhood in TpM corresponding to U via the exponential map. For s ∈ U and v ∈ TsM
there is a unique x ∈ Ũ and yx ∈ Tx (TpM) such that dExpp(yx) = v. It follows from Proposition 2.24
that

〈v, v〉 = 〈Y (1), Y (1)〉

where Y is the Jacobi field on γx such that Y (0) = 0 and DtY (0) = y. Here yx ∈ Tx (TpM) is identified
with y ∈ TpM through the usual identification Tx (TpM) ' TpM .

By looking at the situation on N , we have that

dPψ(v) = dExpp(ψ(y)ψ(x))

since Pψ is a polar map. Thus we can again appeal to Proposition 2.24 to obtain that

〈dPψ(v), dPψ(v)〉 = 〈Y (1), Y (1)〉,

where Y is the unique Jacobi field on γψ(x) such that Y (0) = 0 and DtY (0) = ψ(y). Keep in mind that
our goal is to show that

〈Y (1), Y (1)〉 = 〈Y (1), Y (1)〉.

Let E1, . . . , En and E1, . . . , En be parallel frames on γx and γψ(x), respectively, with ψ(Ei(0)) = Ei(0).
Write

Y =
n∑
i=1

yiEi, Y =

n∑
i=1

yiEi, γ′x =
n∑
i=1

aiEi, γ′ψ(x) =
n∑
i=1

aiEi.

Here ai is constant since γ′x and γ′ψ(x) are geodesics. Moreover, its the same constants for both γ′x and

γ′ψ(x) since ψ(Ei(0)) = Ei(0).

The result will now follow if we can show that yi = yi for every i = 1, . . . , n. Writing out the Jacobi
equations for Y and Y gives

d2ym

dt2
=
∑
i,j,k

R
m
ijka

iykak,
d2ym

dt2
=
∑
i,j,k

Rmijka
iykak, 1 ≤ m ≤ n.

Since y1, . . . , yn and y1, . . . , yn satisfy the same initial conditions we only have to show that Rmijk = R
m
ijk.

Now we use all our assumptions: The fact that ψ preserves curvature ensures that R
m
ijk(0) = Rmijk(0). It

follows from Proposition 2.35 that

Rm(Ei, Ej , Ek, Em) = 〈R(Ei, Ej)Ek, Em〉

is constant as both R(Ei, Ej)Ek and Em are parallel.

Finally, we will explain the term “locally symmetric” and pave the way for globally symmetric spaces
in the next section. Given p ∈ M , let ξp be the polar map of the linear isometry v 7→ −v of TpM on a
normal neighbourhood U chosen so small that ξp : U → U is a diffeomorphism. It is easy to see by using
the uniqueness of geodesics together with that polar maps transform radial geodesics to radial geodesics
that ξp reverses the direction of geodesics passing through p. That is, if γ is a geodesic with γ(0) = p
then ξp(γ(s)) = γ(−s). This property uniquely determines ξp and we call ξp the local geodesic symmetry
of M at p. An equivalent definition of locally symmetric spaces can be given by requiring that the local
geodesic symmetries ξp are isometries on suitable normal neighbourhoods, see [O’N83, Corollary 8.16].

21



2.5 Riemannian Symmetric Spaces

We will define Riemannian symmetric spaces motivated by how the local geodesic symmetries character-
ized locally symmetric spaces in the previous section. The geodesics on Riemannian symmetric spaces are
rigid in the sense that they are either one-to-one or periodic. It will follow from Corollary 2.47 that the
Riemannian model spaces are Riemannian symmetric spaces. By showing that Riemannian symmetric
spaces are homogeneous we open up the Lie theory machinery developed in Section 2.2. In fact, we will
see that Riemannian symmetric spaces are always naturally reductive. Finally, we provide a global version
of Theorem 2.38 for symmetric spaces in Theorem 2.46 which will be our main tool for classifying the
Riemannian model spaces in the next section.

Definition 2.40. Let M be a Riemannian manifold. A global symmetry at p is an isometry ξp ∈ Isom(M)
such that

ξp(p) = p, (dξp)p = −Id.

We call M a (Riemannian) symmetric space if every point possesses a global symmetry.

It is clear that such a symmetry has to be unique by Proposition 2.15. Moreover, by restricting ξp to a
normal neighbourhood it is clear that symmetric spaces are locally symmetric. One way to see that there
are locally symmetric spaces which are not globally symmetric is to realize that open subsets of locally
symmetric spaces are again locally symmetric. This is not true for symmetric spaces due to the following
proposition.

Proposition 2.41. Symmetric spaces are homogeneous hence also complete. Thus any proper open
submanifold of a symmetric space is locally symmetric, but not symmetric.

Proof. We will prove that symmetric spaces are geodesically complete before proving that they are ho-
mogeneous. For this we will use the global symmetry maps to ”reflect geodesics further”. Let γp be a
geodesic starting at p ∈ M and let γp(r) = q ∈ M for some r > 0. Then if we define γq(t) = γp(t + r)
we obtain a geodesic which starts at q, that is, γq(0) = q. Now reflecting twice with the global symmetry
gives

ξq(ξp(γp(t))) = ξq(γp(−t)) = ξq(γq(−t− r)) = γq(t+ r) = γp(t+ 2r).

This shows that we can extend geodesics arbitrarily, hence M is a complete metric space by the Hopf-
Rinow Theorem.

To show that symmetric spaces are homogeneous we let x, y ∈ M be two arbitrary points. Let
γ : R→M be a geodesic connecting the two points, γ(t1) = x and γ(t2) = y, which exists by completeness.
If we make the substitution γmid(s) = γ

(
s+ t1+t2

2

)
it follows that

ξγ( t+s2 )(x) = ξγ( t+s2 )

(
γmid

(
t1 − t2

2

))
= γmid

(
t2 − t1

2

)
= y.

For a homogeneous Riemannian manifold M it is enough to possess a global symmetry ξp at one point
p ∈ M to be a symmetric space: Then for q ∈ M and an isometry φ ∈ Isom(M) taking p to q, the
map ξq = φ−1 ◦ ξp ◦ φ gives a global symmetry at q. Let G be a Lie group equipped with a bi-invariant
Riemannian metric. Then [O’N83, Proposition 11.9] shows that the inversion map g 7→ g−1 is an isometry
for every g ∈ G. This is clearly a global symmetry at the identity which implies that Lie groups with
bi-invariant metrics are symmetric spaces.

Definition 2.42. Let M be a complete Riemannian manifold and let γ : R → M be a geodesic. Then
φc ∈ Isom(M) is a transvection along γ of shift c ∈ R provided that

• φc translates γ, meaning that φc(γ(s)) = γ(s+ c) for all s ∈ R.
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• If v ∈ Tγ(s)M , then dφ(v) ∈ Tγ(s+c)M is the parallel translate of v along γ.

If transvections of any shift exist for any geodesic, we simply say that M possesses transvections. In
that case, if γ : R→M is a geodesic with γ(b) = γ(0) then

γ(s+ b) = φs(γ(b)) = φsγ(0) = γ(s),

where φs is a transvection along γ of shift s. Thus for Riemannian manifolds which possess transvections,
all geodesics have to be either one-to-one or simply periodic.

Proposition 2.43. Riemannian symmetric spaces possess transvections. More concretely, the map
ξγ(c/2)ξγ(0) is the required transvection along γ of shift c.

The translation property is straightforward to check for the proposed transvection while the parallel
property can be found in detail in [O’N83, Proposition 9.30]. Before continuing to the main theorem on
symmetric spaces, we examine the geometry of symmetric spaces through Lie theory similarly to how
we did with homogeneous spaces. Recall that since a symmetric space M is homogeneous it can be
described as M ' G/H := Isom(M)/Kx0 , where Kx0 is the isotropy group at x0. We will see that the
geodesic symmetry ξ := ξx0 provides additional information which ensures that symmetric spaces are
always naturally reductive.

Lemma 2.44. Let M = G/H be a connected symmetric space with geodesic symmetry ξ at x0. Then the
map τ : G→ G given by g 7→ ξgξ is an involutive automorphism such that Fix(τ)0 ⊂ H ⊂ Fix(τ), where
Fix(τ)0 denotes the connected component of Fix(τ) containing the identity.

Proof. Since ξ−1 = ξ, τ is simply conjugation by ξ and hence an involutive automorphism. If h ∈ H
we have dτ(h) = dξx0dhx0dξx0 = dhx0 . Thus the conectedness of M implies that τ(h) = h since the
differentials agree at one point. This shows that H ⊂ Fix(τ). Notice that Fix(τ)0 is a connected Lie
group and hence is generated by its one-parameter subgroups α(t). We are done if we can show that
α(t)x0 = x0, as this gives that α(t) ∈ H. Since τ(α(t)) = α(t) it follows that

ξ(α(t)x0) = α(t)ξ(x0) = α(t)x0.

The fact that x0 an isolated fixed point of ξ gives that α(t)x0 = x0 for |t| small. This ensures that
α(t) ∈ H for all t.

Proposition 2.45. Using the notation from the previous lemma, with h ⊂ g denoting the Lie algebras of
H and G, we have

• h = {X ∈ g : dτ(X) = X} ,
• g is the direct sum of h and the Ad(H)-invariant subspace m = {X ∈ g : dτ(X) = −X} ,
• [m,m] ⊂ h, [m, h] ⊂ m, and [h, h] ⊂ h.

Proof. Since τ |H is the identity by Lemma 2.44 it follows that dτ(X) = X whenever X ∈ h. Conversely,
let dτ(X) = X and let α be the one-parameter subgroup corresponding to X. Then τ ◦ α = α since they
have the same initial velocity and are both one-parameter subgroups. Hence α lies in Fix(τ)0 ⊂ H, so
X ∈ h and this establishes the first claim. For any X ∈ g we write

X = Xh +Xm :=
X + dτ(X)

2
+
X − dτ(X)

2
.

It is clear that Xh ∈ h and Xm ∈ m. Hence h ∩ m = {0} implies that g = h ⊕ m. To see the Ad(H)-
invariance of m we must show that dτ(Adh(X)) = −Adh(X) for h ∈ H. If we denote by Ch the map
g 7→ hgh−1 for h ∈ H, then

τCh(g) = τ(hgh−1) = hτ(g)h−1.
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Hence Ch and τ commute and for X ∈ m,

dτ(Adh(X)) = d(τ ◦ Ch)(X) = d(Ch ◦ τ)(X) = Adh(−X) = −Adh(X).

The last assertion consists of straightforward computations. For m the computation is

dτ([X,Y ]) = [dτ(X), dτ(Y )] = [−X,−Y ] = [X,Y ],

for X,Y ∈ m.

Although Ad(H)-invariant complements of h always exist for homogeneous spaces, symmetric spaces
have a canonical complement obtained from its geodesic symmetries as described above. The condition
[m,m] ⊂ h makes M = G/H trivially into a naturally reductive space. Hence geodesics in M starting
at x0 is given by projections of one-parameter curves with initial velocity in m as we mentioned when
discussing naturally reductive spaces in general. Moreover, by [O’N83, Proposition 11.31] the curvature
tensor of M at x0 is given by

R(x, y)z = −dπ ([[X,Y ], Z]) ,

where X,Y, Z ∈ m correspond to x, y, z ∈ Tx0M under the isomorphism dπ|m : m → Tx0M . Hence
curvature in symmetric spaces can be described purely by algebraic means through Lie theory. Let us
now turn to the main theorem of this section. The term Riemannian covering for a map φ : M → N
between Riemannian manifolds is used for a covering map which is also a local isometry.

Theorem 2.46. Let M and N be complete and locally symmetric Riemannian manifolds with M simply
connected and N connected. If ψ : TpM → TqN is a linear isometry which preserves curvature, then there
exists a unique Riemannian covering Ψ : M → N such that dΨp = ψ.

Remark. We will not prove Theorem 2.46, the proof can be found in [O’N83, Theorem 8.17]. The main
idea of the proof is as follows: There exists by Theorem 2.38 an isometry Pψ on some neighbourhood of
p which extends ψ. Any point p′ ∈M can be connected to p by a geodesic β, so we can parallel translate
ψ along β to p′ and obtain another isometry on a neighbourhood of p′. Finally, the simply connectedness
of M will ensure that these isometries patch suitably together to form the desired Riemannian covering
map.

Corollary 2.47. A complete, simply connected, and locally symmetric Riemannian manifold is symmet-
ric.

Proof. For any point p ∈M , the differential of the local geodesic symmetry dξp = −Id : TpM → TpM is
an isometry and preserves curvature. Applying Theorem 2.46 with M = N gives a Riemannian covering
map Φ : M → M such that (dΦ)p = −Id. Since M is simply connected it follows from covering theory
that the map is a diffeomorphism and hence an isometry, see [Hat02, Theorem 1.38]. This gives precisely
a global symmetry at p.

Most importantly for us, all Riemannian model spaces are symmetric spaces. In the next and final
section of this chapter, this will provide us with a complete classification of the Riemannian model spaces.

2.6 Classification of Riemannian Model Spaces

We begin this section by surveying a few classical results which relate bounds on sectional curvature
to the topology of the space, proofs can be found in [Lee97, Chapter 11]. These results motivate the
classification of Riemannian model spaces, since they are the simplest spaces for which the assumptions
in the theorems hold. Then the main result of this chapter, the classification of Riemannian model
spaces, will be stated and proved using the theory we developed on symmetric spaces. Lastly, we will give
several equivalent definitions of Riemannian model spaces based on “maximal symmetry”, one of which
generalizes to the sub-Riemannian setting in Chapter 4. The following theorem shows that manifolds for
which a Riemannian metric with nonpositive sectional curvature exists are rather special.
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Theorem 2.48 (Cartan-Hadamard). If (M, g) is a complete Riemannian manifold with sectional cur-
vature nonpositive at every point, then the universal cover of M is diffeomorphic to Rn. Hence if M in
addition is simply connected, then M itself is diffeomorphic to Rn.

This theorem implies that it is not possible to find a Riemannian metric on real projective space
RPn with nonpositive sectional curvature at each point: Notice that any Riemannian metric on RPn is
complete due to compactness. Such a metric would imply a diffeomorphism between Rn and the universal
cover of RPn, which is Sn. This is clearly not possible since Sn is compact while Rn is not. At the other
end of the spectrum, we have the following topological consequences for Riemannian manifolds whose
sectional curvature are bounded from below.

Theorem 2.49 (Bonnet’s Theorem). Let (M, g) be a complete Riemannian manifold whose sectional
curvature is bounded below by a positive constant 1

R2 . Then the diameter of M (as a metric space) is less
than or equal to πR. Moreover, M is compact and has finite fundamental group.

It follows that the torus S1 × S1 with any Riemannian metric can not have curvature bounded from
below by a positive constant since its fundamental group is not finite. Bonnet’s Theorem holds under the
more general assumption that the Ricci curvature satisfies the estimate

Rc(V, V ) ≥ n− 1

R2
|V |2,

for every p ∈ M , V ∈ TpM , and n = dim(M). We now come to the main theorem of the chapter: the
classification of model spaces in Riemannian geometry.

Theorem 2.50 (Classification of Model Spaces). Let (M, g) be an n-dimensional Riemannian model
space with n ≥ 2 and sectional curvature K. Then (M, g) ' Σ(n,K), where

Σ(n,K) =


(SnR, gR) if K = 1

R2

(Rn, ḡ) if K = 0

(Hn
R, hR) if K = − 1

R2

Thus the Riemannian model spaces are (up to isometry) precisely the canonical spaces Rn, SnR, and Hn
R.

Proof. Clearly the three canonical spaces are not isometric since they have different sectional curvatures.
Let p ∈M, q ∈ Σ(n,K), and pick a linear isometry ψ : TpM → TqΣ(n,K) which exists since the manifolds
have the same dimension. Then ψ preserves curvature as both manifolds have the same constant sectional
curvature. Since M and Σ(n,K) are symmetric spaces and M is simply connected, we can apply Theorem
2.46 to find a Riemannian covering map Φ : M → Σ(n,K) such that (dΦ)p = ψ. This is a diffeomorphism
because Σ(n,K) is simply connected and hence a global isometry.

From now on we refer to the canonical spaces Rn, SnR, and Hn
R as the model spaces in Riemannian

geometry without any ambiguity. After fixing a dimension there is (up to topological and geometrical
requirements) one parameter determining the model spaces in Riemannian geometry: sectional curvature.

We can conclude from Example 2.18 and Proposition 2.33 that O(n+ 1) ⊂ Isom(SnR) and O+(n, 1) ⊂
Isom(Hn

R) are co-dimension zero Lie subgroups. The reverse inclusion for Isom(SnR) ⊂ O(n + 1) can be
established by showing that any isometry of SnR is the restriction of an isometry of Rn+1. Similarly,
the case Isom(Hn

R) ⊂ O+(n, 1) can be deduced by showing that any isometry of Hn
R is the restriction of

an isometry of Rn+1 with the Minkowski metric given in Example 2.6. The results gathered about the
Riemannian model spaces in this chapter can be summarized in the following table:

Model Spaces (Rn, ḡ) (SnR, gR) (Hn
R, hR)

Sectional Curvatures 0 1
R2 − 1

R2

Geodesics Straight Lines Great Circles Great Hyperbolas
Isometry Groups E(n) O(n+ 1) O+(n, 1)
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Example 2.51. At the end of Section 2.2 we pointed out that the standard product metric on S2 × S2

does not have constant sectional curvature. We will now apply the classification theorem to show that
M = Sn × Sn, n ≥ 2 with any Riemannian metric g can not have constant sectional curvature. Notice
that M is simply connected and any Riemannian metric on M is complete due to the compactness of M .
Assume that (M, g) has constant sectional curvature. Then it is a Riemannian model space and must be
isometric to one of the three Riemannian model spaces with dimension 2n. Compactness excludes the
possibilities R2n and H2n

R , so only S2n
R is an option. However, computing their homology groups with

integer coefficients gives that

Hk(S
2n) =

{
Z if k = 0, 2n

0 otherwise
, Hk(S

n × Sn) =


Z if k = 0, 2n

Z× Z if k = n

0 otherwise

The computation for Hk(S
n) can be done with a Mayer-Vietoris sequence while the computation for

Hk(S
n × Sn) follows from the Künneth formula in homology, see [Hat02] for an explanation of these

techniques. Moreover, the Cartan-Hadamard Theorem additionally impose that the curvature has to be
strictly positive for at least one plane section.

Finally, we can combine results gathered throughout the chapter to give equivalent definitions of being
a Riemannian model space. The last equivalent definition in Theorem 2.52 will be the basis for defining
model spaces in sub-Riemannian geometry.

Theorem 2.52. For a simply connected n-dimensional Riemannian manifold (M, g), the following are
equivalent:

(1) (M, g) is a model space,

(2) dim(Isom(M)) = n(n+1)
2 ,

(3) (M, g) is frame-homogeneous,

(4) any linear isometry ψ : TpM → TqM lifts to a unique isometry Ψ : M →M such that dΨp = ψ, for
every p, q ∈M.

Proof. We will begin by showing that (4) implies (3). For p, q ∈ M , let E = (E1, . . . , En) and F =
(F1, . . . , Fn) be orthonormal bases at TpM and TqM , respectively. There exists a linear isometry ψ :
TpM → TqM taking E to F . Then (4) gives an isometry Ψ : M → M whose differential at p takes E to
F , showing that M is frame-homogeneous. This shows that (4) implies (3) and Proposition 2.33 gives the
equivalence between (2) and (3). We have already pointed out that frame-homogeneity implies constant
curvature and that homogeneous spaces are complete, showing that (3) implies (1). Finally, recall that
Riemannian model spaces are symmetric spaces by Corollary 2.47. Thus Theorem 2.46 shows that the lift
condition is satisfied due to the fact that any linear isometry preserves curvature on constant curvature
spaces. This shows that (1) implies (4) and the result follows.

Remark. The classification procedure we have presented in this chapter carries over with few alterations
to the Semi-Riemannian setting. A Semi-Riemannian manifold (M,g) is a manifold M together with
a nondegenerate symmetric 2-tensor field g. An example of a Semi-Riemannian manifold which is not
Riemannian is R4 with the Minkowski-metric presented in Example 2.6. We refer the reader to [O’N83,
Corollary 8.24] for the classification of model spaces in the Semi-Riemannian setting. The model spaces in
Semi-Riemannian geometry are conceptually the nondegenerate generalizations of the Riemannian model
spaces. Contrary to this, sub-Riemannian model spaces have a distinct flavor from their Riemannian
counterparts as we shall see in Chapter 4 and Chapter 5.
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3 Geometry of Bundles

In this chapter we will develop the theory of principal bundles and look closely at a particular example:
the frame bundle. The main reason for developing this theory is to use it as a tool when studying
sub-Riemannian geometry in Chapter 4 and Chapter 5. However, we will also survey some results not
needed in later chapters to motivate concepts and make the exposition more complete. A principal
connection will be an extra piece of information on a principal bundle which often encode the geometry
of the original manifold. Curvature and holonomy of a principal connection will be developed, resulting
in the Ambrose-Singer theorem providing the link between them. The frame bundle of a manifold will be
closely related with Riemannian structures on the manifold, allowing us to define torsion and curvature
of the frame bundle. Together with the structural equations and Bianchi identities, this provides a
panoramic view of the original geometry through forms on the frame bundle. Any affine connection on
a homogeneous manifold gives rise to principal connections on both the isometry group and the frame
bundle. Understanding how these induced connections relate to each other gives a powerful tool for the
classification of sub-Riemannian model spaces in the next chapters.

3.1 Principal and Frame Bundles

3.1.1 Principal Bundles

We will assume the reader is familiar with the definition of a fiber bundle, see [Lee13, Chapter 10] for a
short introduction. Terminology regarding Lie group actions are refreshed in Appendix A.2.

Definition 3.1. A principal bundle is a smooth fiber bundle π : P →M together with a right Lie group
action

P ×G −→ P

(p, g) 7−→ p · g = Rg(p),

preserving the fibers and acting freely and transitively within each of them. We can identify each fiber
with G and the local triviality condition reads as follows: There exists an atlas A for M such that the
following diagram commutes,

π−1(U) U ×G

U

π

(π,φ)

PrU

for each U ∈ A. The map (π, φ) : π−1(U) → U × G is a diffeomorphism and φ : π−1(U) → G is
G-equivariant. We use the expression principal G-bundle to emphasize the structure group G and the
notation G −→ P

π−→M or simply G −→ P −→M to denote a principal bundle.

Standard terminology from fiber bundle theory such as total space, base space, and fiber over x ∈M will
be used. Notice that dim(P ) = dim(G) + dim(M) holds because φ : π−1(U)→ U ×G is a diffeomorphism
between open sets of P and G×M . Equivalence between principal bundles is defined in the same way as
for ordinary fiber bundles with the additional requirement that the group action is preserved under the
map between the total spaces.

The most obvious example of a principal bundle is the product bundle

G −→M ×G π−−→M,

where π is the projection onto the first factor and G acts on M × G by (p, g1) · g2 = (p, g1g2). It is
clear that the action is transitive and free within the fibers. Moreover, the global trivialization satisfies
the G-invariance property. We call G −→ M × G

π−→ M the trivial principal bundle with base space
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M and structure group G. Although simple, this example contains the only vector bundles which are
simultaneously principal bundles. This is due to the fact that vector bundles always admit sections. A
principal bundle on the other hand possesses globally defined sections if and only if it is equivalent to a
trivial principal bundle: Clearly the bundle G −→ M × G π−→ M has the global section m 7→ (m, e) for
m ∈ M and the identity e ∈ G. The result then holds for any bundle equivalent to a trivial principal
bundle. Conversely, assume there exists a map s : M → P such that π ◦ s = idM . Then for any p ∈ P
there is a gp ∈ G such that s(π(p)) · gp = p. Define the map

(π, φ) : P −→M ×G
p 7−→ (π(p), gp).

It is straightforward to check that (π, φ) is G-invariant and the induced map from M to M is the identity.
These properties are sufficient for the bundles to be equivalent, see [Wal04, Theorem 3.1] for more details.

Remark. If {Uα}α∈A is a local trivialization for G −→ P
π−→M then, whenever Uαβ := Uα ∩ Uβ 6= ∅, there

are two trivializations

Uαβ ×G
(π,φα)←−−−− π−1(Uαβ)

(π,φβ)
−−−−→ Uαβ ×G.

Since φα ◦ φ−1
β : G→ G is G-invariant, it is straightforward to see that

(π, φα) ◦ (π, φβ)−1(x, h) = (x, gαβ(x)h), x ∈ Uαβ, h, gαβ(x) ∈ G.

The functions gαβ : Uαβ → G are called transition functions and satisfies the cocycle condition

gαβgβγ = gαγ ,

whenever Uα ∩Uβ ∩Uγ 6= ∅. If we start with M , G, and the transition functions we can construct P such

that G −→ P
π−→M becomes a principal bundle, see [KN96, Proposition 5.2].

Example 3.2. Let G be a Lie group with H a closed subgroup of G. We consider the homogeneous space
G/H together with the projection π : G → G/H. The canonical action of H on G given by (g, h) 7→ gh
is smooth and acts freely and transitively within each fiber π−1([g]) for [g] ∈ G/H by definition. We
pointed out in the proof of Proposition 2.17 that there exist smooth local sections for π. Hence for every
[g] ∈ G/H there is a neighbourhood U of [g] and a map sU : U → G such that π ◦ sU = IdU . This gives
a canonical map

ψ : U ×H −→ π−1(U),

sending ([g], h) to sU ([g]) · h. The inverse of ψ is a local trivializations given explicitly by

(π, φU ) := ψ−1 : π−1(U) −→ U ×H
g 7−→ ([g], sU ([g])−1 · g).

The G-invariance property follows from the definition, since

φU (gh) = sU ([g])−1 · gh =
(
sU ([g])−1 · g

)
h = φU (g)h,

for h ∈ H and g ∈ π−1(U). Hence H −→ G
π−→ G/H is a principal bundle.

3.1.2 Frame Bundles and Associated Bundles

Although vector bundles are not usually principal bundles, we can associate a principal bundle to every
vector bundle. The construction that follows is most transparent from a geometric viewpoint when having
the tangent bundle of M in mind. Let π : E → M be an arbitrary rank r vector bundle over M . We
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denote by F(Ex) all frames at x ∈ M , that is, all ordered bases for Ex = π−1(x). These spaces are
collected together

F(E) =
∐
x∈M
F(Ex),

and equipped with the projection π̃ : F(E) → M which sends a frame in F(Ex) to x. It will be useful
to consider an ordered basis X1, . . . , Xr for Ex as a mapping u : Rr → Ex sending the standard basis
e1, . . . , er of Rr to X1, . . . , Xr, respectively. With this view, we have a canonical action of GL(r,R) on
each fiber given by precomposition,

Rr A−→ Rr u−→ Ex,

where A ∈ GL(r,R) and u ∈ F(Ex). It follows from standard linear algebra that the action is smooth.
Moreover, the action is transitive and free within each fiber. If (π, φ) : π−1(U) → U × Rr is a local
trivialization for π : E →M , then

(π̃, ψ) : π̃−1(U) −→ U ×GL(r,R)

u 7−→ (π̃(u), φ|Eπ̃(u) ◦ u)

is bijective and the transition functions are clearly smooth and take values in GL(r,R). Hence the frame
bundle is a principal GL(r,R)-bundle.

Analogous to the frame bundle construction, which associates a principal bundle to a vector bundle,
one can associate a vector bundle to a principal bundle in the following way: Let G −→ P

π−→ M be a
principal bundle and ρ : G → GL(V ) a finite dimensional representation of the structure group. Then
P ×ρ V is defined to be the Cartesian product P × V under the equivalence relation (p, v) ∼ (pg, g−1v).
We have a projection β : P ×ρV →M given by β([p, v]) = π(p) which is well-defined since the action of G

on P preserves the fibers. Then P ×ρ V is a vector bundle called the associated bundle to G −→ P
π−→M ,

see [Tu17, Proposition 31.1] for details. We use the notation Ass(P ) for the associated bundle whenever
the structure group and its representation is clear from the context. The vector space structure on the
fiber is induced by the vector space structure on V . A Lie group G can always act on its Lie algebra g
via the adjoint representation, and the associated bundle P ×Ad g is called the adjoint bundle.

Remark. Beginning with a rank r vector bundle π : E →M , we can form the frame bundle π̃ : F(E)→M
with structure group GL(r,R). As GL(r,R) already consists of linear isomorphisms from Rr to itself, we
obtain the associated bundle

Ass(F(E)) = F(E)×IdGL(r,R) R
r.

The map

ψ : Ass(F(E)) −→ E

[p, v] 7−→ p(v)

is a well-defined isomorphism of vector bundles over M . In particular,

Ass(F(TM)) ' TM.

