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“Real-time” genetic monitoring of a commercial fishery on the
doorstep of an MPA reveals unique insights into the interaction
between coastal and migratory forms of the Atlantic cod
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With the decline of many of the world’s fisheries, increased regulation, including marine protected areas (MPA), forms an increasingly impor-
tant role in promoting sustainable resource use. Here, we present a novel “real-time” genetic monitoring programme used to protect the
depleted Norwegian coastal cod stock (NCC) in an MPA during the spawning season, while a fishery targeted at the sustainable Northeast
Arctic cod stock (NEAC) operates immediately outside. In the period 2009–2016,>6800 cod from the fishery were genotyped with the PanI
locus that is discriminatory between these two stocks. The estimated fraction of NEAC increased during the study period until 2014; however,
it did not exceed 70% for any sustained period. Therefore, the MPA remained closed for commercial harvest. Genetic analysis of eggs revealed
a distinctly lower fraction of NEAC than in the catch from the adult stock, both immediately outside and within the MPA itself. We suggest
that this discrepancy is likely to reflect differences in spawning areas used by NCC and NEAC. Estimated fractions of NEAC/NCC using PanI,
otolith classification, and 39 single nucleotide polymorphisms were similar, thus validating the use of PanI to estimate NEAC/NCC
composition.
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Introduction
A universal challenge in the effective management of mixed-stock

fisheries is to assure sufficient protection to the most vulnerable

components of the fishery (Allendorf et al., 2008). One approach

is to close the whole fishery as soon as one of the single species

annual quotas is reached, although this is rarely implemented as

it typically leads to underutilization of the primary target-species.

A more demanding approach is to closely monitor the fishery

and dynamically redirect the harvest to areas and seasons in a

manner that optimizes the match between catch and quotas.

However, this becomes a major challenge if the fishery includes

two or more stocks of the same species that are morphologically

similar or identical.

Diagnostic genetic markers, enabling identification of stocks or

management units, provide us with an alternative management

strategy to closing the fishery when the quota of the weakest

resource is filled. However, while the use of DNA methods has

revolutionized our understanding of population structure and
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connectivity within the marine realm (Schwartz et al., 2007;

Hauser and Carvalho, 2008), examples of using DNA methods to

actively manage fisheries “real-time” are few (but see Schwartz

et al., 2007). Genetic mixture analysis was first initiated for the

marine salmon fisheries in the North Pacific. By sampling and

estimating the fractions of the stock components, the fisheries

have been regulated in a way that allowed effective commercial

harvest of salmonids while ensuring enough mature fish enter

their native rivers to spawn (Shaklee et al., 1999; Dann et al.,

2013; Larson et al., 2014). Grant et al. (1980) were the first to ini-

tiate such studies using allozymes in the 1970s, but today, DNA

markers as single-nucleotide polymorphisms (SNPs) are primar-

ily used for this task (Larson et al., 2014).

A mixed-stock fishery for Atlantic cod (Gadus morhua) exists

in the north of Norway. Here, cod are divided into two stock

components: Northeast Arctic Cod (NEAC; Figure 1a) and

Norwegian Coastal Cod (NCC; Figure 1b). Of these, NCC is the

most vulnerable component. NCC spawn along the entire coast

of Norway, but display limited migratory patterns between

spawning and feeding areas (Jakobsen, 1987; Michalsen et al.,

2014). In contrast, NEAC performs long migrations from the

Barents Sea to the Norwegian coast to spawn (Bergstad et al.,

1987; Michalsen et al., 2014). The main spawning areas for NEAC

are close to the Lofoten Islands and the Møre region (Bergstad

et al., 1987; Sundby and Nakken, 2008; Olsen et al., 2010) which

overlap with some of the spawning grounds for NCC (Figure 1).

Furthermore, NCC are assumed to spawn at the same time as the

NEAC (Berg and Albert, 2003). Consequently, it has been esti-

mated that �60–70% of the annual catch of NCC is during this

mixed spawning fishery primarily targeted at the NEAC harvest

(ICES, 2015a).

One of the pre-requisites for conducting genetic stock identifi-

cation is that there is sufficient genetic differentiation among the

different components of the fishery. In the early 1960s, both DNA

and morphological markers such as otolith structure (Rollefsen,

1933; Berg et al., 2005) have been used to distinguish between

NCC and NEAC (for review of earlier work see Nordeide et al.,

2011). Most genetic markers show low but statistically significant

structuring between NCC and NEAC (Westgaard and Fevolden,

2007; Wennevik et al., 2008). Nevertheless, genetic markers pre-

sumed to be under some form of selection, and thus show

increased differentiation among populations, can provide the

tools required for the identification of stock components on a

contemporary time scale. Specifically, for the differentiation of

NCC and NEAC, good examples of informative genetic markers

are available, including haemoglobin and allozymes (Mork et al.,

1985), Pantophysin (Fevolden and Pogson, 1997) and two micro-

satellites GMO34 and GMO132 (Westgaard and Fevolden, 2007;

