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Abstract

This study investigates dynamic modelling of induction motors with a va-

riety of different defects and condition monitoring of these. The focus is di-

rected at squirrel cage induction motors(SCIM) which is the most used electric

motor in the world. A motor with this importance needs to be monitored to

decrease downtime. The condition monitoring technique used in this study

is known as motor current signature analysis(MCSA). MCSA is an on-line con-

dition monitoring technique which uses the frequency spectrum to detect

abnormalities. One of its advantages is that measuring the supply current is

enough, releasing the need for extra sensors with the motor. This gives the

technique an edge, especially in hazardous or difficult accessible areas.

There are four main categories of failure in the SCIM, these are modelled

separately before being integrated to a generic model which can be used as

a tool in SCIM diagnostics. The models are based on direct-quadrature(DQ)

transformation in an ideal and symmetrical machine before being modified in

a way that introduces different defects. Every aspect of the model is thoroughly

explained with the following assumptions. The results are validated against

proven scientific papers on MCSA. Since MCSA is a promising technique in

monitoring of subsea induction motors, a cable model with transformers and

a pulse-width modulator(PWM) source is also tested with the generic model.
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1 Introduction

Electric motors consume more than half of the end-user electricity in the world,

30% of which is used in industrial electric motor-driven systems[1]. The demand

in the industrial sector is expected to increase with 70% by 2040[2]. Most of these

motors are of the type induction motors. The society is absolutely dependent on the

induction motor and consequently it needs to be monitored to decrease downtime.

Dynamic modelling have many great benefits, but the modelling of electric ma-

chinery is not straightforward. To make it more comprehensible, a transformation

on the variables are often used. This transforms the variables from one reference

frame to another. There have been used several different reference frames in anal-

ysis of electric machinery over the years, a general approach was not introduced

until 1960’s[3]. With this approach the reference frame can be rotating in a arbitrary

speed, when a specific speed is determined it can be easily assigned.

Motor current signature analysis(MCSA) is an on-line condition monitoring tech-

nique which has been developed since the late 1970’s[4]. This technique can diag-

nose faults in the induction motor at a cheap cost and early stage[5]. MCSA may

give the operator a chance to get the necessary parts and do maintenance before

the fault is developed to a critical stage.

In the offshore oil and gas industry, new resources within distances from 20 - 50

kilometers can be accessed with only subsea components[6]. The pumps and com-

pressors are often driven by squirrel cage induction motors(SCIM) which again is

driven by variable speed drives(VSD). Monitoring these motors can be challenging

with the ever increasing distances and hopefully this study will give an realistic

model when simulating similar cases.
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1.1 Background

There have been developed several computer models to study faults in induction

motors. These can be divided into categories such as; multiple couple circuit(MCC)

models, DQ models, magnetic equivalent circuit(MEC) models and finite element

method(FEM) models[7].

In this study the DQ model is used. There are multiple studies on how to modify

this model to include stator, rotor and eccentricity fault. A simplified stator fault

model which includes inter-turn short circuit or stator unbalance in general is

described in[8] and integrated to Simulink in[9]. This is the same case for the rotor,

where it is described in[10] and integrated to Simulink in[11]. A simplified model for

eccentricity fault based on how the air-gap varies is described in[12]. Mechanical

faults in general such as misalignment, unbalance and mechanical looseness are

studied in [13]. Using MCSA to test the faulted models were done in all the studies.

A specific study on bearing fault modelling and combining any of the other faulted

models are not documented as far as the author knows.

As mentioned earlier, the MCSA is a promising technique in the oil and gas industry.

There have been done multiple studies on how long cables, transformers and VSDs

affect the performance of the SCIM[6, 14]. Using MCSA in this context has also

been studied[15], but not a combination of both long cable and VSD. These were

also practical tests, using a dynamic simulation to study these concepts has not

been documented as far as the author knows.

1.2 Object of Thesis

The goal of this study is to develop a dynamic model of the induction motor with

its typical failures. There are several purposes with the model: studying condition

monitoring techniques, studying how different failures affect the performance of

the motor and to be used as a tool for motor diagnostics. It is well documented that

different faults have different frequency response in the stator currents[16]. The

faulty models are validated in the frequency domain against approved scientific

papers on MCSA. The developed model should also be tested for a cable model and

2



PWM controller to look at its capabilities for subsea installations. A dynamic model

to simulate failure gives several advantages: reducing resources, both in manpower

and equipment, reducing time consumption, easier to monitor and avoiding health

risks. The model should be realistic, yet simple and easy to manipulate and control.

1.3 Method

The author will carefully examine the DQ model, finding its strength and weak-

nesses for modelling of faulty induction motors. All the relevant equations will be

thoroughly derived and all the taken assumptions will be stated.

The process of developing the faulty models are strategic. First a healthy model is

developed and tested, then the faulted models are derived and tested individually

against MCSA. The faulty models are developed from both earlier studies and in-

novative ideas related to how the faults affect the motor. The tested faulty models

will be integrated to a generic model. A graphical user interface(GUI) will also be

developed to make it easier for an operator.

The last part of this study is to test the generic model in a simulation with subsea

components such as PWM, cable model and transformers. This will clarify if the

model is capable in a subsea context.

1.4 Structure

The second chapter presents the basics of the induction motor as well as a brief

history of its development. Condition monitoring in general is described in this

chapter before going into details on MCSA. The spesific response to each of the

typical failures are also described in this chapter.

The third chapter develops the dynamic model of the induction motor. Starting

with a healthy one and then the faulted ones. Every faulted model are first described

by the equations before being integrated in to Simulink. This chapter ends with a

generic model and GUI of the Simulink program.
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The results are presented in the fourth chapter and discussed in the fifth. The

conclusions are made in the sixth chapter with a subsection describing possible

future work.
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2 Induction Motor

This section will provide the principles of the induction motor by looking at the

physical structure and a short look at the electromagnetic physics. The induction

motor has its name from how its torque is obtained, by electromagnetic induction.

This motor is also known as the asynchronous motor as a result of the speed which

lies behind the rotating magnetic field.

2.1 Brief History

The first induction motors were invented separately by Galileo Ferraris and Nikola

Tesla, both publishing their findings in 1888[17, 18]. Both Ferraris and Teslas mo-

tors relied on two-phase induction. The better three-phase induction motor was

invented by Mikhail Dolivo-Dobrovolsky in 1889[19], the same person introduced

the squirrel-cage rotor later. The induction motor became a workhorse everywhere

in the industry, except for propulsion. However, in the late 1980’s the induction

motor had an renaissance in this area as a result of new technology in power elec-

tronics which led to a range of VSDs. This made the induction motor applicable in

all industries[19] .

2.2 Physical Structure

The induction motor consists of two main parts; the stationary part, the stator, and

the rotating part, the rotor.

The stator consists of a three-phase winding which is put in slots. The slots and

the structure of the stator is composed of high-grade steel laminations. These thin

laminations are insulated which helps reducing eddy currents[20]. The windings

conduct the alternating currents which creates a rotating magnetic field.

The rotor is constructed by three main parts; an inner supporting structure, a lam-

inated ferromagnetic material and the windings. The windings can be divided in
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two types, the squirrel-cage winding (squirrel-cage rotor) and the wound-rotor

winding (wound rotor)[21].

The squirrel-cage rotor consists of copper or aluminum bars short circuited and

embedded in the rotor slots. This type of rotor is not designed for a specific amount

of poles. This is a more economical, simpler and rugged machine compared to the

wound-rotor, and thereby the most used rotor.

The wound-rotor windings looks more like the stator with windings distributed

in slots, and a specific pole number. This type is often referred to as the slip-ring

rotor because of the use of slip rings. The slip rings are connected to a external

circuit which usually consist of variable resistances. These resistances can help

decreasing the starting currents and regulate the speed of the motor. In later years,

the use of slip rings to control the speed is for the most part replaced by VSDs.

2.3 Working Principles

In this section a two-pole three-phase motor is studied. The winding arrangements

of the stator are distributed around the inner circumference and represented as

a a ′, b b ′ and c c ′ as shown in Figure 1

a ′

a

b

c ′

c

b ′

Figure 1: Winding distribution of a 2-pole induction motor
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We can start by looking at the three-phase supplying currents which are

ia = Im cosωb t

ib = Im cos(ωb t −
2π

3
)

ic = Im cos(ωb t +
2π

3
)

(2.1)

where Im is the amplitude andωb = 2π f , where f is the frequency. Equation 2.1 is

shown in Figure 2

-Im

- Im
2

0

Im
2

Im

t0 t1 t2 t3

a
b
c

Figure 2: Three-phase current sine wave separated by 2π
3 radians. t0, t1, t2 and t3

are references to the text[20]

We will use the graphical method to understand how the currents in the stator

produces a revolving magnetic field[20]. Let us consider several steps of π2 on the

x-axis and look at the resulting magnetomotive force (MMF). At t = t0 from Figure 2

the magnitude of the currents are as follows

ia = Im ib =−
Im

2
ic =−

Im

2
(2.2)

The MMF is proportional to the current which produces it, yielding a sinusoidally

MMF as well. The direction of the MMF can be found by using the right-hand rule.

The direction of the currents are noted by dots and crosses, where these indicates

current going out and into the page, respectively. The MMF produced from phase
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a will be at its maximum and is represented by a vector Fa = Fma x in the direction of

the axis of phase a . The MMF produced by phase b and c will be half the maximum

in the opposite direction along their respective axes Fb = Fc =
Fma x

2 . Adding these

three will result in a MMF F = 3
2 Fma x as shown in Figure 3

a ′

a

b

c ′

c

b ′

Fa

Fc

Fb

F

Figure 3: Resulting magnetomotive force at t = 0. Dots indicates current going
into the page and crosses indicates current coming out from the page.
MMF direction can be found by right-hand rule.
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If we look at t = t1 from Figure 2 the currents and MMFs are

ia = 0 Fa = 0

ib =
p

3

2
Im Fb =

p
3

2
Fma x

ic =−
p

3

2
Im Fc =−

p
3

2
Fma x

this yields a MMF distribution as follows.

a ′

a

b

c ′

c

b ′

FcFb

F

Figure 4: Resulting magnetomotive force at t = t1. Dots indicates current going
into the page and crosses indicates current coming out from the page.
MMF direction can be found by right-hand rule.
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The next two intervals t = t2 and t = t3 can be shown respectively as

a ′

a

b

c ′

c

b ′

Fa

Fc

Fb

F

a ′

a

b

c ′

c

b ′ FbFc

F

Figure 5: Resulting MMF at t = t2 and t = t3, respectively. Dots indicates current
going into the page and crosses indicates current coming out from the
page. MMF direction can be found by right-hand rule.

The resulting MMF will continue rotating with the currents. In a 2-pole machine

as we studied, the MMF rotates one round per period. In a P -pair pole machine

the speed in revolutions per minute (rpm) can be found as

ns =
2 ·60 f

P

where f is the supply frequency and P is the pole pair. This speed is often referred to

as synchronous speed. As earlier mentioned the induction motor is often referred

to as the asynchronous motor, this is because the rotor does not rotate at the same

speed as the MMF, but behind. The speed difference between the synchronous

speed and the rotor speed is known as slip s and defined as

s =
ns −nr

ns

It is the amount of magnetic flux under each pole which determines the induced

voltage and developed torque in the induction motor. The flux under per pole can
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be determined by integrating the flux density distribution in the air-gap[22]

Φp o l e =

∫ π/2

−π/2

Bma x

P
l r cos (θ ) =

2

P
Bma x l r (2.3)

where l is the axial length of the stator and r is the mean radius of the stator air-

gap. The flux linkages will vary with the coils position and the flux density. The

maximum flux linked will be NΦp o l e where N is the amount of turns in the coil. If

we let the time when the coil’s axis coincides with the maximum of flux B be zero,

this yields a flux linkage as follows

λ (t ) =NΦp o l e cos (ωb t ) (2.4)

If we assume that the flux density distribution and flux per pole are constant(which

it normally is under steady-state operation), the induced voltage can be obtained

by Faraday’s law as

e =−
dλ (t )

d t
=ωb NΦp o l e sin (ωb t ) (2.5)

The induced voltage produces currents in either the rotor bars or the rotor windings.

From the current a new MMF is produced, this MMF reacts with the stator MMF

and produces a torque. The torque is only produced when there is a relative speed

between the rotor and rotating MMF. This means that in motoring mode s > 0 as a

result of losses in the motor.

The frequency of the current in the rotor is dependent on the rotor speed relative

to the synchronous field. When starting at 0 r p m the frequency in the rotor is the

same as in the stator, but when the rotor speed increases the frequency decreases.

The relationship between the current frequency in the rotor fs r often referred to as

slip frequency and stator is found as

fs r = s f

where s is the slip and f is the supply frequency.
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2.4 Induction Motor Speed Control

As mentioned, the induction motor became a workhorse everywhere in the indus-

try except for propulsion, the reason for this is the difficulties controlling the speed

and torque. The induction motor was more a fixed speed motor. When variable

speeds were necessary, a direct-current(DC) motor was normally used. However,

the DC-motor are more expensive, needs more maintenance and are not suitable

in hazardous areas[20]. When the VSD came to the market the induction motor

became applicable in all industries. By manipulating the voltage and frequency,

the speed and torque could easily be controlled.