3.1.3 The Fundamental Vector Field

If G −→ P
π−→ M is a principal bundle, then V = ker(dπ) ⊂ TP is called the vertical space of the bundle.

Elements of Vp are called vertical vectors at p ∈ P . We can use the Lie group action to represent the
collection {Vp, p ∈ P} through the Lie algebra g of G as follows: For every p ∈ P the map ip : G → P
given by ip(g) = p · g sends the identity of G to p, hence induces a map dip : g → TpP . Letting p ∈ P
range over all different values gives the map

ξ : g 3 A 7−→ ξA ∈ X(P ),

29



called the fundamental vector field corresponding to A ∈ g. It can be written with the use of the Lie
group exponential map exp : g→ G as

ξA(p) =
d

dt
p · exp(tA)

∣∣∣
t=0

.

For convenience, we employ the notation eA := exp(A) for A ∈ g and X(V) for the vector fields on P
taking values in V. Since π ◦ ip(g) = π(p) for every g ∈ G, the derivative of the composition is zero
showing that ξA ∈ X(V). As the following proposition shows, the fundamental vector field gives a way of
identifying all the vertical spaces with the Lie algebra g.

Proposition 3.3. The map ξ(p) : g → Vp sending A to ξA(p) is a vector space isomorphism for each
p ∈ P . In particular, V is a trivial bundle.

Proof. We have showed that ξA ∈ X(V) and it is clear that ξ(p) is linear since it is the derivative of the
smooth map ip : G→ P . To show injectivity we assume that

ξA(p) =
d

dt

(
p · eAt

) ∣∣∣
t=0

= 0.

A simple computation shows that γ(t) = p and cp(t) = p·eAt are both integral curves of ξA through p. The
uniqueness of integral curves gives that p · eAt = p for every t ∈ (−ε, ε), for some ε > 0. Since the group
action is free, this forces eAt to be equal to the identity for the same values of t. Since the exponential
map is a diffeomorphism in a neighbourhood of 0 ∈ g it follows that A = 0. Surjectivity follows once we
know that the vector spaces g and Vp have the same dimension. If Hp denotes an arbitrary complement
to Vp in TpP , then

dim(Vp) = dim(TpP )− dim(Hp) = dim(P )− dim(Tπ(p)M) = dim(P )− dim(M) = dim(g).

Hence ξ(p) : g → Vp is a linear isomorphism. This implies that ξA1 , . . . , ξAr is a global frame for V
whenever A1, . . . , Ar is a basis for g.

The proof of Proposition 3.3 reveals that ξA is a non-vanishing vector field on P for any non-zero
A ∈ g. This gives restrictions on which spaces can be total spaces in principal bundles. It is well known
that there are no non-vanishing vector fields on S2, see [Hat02, Theorem 2.28]. Thus S2 can not be
the total space of a principal bundle unless the structure group is zero-dimensional. Notice that the
fundamental vector fields satisfy the following G-invariance property:

dRgξA(p) =
d

dt

(
Rg
(
p · eAt

)) ∣∣∣
t=0

=
d

dt

(
p · gg−1eAtg

) ∣∣∣
t=0

= ξAdg−1 (A)(Rg(p)). (3.1)

An algebraic reformulation of the situation so far is that we have for each p ∈ P a short exact sequence
of vector spaces

0 −→ g
ξ(p)−−→ TpP

dπp−−−→ Tπ(p)M −→ 0. (3.2)

3.2 Connections and Curvature on Principal Bundles

We are now ready to define connections on principal bundles. By examining horizontal lifts and connection
forms we will provide two equivalent definitions of a connection. After this we introduce the curvature of
a connection through the framework of pseudotensorial forms. The structural equation and the Bianchi
identity will be presented and provide a calculus for principal bundles.

For a principal bundle G −→ P
π−→M , the vertical space V = ker(dπ) ⊂ TP is always given. However,

a complement to Vp in TpP for each p ∈ P is not, hence must be considered as additional data. Since V
is invariant under the group action, meaning that dRgVp = Vpg, we stipulate the same condition for its
complement.
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Definition 3.4. A (principal) connection on a principal bundle G −→ P
π−→M is a G-invariant distribution

H ⊂ TP complementary to V at each point.

It will be clear from the context and notation whether we discuss principal connections or affine
connections, abbreviating both to connections whenever convenient. At each point p ∈ P we have

TpP = Hp ⊕ Vp, dRgHp = Hpg.

Any vector v ∈ TpP can be decomposed into vertical and horizontal parts v = vH + vV . We call v a
horizontal vector if vV = 0 and a vertical vector if vH = 0. On any principal bundle connections exist in
abundance, see [KN96, Theorem 2.1].

One feature of a connection is that it allows us to lift tangent vectors on M to horizontal tangent
vectors on P . Notice that for every p ∈ P the map

dπ
∣∣∣
Hp

: Hp −→ Tπ(p)M

is injective, hence an isomorphism as the spaces have the same dimension. Thus for any vector v ∈ TxM
and a choice p ∈ π−1(x), there exists a unique vector w ∈ Hp such that dπ(w) = v. We call w the
horizontal lift of v to Hp and employ the notation w = hpv. Similarly, we can lift a vector field X ∈ X(M)
to a horizontal vector field hX ∈ X(P ) by

hX(p) = hpX(π(p)).

If X,Y ∈ X(M) then h (X + Y ) = hX + hY follows from linearity of the lift. Notice that the definition
of horizontal lift of a vector field X ∈ X(M) to hX ∈ X(P ) says precisely that hX is π-related to X, that
is, dπ(hX) = X ◦ π. It follows from [War83, Proposition 1.55] that if hX is π-related to X and hY is
π-related to Y , then [hX, hY ] is π-related to [X,Y ]. Hence

dπ
(
[hX, hY ]H

)
= dπ ([hX, hY ]) = [X,Y ] ◦ π,

where the first equality follows from the definition of the vertical part. We can conclude that

h[X,Y ] = [hX, hY ]H

for all X,Y ∈ X(M) since they are both horizontal and project to the same vector field on M .
The G-invariance of H implies the following G-invariance of the horizontal lifts,

dRghX(p) = dRghpX(π(p)) = hpgX(π(pg)) = hX(pg). (3.3)

In fact, if we are given a system of lifts from X(M) to X(P ) satisfying (3.3) we can define a distribution
on P by

Hp = {hX(p) : X ∈ X(M), p ∈ P} .
It is straightforward to check that these subspaces constitute a connection. Hence systems of G-invariant
lifts are in one-to-one correspondence with connections on G −→ P

π−→M .
In view of the exact sequence (3.2) this equivalence is, at least pointwise, that a map hp : Tπ(p)M →

TpP such that dπ ◦ hp = idTπ(p)M is equivalent to a splitting

TpP = Hp ⊕ Vp ' Tπ(p)M ⊕ g,

see [Lan02, Proposition 3.2]. The last equivalent definition of a split exact sequence is with the existence
of a contraction, that is, by the existence of a map ω : TpP → g such that ω ◦ ξ(p) = Idg. Let H ⊂ TP
be a connection and for p ∈ P define

ωp : TpP −→ g, ωp(X) = (ξ(p))−1 (vV),

where ξ is the fundamental vector field and v ∈ TpP . We call ω the connection one-form corresponding
to H. Notice that ker(ω) = H and that ωp provides a left inverse to ξ(p).
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Proposition 3.5. The connection one-form ω satisfies the G-invariance property

R∗gω = Adg−1 ◦ ω

for every g ∈ G. Moreover, it is a smooth vector valued form.

Proof. We check that the G-invariance is true for horizontal and vertical vectors separately which suffices
since both sides are linear. First consider a horizontal vector X ∈ Hp. The vector dRgX is still horizontal
by the G-invariance of H. Hence both sides are zero when evaluated at X. Now let v ∈ TpP be a vertical
vector and write v = ξA(p) for some A ∈ g. From the G-invariance of the fundamental vector field map
(3.1), it follows that

R∗gω(v) = R∗gω(ξA(p)) = ω (dRgξA(p)) = ω
(
ξAdg−1 (A)(Rg(p))

)
= Adg−1(A) = Adg−1 ◦ ω(v).

Smoothness is checked pointwise by patching together smooth local frames for H together with the
fundamental vector fields corresponding to a basis for g, see [Tu17, Theorem 28.1] for details.

Let ω be a smooth g-valued one-form which is a left inverse to ξ(p) for each p ∈ P and satisfies the
G-invariance property in Proposition 3.5. Then H = ker(ω) defines a connection on the principal bundle
G −→ P

π−→ M . The smoothness of H is the only thing which is not straightforward, see [Tu17, Theorem
28.5] for details. To summarize:

A connection can either be defined by a smoothly varying complement to V = ker(dπ), by horizontal lifts,
or by a connection one-form, all with suitable G-invariance properties.

We will now put the connection form in a broader perspective by introducing pseudotensorial forms,
paving the way for defining curvature of a principal connection. Basic properties of vector valued forms
are given in Appendix A.1.

Definition 3.6. Let G −→ P
π−→ M be a principal bundle and ρ : G → GL(V ) a representation of G on

a finite-dimensional vector space V . A pseudotensorial r-form on P of type (ρ, V ) is a r-form φ on P
taking values in V such that

R∗aφ = ρ(a−1) · φ,

for every a ∈ G. If a pseudotensorial r-form vanish whenever any of its inputs are vertical, we simply call
it a tensorial r-form and we denote by Ωr

ρ(P, V ) all tensorial r-forms of type (ρ, V ).

Example 3.7. Let πE : E = P ×ρ V → M be the associated bundle to G −→ P
π−→ M with the

representation ρ : G→ GL(V ). Associated to any φ ∈ Ωr
ρ(P, V ) and x ∈ M is a well-defined alternating

multilinear map

φ̃x :

r−copies︷ ︸︸ ︷
TxM × · · · × TxM −→ π−1

E (x)

φ̃x(X1, . . . , Xr) = [u, φ(X∗1 , . . . , X
∗
r ))],

where u ∈ π−1(x) and X∗i ∈ TuP is any vector such that dπ(X∗i ) = Xi for i = 1, . . . , r. Conversely,

given such a map φ̃x for each x ∈ M , we can recreate a tensorial form φ ∈ Ωr
ρ(P, V ) by using that the

map v 7→ [p, v] from V to Ex where p ∈ π−1(x) is an isomorphism, see [KN96, Example 5.2] for details.
In particular, functions f : P → V such that f(ua) = ρ(a−1)f(u) can be identified with sections of
πE : E →M . This will be an insightful interpretation when we study the frame bundle in more detail in
Section 3.5.
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From now on, assume we are given a principal connection H ⊂ TP . Notice that the connection
one-form ω corresponding to H is a pseudotensorial 1-form of type (Ad, g). Let φ be an arbitrary pseu-
dotensorial form and let PrH denote the projection of a tangent vector in TP to its horizontal part. Then
φ ◦ PrH is clearly horizontal and is in fact in Ωr

ρ(P, V ) since PrH commutes with the group action due
to the invariance of both H and V. A way to form a pseudotensorial form of higher degree is to take
the exterior differential dφ which again becomes a pseudotensorial form, see Appendix A.1 for details.
Combining these operations gives the following definition.

Definition 3.8. If φ is a pseudotensorial r-form of type (ρ, V ), then

Dφ = (dφ) ◦ PrH ∈ Ωr+1
ρ (P, V )

is called the exterior covariant derivative of φ. If ω is the connection one-form we use the notation Ω in
place of Dω and call it the curvature form.

Theorem 3.9 (Principal Structural Equation). Let ω be a connection form on the principal G-bundle
G −→ P −→M and let Ω be its corresponding curvature form. Then

Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )], X, Y ∈ X(P ).

The proof for the Principal Structural Equation can be found in [KN96, Proposition 5.5]. Whenever
X and Y are both horizontal vector fields the Principal Structural Equation shows that

Ω(X,Y ) = dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω ([X,Y ]) = −ω ([X,Y ]) . (3.4)

This gives insight into what the curvature form measures; the curvature form is zero if and only if the
horizontal distribution is integrable, that is, closed under Lie brackets. We say that a connection H on a
principal bundle is flat if Ω ≡ 0. In the next section we will use the theory of holonomy groups to justify
this terminology.

We can use the curvature form Ω on the principal bundle G −→ P −→ M to describe bracket relations
for horizontal lifts of vector fields on M . If X,Y ∈ X(M), then

[hX, hY ] = h[X,Y ] + ξ−Ω(hX,hY ). (3.5)

To see this, decompose [hX, hY ] into horizontal and vertical parts

[hX, hY ] = [hX, hY ]H + [hX, hY ]V .

We have previously showed that [hX, hY ]H = h[X,Y ], so all that remains is to show that

[hX, hY ]V = ξ−Ω(hX,hY ).

Since [hX, hY ]V is vertical it can for each p ∈ P be written as ξA(p) for some A ∈ g depending on p.
Then we use the connection one-form ω to obtain

A = ω([hX, hY ]Vp ) = ω([hX, hY ]p) = −Ω(hX, hY )p.

We now use the terminology and notation developed at the end of Appendix A.1 to write the Principal
Structural Equation on the form

dω = −1

2
[ω, ω] + Ω.

Let A1, . . . , Ar be a basis for g with structure constants cijk. If we write ω =
∑r

i=1 ω
iAi and Ω =∑r

i=1 ΩiAi, then using Proposition A.3 gives

dωi = −1

2

r∑
j,k=1

cijk(ω
j ∧ ωk) + Ωi,

for i = 1, . . . , r.
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Proposition 3.10 (Principal Bianchi Identity). If Ω is the curvature form on a principal bundle with
connection H then

DΩ ≡ 0.

Proof. If suffices to prove that dΩ(X,Y, Z) = 0 whenever X,Y , and Z are horizontal vector fields. We
apply the exterior derivative to the coordinate version of the Principal Structural Equation and get

0 = ddωi = −1

2

r∑
j,k=1

cijk

(
dωj ∧ ωk − ωj ∧ dωk

)
+ dΩi.

Evaluating the right hand side in X,Y , and Z gives the result since ωs vanish on horizontal vectors for
every s = 1, . . . , r.

3.3 Parallel Displacement and Holonomy Groups

In this section we will see that a connection on a principal bundle enables us to define horizontal lifting
of curves. Analogous to the parallel transport defined for affine connections in Subsection 2.1.2, this will
allow us to define parallel displacement in the total space along the curve in the base space. Using this we
define holonomy groups, an invariant which will be used when we study sub-Riemannian model spaces in
Chapter 4. The relationship between curvature and holonomy is given by the Ambrose-Singer Theorem
which we shall present. Finally, the Ambrose-Singer Theorem will be used to give an interpretation of
principal connections with zero curvature.

For the rest of the section, let H be a connection on a principal bundle G −→ P
π−→M . If γ : [0, 1]→M

is a smooth curve in M , then a horizontal lift of γ is a smooth curve γH : [0, 1]→ P such that π(γH) = γ
and γ̇H(t) is a horizontal vector for every t ∈ [0, 1]. We refer to γH simply as a lift of γ. Given an arbitrary
point u0 ∈ π−1(γ(0)), there exists a unique lift γH of γ with γH(0) = u0, see [KN96, Proposition 3.1].
Then γH(1) ∈ π−1 (γ(1)) and by varying u0 ∈ π−1(γ(0)) we obtain a map

τ : π−1(γ(0)) −→ π−1(γ(1)),

which we call parallel displacement along γ. The parallel displacement commutes with the group action,
that is, Ra ◦ τ = τ ◦Ra. Unsurprisingly, the inverse of τ is given by the analogous operator for the curve
γ−1(t) := γ(1 − t). Moreover, concatenations of curves in M (whenever possible) result in compositions
of their parallel displacements. Similarly to the construction of the fundamental group, we restrict our
attention to loops in M and obtain the following definition.

Definition 3.11. Fix x ∈ M and consider the set of all loops at x denoted by C(x). Denote by Φ(x)
the set of all isomorphisms τ : π−1(x) → π−1(x) arising from parallel displacement along elements in
C(x). This is a group under composition called the holonomy group with reference point x relative to
the connection H. If C0(x) denotes the null-homotopic loops at x, then the corresponding group will
be denoted by Φ0(x) and is called the restricted holonomy group with reference point x relative to the
connection H.

We can realize the holonomy groups as subgroups of the structure group G as follows: If u ∈ π−1(x)
then every loop γ ∈ C(x) determines an element a ∈ G such that τ(u) = ua, where τ is the parallel
displacement along γ. If µ ∈ C(x) determines b ∈ G, then the concatenation µ · γ determines the element
ba. Hence we obtain a subgroup of G which we denote by Φ(u) and refer to as the holonomy group relative
to u. Similar notation and terminology will be used for the restricted holonomy group Φ0(u), which is a
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subgroup of Φ(u). Notice that there are isomorphisms

C(x)

Φ(x) Φ(u)

Φ0(x) Φ0(u)

'

'

We will mainly work with the holonomy group embedded as a subgroup of the structure group G. If two
elements u, v ∈ P can be joined by a horizontal curve, we use the notation u ∼ v. The fact that parallel
displacement commutes with the group action implies that ua ∼ va for every a ∈ G whenever u ∼ v.

Proposition 3.12. Let u and v be elements in P with holonomy groups Φ(u) and Φ(v).

(1) If there exists some a ∈ G such that v = ua, then Φ(u) is conjugate to Φ(v) in G.

(2) If u ∼ v, then Φ(u) = Φ(v).

(3) If M is connected then all the holonomy groups are conjugate, hence isomorphic.

Moreover, all three statements hold for the restricted holonomy groups as well.

Proof. Assume that v = ua for some a ∈ G and let b ∈ Φ(u) so that u ∼ ub. Then we also have ua ∼ (ub)a
and we use this to conclude that

v = ua ∼ (ub)a ∼ va−1ba.

This shows that a−1ba ∈ Φ(v) and statement (1) follows. For statement (2), notice that u ∼ ua if and only
if v ∼ va for a ∈ G. This is due to the transitivity of the equivalence relation ∼ and since ua ∼ va holds
as well. Hence a ∈ Φ(u) if and only if a ∈ Φ(v), so they are equal. If M is connected, then for u, v ∈ P
we have u ∼ va for some a ∈ G by lifting a curve in M from π(u) to π(v). Now statement (3) follows
from statement (1). See [KN96, Proposition 4.1] for the case of the restricted holonomy groups.

Theorem 3.13. The holonomy group Φ(u) is a Lie group with Φ0(u) as its connected component of the
identity for every u ∈ P .

We will not prove this result, it can be found in greater generality in [KN96, Theorem 4.2]. A
remarkable feature of holonomy groups is that if we require less regularity, say by considering C1 curves,
we obtain the same holonomy groups anyhow by [KN96, Theorem 7.2]. For u ∈ P , let us denote by P (u)
the elements v ∈ P which can be connected to u by a horizontal curve. We refer to P (u) as the holonomy
bundle through u. It is also common in the literature to refer to P (u) as the accessible set of u.

Theorem 3.14 (Ambrose-Singer). Let H be a connection on a principal bundle G −→ P
π−→ M with

curvature form Ω. Denote the holonomy group and holonomy bundle with respect to u ∈ P by Φ(u) and
P (u), respectively. Then the Lie algebra of Φ(u) is spanned by the elements on the form

Ωv(X,Y ), v ∈ P (u), X, Y ∈ Hv.

The proof of the Ambrose-Singer Theorem can be found in [KN96, Theorem 8.1]. We say that a

principal bundle G1 −→ P1
π1−→ M is a reduced bundle of the principal bundle G2 −→ P2

π2−→ M if there
exists a principal bundle morphism f : P1 → P2 which is an embedding and induces the identity on M .
If H1 is a connection on G1 −→ P1

π1−→ M , then there exists a unique connection H2 on G2 −→ P2
π2−→ M

such that df (H1) ⊂ H2, see [KN96, Proposition 6.1]. We say that the connection H2 is reducible to the
connection H1. The proof of the following result can be found in [KN96, Theorem 7.1].
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Lemma 3.15. Fix u ∈ P . Then Φ(u) −→ P (u) −→M is a reduced bundle of G −→ P −→M . Moreover, the
connection H on G −→ P −→M is reducible to a connection on P (u).

Let us now consider the product bundle G −→ P = M ×G −→M . The canonical flat connection on P
is at each point (x, a) ∈ P given by TxM ×{0} ' TxM . If θ is the canonical one-form of G, see Appendix
A.2, then ω = Pr∗Gθ is the connection one-form for the canonical flat connection. Using that the pullback
commutes with the exterior differential and the Maurer-Cartan Equation (A.1), we have

dω = Pr∗G(dθ) = −1

2
Pr∗G ([θ, θ]) = −1

2
[ω, ω]. (3.6)

The Principal Structural Equation presented in Theorem 3.9 implies that the canonical flat connection
has zero curvature. A connection H on a principal bundle G −→ P

π−→M is trivial if for every x ∈M there
exists a neighbourhood U of x and a diffeomorphism φ : π−1(U)→ U ×G such that dφ maps H onto the
canonical flat connection on U ×G.

Proposition 3.16. A connection H on G −→ P −→M is flat if and only if it is trivial.

Proof. That any trivial connection is flat follows from Equation (3.6). Assume that H is flat and choose
x ∈M together with a simply connected neighbourhood U of x. Then we have Φ0(u) = Φ(u) on P |U and
the holonomy on the connection H|U is trivial by the Ambrose-Singer Theorem. It follows from Lemma
3.15 that the connection HU is reducible to a connection on P (u) ' U ×{e}. Since there is only one such
connection, the result follows.

If M is simply connected then the holonomy group of any connection on any principal bundle is
connected and independent of the chosen point x ∈ M up to conjugation. Moreover, by examining the
proof of Proposition 3.16 we see that a flat connection H on G −→ P −→ M induces a diffeomorphism
of P into G ×M whenever M is simply connected. Consider the principal bundle O(2) −→ O(3) −→ S2

obtained from the homogeneous structure of S2 equipped with an arbitrary connection H. If H is flat
we would have an isomorphism O(3) ' S2 ×O(2) which is not possible as π1(O(3)) ' π1

(
RP 3

)
= Z/2Z

while π1(O(2)) ' π1(S1) = Z.

3.4 Induced Connections on Isometry Groups and Frame Bundles

We will now turn to describe how the affine connections introduced in Subsection 2.1.2 induce principal
connections on frame bundles. For homogeneous Riemannian manifolds it is also possible to obtain a
connection on the principal bundle representing the homogeneous structure. This gives two different ways
of lifting the geometry of the base manifold to principal bundles, providing an efficient way to deal with
problems arising in classifying sub-Riemannian model spaces in the next chapters. Finally, we show how
principal connections on the isometry group induce connections on the orthonormal frame bundle for
homogeneous Riemannian manifolds.

Consider a manifold M with an arbitrary connection ∇ on a vector bundle πE : E → M of rank r.
Let γ : [0, 1] → M be a curve with γ(0) = x and choose φ ∈ π−1(x), where π denotes the projection
π : F(E) → M . Then there is a unique lift η : [0, 1] → F(E) with η(0) = φ such that η(t) is a parallel
frame along γ(t) with respect to the connection ∇. We call η(t) the parallel lift of γ(t) to φ and define

H∇φ = {η̇(0) ∈ TφF(E) : η(t) is the parallel lift of a curve γ(t) in M with η(0) = φ} . (3.7)

Proposition 3.17. The distribution H∇ defines a connection on the principal bundle GL(r,R) −→
F(E)

π−→M .

36



Proof. The map

fφ : TxM −→ TφF(E)

γ̇(0) 7−→ η̇(0)

is linear [Tu17, Proposition 29.6], so H∇φ is a vector subspace of TφF(E) since H∇φ = Im(fφ). It is clear

that dπφ is a left inverse of fφ, showing that fφ is injective. Hence H∇ and V = ker(dπ) are transverse at
every point. It follows from

dim(Vφ) + dim
(
H∇φ
)

= dim(gl(r,R)) + dim(M) = dim(TφF(E))

that H∇⊕V = TF(E). We refer the reader to [Tu17, Proposition 29.8] which shows that H∇ is a smooth
distribution which is invariant under GL(r,R).

In particular, any affine connection on M determines a principal connection on the frame bundle of
the tangent bundle by (3.7). Let (M, g) be a Riemannian manifold with an affine connection ∇ which is
compatible with the metric. The orthonormal frame bundle FO(TM) is constructed in the same way as
the frame bundle, with the additional requirement that its elements are orthonormal frames. We obtain
a principal bundle

O(n) −→ FO(TM) −→M,

where O(n) denotes the n-dimensional orthogonal group. Recall from Subsection 2.1.2 that compatibility
with the metric is equivalent to parallel translation being an isometry. Therefore (3.7) with the alteration
η : [0, 1] → FO(TM) is still valid. Hence any metric compatible connection ∇ induces a connection H∇
on the orthonormal frame bundle FO(TM).

Let us now consider a homogeneous Riemannian manifold M with a fixed point x0 ∈ M . Then
Proposition 2.17 and Example 3.2 shows that H −→ G −→M is a principal bundle, where G = Isom(M) is
the isometry group of M and H = Kx0 is the isotropy group at x0 ∈M . Denoting the Lie algebras of G
and H by g and h, respectively, we have mentioned earlier that h admits an Ad(H)-invariant complement
m in g. We consider the distribution Hm on G given by left translation of m.

Proposition 3.18. The distribution Hm is a connection on the principal bundle H −→ G −→M .

Proof. Let v ∈ Hm
g be an arbitrary horizontal vector at g ∈ G. Then dLg−1(v) ∈ g with zero h-part.

Notice that dLg restricts to the fundamental vector field on h, giving an isomorphism

dLg

∣∣∣
h

: h→ Vg.

Thus by applying dLg to dLg−1v shows that v has no Vg-part. Hence Vg ∩Hm
g = {0} and since dim(Vg) =

dim(h) and dim(Hm
g ) = dim(m), we can conclude that V ⊕Hm = TG. The Ad(H)-invariance of m shows

that
dRgHm

s = dRg ◦ dLsm = dLsgadg−1m ⊂ dLsgm = Hm
sg,

for s ∈ G.

It follows from [KN96, Theorem 11.1] that any left-invariant principal connection Hm on the principal
bundle H −→ G −→ M is in fact obtained in this way. If M is a symmetric space, then we will be
particularly interested in the distribution Hm when m ⊂ g is the canonical complement to h described in
Lemma 2.45. We will now provide a way to compute the curvature and holonomy of the left-invariant
principal connections we have discussed.
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Proposition 3.19. Let H −→ G −→M be the principal bundle obtained from a connected Lie group G and
a closed subgroup H described in Example 3.2. For any left-invariant connection Hm on H −→ G −→ M ,
the curvature form is given by

Ω(X,Y ) = −[X,Y ]h, X, Y ∈ m.

Moreover, the Lie algebra of the holonomy group Φ(e) at the identity is generated by all the elements of
the form [X,Y ]h, for X,Y ∈ m.

Proof. Recall that Equation (3.4) states that

Ω(X,Y ) = −ω ([X,Y ]) ,

where ω is the connection one-form. The connection one-form ω on this bundle is simply given by

ω(v) = dLg−1(vV), v ∈ TgG,

so the curvature formula follows. The holonomy statement follows from the Ambrose Singer Theorem.

Example 3.20. Let Vk(Rn) be the set of all k-tuples of orthonormal vectors in Rn with 0 < k < n.
Identify each such element with an (n× k) matrix where the columns are the orthonormal vectors. The
space Vk(Rn) is compact in the subspace topology inherited from Rnk. We have a group action

SO(n)× Vk(Rn) −→ Vk(Rn)

(A, v1, . . . , vk) 7−→ Av1, . . . , Avk,

which is transitive. If e1, . . . , en denotes the standard basis in Rn, then the isotropy group of (e1, . . . , ek) ∈
Vk(Rn) is {

A ∈ SO(n) : A =

(
Ik 0
0 C

)
, C ∈ SO(n− k)

}
' SO(n− k).

Hence the homogeneous structure Vk(Rn) ' SO(n)/SO(n − k) induces a unique manifold structure on
Vk(Rn) such that the action of SO(n) on Vk(Rn) is smooth. We call Vk(Rn) the Steifel manifold of type
(k, n).

Consider the Lie algebra o(n) of SO(n) consisting of skew-symmetric matrices and let

〈X,Y 〉o(n) = tr(XY T ) = −tr(XY ).

The inner product 〈·, ·〉o(n) called the trace form of o(n), see [O’N83, Lemma 11.6] for some properties.
Consider the Lie algebra o(n− k) of SO(n− k) identified as a subset o(n− k) ⊂ o(n) by

o(n− k) 3 Y 7−→
(

0 0
0 Y

)
∈ o(n).