Michalsen et al., 2014). Furthermore, recent genome-wide scans

using SNP markers (Hemmer-Hansen et al., 2013; Kirubakaran

et al., 2016; Berg et al., 2016) have revealed that genetic differen-

tiation between the two stocks is mainly located on three chro-

mosomes. The SNP Pantophysin or PanI (previously SypI) is part

of a tightly linked gene cluster located on chromosome one

(Kirubakaran et al., 2016), exhibits large allele frequency differen-

ces between samples of NEAC and NCC and is almost diagnostic

for the two stocks (Fevolden and Pogson, 1997; Wennevik et al.,

2008). While NEAC are almost fixed for the PanIB allele

(p� 0.90), NCC show high frequencies of the PanIA allele

(p� 0.80), and this pattern is temporally stable (Fevolden and

Pogson, 1997; Sarvas and Fevolden, 2005; Fevolden et al., 2012).

Although the selective agent(s) shaping this PanI allele frequency

difference between NEAC and NCC is not fully understood, the

marker’s contribution to elucidate stock structuring has been rec-

ognized (Pogson and Fevolden, 2002; Case et al., 2006; Wennevik

et al., 2008; Michalsen et al., 2014; Kirubakaran et al., 2016).

Although NCC have been recognized as different from NEAC

for more than 80 years (Rollefsen, 1933), it is only in the past dec-

ades that specific regulations protecting the lesser abundant NCC

have been in operation. Traditionally, all cod sampled north of

62� (both from Norwegian fisheries and from Norwegian surveys)

have routinely been assigned to NEAC or NCC on the basis of

differences in otolith structure (Rollefsen, 1933; Berg and Albert,

2003). By using the otolith assignments of NCC, a time series of

catch data back to 1984 and a survey time series back to 1995

have been established. Since 2001, ICES have provided advice for

management of NCC, and due to a steep decline in abundance

of NCC as revealed through annual surveys, they advised a zero

harvest in the period 2004–2011 (ICES, 2010, 2013, 2015b).

However, a complete stop in the harvest of NCC involves closing

all coastal fisheries in Norway where NCC were captured through

bycatch. This was not considered realistic in a mixed-stock fishery

with NEAC by the Norwegian Directorate of Fisheries (NDF), the

governmental body responsible for regulating fisheries in

Norway. Therefore, the total annual quota of NCC was reduced

from 40 000 to 20 000 tonnes, and regulations aimed at reducing

NCC (by)catches were introduced. These regulations included,

among others, redirecting fishing efforts from areas with NCC to

areas and seasons with NEAC.

One part of the NCC protection and rebuilding management

strategy was to establish Borgundfjord as a marine protected area

(MPA) from 2009 onwards (Figure 2). The MPA is composed of

three spawning areas: Aspevågen, Borgundfjorden central, and

Åsefjorden, and is closed to commercial harvest during the

spawning period from March to May (recreational angling within

the MPA is however permitted). However, in some years, NEAC

enter Borgundfjord in large numbers (Godø, 1977). Therefore, in

parallel to establishing Borgundfjord as an MPA, a genetic-

monitoring programme was initiated with the aim of opening the

fjord to commercial harvest if and when catches of NEAC in

Hessafjorden, which is immediately outside the MPA, exceed

�70% over time.

While genetic monitoring programmes typically make use of a

panel of genetic markers (e.g. Larson et al., 2014), the monitoring

programme established in association with the Borgundfjord

MPA only included the PanI locus that is diagnostic between

NCC and NEAC. Based upon experiences from Lofoten where

NEAC and NCC are also found overlapping during the spawning

season (Wennevik et al., 2008), we chose to estimate the fraction

of NEAC in Hessafjorden using the frequency of the PanIB allele

in the catch.

The present study had several objectives. First, to present the

estimated fraction of NEAC in the cod catches in Hessafjorden

(immediately outside the MPA) through the spawning season

over the years 2009–2016. Second, to evaluate the accuracy of

stock identification by PanI compared to assignments performed

using otolith category, and genetic assignment based on a panel

SNP markers recently identified as diagnostic between NEAC and

NCC. Third, to estimate the fraction of NEAC in egg samples col-

lected both in and immediately outside the MPA in order to

investigate the relationship between adult presence in the region

and recruitment.
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Material and methods
Background for the MPA at Møre
In traditional, otolith-based monitoring of NEAC and NCC at

Møre, the area is divided into eight statistical strata or locations

(Supplementary Figure S1). Based upon background information

described in detail in Supplementary Table S1, statistical location

0734 was identified as the area with the highest estimated fraction

of NEAC, which also represents an important local spawning

Figure 1. Distribution and life history of (a) Northeast arctic cod (NEAC) and (b) coastal cod. The Norwegian coastal cod (NCC) stock is
distributed north of 62�N to the Russian border. X: reference sample of NEAC.