2.4.1 Variable Speed Drive

A VSD can be classified into different categories. The main categories are voltage

source inverters(VSI) and current source inverters(CSI). The VSI drive is the more

applicable of the two[23] and the one being further discussed. The VSI can also

be divided into different categories on how it is run, but the focus in this study is

on pulse-width-modulated(PWM) inverters. The goal with a PWM inverter in a

motoring context is to create a desired frequency and voltage which will control

the motor. The output of a PWM running at 50H z with a DC voltage of 300V is

showed in Figure 6.
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Figure 6: Simulated PWM ouput voltage with 300V DC value and 50H z frequency.
Illustrating how a output voltage can be from a VSD in steady state.

As shown in the figure, the output from a PWM inverter is a pulsating DC voltage.

The variable voltages are acquired from some sort of switching mode, for example

insulated-gate bipolar transistors(IGBT).

2.5 Condition monitoring

Condition monitoring is a process where the parameters of the subject are moni-

tored. If any changes from regular operations occur, they can indicate present or

future failures. This will give the observer an insight of the state of the subject, and

a chance to do maintenance if necessary.

In the developed countries the average modern home contains 20-30 electric mo-

tors in the range of 0− 1k W . These are relatively small motors and are typically

used in toys, kitchen equipment, clocks and so on. Also, these countries are heav-

ily dependent on machines of bigger dimensions. Generators used in production
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of electricity is often in M W s and can exceed 1000M W . In the industry the mo-

tors used to drive pumps, compressors, or propulsion can range from 100k W to

100M W [24].

Condition monitoring is not relevant for all the motors in existence, for many of

the smaller motors their lifetime regularly expand the lifetime of the parent prod-

uct. In the bigger motors and especially motors with higher consequences in fail-

ures, condition monitoring can be crucial. Machines with lower power than 20k W

would likely not benefit from condition monitoring, unless the machine has a vital

function[24].

2.5.1 Techniques

There are numerous on-line condition monitoring techniques of induction mo-

tors, both electrical and mechanical. The mechanical techniques can be, vibration

monitoring, temperature monitoring, chemical and wear monitoring[24] etc. The

electrical techniques are power monitoring, electrical discharge monitoring, MCSA

and so on.

MCSA is the most preferred non-invasive technique for condition monitoring of

induction motors[16]. This technique uses the frequency domain based on fast

Fourier transform(FFT). By analyzing the spectrum acquired from the stator or

supply current, different types of fault and developing faults can be detected. The

FFT is further explained in section 2.6.

2.5.2 Different Types of Fault

There are four main types of faults in induction motors; rotor faults, eccentricity

faults, bearing faults and stator faults. These four types account for more than 90%

of all faults in induction motors[5].

Rotor Faults Although the rotor in a induction motor is rugged, faults do occur.

Rotor related faults accounted for at least 10% on utility-sized motors (>100hp)[25].
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The biggest reason for this is due to the starting duties where the currents are as

high as 9 times rated current[21] which result in high thermal stress. This stress

will regularly not result in momentarily breakdown[5], but can instead over time

result in broken rotor bars or end-rings. A squirrel cage rotor without the core

can be seen in Figure 7, it is clear that when one of the rotors or end rings breaks

or partially breaks, the stress will increase on the healthy ones. Other sources of

failure are: magnetic stress caused by electromagnetic forces, residual stress due

to manufacturing problems, mechanical stress due to loose laminations[16].

Figure 7: Squirrel cage rotor without a core and with skewed rotor bars. The rotor
bars are short-circuited by the end rings, breaking or partially breaking
will result in higher stress on undamaged bars or end rings.

The frequency components produced by broken rotor bars can be found as[16]

fB R B = (1±2n s ) f (2.6)

where s is the slip, f is the supply frequency and n = 1, 2, 3....

Based on numerous case histories the amount of broken rotor bars under full load

can be estimated from the FFT results as follows[26]

n =
2R

10
Nd B

20 +P
(2.7)
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where R is the amount of rotor bars, Nd B is the mean difference between the two

sidebands (50±2s 50) and the supply frequency f and P is the pole-pair.

Eccentricity fault An eccentricity fault is when a non-uniform distance in the air

between rotor and stator occurs, this air is referred to as the air-gap. We can di-

vide this type of fault in two categories, static- and dynamic eccentricity[16]. Static

eccentricity is when the rotor is at constant offset from the center, the air-gap is

constant, although not uniform as shown in the three bottom figures from Figure 8.

From the stator perspective the air-gap looks constant. The reason for static eccen-

tricity can be a ovality of the stator core or a tilt in stator, rotor or both. Dynamic

eccentricity is when the non-uniform air-gap revolves with the rotor, from the ro-

tors perspective it looks constant as shown at the top three figures from Figure 8.

Dynamic eccentricity may be caused by bent rotor shaft, bearing wear, misalign-

ment, etc.[16]. In reality both of these usually coexist in some degree.

Figure 8: The different types of eccentricity. The top three are dynamic eccentricity,
the bottom three are static eccentricity

The frequency components produced by the eccentricity fault can be obtained by

fe c c 1 = f
�

(nR ±nd )
�

1− s

P

�

±h
�

(2.8)
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where f is the supply frequency, n is any integer, R is the number of rotor bars, nd

is the eccentricity order number, P is the number of pole pairs, s is the slip and h is

the harmonic of the stator MMF time harmonics[27]. For a static eccentricity fault

nd = 1, 2, 3 and for dynamic eccentricity fault nd = 0.

fe c c 1 is at the higher frequencies. In the case of mixed eccentricity low frequency

components is also produced. These are given by

fe c c 2 =
�

f ±n fr

�

(2.9)

where

fr =
1− s

P
f f , s , P and n is the same as in fe c c 1

Bearing fault Bearing faults accounts for more than 40% of all faults in electric

motors[28]. Bearing faults can be a result of numerous non-ideal conditions like

ambient mechanical vibration, misalignment, corrosion, wrong lubrication and

so on[16]. Over time these minor impacts becomes significant and mechanical

vibration occurs.

The main causes of vibration is divided by outer raceway defect, inner raceway

defect, ball defect and cage defect. These mechanical vibrations cause a slight

rotor displacement in the air gap, which is like an instant eccentricity. MCSA can

be used to find these defects and the frequency components produced are[27]

fo b =
N

2
fr

�

1− bd

cos
�

β
�

pd

�

outer bearing race defect

fi b =
N

2
fr

�

1+ bd

cos
�

β
�

pd

�

inner bearing race defect

fb =
pd

bd
fr

 

1−

�

bd

cos
�

β
�

pd

�2
!

ball race defect

fc =
1

2
fr

�

1− bd

cos
�

β
�

pd

�

cage defect
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where fr is the mechanical rotational frequency
�

fr =
2(1−s )

P f
�

, N is the number of

bearing balls, bd is the ball diameter, pd is the ball pitch diameter and β is the

contact angle between the ball and the races. Figure 9 shows a typical bearing

geometry[5]. In the frequency spectrum the vibration frequencies can be found as

fB F =| f ±n fx |

where f is the fundamental frequency, n = 1, 2, 3... and fx is one of the frequencies

components above.

Figure 9: Typical geometry of a bearing with labels on relevant parameters

Stator faults 37% of all electric motor failures occurs as a result of stator faults[28].

This type of fault is often due to stator inter-turn winding fault caused by insulation

breakdown and will result in an unbalanced stator[29]. The insulation breakdown

can be caused by numerous reasons, such as; high stator core or winding tempera-

ture, short circuit or starting stress, partial discharges, etc.[16]. A key feature when

monitoring for stator fault is a quick detection and response because of the high

progress rate, often in the matter of seconds[5]. The stator inter-turn fault produces

stator current harmonics such as[30]

fs s 1 =
�

k ±n
1− s

p

�

f (2.10)
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where k = 1,3,5..., n = 1,2,3..., s is slip, P is pole pair and f is supply frequency.

However, since this is the same frequency component as produced by mixed ec-

centricity it is not enough to determine stator fault alone.

One frequency component which can identify the stator fault is the odd harmonics[31].

fs s 2 = 3k f (2.11)

where f is the supply frequency and k = 1, 3, 5....

2.6 Fast Fourier Transform

As mentioned earlier, a FFT will be used on the current to extract the frequency

spectrum that is needed for the analysis. FFT is an algorithm which computes

the discrete Fourier transform(DFT) in an efficient way. J.W. Cooley and J. Tukey

are recognized as creators of the FFT when they published “An Algorithm for the

Machine Calculation of Complex Fourier Series” in 1965 [32], although it may look

like the German mathematician Carl Friedrich Gauss invented the same algorithm

already in 1805[33]. To understand both FFT and DFT a short review of the Fourier

transformation is appropriate.

2.6.1 Fourier Transform

The Fourier transform takes a signal from the time domain and describes it in the

frequency domain. The inverse Fourier transform will do the opposite. The Fourier

transform is defined as[34]

X (F ) =

∫ ∞

−∞
x (t )e − j 2πF t d t (2.12)

and its inverse

x (t ) =

∫ ∞

−∞
X (F )e j 2πx t d F (2.13)
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where x is a function of time t , F is the frequency and j =
p
−1. Both these are

continuous functions, and when going from analog to digital the signal can not

be sampled continuously, instead there will be set of discrete values or bins. This

is why the discrete Fourier transform is used when converting signal from time

domain to frequency domain.

2.6.2 Discrete and Fast Fourier Transform

The discrete Fourier transform is defined as

Xk =
N−1
∑

n=0

xn e
− j 2πr k

N (2.14)

and its inverse

xn =
1

N

N−1
∑

k=0

Xk e
j 2πnk

N (2.15)

where N is the number of samples, xn denotes the nth sample, Xk is the k th coef-

ficient of the DFT and j =
p
−1[35]. The integral operator is now exchanged with a

summation operator, because of the signals discrete values.

The FFT is a technique which performs the DFT in a efficient way. For comparison

the computations of DFT simply on the definition are N 2 where N is the number

of samples. With the FFT algorithm the number of computations are 2N log2 N [35].

For illustrative purposes if there are 1024 samples the number of computations will

be 1 048 576 and 20 480 for direct DFT and FFT, respectively.

The FFT also has its limitations, one of these is when measuring a over a non-integer

number of periods or non-periodic functions. This results in spectral leakage which

gives a unrealistic view of the frequency spectrum. By using windowing on the raw

data before the FFT, we can reduce the effects of spectral leakage, enhancing the

FFT to extract spectral data, but windowing can also decrease resolution[36].
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2.7 DQ model

The DQ model also known as the two-axis model, is used in many cases for dynamic

analysis of electric machinery. The model transforms the variables to a common

reference frame, which makes the flux independent from rotor position.

2.7.1 Background

There are several variable changes used in the analysis of induction machines. In

1929 R. H. Park published[37], which introduced a new approach of referring the

variables related to the stator over to the reference frame of the rotor. This was

derived for a synchronous machine where the rotor rotates at the same speed as

the rotating MMF and is commonly referred as the Park’s transformation.

In 1938 H. C. Stanley published[38], where he showed how to transform the vari-

ables from the rotor to the stator. This transformation is commonly referred to

as the “stationary reference frame”. In G. Kron’s book[39], he introduced a change

in variables which transformed the stator- and rotor variables to a synchronously

rotating reference frame, which is commonly known as the “synchronous reference

frame”.

As mentioned, the Park’s transformation was meant for the synchronously machine.

In 1957 D. S. Brereton et al.[40] showed how to change the variables by transform-

ing the stator variables to a reference frame fixed on the rotor. This is the Park’s

transformation equivalent for induction machines. Common for all of these ap-

proaches are the elimination of time-varying inductances. Which approach to use

is determined by the particular application[41].

All of these different approaches were derived and treated separately until a general

transformation was derived in 1965 by P. C. Krause and C. H. Thomas[3]. Now the

variables associated with the stator and rotor can be referred to a frame of reference

that may be stationary or rotate at any angular velocity, known as the “arbitrary

reference frame”. To obtain any of the known transformations simply assign the

appropriate speed of rotation.

21



3 Modelling of Induction Motor

There are many advantages with modelling and simulation, such as reducing the

needs for resources both in manpower and cost, avoiding health risking experi-

ments, reducing time consumption and making it easier to monitor every aspect

of the object. On the other hand, there are many assumptions to be made when de-

ciding which model to use. A good model should be realistic, simple to understand

and easy to manipulate, though these often are restricting requirements. Realistic

models are seldom simple and simple models are rarely realistic[22]. In this chap-

ter the induction motor model will be thoroughly explained both in a healthy and

compromised condition.
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3.1 Healthy Induction Motor Model

For a three-phase, two-pole, wye connected symmetrical machine the winding

arrangement is shown in Figure 10 and the equivalent circuit in Figure 11[41].