Define m = o(n− k)⊥ with respect to the trace form. If Q ∈ m and Y,Z ∈ o(n− k), then

〈AdY (Q), Z〉o(n) = 〈Y QY −1, Z〉o(n) = −tr(Y QY −1Z) = −tr(QZ) = 0,

showing that m is Ad(SO(n − k))-invariant. Hence the left translation Hm
k of m defines a principal

connection on SO(n− k) −→ SO(n) −→ Vk(Rn).
Let us write an element Q ∈ m as

Q =

(
Q1 Q2

Q3 Q4

)
,
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with Q1 ∈Mk×k(R) and Q4 ∈Mn−k×n−k(R). The fact that m ⊂ o(n) gives that QT1 = −Q1, QT3 = −Q2,
and QT4 = −Q4. Moreover, m⊥ = o(n− k) implies that for Y ∈ o(n− k),

〈Q,Y 〉o(n) = −tr

[(
Q1 Q2

−QT2 Q4

)(
0 0
0 Y

)]
= −tr (Q4Y ) = 0.

We will now show that the condition tr(Q4Y ) = 0 for every Y ∈ o(n − k) forces Q4 = 0. Assume
Q4ij = a 6= 0 with i < j and let Y = Eij − Eji, where Eij denotes the matrix with 1 at entry ij and
zero otherwise. Then tr(Q4Y ) = −2a = 0, showing that all the off-diagonal entries of Q4 are zero. Since
Q4 = −QT4 , it follows that Q4 = 0.

To find the curvature of the connection we use Proposition 3.19. For two elements Q,R ∈ m, we have

[Q,R] =

[
Q1 Q2

−QT2 0

] [
R1 R2

−RT2 0

]
−
[
R1 R2

−RT2 0

] [
Q1 Q2

−QT2 0

]
=

[
Q1R1 −Q2R

T
2 −R1Q1 +R2Q

T
2 Q1R2 −R1Q2

−QT2 R1 +RT2 Q1 −QT2 R2 +RT2 Q2

]
.

The o(n− k)-part is simply the last entry, so we get

Ω(Q,R) = −[Q,R]o(n−k) = QT2 R2 −RT2 Q2.

Any element S = o(n−k) can be written as S = QT2 R2−RT2 Q2 for Q,R ∈ m. By invoking Proposition 3.19
again it follows that the Lie algebra of the holonomy group Φ(e) is all of o(n−k). Since Φ(e) ⊂ SO(n−k),
we have that the holonomy group at the identity is the full structure group SO(n − k). We will see in
Section 4.1 that this computation implies that Hm

k is a bracket generating sub-Riemannian structure on
SO(n).

Given a homogeneous Riemannian manifold M , we have described two principal bundle structures
related to it, namely

H −→ G −→M and O(n) −→ FO(TM) −→M,

where G denotes the isometry group of M and H the isotropy group at a point x0 ∈ M . A choice of an
Ad(H)-invariant complement m ⊂ g of h gives a connection Hm on H −→ G −→ M . For every a ∈ G, the
map Φ(a) : M →M sending bH to abH is an isometry and hence induces a map

G×FO(TM) −→ FO(TM)

(a, φ : Rn −→ TxM) 7−→ dΦ(a)x ◦ φ

The map is a Lie group action and is abbreviated to a · φ to avoid lengthy notation. It is clear by the
definition that the action preserves the fibers FO(TM)x. Assume that a · φ = φ for φ ∈ FO(TM)x. If
ψ ∈ FO(TM)x then we can write ψ = φ ◦A for A ∈ O(n). Thus

a · ψ = a · (φ ◦A) = φ ◦A = ψ,

simply by associativity of composition. Hence dΦ(a)x = IdTxM and since Φ(a) : M →M is an isometry,
we have from Proposition 2.15 that Φ(a) = IdM . From this we conclude that a = e and hence the action
is free. The action is not transitive in general, as this is a reformulation of being frame-homogeneous.
Now let us consider the distribution

HG =

{
d

dt
a(t) · φ

∣∣∣
t=0

: φ ∈ FO(TM), a(t) is a curve in G tangent to Hm

}
.

Proposition 3.21. The distribution HG induced from the connection Hm as described above is a principal
connection on the orthonormal frame bundle. Moreover, this connection is invariant under the left action
of G on FO(TM).
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Proof. We will only show the invariance properties and leave the fact that HG is a principal connection
to the reader. The right-invariance with respect to O(n) is clear since

dRA
d

dt
a(t) · φ

∣∣∣
t=0

=
d

dt
a(t) · (φ ◦A)

∣∣∣
t=0

,

and this is by definition in HGφ◦A since A is an isometry from Rn to itself. Hence HG is a principal

connection on FO(TM). To show left-invariance with respect to G, notice that

dLa
d

dt
a(t) · φ

∣∣∣
t=0

=
d

dt
aa(t) · φ

∣∣∣
t=0

.

As Hm is defined by left translation a ·a(t) is still a horizontal curve, so HG is preserved under the induced
action of G on the left.

Let M = Σ(n,K) denote the n-dimensional model space with sectional curvature K. Fix x ∈M and
φ0 ∈ FO(TM) with π(φ0) = x and consider the map

Γ : Isom(M) −→ FO(TM)

Φ 7−→ dΦx ◦ φ0.

Then since M is frame-homogeneous, the map Γ is a bijection. The inverse Γ−1(φ) of a frame φ ∈ FO(TM)
is the unique isometry Φ ∈ Isom(M) such that dΦx takes φ0 to φ. This identifies the fiber π−1(x) with
the isotropy group Kx at the point x ∈ M . Since the fixing of φ0 ∈ π−1(x) also identifies O(n) with
π−1(x) as O(n) acts freely and transitively within π−1(x), it follows that Kx ' O(n) as Lie groups. As Γ
is a diffeomorphism we can induce a Lie group structure on FO(TM) such that φ0 becomes the identity.
Thus

FO(TSnR) ' O(n+ 1), FO(TRn) ' E(n), FO(THn
R) ' O+(n, 1). (3.8)

3.5 Geometry via Frame Bundles

In this section we focus on the frame bundle; the principal bundle which is most strongly related to the
geometry of the base manifold. We will see how it carries more structure than an arbitrary principal bun-
dle, ensuring among other things that the tangent bundle of the frame bundle is always trivializable. The
pseudotensorial form approach will be united with curvature and torsion of affine connections on M . We
will present a structural equation and a Bianchi identity intrinsic to the frame bundle. Together with the
Principal Structural Equation and the Principal Bianchi Identity described in Section 3.2, they provide a
calculus on the frame bundle for handling the geometry of the base manifold. The main purpose of this
section is to unite the principal bundle approach with results in Chapter 2 and see how this produce a
powerful machinery for answering nontrivial geometric questions.

Let M be an arbitrary manifold and consider the principal bundle GL(n,R) −→ F(TM)
π−→ M . The

solder form θ is the Rn-valued one-form on F(TM) defined by

θ(X) = φ−1 (dπ(X)) ,

for X ∈ TφF(TM). Notice that θ vanishes on V = ker(dπ) and satisfies

θ(dRaX) = (φ ◦ a)−1(dπ(dRaX)) = a−1 ◦ φ−1(dπ(X)) = a−1(θ(X)),

for a ∈ GL(n,R). This shows that θ is a tensorial one-form of type (GL(n,R),Rn). Recall from Subsection
3.1.2 that the associated bundle of π : F(TM) → M can be identified with the tangent bundle πTM :
TM → M . Using the identification in Example 3.7, the solder form is identified with the identity map
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Id : TxM → TxM for each x ∈M , justifying that the solder form is called the canonical form in [KN96].
We use the expression linear connection on M for a principal connection on F(TM). Analogous to
thinking of the fundamental vector field as connecting the vertical spaces of an arbitrary principal bundle,
we have the following definition specifically for linear connections.

Definition 3.22. Let H be a linear connection on a manifold M . We associate to every v ∈ Rn a
horizontal vector field Bv ∈ X(H) whose value at φ ∈ F(TM) is the unique horizontal vector Bv(φ) such
that dπ(Bv(φ)) = φ(v). We call Bv the standard horizontal vector field corresponding to v.

Lemma 3.23. The standard horizontal vector fields satisfy the following properties:

• The solder form provides a left inverse to all standard horizontal vector fields, that is, θ(Bv) = v
for every v ∈ Rn.

• Right invariance dRa(Bv) = Ba−1(v) holds for a ∈ GL(n,R) and v ∈ Rn.

• The standard horizontal vector fields Bv are non-vanishing vector vector fields for v 6= 0.

All three statements follows from the definition of standard horizontal vector fields and that

dπ
∣∣∣
Hφ

: Hφ −→ Tπ(φ)M

is an isomorphism. The standard horizontal vector fields have the following impact on the frame bundle.

Proposition 3.24. The tangent bundle of the frame bundle is trivializable.

Proof. Let v1, . . . , vn be a basis for Rn and A1, . . . , An2 a basis for gl(n,R). We showed in Proposition 3.3
that the vector fields ξA1 , . . . , ξAn2 trivialize V = ker(dπ). The first statement of Lemma 3.23 shows that
Bv1 , . . . , Bvn are linearly independent horizontal vector fields. As rank(H) = rank(TM) = n, it follows
that H is also trivializable. Hence the vector fields

Bvi , ξAr , 1 ≤ i ≤ n, 1 ≤ r ≤ n2

trivialize TF(TM).

By considering the principal bundle arising from the definition of RP 2, namely Z/2Z −→ S2 −→ RP 2,
one sees that Proposition 3.24 is not valid for arbitrary principal bundles. Let us fix a linear connection
H on M . Using our pseudotensorial approach, we define the torsion form of H to be

Θ = Dθ,

whereD denotes the exterior covariant differential. It is a tensorial 2-form on F(TM) of type (GL(n,R),Rn).
We employ the symbol � to denote the cyclic sum of arguments, an example is

� Ω(X,Y )θ(Z) = Ω(X,Y )θ(Z) + Ω(Y,Z)θ(X) + Ω(Z,X)θ(Y ).

Proposition 3.25 (Structural Equations and Bianchi Identities on the Frame Bundle). The connection
form, solder form, curvature form, and torsion form satisfy:

Frame Bundle Structural Equation: Θ(X,Y ) = dθ(X,Y ) + ω(X)θ(Y )− ω(Y )θ(X);

Principal Structural Equation: Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )].

Moreover, their exterior covariant differentials satisfy:

Frame Bundle Bianchi Identity: 3DΘ(X,Y, Z) = � Ω(X,Y )θ(Z);

Principal Bianchi Identity: DΩ = 0,

for every X,Y, Z ∈ Tφ(F(TM)).
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The proof together with several applications can be found in [KN96, Section 3.2]. We can use the
structural equations to show that the standard horizontal vector fields satisfy

[Bu, Bv] = −ξΩ(Bu,Bv) −BΘ(Bu,Bv), u, v ∈ Rn. (3.9)

To illustrate, the computation for the horizontal part is given by

θ([Bu, Bv]) = −Bu(θ(Bv)) +Bv(θ(Bu))− dθ(Bu, Bv)
= −dθ(Bu, Bv)
= −Θ(Bu, Bv) + ω(Bu)θ(Bv)− ω(Bv)θ(Bu)

= −Θ(Bu, Bv).

There are analogous relations involving the fundamental vector fields

[ξA, ξC ] = ξ[A,C], [ξA, Bu] = BA(u), (3.10)

for A,C ∈ gl(n,R) and u ∈ Rn. Details can be found in [KN96, Proposition 1.4.1] and [KN96, Proposition
3.23], respectively.

Let G −→ P
π−→M be a principal bundle and let ρ : G→ GL(V ) be a finite dimensional representation.

Then a connection H on G −→ P
π−→M always induces a connection on the associated bundle E = P ×ρ V

as follows: Recall from Example 3.7 that there is a one-to-one correspondence, denoted by ∨, between
sections of πE : E → M and functions f : P → V such that f(ua) = ρ(a−1)f(u) for a ∈ G and u ∈ P .
Define

Ass(H)(X,Y ) = (hXs)∨, X, Y = s∨ ∈ X(E),

where hX denotes the horizontal lift with respect to the connection H. It is straightforward to check
that hXs is still pseudotensorial and that Ass(H) satisfies the requirements for a connection on the vector
bundle πE : E →M . Assume now that∇ is an affine connection on M and letH∇ be the linear connection
induced by ∇ as described in Proposition 3.17. Then H∇ induces a connection Ass(H) on the associated
bundle πTM : TM →M . The two connections ∇ and Ass(H) coincide and ∇ can be computed as

(∇XY )x = φ (hX(φ) [θ(hY )])

where π(φ) = x and X,Y ∈ X(M), see [KN96, Section 3.5].
We will now describe how the torsion and curvature forms are related to torsion and curvature tensor

fields on the base manifold. Let T∇ and R∇ denote the torsion and curvature tensor field with respect to
∇, and let Θ and Ω denote the torsion and curvature form with respect to H∇, respectively. The proof
of the following theorem is given in [KN96, Theorem 5.1].

Proposition 3.26. Using the notation above, we have that

Θ(v, w) = φ−1
[
T∇(dπ(v), dπ(w))

]
, v, w ∈ TφF(TM);

Ω(v, w)φ−1(Z) = φ−1
[
R∇(dπ(v), dπ(w))Z

]
, v, w ∈ TφF(TM), Z ∈ Tπ(φ)M.

In particular, if (M, g) is a Riemannian manifold which is locally isometric to Euclidean space, then H∇
is trivial when ∇ is the Levi-Civita connection.

Let ∇ be an arbitrary affine connection on M and let H∇ be the induced linear connection. The
geodesics in M with respect to ∇ are precisely the projections of the integral curves of the standard
horizontal vector fields, see [KN96, Proposition 6.3]. Recall that a connection ∇ is said to be complete
if every geodesic can be extended for all time. Completeness of ∇ is equivalent to the property that all
horizontal vector fields with respect to H∇ are complete. If the torsion T∇ of the affine connection is
zero, then by Proposition 3.26 the Frame Bundle Bianchi Identity becomes

� Ω(hX(φ), hY (φ))θ(hZ(φ)) = � φ−1R∇(X,Y )Z = 0,

for X,Y, Z ∈ TxM and π(φ) = x. Composing with φ, this gives exactly the classical Bianchi Identity
given in Equation (2.3).
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4 Sub-Riemannian Geometry and Their Model Spaces

We now embark on the main topic of the thesis: sub-Riemannian model spaces. Basic notions in sub-
Riemannian geometry as well as nilpotentizations and Gromov-Hausdorff distance is developed before
proceeding to define sub-Riemannian model spaces. Their description is based on maximal symmetry
in the form of lifting linear isometries to global isometries. This approach is taken due to the lack
of a satisfying notion of curvature in the sub-Riemannian setting. Several constructions, such as partial
connections and horizontal holonomy, will be explored in this chapter and is based on the theory developed
in Chapter 3. An invariant of a sub-Riemannian model space is its nilpotentization. This leads us to
examine Carnot groups which are also model spaces as the first step in classifying model spaces in general.
All model spaces of step two will be classified, revealing that they are not only Lie groups but are either
(essentially) isometry groups of the Riemannian model spaces or free nilpotent Lie groups. Finally, we
will in Section 4.7 provide a minor original result by classifying all sub-Riemannian model spaces with
contact structures.

4.1 Sub-Riemannian Geometry

We will in the first section survey the main definitions and concepts in sub-Riemannian geometry. As
our focus is towards defining sub-Riemannian model spaces, some important topics in sub-Riemannian
geometry will be alluded to rather than fully explored.

Definition 4.1. A sub-Riemannian geometry is a triple (Q,H, g) where Q is a manifold, H ⊂ TQ is a
subbundle, and g is a smooth fiber-metric defined on H.

More explicitly, g defines an inner product between vectors in Hp for every p ∈ Q and varies smoothly
in the sense that if X,Y ∈ Γ(H), then g(X,Y ) is a smooth function on Q. We refer to Q as a sub-
Riemannian manifold, H as the horizontal distribution, and g as the sub-Riemannian metric. Elements
in H will be called horizontal vectors while vector fields on Q taking values in H will be called horizontal
vector fields. The reader should be aware that some authors use a different definition of a sub-Riemannian
geometry, e.g. [Bel96] allowing H to be a distribution of non-constant rank. An absolutely continuous
curve γ : [a, b]→ Q will be called horizontal if γ̇(t) ∈ Hγ(t) for almost every t ∈ [a, b]. For any horizontal
curve, we define its length analogous to the Riemannian setting by

L(γ) =

∫ b

a
‖γ̇(t)‖dt.

Definition 4.2. Let (Q,H, g) be a sub-Riemannian geometry with Q connected. Then it is furnished
with an extended distance function given by

dCC(p, q) = inf L(γ),

where the infimum is taken over all absolutely continuous horizontal curves connecting p and q.

This distance dCC will be referred to as the Carnot-Carathéodory distance of (Q,H, g). We will be
careful and not refer to dCC as a metric to avoid confusing it with the fiber metric g. The word “extended”
simply refers to that the distance between two points might not be finite. Given an arbitrary subbundle
H ⊂ TQ, we obtain a flag of subsheaves

H ⊂ H2 ⊂ · · · ⊂ Hj ⊂ · · · ⊂ X(Q)

of the tangent sheaf X(Q) defined inductively by

H = Γ(H), Hj = Hj−1 + [H,Hj−1].

The notation Hjq for q ∈ Q will be used for the subset of TqQ consisting of the elements X(q) where
X ∈ Hj .

43



Definition 4.3. For a sub-Riemannian geometry (Q,H, g), we say that H is bracket generating if for

every q ∈ Q there is a minimal number r(q) such that Hr(q)q = TqQ. By setting ni(q) = rank(Hiq), the
multi-index

G(q) = (n1(q), . . . , nr(q)(q))

is called the growth vector at q ∈ Q. If the growth vector is constant, then the subbundle is said to be
equiregular and r is called the step of the horizontal distribution.

For a bracket generating and equiregular horizontal distribution H we obtain a flag of subbundles

H ⊂ H2 ⊂ · · · ⊂ Hr = TQ, TqQ
∣∣∣
Hi

= Hiq.

Example 4.4 (Heisenberg Geometry). The prototype example of a sub-Riemannian geometry is the
Heisenberg geometry, which can be realized with Q = R3 and a basis for H given by

X =
∂

∂x
− y

2

∂

∂z
, Y =

∂

∂y
+
x

2

∂

∂z
.

Requiring orthonormality of X and Y gives a metric g on H and we have [X,Y ] = ∂
∂z . This shows that

the subbundle H is equiregular and bracket generating with growth vector G = (2, 3).

Example 4.5 (Martinet Distribution). As an example of a non-equiregular bracket generating subbundle,
let us again consider Q = R3 and define H to be the annihilator of the one-form

α = dz − 1

2
y2dx.

Then H is spanned by the vector fields ∂
∂y and ∂

∂x + y2

2
∂
∂z . If y 6= 0 then the growth vector is (2, 3), while

for y = 0 it is (2, 2, 3).

Example 4.6 (Symmetric Spaces of Non-Compact Type). Let M ∼= G/H := Isom(M)/Kx0 be a Rie-
mannian symmetric space. By Proposition 2.45 we obtain a decomposition g = h ⊕ m where m is
Ad(H)-invariant. We say that M is of non-compact type if the Killing form B : g × g → R given by
B(X,Y ) = trace(adX ◦ adY ) is negative definite on h and positive definite on m. By defining

Hm
g = dLgm

we obtain a sub-Riemannian structure (G,Hm, B) where

B(v, w) = B
∣∣∣
m

(
dLg−1(v), dLg−1(v)

)
,

for v, w ∈ Hg.

A fundamental question is that of horizontal connectivity ; can any two points in a sub-Riemannian
geometry be connected by a horizontal curve? Recall that a distribution H is called involutive if [X,Y ] is
a local section for H whenever X and Y are smooth local sections for H. A classical theorem of Frobenius,
see [Lee13, Theorem 19.12], states that if (Q,H) is a manifold with an involutive distribution then for
every point p ∈ Q there exists an immersed submanifold S ⊂ Q containing p such that TpS = Hp. We
call S an integral manifold for H and involutive distributions are also called integrable. Thus horizontal
connectivity for involutive distributions can only happen along integral manifolds for the distribution.
Unless H = TQ there will be points p, q ∈ Q which can not be connected by a horizontal curve whenever
the distribution is involutive.

One might expect that the bracket generating condition will be sufficient for horizontal connectivity
as this is the polar opposite of being involutive. The following theorem gives an affirmative answer to this
and hence ensures when the Carnot-Carathéodory distance is a proper distance function. The theorem
was proved by Wei-Liang Chow in 1939 and proved independently by Petr Konstanovich Rashevskii in
1938. We refer to [Cho40] for Chow’s original paper and [Mon02, Chapter 2] for an exposition with
modern notation.
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Theorem 4.7 (Chow-Rashevskii Theorem). Let (Q,H, g) be a sub-Riemannian geometry with Q con-
nected and H bracket generating. Then any two points in Q can be connected by a piecewise smooth
horizontal curve.

Example 4.8. Let us revisit the principal bundle SO(n− k) −→ SO(n) −→ Vk(Rn) described in Example
3.20. The connection Hm

k given by left translation of m = o(n− k)⊥ gives an equiregular sub-Riemannian
structure (SO(n),Hm

k , g), where the metric g is simply left translation of the trace form. The fact that
the holonomy group of this connection is all of SO(n− k) gives that the subbundle is bracket generating.
Hence the Chow-Rashevskii Theorem implies that any two points in SO(n) can be joined by a horizontal
curve. We will refer to these sub-Riemannian structures on SO(n) as Steifel structures.

Let (Q,H, g) be a sub-Riemannian geometry with v ∈ H and α ∈ T ∗Q. Define the maps

[g : H −→ H∗ ]g : T ∗Q −→ H
[g(v) = g(v, ·) ]g(α) = ([g)−1 (α|H) .

We define the cometric corresponding to g to be the bilinear map

g∗ : T ∗Q× T ∗Q −→ R, 〈α, β〉g∗ = α (]g(β)) ,

for α, β ∈ T ∗Q. The cometric is zero on the annihilator of H and satisfies

〈α, β〉g∗ = 〈]gα, ]gβ〉g,

showing that is symmetric and semi-definite. While the sub-Riemannian metric is only defined on H, the
cometric is defined on the whole cotangent bundle.

A horizontal curve is said to be a geodesic if it is locally minimizing. Using the cometric, we can define
the sub-Riemannian Hamiltonian

H : T ∗Q −→ R, H(α) =
1

2
〈α, α〉g∗ .

Notice that the Hamiltonian determines the cometric by polarization. The Hamiltonian is related to
the geodesics as follows: Recall that the cotangent bundle of any manifold always has a symplectic
structure, that is, possesses a closed nondegenerate 2-form. If (q1, . . . , qn) are coordinates on U ⊂ Q,
then (q1, . . . , qn, p1, . . . , pn) are coordinates on π−1

T ∗Q(U) ⊂ T ∗Q where α = pidq
i for i = 1, . . . , n and

α ∈ π−1
T ∗Q(U). In these coordinates, the symplectic form is given by

ω = dqi ∧ dpi.

Notice that we use lower indices for the last n coordinates so that the Einstein summation convention
applies.

Using the symplectic form ω, we define the Hamiltonian vector field ~H by ω( ~H, ·) = dH, where H is
the Hamiltonian function. Locally, the integral curves of the Hamiltonian vector field can be written as
the solution to the ODE system

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

,

called the Hamilton’s equations for the Hamiltonian function H. The projection down to Q of an integral
curve to Hamilton’s equations is a geodesics, see [Mon02, Theorem 1.14] for a proof. We call the geodesics
obtained in this manner normal geodesics. Unlike Riemannian geometry where every geodesic can be
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obtained in this way, this is not the case in sub-Riemannian geometry. In fact, the Martinet distribution
described in Example 4.5 possesses geodesics which are not obtained as projections of integral curves
of the Hamiltonian vector field. This follows from the Minimality Theorem of Liu and Sussmann, see
[Mon02, Theorem 3.3] for the statement and proof. Such geodesics are called abnormal geodesic. Unlike
normal geodesics which are smooth as they are projections of smooth curves, it is not even known if
abnormal geodesics are always smooth.

A final peculiar feature of sub-Riemannian geometries concerns their Hausdorff dimension. Recall
that the r-dimensional Hausdorff measure of a metric space M is defined to be

Hr(M) = lim
δ→0+

inf

{∑
i

diam(Ei)
r : M ⊂

⋃
i

Ei, diam(Ei) < δ

}
.

There exists a number s ∈ [0,+∞] called the Hausdorff dimension of M such that Hr(M) = 0 for every
r > s and Hr(M) = +∞ for every r < s, see [Fal14, Section 2.2]. Let (Q,H, g) be an equiregular
sub-Riemannian geometry of step k. Define the homogeneous dimension of (Q,H, g) to be the number

DH =
k∑
i=1

i(ni − ni−1),

where ni = rank(Hi) are the components of the growth vector. The proof of the following theorem can
be found in Mitchell’s paper [Mit85].

Theorem 4.9 (Mitchell’s Measure Theorem). For an equiregular and bracket generating sub-Riemannian
geometry the Hausdorff dimension and homogeneous dimension coincide.

4.2 Carnot Groups, Nilpotentization, and Gromov-Hausdorff Convergence

Before turning to the definition of sub-Riemannian model spaces, we describe a class of examples which
will play an important role in the classification process: Carnot groups. They admit dilations and we
think of them as sub-Riemannian analogues of Euclidean space. We introduce the nilpotentization of an
equiregular, bracket generating sub-Riemannian geometry and explain how it associates a Carnot group
structure to any such sub-Riemannian geometry. Through the development of Gromov-Hausdorff distance
and convergence, we introduce tangent cones of sub-Riemannian geometries. See [Mon02, Section 8.5] for a
derivation using normal coordinates showing that the tangent cone of a Riemannian manifold is Euclidean
space with the same dimension as the manifold. Hence the model spaces in Riemannian geometry can
be described by two parameters, namely sectional curvature and their tangent cone. Finally, we give
Mitchell’s theorem stating that the tangent cone construction coincides with the nilpotentization for
equiregular, bracket generating sub-Riemannian geometries.

Definition 4.10. A Lie algebra g is nilpotent if its lower central series defined inductively by

g(i+1) = [g, g(i)], g(1) = g,

is eventually zero, that is, g(k+1) = {0} for some k ∈ N. The smallest such k is called the step of g.

Notice that nilpotent Lie algebras always have nontrivial center. When presenting a Lie algebra with
a basis X1, . . . , Xn, it suffices to describe [Xi, Xj ] for i < j. We use the convention that every bracket
relation which is not mentioned and does not follow from other bracket relations through the Lie algebra
axioms is assumed to be zero.

Definition 4.11. A stratification of a Lie algebra g with step k is a decomposition

g =

∞⊕
i=1

Vi
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such that [V1, Vj ] = Vj+1 and Vt = {0} for t > k. The vector space V1 is called the generating subspace
while Vi for i ≥ 1 are in general called layers. We call a Lie algebra stratifiable if there exists a stratification.

Although stratified Lie algebras are clearly nilpotent, the converse is not true. A straightforward
induction proof using the Jacobi identity shows that [Vi, Vj ] ⊂ Vi+j for any stratification.

Example 4.12. The (2n+1)-dimensional Heisenberg algebra is the step two stratified Lie algebra H2n+1

with basis X1, . . . , Xn, Y1, . . . , Yn, Z and bracket relations

[Xi, Yi] = Z, i = 1, . . . , n.

When n = 1 we call H3 the classical Heisenberg algebra.

Example 4.13. The (n + 1)-dimensional filiform algebra fil(n + 1) is spanned by X,Y1, . . . , Yn with
bracket relations

[X,Yi] = Yi+1, i = 1, . . . , n− 1.

It is stratified by V1 = span {X,Y1} and Vi = span {Yi} for i = 2, . . . , n. The case n = 3 is called the
Engel algebra. The only intersection between the Heisenberg algebras and filiform algebras is the classical
Heisenberg algebra H3.