Figure 10: Two-pole, three-phase symmetrical induction machine. Lower case s
and r indicates stator- and rotor variables, respectively. Dots indicates
current coming out from page and cross indicates current going into
page. ωr is angular velocity of rotor and θr is rotor angle with stator
a-axis as reference
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Figure 11: Equivalent circuit for a two-pole, three-phase symmetrical induction
machine. The rotor circuit is tilted which indicates the speed difference
from stator MMF speed and rotor speed.

Before looking at the equations of the machine, the assumptions made in the model

will be declared. Normally in induction machines the rotor bars are skewed to

reduce harmonic torques, this design is not featured in this model. Instead of

saturation of the magnetic fields, there will be a linear relation. The change in

resistance due to temperature and frequency variations will be neglected and also,

the iron losses in both stator and rotor are neglected[3].

The model is of an ideal machine, accordingly the stator windings are identical and

sinusoidally distributed 120° apart, with Ns equivalent turns. The rotor will also

be considered as three identical windings sinusoidally distributed 120° apart with

Nr equivalent turns[41], also for a squirrel-cage rotor. Both the stator resistance rs

and rotor resistance rr will have the same phase values and the air-gap is uniform.

The voltage equations can be found by using coupled circuit approach and may be

expressed in matrix notation for the stator and rotor respectively as[22]

v a b c
s = i a b c

s r s +
dλa b c

s

d t

v a b c
r = i a b c

r r r +
dλa b c

r

d t

(3.1)

24



where stator resistance r s and rotor resistance r r are diagonal matrices

r s =









rs 0 0

0 rs 0

0 0 rs









r r =









rr 0 0

0 rr 0

0 0 rr









(3.2)

and

v a b c
s =









va s

vb s

vc s









v a b c
r =









va r

vb r

vc r









i a b c
s =









ia s

ib s

ic s









i a b c
r =









ia r

ib r

ic r









λa b c
s =









λa s

λb s

λc s









λa b c
r =









λa r

λb r

λc r









The flux linkage equations can be written as





λa b c
s

λa b c
r



=





L a b c
s s L a b c

s r

L a b c
r s L a b c

r r









i a b c
s

i a b c
r



 (3.3)

L a b c
s s and L a b c

r r are symmetrical matrices of the self inductance of the stator and

rotor windings where

L a b c
s s =









L l s + L s s L s m L s m

L s m L l s + L s s L s m

L s m L s m L l s + L s s









(3.4)

L a b c
r r =









L l r + L r r L r m L r m

L r m L l r + L r r L r m

L r m L r m L l r + L r r









(3.5)

The mutual inductance between the stator and rotor also known as the magnetizing
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inductance is dependent on the rotor angle and may be expressed as

L a b c
s r =

�

L a b c
r s

�T
= L s r









cosθr cos
�

θr +
2π
3 θr

�

cos
�

θr − 2π
3 θr

�

cos
�

θr − 2π
3 θr

�

cosθr cos
�

θr +
2π
3 θr

�

cos
�

θr +
2π
3 θr

�

cos
�

θr − 2π
3

�

cosθr









(3.6)

L l s is the per phase stator winding leakage inductance and correspondingly for

the rotor L l r . L s s and L r r are the self inductance of the stator winding and rotor

winding, respectively. L s m is the mutual inductance between the stator windings

and L r m is the mutual inductance between the rotor windings. L s r is the amplitude

of the stator-to-rotor mutual inductance[22]. Note that only the mutual inductance

between the stator and rotor is dependent on the rotor angle θr .

3.2 Changing Reference Frame

As shown in Equation 3.6 the mutual inductances will vary with respect to the rotor

angle θr . This variation is undesirable, but can be eliminated by a change of the

variables, which can transform both the current and voltage from rotor and stator

to a common reference frame[3].

3.2.1 Arbitrary Reference Frame

Before deciding which reference frame to use, the arbitrary reference frame will

be derived. We will use the q , d ,0 variables. The rotation speed ω is rotating in

the same direction as the rotor in an arbitrary speed. The geometrical relation-

ship between traditional a b c and arbitrary q d 0 reference frame is illustrated in

Figure 12.
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Figure 12: Geometrical relationship between a b c and q d 0 reference frame. ω is
the arbitrary speed whileωr is the rotor angular speed. The stator and
rotor variables are noted with subscript s and r respectively.

To get from a b c to arbitrary q d 0 we’ll use the arbitrary q d 0 transformation which

is given by









fq

fd

f0









=
�

T q d 0(θ )
�









fa

fb

fc









(3.7)

where

�

T q d 0(θ )
�

=
2

3









cos (θ ) cos(θ − 2π
3 ) cos(θ + 2π

3 )

sin (θ ) sin(θ − 2π
3 ) sin(θ + 2π

3 )
1
2

1
2

1
2









(3.8)

The variable f can be phase voltages, currents or flux linkages. The transformation

angle θ (t ) which is the angle between the a -axis of the stationary stator winding

and the q -axis rotating at the arbitrary speedωmay be expressed as

θ (t ) =

∫ t

0

ω(t )d t +θ (0)
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Also for the rotor angle θr which is the angle between the stator and rotor a -phases

can be found for a rotor rotating at the speedωr (t ) by

θr (t ) =

∫ t

0

ωr (t )d t +θr (0) (3.9)

θ (0)andθr (0)are the initial angles, when t = 0. The inverse arbitrary q d 0 transform

is given as

�

T q d 0(θ )
�−1
=









cos (θ ) sin (θ ) 1

cos
�

θ − 2π
3

�

sin
�

θ − 2π
3

�

1

cos
�

θ + 2π
3

�

sin
�

θ + 2π
3

�

1









(3.10)

3.3 q d 0 Equations

The a b c equations are transformed to q d 0 in this section, by using the transfor-

mation described in the last section.

3.3.1 q d 0 Voltage Equations

The stator a b c voltage from Equation 3.1 can be expressed as

v a b c
s = pλa b c

s + r a b c
s i a b c

s

where p equals the operator d
d t . By applying [T q d 0(θ )] to the voltage, flux linkage

and current, the equation becomes

v q d 0
s = [T q d 0(θ )]p [T q d 0(θ )]

−1λq d 0
s + [T q d 0(θ )]r

a b c
s [T q d 0(θ )]

−1i q d 0
s

v q d 0
s =ω









0 1 0

−1 0 0

0 0 0









λq d 0
s +pλq d 0

s + r q d 0
s i q d 0

s

(3.11)
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A similar approach is used when transforming the rotor voltages, except the trans-

formation angle which is now θ −θr , yielding

v q d 0
r = (ω−ωr )









0 1 0

−1 0 0

0 0 0









λq d 0
r +pλq d 0

r + r q d 0
r i q d 0

r (3.12)

A more detailed deriving for both v q d 0
s and v q d 0

r can be found in appendix A.2.1

and A.2.2.

3.3.2 q d 0 Flux Linkage Equations

To obtain the q d 0 flux linkages for the stator and rotor, [T q d 0(θ )] and [T q d 0(θ −θr )]

are used[22]. For the stator from equation 3.3

λq d 0
s = [T q d 0(θ )](L

a b c
s s i a b c

s + L a b c
s r i a b c

r )

λq d 0
s = [T q d 0(θ )]L

a b c
s s [T q d 0(θ )]

−1i q d 0
s + [T q d 0(θ )]L

a b c
s r [T q d 0(θ −θr )]

−1i q d 0
r

λq d 0
s =


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
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L l s +
3
2 L s s 0 0

0 L l s +
3
2 L s s 0

0 0 L l s


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3
2 L s r 0 0

0 3
2 L s r 0

0 0 0









i q d 0
r

The q d 0 rotor flux linkages is given similarly

λq d 0
r = [T q d 0(θ −θr )]L

a b c
r s [T q d 0(θ )]

−1i q d 0
s + [T q d 0(θ −θr )]L

a b c
r r [T q d 0(θ −θr )]

−1i q d 0
r

λq d 0
r =




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3
2 L s r 0 0

0 3
2 L s r 0

0 0 0






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i q d 0
s


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

L l s +
3
2 L s s 0 0

0 L l s +
3
2 L s s 0

0 0 L l s









i q d 0
r

A more detailed deriving of the four inductance matrices can be found in A.2.5,

A.2.6, A.2.7 and A.2.8. By using these relationships Lm =
3
2 L s s =

3
2

Ns
Nr

L s r =
3
2

Ns
Nr

L r r
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we can compactly express the stator and rotor flux linkage relationship as follows


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
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
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








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
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
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iq s
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i0s
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i ′0r
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
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
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
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(3.13)

The rotor quantities are primed to show that they have been referred to stator side.

The relationship between primed rotor to stator quantities are as follows

λ′q r =
Ns

Nr
λq r λ′d r =

Ns

Nr
λd r i ′q r =

Nr

Ns
iq r i ′d r =

Nr

Ns
id r

L ′l r =
�

N s

N r

�2

L l r
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By substituting Equation 3.13 into Equation 3.11 and Equation 3.12 we can obtain

the equivalent circuits for the arbitrary reference frame shown in Figure 13.

Figure 13: Equivalent circuits for q -axis, d -axis and z e r o -sequence

3.3.3 q d 0 Torque Equations

The instantaneous input power for the stator is a follows

pi n s = va s ia s + vb s ib s + vc s ic s (3.14)

and for the rotor

pi n r = v ′a r i ′a r + v ′b r i ′b r + v ′c r i ′c r (3.15)

The sum of instantanious power is

pi n = pi n s +pi n r (3.16)
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and changing a b c into q d 0 variables gives

pi n =
3

2

�

vq s i q s + vd s id s +2v0s io s + v ′q r i ′q r + v ′d r i ′d r +2v ′0r i ′0r

�

(3.17)

By substituting equation 3.11 and 3.12 for the voltages in equation 3.17 we get

Te m =
3

2

P

2ωr

�

ω
�

λd s iq s −λq s id s

�

+ (ω−ωr )
�

λ′d r i ′q r −λ
′
q r i ′d r

��

(3.18)

By using equation 3.13 we can show that

λd s iq s −λq s id s =−
�

λ′d r i ′q r −λ
′
q r i ′d r

�

= Lm

�

id r iq s − iq r id s

�

(3.19)

We can also show express equation 3.18 as[22]

Te m =
3

2

P

2

�

λ′q r i ′d r −λ
′
d r i ′q r

�

Te m =
3

2

P

2

�

λd s iq s −λq s − id s

�

Te m =
3

2

P

2
Lm

�

i ′d r iq s − i ′q r id s

�

(3.20)

3.3.4 Summary of q d 0 Equations in Arbitrary Reference Frame

Stator voltage q d 0 equations

vq s = pλq s +ωλd s + rs iq s

vd s = pλd s +ωλq s + rs id s

v0s = pλ0s + rs i0s

(3.21)

Rotor voltage q d 0 equations

v ′q r = pλ′q r +ωλ
′
d r + r ′r i ′q r

v ′d r = pλ′d r +ωλ
′
q r + r ′r i ′d r

v ′0r = pλ′0r + r ′r i ′0r

(3.22)
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where
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(3.23)

Torque q d 0 equations

Te m =
3

2

P

2ωr

�

ω
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�

+ (ω−ωr )
�
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��
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Machine parameters are often given as ohms or per unit of base impedance, this is

why it is often more convenient to express the voltage and flux linkage equations

in terms of reactances x instead of inductances. The flux linkages are now flux

linkages per secondψ and has the unit of volts[41][22]. The relationship between

ψ and λ, and x and L is given as

ψ=ωbλ and x =ωb L (3.24)

Summarizing the equations in terms of x andψ yields

Stator q d 0 equations in terms ofψ’s and x ’s

vq s =
p

ωb
ψq s +

ω

ωb
ψd s + rs iq s

vd s =
p

ωb
ψd s +

ω

ωb
ψq s + rs id s

v0s =
p

ωb
ψ0s + rs i0s

(3.25)
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Rotor q d 0 equations in terms ofψ’s and x ’s

v ′q r =
p

ωb
ψ′q r +

�

ω−ωr

ωb
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p
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(3.26)
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(3.27)

Torque q d 0 equations in terms ofψ’s and x ’s
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2ωr
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P

2ωb
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�

i ′d r iq s − i ′q r id s

�

(3.28)

3.4 Implementing Model in Matlab/Simulink

The objective of this chapter is to show how to use the derived equations for the

induction motor and implement these in Matlab/Simulink. This simulation will

only be for a single fed SCIM, the voltages v ′q r and v ′d r will accordingly be zero[3].
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3.4.1 Conversion of Input Voltages

The input voltages va g , vb g and vc g are three of the four inputs to the model, the

fourth being mechanical load to the motor. The stator voltages va s , vb s and vc s can

be found as[22]

va s =va g − vs g

vb s =vb g − vs g

vc s =vc g − vs g

(3.29)

In this case, the point s and g are solidly connected, then vs g = 0 which yields

va s =va g

vb s =vb g

vc s =vc g

(3.30)

These are now the input voltages to the model. The voltages are still in a b c ref-

erence frame and needs to be converted to the q d 0 reference frame wanted. In

this model the stationary reference frame will be used, accordingly θ is set to 0 in

Equation 3.7 which gives
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The Simulink block for this transformation is showed in Figure 14

Figure 14: Simulink subsystem which converts the input a b c voltages to station-
ary q d 0 voltages
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3.4.2 Flux Linkages per Second

Some signals will have discontinuities and can also include ripples, this is why

derivatives should be avoided and replaced by integrals[42]. To calculate the flux

linkages per second the Equation 3.25 and Equation 3.26 are rearranged as the

following

ψq d 0
s =w b

∫

�

v q d 0
s − r q d 0

s i q d 0
s

	

d t

ψq d o
r =w b

∫















v q d 0
r +

ωr

ωb









0 1 0

−1 0 0

0 0 0









ψq d 0
r − r q d 0

r i q d 0
r















d t

(3.31)

The current equations are extracted from Equation 3.27 as

iq s =
ψq s − i ′q r xm

xl s + x m
i ′q r =

ψq r − iq s xm

x ′l r + x m

id s =
ψd s − i ′d r xm

xl s + x m
i ′d r =

ψd r − id s xm

x ′l r + x m

i0s =
ψ0s

xl s
i ′0r =

ψ′0r

x ′l r

These equations are divided into subsystems of q -axis, d -axis and z e r o -sequence

which are shown in Figure 15,Figure 16 and Figure 17.