Example 4.14. Fix a set {X1, . . . , Xn} of n elements. Consider the free vector space of all elements
formally on the form

[Xi1 , [Xi2 , . . . , [Xik−1
, Xik ] . . . ]]

where ij ∈ {1, . . . , n} for every j = 1, . . . , k. We identify two such elements if they can be transformed
into one another via either bilinearity, skew-symmetry, or the Jacobi identity of the formal bracket [·, ·].
The resulting space has a natural bracket operation turning it into a Lie algebra called the free Lie
algebra of rank n and is denoted by fn. Similarly as for the free vector space construction, the free Lie
algebra only depends up to isomorphism on the cardinally of the generating set and not the choice of
elements themselves. It has an obvious grading with the generating subspace spanned by X1, . . . , Xn. By
identifying each element which consists of k + 1 or more brackets with zero, we obtain the free nilpotent
Lie algebra of rank n and step k, denoted by f[n, k]. We denote the l’th layer of the free Lie algebra by
fl[n, k], or simply fl when the rank and step is clear from the context. Recall that the Möbius function µ
is defined by

µ(n) = µ(pm1
1 · · · p

mk
k ) =


1 if ms ≤ 1 and k is even,

−1 if ms ≤ 1 and k is odd,

0 otherwise,

for s = 1, . . . , k and the prime decomposition of the positive integer n = pm1
1 · · · p

mk
k . The dimension of

the l’th layer is given by Witt’s formula

dim(fl[n, k]) =
1

l

∑
d|l

µ(d)nl/d, l ≤ k. (4.1)

We refer the reader to [MKO99] for some explicit calculations regarding the dimension of the free Lie
algebras. We will later see that understanding representations on free Lie algebras have a central part in
the classification of sub-Riemannian model spaces.

Definition 4.15. A Carnot group is a simply connected Lie group whose Lie algebra is stratifiable.

Although some authors assume that a Carnot group comes equipped with a sub-Riemannian structure,
we will not assume this for simplicity. Let G be a Carnot group with stratified Lie algebra g = V1⊕· · ·⊕Vk.
The maps δλ : g → g for λ > 0 sending v ∈ Vj to λjv are called Lie algebra dilations. As Carnot groups
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are simply connected, we obtain a one-parameter family of maps δGλ : G → G by Theorem A.5. These
are called Lie group dilations or simply dilations whenever the context is clear. As the maps δλ are Lie
algebra automorphisms, the induced group dilations δGλ are Lie group automorphisms. It follows from
[Hal15, Exercise 2.9] that the exponential map is a global diffeomorphism for Carnot groups. This allows
us to express the dilations on the Carnot group as

δGλ (g) = δGλ

[
exp

(
k∑
i=1

vi

)]
= exp

(
k∑
i=1

λivi

)
,

for vi ∈ Vi. It is simple to introduce a sub-Riemannian geometry on any Carnot group; introduce an inner
product on the generating subspace of g and use left translations to obtain a horizontal distribution with
a sub-Riemannian metric. The terminology “Lie group dilations” is motivated by the fact that they are
dilations with respect to the Carnot-Carathéodory distance,

dCC(δGλ (g), δGλ (h)) = λdCC(g, h),

for g, h ∈ G.
Let (Q,H, g) be a sub-Riemannian geometry where H is equiregular of step k. Then

nil(q) = Hq ⊕
(
H2
q/Hq

)
⊕
(
H3
q/H2

q

)
⊕ · · · ⊕ TqQ/Hk−1

q ,

is called the nilpotentization of H at q ∈ Q. The nilpotentization at q has the structure of a stratified Lie
algebra where

nil(q) = n1 ⊕ · · · ⊕ nk, nj = Hjq/Hj−1
q ,

with the convention that H0
q = {0} for every q ∈ Q. If v is any representative for [v] ∈ ni and w is any

representative for [w] ∈ nj , then their bracket is given by

[[v], [w]] := [X,Y ](q) modHi+j−1
q ,

where X ∈ Hi with X(q) = v and Y ∈ Hj with Y (q) = w. This bracket is well-defined, see [Mon02,
Proposition 4.10] for details. Then gq is an inner product on n1 = Hq and we form the Carnot group
Nil(Q, q) corresponding to nil(q) with subbundle and sub-Riemannian metric given by the translates of
n1 and gq, respectively.

The rest of this section will focus on why the nilpotentization at a point q ∈ Q plays an analogous
role as the tangent space in Riemannian geometry. Namely, it gives the most accurate infinitesimal
approximation to an equiregular bracket generating sub-Riemannian geometry in the setting of Gromov-
Hausdorff convergence described below. Hence, one often thinks of Carnot groups as “linearized” sub-
Riemannian geometries similarly to how one thinks of vector spaces as “linearized” Riemannian manifolds.
Provisionally, we can define the tangent cone CTm0M of a pointed metric space (M,d,m0) to be the limit

CTm0M = lim
λ→∞

(λM,m0), (4.2)

where λM denotes the metric space consisting of the same set as M but with a scaled distance function
λd. We will introduce a distance function on the set of all metric spaces, making the limit in the definition
rigorous. Heuristically, the formal computation for t > 0,

δtCTm0M = δt lim
λ→∞

(λM,m0) = lim
λ→∞

(tλM,m0) = lim
λ→∞

(λM,m0) = CTm0M

alludes to the fact that the tangent cone admits dilations, strengthening the intuitive relation to Carnot
groups.
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Definition 4.16. Let (X, dX) be a metric space with distance function dX and A,B ⊂ X. We define the
ε-neighbourhood of A in X to be the set

Nε(A) = {x ∈ X : d(x, a) < ε for some a ∈ A} .

The Hausdorff distance between the sets A and B in X is then given by

dXH(A,B) = inf {ε : A ⊂ Nε(B) and B ⊂ Nε(A)} .

As a distance between the metric spaces (A, dX |A) and (B, dX |B), this does not suffice as the distance
is completely determined on how A and B are embedded into X, and not on their intrinsic properties.
Consider two copies of the horizontal line L1 = L2 = {(x, 0) : x ∈ R} in the plane. The Hausdorff distance
between them is zero. However, performing a rotation with angle 0 < θ < π on L2 produces a line Lθ2
such that

dR
2

H (L1, L
θ
2) =∞,

no matter how small the rotation is.

Definition 4.17. The Gromov-Hausdorff distance between two metric spaces (A, dA) and (B, dB) is given
by

dGH(A,B) = inf dXH(i(A), j(B)),

where the infimum is taken over all metric spaces (X, dX) and all isometric embeddings i : A ↪−→ X and
j : B ↪−→ X.

Clearly, the Gromov-Hausdorff distance between isometric metric spaces is zero. The converse is
not true: Consider a complete and separable metric space X without any isolated points and with a
countable dense subset A. Then the Gromov-Hausdorff distance between A and X is zero, while they
are not isometric since A is not complete by Baire’s Theorem. A rather deep result proved by Misha
Gromov states that if (A, dA) and (B, dB) are compact metric spaces then dGH(A,B) = 0 implies that
they are isometric, see [Mon02, Proposition 8.5]. Moreover, in the setting of compact metric spaces the
finite metric spaces are Gromov-Hausdorff dense. This follows from covering a compact metric space with
ε-balls and picking the centers of a finite sub-cover. Notice that dGH(R, [−n, n]) =∞, which implies that
limn→∞[−n, n] 6= R with the Gromov-Hausdorff distance. To remedy this separation between bounded
and unbounded spaces, we describe the desired convergence locally by using metric balls.

Definition 4.18. Let (Ai, ai) be a sequence of pointed metric spaces and (B, b0) another pointed metric
space. Then (Ai, ai) is said to (local Gromov-Hausdorff ) converge to (B, b0) if for every ε > 0, the ε-balls
centered at ai in Ai converge to the ε-balls centered at b0 in B in the sense of the Gromov-Hausdorff
distance.

With this notion of convergence, the provisional definition of tangent cone given in (4.2) is now precise.
Let (Q,H, g) be an equiregular and bracket generating sub-Riemannian geometry. We will be interested
in the pointed metric space (Q, dCC , q), where q ∈ Q and dCC is the Carnot-Carathéodory distance. The
notation CTqQ for its tangent cone will be used and we make sure that the sub-Riemannian structure is
clear from the context.

Theorem 4.19 (Mitchell’s Convergence Theorem). The tangent cone of an equiregular and bracket gen-
erating sub-Riemannian geometry (Q,H, g) exists at any point q ∈ Q. Moreover, it is isometric to the
nilpotentization at the same point

CTqQ ' Nil(Q, q).

Thus the tangent cone of an equiregular and bracket generating sub-Riemannian geometry at any
point inherits a Carnot group structure. In [Bel96] the notion of tangent cone is extended to the non-
regular setting. We will not pursue this as our main interest is in sub-Riemannian model spaces which
are defined in the next section and are always equiregular.
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4.3 Sub-Riemannian Model Spaces

In this section we define the main objects of the thesis: sub-Riemannian model spaces. The definition
will be influenced by the maximal symmetry interpretation of Riemannian model spaces developed in
Chapter 2. Arguments involving sub-Riemannian model spaces will often involve the interplay between
their frame bundles and isometry groups we discussed in Chapter 3. The main difficulty with dealing
with sub-Riemannian model spaces is that they are not defined by a numerical invariant in the way
Riemannian model spaces are defined (up to well-behavedness of topological and metric properties) by
sectional curvature. Classifying sub-Riemannian model spaces is particularly challenging as model spaces
of different step or rank exhibit different features as will be seen later. The paper [Gro16] will be the
main reference from this point on all the way to the end of Section 4.6.

Definition 4.20. A sub-Riemannian model space is a bracket generating sub-Riemannian geometry
(Q,H, g), where Q is a simply connected manifold satisfying the following symmetry condition:

For any points p, q ∈ Q and any linear isometry φ : Hp → Hq there exists a smooth isometry Φ : Q→ Q
such that dΦ|Hp = φ.

Before discussing anything else, the notion of isometry in the sub-Riemannian setting needs to be
clarified. If (Q(1),H(1), g(1)) and (Q(2),H(2), g(2)) are two bracket generating sub-Riemannian geometries,
a (sub-Riemannian) isometry is defined to be a homeomorphism Φ : Q(1) → Q(2) which preserves the

Carnot-Carathéodory distance, that is, a distance preserving map between the metric spaces (Q(1), d
(1)
CC)

and (Q(2), d
(2)
CC). The following regularity result is assembled from [CLD16, Theorem 1.2] and [CLD16,

Corollary 1.8].

Proposition 4.21. Let (Q,H, g) be a bracket generating and equiregular sub-Riemannian geometry. Then
any isometry Φ : Q→ Q is a smooth map satisfying dΦ(H) ⊂ H and restricts to a linear isometry

dΦ|Hq : Hq −→ HΦ(q),

for any q ∈ Q. Moreover, any isometry is uniquely determined by its restricted differential dΦ|Hq at a
single point.

This proposition applies to sub-Riemannian model spaces as their definition implies that they are
equiregular: The growth vector G(q) at a point q ∈ Q is determined by the Carnot-Carathéodory distance
in a neighbourhood of q. Thus the fact that the model spaces are homogeneous, meaning that every two
points can be connected by a sub-Riemannian isometry, force the growth vector to be constant. Hence
the isometries appearing in the definition of sub-Riemannian model spaces have the properties described
in Proposition 4.21. In particular, the smoothness requirement for the isometries in the definition of
sub-Riemannian model spaces does not need to be checked. The last sentence in Proposition 4.21 is a
sub-Riemannian analogue of Proposition 2.15.

Example 4.22. The Riemannian model spaces presented in Theorem 2.50 are sub-Riemannian model
spaces by Theorem 2.52. In this case the horizontal distribution is the whole tangent bundle. It is useful
to keep in mind that not all the Riemannian model spaces have a compatible Lie group structure, an
example is S2 as is not parallelizable.

Before describing more sub-Riemannian model spaces, we develop a few technical tools which will be
essential for the next sections. Say we are given any diffeomorphism Φ : Q→ Q with dΦ(H) ⊂ H, where
(Q,H, g) is an equiregular sub-Riemannian geometry. For any vector field X, define an associated vector
field Ad(Φ)X by the formula

Ad(Φ)X(q) = dΦ ◦X ◦ Φ−1(q), q ∈ Q.
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This is simply the vector field which is Φ-related to X. As pointed out in Chapter 3, Φ-related vector
fields commute with the Lie bracket,

[Ad(Φ)X,Ad(Φ)Y ] = Ad(Φ)[X,Y ],

implying that Ad(Φ) maps the sections Hj into itself for any j ≥ 1. Since H is equiregular we have that

dΦ(Hj) ⊂ Hj , j ≥ 1. (4.3)

Lemma 4.23. The horizontal distribution of any sub-Riemannian model space is orientable.

Proof. Let (Q,H, g) be a sub-Riemannian model space with rank(H) = n and q ∈ Q. Fix ω ∈ ∧nHq with
|ω|g = 1, where the norm is the one induced from g to all the tensor bundles. For every p ∈ Q, let Φ be
an isometry of Q such that Φ(q) = p. Then |dΦ(ω)|g = |ω|g 6= 0 shows that this gives a non-vanishing
n-form on the bundle H by varying Φ.

For a sub-Riemannian model space (Q,H, g) we let G denote the isometry group Isom(Q) of Q. It
follows from [CLD16, Theorem 1.6] that G is a finite dimensional Lie group similarly as in the Riemannian
case. For a fixed point q ∈ Q, let Kq denote the isotropy group corresponding to the point q. The isotropy
groups corresponding to different points will all be conjugate and are compact by [GK03, Corollary 5.6].
We omit the explicit reference to the point q in the notation K := Kq as this is of minor relevance in our
arguments. Hence we can consider the principal bundle

K −→ G
π−→ Q ' G/K

described in Example 3.2, where π(Φ) = Φ(q) for Φ ∈ G. By compactness of K there is a K-invariant
complement p of k ⊂ g, where k and g are the Lie algebras of K and G, respectively. For any v ∈ TqQ
let Av denote the corresponding element in p, that is, the unique element such that dπ(Av) = v. Let
θ(t) = exp(tAv) denote its one-parameter subgroup in the isometry group. Then for Φ ∈ K, we have

dπ(Ad(Φ))Av = dΦ

(
d

dt
θ(t) ◦ Φ−1(q)

∣∣∣
t=0

)
= dΦ(v). (4.4)

That p is K-invariant gives that Ad(Φ)Av = AdΦ(v). This implies that

pj =
{
A ∈ p : dπ(A) ∈ Hjq

}
(4.5)

is K-invariant by Equation (4.3).

Example 4.24. Recall that f[n, k] denotes the free Lie algebra of rank n and step k introduced in Example
4.14. Let X1, . . . , Xn be a basis for the generating subspace f1 and denote by N [n, k] the corresponding
simply connected Lie group of f[n, k] called the free nilpotent Lie group of rank n and step k. Fix an inner
product on f1 making X1, . . . , Xn orthonormal and consider the left-translated structure (H, g) of f1 with
its inner product. This makes (N [n, k],H, g) into an equiregular and bracket generating sub-Riemannian
geometry. We will show that (N [n, k],H, g) is in fact a sub-Riemannian model space. Notice that for any
linear isomorphism φ : f1 → f1 there exists a corresponding Lie algebra automorphism φ : f[n, k]→ f[n, k]
preserving the grading and restricting to φ on the generating subspace: It is recursively defined on fj by

φ(Aj) = φ ([Aj−1, Xi]) = [φ(Aj−1), φ(Xi)],

for Xi ∈ f1, Aj ∈ fj , and Aj−1 ∈ fj−1. This is well-defined since there are no relations in fj other than those
imposed by the Lie algebra axioms when j ≤ k. Since N [n, k] is simply connected, we can associate to φ
a Lie group automorphism Φ : N [n, k] → N [n, k] such that dΦ1 = φ by Theorem A.5. By construction,
if we initially chose φ to be a linear isometry then Φ will be an isometry. This suffices by left-invariance
and hence the free nilpotent Lie groups are sub-Riemannian model spaces. See [LDO16, Theorem 1.1] for
why any isometry Φ : C → C with C a Carnot group and Φ(1) = 1 is in fact a Lie group automorphism.
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Sub-Riemannian model spaces exist in every dimension due to the Riemannian ones. Moreover, any
combination of rank and step gives at least the free nilpotent Lie group as a model space. We can now
state the main goal of the thesis clearly. It is to classify all sub-Riemannian model spaces of step and
rank three. The next and final chapter is fully dedicated to this classification. All step two spaces of any
rank are classified in [Gro16, Theorem 5.6], and this result will be presented in Subsection 4.6.3. In step
two the classification is less involved that when the step is three, which is due to several results we will
develop in the next three sections. The next three sections is also dedicated to survey results obtained
in [Gro16] where the previously introduced concepts such as frame bundles, nilpotentizations, symmetric
spaces, and holonomy are all present.

4.4 Canonical Partial Connections

In this section we will show, using the theory of principal bundles from Chapter 3, that every sub-
Riemannian model space have a canonical partial connection. The partial connection coincides with the
Levi-Civita connection when the horizontal distribution is the whole tangent space. This will allow us to
define horizontal holonomy in Subsection 4.6.1. The existence of a canonical partial connection will also
play a key part in the proof of our classification results in Section 5.4 and Section 5.5.

Definition 4.25. Let (Q,H, g) be a sub-Riemannian model space and let π : E → Q be any vector
bundle. Then a partial connection ∇H on π : E → Q in the direction of H is a map

∇H : Γ(H)× Γ(E) −→ Γ(E)

(X,Y ) 7−→ ∇HXY,

which is C∞(Q)-linear in the first component, R-linear in the second, and satisfies the Leibniz property

∇HXfY = X(f)Y + f∇HXY.

The partial connections we will be interested in have E = H and can always be described as restrictions
of affine connections to the vector bundle H, see [CGJK18]. We say a partial connection ∇H on H in the
direction of H is compatible with the (sub-Riemannian) metric if

X〈Y,Z〉 = 〈∇HXY,Z〉+ 〈Y,∇HXZ〉,

for X,Y, Z ∈ Γ(H). If the partial connection ∇H satisfies

∇HdΦ(X)dΦ(Y ) = dΦ
(
∇HXY

)
,

for any Φ ∈ Isom(Q) we refer to it as being invariant under isometries. The reader should compare
the following theorem to the existence and uniqueness of the Levi-Civita connection on a Riemannian
manifold in Theorem 2.8.

Theorem 4.26. Let (Q,H, g) be a sub-Riemannian model space. There exists a unique partial connection
∇H on H in the direction of H which is compatible with the metric and invariant under isometries.

Proof. (Existence) We will give a sketch of the proof for existence and refer the reader to [Gro16, Propo-
sition 3.8] for more details. By considering horizontal orthonormal frames on (Q,H, g) we obtain the
orthonormal frame bundle

O(n) −→ FO(H)
π−−→ Q,

where rank(H) = n. Moreover, we have the isometry group

G = Isom(Q)
πG−−−→ Q
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together with the isotropy group K = Kq for a chosen q ∈ Q. Let as usual g and k denote the Lie algebras
of G and K, respectively. The strategy is to reformulate the existence of a partial connection with the
properties stated in the theorem so that it is equivalent to the existence of a subspace p1 ⊂ g which is
transversal to k, invariant under the action of K, and satisfies

dπG(p1) = Hq.

Assuming this was done, the compactness of K would imply the existence of an invariant complement p
to k. By defining p1 as we did in Equation (4.5) we would have found the desired subspace p1 ⊂ g.

To show the equivalence of the two statements, we will utilize the theory developed in Section 3.4.
Since the partial connection ∇ := ∇H is compatible with the metric, it induces a principal connection
H∇ on FO(H) similarly as in Proposition 3.17. Analogously as in Section 3.4 we have that the action

G×FO(H) −→ FO(H)

(a, φ : Rn −→ Hq) 7−→ da(φ)

is both free and transitive for a ∈ G and φ ∈ FO(H). Choose a reference frame φ0 ∈ FO(H) such that
π(φ0) = q. Then we get an identification of G with FO(H) through a 7→ da(φ0). The connection H∇ is
identified with a distribution Hp on G which is left invariant under the action of G owing to the invariance
under isometries

∇dΦ(X)dΦ(Y ) = dΦ (∇XY ) .

Let us denote the restriction of Hp to the identity of G by p. Since H∇ is transverse to the vertical space
V = ker(dπ) it follows that p it transversal to the Lie algebra of K and p⊕ k = g. This gives p1 by (4.4)
and the required properties are satisfied. Moreover, it is clear how to reverse-engineer the identifications
we have made so that the existence of the subspace p1 ⊂ g with the described properties implies the
existence of a partial connection ∇ on H with the properties stated in the theorem.

Before turning to the proof of uniqueness, we need some results regarding representation theory of
orthogonal groups: Recall that O(n) denotes the orthogonal group, which is a Lie group with Lie algebra
consisting of the skew-symmetric matrices o(n). It is sometimes convenient to identify ∧2Rn as a vector
space with o(n) through the map

x ∧ y 7−→ yxT − xyT , x, y ∈ Rn. (4.6)

The orthogonal group O(n) acts on Rn by matrix multiplication and on o(n) by conjugation, that is,

a · v = av, a ·A = aAa−1,

for a ∈ O(n), v ∈ Rn, and A ∈ o(n). It follows from [O’N83, Lemma 11.6] that the action on o(n) is simply
the adjoint map described more generally in Appendix A.2. The readers unfamiliar with representation
theory can find the terminology used below explained in Appendix A.2.

Lemma 4.27. For n ≥ 2 the representations of O(n) on Rn and o(n) described above are irreducible.
Moreover, Rn and o(n) are not isomorphic as representations.

Proof. Let V ⊂ Rn be a non-zero invariant subspace under the action of O(n) and pick a vector v ∈ V
with ‖v‖ = 1. We know from Example 2.18 that O(n) acts transitively on the sphere Sn−1. Hence there
exist elements a1, . . . , an ∈ O(n) such that ai · v = ei for i = 1, . . . , n, showing that V = Rn.

An invariant subspace of o(n) yields an invariant subspace for the induced Lie algebra representation
of o(n) on itself. However, the computation given in [War83, Proposition 3.47] shows that the induced
Lie algebra representation of the adjoint representation is the Lie bracket,

o(n) 3 X 7−→ (A 7−→ adX(A) = [X,A]) ∈ End(o(n)).
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An invariant subspace of this action is simply an ideal in o(n), that is, a subspace which is additionally
closed under the Lie bracket. However, for n 6∈ {2, 4} the classification of real simple Lie algebras reveals
that o(n) is simple, that is, does not have any nontrivial proper ideals. Hence the adjoint action of O(n)
on o(n) is irreducible whenever n 6∈ {2, 4}. For n = 2 then

dim(O(2)) = dim(S1) = 1,

showing that there is no nontrivial subspaces of o(2). Finally, the irreducibility of the action of O(4) on
o(4) can be found in [Don11, Chapter 2]. As the dimensions of Rn and o(n) only coincide when n = 3,
this is the only possible time they could be isomorphic as representations. However, a straightforward
computation shows that any intertwining map between R3 and o(3) will be zero by applying suitable
rotations and reflections.

Proof. (Uniqueness) We now turn to the uniqueness claim of Theorem 4.26. Let p and q be two K-
invariant subspaces of g which are transversal to k and such that dπ restricts to a linear isomorphism on
both p and q onto Hq. We use the notation Av ∈ p and Bv ∈ q for the elements corresponding to v ∈ Hq
under the isomorphism dπ. Define the map

η : p −→ k, η(Av) = Av −Bv.

Then the K-invariance of p and q shows that Ad(a)η = ηAd(a) for a ∈ K. Hence η is an intertwining map
of representations. Since we are dealing with a model space, we can identify K with O(n) by maximal
symmetry. Then the action of K on k is simply the adjoint action of O(n) on o(n). Similarly, Equation
(4.4) shows that the action of K on p is isomorphic to the usual action of O(n) on Rn. Hence Lemma
4.27 shows that η ≡ 0 which proves uniqueness.

We call the partial connection in Theorem 4.26 the canonical partial connection on H and the notation
∇H will from now on refer to this partial connection. It gives us a necessary condition for sub-Riemannian
model spaces (Q(1),H(1), g(1)) and (Q(2),H(2), g(2)) to be isometric: Assume Φ : Q(1) → Q(2) is an isometry.
By choosing a point q1 ∈ Q(1) we consider the isotropy groups

Kq1 ⊂ G(1) = Isom(Q(1)), Kq2 ⊂ G(2) = Isom(Q(2)),

where q2 = Φ(q1). As the isotropy groups are all conjugate, we remove qi from the notation and simply
write K(1) and K(2) in place of Kq1 and Kq2 , respectively. The map Φ induces a group homomorphism

Φ : G(1) −→ G(2)

by conjugating with Φ, that is, Φ(ϕ) = Φ ◦ ϕ ◦ Φ−1 for ϕ ∈ G(1). Then Φ(K(1)) = K(2) and we use the
notation g(i) and k(i) for the Lie algebras of G(i) and K(i) for i = 1, 2, respectively.

As described in the proof of Theorem 4.26, the connections ∇(i) := ∇H(i)
correspond after a choice of

orthonormal frames to subspaces p(i) ⊂ g(i), for i = 1, 2. We equip p(i) with an inner product making

dπ
∣∣∣
p(i)

: p(i) −→ H(i)
qi

a linear isometry for i = 1, 2. As dΦ1 : g(1) → g(2) and

∇(2)
dΦ(X)dΦ(Y ) = dΦ

(
∇(1)
X Y

)
,

we have that dΦ1 maps p(1) isometrically onto p(2) and maps k(1) onto k(2). The following diagram
illustrates the induced linear isomorphisms arising from the isometry Φ:
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k(1) k(2)

K(1) K(2)

g(1) g(2)

G(1) G(2)

p(1) p(2)

Q(1) Q(2)

exp

'

exp
Φ

exp

'

exp
Φ

'

∇(1)

Φ

∇(2)

The arrows � in the diagram corresponding to ∇(i) simply indicates an association in the diagram and
nothing more. Summarizing, if the two model spaces are isometric then there is a Lie algebra isomorphism
from g(1) to g(2) preserving the subspaces k(i) and p(i) as described in the diagram above.

4.5 Carnot Model Spaces

In this section we will give conditions for when a Carnot group is a model space; such spaces are called
Carnot model spaces. This is not only an interesting class of examples in itself but, as we will see through
the theory of tangent cones and nilpotentization, it gives a powerful invariant for any sub-Riemannian
model space. In particular, only the growth vectors of Carnot model spaces can occur as growth vectors of
general sub-Riemannian model spaces. We will begin by going through a few examples we have previously
encountered and determining whether they correspond to Carnot model spaces.

Example 4.28. Let fil(n+ 1) denote the n+ 1-dimensional filiform algebra introduced in Example 4.13.
Fix an orthonormal basis X,Y1 for the generating subspace V1 and consider the isometry ψ : V1 → V1

given by a 90 degree rotation, that is, ψ(X) = Y1 and ψ(Y1) = −X. If we assume ψ induces a Lie algebra
automorphism

ψ : fil(n+ 1) −→ fil(n+ 1),

this forces

ψ(Y2) = [ψ(X), ψ(Y1)] = [Y1,−X] = Y2, ψ(Y3) = [ψ(X), ψ(Y2)] = [Y1, Y2] = 0,

which contradicts the injectivity of ψ. Hence as long as n ≥ 3, the Carnot group having fil(n+ 1) as its
Lie algebra is not a Carnot model space. For n = 2, the filiform algebra fil(3) is the same as the classical
Heisenberg algebra H3 described in Example 4.12. The simply connected Lie group corresponding to
H3 is called the (three-dimensional) Heisenberg group, compare with Example 4.4. Since the Heisenberg
group is the free nilpotent Lie group N [2, 2], it is clear that fil(3) corresponds to a Carnot model space.

Example 4.29. Let H2n+1 denote the (2n + 1)-dimensional Heisenberg algebra introduced in Example
4.12. We choose an orthogonal basis X1, . . . , Xn, Y1, . . . , Yn for the generating subspace V1 and let ψ the
isometry sending X1 to −X1 while fixing all the other basis elements. Then the Lie algebra extension

ψ : H2n+1 −→ H2n+1

satisfies
ψ(Z) = ψ [X1, Y1] =

[
ψ(X1), ψ(Y1)

]
= [−X1, Y1] = −Z.
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On the other hand, this also becomes

ψ(Z) = ψ [Xi, Yi] =
[
ψ(Xi), ψ(Yi)

]
= [Xi, Yi] = Z, i = 2, . . . , n.

Hence the (2n + 1)-dimensional Heisenberg algebra give rise to a Carnot model space only in the case
where n = 1, that is, for the classical Heisenberg algebra H3.

Notice that the intersection of the filiform algebras and the Heisenberg algebras is the only Lie algebra
in either class which corresponds to a Carnot model space. This direct approach of checking that an
orthogonal map on the generating subspace extends to a Lie algebra automorphism is efficient in low
dimensions for excluding that a given Carnot group is a Carnot model space. However, it falls short
of providing us with new Carnot model spaces. We now give another approach based on representation
theory of the orthogonal group for determining whether a Carnot group is a Carnot model space.