Figure 15: Simulink q -axis subsystem
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Figure 16: Simulink d -axis subsystem

Figure 17: Simulink z e r o -sequence subsystem

3.4.3 Torque Calculation

Equations from 3.31 uses the per unit speed (ωr
ωb

) to calculate the flux linkages per

second, this can be found by integrating

2H
d (ωr /ωb )

d t
= Te m +Tme c h −Td a mp (3.32)

where H is the inertia constant, defined as

H =
Jω2

b

2Sb
(3.33)

J is the moment of inertia of the rotor in k g m 2 and Sb is the rated power of the ma-

chine in V A. Te m is the developed electromechanical torque, Td a mp is the damping

factor in opposing direction of the rotor and Tme c h is the external applied torque,

in direction of the rotor. This must be negative in motoring mode. This yields

ωr

ωb
=

∫

§Te m +Tme c h −Td a mp

2H

ª

d t (3.34)

which can be implemented in a subsystem in Simulink, illustrated in Figure 18.

37



Figure 18: Simulink torque block subsystem which calculates the per unit speed
and where the load input is implemented

3.4.4 Conversion of Output Currents

The rotor and stator currents are often transformed back to a b c reference to be

used in other parts of the simulation, in this case for the MCSA. This is done by

using the inverse q d 0 transformation and setting θ = 0, which yields
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(3.35)

This is implemented in the subsystem shown in Figure 19

Figure 19: Simulink subsystem which converts from q d 0 to a b c

3.4.5 Overview and Evalution of the Model

The entire model which is much based on [22] and simplified as [9] is shown in

Figure 20. There are two “To Workspace” blocks in the program which takes the
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values into Matlab. The “X” is for plotting current, voltage, speed and torque. The

“z1” is for the MCSA and does a FFT on the ia s current.

Figure 20: Showing the entire model of a symmetric healthy induction motor

A two seconds simulation of a free acceleration (no load) is showed in Figure 21.

Stator voltage is a 50H z sine wave. As shown in the figure the starting current is

much larger in the beginnning and decreases as the rotor speed reaches steady-

state, which is as mentioned one of the sources for rotor failure.
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Figure 21: 2 seconds simulation of free acceleration with stator voltage, stator cur-
rent, per unit rotor speed and developed torque.
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3.5 Modelling of Broken Rotor Bars

Now that the healthy induction motor model is established, the focus can be redi-

rected to the defected models, starting with broken rotor bars(BRB). Firstly we need

to see how BRB affect the motor. Breaking or cracking a bar will decrease the con-

ductivity thus increasing the resistance. This will give a non-symmetrical current

in the rotor, increasing the current in the adjacent bar and decreasing the current

in the present bar. For simplicity we will ignore the magnetizing current, leaving

the inductance matrices the same and neglecting the end ring resistance. From

the rotor voltage Equation 3.1 the resistance r r is a diagonal matrix

r a b c
r =









rr 0 0

0 rr 0

0 0 rr









the new rotor resistance matrix r ∗r with BRB will have an increase for the relevant

phase, yielding[11]

r ∗a b c
r =









(rr +∆ra ) 0 0

0 (rr +∆rb ) 0

0 0 (rr +∆rc )









The change in resistance ∆r can be found by calculating the phase resistance of

both a healthy and a BRB case. In both cases the end ring resistance and mag-

netizing current are neglected, also the assumptions that the broken rotor bar is

continuous is made. For the healthy rotor this yields[11, 43]

rr =
(2Ns )

2

N /3
rb

where N is the total amount rotor bars, Ns is the equivalent stator winding turns

and rb is the rotor bar resistance. In the case with BRB the rotor resistance can be

found as

r ∗r =
(2Ns )

2

N /3−n
rb (3.36)
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where n is the amount of broken bars. The change in resistance can now be found

as

∆r = r ∗r − rr =
3n

N −3n
rr

and is expressed with respect to the rotor resistance. Derivation of the equation is

found in appendix A.1. To convert the change of resistance from a b c to q d 0 the

same transformation is done as earlier∆r ∗q d 0
r =

�

T q d 0 (θ −θr )
�

∆r a b c
r

�

T q d 0 (θ −θr )
�−1

,

this yields

∆r ∗q d 0
r =









rr 11 rr 12 rr 13

rr 21 rr 22 rr 23

rr 31 rr 32 rr 33









where

rr 11 =
1

3
(∆ra +∆rb +∆rc ) +

1

3
cos (2θr )

�

∆ra −
∆rb

2
−
∆rc

2

�

+
p

3

6
sin (2θr ) (∆rc −∆rb )

rr 12 =
1

3
sin (2θr )

�

∆ra −
∆rb

2
−
∆rc

2

�

+
p

3

6
cos (2θr ) (∆rb −∆rc )

rr 13 =
1

3
cosθr (2∆ra −∆rb −∆rc )+

p
3

3
sinθr (∆rb −∆rc )

rr 21 =
1

3
sin (2θr )

�

∆ra −
∆rb

2
−
∆rc

2

�

+
p

3

6
cos (2θr ) (∆rb −∆rc )

rr 22 =
1

3
(∆ra +∆rb +∆rc ) +

1

3
cos (2θr )

�

∆rb

2
+
∆rc

2
−∆ra

�

+
p

3

6
sin (2θr ) (∆rb −∆rc )

rr 23 =
2

3
sinθr

�

∆ra −
∆rb

2
−
∆rc

2

�

+
p

3

3
cosθr (∆rc −∆rb )

rr 31 =
1

3
cosθr

�

∆ra −
∆rb

2
−
∆rc

2

�

+
p

3

6
sinθr (∆rb −∆rc )

rr 32 =
1

3
sinθr

�

∆ra −
∆rb

2
−
∆rc

2

�

+
p

3

6
cosθr (∆rc −∆rb )

rr 33 =
1

3
(∆ra +∆rb +∆rc )

(3.37)
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The total rotor resistance r r B R B can now be found by adding the normal r q d 0
r with

the change∆r ∗q d 0
r which equals

r q d 0
r B R B =









rr + r11 r12 r13

r21 rr + r22 r23

r31 r32 rr + r33









(3.38)

Equation 3.37 is dependent on the rotor angleθr . In Figure 18 we can see the output

from this block is the per unit speed, from this we can find the angle by multiplying

the per unit speed withωb and using Equation 3.9. The rotor angle block is illus-

trated in Figure 22. Its also worth mentioning that increasing the resistance in all

three phases will result in a symmetrical rotor.

Figure 22: Subsystem from Simulink which uses the input per unit speed and sends
out rotor angle calculations

Since the new resistance Equation 3.38 is no longer a diagonal matrix, there will be

changes in the d -axis, q -axis and z e r o -sequence. We can find these changes by

looking at the last element in Equation 3.31 which now looks like

ψ
′q d 0
B R B r =ωb

∫















v
′q d 0
r +

ωr

ωb









0 1 0

−1 0 0

0 0 0









ψ
′q d 0
r − r

′q d 0
r B R B i

′q d 0
r















d t (3.39)
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For the q -axis this yields

ψ′B R B q r =ωb

∫

§

v ′q r +
ωr

ωb
ψ′d r −

�

i ′q r (rr + rr 11)+ i ′d r rr 12+ i ′0r rr 13

�

ª

d t (3.40)

The new q -axis subsystem from Simulink is showed in Figure 23

Figure 23: Subsystem of the q -axis in Simulink with BRB.

In Figure 24 we can see the frequency spectrum of the current ia s from a simulation

of a SCIM running in rated operations. The machine is simulated with 1 BRB in

phase a . The parameters of the motor can be found in Appendix B.1
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Figure 24: Frequency spectrum of current ia s with one BRB running at rated oper-
ations. The parameters of the motor can be found in Appendix B.1

3.6 Modelling of Eccentricity faults

As mentioned earlier in practice only mixed eccentricity occur. Isolated dynamic-

or static eccentricity can only be modelled. In this chapter a general model to

simulate mixed eccentricity fault is developed.

3.6.1 Inductance Calculation

In a healthy condition L s s and L r r from Equation 3.3 are constants. In a mixed

eccentricity condition the air-gap will vary, thus the inductance in both stator and

rotor will also vary. This means that all the inductances (L s s , L s r , L r s and L r r ) are

dependent on the rotor angle θr [44]. To simulate the new model the inductance

can be calculated for different angles and stored in tables, or directly calculated

continuously in simulation with rotor angle feedback.
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In a non-symmetric condition, the stator inductance in a b c reference, earlier ex-

pressed in Equation 3.4 can now be expressed as

L a b c
s s =









La s a s (θr ) La s b s (θr ) La s c s (θr )

Lb s a s (θr ) Lb s b s (θr ) Lb s c s (θr )

L c s a s (θr ) L c s b s (θr ) L c s c s (θr )









(3.41)

where each inductance is dependent on the rotor angle θr . The mutual inductance

between two windings for example a and b , can be found by using the modified

winding function approach (MWFA) and can be expressed as[5]

Lb a =
λb a

ia
=µ0r l

∫ 2π

0

nb

�

φ,θr

�

Ma

�

φ,θr

�

g −1
�

φ,θr

�

dφ (3.42)

θr is the rotor angle and φ is an arbitrary point at the inner surface of the stator.

The magnetizing inductance of winding a can be found the same way

La a =µ0r l

∫ 2π

0

na

�

φ,θr

�

Ma

�

φ,θr

�

g −1
�

φ,θr

�

dφ (3.43)

where µ0 is the vacuum permeability, r is the stator inner radius, l is the length of

the axial stack, n
�

φ,θr

�

is the turn function of the winding, M
�

φ,θr

�

is the modified

winding function and g −1
�

φ,θr

�

is the inverse air-gap function.

By using MWFA it has been proven that even for non-uniform air-gap[44]

La b = Lb a (3.44)

as long as the magnetic circuit is linear. With this in mind the stator inductance

matrix will have some equal elements as shown

L a b c
s s =









La s a s (θr ) La s b s (θr ) La s c s (θr )

La s b s (θr ) Lb s b s (θr ) Lb s c s (θr )

La s c s (θr ) Lb s c s (θr ) L c s c s (θr )









(3.45)

This seems to be a good representation of eccentricity conditions, but it is a com-

plex model and not best suited for the DQ -transformation. Instead a more man-
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ageable model is developed.

3.6.2 Simplified Eccentricity Model

As in the broken rotor model there are simplifications that can be made when

simulating eccentricity faults. One way to do this is by only varying the mutual

inductance Lm between stator and rotor winding. Or the mutual reactance xm

which is related to the inductance by xm =ωb Lm .

By using the healthy motor model, the reactance can be modified accordingly

xm (θm ) = xm

�

lg

lg (θm )

�

(3.46)

where lg (θm ) is the air-gap distance due to the eccentricity and lg is the air-gap dis-

tance in a symmetric condition. The static- and dynamic eccentricity are modelled

by two different equations which are found by basic geometry.
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For static eccentricity the rotor gap is at a constant offset as shown in figure Fig-

ure 25 and modelled as[12]

lg (θm ) =R −
Ç

�

(e + r cos (θm ))
2+ (r sin (θm ))

2
�

(3.47)

where R is the radius of the stator bore, e is the rotor offset from stator center, r is

the rotor radius and θm is the mechanical rotor angle.

Figure 25: Geometry of static eccentricity. Outer circle is the stator, inner(grey)
circle is the rotor. R is stator radius, r is rotor radius, e is offset from
stator center and l g (θm ) is the distance from stator to rotor.
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The dynamic eccentricity is modelled as small deviations in the rotor profile, the

rotor is simulated as an ellipse[12] as

lg (θm ) =R −
a b

Æ

b 2 cos (θm )
2+a 2 sin (θm )

2
(3.48)

where a and b are the length of the major and minor axes, respectively. The ellipse

rotor shape is illustrated in Figure 26.

Figure 26: Geometry of dynamic eccentricity. Outer circle is the stator, inner(grey)
circle is the rotor. R is stator radius, a and b are the major and minor
axes of the ellipse, respectively and l g (θm ) is the distance from stator to
rotor.
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To simulate mixed eccentricity the ellipse model is used, but shifted as illustrated

in Figure 27 and modelled as

lg (θm ) =R−
2b 2e cos (θm )+

Æ

(2b 2e cos (θm ))
2+4 (b 2 cos (θm )+a 2 sin (θm )) (e 2b 2−a 2b 2)

2 (b 2 cos (θm )+a 2 sin (θm ))

Figure 27: Geometry of mixed eccentricity. Outer circle is the stator, inner(grey)
circle is the rotor. R is stator radius, a and b are the major and minor
axes of the ellipse, respectively, e is offset from stator center and l g (θm )
is the distance from stator to rotor.

The modulation is implemented in the q - and d -axis in Simulink, and is only de-

pendent on one variable, rotor angle θm . It is worth mentioning that θm is the

mechanical angle, which means the pole number needs to be taken into account.

The q -axis subsystem with eccentricity is showed in Figure 28, the "Static" and

"Dynamic" gain blocks is used to control the eccentricity. If both is activated at

the same time, the mixed eccentricity will be activated. The "UniformField" blocks

gets activated when disabling eccentricity. The frequency spectrum of mixed ec-

centricity is shown in Figure 29.
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Figure 28: Subsystem in q -axis from Simulink showing how the eccentricity is ma-
nipulated
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Figure 29: Simulated frequency spectrum of stator current ia with mixed eccen-
tricity, running at rated operations. The parameters of the motor can be
found in Appendix B.1

3.7 Modelling Bearing Fault

As mentioned earlier bearing fault is like an instant eccentricity, and as the eccen-

tricity fault it can be modelled by calculating the inductance under bearing fault

using MWFA. This is much the same as the technique described when modelling

eccentricity, but this will also give a complex solution in the DQ -reference frame.

Instead we can look at how the bearing fault is developed and derive a expression

which we can insert in the torque calculations, to use as torque modulation.

3.7.1 A Simplified Bearing Fault Model

Bearing fault are as previously mentioned classified as inner raceway defect, outer

raceway defect, ball defect and cage defect. These defects can be found by looking

at Figure 30.
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Figure 30: A bearing showing the four different bearing fault categories. Also the
different speed parameters used when deriving fault occurrences

The next step is to derive an expression which determines how often the instant

eccentricity occurs. If there is a defect on the outer raceway an instant eccentricity

will occur when a bearing ball passes and gets influenced, this will be the same

for the inner raceway. If there is an bearing ball defect the instant eccentricity will

happen twice the spin rotation since its connected to both the inner and outer

raceway[45]. For a cage defect bearing balls can slide instead of rolling, this defect

is not dependent on the amount of bearing balls, only on the speed of the cage.

The linear velocity of the cage Vc from Figure 30 equals Vr
2 , where Vr is the linear

velocity of the rotor[46]. Angular velocity is defined as ω = V
r , we can write the

angular velocity of the cage as

ωc =
Vc

rc
=

Vr
2

P d
2

=
Vr

Pd

where rc is the cage radius and Pd is the pitch diameter. In this context its more con-

venient to express the angular cage velocity in terms of angular velocity of the rotor

ωr . Vr =ωr rr where rr is the rotor radius which can be expressed as
�

Pd
2 −

Bd cos(β)
2

�

,

where Bd is ball diameter and β is the contact angle. Angular cage velocity can now
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be expressed as

ωc =
ωr

�

Pd
2 −

Bd cos(β)
2

�

Pd
=

1

2
ωr

�

1−
Bd cos

�

β
�

Pd

�

To find the frequencies of inner raceway defect we can look at the difference in

angular velocities∆ω=ωr −ωc and multiply it with the number of bearing balls.

We now end up with the same expression mentioned in section 2.5.2.

fi b =
Nb

2
fr

�

1+
Bd cos

�

β
�

Pd

�

(3.49)

where fr =
ωr
πP the mechanical rotational frequency. This is also true for the other

bearing faults which yields

fo b =
N

2
fr

�

1− bd

cos
�

β
�

dp

�

outer bearing race defect

fb =
dp

db
fr

 

1−

�

bd

cos
�

β
�

dp

�2
!

ball race defect

ft =
1

2
fr

�

1− bd

cos
�

β
�

dp

�

train defect

(3.50)

3.7.2 Implementing Simplified Model in Simulink

As mentioned earlier the expressions derived can be implemented in the torque

subsystem as load modulation[13]. Bearing fault is a mechanic fault that will make

instant eccentricities, but also a variying load pattern. For example when a bearing

ball goes into a little crack on one of the raceways, this will counteract on the devel-

oped torque. We assume that this works as a sine wave, working against developed

torque on half the period and along with the torque on the other half period, this

is a simplification.

In Figure 31 the torque subsystem is showed. There will be an extra input for the

time. The speed of the rotor in revolutions per minute is calculated by the “RPM”

block. Different calculations of the fault frequencies are named accordingly. And

the different sine waves are calculated in the “GeneratingSineWave” blocks. The
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last step is to decrease the amplitude of the sine wave to make it more realistic of a

bearing faults. All the different fault categories are added together so they can all

be simulated simultaneously. The frequency spectrum of a outer bearing defect is

showed in Figure 32

Figure 31: Torque subsystem with load modulation. The 4 different "Generat-
ingSineWave" functions generates a sine wave in the frequency given by
the equations from Equation 3.49 and Equation 3.50
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Figure 32: Simulated frequency spectrum of stator current ia with outer raceway
defect

3.8 Modelling of Stator Fault

The stator fault model derived in this section is developed to simulate cases with

stator unbalance, such as inter-turn short circuits[8, 9]. If a short circuit in a wind-

ing occurs, the amount of effective turns in the winding will decrease. This affect

both the resistance and the inductance.

3.8.1 Defining Model

We define p ∗s c a , p ∗s c b and p ∗s c c as the percentage of short circuit in the stator phases

a , b and c , respectively[8]. The coefficient for how healthy the phases are will be
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defined as

ps c a
∆= 1−p ∗s c a

ps c b
∆= 1−p ∗s c b

ps c c
∆= 1−p ∗s c c

If there is no short circuits ps c a = ps c b = ps c c = 1. The stator resistance, stator

inductance and mutual inductance are the affected parts of an unbalanced stator.

The stator resistance matrix r s can be modified accordingly

r ∗a b c
s =









ps c a rs 0 0

0 ps c b rs 0

0 0 ps c c rs









(3.51)

and needs to be transformed to q d 0 reference by

r ∗q d 0
s =

�

T q d 0 (θ )
�

r ∗a b c
s

�

T q d 0 (θ )
�−1

(3.52)

where θ = 0, this yields

r ∗q d 0
s =

2

3









1 − 1
2 − 1

2

0 −
p

3
2

p
3

2

1
2

1
2

1
2

















ps c a rs 0 0

0 ps c b rs 0

0 0 ps c c rs

















1 0 1

− 1
2 −

p
3

2 1

− 1
2

p
3

2 1









r ∗q d 0
s =









1
6 rs

�

4ps c a +ps c b +ps c c

�

1
2
p

3
rs

�

ps c b −ps c c

�

1
3 rs

�

2ps c a −ps c b −ps c c

�

1
2
p

3
rs

�

ps c b −ps c c

�

1
2 rs

�

ps c b +ps c c

�

1p
3

rs

�

ps c c −ps c b

�

1
6 rs

�

2ps c a −ps c b −ps c c

�

1
2
p

3
rs

�

ps c b −ps c c

�

1
3 rs

�

ps c a +ps c b +ps c c

�









The inductance matrix of the stator can be modified accordingly

L ∗a b c
s s =









p 2
s c a (L l s + L s s ) ps c a ps c b L s m ps c a ps c c L s m

ps c a ps c b L s m p 2
s c b (L l s + Lm ) ps c b ps c c L s m

ps c a ps c c L s m ps c b ps c c L s m p 2
s c c (L l s + L s m )









(3.53)
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and transformed to q d 0 coordinates as

[T q d 0(θ )]L
∗a b c
s s [T q d 0(θ )]

−1

yielding

L ∗q d 0
s s =









L s s 11 L s s 12 L s s 13

L s s 21 L s s 22 L s s 23

L s s 31 L s s 32 L s s 33









where

L s s 11 =
1

6
L l s

�

4p 2
s c a +p 2

s c b +p 2
s c c

�

+
1

9
Lm

�

4p 2
s c a +p 2

s c b +p 2
s c c +2ps c a ps c b +2ps c a ps c c −ps c b ps c c

�

L s s 12 =
1

2
p

3
L l s

�

p 2
s c b −p 2

s c c

�

+
1

3
p

3
Lm

�

p 2
s c b −p 2

s c c

�

L s s 13 =
1

3
L l s

�

2p 2
s c a −p 2

s c b −p 2
s c c

�

+
1

9
Lm

�

4p 2
s c a −2p 2

s c b −2p 2
s c c +2ps c b ps c c −ps c a ps c b −ps c a ps c c

�

L s s 21 =
1

2
p

3
L l s

�

p 2
s c b −p 2

s c c

�

+
1

3
p

3
Lm

�

p 2
s c b −p 2

s c c

�

L s s 22 =
1

2
L l s

�

p 2
s c b +p 2

s c c

�

+
1

3
Lm

�

p 2
s c b +p 2

s c c +ps c b ps c c

�

L s s 23 =
1
p

3
L l s

�

p 2
s c c −p 2

s c b

�

+
1

3
p

3
Lm

�

ps c a ps c b −ps c a ps c c +2p 2
s c c −2p 2

s c b

�

L s s 31 =
1

6
L l s

�

2p 2
s c a −p 2

s c b −p 2
s c c

�

+
1

18
Lm

�

4p 2
s c a −2p 2

s c b −2p 2
s c c −ps c a ps c b −ps c a ps c c +2ps c b ps c c

�

L s s 32 =
1

2
p

3
L l s

�

p 2
s c b −p 2

s c c

�

+
1

6
p

3
Lm

�

2p 2
s c c −2p 2

s c b +ps c a ps c b −ps c a ps c c

�

L s s 33 =
1

3
L l s

�

p 2
s c a +p 2

s c b +p 2
s c c

�

+
2

9
Lm

�

p 2
s c a +p 2

s c b +p 2
s c c −ps c a ps c b −ps c a ps c c −ps c b ps c c

�

The mutual inductance L s r can be modified as

L ∗a b c
s r = L s r









ps c a cos (θr ) ps c a cos
�

θr +
2π
3

�

ps c a cos
�

θr − 2π
3

�

ps c b cos
�

θr − 2π
3

�

ps c b cos (θr ) ps c b cos
�

θr +
2π
3

�

ps c c cos
�

θr +
2π
3

�

ps c c cos
�

θr − 2π
3

�

ps c c cos (θr )








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and transformed by
�

T q d 0 (θ )
�

L a b c
s r

�

T q d 0 (θ −θr )
�−1

yielding

L ∗q d 0
s r =









L s r 11 L s r 12 L s r 13

L s r 21 L s r 22 L s r 23

L s r 31 L s r 32 L s r 33









where

L s r 11 =
1

6
Lm

�

4ps c a +ps c b +ps c c

�

L s r 12 =
p

3

6
Lm

�

ps c b −ps c c

�

L s r 13 = 0

L s r 21 =
p

3

6
Lm

�

ps c b −ps c c

�

L s r 22 =
1

2
Lm

�

ps c b +ps c c

�

L s r 23 = 0

L s r 31 =
1

6
Lm

�

2ps c a −ps c b −ps c c

�

L s r 32 =
p

3

6
Lm

�

ps c c −ps c b

�

L s r 33 = 0

The last affected inductance L a b c
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�T
is transformed by
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where
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2
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�

ps c b +ps c c

�

L r s 23 =
p

3

6
Lm

�

ps c c −ps c b

�

L r s 31 = L r s 32 = L r s 33 = 0

All these new inductances and the new resistance are used in Equation 3.31. The

modification of the model will be done in the q ,d and z e r o subsystem. The q -axis

is shown in Figure 33. In Figure 34 the frequency spectrum of phase a with 1%

shorted stator is showed.