Let (C,H, g) denote a Carnot group with a left-invariant rank n subbundle and metric given by left
translating an inner product on the generating subspace V1 of its stratified Lie algebra g = V1 ⊕ · · · ⊕ Vk.
Fix an orthonormal basis X1, . . . , Xn for V1 and consider the free nilpotent Lie algebra f[n, k] = f1⊕· · ·⊕fk
of step k on the basis X1, . . . , Xn. Let (N [n, k], E , h) denote the free nilpotent Lie group corresponding
to f[n, k]. We have a surjective group homomorphism

Φ : N [n, k] −→ C

by considering g as the free nilpotent Lie algebra modulo some additional relations. The differential

dΦ|Ex : Ex −→ HΦ(x)

is a linear isometry for every x ∈ N [n, k]. This is the canonical identification of f1 with V1 when x is the
identify of N [n, k]. Notice that any Lie algebra automorphism ψ : g → g is determined by ψ|V1 as g is
stratified. Lifting ψ|V1 through dΦe, the result determines a Lie algebra automorphism

ψF : f[n, k] −→ f[n, k]

by the procedure described in Example 4.24. Moreover, ψF clearly satisfies

dΦe ◦ ψF = ψ ◦ dΦe.

Conversely, any isomorphism ψF of f[n, k] gives a linear isomorphism ψ : V1 → V1 by the same procedure.
However, this lifts to a Lie algebra automorphism of g only if ψF preserves the ideal ker(dΦe). Hence, if
C is a model space, this property has to hold for every ψ ∈ O(f1). By summarizing this discussion we get
the following proposition.

Proposition 4.30. We can determine Carnot model spaces by examining ideals a of f[n, k] which are
also sub-representations of the action of O(f1) on f[n, k] given by lifting isometries as described above.

We will apply this technique right away to classify all the Carnot model spaces with step two. This is
straightforward due to the irreducibility results we showed in Lemma 4.27.

Proposition 4.31. The only Carnot model spaces of step two are the free nilpotent Lie groups N [n, 2].

Proof. The action of O(f1) on the first layer of f[n, 2] is isomorphic to the usual action of O(n) on Rn
given by matrix multiplication. On the second layer, it is isomorphic to the action of O(n) on ∧2Rn given
by

a · (x ∧ y) = ax ∧ ay.

By using the identification (4.6), this is isomorphic to the adjoint action of O(n) on its Lie algebra o(n).
It follows from Lemma 4.27 that both representations are irreducible. Hence N [n, 2] is the only Carnot
model space with rank n and step two.
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Proposition 4.31 is a special feature of having step two. In the next chapter we will see that Carnot
model spaces other than the free ones exist when the step is three. We will now describe how Carnot model
spaces can be used as an invariant for general sub-Riemannian model spaces through the nilpotentization
procedure developed in Section 4.2.

Let (Q(1),H(1), g(1)) and (Q(2),H(2), g(2)) be two sub-Riemannian model spaces and let Nil(Q(1), q1)
and Nil(Q(2), q2) denote their Carnot groups arising from the nilpotentization at the point qi ∈ Q(i)

for i = 1, 2. Recall that any isometry Φ : Q(1) → Q(2) with Φ(q1) = q2 satisfies dΦ(H(1)) ⊂ H(2) by
Proposition 4.21. This induces a map

Nilq1(Φ) : Nil(Q(1), q1) −→ Nil(Q(2), q2)

defined as the Lie group automorphism whose differential at the identity is given by

nil(q1) 3 [v] 7−→ [dΦ(v)].

This is well-defined by (4.3) and determines a unique Lie group homomorphism by Theorem A.5. For
model spaces the specification of a point for the nilpotentization procedure is immaterial, as the nilpo-
tentizations at different points are isomorphic by homogeneity. In view of this, we shorten the notation
for the nilpotentizations to Nil(Qi) for i = 1, 2.

Proposition 4.32. If (Q,H, g) is a sub-Riemannian model space then Nil(Q) is a Carnot model space
with the same growth vector. In particular, the only growth vectors sub-Riemannian model spaces can
have are those that occur on Carnot model spaces.

Proof. For φ ∈ O(Hq) = O(nil(q)1), let Φ : Q → Q be the isometry extending φ on Q. Then Nilq(Φ) is
the desired isometry extending φ on Nil(Q), proving that Nil(Q) is a model space.

This result implies together with Proposition 4.31 that co-dimension one model spaces with growth
vector (n, n+ 1) can exist only when

n+ 1 = dim(f[n, 2]) =
n(n+ 1)

2
⇐⇒ n = 2.

Example 4.33. Recall from Example 4.8 that we obtained a family (SO(n),Hm
k , g) of equiregular sub-

Riemannian structures on SO(n) with step two for 0 < k < n called Steifel structures. As SO(n) is not
simply connected, it can not be a model space with any sub-Riemannian structure. However, we consider
the lifted structure to the universal covering group of SO(n). The growth vectors are

G =

(
k(2n− k + 1)

2
,
n(n+ 1)

2

)
.

It follows from Proposition 4.31 and Proposition 4.32 that the only growth vector compatible with a
model space structure is when k = 1. In this case, the Steifel manifold V1(Rn) is simply Sn−1. The
sub-Riemannian structure on SO(n) is the one induced by the Levi-Civita connection ∇ on Sn−1 through
the procedure described in Proposition 3.17. We will see in Theorem 4.38 that this structure is in fact a
sub-Riemannian model space.

4.6 Model Spaces with Free Nilpotentization

In this section we classify all sub-Riemannian model spaces with step two. This will require us to develop
horizontal holonomy and provide a connection with the frame bundles investigated in Chapter 3. We will
see that horizontal holonomy can only take on extreme cases on sub-Riemannian model spaces; either
the horizontal holonomy is trivial or it is of maximal dimension. More details and justifications of the
statements we will present on horizontal holonomy can be found in [CGJK18] and [Gro16].
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4.6.1 Horizontal Holonomy

Let (Q,H, g) be a sub-Riemannian model space of rank n with canonical partial connection ∇H. Consider
the orthonormal frame bundle O(n) −→ FO(H)

π−→ Q together with the principal connection H∇ induced
by ∇H as described in the proof of Theorem 4.26. Recall from Section 3.2 that we might as well work with
the associated connection one-form ω of H∇. Let Φ(u) denote the holonomy groups inside the structure
group O(n) where u ∈ π−1(p) with p ∈ Q as described in Section 3.3. Consider the subgroup

HolH(φ) = {A ∈ O(n) : φ ·A = τ(φ)} ,

where τ is the parallel displacement corresponding to a horizontal curve γ : [0, 1]→ Q with γ(0) = γ(1) =
π(φ). This will be called the horizontal holonomy group corresponding to the point φ ∈ FO(H).

As Q is simply connected, the horizontal holonomy groups are connected. Moreover, the bracket
generating condition ensures that the groups HolH(φ) all coincide up to conjugation for different points
p ∈ Q and φ ∈ π−1(p). Since we will only consider horizontal holonomy for model spaces, we tactically
use the notation Hol(Q,H) := HolH(φ) whenever convenient. It follows from [Gro16, Theorem 3.5] that
there always exists an affine connection ∇ on TQ such that

∇|H = ∇H,

and the horizontal holonomy of ∇H being equal the usual holonomy of ∇. If the curvature endomorphism
corresponding to ∇ is zero, then it follows from Proposition 3.26 together with the Ambrose-Singer
theorem that Hol(Q,H) is the trivial group. Horizontal holonomy for sub-Riemannian model spaces are
polarized as the following proposition shows.

Proposition 4.34. For a sub-Riemannian model space (Q,H, g) of rank n the horizontal holonomy group
is either trivial or isomorphic to SO(n). The horizontal holonomy group is trivial if and only if there
exists for every p ∈ Q a Lie group structure on Q such that p becomes the identity element, (H, g) is
left-invariant, and every isometry fixing p is a Lie group automorphism. Moreover, if

Nil(Q) ' N [n, 2k], n, k ∈ N,

then the horizontal holonomy group is trivial.

This proposition will play an important part in the classification of step two model spaces in Theorem
4.38. We will not give the proof of Proposition 4.34 as this would require us to introduce selectors, which
is a technical tool not needed in any of the subsequent sections. The proof can be found in [Gro16] and
more details on selectors are given in [CGJK18].

4.6.2 Frame Bundles of Model Spaces

We will now work towards examining what happens when the horizontal holonomy group is all of SO(n).
For this, we will briefly introduce a generalization of the model space definition to geometries which are
not necessarily bracket generating. For such geometries, the Chow-Rashevskii Theorem does not apply
and we might not have a proper distance function given by taking infimum over horizontal curves. This
requires us to redo some definitions which are based on isometries.

Definition 4.35. Let (Q,H, g) be a sub-Riemannian geometry where H is not necessarily bracket gen-
erating.

• We say that a diffeomorphism φ : Q→ Q with dφ(H) ⊂ H is a loose isometry if it satisfies

〈dφ(v), dφ(w)〉g = 〈v, w〉g.
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• If there exists a Lie group G acting smoothly on Q such that for every φ ∈ G the map p 7→ φ · p is
a loose isometry, then we say that G acts loosely isometric.

• If G in addition acts transitively we refer to Q as a loose homogeneous space.

• We say that Q is a loose model space if Q is connected and there is a Lie group G which acts by
loose isometries such that whenever p, q ∈ Q and ψ : Hp → Hq is a linear isometry, then ψ(v) = φ ·v
for some φ ∈ G and every v ∈ Hp.

It follows from Equation (4.3) that the distribution H will still be equiregular for loose model spaces.
We will refer to the usual model spaces as true model spaces for the rest of this Subsection to emphasize
the distinction from loose model spaces. The observant reader will have noticed that we have not included
simply connectedness in the definition of loose model space analogously to what we had for true model
spaces. This is because we will now construct a true model space from any loose model space which is
not dependent on requiring simply connectedness of the loose model space. We use the notation

Op = {q ∈ Q : there is a horizontal curve connecting p and q} ,

and call this the accessible set corresponding to p ∈ Q.

Lemma 4.36. Let (Q,H, g) be a loose model space with p ∈ Q. Then (Op,H|Op, g|Op) is a sub-

Riemannian homogeneous space. The universal covering space Õp of Op together with the lifted sub-
Riemannian structure is a true model space. Moreover, a different choice of point q ∈ Q will result in
isometric spaces Oq ' Op.

Proof. Notice that since H is equiregular, there is a well defined number r such that Hr = Hr+1. Hence
by the theorem of Frobenius, see [Lee97, Theorem 19.12], it follows that Hr is an integrable distribution
with the accessible sets {Op : p ∈ Q} as connected integral manifolds. In particular, H|Op is a bracket
generating distribution on Op. We claim that any loose isometry taking a point in Op to another point
in Op is an isometry of (Op,H|Op, g|Op): If γ is a horizontal curve in Q with γ(0) = p, then φ ◦ γ is a
horizontal curve starting at φ(q) for any loose isometry φ. Hence φ(Op) = Op for any loose isometry φ
with φ(p) ∈ Op, showing the claim. Thus (Op,H|Op, g|Op) is a sub-Riemannian homogeneous space and
the remaining statements are straightforward.

Remark. Even if the loose model space (Q,H, g) is simply connected there is no guarantee that the
accessible sets will be simply connected as well. Notice that Theorem 4.26 also holds for loose model
spaces as the proof never depended on the bracket generating condition.

The previous construction will now be applied to lift the structure of a true sub-Riemannian model
space (Q,H, g) to the orthonormal frame bundle π : FO(H) → Q. Let ∇H be the canonical partial
connection on H whose existence is guaranteed by Theorem 4.26. Recall from the proof of Theorem 4.26
that the canonical partial connection induces a subbundle H∇ of TFO(H). For p ∈ Q and any frame
φ ∈ FO(H)p, we have that

dπ
∣∣∣
H∇φ

: H∇φ −→ Hp

is a linear isomorphism. This allows us to lift the sub-Riemannian metric g to a metric g̃ on the subbundle
H∇ ⊂ TFO(H). Similarly as in Proposition 3.21, the subbundle H∇ is invariant under the left action
of Isom(Q) and under the right action of O(n), where n is the rank of H. With a combination of these
group actions, it follows that any linear isometry ψ : H∇φ1 → H∇φ2 can be lifted to a loose isometry

Ψ : FO(H)→ FO(H) such that

dΨ
∣∣∣
H∇φ1

= ψ.

If FO0 (H) denotes a connected component of FO(H) we have showed that (FO0 (H),H∇, g̃) is a loose
model space. Let us introduce the notation F(Q,H) for the universal covering space of FO0 (H). By Lemma

59



4.36, the space F(Q,H) together with the lifted structure is only possibly lacking the bracket generating
condition to be a true model space as we never restricted to the orbit of the group action. The choice
of component for FO0 (H) is immaterial, as there are loose isometries between the components of FO(H).
We now give the precise condition for when F(Q,H) becomes a true model space, relating this back to
horizontal holonomy. For a proof of the following proposition together with more information on the rank
of F(Q,H), see [Gro16, Proposition 5.4].

Proposition 4.37. Let (Q,H, g) be a true sub-Riemannian model space of rank n. Then F(Q,H) is a
true model space as well if and only if

Hol(Q,H) ' SO(n).

4.6.3 Classification of Step Two Model Spaces

We will now provide the full classification of model spaces in step two, following [Gro16] closely. This
involves a lot of previously encountered theory and stands as a guideline to how higher dimensional clas-
sification can be carried out. The reader should nevertheless be aware that the step two case does not
reflect all the difficulties encountered in the higher step cases. This is mainly due to Proposition 4.31,
making the step two case exceptional. We begin by providing an alternate description of the model spaces
in Riemannian geometry. The reason for this will be apparent when the classification result is presented
in Theorem 4.38.

For ρ ∈ R and n ≥ 2, consider the Lie algebra g(n, ρ) consisting of all matrices on the form(
A x
−ρxT 0

)
, A ∈ o(n), x ∈ Rn. (4.7)

There is a decomposition g(n, ρ) = p⊕k where p is the subspace given by A = 0 and k is the subspace given
by x = 0. We give p the Euclidean metric 〈·, ·〉p in these coordinates and consider the simply connected
Lie group G(n, ρ) corresponding to g(n, ρ). If B is the Killing form on g(n, ρ), then the Euclidean metric
on p coincide (up to a constant) with the Killing form B restricted to p. Moreover, we have p = k⊥ with
respect to the Killing form B.

The Lie group G(n, ρ) together with the translated structure (Hp, gp) is a sub-Riemannian geometry.
As both p and the Euclidean metric 〈·, ·〉p are invariant under the closed Lie subgroup K ⊂ G(n, ρ)
corresponding to k, this induces a well defined Riemannian metric on G(n, ρ)/K. This Riemannian
manifold is isometric to the Riemannian model space Σ(n, ρ) with sectional curvature ρ. Moreover,
G(n, ρ) is isomorphic as a Lie group to the frame bundle of the Riemannian model space Σ(n, ρ), see
[KN96, Lemma 5.1] for justification of these statements.

Remark. It might seem at first glance that we pulled the description of g(n, ρ) out of thin air. In fact, the
description is motivated by combining several results we discussed in Chapter 3. Recall that we showed
at the end of Section 3.4 that the isometry groups of the Riemannian model spaces are isomorphic as Lie
groups to their orthonormal frame bundles, that is,

FO(TSnR) ' O(n+ 1), FO(TRn) ' E(n), FO(THn
R) ' O+(n, 1). (4.8)

Moreover, recall that the torsion of the Levi-Civita connection ∇ is zero and the curvature of the Rieman-
nian model spaces is constant. It thus follows from Proposition 3.26 that the curvature form is constant
while the torsion form is zero on the orthonormal frame bundle of the Riemannian model spaces.

The Lie algebra structure of the orthonormal frame bundles is completely determined by the funda-
mental vector fields and the standard horizontal vector fields, see [KN96, Corollary 3.5.6]. It is clear
that the bracket relations (3.9) and (3.10) on the orthonormal frame bundle of the Riemannian model
spaces are a coordinate free version of the matrix form given in (4.7). The subbundle Hp defined above is
precisely the principal connection induced by the Levi-Civita connection ∇ we described in Section 3.4.
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Theorem 4.38. Let (Q,H, g) be a sub-Riemannian model space of step two and rank n which is not a
Carnot group. Then

(Q,H, g) ' (G(n, ρ),Hp, gp),

for some ρ ∈ R \ {0}.

Proof. The reader should be aware that we will use a technical result regarding the representation theory
of the orthogonal groups given in [Gro16, Lemma A.3] once during the proof. We will supply the reader
with justifications for this in the remark given after the proof. If (Q,H, g) denotes a sub-Riemannian
model space of step two and rank n, then it follows from Proposition 4.34 that there is a Lie group
structure on Q such that (H, g) is left-invariant. Choose such a structure and let m denote the Lie algebra
of Q. As H is left-invariant we denote by m1 the subspace of m such that Hp = dLpm

1.
The following approach is influenced by the methods used when we dealt with Riemannian symmetric

spaces in Section 2.5. Let σ : Q→ Q be the unique isometry such that

dσ
∣∣∣
m1

= −Idm1 .

This gives a decomposition m = m− ⊕ m+ into eigenspaces corresponding to ±1. Clearly m1 ⊂ m− and
because we are in step two we can deduce from

m2 := [m1,m1] ⊂ m+, m1 + m2 = m,

that m1 = m− and m2 = m+. Hence m1 ⊕ m2 = m. We know that Nil(Q) is also a model space
by Proposition 4.32. Moreover, Proposition 4.31 gives that Nil(Q) ' N [n, 2]. We can identify m−

and m+ with Rn and o(n), respectively, where Rn has the standard Euclidean structure. Through this
identification, we have that the bracket between the two elements (x, 0), (y, 0) ∈ Rn ⊕ o(n) ' m is given
by [(

x
0

)
,

(
y
0

)]
=

(
0

x ∧ y

)
, (4.9)

where the identification (4.6) between ∧2Rn and o(n) is in effect.
For any linear isometry φ : m− → m− there is an isometry Φ : Q→ Q fixing the identity and

dΦ
∣∣∣
m−

= φ.

Hence Φ is a Lie group automorphism by Proposition 4.34 and acts on m− by

dΦ(x,A) = φ(x,A) = (φ · x, φAφ−1), x ∈ Rn, A ∈ o(n),

where we have identified φ with an orthogonal transformation on Rn. It follows from the representation
theory of the orthogonal group, see [Gro16, Lemma A.3], that there are constants ρ1 and ρ2 such that[(

x
A

)
,

(
y
B

)]
=

(
ρ1(Ay −Bx)

x ∧ y + ρ2[A,B]

)
. (4.10)

The bracket on the right indicates the usual commutator between the elements A,B ∈ o(n). For this to
satisfy the Jacobi identity it is straightforward to check that ρ1 = ρ2, and we use the notation ρ = ρ1 = ρ2.
As Q is simply connected, it is completely determined as a Lie group by its Lie algebra. Assume first
that ρ 6= 0. The Lie algebra m is now clearly isomorphic to g(n, ρ) for ρ 6= 0. Any linear isometry
ψ : m→ g(n, ρ) induces by simply connectedness a diffeomorphism

Ψ : Q −→ G(n, ρ).

As both sub-Riemannian geometries are given by left-translation it follows that (Q,H, g) ' (G(n, ρ),Hp, gp)
as sub-Riemannian geometries. When ρ = 0 we clearly have the Carnot model space N [n, 2].
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Remark. The need to cite a result regarding representations of the orthogonal group during the proof is
not one necessity, but rather a choice of exposition. In fact, the result in [Gro16] we used will be part
of Theorem 5.3, where we will provide a different proof than in [Gro16] for one of the statements. This
result will not logically depend on anything done previously, so the reader can skip ahead and read the
result now if so desired.

4.7 Contact Model Spaces

In this section we will classify the sub-Riemannian model spaces having a contact structure and give
explicit descriptions. This will connect the classification result given in Theorem 4.38 to existing literature
on sub-Riemannian geometry to provide context. Both Proposition 4.41 and Corollary 4.43 are original
results.

Definition 4.39. Let Q be a manifold of dimension 2k + 1. We say that (Q,H, g) is a contact sub-
Riemannian geometry if we can locally write H = ker(ξ), where ξ ∈ X∗(Q) satisfies the non-integrability
condition

ξ ∧ dξ ∧ · · · ∧ dξ︸ ︷︷ ︸
k−copies

6= 0.

We call H a contact distribution. If (Q,H, g) is in addition a sub-Riemannian model space, we simply
refer to it as a contact model space.

Contact distributions have been thoroughly studied in the sub-Riemannian setting, see [ABB17, Sec-
tion 4.3] and [Mon02, Section 1.10] for some elementary properties. Every contact distribution is a
hyperplane distribution, that is, it has codimension one. Hence the remark we made at the end of Section
4.5 forces any contact model space to have dimension three. As contact sub-Riemannian geometries have
step two they can all be found in Theorem 4.38.

On the other hand, any three dimensional Lie group with a bracket generating left-invariant distri-
bution is seen to be a contact sub-Riemannian geometry as follows: Let X1 and X2 constitute a global
left-invariant frame for the distribution and let ξ ∈ X∗(Q) be such that ker(ξ) = 〈X1, X2〉. Then using
formula (A.1) gives

dξ(X1, X2) = X1ξ(X2)−X2ξ(X1)− ξ ([X1, X2])

= −ξ ([X1, X2]) 6= 0,

as [X1, X2] is not contained in the distribution due to the bracket generating condition. The non-
integrability condition is easily seen to be satisfied.

Definition 4.40. Let (Q,H, g) be a contact model space. We say that (Q,H, g) has contact curvature
ρ ∈ R \ {0} if

(Q,H, g) ' (G(2, ρ),Hp, gp).

If Q ' N [2, 2] we say that Q has contact curvature ρ = 0.

We will now give a more explicit description of the spaces G(2, ρ) for ρ ∈ R \ {0}. For ρ > 0 the
space G(2, ρ) is isomorphic to the universal covering space of the connected component of Isom(S2

ρ). We
determined in Chapter 2 that Isom(S2

ρ) ' O(3), so it follows that

G(2, ρ) ' Spin(3) := S̃O(3).

Let SU(2) denote the special unitary group given by

SU(2) =

{(
α −β
β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.
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It is a unique feature in three dimensions that we have a two-fold covering map ψ : SU(2) → SO(3)
described in the following way: Identify SU(2) with the unit quaternions Sp(1) as Lie groups through the
identification

SU(2) 3
(
α −β
β α

)
=

(
a+ ib −(c− id)
c+ id a− ib

)
7−→ a1 + bi + cj + dk ∈ Sp(1).

If we identify the span of i, j,k with R3 as a vector space, then SU(2) ' Sp(1) acts on R3 by conjugation.
It is clear that

qvq−1 = (−q)v(−q)−1, v ∈ R3, q ∈ Sp(1),

and it can be checked that v 7→ qvq−1 is in fact a rotation. This gives the two-to-one map ψ : SU(2) →
SO(3). See [Hal15, Proposition 1.19] for more details showing that it is in fact a smooth and surjective
group homomorphism. By identifying the quaternions H with R4 as vector spaces we see that Sp(1) ' S3

as topological spaces. This shows that SU(2) is simply connected and covering theory implies that
SU(2) ' Spin(3) as topological spaces. If we let ξ : Spin(3)→ SO(3) denote the covering map, then

τ := dψ−1 ◦ dξ : g(2, ρ) −→ su(2)

is a Lie algebra isomorphism by [War83, Proposition 3.26]. As both SU(2) and Spin(3) are simply
connected, we have by Theorem A.5 that

G(2, ρ) ' Spin(3) ' SU(2)

as Lie groups. Through the isomorphism τ we obtain a left-invariant structure Hρ on SU(2). Finally,
if we require that τ is a linear isometry we get an inner product on su(2). By left-translating this inner
product we acquire a sub-Riemannian metric gρ such that

(Q,H, g) ' (G(2, ρ),Hp, gp) ' (SU(2),Hρ, gρ)

as sub-Riemannian geometries.
Let us write out the case ρ = 1 as an illustration: In this case,

g(2, 1) =

 0 a x1

−a 0 x2

−x1 −x2 0

 , x1, x2, a ∈ R.

Introduce the basis

E1 =
1

2

(
i 0
0 −i

)
, E2 =

1

2

(
0 i
i 0

)
, E3 =

1

2

(
0 −1
1 0

)
,

for su(2). The subspace m ⊂ su(2) spanned by E1 and E2 corresponds under the isomorphism τ to the
subspace p ⊂ g(2, 1) described in Subsection 4.6.3. Then

H1
A = dLAm = span{AE1, AE2} = span

{
i

2

(
−β α
α β

)
,
i

2

(
α β
β −α

)}
⊂ TASU(2), A =

(
α −β
β α

)
.

Similarly, the induced inner product on m is the one making E1 and E2 orthonormal. Left translating
this gives the sub-Riemannian metric

g1A

(
i

2

(
−ηβ + γα ηα+ γβ
ηα+ γβ ηβ − γα

)
,
i

2

(
−σβ + τα σα+ τβ
σα+ τβ σβ − τα

))
= ησ + γτ,

for η, γ, σ, τ ∈ R.
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For ρ < 0, we have that G(2, ρ) is isomorphic to the universal covering space of the connected
component of Isom(H2

ρ). In Chapter 2 we determined that Isom(H2
ρ) ' O+(2, 1). We denote the connected

component of O+(2, 1) by SO+(2, 1). It is well known that

SO+(2, 1) ' SL(2) = Sp(2),

where SL(2) denotes the 2 × 2 real matrices with unit determinant and Sp(2) denotes the 2 × 2 real
matrices preserving the usual symplectic form

[(x1, x2), (y1, y2)] = x1y2 − x2y1, xi, yi ∈ R, i = 1, 2.

It is common to denote the universal covering group of Sp(2) by Mp(2) and refer to it as the planar
metaplectic group. Thus by the same arguments as for the case when ρ > 0 we have

(Q,H, g) ' (G(2, ρ),Hp, gp) ' (S̃L(2),Hρ, gρ) ' (Mp(2),Hρ, gρ),

where (Hρ, gρ) is obtained in the same way as when ρ > 0. Unfortunately, we cannot give a nice
description of the planar metaplectic group Mp(2) in terms of matrices as it one of the classical examples
of a Lie group with no faithful finite-dimensional representation, see Appendix A.2 for the terminology.
Moreover, while SU(2) is compact the same does not hold for SL(2) and its universal covering space since
SL(2) ' R2 × S1 as topological spaces.

It should be noted that the sub-Riemannian structures we have presented on both SU(2) and Mp(2)
have been studied previously in the literature, but under different guises. In [CCM09] the sub-Riemannian
structure on SU(2) was examined disguised by the isomorphism SU(2) ' S3 given through the quater-
nions. In [GV11] the sub-Riemannian structure on the planar metaplectic group Mp(2) was studied
disguised by the isomorphism SL(2) ' SU(1, 1,C) to the generalized special unitary group. We refer
to [GV11] for the definition of SU(1, 1,C) and further properties. Summarizing, we have proved the
following result.

Proposition 4.41. Let Q be a contact model space with non-zero contact curvature ρ. Then

(Q,H, g) '

{
(SU(2),Hρ, gρ) if ρ > 0

(Mp(2),Hρ, gρ) if ρ < 0
.

The classification of all homogeneous sub-Riemannian geometries of dimension three has been done
in [FG96]. In the classification, the authors also pointed out that six of the spaces in the classification
are so called sub-symmetric spaces. This coincides with how we would have used the word, namely as a
bracket generating sub-Riemannian geometry (Q,H, g) such that for every p ∈ Q there exists an isometry
Φ : Q→ Q such that

Φ(p) = p, dΦ
∣∣∣
Hp

= −IdHp .

Three of these spaces are of course the contact model spaces we have classified. The universal cover-
ing space of orientation preserving planar motions with a left-invariant structure is showed to be sub-
symmetric in [FG96]. This gives an example of a simply connected sub-symmetric space with nontrivial
distribution which is not a model space. Any left-invariant contact structure on a Lie group satisfies the
assumption in the following definition.

Definition 4.42. Let Q be a manifold with a contact distribution H which is globally defined by the
non-vanishing of a one-form ξ satisfying the non-integrability condition. The Reeb vector field of (Q,H)
is the unique vector field X0 ∈ X(Q) such that

ξ(X0) = 1, dξ(X0, ·) = 0.
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For any three dimensional contact sub-Riemannian geometry one can define two functions κ and χ, as
done for instance in [AB12], which reflect intrinsic geometrical properties of the geometry. The function
χ is constructed from the Reeb vector field and is intimately related to it. The function κ was originally
discovered in terms of the asymptotic expansion of the conjugate locus, see [Agr96] for more on this. It is
clear from the description of χ and κ in [AB12] that they are constant functions whenever the manifold
is a Lie group and the distribution is left-invariant. From the definition of χ given in [AB12], it follows
that χ ≥ 0 and it vanishes if and only if the flow of the Reeb vector field X0 consists of sub-Riemannian
isometries. By extending our terminology from Section 2.3, we would say that the Reeb vector field is
then a sub-Killing field.