Figure 33: q -axis subsystem from Simulink with stator fault
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Figure 34: Simulated frequency spectrum of stator current ia with 1% shorted in
phase a

3.9 Damping Factor

A damping factor is used in the torque subsystem from Figure 18. This factor ac-

counts for all the losses which are not included in the simulation model. It needs

to be correct if an operator wants to compare many of the values in the simulation

against practical experiments. To find the damping factor we need to have a look at

the power flow in an induction motor. This is shown in Figure 35. Pi n is the power

delivered to the motor. Pa g is the air-gap power, which is the input power minus

stator core loss Pf e and stator resistance loss Pc u1. Pme c h is the mechanical power

after losses in rotor resistance Pc u2 and rotor core losses Pf e 2. The rotor core loss is

normally negligible since its amplitude is dependent on the frequency in the rotor

f2, which in normal operations are very low. The power transferred to the rotor Po u t

is the mechanical power minus friction, windage and ventilation.
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Figure 35: Power flow in an induction motor

In the model developed, stator and rotor core losses are neglected as well as friction,

ventilation and windage, we define these neglected losses as Pne g . If the operator

does not have any of these at hand, they can be easy calculated as follows

Pne g = Pi n −Pc u1−Pc u2−Po u t (3.54)

which gives a damping factor as

Td a mp =
Pne g

ωN
(3.55)

whereωN is the mechanical angular rated velocity.

3.10 Generic Model

The object of this chapter is to integrate all the previous developed models to a

generic model. The BRB and bearing fault models does not interfere with each

other or the other models, these are straight forward and easy to integrate. On

the other hand, eccentricity and stator fault does interfere. The mutual reactance

which is modulated in the eccentricity fault is used in all the new inductance cal-

culations in the stator fault. In Figure 36 the q -axis subsystem is shown, the d -axis

and z e r o -sequence subsystems have similar modifications. The rotor subsystem

is the same as with the bearing faults.
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Figure 36: q -axis subsystem in the generic model. All the previous faulty models
are integrated, creating a generic model.
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3.11 Subsea Model

As mentioned earlier, some oil and gas resources can be reached with only sub-

sea equipment. Some of the components on the seabed can be driven by SCIMs,

for example pumps and compressors. This subsea connection is also modelled

in Simulink. Normally the motor is run by a VSD which often uses PWM to get

the acquired voltage and frequency. Since the simulation only needs steady state

operations, a PWM is used at a set frequency. The PWM is connected to a step-up

transformer from Simulink library which increases the voltage and decreases the

losses in the cable. The step-up transformer is connected to a cable model from

Simulink library. A step-down transformer can be used after the cable, but this de-

pends on overall cost and motor specifications[6]. A principal sketch of the central

components is shown in Figure 37.

Figure 37: One-line diagram of the central components from the VSD to the
SCIM[6].

The parameters used when testing the model for subsea operations are found from

previous studies on modelling and testing converter-fed motor drives[6, 14]. The

parameters for cable and motor can be found in Appendix B.2. The voltage after

the cable is modelled as ideal, this means it will not get influenced by the motor

when running. This also means that the current running in the cable model will

also not get influenced, and thereby is not usable in an analyzing context. Instead

the current extracted from the model needs to be sent back through to the model

from ideal current sources. This current is influenced by the motor and should give

a realistic view of the condition of the motor. FFT is applied on the values extracted

from the "z1" block as shown in Figure 38.
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Figure 38: Figure of Simulink program with PWM and cable model. The voltage af-
ter cable model works as ideal voltage source, the currents are extracted
and run through the cable model, produced by ideal current sources.
The FFT analysis is extracted from the "to workspace" block "z1"

3.12 Graphical User Interface

A graphical user interface (GUI) is implemented to make the generic model easier

to operate. The user do not need to declare variables in Matlab as earlier[22]. The

input to the model are voltages, time and load, the output are currents and speed.

The speed can be used if the load is dependent on it, as it usually is. The parameter

settings are showed in Figure 39 and BRB settings are showed in Figure 40. The

other fault options are similar to BRB, by first activating the fault and then setting

the details.
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Figure 39: Graphical user interface of SCIM model, parameters. The operator can
easily change parameters of the motor

Figure 40: Graphical user interface of SCIM model, . The operator can easily ini-
tialize faults in the motor. From this figure the rotor fault options are
open. The fault must first be activated, then the amount of broken bar
in the desired phase can be initiated
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3.13 Expected Frequencies

The frequency components which can be expected are presented in Table 1. These

are calculated from section 2.4.2, in rated operations. The parameters used for the

motor can be found in Appendix B.1.

Table 1: Expected frequencies in rated operations, k = 1,2,3 except in fe c c d and
fe c c s where k = v = 1, negative frequencies are neglected

Equation Frequency component [H z ]

Eccentricity fe c c 1 = f ±k fr 2.17, 26.08, 73.92, 97.83, 121.75

Eccentricity fe c c d = f
�

(k R ±nd )
�

1−s
P

�

± v
�

595.75, 643.58, 695.75, 743.58

Eccentricity fe c c s = f
�

k R
�

1−s
P

�

± v
�

619.67, 719.67

Bearing fo b =| f ±k fo b | 38.33, 126.66, 138.33, 214.99, 226.66, 314.99

Bearing fi b =| f ±k fi b | 76.92, 176.92, 203.84, 303.84, 330.76, 430.76

Bearing fb =| f ±k fb | 79.11, 179.11, 208.23, 308.23, 337.34, 437.34

Bearing ft =| f ±k ft | 20.56, 30.37, 40.19, 59.71, 69.61, 79.44

Rotor fB R B 1 = f (1±2k s ) 37.00, 41.33, 45.67, 54.33, 58.67, 63.00

Rotor fB R B 2 = f (3±2k s ) 137.00, 141.33, 145.67, 154.33, 158.67, 163.00

Rotor fB R B 3 = f (5±2k s ) 237.00, 241.33, 245.67, 254.33, 258.67, 263.00

Stator fs s 1 = f
�

k ±n 1−s
p

�

26.08, 73.92, 76.08, 123.92, 126.08, 173.92

Stator fs s 2 = 3 f 150.00
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4 Results

All the simulation results are presented in this section. All tests were done in rated

operations with the generic model, parameters can be found in Appendix B.1. The

simulation time is 60 seconds with a maximum step size of 0.0001s at variable step

with ode45 solver. As a result of the defects the rotor speed drops and oscillates

below rated speed, the mean speed is used when calculating slip in these cases.

When a mean speed is used the estimated result is presented with *. All frequency

plots are normalized with respect to the 50H z component and presented in the

d B scale. To decrease the spectral leakage hann window (sometimes referred to

as hanning window) is applied[47]. The script used for the FFT can be found in

Appendix C.
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4.1 Healthy

A healthy simulation of the motor is presented in Figure 41.
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Figure 41: Simulated frequency spectrum from stator current in a healthy motor.
Simulation time is 60 seconds with maximum step size of 0.0001s in
variable steps with ode45 solver. The motor is running in rated opera-
tions.

4.2 Broken Rotor Bars

The simulations with 1 and 3 broken rotor bars in phase a are presented in Figure 42

and Figure 43 with detailed information in Table 2 and Table 3. With one broken

rotor bar the mean rotor speed was 1432.6 r p m and for three broken rotors bars

the mean rotor speed was 1427 r p m .
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Figure 42: Simulated frequency spectrum from stator current with one broken
rotor bar. Simulation time is 60 seconds with maximum step size of
0.0001s in variable steps with ode45 solver. The motor is running in
rated operations.

Table 2: Results from simulation with one broken rotor bar

Rated* Sim[H z ] Sim[d B ]

f (1+2s ) 54.49 54.49 −36.76

f (1+4s ) 58.99 58.99 −67.25

f (1+6s ) 63.48 63.48 −97.82

f (1−2s ) 45.51 45.51 −36.39

f (1−4s ) 41.01 41.01 −66.29

f (1−6s ) 36.52 36.53 −96.30

When using Equation 2.7 to determine how many broken rotor bar there are, it

equals n = 0.81.
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Figure 43: Simulated frequency spectrum from stator current with three broken
rotor bars. Simulation time is 60 seconds with maximum step size of
0.0001s in variable steps with ode45 solver. The motor is running in
rated operations.

Table 3: Results from simulation with three broken rotor bars

Rated* Sim[H z ] Sim[d B ]

f (1+2s ) 54.87 54.87 −26.61

f (1+4s ) 59.73 59.73 −46.76

f (1+6s ) 64.60 63.60 −66.82

f (1−2s ) 45.13 45.14 −26.24

f (1−4s ) 40.27 40.27 −45.84

f (1−6s ) 35.40 35.41 −65.40

When using Equation 2.7 to determine how many broken rotor bar there are, it

equals n = 2.44.
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4.3 Eccentricity Fault

Since the frequency components from Equation 2.8 uses parameters which is not

included in the model with eccentricity fault, these will not be inspected. The

mixed eccentricity components from Equation 2.9 with k = 1,2,3,4,5 will be in-

spected instead. Also, there are no formula for the frequency components around

the fundamental with static or dynamic individually, the results are presented any-

how. The mean rotor speed for this simulation in r p m were; 1435, 1437.7 and

1430.3 for static, dynamic and mixed, respectively. The offset is set at 0.1mm for

static, the major and minor axes are set as 47.7mm and 47.5mm for dynamic, re-

spectively.
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Figure 44: Simulated frequency spectrum from stator current with mixed eccen-
tricity. The center offset is 0.1mm , major axes 47.7mm and minor axes
47.5mm . Simulation time is 60 seconds with sampling frequency of
0.0001 in variable steps with ode45 solver. The motor is running in rated
operations.
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Table 4: Results from simulation with mixed eccentricity fault

Rated* Sim[H z ] Sim[d B ]

| f +1 fr | 73.83 73.84 −36.92

| f +2 fr | 97.68 97.68 −45.60

| f +3 fr | 121.52 121.52 −83.08

| f +4 fr | 145.35 145.36 −85.63

| f +5 fr | 169.19 169.19 −123.62

| f −1 fr | 26.16 26.16 −35.89

| f −2 fr | 2.32 2.33 −46.22

| f −3 fr | 21.52 21.52 −77.87

| f −4 fr | 45.35 45.35 −83.76

| f −5 fr | 69.19 69.19 −120.42

The static- and dynamic eccentricity individually are presented in Figure 45 and

Figure 46.
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Figure 45: Simulated frequency spectrum from stator current with static eccen-
tricity. The center offset is 0.1mm . Simulation time is 60 seconds with
maximum step size of 0.0001s in variable steps with ode45 solver. The
motor is running in rated operations.
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Figure 46: Simulated frequency spectrum from stator current with dynamic eccen-
tricity. The major axes is 47.7mm and minor axes is 47.5mm . Simula-
tion time is 60 seconds with maximum step size of 0.0001s in variable
steps with ode45 solver. The motor is running in rated operations.

4.4 Bearing Fault

The four different categories of bearing faults are simulated independently. The

rotor speed is at rated values. Outer raceway defect is showed in Figure 47 with

details in Table 5.
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Figure 47: Simulated frequency spectrum from stator current with outer race-
way defect. Simulation time is 60 seconds with maximum step size of
0.0001s in variable steps with ode45 solver. The motor is running in
rated operations.

Table 5: Results from simulation with outer raceway defect

Rated Sim[H z ] Sim[d B ]

| f +1 fo b | 138.33 138.33 −95.44

| f +2 fo b | 226.66 226.66 −112.32

| f −1 fo b | 38.33 38.33 −95.97

| f −2 fo b | 126.66 126.66 −112.32

| f −3 fo b | 215 215 −133.70
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Simulation of inner raceway defect is showed in Figure 48, details can be found in

Table 6.
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Figure 48: Simulated frequency spectrum from stator current with inner race-
way defect. Simulation time is 60 seconds with maximum step size of
0.0001s in variable steps with ode45 solver. The motor is running in
rated operations.

Table 6: Results from simulation with inner raceway defect

Rated Sim[H z ] Sim[d B ]

| f +1 fi b | 176.92 176.93 −93.15

| f +2 fi b | 303.84 303.85 −114.89

| f −1 fi b | 76.92 76.92 −92.75

| f −2 fi b | 203.84 203.85 −114.48

| f −3 fi b | 330.76 330.77 −134.34
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Simulation of ball defect is showed in Figure 49, details can be found in Table 7.
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Figure 49: Simulated frequency spectrum from stator current with ball defect. Sim-
ulation time is 60 seconds with maximum step size of 0.0001s in variable
steps with ode45 solver. The motor is running in rated operations.

Table 7: Results from simulation with ball defect

Rated Sim[H z ] Sim[d B ]

| f +1 fb | 179.11 179.11 −93.26

| f +2 fb | 308.23 308.22 −114.80

| f −1 fb | 79.11 79.12 −92.80

| f −2 fb | 208.22 208.24 −114.87

| f −3 fb | 337.33 337.35 −133.87
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Simulation of cage defect is showed in Figure 50, details can be found in Table 8.
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Figure 50: Simulated frequency spectrum from stator current with cage defect.
Simulation time is 60 seconds with maximum step size of 0.0001s in
variable steps with ode45 solver. The motor is running in rated opera-
tions.

Table 8: Results from simulation with cage defect

Rated Sim[H z ] Sim[d B ]

| f +1 ft | 59.81 59.82 −100.76

| f +2 ft | 69.63 69.63 −156.02

| f −1 ft | 40.19 40.19 −96.83

| f −2 ft | 30.37 30.38 −153.15
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4.5 Stator Fault

The simulation of the stator fault with 1% shorted a phase is showed in Figure 51

and details in Table 9.
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Figure 51: Simulated frequency spectrum from stator current with 1% shorted
windings in phase a . Simulation time is 60 seconds with maximum
step size of 0.0001s in variable steps with ode45 solver. The motor is
running in rated operations.

Table 9: Results from simulation with 1% shorted stator winding

Rated Sim[H z ] Sim[d B ]

3 f 150.00 150.00 −37.90

5 f 250.00 250.00 −87.01

7 f 350.00 350.00 −136.80
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Simulation of stator fault with 3% shorted a phase is showed Figure 52 with details

in Table 10.
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Figure 52: Simulated frequency spectrum from stator current with 3% shorted
windings in phase a . Simulation time is 60 seconds with maximum
step size of 0.0001s in variable steps with ode45 solver. The motor is
running in rated operations.

Table 10: Results from simulation with 3% shorted stator winding

Rated Sim[H z ] Sim[d B ]

3 f 150.00 150.00 −28.31

5 f 250.00 250.00 −67.91

7 f 350.00 350.00 −107.96

4.6 Subsea SCIM

The solver is set at discrete with a sample time of 1e −6s , the simulation time is 60

seconds. The high sampling frequency results in a better performance of the PWM.

From Figure 53 we can see how the sampling frequency affects the rotor speed. In

figure a the sampling time is set at 1e −5s and the speed varies from 1431 to 1540.
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When the sampling time is decreased to 1e −7s as in figure c , the speed varies from

1486 to 1494, but as a result of limited computer power the sampling is set at 1e −6s

in the rest of the results. Some parameters from the subsea SCIM are estimated or

taken from similar sized motors as they were not included in the source[4, 48]. To

show if the faulted induction motor model is compatible in a subsea context, all

four fault categories are simulated. The sampling frequency for the stator current

is set at 10k H z . The switching frequency of the PWM is 5k H z
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(c) Sample time set at 1e −7s

Figure 53: Speed disparity related to sampling frequency. Sampling time is 60 sec-
onds with a healthy motor in rated operations.
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Three simulations with different sampling times are run in 10 seconds to test how

the different sampling times affect the frequency spectra. The cable model are re-

moved in this simulation. As can be seen in Figure 54, the harmonics are decreasing

with increasing sampling frequency.

0 50 100 150 200 250 300 350 400

Frequency (Hz)

-250

-200

-150

-100

-50

0

dB

(a) Sample time set at 1e −5s
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Figure 54: Amplitude disparity related to sampling frequency. Sampling time is 10
seconds with a healthy motor in rated operations.
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Healthy Motor A healthy simulation is showed in Figure 55. The frequencies and

amplitudes of the harmonics are presented in Table 11.
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Figure 55: Simulated frequency spectrum from stator current with healthy motor.
Simulation time is 60 seconds with step size 1e −6 in discrete steps.

Table 11: Results from simulation with three broken rotor bars, PWM, transformers
and subsea cable. Mean rotor speed is 1489.rpm

Sim[H z ] Sim[d B ]

2 f 100.00 −5.99

3 f 150.00 −61.68

4 f 200.00 −80.16

5 f 250.00 −73.95
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Broken rotor bars A simulation with 3 broken rotor bars is showed in Figure 56,

with details in Table 12. The mean rotor speed was 1489.1 rpm.
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Figure 56: Simulated frequency spectrum from stator current with three broken
rotor bars. Simulation time is 60 seconds with step size 1e −6 in discrete
steps. Mean rotor speed was 1489.1rpm.

Table 12: Results from simulation with three broken rotor bars, PWM, transformers
and subsea cable. Mean rotor speed is 1489.1rpm.

Rated* Sim[H z ] Sim[d B ]

f (1+2s ) 50.67 50.70 −31.99

f (1+4s ) 51.35 51.40 −58.26

f (1+6s ) 52.02 52.10 −84.55

f (1−2s ) 49.33 49.30 −32.24

f (1−4s ) 48.65 48.60 −58.40

f (1−6s ) 47.98 47.90 −85.08

When using Equation 2.7 for estimating the amount of rotor bars, it yields 2.84.
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Eccentricity A simulation of mixed eccentricity with 1mm offset, 245mm as mi-

nor axes and 247.5mm as major axes is showed in Figure 57, with details in Table 13.

The mean rotor speed in the simulation was 1490.0r p m .
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Figure 57: Simulated frequency spectrum from stator current with mixed eccen-
tricity. Simulation time is 60 seconds with step size 1e − 6 in discrete
steps. Mean rotor speed was 1490.0rpm.

Table 13: Results from simulation with mixed eccentricity, PWM, transformers and
subsea cable. Mean rotor speed is 1490.0rpm

Rated* Sim[H z ] Sim[d B ]

| f +1 fr | 74.83 74.83 −34.76

| f +2 fr | 99.67 99.66 −31.48

| f +3 fr | 124.50 124.48 −85.36

| f +4 fr | 149.33 149.32 −86.63

| f +5 fr | 174.17 174.14 −141.06

| f −1 fr | 25.17 25.17 −40.87

| f −2 fr | 0.33 0.34 −50.25

| f −3 fr | 24.50 24.48 −83.85

| f −4 fr | 49.33 49.31 −82.80

| f −5 fr | 74.17 74.14 −125.01
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Bearing Fault A simulation of cage defect is showed in Figure 58, with details in

Table 14. Only the two sideband frequencies from the fundamental harmonic can

be found in the FFT, but there are also frequency peaks around the other harmonics

as well, given as fB F C =| k f ± n fx | where f is the supply frequency, k = 1,2,3..,

n = 1, 2, 3.. and fx is fc from Equation 3.49. The mean speed of the simulation was

1490.3 rpm.
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Figure 58: Simulated frequency spectrum from stator current with cage defect.
Simulation time is 60 seconds with step size 1e − 6 in discrete steps.
Mean rotor speed is 1490.3rpm.

Table 14: Results from simulation with cage defect, PWM, transformers and subsea
cable. Mean rotor speed is 1490.3rpm. *The | f − 1 ft | component is
spread in three pikes from 39.65H z to 39−87H z .

Rated Sim[H z ] Sim[d B ]

| f +1 ft | 60.23 60.26 −144.51

| f −1 ft | 39.77 39.65−39.87∗ −144.02
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Stator Fault A simulation of stator fault with 1% shorted a phase is showed inFigure 59

with details in Table 15.
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Frequency (Hz)
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Figure 59: Simulated frequency spectrum from stator current with stator fault. Sim-
ulation time is 60 seconds with step size 1e −6 in discrete steps.

Table 15: Results from simulation with stator fault PWM, transformers and subsea
cable. Mean rotor speed is 1490.0rpm

Rated Sim[H z ] Sim[d B ]

3 f 150.00 150.00 −41.55

5 f 250.00 250.00 −74.04

7 f 350.00 350.00 −103.32
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5 Discussion

This section is divided into the different faults, discussing results with expected

results and theory. It is worth mentioning that the FFT analysis is very sensitive to

both sampling frequency and length. Holding sampling frequency constant and

increasing length will give a higher resolution in the frequency spectra, which can

affect the amplitude. This especially affects the process when determining the

extent of the observed defect. In the results 60 seconds simulation are run which in

the case of 3 broken rotor bars gives a mean amplitude of the first two side-bands

at −26.41d B . When simulating the same case and only adjusting the simulation

time to 300 seconds, gives a mean amplitude of −25.83d B at the same frequencies.

All of the expected frequencies can be found in the spectra, but there are minor

deviations. Also, keep in mind that the y-axis is not linear, but in decibel d B . In

the results for 1 BRB the mean amplitude for the first side-band components are

−36.58d B , this yields a magnitude of 10
−36.58

20 or 1.48% relative to the fundamental

frequency.

The advantages with the DQ model are the simplicity, this results in shorter com-

putation time. All the inductances are now time independent. The DQ model is

also very practical when making a controller of the motor. If the synchronously

rotating reference frame is used, the controller only needs to handle DC values,

which means that a proportional-integral-derivative(PID) controller can be used.

The disadvantages are the assumptions that the motor is symmetrical. This works

fine in a healthy case, but the assumption is no longer valid when simulation faults.

The regular neat equations will now become messy and the diagonal matrices will

be replaced by full 3x3 matrices. This is of course manageable as showed in this

study.

5.1 Healthy Model

The healthy model is working satisfactory, although it does not include magnetic

saturation or losses related to iron, friction, windage and ventilation. However,

these losses are easy to include in the damping factor. If the saturation effect has
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a vital role in the simulation this can be included as shown in[22]. This is a well

documented model to simulate a symmetrical induction motor.

5.2 Broken Rotor Bar Model

The BRB model does not include end ring resistance and assumes symmetry in the

rotor related inductance L r r , L s r and L r s . This simplification gives a good response

in the frequency domain where the side-band frequencies are as expected from

Equation 2.6 with minor exceptions both in the f (1−6s ) frequency, this could be

a resolution limitation. When increasing the amount of broken bars the amplitude

of the side-band frequencies also increases, as expected. When using Equation 2.7

to determine how many broken bars there are, it falls short with a factor of 1.23

with both 1 and 3 BRB. Increasing the simulation time as previously mentioned

decreases the deviation from the formula to a factor of 1.15. However, the formula

for determining should only be used as an indication[49], and in practical cases it

may be corrected by a known factor.

5.3 Eccentricity Model

In the case of mixed eccentricity all of the produced frequencies are as expected

with minor deviations. The amplitude of the harmonics is also dependent on the

amount of eccentricity, which it should. This is a simplification which did not in-

clude varying other than mutual inductance, but it gives satisfactory results around

the fundamental frequency. The model does not include any of the higher frequen-

cies found in Equation 2.8, this is an apparent drawback. If the operator wants a

more realistic simulation of eccentricity fault, MWFA can be used to calculate the

inductances under these conditions. How to use MWFA is described in section

3.6.1, but it also needs to be transformed to the DQ reference frame. This makes

the MWFA inconvenient in the DQ model.
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5.4 Bearing Fault Model

The bearing faults are developed from load modulation, the response in the fre-

quency domain are as expected. This model does not include any varying of the

inductance, but gives satisfactory performance anyhow. The magnitude of the load

modulation is not calculated from any sources which may give an unrealistic re-

sponse, this is however easy to fix in the "gain" block. Also, the load modulation

is a sine wave, in a real case this may not be so, but can easily be changed through

for example a "Matlab Function" block.

5.5 Stator Fault Model

The stator fault model does not include frequencies from Equation 2.10 which it

should. The odd harmonic frequencies from Equation 2.11 are clearly visible.

5.6 Subsea Model

It is clear when simulating the subsea model in a healthy condition that the sam-

pling frequency affects the performance of the motor. Both Figure 53 and Figure 54

indicates that higher sampling frequency results in a better performance. Although

knowing this, the sampling step time is limited at 1e − 6. The subsea model uses

a 6-pulse PWM as source, it is well known that PWM introduces harmonics[23].

Both even and odd harmonics can be found in Figure 54 , this can also be found in

practical studies with VSD and SCIM[50]. One way of reducing the harmonics is as

mentioned to increase sampling frequency in simulation and switching frequency

of the PWM. Filters are used in practical cases to decrease harmonics[51].

Similar in all subsea simulation cases are the new frequency components around

the harmonics. As for example with BRB, the frequency components to be ex-

pected are fB R B = (1±2n s ) f . In the subsea model these components are not only

produced around the fundamental frequency, but also around the harmonics, as

fB R B 2 = (l ±2n s ) f where l is 1,2,3.. This also happens in the other simulations

related to the subsea model.
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The frequency components are in all cases where they should be, and also the extra

around the harmonics. For the BRB and eccentricity fault they are very similar to

the simulation without the subsea model. Estimation of amount of broken rotor

bars are closer in this simulation. In the bearing fault the amplitude is much lower

than without subsea model, the low amplitude will be difficult to detect in practical

cases. A former study raised doubt on the usage of MCSA for bearing faults in a

subsea context as a result of the low amplitudes [50]. In the stator fault it can be

difficult to separate a stator fault from the healthy harmonics, although the faulted

is at a higher amplitude. A filter would make this easier.

A drawback with the model are the reactance calculations which are dependent on

inductance and rated frequency. Meaning that these are constant when a rated fre-

quency is determined. If a VSD should be used, the model needs to be customized

so that the reactance is dependent on the input frequency from the PWM, not rated

frequency which it is now. However, this is a minor modification.
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6 Conclusion

The aim of this study was to develop a dynamic model of the squirrel cage induction

motor with its typical failures.