If (Q,H, g) is in addition simply connected and complete as a metric space, then [AB12, Corollary 2]
shows that the condition χ = 0 implies that (Q,H, g) is isometric to precisely N [2, 2], SU(2), or Mp(2)
with the structures we have described depending on the values of κ. In this case, κ is equal to the contact
curvature ρ and we have the following description.

Corollary 4.43. Let Q be a three dimensional simply connected Lie group and let (H, g) be a bracket
generating left-invariant sub-Riemannian structure on Q. Then (Q,H, g) is a contact model space if and
only if the Reeb vector field is a sub-Killing field.

Remark. The reason we can leave out the assumption of completeness in the hypothesis of Corollary 4.43
is that a left-invariant structure (H, g) on a Lie group Q will always be complete. To see this, choose a
Riemannian metric gR on Q which is left-invariant and satisfies

gR

∣∣∣
H

= g.

Since gR is left-invariant the Riemannian manifold (Q, gR) is homogeneous and hence complete. If we let
dR denote the associated distance function to gR, then

dR(p, q) ≤ dCC(p, q),

as the infimum is taken over a larger class of curves. Thus if {pn} is a Cauchy sequence for dCC then it is
also a Cauchy sequence for dR, forcing {pn} to converge in the topology induced by dR. As the topologies
induced by dR and dCC are both equal to the usual topology on Q, this shows that dCC is complete as
well. For more general deductions about completeness, the reader is referred to [Str86, Theorem 7.4] and
the published corrections to the paper given in [Str89].
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5 Model Spaces of Step and Rank Three

We will in this chapter classify all sub-Riemannian model spaces of step and rank three. Several techniques
discussed previously will be employed and theory from all the previous chapters will be used. However,
the difficulty in several arguments will be rooted in the fact that the representation theory is less rigid
than in step two. We will first classify the Carnot model spaces of step and rank three in Section 5.1. In
Section 5.3 we will survey the main results of the thesis. The proofs of the main results are given in Section
5.4 and Section 5.5. Several of the technical details needed in those proofs are based on representation
theory and will be developed in Section 5.2. The result of the classification is unexpected when comparing
with the known results from step two given in Theorem 4.38. We will devote a section at the end of the
chapter for a short discussion of this as well as commenting on which challenges lie ahead in the topic of
sub-Riemannian model spaces. All results in this chapter are original results unless otherwise stated.

5.1 Carnot Model Spaces of Step and Rank Three

The Carnot model spaces of step and rank three will be used as an invariant for general sub-Riemannian
model spaces through the nilpotentization procedure in the later sections. We will follow the approach in
Proposition 4.30, although the determination of sub-representations which are also ideals is more compli-
cated and interesting than in the step two case.

Recall that f[3, 3] denotes the free nilpotent Lie algebra of step and rank three. Then Witt’s formula
(4.1) implies that the third layer has dimension eight. Let us fix an orthonormal basis A1, A2, A3 for the
generating subspace f1 = f1[3, 3]. Throughout this section we will use the notation

f2 = span {A12, A13, A23} ,

f3 = span {A112, A113, A221, A231, A223, A312, A331, A332} ,

for the induced basis elements

Aij = [Ai, Aj ], Aijk = [Ai, [Aj , Ak]].

This gives the relations Aij = −Aji and Aijk = −Aikj from the skew-symmetry, while the identity

A123 = −A231 −A312

is due to the Jacobi identity. Recall that the action of the orthogonal group O(f1) on f[3, 3] is given
inductively by

a · [A,B] = [a ·A, a ·B], a ∈ O(f1), A,B ∈ f[3, 3],

where the action on the generating layer is the standard action of O(f1) on f1. Since we have fixed an
orthonormal basis A1, A2, A3 for f1 we can identify f1 ' R3 and O(f1) ' O(3) as representations. Let
SymT (n) denote the traceless symmetric n×n real matrices. The main result we will prove in this section
is the following theorem.

Theorem 5.1. There are three non-isomorphic Carnot model spaces with step and rank three. Besides
the free nilpotent Lie group N [3, 3] they are denoted by C3,3 and A3,3. The growth vectors of C3,3, A3,3,
and N [3, 3] are (3, 6, 9), (3, 6, 11), and (3, 6, 14), respectively. The Lie algebras of C3,3 and A3,3 are as
vector spaces given by

Lie(C3,3) = f1 ⊕ f2 ⊕ c3,3 ' f[3, 3]/a3,3, Lie(A3,3) = f1 ⊕ f2 ⊕ a3,3 ' f[3, 3]/c3,3,

where
c3,3 = span {A112 +A332, A223 +A113, A331 +A221} ,

66



a3,3 = span {A213, A312, A112 −A332, A223 −A113, A331 −A221} .

Moreover, the representations of O(f1) on c3,3 and a3,3 are isomorphic to the representations of O(3) on
o(3) and SymT (3) given by

E 7−→ det(a)aEa−1, A 7−→ det(a)aAa−1

for E ∈ o(3), A ∈ SymT (3), and a ∈ O(3).

It follows from Proposition 4.32 that the sub-Riemannian model spaces of step and rank three have
dimension 9, 11, or 14. From Theorem 5.1 we obtain the identifications

Lie(C3,3) ' R3 ⊕ o(3)⊕ o(3), Lie(A3,3) ' R3 ⊕ o(3)⊕ SymT (3)

as O(f1) ' O(3)-modules with the standard actions on the first two layers. We will give the explicit Lie
brackets in the beginning of Section 5.3. The description as skew-symmetric and traceless symmetric
matrices will be useful for computations and for showing irreducibility.

Proof. The proof will be based on the strategy given in Proposition 4.30 and divided into four parts:
Firstly, we will introduce notation and provide the motivation for why we consider the two Lie algebras
presented in the theorem. Secondly, we will check that these are in fact sub-representations of the action
of O(f1) on f[3, 3]. Thirdly, we will provide the isomorphisms to the concrete matrix realizations presented
in the theorem. Lastly, we will check that these are irreducible, ensuring that there are no other Carnot
model spaces than those proposed in the theorem.

Step 1: We will use the notation Pτ for the permutation matrices relative to the basis {A1, A2, A3}.
As an example, P12 interchanges A1 and A2 while leaving A3 fixed, thus having the matrix representation

P12 =

0 1 0
1 0 0
0 0 1

 .

Moreover, the notation Riθ for i = 1, 2, 3 and 0 ≤ θ < 2π denotes the rotation matrices given by

R1
θ =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , R2
θ =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , R3
θ =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

Applying the QR-decomposition of an orthogonal matrix using Givens rotations, see [Bjo96, Section
2.3.2], shows that any element in O(3) can be written as a composition of rotation matrices and the three
reflection matrices

Hi = I − 2eie
T
i , i = 1, 2, 3.

The first two layers of the Lie algebra c = c1⊕ c2⊕ c3 of any Carnot model space C of step and rank three
have to be equal to f1 ⊕ f2: If not, then the induced action of O(f1) on c1 ⊕ c2 is a sub-representation of
O(f1) on f1 ⊕ f2. This would together with Proposition 4.30 contradict Proposition 4.31.

We will now find candidates for sub-representations by looking at the action of the permutation
matrices. By applying P123, P12, P13, and P23 we obtain the following diagram:

A112 A223 A331 A112 ...

A332 A113 A221 A332 ...

P123

P13

P123

P12

P123

P23

P123

P13

P123 P123 P123 P123

(5.1)
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It is straightforward to check that any invariant subspace containing one of the basis elements appearing
in the diagram (5.1) can not be proper. Hence if we are looking for any proper invariant subspace having
some of the basis elements as generators, it can only be A231 or A312. The fact that P123A231 = A312

reduces this possibility to the space
a1

3,3 = span{A231, A312}.
However, this is not an invariant subspace since

R3
θA231 = −[R3

θA2, [R
3
θA1, R

3
θA3]]

= [sin(θ)A1 − cos(θ)A2, cos(θ)A13 + sin(θ)A23]

=
1

2
sin(2θ)(A113 −A223)− sin2(θ)A312 + cos(2θ)A231.

By combining the columns in the diagram (5.1), we see that the space

c3,3 = span{A112 +A332, A223 +A113, A331 +A221}

is invariant under all the permutation matrices. In fact, the same is true for

a2
3,3 = span{A112 −A332, A223 −A113, A331 −A221}.

However, a2
3,3 is not invariant under the full orthogonal group as shown by the calculation

R2
θ(A112 −A332) = cos(2θ)(A112 −A332) + sin(2θ)A231 + 2 sin(2θ)A312.

Thus a1
3,3 and a2

3,3 obstruct one another from being sub-representations. Hence we consider their direct
sum

a3,3 = a1
3,3 ⊕ a2

3,3 = span{A231, A312, A112 −A332, A223 −A113, A331 −A221}.

Step 2: We now check that the spaces c3,3 and a3,3 indeed provide us with sub-representations. Notice
that

P123H1 = H2, P123H2 = H3,

P23R
3
θP23 = R2

θ, P13R
3
θP13 = R1

θ.

This implies together with the fact that P123 and P12 generate the permutation matrices, that it suffices
to show invariance under the four matrices R1

θ, H1, P12, and P123. It is straightforward to see that c3,3 and
a3,3 are invariant under H1, P123, and P12 by looking at the indices of the basis elements in both spaces.
Hence we only need to check invariance under the rotation matrix R1

θ. As the computations are similar
to those presented previously, we leave the details to the reader and simply state that the action of R1

θ

on c3,3 becomes

A112 +A332 7−→ cos(θ)(A112 +A332) + sin(θ)(A223 +A113),

A223 +A113 7−→ − sin(θ)(A112 +A332) + cos(θ)(A223 +A113), (5.2)

A331 +A221 7−→ A331 +A221.

This shows that c3,3 is invariant and hence a sub-representation. Similarly, the action of R1
θ on a3,3

becomes

A231 7−→ cos2(θ)A213 + sin2(θ)A312 +
1

2
sin(2θ)(A331 −A221),

A312 7−→ sin2(θ)A213 + cos2(θ)A312 −
1

2
sin(2θ)(A331 −A221),

A112 −A332 7−→ cos(θ)(A112 −A332) + sin(θ)(A223 −A113),

A223 −A113 7−→ sin(θ)(A112 −A223) + cos(θ)(A223 −A113),

A331 −A221 7−→ cos(2θ)(A331 −A221)− sin(2θ)A231 + sin(2θ)A312,
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showing that a3,3 is also a sub-representation. Thus we have a decomposition

f3 = c3,3 ⊕ a3,3 (5.3)

as a representation of O(f1). As the orthogonal group is compact it has the complete reducibility property,
see Appendix A.2. Hence if we show that the two sub-representations c3,3 and a3,3 are irreducible, then
these are all the sub-representations which are also ideals, finishing the theorem.

Step 3: We will provide the details for the identification of c3,3 with o(3) and leave most of the grunt
work to the reader in the case of the identification of a3,3 with SymT (3). We use the basis

E12 =

 0 1 0
−1 0 0
0 0 0

 , E13 =

 0 0 1
0 0 0
−1 0 0

 , E23 =

0 0 0
0 0 1
0 −1 0


for o(3), henceforth referred to as its standard basis. Assume we have an isomorphism of representations
ρ : c3,3 → o(3) and let

ρ(A112 +A332) = a1E12 + a2E13 + a3E23,

ρ(A223 +A113) = a4E12 + a5E13 + a6E23,

ρ(A331 +A221) = a7E12 + a8E13 + a9E23.

Applying P12 and P13 gives the relations

a1 = a7 = −a5, a2 = −a4 = −a9, a3 = a6 = −a8,

while applying H1 and H3 shows that a1 = a3 = 0. Thus any isomorphism of representations have to be
on the form

ρ(A112 +A332) = E13,

ρ(A223 +A113) = −E12,

ρ(A331 +A221) = −E23,

after a normalization.
It is straightforward to check that this is invariant under H1,P12 and P123. The invariance under R1

θ

follows from the equations in (5.2) and the relations

R1
θE12R

1
−θ = cos(θ)E12 − sin(θ)E13,

R1
θE13R

1
−θ = − sin(θ)E12 + cos(θ)E13,

R1
θE23R

1
−θ = E23.

Hence c3,3 is isomorphic to o(3) with the action

E 7−→ det(a)aEa−1, a ∈ O(3), E ∈ o(3).

Similarly for the identification of a3,3 with SymT (3), we use the standard basis for SymT (3)

A12 =

0 1 0
1 0 0
0 0 0

 , A13 =

0 0 1
0 0 0
1 0 0

 , A23 =

0 0 0
0 0 1
0 1 0

 ,

AD1 =

1 0 0
0 −1 0
0 0 0

 , AD2 =

0 0 0
0 1 0
0 0 −1

 .
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Assume an isomorphism of representations ρ : a3,3 → SymT (3) is given in the presented bases by ρ =
(aij)

5
i,j=1. An application of the permutation matrices together with a rotation shows, similarly to when

we considered c3,3, that the transformation matrix has to be on the form

ρ =


0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 −1
−1

3
1
3 0 0 0

1
3

2
3 0 0 0

 ,

after a normalization. It is now straightforward to check that this is in fact invariant under the whole
orthogonal group by showing invariance under the permutation matrices P12, P123, the reflection H, and
a rotation matrix, say R3

θ. The most tedious computations is with the rotation matrix, and the relevant
formulas are

R3
θA12R

3
−θ = (2 cos2(θ)− 1)A12 − sin(2θ)A11,

R3
θA13R

3
−θ = cos(θ)A13 + sin(θ)A23,

R3
θA23R

3
−θ = − sin(θ)A13 + cos(θ)A23,

R3
θAD1R

3
−θ = sin(2θ)A12 + (2 cos2(θ)− 1)A11,

R3
θAD2R

3
−θ = −1

2
sin(2θ)A12 + sin2(θ)A11 +A22,

for the readers convenience.

Step 4: We will now show that the sub-representations we have found are in fact irreducible. We will
operate with their matrix forms described in the previous step as this will make matters more simple and
concrete. In fact, the representation of O(f1) on c3,3 is irreducible by Lemma 4.27 applied to the repre-
sentation of O(3) on o(3) as the determinant factor in the representation plays no part in the existence
of invariant subspaces.

We are left with checking that the action of O(3) on SymT (3) is irreducible. This will be showed
for the representation without the determinant factor to simplify notation and it will be based on an
eigenvalue argument. It is straightforward to show that there are no one-dimensional invariant subspaces
by performing a rotation. Let V ⊂ SymT (3) be an invariant subspace with dim(V ) ≥ 2 and let A ∈ V
be non-zero. Since a symmetric matrix is diagonalizable, any non-zero symmetric matrix has at least one
non-zero eigenvalue. By orthogonal decomposition, there exists an element q ∈ O(3) such that

qAq−1 =

λ1 0 0
0 λ2 0
0 0 λ3

 , λ1 6= 0,

where we have (possibly) performed a permutation to get λ1 in the first entry. Hence V contains an
element of the form

Ã =
qAq−1

λ1
=

1 0 0
0 τ2 0
0 0 τ3

 , τi =
λi
λ1
, i = 2, 3.

We can not have that both τ2 = τ3 = 0, as this will imply that Ã has non-zero trace. On the other hand,
we will now explain why we can find a matrix in V where precisely one of the eigenvalues is zero.

As dim(V ) ≥ 2 there exists an element B ∈ V which is linearly independent from A. Applying the
same procedure for B, there exists a p ∈ O(3) such that

B̃ =
pBp−1

λ
′
1

=

1 0 0

0 τ
′
2 0

0 0 τ
′
3

 , λ
′
1 6= 0, τ

′
i =

λ
′
i

λ
′
1

, i = 2, 3.
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Hence V contains the element

C = Ã− B̃ =

0 0 0

0 τ2 − τ
′
2 0

0 0 τ3 − τ
′
3

 .

We need to take the following precaution: In case C = 0, acting with P23 on B̃ before forming the
difference gives

C ′ = Ã− P23B̃P23 =

0 0 0

0 τ2 − τ
′
3 0

0 0 τ3 − τ
′
2


instead. If both C and C ′ are zero, then τ2 = τ3 = τ

′
2 = τ

′
3 = −1

2 by the zero trace condition. If this is
the case, we form

C ′′ = Ã+ 2P12B̃P12 =

1 0 0
0 −1

2 0
0 0 −1

2

+

−1 0 0
0 2 0
0 0 −1

 =

0 0 0
0 3

2 0
0 0 −3

2

 .

In any case, this shows that there exists a matrix in V with precisely two non-zero eigenvalues. We
call the eigenvalues η1 and η2. The trace condition implies that η1 = −η2, so applying a permutation
together with a scaling gives that AD1 ∈ V . However, as O(3) has the complete reducibility property,
this also has to be true for an invariant complement of V as long as dim(V c) ≥ 2 for any complement V c.
This impossibility forces V to be of codimension one. Then any invariant complement of V has dimension
one which is a contradiction to the fact that there are no invariant one-dimensional subspaces. Thus the
representation of O(3) on SymT (3) is irreducible.

5.2 Invariant Maps

Before embarking on classifying all sub-Riemannian model spaces of step and rank three we will need
some preliminary results. Looking at the proof of Theorem 4.38, we concluded at two places in the proof
that the bracket of the Lie algebra had a particular form. The first time was in Equation (4.9) and was
based on knowledge of the nilpotentization. In Section 5.1 we obtained the analogous knowledge for model
spaces with step and rank three. This will allow us to determine the “brackets going forward” in a similar
way as in the proof of Theorem 4.38.

The second time in the proof we made such a conclusion was in Equation (4.10), which was based
on an argument found in [Gro16, Lemma A.3]. In this section we will build up the necessary results to
make a similar deduction for the sub-Riemannian model spaces of step and rank three. This is really a
statement about representation theory of the orthogonal group, and the reader unfamiliar with represen-
tation theory terminology is suggested to take a look at the end of Appendix A.2 before proceeding. The
results we will need is collected in Proposition 5.2 and Theorem 5.3 below. The cases (M2) and (M5) in
Theorem 5.3 have already been proved in [Gro16, Lemma A.3]. Nevertheless, we include them as they
are needed later and provide a new proof for Equation (M5) based on Schur’s Lemma and the Theorem
of Highest Weight, see Appendix A.2 for those results.

We will be dealing with representations of O(3) on the spaces R3, o(3), and SymT (3). The action on
R3 is the canonical one while the action on SymT (3) given by

A 7−→ det(a)aAa−1, a ∈ O(3), A ∈ SymT (3).

We have encountered two representations of O(3) on o(3), namely with or without the factor det(a) in
front of the conjugation. It is a special feature of three dimensions that the representation

E 7−→ det(a)aEa−1, a ∈ O(3), E ∈ o(3)

71



of O(3) on o(3) is isomorphic to the usual representation of O(3) on R3 through the map

o(3) 3

 0 −z y
z 0 −x
−y x 0

 7−→ (x, y, z) ∈ R3. (5.4)

It is straightforward to check that the commutator between elements in o(3) correspond to the cross
product in R3 under the identification (5.4). Whenever we discuss the representation of O(3) on o(3) it
will implicitly be with the usual adjoint action without the determinant term. This can of course also be
identified as a vector space with R3 through (5.4), although the corresponding action of O(3) on R3 will
then be given by

v 7−→ det(a)av, a ∈ O(3), v ∈ R3. (5.5)

We will use the notation R3
for R3 with the representation given in (5.5). Finally, the notation Sym(x, y)

denotes the traceless symmetrization map of the vectors x, y ∈ R3

Sym(x, y) =
xyT + yxT

2
− 1

3
〈x, y〉I,

where 〈·, ·〉 denotes the Euclidean inner product. We will need to determine the possible invariant bilinear
maps between the different representations discussed above. This is equivalent to understanding invariant
linear maps from their tensor product, and we have the following preliminary result.

Proposition 5.2. There are no non-zero O(3)-invariant linear maps between the following representa-
tions:

R3 ⊗ R3 −→ R3, R3 ⊗ R3 −→ SymT (3),

R3 ⊗ o(3) −→ o(3), R3 ⊗ SymT (3) −→ R3,

R3 ⊗ SymT (3) −→ SymT (3), o(3)⊗ o(3) −→ R3,

o(3)⊗ o(3) −→ SymT (3), o(3)⊗ SymT (3) −→ o(3),

SymT (3)⊗ SymT (3) −→ R3, SymT (3)⊗ SymT (3) −→ SymT (3).

Proof. This follows from the fact that none of the maps are invariant under −I ∈ O(3). To illustrate,
assume that φ : R3 ⊗ SymT (3)→ R3 is an invariant map under the action of O(3). Then

−I · φ(v,A) = −φ(v,A) 6= φ(v,A) = φ(−v,−A) = φ
(
−I · v,det(−I)(−I)A(−I)−1

)
,

for v ∈ R3, A ∈ SymT (3), and φ(v,A) 6= 0. Thus φ is invariant if and only if it is identically zero.

It will require more work to show when there actually are invariant maps and moreover that they are
unique. The following theorem is the main result of this section.

Theorem 5.3. There is a unique (up to scaling) non-zero O(3)-invariant map between the following
representations:

R3 ⊗ R3 −→ o(3), (v, w) 7−→ v × w, (M1)

R3 ⊗ o(3) −→ R3, (v, C) 7−→ Cv, (M2)

R3 ⊗ o(3) −→ SymT (3), (v, w) 7−→ Sym(v, w), (M3)

R3 ⊗ SymT (3) −→ o(3), (v,A) 7−→ Av, (M4)

o(3)⊗ o(3) −→ o(3), (C,D) 7−→ [C,D], (M5)

o(3)⊗ SymT (3) −→ R3, (v,A) 7−→ Av, (M6)

o(3)⊗ SymT (3) −→ SymT (3), (C,A) 7−→ [C,A], (M7)

SymT (3)⊗ SymT (3) −→ o(3), (A,B) 7−→ [A,B], (M8)

after applying the identification (5.4) in (M1), (M3), (M4), and (M6).
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The reader will notice in Section 5.4 and Section 5.5 that Proposition 5.2 and Theorem 5.3 will play
prominent roles. We will divide the proof of Theorem 5.3 into three lemmas, based on which approaches
are necessary.

Lemma 5.4. There is a unique (up to scaling) non-zero O(3)-invariant linear map in the cases (M1)
and (M3).

Proof. Assume we have a non-zero O(3)-invariant linear map

φ : R3 ⊗ R3 −→ o(3)

and consider its kernel N = ker(φ). Since the representation of O(3) on o(3) is irreducible we have that
φ is surjective because the image of φ is an invariant subspace. Thus dim(N) = 6. Decompose R3 ⊗ R3

into symmetric and alternating part

R3 ⊗ R3 'M3×3(R) = Sym(3)⊕ o(3),

where the identification is given by the outer product and the action of O(3) on M3×3(R) is conjugation.
The action of O(3) on o(3) is irreducible by Lemma 4.27 while the action of O(3) on the symmetric
matricies Sym(3) decomposes into

Sym(3) = SymT (3)⊕ {cI}.

We showed in the proof of Theorem 5.1 that the representation of O(3) on SymT (3) is irreducible. As
N is invariant it follows by dimensional reasons that N = Sym(3). This leaves only the projection as an
option, which is easily seen to be invariant. The associated map S : R3 ⊗R3 → o(3) is identified through
(5.4) with the cross product x⊗ y 7→ x× y.

Let us now assume we have a non-zero O(3)-invariant linear map

ψ : R3 ⊗ o(3) −→ SymT (3).

By applying the previously discussed identifications, this can be identified with a map

ψ : R3 ⊗ o(3) ' R3 ⊗ R3 'M3×3(R) −→ SymT (3)

where the action of O(3) on M3×3(R) is now given by

B 7−→ det(a)aBa−1, B ∈M3×3(R), a ∈ O(3).

The existence and uniqueness of ψ is equivalent to the existence of a map

ψ : M3×3(R) = SymT (3)⊕ {cI} ⊕ o(3) −→ SymT (3)

where the action of O(3) on both M3×3(R) and SymT (3) is without the determinant factor. For dimen-
sional reasons together with irreducibility, the only invariant map up to scaling is the projection. Hence
the original map

ψ : R3 ⊗ o(3) ' R3 ⊗ R3 −→ SymT (3)

is given by the traceless symmetrization map

x⊗ y 7−→ Sym(x, y) =
xT y + yTx

2
− 1

3
〈x, y〉I.

Lemma 5.5. There is a unique (up to scaling) non-zero O(3)-invariant linear map in the cases (M4),
(M6), (M7), and (M8).
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Proof. Notice first of all that any map of type (M4) induces a map of type (M6) by using the identifi-
cation (5.4) since we have the determinant factor once on each side. Thus if we can show that matrix
multiplication is the unique O(3)-invariant map up to scaling in the case of (M4), the same holds for the
case (M6). For the remaining three cases (M4), (M7) and (M8), the proposed maps in the theorem are
clearly seen to be O(3)-invariant. To illustrate for (M7), the map E⊗A 7→ [E,A] ∈ SymT (3) for E ∈ o(3)
and A ∈ SymT (3) is O(3)-invariant as

a[E,A] = det(a)
(
aEAa−1 − aAEa−1

)
= det(a)

(
aEa−1aAa−1 − aAa−1aEa−1

)
= [aE, aA].

As the computations are similar and quite lengthy we will only supply the details for the case (M8),
as this is the most cumbersome of them all. We will work with the standard bases of o(3) and SymT (3)
given in the proof of Theorem 5.1. The strategy is to choose particular elements in O(3) to show that
invariant maps up to scaling are the ones presented in Theorem 5.3. Assume there is a non-zero bilinear
map

S : o(3)× SymT (3) −→ SymT (3).

We write S in the bases {E12, E13, E23} and {A12, A13, A23, AD1, AD2} as

S =




a1

a2

a3

a4

a5



a6

a7

a8

a9

a10



a11

a12

a13

a14

a15



a16

a17

a18

a19

a20



a21

a22

a23

a24

a25



a26

a27

a28

a29

a30



a31

a32

a33

a34

a35



a36

a37

a38

a39

a40



a41

a42

a43

a44

a45



a46

a47

a48

a49

a50



a51

a52

a53

a54

a55



a56

a57

a58

a59

a60



a61

a62

a63

a64

a65



a66

a67

a68

a69

a70



a71

a72

a73

a74

a75





, (5.6)

using the ordering of the bases as given above. By using the permutation, reflection, and rotation matrices
introduced in the proof of Theorem 5.1 we will reduce this to the coordinate version of the commutator.
By applying H1 we obtain

S(H1E12, H1A12) = S(−E12, A12) =


−a1

−a2

−a3

−a4

−a5

 .
On the other hand, as S is invariant under O(3) this becomes

H1S(E12, A12) =


a1

a2

−a3

−a4

−a5

 ,
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showing that a1 = a2 = 0. Similarly, using P12 shows that a3 = a5 = 0. We now normalize such that
a4 = 2, which is motivated by the fact that [E12, A12] = 2AD1. To determine more entries, apply P23

to S(E12, A12) and obtain a31 = a32 = a33 = 0 along with a34 = a35 = 2. In the same vein, we get by
applying P12 to S(E13, A13) that a61 = a62 = a63 = a64 = 0 and a65 = 2. That takes care of all the
“diagonal entries” and we now work with the other entries in the left 3 × 3 block of (5.6). Using Hi on
S(E12, A13) for i = 1, 2 shows that a6 = a7 = a9 = a10 = 0. By translating this around with the help of
P12, P13, and P23 determines all sub-entries in the left 3 × 3 block of (5.6), and the non-zero ones of the
off diagonal are a12 = a36 = a56 = −a8 and a28 = a52 = a8.

Considering now S(E12, AD1), we have by utilizing P12 and H1 that a17 = a18 = a19 = a20 = 0. By
shifting this with P23 we get that a71 = a72 = a74 = a75 = 0 while a73 = a16. Applying the rotation
matrix Rθ3 on S(E12, AD1) gives 

a16 cos(2θ)
0
0

2 sin(2θ)

 =


a16 cos(2θ)

0
0

−a16 sin(2θ)

 ,
showing that a16 = −2 by choosing θ = π

4 . Acting with Hi on S(E13, AD1) for i = 1, 2 shows that
we obtain a41 = a43 = a44 = a45 = 0, while using P13 gives that a46 = a48 = a49 = a50 = 0 as well
as a42 = a47. If we apply P23 to S(E12, AD1) we can now determine that a42 = −1. Using Hi on
S(E23, AD1) for i = 1, 2 gives a66 = a67 = a69 = a70 = 0. Translating with P13 shows that a21 = a68 and
a22 = a23 = a24 = a25 = 0. Now that everything that is supposed to be zero is taken care of, we need
only relate the final constants. Acting with Rθ3 on S(E23, AD2) gives the relation

0
sin3(θ) + sin(θ)− a8 sin(θ) cos2(θ)

− sin2(θ) cos(θ) + a68 sin2(θ) cos(θ)− 2 cos(θ)
0
0

 =


0

2 sin(θ)
−2 cos(θ)

0
0

 .
The second row shows that a8 = −1 while the third row reveals that a68 = −1. Summarizing, the mapping
S has the coordinate form

S =




0
0
0
2
0




0
0
−1
0
0




0
1
0
0
0



−2
0
0
0
0



−1
0
0
0
0




0
0
−1
0
0




0
0
0
2
2




1
0
0
0
0




0
−1
0
0
0




0
−1
0
0
0




0
−1
0
0
0




1
0
0
0
0




0
0
0
0
2




0
0
−1
0
0




0
0
−2
0
0





.

This is easily checked to be the coordinate form of the commutator.

Lemma 5.6. There is a unique (up to scaling) non-zero O(3)-invariant linear map in the cases (M2)
and (M5).
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Proof. The cases (M2) and (M5) are both proved in [Gro16, Lemma A.3] and we will omit the proof of
(M2). We will provide a new proof for the existence of a unique non-zero O(3)-invariant linear map in
the case (M5) based on the Theorem of Highest Weight for sl(2,C), see Theorem A.9. The Lie bracket is
an invariant map since

a[B,C]a−1 = a(BC − CB)a−1 = aBa−1aCa−1 − aCa−1aBa−1 = [aBa−1, aCa−1],

for a ∈ O(3) and B,C ∈ o(3). We will show that the Lie bracket is the unique non-zero map up to scaling
which is invariant under SO(3), from which the result then follows for O(3).

For an odd dimensional irreducible SO(3)-module V , we claim that V ' V ∗, where V ∗ is the dual
representation. This is because the odd dimensional irreducible representations of SO(3) are in one-to one
correspondence with the odd-dimensional irreducible representations of o(3), which again is in one-to-one
correspondence with the irreducible representations of its complexification sl(2,C), see [Hal15, Section
4.7] for details. By the Theorem of Highest Weight, any two irreducible representations of sl(2,C) of the
same dimension are isomorphic, hence the same holds for SO(3) for irreducible representations of odd
degree. Thus as representation spaces,

o(3)⊗ o(3) ' o(3)∗ ⊗ o(3) ' End(o(3)).

The action on End(o(3)) is given by acting both in the domain and codomain, that is,

(a · φ)(B) = aφ(aBa−1)a−1.

Since o(3) is semisimple it has trivial center. This implies, together with the Jacobi identity that the
map ad : o(3) → End(o(3)) given by adB(A) = [B,A] for A,B ∈ o(3) is an isomorphism of Lie algebras
onto its image, which we denote by ad(o(3)). This is also an isomorphism of SO(3)-modules as

(a · adB)(C) = a[B, a−1Ca]a−1 = aBa−1C − CaBa−1 = [aBa−1, C] = ada·B(C).

Hence the uniqueness of the original problem (M5) is guaranteed if we can show uniqueness of SO(3)-
invariant maps

S : End(o(3)) −→ ad(o(3)).

As SO(3) is compact it has the complete reducibility property, so we have

End(o(3)) = ad(o(3))⊕ C,

where C is an invariant complement. As ad(o(3)) ' o(3) is irreducible as a SO(3)-module, the only map
which intertwines these spaces is the projection: The kernel of any map

S : ad(o(3))⊕ C −→ ad(o(3))

is invariant, and if any part of it ends up inside ad(o(3)) we get a contradiction to irreducibility. Hence
the kernel is exactly C and S is the projection from End(o(3)) to ad(o(3)).

5.3 Statements of the Main Results

We will now state the main results of the thesis: the complete classification of sub-Riemannian model
spaces with step and rank three. Recall from Theorem 5.1 that C3,3, A3,3, and N [3, 3] denote all the
Carnot model spaces of step and rank three. The classification of sub-Riemannian model spaces of step
and rank three is divided into cases based on their nilpotentization.

We can identify

Lie(C3,3) ' R3 ⊕ o(3)⊕ R3, Lie(A3,3) ' R3 ⊕ o(3)⊕ SymT (3) (5.7)
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as O(f1) ' O(3)-modules by Theorem 5.1 and identification (5.4). The results in Theorem 5.3 show that
the Lie bracket of Lie(C3,3) after the identification (5.7) is given byxA

u

 ,

y
B
v

 =

 0
x× y

Ay −Bx

 , (5.8)

for x, y, u, v ∈ R3 and A,B ∈ o(3). Similarly, the Lie bracket of Lie(A3,3) after the identification (5.7) is
given by x1

y1

A1

 ,

x2

y2

A2

 =

 0
x1 × x2

Sym(x1, y2)− Sym(y1, x2)

 , (5.9)

for x1, x2 ∈ R3, y1, y2 ∈ o(3), and A1, A2 ∈ SymT (3). Finally, the Lie bracket of Lie(N [3, 3]) = f[3, 3] is
given by 


x1

y1

A1

z1

 ,


x2

y2

A2

z2


 =


0

x1 × x2

Sym(x1, y2)− Sym(y1, x2)
x1 × y2 + y1 × x2

 , (5.10)

for x1, x2, z1, z2 ∈ R3, y1, y2 ∈ o(3), and A1, A2 ∈ SymT (3). By noting that the map (M2) in Theorem 5.3
can be identified with the cross product, the reader should feel confident in that (5.10) is compatible with
(5.8) and (5.9). The sub-Riemannian model spaces with nilpotentization C3,3 was classified in [Gro16,
Theorem 6.1] and have the following description.

Theorem 5.7. Let (Q,H, g) be a sub-Riemannian model space with nilpotentization Nil(Q) ' C3,3 and
fix p ∈ Q. Then Q ' C3,3(a1, a2) for (a1, a2) ∈ R2, where C3,3(a1, a2) is a model space with the following
description: The Lie algebra g of G = Isom (C3,3(a1, a2)) has the identification

g ' R3 ⊕ o(3)⊕ R3 ⊕ o(3),

where the last o(3)-term is identified with the Lie algebra of the isotropy group at p. The Lie bracket
between elements in g is given by


x
A
u
C

 ,


y
B
v
D


 =


a1(Av −Bu) + Cy −Dx

x× y + a1(x× v + u× y) + a1[A,B] + (a2
1 + a2)u× w + [A,D]− [B,C]

Ay −Bx+ a1(Av −Bu) + Cv −Du
a2(x× v + u× y) + a2[A,B] + a1a2u× v + [C,D]

 .

Moreover, C3,3(a1, a2) for (a1, a2) ∈ R2 form a non-isometric family of sub-Riemannian model spaces
implying that (Q,H, g) is uniquely determined by the numbers a1 and a2.

Thus the model spaces (Q,H, g) with Nil(Q) ' C3,3 are given by a two-parameter family. The proof
of Theorem 5.7 will be omitted and can be found in [Gro16, Theorem 6.1], due to the fact that C3,3 was
already known to be a model space prior to the complete classification of Carnot model spaces of step and
rank three we gave in Theorem 5.1. Moreover, every aspect of the proof will be present when we provide
the proofs for the other cases, only that they are more involved due to the increase in dimension. For
the classification of sub-Riemannian model spaces with nilpotentization A3,3, we will prove the following
result.

Theorem 5.8. Let (Q,H, g) be a sub-Riemannian model space with nilpotentization Nil(Q) ' A3,3 and
fix p ∈ Q. Then Q ' A3,3(κ) for κ ∈ R, where A3,3(κ) is a model space with the following description:
The Lie algebra g of G = Isom (A3,3(κ)) has the identification

g ' R3 ⊕ o(3)⊕ SymT (3)⊕ o(3),
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where the last o(3)-term is identified with the Lie algebra of the isotropy group at p. The Lie bracket
between elements in g is given by


x1

y1

A1

w1

 ,


x2

y2

A2

w2


 =


κ(x1 × y2 + y1 × x2) + 24

49κ
2(A2y1 −A1y2) + x1 × w2 + w1 × x2

x1 × x2 + 2
7κy1 × y2 − 6

7κ(A2x1 −A1x2) + y1 × w2 + w1 × y2

Sym(x1, y2)− Sym(y1, x2) + 3
7κ([y1, A2]− [y2, A1]) + [A1, w2]− [A2, w1]

15
49κ

2y1 × y2 − 144
343κ

3[A1, A2] + 18
49κ

2(A2x1 −A1x2) + w1 × w2

 .

Moreover, A3,3(κ) for κ ∈ R form a non-isometric family of sub-Riemannian model spaces implying that
(Q,H, g) is uniquely determined by the constant κ.

Notice that we use the identification (5.4) to identify o(3) with R3 so that the symbol × indicates
the usual cross product in R3 after the identification has been made. An important feature of the model
spaces (Q,H, g) with Nil(Q) ' A3,3 is that they are parametrized by one parameter, not two as in the
case of those with nilpotentization C3,3. We will refer to the model spaces with nilpotentization A3,3 as
model spaces of class (3, 6, 11) for convenience as this is their growth vector. The proof of Theorem 5.8
will be given in Section 5.4.

Finally, we are left with classifying the model spaces with free nilpotentization, that is, the model
spaces (Q,H, g) with Nil(Q) ' N [3, 3]. Recall that all step two model spaces have free nilpotentization.
Together with the naive assumption that there should be more spaces in higher dimensions, this might
lead one to expect at least a two-parameter family of spaces with Nil(Q) ' N [3, 3]. As the following
theorem shows, this conjecture is far from true.

Theorem 5.9. For any sub-Riemannian model space (Q,H, g) with nilpotentization Nil(Q) ' N [3, 3] we
have

Q ' N [3, 3].

We will provisionally refer to the model spaces with nilpotentization N [3, 3] as model spaces of class
(3, 6, 14) for convenience. The proof of Theorem 4.9 will be given in Section 5.5.

5.4 Model Spaces of Class (3, 6, 11)

In this section we will focus fully on providing the classification of sub-Riemannian model spaces of
class (3, 6, 11) given in Theorem 5.8. The proof will have four main parts: Firstly, we will set up a
correspondence between the model space structure on (Q,H, g) and a decomposition of the Lie algebra
of its isometry group G := Isom(Q). In contrast to the proof of Theorem 4.38, we do not know that
the space (Q,H, g) has a Lie group structure and need to utilize the Lie group structure of the isometry
group G. The correspondence will be influenced by our study of Riemannian symmetric spaces and the
existence of a canonical partial connection on sub-Riemannian model spaces. Secondly, we will use the
results developed in Section 5.2 to determine the structure of the Lie algebra of G, leaving us with several
classes having concrete expressions. However, not all of these (and actually very few) will turn out to be
Lie algebras. Thirdly, we will determine using the Jacobi identity which of the possible structures are
in fact Lie algebras. Lastly, we will show that our construction determines the sub-Riemannian model
spaces of class (3, 6, 11) uniquely.

Proof (Theorem 5.8). Let (Q,H, g) be a sub-Riemannian model space of class (3, 6, 11) and let G denote
its isometry group. Fix a point p ∈ Q and let K := Kp be the isotropy group corresponding to p. The
notation g and k indicates as usual the Lie algebras of G and K, respectively, while π : G → Q denotes
the projection sending Φ to π(Φ) = Φ(p). Inspired by Riemannian symmetric spaces, we let σ : Q → Q
be the unique isometry such that

dσ
∣∣∣
Hp

= −IdHp .
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It follows from Proposition 4.21 that σ−1 = σ since σ2 restricts to the identity on Hp. A straightforward
modification of Lemma 2.44 and Proposition 2.45 gives an eigenvalue decomposition

g = g+ ⊕ g−, k ⊂ g+.

We will now use the canonical partial connection ∇H to give a decomposition of g. Let a1 ⊂ g− be
the subspace corresponding to the canonical partial connection ∇H as described in the proof of Theorem
4.26. As a1 is invariant under the action of the compact group K we have that there exists an invariant
complement a3 ⊂ g− of a1. We define

a2 = [a1, a1] ⊂ g+.

Notice that H2
p ⊂ dπe(a1 + a2). However, the reverse inclusion also holds because Nil(Q) ' A3,3. This

implies that a2 is transverse to k = ker(dπe) inside g+. Summarizing, we have decomposed

g = a1 ⊕ a2 ⊕ a3 ⊕ k

g

g− g+

a1 a3 a2 k

Let us fix an orthonormal basis for Hp by choosing a linear isometry φ : R3 → Hp. Then

φ−1 ◦ dπe
∣∣∣
a1

: a1 −→ R3

identifies a1 with R3, a2 with o(3), and a3 with SymT (3) as vector spaces since Nil(Q) ' A3,3. Recall
that any isometry Φ ∈ K is uniquely determined by dΦp ∈ O(Hp) ' O(3) by Proposition 4.21. We get
an identification K ' O(3) as Lie groups since (Q,H, g) is a model space. This identifies the Lie algebra
k of K with the Lie algebra o(3) of O(3). An element in g will be denoted by (x, y,A,w) according to the
above decomposition with x ∈ R3, A ∈ SymT (3), and y, w ∈ o(3). Under these identifications, K ' O(3)
acts on g by

a · (x, y,A,w) = (a · x, a · y, a ·A, a · w), a ∈ O(3).

Here the action on R3, o(3), and SymT (3) is given by matrix multiplication, the adjoint representation,
and the adjoint representation with determinant term, respectively.

Thus we transformed the problem into classifying Lie algebras

g = R3 ⊕ o(3)⊕ SymT (3)⊕ o(3)

(up to isomorphism) with the following properties:

• The Lie brackets are invariant under O(3), that is,

a · [(x1, y1, A1, w1), (x2, y2, A2, w2)] = [a · (x1, y1, A1, w1), a · (x2, y2, A2, w2)], (P1)

for a ∈ O(3).

• By construction, we have

[ai, k] ⊂ ai, i = 1, 2, 3. (P2)

• The choice a2 = [a1, a1] gives together with the Lie brackets in (5.9) that

[(x1, 0, 0, 0), (x2, 0, 0, 0)] = (0, x1 × x2, 0, 0). (P3)
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• Since the Lie bracket of k ' o(3) can be identified with the cross product through (5.4), it follows
that

[(0, 0, 0, w1), (0, 0, 0, w2)] = (0, 0, 0, w1 × w2). (P4)

• Again due to Nil(Q) ' A3,3 it follows from (5.9) that

Pra3 [(x, 0, 0, 0), (0, y, 0, 0)] = (0, 0,Sym(x, y), 0). (P5)

We will now use the results obtained in Theorem 5.3 to put further restrictions on the Lie bracket
based on property (P1). We often exclude zeroes from our brackets to avoid excessive notation, e.g.
denoting the bracket [(0, 0, A, 0), (0, 0, 0, w)] simply by [A,w] for convenience. To avoid confusion, we will
be consistent with denoting elements of a1 by x or xj for j ∈ {1, 2}. Similar conventions will be used for
a2, a3, and k based on the letters y, A, and w, respectively. The bracket between two elements in the Lie
algebra g is given by


x1

y1

A1

w1

 ,


x2

y2

A2

w2


 =

[x1, x2] + [y1, y2] + [A1, A2] + [w1, w2] + [x1, y2] + [y1, A2] + [A1, w2]

+ [x1, A2] + [y1, w2] + [x1, w2] + {skew-symmetric terms}.

We have already determined [x1, x2] and [w1, w2], which leaves us with the remaining eight terms
written above. It follows from property (P2) together with Theorem 5.3 that

[x1, w2] = (x1 × w2, 0, 0, 0),

[y1, w2] = (0, y1 × w2, 0, 0),

[A1, w2] = (0, 0, [A1, w2], 0).

The reason these terms do not contain arbitrary constants is because we can apply the Jacobi identity.
To illustrate, assume [y1, w2] = (0, αy1 × w2, 0, 0) for α ∈ R. Expanding the Jacobi identity

[w1, [y, w2]] + [y, [w2, w1]] + [w2, [w1, y]] = 0

gives the equation α2 = α, forcing α = 1. Let c1, . . . , c9 be arbitrary real constants. By considering the
bracket [y1, y2] together with Equation (M5) of Theorem 5.3 shows that

[y1, y2] = (0, c1y1 × y2, 0, c2y1 × y2).

We have identified the commutator between elements of o(3) with the cross product through the identi-
fication (5.4). Similarly, we get

[A1, A2] = (0, c3[A1, A2], 0, c4[A1, A2])

from Equation (M8) of Theorem 5.3. Keeping property (P5) in mind we have

[x1, y2] = (c5x1 × y2, 0,Sym(x1, y2), 0).

Finally, the last two terms are
[y1, A2] = (c6A2y1, 0, c7[y1, A2], 0),

[x1, A2] = (0, c8A2x1, 0, c9A2x1).

Here the identification (5.4) is in full use: The notation A2y1 denotes matrix multiplication when thinking
of y1 as a vector in R3 while [y1, A2] is the bracket when considering y1 as a skew-symmetric matrix.
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Moreover, pay attention to that we need to invoke Proposition 5.2 and Theorem 5.3 for each of these
terms as well. Summarizing, the bracket between two arbitrary elements in g is given by


x1
y1
A1

w1

 ,


x2
y2
A2

w2


 =


c5(x1 × y2 + y1 × x2) + c6(A2y1 −A1y2) + x1 × w2 + w1 × x2

x1 × x2 + c1y1 × y2 + c3[A1, A2] + c8(A2x1 −A1x2) + y1 × w2 + w1 × y2
Sym(x1, y2)− Sym(y1, x2) + c7([y1, A2]− [y2, A1]) + [A1, w2]− [A2, w1]

c2y1 × y2 + c4[A1, A2] + c9(A2x1 −A1x2) + w1 × w2

 (5.11)

We are now done with giving conditions on the structure of g based on (Q,H, g) having nilpotentization
A3,3 and the theory developed in Section 5.2. Although the bracket (5.11) is bilinear and skew-symmetric
by construction, it does not necessarily satisfy the Jacobi identity for arbitrary constants c1, . . . , c9. We
will start by imposing constraints on these constants by forcing the Jacobi identity to hold for carefully
selected basis elements. Recall that we denote the standard basis in R3 by e1, e2, e3 and use the notation
for the standard basis of SymT (3) given in the proof of Theorem 5.1. To achieve some simple relations
we let

v1 =


e1

0
0
0

 , v2 =


e2

0
0
0

 , v3 =


0
e1

0
0

 .

Then we obtain

[v1, v2] =


0
e3

0
0

 , [v2, v3] =


−c5e3

0
1
2A12

0

 , [v1, v3] =


0
0

2
3AD1 + 1

3AD2

0

 .

The Jacobi identity becomes

e1

0
0
0

 ,


−c5e3

0
1
2A12

0


−



e2

0
0
0

 ,


0
0

2
3AD1 + 1

3AD2

0


+




0
e1

0
0

 ,


0
e3

0
0


 =


0
0
0
0

 .

By computing the final brackets we acquire the equations

5

6
c9 = c2, (E1)

c5 +
5

6
c8 = c1. (E2)

As the next four computations are of a similar nature, we will gradually provide fewer details. Let

v1 =


0
e1

0
0

 , v2 =


0
e2

0
0

 , v3 =


e1

0
0
0

 .

Writing out the Jacobi identity gives


0
e1

0
0

 ,


−c5e3

0
−1

2A12

0


+




0
e2

0
0

 ,


0
0

2
3AD1 + 1

3AD2

0


+



e1

0
0
0

 ,


0
c1e3

0
c2e3


 =


0
0
0
0

 .
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From this we extract the equation 3c7 = c5 + c1. Using Equation (E2) we can rewrite this as

3c7 = 2c1 −
5

6
e8. (E3)

Next we start to involve SymT (3) and consider

v1 =


e1

0
0
0

 , v2 =


0
e1

0
0

 , v3 =


0
0
A12

0

 .

The Jacobi identity then becomes

e1

0
0
0

 ,


c6e2

0
c7A13

0


−




0
e1

0
0

 ,


0
c8e2

0
c9e2


+




0
0
A12

0

 ,


0
0

2
3AD1 + 1

3AD2

0


 =


0
0
0
0

 .

This time the equations we get are

c3 = c1c8 + c9 − c6 − c7c8, (E4)

c4 = c2c8 − c7c9. (E5)

By letting

v1 =


e1

0
0
0

 , v2 =


e2

0
0
0

 , v3 =


0
0
A13

0

 ,

we obtain the equations

c6 = −c5c8 − c9, (E6)

c7 = −1

2
c8. (E7)

Notice that we can use equations (E1) - (E7) to write all the coefficients in terms of c1 and c2. Finally,
to obtain a dependence between c1 and c2 we consider

v1 =


0
e1

0
0

 , v2 =


0
e2

0
0

 , v3 =


0
0
A13

0

 .

The Jacobi identity gives the equation

c2 = c2
7 − c1c7 +

1

2
c6. (E8)

It is now straightforward to use equations (E1) - (E8) to write the coefficients c1, . . . , c9 in terms of a
single coefficient. We rename κ := c5 and get after some straightforward manipulations the equations

c1 =
2

7
κ, c2 =

15

49
κ2, c3 = 0, c4 = −144

343
κ3,

c5 = κ, c6 =
24

49
κ2, c7 =

3

7
κ, c8 = −6

7
κ, c9 =

18

49
κ2.
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Inserting this back into the Lie bracket (5.11) gives

x1

y1

A1

w1

 ,


x2

y2

A2

w2


 =


κ(x1 × y2 + y1 × x2) + 24

49κ
2(A2y1 −A1y2) + x1 × w2 + w1 × x2

x1 × x2 + 2
7κy1 × y2 − 6

7κ(A2x1 −A1x2) + y1 × w2 + w1 × y2

Sym(x1, y2)− Sym(y1, x2) + 3
7κ([y1, A2]− [y2, A1]) + [A1, w2]− [A2, w1]

15
49κ

2y1 × y2 − 144
343κ

3[A1, A2] + 18
49κ

2(A2x1 −A1x2) + w1 × w2

 .

To see that this in fact satisfies the Jacobi identity one simply has to observe that everything cancels
when expanding the identity. However, we will leave this to the reader as it is very tedious and results in
little conceptual understanding. Using a symbolic computing environment such as MAPLE to check this
is highly recommended.

We will now show that the constant κ uniquely determines the sub-Riemannian model spaces of class
(3, 6, 11). Let us use the temporary notation g(κi) for the Lie algebra of Isom(Qi), where (Qi,Hi, gi) are
sub-Riemannian model spaces of class (3, 6, 11) and i = 1, 2. Assume there exists an isometry Φ : Q1 → Q2.
The discussion at the end of Section 4.4 implies that we get an induced Lie algebra map

ϕ := dΦ : g(κ1) = a1 ⊕ a2 ⊕ a3 ⊕ k −→ g(κ2) = ã1 ⊕ ã2 ⊕ ã3 ⊕ k̃

that maps a1 isometrically onto ã1 and ϕ(k) = k̃. As [a1, a1] = a2 and similarly for ã2, we get that after
identifying a1 with ã1 through ϕ that a2 gets identified with ã2 as well. However, we can not conclude
that a3 is mapped onto ã3. Nevertheless, we know that ϕ will map [a1, a2] into [ã1, ã2]. As a3 ⊂ [a1, a2]
and similarly for ã3, we can at least ensure that

ϕ
∣∣∣
a3

: a3 −→ [ã1, ã2] ⊂ ã1 ⊕ ã3.

If A ∈ a3 we will use the notation ϕ(A)i according to the decomposition of ϕ(a3) ⊂ ã1⊕ ã3, for i = 1, 3.
For x ∈ a1 and y ∈ a2, we have

ϕ ([x, y]) = ϕ


κ1x× y

0
Sym(x, y)

0

 =


κ1ϕ(x)× ϕ(y) + ϕ (Sym(x, y))1

0
ϕ (Sym(x, y))3

0

 .

In the last equality, we used that ϕ is invariant and maps a1 onto ã1. On the other hand, we also have
that

[ϕ(x), ϕ(y)] =


κ2ϕ(x)× ϕ(y)

0
Sym(ϕ(x), ϕ(y))

0

 ,

where we used that ϕ sends a2 onto ã2. Rewriting the first row gives

(κ2 − κ1)ϕ(x)× ϕ(y) = ϕ (Sym(x, y))1 . (5.12)

However, notice that the left hand side of Equation (5.12) is skew-symmetric while the right hand side is
symmetric. Thus both sides are identically zero and

κ1ϕ(x)× ϕ(y) = κ2ϕ(x)× ϕ(y).

It follows from picking x ∈ a1 and y ∈ a2 such that ϕ(x × y) = ϕ(x) × ϕ(y) 6= 0 that κ1 = κ2. Thus
if κ1 6= κ2 it follows that Q1 6' Q2. Hence different values of κ ∈ R parametrize a non-isometric family
A3,3(κ) of class (3, 6, 11) model spaces. Through the construction we have given it is clear that every
model space of class (3, 6, 11) have the form presented in Theorem 5.8.
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5.5 Model Spaces of Class (3, 6, 14)

We will in this section provide the classification of all sub-Riemannian model spaces of class (3, 6, 14).
The result is given in Theorem 5.9 and states that the only sub-Riemannian model space of step and
rank three with free nilpotentization is the free nilpotent Lie group N [3, 3]. It will be apparent that
the proof has a similar structure as in the (3, 6, 11)-classification. Hence we will provide fewer details at
places where the arguments are repetitions of those given in the (3, 6, 11)-classification. Except for some
changes and observations, the major difference is that the equations we obtain when trying to satisfy the
Jacobi identity will be enough to show that there are no model spaces of class (3, 6, 14) except for the free
nilpotent Lie group N [3, 3].

Proof (Theorem 5.9). Let (Q,H, g) denote a sub-Riemannian model space of class (3, 6, 14). We will use
the same notation as introduced in the beginning of Section 5.4. Similarly as before, we get an eigenvalue
decomposition g = g+ ⊕ g− of the Lie algebra of the isometry group. The canonical partial connection
∇H is again used to obtain a subspace a1 ⊂ g which is invariant under the action of the isotropy group
K. We define a2 = [a1, a1] and note that a2 is transverse to a1 since a1 ⊂ g− while a2 ⊂ g+. Moreover,
the argument presented in the proof of Theorem 5.8 carries over to show that a2 is transverse to k.

Define ã3 = [a1, a2] ⊂ g−. Then ã3 is eight-dimensional since

dπe(a1 + a2 + ã3) = TpQ.

The subspace ã3 is clearly transverse to both a2 and k due to the eigenvalue decomposition g = g+ ⊕ g−.
A nonempty intersection of a1 and ã3 would contradict the properties

dim(a1 + a2 + ã3) < 14, dim(TpQ) = 14,

showing that ã3 is transverse to a1 as well. We emphasize to the reader that this argument only works
because Nil(Q) ' N [3, 3], and should be compared with the different strategy used in the proof of Theorem
5.8.

Similarly as in the proof of Theorem 5.8, we get an identification K ' O(3) by fixing an orthonormal
basis for Hp. In the same vein, ai ' fi for i = 1, 2 and ã3 ' f3 as representations, where fi denotes the
i’th layer of the free nilpotent Lie algebra f[3, 3]. We can as usual identify a1 with R3 and a2 with o(3).
Finally, we use the concrete description of the action on f3 given in Theorem 5.1 to decompose ã3 = a3⊕a4

as representation spaces, where a3 ' SymT (3) and a4 ' o(3). We use (5.4) to write a4 ' R3, where the
action of O(3) on R3 is the standard action. Summarizing these identifications gives

g = a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ k ' R3 ⊕ o(3)⊕ SymT (3)⊕ R3 ⊕ o(3) (5.13)

as a K ' O(3)-module. We will denote an arbitrary element in g by (x, y,A, z, w) according to the
decomposition (5.13). The Lie bracket of g satisfies obvious modifications of the properties (P1) - (P4)
presented in the proof of Theorem 5.8 for the same reasons as before. Since we were able to choose
ã3 = [a1, a2] due to having free nilpotentization it follows from (5.10) that

[(x, 0, 0, 0, 0), (0, y, 0, 0, 0)] = (0, 0,Sym(x, y), x× y, 0). (5.14)

Hence property (P5) presented in in the proof of Theorem 5.8 holds without the projection to ã3 for
spaces of class (3, 6, 14).