A strategic approach was used when developing the different models. This was

done by looking at how the faults affect the performance of the motor and studying

how to integrate it. First all the faulty models were developed separately before

they were integrated to a generic model. Much of the modelling work are based on

previous studies, but further developed. For the stator and rotor fault models this

work involves solving the equations for transforming a b c quantities to q d 0 with

possibilities to simulate failures in all phases, not just phase a as the work which it

is based on. In the bearing fault model this work involves deriving equations and

a method to simulate a specific type of bearing fault, not only general mechanical

faults. The eccentricity model is the same as being described in the source which it

is based on. The work in this model was to derive the mixed eccentricity equation

and integrate it to Simulink. All these models were integrated to a generic model

where also a graphical user interface(GUI) is developed. This releases the need for

declaring variables in Matlab, making it easier to operate. The generic model was

also tested in a subsea context with PWM source, cable model and transformers.

MCSA was used to validate the performance of the generic model. The results were

in accordance with anticipated values, confirming the quality of the model. The

only exception was the stator fault model which was missing a series of frequency

components fs s 1 =
�

k ±n 1−s
p

�

f . However, the stator fault did have another series

of expected frequencies fs s 2 = 3k f . This makes the generic model applicable in

modelling all the four typical failures in the SCIM. In a subsea context the model

gave satisfactory results, similar to earlier practical cases.

6.1 Future Work

There are some improvements that can be made on the model, making it more

realistic. It should also be validated against other condition monitoring techniques,

to clarify its performance.
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To improve the model in the BRB case, the modifications of the rotor inductance

can be included as explained in[10]. The BRB model also neglects end ring resis-

tance, this could be included. If this is done, a simulation of cracked or broken end

rings can be executed.

The eccentricity model does only vary the mutual inductance, which is not the

case in reality. Both stator, rotor and mutual inductance are varying in a mixed

eccentricity case, this can be included.

The stator model does not contain any of the expected frequencies from Equa-

tion 2.10. Further work could be to explain why these frequencies are absent and

find other alternatives to model stator fault.

The bearing fault only modulates the load, a more realistic simulation will be mod-

ulating both load and inductance. Combining MWFA with load modulation can

give a better performance of the model.

The subsea model are very simple and should be modified, for example; including

mutual inductance and capacitance between the phases and ground in the cable,

making a controller and include a filter.
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A Appendix A - Derivation of Equations

A.1 Change of resistance

∆r = r ∗r − rr =
(2Ns )
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N /3−n
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(2Ns )
2

N /3
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A.2 qd0 Transformations

A.2.1 Deriving v q d 0
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A.2.2 Deriving v q d 0
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T q d 0 (θ −θr )
�

p
�

T q d 0 (θ −θr )
�−1
λq d 0

r

2

3





cos (θ −θr ) cos(θ −θr − 2π
3 ) cos(θ −θr +

2π
3 )

sin (θ −θr ) sin(θ −θr − 2π
3 ) sin(θ −θr +

2π
3 )

1
2

1
2

1
2



×





−sin (θ −θr ) cos (θ −θr ) 0
−sin(θ −θr

2π
3 ) cos(θ −θr − 2π

3 ) 0
−sin(θ −θr +

2π
3 ) cos(θ −θr +

2π
3 ) 0





d (θ −θr )
d t

λq d 0
r +pλq d 0

r

yields
�

0 1 0
−1 0 0
0 0 0

�

d (θ −θr )
d t

λq d 0
r +pλq d 0

r

Substituting this back equals

v q d 0
r = (ω−ωr )

�

0 1 0
−1 0 0
0 0 0

�

λq d 0
r +pλq d 0

r + r q d 0
r i q s 0

r

whereω−ωr =
d (θ−θr )

d t
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A.2.3 Deriving of r q d 0
s

Deriving [T q d 0(θ )]r a b c
s [T q d 0(θ )]−1. Setting θ = 0 yields

r q d o
s =

2

3





1 − 1
2 − 1

2

0 −
p

3
2

p
3

2
1
2

1
2

1
2





�

rs 0 0
0 rs 0
0 0 rs

�





1 0 1

− 1
2 −

p
3

2 1

− 1
2

p
3

2 1





r q d o
s =

2

3





rs − 1
2 rs − 1

2 rs

0 −
p

3
2 rs

p
3

2 rs
1
2 rs

1
2 rs

1
2 rs









1 0 1

− 1
2 −

p
3

2 1

− 1
2

p
3

2 1





r q d o
s =

�

rs 0 0
0 rs 0
0 0 rs

�

A.2.4 Deriving of r q d 0
r

Deriving [T q d 0(θ −θr )]r a b c
r [T q d 0(θ −θr )]−1. Setting θ = 0 yields

r q d 0
r =

2

3





cos (−θr ) cos
�

−θr − 2π
3

�

cos
�

−θr
2π
3

�

sin (−θr ) sin
�

−θr − 2π
3

�

sin
�

−θr +
2π
3

�

1
2

1
2

1
2





�

rr 0 0
0 rr 0
0 0 rr

�





cos (−θr ) sin (−θr ) 1
cos

�

−θr − 2π
3

�

sin
�

−θr − 2π
3

�

1
cos

�

−θr +
2π
3

�

sin
�

−θr +
2π
3

�

1





Solving the trigonimetric equations yields

r q d 0
r =

�

rr 0 0
0 rr 0
0 0 rr

�

A.2.5 Deriving of L q d 0
s s

Deriving [T q d 0(θ )]L a b c
s s [T q d 0(θ )]−1. Setting θ = 0 and L s m = L s s cos

�

2π
3

�

=− 1
2 L s s yields

L q d 0
s s =

2

3





1 − 1
2 − 1

2

0 −
p

3
2

p
3

2
1
2

1
2

1
2









L l s + L s s − 1
2 L s s − 1

2 L s s

− 1
2 L s s L l s + L s s − 1

2 L s s

− 1
2 L s s − 1

2 L s s L l s + L s s









1 0 1

− 1
2 −

p
3

2 1

− 1
2

p
3

2 1





L q d 0
s s =





L l s +
3
2 L s s 0 0

0 L l s +
3
2 L s s 0

0 0 L l s




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A.2.6 Deriving of L q d 0
s r

Deriving [T q d 0(θ )]L a b c
s r [T q d 0(θ −θr )]−1. Setting θ = 0 yields

L q d 0
s r =

2

3
L s r





1 − 1
2 − 1

2

0 −
p

3
2

p
3

2
1
2

1
2

1
2









cosθr cos
�

θr +
2π
3

�

cos
�

θr − 2π
3

�

cos
�

θr − 2π
3

�

cosθr cos
�

θr +
2π
3

�

cos
�

θr +
2π
3

�

cos
�

θr − 2π
3

�

cosθr









cos (−θr ) sin (−θr ) 1
cos

�

−θr − 2π
3

�

sin
�

−θr − 2π
3

�

1
cos

�

−θr +
2π
3

�

sin
�

−θr +
2π
3

�

1





solving the first two matrices yields

L q d 0
s r =

2

3
L s r





3
2 cos (θ ) 3

2 cos
�

θ + 2π
3

�

3
2 cos

�

θ − 2π
3

�

p
3

2

�

cos
�

θr +
2π
3

�

− cos
�

θr − 2π
3

��

p
3

2

�

cos
�

θr − 2π
3

�

cos (θr )
�

p
3

2

�

cos (θr )− cos
�

θr +
2π
3

��

0 0 0









cos (−θr ) sin (−θr ) 1
cos

�

−θr − 2π
3

�

sin
�

−θr − 2π
3

�

1
cos

�

−θr +
2π
3

�

sin
�

−θr +
2π
3

�

1





Solving the trigonometric equations yields

L q d 0
s r =





3
2 L s r 0 0

0 3
2 L s r 0

0 0 0





A.2.7 Deriving of L q d 0
r s

Deriving [T q d 0(θ −θr )]L a b c
r s [T q d 0(0)]−1. Setting θ = 0 yields

L q d 0
r s =

2

3
L s r





cos (−θr ) cos
�

−θr − 2π
3

�

cos
�

−θr
2π
3

�

sin (−θr ) sin
�

−θr − 2π
3

�

sin
�

−θr +
2π
3

�

1
2

1
2

1
2









cos (θr ) cos
�

θr − 2π
3

�

cos
�

θr +
2π
3

�

cos
�

θr +
2π
3

�

cos (θr ) cos
�

θr − 2π
3

�

cos
�

θr − 2π
3

�

cos
�

θr +
2π
3

�

cos (θr )









1 0 1

− 1
2 −

p
3

2 1

− 1
2

p
3

2 1





Multiplying the two first matrices and solving the trigonometric equations yields

L q d 0
r s =

2

3
L s r





3
2 − 3

4 − 3
4

0 − 3
p

3
4

3
p

3
4

0 0 0









1 0 1

− 1
2 −

p
3

2 1

− 1
2

p
3

2 1





L q d 0
r s =





3
2 L s r 0 0

0 3
2 L s r 0

0 0 0




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A.2.8 Deriving of L q d 0
r r

Deriving [T q d 0(θ −θr )]L a b c
r r [T q d 0(θ −θr )]−1. Setting θ = 0 and L r m = L r r cos

�

2π
3

�

=− 1
2 L r r

yields

L q d 0
r r =

2

3





cos (−θr ) cos
�

−θr − 2π
3

�

cos
�

−θr +
2π
3

�

sin (−θr ) sin
�

−θr − 2π
3

�

sin
�

−θr +
2π
3

�

1
2

1
2

1
2









L l r + L r r − 1
2 L r r − 1

2 L r r

− 1
2 L r r L l r + L r r − 1

2 L r r

− 1
2 L r r − 1

2 L r r L l r + L r r









cos (−θr ) sin (−θr ) 1
cos

�

−θr − 2π
3

�

sin
�

−θr − 2π
3

�

1
cos

�

−θr +
2π
3

�

sin
�

−θr +
2π
3

�

1





Solving the matrices yields

L q d 0
r r =





L l r +
3
2 L r r 0 0

0 L l r +
3
2 L r r 0

0 0 L l r




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B Appendix B - Parameters

The parameter of the test motors used in the experimental studies are listed below, note
that some of the parameters are estimated and noted with *.

B.1 Parameters of Siemens Test Motor

Table 16: Parameters of Siemens 4kW induction motor

Siemens

Rated Power 4k W
Rated Voltage 380V
Rated Frequency 50H z
Rated Current 9.2A
Rated* Torque 26.62N m
Rated Speed 1435r p m
Rated* Power Factor 0.81
Pole Number 4
Moment of Inertia 0.01k g m 2

Amount of Stator Slots 36
Amount of Rotor Bars 28
Bearing Ball Diameter Bd 9.52mm
Bearing Pitch Diameter Pd 53.1mm
Bearing Contact Angle β 0°
Amount of Bearing Balls 9
Inner Stator Radius* 48.1mm
Inner Rotor Radius* 47.0mm
Stator* Resistance 1.57661Ω
Rotor* Resistance 0.83373Ω
Stator* Inductance 8.11179mH
Rotor* Inductance 8.53798mH
Magnetizing* Inductance 162.50333mH

B.2 Parameters Related to the Subsea Model

Table 17: Subsea cable parameters[14]

240m m 2 50H z

Length 30k m
Rated Voltage 12k V
Series Resistance 0.091 [Ω/k m ]
Series Inductance 0.27 [mH /k m ]
Shunt Capacitance 0.57

�

µF /k m
�
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Table 18: Parameters of a typical subsea motor[14], some parameters are missing
and therefore estimated, these are noted with*

Typical Subsea Motor

Rated Power 670k W
Rated Voltage 6k V
Rated Frequency 50H z
Rated Torque* 4265.4N m
Rated Power Factor 0.8
Pole Number* 4
Moment of Inertia 8k g m 2

Amount of Rotor Bars* 60
Bearing Ball Diameter* Bd 31.75mm
Bearing Pitch Diameter* Pd 180.00mm
Bearing Contact Angle* β 0°
Amount of Bearing Balls* 9
Inner Stator Radius* 250mm
Inner Rotor Radius* 247.5mm
Stator Resistance 0.01p .u
Rotor Resistance 0.0092p .u
Stator Reactance 0.11p .u
Rotor Reactance 0.11p .u
Magnetizing Reactance* 2.2p .u

C Appendix C - Matlab FFT Script

%% FFT with Hann window
c l o s e
L = length ( z ) ; % Amount of samples
NFFT = 2^nextpow2 ( L ) ; % Next to power of 2 from length
fahann = z . hann ( L ) ; % Applying hann window on data
hannfft= f f t ( fahann , NFFT)/L ; % Using FFT on windowed data
Fs = L/ ( Length_in_seconds ) ; % Sampling frequency
f = Fs / 2 l i n s p a c e ( 0 , 1 ,NFFT/2+1) ; % X values
maxfft=max ( 2 0 log10 ( 2 abs ( hannfft ) ) ) ; % Finding maximum,
% used to normalize
p l o t ( f , 2 0 log10 ( 2 abs ( hannfft ( 1 : NFFT/2+1)))−maxfft , ’ k ’ )

% P l o t t i n g and normalizing with dB s c a l e
x l a b e l ( ’ Frequency (Hz ) ’ )
y l a b e l ( ’ dB ’ )
a x i s ( [0 200 −250 i n f ] )
g r i d on
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