Similarly as in the proof of Theorem 5.8, we will exclude zeroes from the bracket notation and use
reasonable notation to avoid confusion about where elements belong. Moreover, we will use the identi-
fication (5.4) without mention from now on whenever convenient. The bracket between two elements in
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the Lie algebra is given by

x1

y1

A1

z1

w1

 ,


x2

y2

A2

z2

w2


 =

[x1, x2] + [y1, y2] + [A1, A2] + [z1, z2] + [w1, w2] + [x1, y2] + [y1, A2] + [A1, z2] + [z1, w2]

+ [x1, A2] + [y1, z2] + [A1, w2] + [x1, z2] + [y1, w2] + [x1, w2] + {skew-symmetric terms}.

In the following, the symbols a1, a2, b1, . . . , b6, c1, c2, d1, d2, f1, . . . , f6 are arbitrary real constants. The
terms [x1, x2] and [w1, w2] are given through the modifications of (P3) and (P4), while the term [x1, y2]
is given by (5.14). With the use of Theorem 5.3 together with the eigenvalue decomposition g = g+ ⊕ g−

we have that

[y1, y2] = (0, b1y1 × y2, 0, 0, f1y1 × y2),

[A1, A2] = (0, b2[A1, A2], 0, 0, f2[A1, A2]),

[z1, z2] = (0, b3z1 × z2, 0, 0, f3z1 × z2),

[A1, z2] = (0, b4A1z2, 0, 0, f4A1z2),

[x1, A2] = (0, b5A2x1, 0, 0, f5A2x1),

[x1, z2] = (0, b6x1 × z2, 0, 0, f6x1 × z2).

The fact that [ai, k] ⊂ ai for i = 1, 2, 3, 4 together with Theorem 5.3 shows that

[x1, w2] = (x1 × w2, 0, 0, 0, 0),

[z1, w2] = (0, 0, 0, z1 × w2, 0),

[A1, w2] = (0, 0, [A1, w2], 0, 0),

[y1, w2] = (0, y1 × w2, 0, 0, 0).

We do not end up with arbitrary constants in these four cases. This is due to the Jacobi identity in the
same way as in the proof of Theorem 5.8. There are two terms left which have not been determined, and
another application of Theorem 5.3 shows that

[y1, A2] = (a1A2y1, 0, c1[y1, A2], d1A2y1, 0),

[y1, z2] = (a2y1 × z2, 0, c2Sym(y1, z2), d2y1 × z2, 0).

The Lie bracket between two arbitrary elements is thus given by

x1

y1

A1

z1

w1

 ,


x2

y2

A2

z2

w2


 =


a1A2y1 + a2y1 × z2 + x1 × w2

x1 × x2 + b1y1 × y2 + b2[A1, A2] + b3z1 × z2 + b4A1z2 + b5A2x1 + b6x1 × z2 + y1 × w2

Sym(x1, y2) + c1[y1, A2] + c2Sym(y1, z2) + [A1, w2]
x1 × y2 + d1A2y1 + d2y1 × z2 + z1 × w2

f1y1 × y2 + f2[A1, A2] + f3z1 × z2 + f4A1z2 + f5A2x1 + f6x1 × z2 + w1 × w2



−


a1A1y2 + a2y2 × z1 + x2 × w1

b4A2z1 + b5A1x2 + b6x2 × z1 + y2 × w1

Sym(y1, x2) + c1[y2, A1] + c2Sym(z1, y2) + [A2, w1]
x2 × y1 + d1A1y2 + d2y2 × z1 + z2 × w1

f4A2z1 + f5A1x2 + f6x2 × z1

 .

We will now derive no less than eighteen equations by using the Jacobi identity. As their derivations
are straightforward and already illustrated in the proof of Theorem 5.8, we will only provide an outline
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and not the explicit calculations. From the obtained equations we will show that all the constants present
in the Lie bracket are in fact zero. If we start by choosing

v1 =


e1

0
0
0
0

 , v2 =


e2

0
0
0
0

 , v3 =


0
e1

0
0
0

 ,

then the Jacobi identity becomes

e1

0
0
0
0

 ,


0
0

1
2A12

−e3

0


−



e2

0
0
0
0

 ,


0
0

2
3AD1 + 1

3AD2

0
0


+




0
e1

0
0
0

 ,


0
e3

0
0
0


 =


0
0
0
0
0

 .

Computing the final brackets gives the equations

b1 = b6 +
5

6
b5, (Eq1)

f1 = f6 +
5

6
f5, (Eq2)

by looking at the second and fifth row. A similar computation by using the vectors

v1 =


0
e1

0
0
0

 , v2 =


0
e2

0
0
0

 , v3 =


e1

0
0
0
0

 ,

gives by looking at the third row the equation

b1 = 3c1 + c2. (Eq3)

We now start to involve the symmetric matrices and choose

v1 =


0
0
A12

0
0

 , v2 =


0
0
A23

0
0

 , v3 =


0
0
0
e1

0

 .

The Jacobi identity becomes 


0
0
A23

0
0

 ,


0
b4e2

0
0

f4e2


 =




0
0
0
e1

0

 ,


0
b2e2

0
0

f2e2


 ,

and the equations we obtain are

f2 = −d1b4 − d2b2, (Eq4)

f4 =
1

2
c2b2 − c1b4. (Eq5)
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We will provide fewer details for the rest of the equations as the computations are similar. By choosing

v1 =


e1

0
0
0
0

 , v2 =


0
0
A12

0
0

 , v3 =


0
0
0
e1

0

 ,

we obtain the equations

f4 = −b5a2, (Eq6)

b4 = c2b5, (Eq7)

f5 = −d2b5 − b4. (Eq8)

If we take

v1 =


e1

0
0
0
0

 , v2 =


e2

0
0
0
0

 , v3 =


0
0
A13

0
0

 ,

then the equations become

f5 = −a1, (Eq9)

b5 = −2c1, (Eq10)

b5 = −d1. (Eq11)

Reversing this, we choose two of the elements in SymT (3),

v1 =


0
0
A12

0
0

 , v2 =


0
0
A13

0
0

 , v3 =


e1

0
0
0
0

 .

The equation we obtain by looking at the third row is

b2 = −6(f5 + c1b5). (Eq12)

Finally, we will derive the last six equations by looking at the interplay between the first and fourth
layer. Choosing

v1 =


e1

0
0
0
0

 , v2 =


e2

0
0
0
0

 , v3 =


0
0
0
e2

0

 ,

give the equations

f6 = a2, (Eq13)

b6 = −c2, (Eq14)

b6 = d2. (Eq15)
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Reversing this, we choose

v1 =


0
0
0
e1

0

 , v2 =


0
0
0
e2

0

 , v3 =


e2

0
0
0
0

 ,

and obtain

f3 = a2b6, (Eq16)

b3 = −c2b6, (Eq17)

f6 = b3 − d2b6. (Eq18)

A careful look at the formulas (Eq1)-(Eq18) reveals that all the constants have to be zero once we have
showed that c1 = c2 = 0. To show this we proceed as follows: The equations (Eq1) and (Eq3) combine
to give

3c1 + c2 = b6 +
5

6
b5.

Together with the formulas (Eq10) and (Eq14) this shows that

c1 = −3

7
c2.

We will now show that c2 = 0, from which the rest of the constants will follow.
Writing out (Eq18) by applying (Eq17), (Eq15), and (Eq14) give

f6 = b3 − d2b6 = (−c2b6)− b26 = b26 − b26 = 0.

Together with (Eq13) this shows that a2 = 0. Looking at (Eq6) shows now that f4 = 0. However, we
have another expression for f4, namely

f4 =
1

2
c2b2 − c1b4.

We will use this expression to show that

f4 =
72

49
c3

2,

forcing both c1 and c2 to be equal to zero. Firstly, we have from equation (Eq8) that

f5 = −d2b5 − b4 = −b6b5 − c2b5 = −b6b5 + b6b5 = 0,

by using formulas (Eq15), (Eq7), and (Eq14). With this, expressing f4 with the help of equation (Eq5)
shows that

f4 =
1

2
c2b2 − c1b4 =

1

2
c2(−6c1b5)− c1(c2b5)

= −4c1c2b5

= 8c2
1c2 =

72

49
c3

2.

Here we used formulas (Eq12), (Eq7), and (Eq10). Thus all the constants in the Lie bracket are zero and
it is on the form


x1

y1

A1

z1

w1

 ,


x2

y2

A2

z2

w2


 =


x1 × w2 + w1 × x2

x1 × x2 + y1 × w2 + w1 × y2

Sym(x1, y2)− Sym(y1, x2) + [A1, w2]− [A2, w1]
x1 × y2 + y1 × x2 + z1 × w2 + w1 × z2

w1 × w2

 .
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We observe that
[ai, aj ] ∩ k = {0}, i, j ∈ {1, 2, 3, 4}.

Hence Proposition 3.19 and the remarks made in Subsection 4.6.1 imply that the horizontal holonomy
Hol(Q,H) is trivial. Thus by Proposition 4.34 there exists a Lie group structure on Q such that H is
left-invariant and the chosen point p is the identity. Then observation (4.5) together with the fact that
the growth vector is maximal show that a1, a2, and ã3 are isomorphic to Hp, [Hp,Hp], and [Hp, [Hp,Hp]],
respectively. Hence the Lie algebra Lie(Q) of Q is isomorphic as a Lie algebra to

g̃ = a1 ⊕ a2 ⊕ a3 ⊕ a4

with the Lie bracket



x1

y1

A1

z1

 ,


x2

y2

A2

z2


 =


0

x1 × x2

Sym(x1, y2)− Sym(y1, x2)
x1 × y2 + y1 × x2

 .

Reversing the identification ã3 = a3 ⊕ a4 together with the identifications done in Theorem 5.3 shows
that

Lie(Q) ' g̃ ' a1 ⊕ a2 ⊕ ã3 ' f[3, 3].

Since simply connected Lie groups are completely determined by their Lie algebras, it follows that

Q ' N [3, 3]

as Lie groups. Since H is simply left translation of the subspace a1 ⊂ g̃ the result follows.

5.6 Final Remarks and Further Research

We have in the course of the thesis classified all sub-Riemannian model spaces of step and rank three.
This resulted in the spaces C(a1, a2), A(κ), and N [3, 3] described Section 5.3. A careful reading of their
derivations in [Gro16, Section 6.1], Section 5.4, and Section 5.5 reveal both the influence and importance of
the theory developed on symmetric spaces and principal bundles in Chapters 2 and Chapter 3, respectively.

In hindsight, there are a few remarks we would like to make about extending the classification to
spaces with different step or rank. Firstly, the choice of classifying precisely the spaces with step and rank
three is that it is the next truly nontrivial case after the step two case was settled in [Gro16]. One might
initially consider to classify model spaces with rank two and step three instead. However, when starting
with the Carnot model spaces in that class one quickly realizes that the representation of O(2) ' S1 on
R2 is radically different from the action of O(n) on Rn for n ≥ 3 in rigidity. One can check by using the
simple technique showcased in Example 4.29 and Example 4.28 that the only Carnot model space with
rank two and step three is N [2, 3]. Hence model spaces of rank two and step three have only one choice of
nilpotentization similar to the model spaces with step two. This is exclusively a feature of model spaces
with low step or low rank as a nontrivial Carnot model space of rank n and step k for n ≥ 2, k ≥ 3 with
(n, k) 6= (2, 3) was constructed in [Gro16, Example 4.3]. For the case r = n = 3, this coincides with the
model space C3,3 we found in Theorem 5.1.

Secondly, some difficulties of extending the methods and techniques we have used to higher step or
rank should be mentioned. The immediate difficulty which arises is that the dimensional increase of f[n, r]
makes classifying the Carnot model spaces through the method described in Proposition 4.30 unfeasible.
For this to still be a valid approach when dealing with higher step or rank, one need to get a more coherent
understanding of the representation theory of the orthogonal group on the free Lie algebras. The increase
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in dimension will also require different tools for proving analogous statements of those found in Theorem
5.3. As the reader will recall, the uniqueness of the maps (M4), (M6), (M7), and (M8) in Lemma 5.5
was proved by working in coordinates. This approach is only possible due to the small dimensions of the
spaces, and would need to be altered to fit a more general scheme. The identification (5.4) is used to
great convenience throughout most of Chapter 5. This clearly does not generalize to higher dimensions
due to the fact that the dimensions of Rn and o(n) coincide if and only if n = 3. The final difficulty is
the lack of a clear conjecture for what happens when the step or rank is higher. This looks even harder
to get a grasp on after Theorem 5.9, as this strikes a clear difference with the previously known case of
model spaces with step two. Except for extending the classification to model spaces with higher step or
rank, possible future research on sub-Riemannian model spaces is to:

• Prove comparison results for sub-Riemannian model spaces: There are several results in
Riemannian geometry commonly known as comparison theorems, most of the well known ones can be
found in [Pet16]. What the comparison theorems have in common is that they all compare geometric
quantities (Laplacian, curvature, volume etc.) on a suitably well-behaved class of Riemannian
manifolds with the corresponding quantities on the Riemannian model spaces. An example is the
Volume Comparison Theorem which applies to n-dimensional Riemannian manifolds (M, g) which
are complete and whose Ricci curvature satisfies

Ric(M) ≥ (n− 1)K, K ∈ R.

Then
V ol(B(p, r)) ≤ V olK(B(r)),

for any p ∈M , where V olK(B(r)) is the volume of a ball B(r) of radius r in the Riemannian model
space with section curvature K. Can one find such comparison theorems for sub-Riemannian model
spaces? Which geometric quantities should be attempted? One can define an analogous operator
to the Laplacian in sub-Riemannian geometry, called the sub-Laplacian [Mon02, Chapter 10.5], so
this might be a possibility.

• Find global invariants for sub-Riemannian model spaces: What can be said about global
topological invariants and global geometrical invariants of sub-Riemannian model spaces? A topo-
logical space X is said to be aspherical if all the higher homotopy groups vanish, that is, πn(X) = 0
for n ≥ 2. In Riemannian geometry the model spaces which are not compact are aspherical. By look-
ing at O+(3, 1) described in Subsection 4.6.3 it is clear that this does not hold for sub-Riemannian
model spaces since well known identifications imply that

π3(O+(3, 1)) = π3(SO(3)) = π3(RP 3) = π3(S3) = Z.

However, in step two the non-zero homotopy groups of the sub-Riemannian model spaces are those
of SO(n). These repeat due to Bott periodicity and are are well known to be either the integers or
zero. One can hence ask

Conjecture: Given a sub-Riemannian model space which is not Riemannian, do any of the
homotopy groups have torsion?

A geometric invariant of a metric space is its large scale geometry, see [NY12] for a monograph on
this topic. Two metric spaces (X, dX) and (Y, dY ) are said to be quasi-isometric if there exists a
map f : X → Y such that f(X) is a net in Y and there exists constants L,C > 0 such that

1

L
dX(x, y)− C ≤ dY (f(x), f(y)) ≤ LdX(x, y) + C,
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for all x, y ∈ X. Large scale geometry is mainly concerned with properties which are preserved
under quasi-isometries. In the quasi-isometric category, we have that

Rn ' Zn, Sn ' {pt},

and Hn 6' Rn 6' Sn for n ≥ 2. Hence the Riemannian model spaces are well understood in the
setting of large scale geometry. A natural question is to ask which quasi-isometry classes can occur
as sub-Riemannian model spaces through the Carnot-Carathéodory distance. More refined (and
realistically solvable) questions can be made about asymptotic dimension, amenability, or growth
properties. The interested reader should consult [NY12, Chapter 2 and 3] for the definition of these
large scale invariants.

• Develop a satisfactory notion of curvature for sub-Riemannian model spaces: As we
have seen in Chapter 2, a powerful tool in Riemannian geometry is the notion of curvature. Can
we develop a notion of canonical curvature for sub-Riemannian model spaces which is isometry-
invariant, reduces to sectional curvature for the Riemannian model spaces, and treats the Carnot
model spaces as “flat spaces”?
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A Appendix: Various Prerequisites

A.1 Exterior Calculus

We will summarize a few definitions and formulas related to the exterior derivative and Lie derivative,
both in the scalar valued and vector valued cases. No proofs will be provided, and the reader may consult
[Lee13, Chapter 14] for the scalar valued forms and [Tu17, Chapter 21] for all the results regarding vector
valued forms. Throughout this section we let M denote a manifold, Ωk(M) the space of differentiable
k-forms on M , and Ω∗(M) the algebra of all differentiable forms together with the wedge product.

Proposition A.1. There exists a unique R-linear map d : Ω∗(M) → Ω∗(M) of degree one called the
exterior derivative such that

• for any function f ∈ C∞(M) we have that df is the total differential;

• if ω ∈ Ωk(M) and µ ∈ Ωl(M), then

d(ω ∧ µ) = dω ∧ µ+ (−1)kω ∧ dµ;

• d2 = 0.

In terms of a local coordinate system, if ω ∈ Ωk(M) is written as

ω =
∑

i1<···<ik

fi1...ikdu
i1 ∧ · · · ∧ duik ,

then the exterior derivative has the form

dω =
∑

i1<···<ik

dfi1...ik ∧ du
i1 ∧ · · · ∧ duik .

Moreover, if ω ∈ Ωk(M) then

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)iXi(ω(X1, . . . X̂i, . . . , Xk+1))

+
∑

1≤i<j≤k+1

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

We will mostly be interested in the case where ω is a one-form, in which case the formula simplifies to

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]), (A.1)

for X,Y ∈ X(M).

Remark. Our explicit formulas for the exterior derivative are the same as the ones found in [Lee97] and
[Tu17], but are different from those in [KN96]. The differences arise from how the wedge product is
defined, compare for instance the definitions in [Lee97] and [KN96].

Recall that T kl (M) denotes the tensor fields of type (k, l). To collectively speak about tensor fields,
we employ the notation

T ∗(M) =
⊕
l,k∈N

T kl (M).

A mapping from T ∗(M) to itself is said to be type-preserving if it preserves the layers T kl (M) for any
whole numbers k and l.
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Proposition A.2. For each X ∈ X(M) there exists a unique type-preserving linear derivation

LX : T ∗(M)→ T ∗(M)

with respect to the tensor product, called the Lie derivative in the direction of X. It is given by

LX(f) = Xf, LX(Y ) = [X,Y ],

and satisfies
L[X,Y ] = [LX ,LY ],

for f ∈ C∞(M) and X,Y ∈ X(M). Moreover, it commutes with the exterior derivative.

For each X ∈ X(M) there is a map

iX : Ω∗(M)→ Ω∗(M)

relating the exterior derivative and the Lie derivative called interior multiplication. It can be described
as the unique skew-derivation of degree −1 given on one-forms by iX(ω) = ω(X), for ω ∈ X∗(M). It is
related to the exterior derivative and Lie derivative through Cartan’s formula

LX = iX ◦ d+ d ◦ iX .

Let us now turn to describe vector valued forms and the operations on them. If T and V are finite-
dimensional vector spaces, then a V -valued k-covector on T is an alternating multilinear map

φ :

k−copies︷ ︸︸ ︷
T × · · · × T −→ V.

This can also be considered as a linear map from
∧k T to V by the universal property of the exterior

power. A V -valued k-form on M assigns to each x ∈ M a V -valued k-covector on TxM . The notation
E ⊗ V when π : E → M is a vector bundle and V is a vector space refers to the tensor product of the
bundles E and the trivial bundle M × V →M . Using the isomorphism

HomR

(
k∧
TxM,V

)
'

k∧
T ∗xM ⊗ V,

it makes sense to speak of smooth V -valued k-forms as elements in

Ωk(M,V ) := Γ

[(
k∧
T ∗M

)
⊗ V

]
.

If v1, . . . , vn constitute a basis for V , then any element α ∈ Ωk(M,V ) can be written as α =
∑n

i=1 α
ivi,

with αi ∈ Ωk(M). We define the exterior derivative of any α ∈ Ωk(M,V ) by

dα =

n∑
i=1

(dαi)vi.

This is independent of the choice of basis. Moreover, if N is a manifold and f : N → M is smooth then
f∗dα = df∗α for α ∈ Ωk(M,V ), when the pullback is defined on vector valued forms by

f∗α =

n∑
i=1

(
f∗αi

)
vi.
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Assume now that α ∈ Ωk(M, g) and β ∈ Ωl(M, g), where g is a Lie algebra with Lie bracket [·, ·]g.
Recall that a (k, l)-shuffle τ is an element in Sk+l such that

τ(1) < · · · < τ(k), τ(k + 1) < · · · < τ(k + l).

Then the Lie bracket of α and β, denoted by [α, β] is defined to be the element in Ωk+l(M, g) given by

[α, β]p(u1, . . . , uk+l) =
∑

(k,l)−shuffles τ

sgn(τ)
[
αp(uτ(1), . . . , uτ(k)), βp(uτ(k+1), . . . , uτ(k+l))

]
g
,

whenever u1, . . . , uk+l ∈ TpM. In particular, if α and β are g-valued one-forms then

[α, β](X,Y ) = [α(X), β(Y )]− [α(Y ), β(X)],

for X,Y ∈ X(M). When α = β this reduces to the simple expression

[α(X), α(Y )] =
1

2
[α, α](X,Y ).

Proposition A.3. Let A1, . . . , An be a basis for a Lie algebra g and let α ∈ Ωk(M, g) and β ∈ Ωl(M, g)
be g-valued forms written in the basis as α =

∑n
i=1 α

iAi and β =
∑n

j=1 β
jAj. Then

[α, β] =
n∑

i,j=1

(αi ∧ βj)[Ai, Aj ]g ∈ Ωk+l(M, g).

A.2 Lie Theory

A.2.1 Lie Groups and Their Lie Algebras

This subsection will serve as a reminder of Lie theory, specifically about the basic relations between Lie
groups and Lie algebras. The reader may consult [War83, Chapter 3] or [Hel01, Chapter 2] for proofs and
further results.

Definition A.4. A Lie group is a differentiable manifold G which in addition carries a group structure
such that the multiplication map is smooth.

Remark. Some authors require, moreover, that the inversion map sending an element g 7→ g−1 to be
smooth. This is redundant, which can be proved using the inverse function theorem.

For g ∈ G the map given by g 7→ hg will be denoted by Lh and referred to as left translation by
h ∈ G. Similarly, Rh denotes right translation by h ∈ G. All the vector fields X ∈ X(G) such that
dLhX(g) = X(hg) for all g, h ∈ G constitute a Lie algebra under the Lie bracket which is denoted by g.
The map

g −→ TeG

X 7−→ X(e)

is an isomorphism of vector spaces. Hence TeG inherits a Lie algebra structure and we identify g ' TeG
as Lie algebras whenever convenient.

Similarly as for vector fields, a differentiable form ω ∈ Ω(G) is called left-invariant if L∗gω = ω for
every g ∈ G. The vector space of all left-invariant one-forms will be denoted by g∗, which is consistent
since it isomorphic to the dual space of g. It is clear that ω(X) is a constant function on G whenever
X ∈ g and ω ∈ g∗. If ω ∈ g∗, then applying formula (A.1) gives the Maurer-Cartan Equation

dω(X,Y ) = −ω ([X,Y ]) , X, Y ∈ g. (A.2)
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In Section 3.3 we show that the Maurer-Cartan Equation implies that the canonical flat connection on the
trivial bundle has zero curvature. The canonical one-form on a Lie group G is the left-invariant g-valued
one-form θ which is uniquely determined by θ(A) = A for A ∈ g.

A smooth group homomorphism φ : G→ H between Lie groups is called a Lie group homomorphism
and it induces a Lie algebra homomorphism dφe : g → h, where g and h are the Lie algebras of G and
H, respectively. The following theorem implies that if simply connected Lie groups have isomorphic Lie
algebras, then they are isomorphic.

Theorem A.5. Assume that G is simply connected. Then any Lie algebra homomorphism ψ : g → h
induces a unique Lie group homomorphism φ : G→ H such that dφe = ψ.

A Lie group homomorphism from R to a Lie group G is called a one-parameter subgroup of G. If
X ∈ g, then the map

λ
d

dt
7−→ λX

is a Lie algebra homomorphism from the Lie algebra of R to g. By Theorem A.5 there exists a one-
parameter subgroup expX : R→ G whose tangent vector at 0 is X(e). The map

exp : g −→ G

X 7−→ expX(1)

is called the exponential map for the Lie group G. It is a smooth map and the differential at the origin
is the identity map after the obvious identifications. For a Lie group homomorphism φ : G → H the
exponential map satisfies

G H

g h

φ

exp

dφ

exp .

A.2.2 Lie Group Actions and Representation Theory

This subsection will recall terminology and definitions about Lie group actions. We will in particular
consider representations of Lie groups and induced representations of their Lie algebras. The reader may
consult [Hal15] for more on representation theory of Lie groups.

A right Lie group action of a Lie group G on a manifold M is a smooth map µ : G ×M → M such
that µ(e, p) = p and µ(g, µ(h, p)) = µ(hg, p). We usually employ the notation p · g for the group action to
avoid proliferation of parentheses. Notice that a right action can be converted to a left action by sending
(g, p) 7→ µ(g−1, p). For any p ∈M the orbit of p is the set

O(p) = {q ∈M : p · g = q for some g ∈ G}

and the isotropy group of p consists of every g ∈ G such that g · p = p. The action is said to be transitive
if for any p, q ∈ M there exists an element g ∈ G such that p · g = q, that is, the orbit of any element is
all of M . The action is said to be free if for any p ∈M , the property p · g = p forces g to be equal to the
identity. Any Lie group G acts on its Lie algebra g through the adjoint map

Ad : G −→ Aut(g)

h 7−→ deCh,

where Ch denotes conjugation by h. One might consider the derivative of the adjoint map, denoted by
ad : g 7→ End(g). This is in fact given by the bracket, that is, ad(X) is the map sending Y to [X,Y ].
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Definition A.6. Let G be a Lie group and V a vector space. A smooth homomorphism ρ : G→ GL(V )
is called a (Lie group) representation of G on V . We call V a G-module and say that G acts on V . If ρ
is a monomorphism, then the representation is said to be faithful.

Since a representation is a special case of a Lie group action, we again write g ·v instead of ρ(g)(v) when
no confusion will arise. The observant reader will notice that although we typically work with right group
actions, representations will be left actions due to familiarity with applying linear transformations on the
left. A subspace of V which is invariant under the action of G will be referred to as an invariant subspace
of the representation. If no nontrivial nonempty invariant subspaces of V exist, then the representation
is said to be irreducible.

Let V1 and V2 be G-modules, where G is any Lie group. Then G also acts on their tensor product
V1 ⊗ V2 given by

g · (v1 ⊗ v2) = g · v1 ⊗ g · v2, v1 ∈ V1, v2 ∈ V2.

Not every element of the tensor product V1⊗ V2 is on such a form, but a spanning set is and we can thus
extend the action by linearity to all of V1 ⊗ V2. This is independent of the choice of spanning set and is
simply referred to as the tensor product representation of the G modules V1 and V2.

Definition A.7. Let G be a Lie group with two representations ρ : G → GL(V ) and ρ′ : G → GL(W )
of G. We call a linear map ψ : V → W an intertwining map or G-equivariant if it commutes with the
action of G, that is, the following diagram commutes for every g ∈ G

V W

V W

ρ(g)

ψ

ρ′(g)

ψ

.

If ψ is a bijection, it is called an equivalence of representations.

Theorem A.8 (Schur’s Lemma). Let V and W be irreducible representations of a Lie group G and let
ψ : V →W be a non-zero intertwining map. Then ψ is an equivalence of representations.

Let g be a Lie algebra and V a vector space. Then a (Lie algebra) representation of g on V is a Lie
algebra homomorphism

ρ : g −→ End(V ),

where the endomorphism ring End(V ) is considered with the usual commutator as Lie bracket. We will in
the proof of Lemma 5.6 need a specific result about irreducible representations of the Lie algebra sl(2,C)
consisting of traceless 2× 2 matrices with complex coefficients.

Theorem A.9 (Theorem of Highest Weight). For any positive integer m there is an irreducible repre-
sentation of sl(2,C) on the complex vector space Vm consisting of homogeneous polynomials of degree m
in two complex variables. Moreover, any irreducible complex representation is isomorphic to one of these
representations.

We say that a Lie group has the complete reducibility property if every finite-dimensional Lie group
representation can be written as a direct sum of finitely many irreducible representations. For such
Lie groups, every invariant subspace of a given finite-dimensional representation have an invariant com-
plement. There are two important classes of Lie groups which have this property; the compact and
semisimple ones. A Lie group is said to be semisimple if its Lie algebra is semisimple, that is, have no
non-zero abelian ideals. In both cases, the complete reducibility property relies on the existence of a
bi-invariant Haar measure, see [Hal15, Appendix D] for details.
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