Figure 2. The Marine protected area (MPA: inside the solid line) is closed during spawning season (1 March to 30 May) and includes the
spawning grounds: Aspevågen, Borgundfjord central, and Åsefjorden. Hessafjorden also belongs to location 0734, but is not incorporated in
the seasonal closure. Genetic samples of adult fish were obtained from gill net vessels (<15 m) in Hessafjorden in the period 2009–2016. Egg
samples were collected from the spawning grounds in the MPAþHessafjord. •: sampling station Godøy.
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ground for NCC in the region (Godø, 1977). To protect the

spawning component of NCC in area 0734 (Borgundfjord), an

MPA was established which included the following three spawn-

ing grounds: Aspevågen, Borgundfjorden central, and Åsefjorden

(Figure 2). The MPA is not open to commercial exploitation, but

Hessafjorden, immediately outside the MPA, remains open for

commercial harvest.

Samples from the monitoring programme in
Hessafjorden 2009–2016
Cod were collected from the commercial gill-net fishery operating

in Hessafjorden, just outside the MPA by the NDF. Gill/fin clips,

were collected at least three times a week (Monday, Tuesday, and

Wednesday), preserved in 100% ethanol and sent to the Institute

of Marine Research (IMR) on Thursday for genetic analysis. By

Thursday afternoon, results from that week’s samples were sent

back to the NDF. On the basis of this information, the NDF had

the ability to open the MPA if and when the fraction of NEAC

exceeded 70% for more than two consecutive weeks. In the period

2009–2016, this sampling regime resulted in the analysis of>6800

cod captured in the fishery in Hessafjorden (Figure 2 and

Table 1). At the start and end of the commercial fishing season in

Hessafjorden, some fish were also collected from the permitted

recreational fishery within the MPA. In addition, three samples of

cod were also collected from the outer coastal areas in 2013

(Godøy in Table 1; Figure 2) to estimate the fraction of NEAC on

the coast.

Egg samples from the MPA in 2012–2016
To test the fraction of NEAC spawning within the MPA, eggs were

collected at three known spawning grounds within the MPA:

Aspevågen, Borgundfjorden central (named Borgundfjord), and

Åsefjorden. In addition, eggs were collected from Hessafjorden

itself (Figure 2 and Table 1).

Eggs were sampled by a standard WP2 hand net with diameter

60 cm and mesh size of 500 mm. More details of sampling found

in supplement material. Eggs mainly of developmental stage 1

(<2 days old) were used for the genetic analysis as they were

assumed to be sampled close to the spawning location (as

opposed to have drifted from outside). In total, 3478 eggs were

sampled from the region in the period 2012–2016 (except for

2014).

Genetic analysis of Pan1
DNA from cod captured in Hessafjorden was extracted in 96-well

plate format using the HotSHOT protocol (Truett et al., 2000).

During the study period, the PanI locus was genotyped using two

methods. In the period 2009–2012, it was genotyped using allele-

specific primers developed for the ABI sequencer (Stenvik et al.,

2006). From 2012 onwards, it was genotyped using an allele-

specific TaqMan assay adapted to a Roche Lightcycler 480 II real-

time PCR instrument (Roche diagnostics, Switzerland). This

change in genotyping technology was implemented to speed up

the analysis process. DNA from the eggs sampled in and around

the MPA was extracted in 96-well plate format using a Chelex iso-

lation method (modified from Bio-Rad Laboratories). Each egg

was placed in 75 ml 5% Chelex solution [Chelex
VR

100 Molecular

Biology Grade Resin (BioRad) in ultrapure water] and 15ml of

Proteinase K Solution (Qiagen, 20 mg ml�1). The isolation mix-

ture was placed at 56 �C for 1 h, followed by a 10-min incubation

at 96 �C. Prior to extraction, each egg was punctured with tweez-

ers to free the embryo. These samples were genotyped using the

ABI sequencer (Stenvik et al., 2006).

Estimation of NEAC fraction in fish and egg samples
The fraction of NCC and NEAC is based upon the presence of

genotypes at the PanI locus (AA, AB, and BB). The classification

is made on a sample level, as this marker is not diagnostic on an

individual level as BB and AB are present in NEAC, and all three

genotypes are assumed present in NCC (Wennevik et al., 2008;

Michalsen et al., 2014). The fraction of NEAC in each sample

(FractionNEAC) was estimated by the equation:

FractionNEAC ¼ FractionB – a
1� 2a

: (1)

FractionB is the observed fraction of PanIB allele in the sample

and a is the assumed FractionB in a “pure” coastal cod sample.

Previous studies in Lofoten (Wennevik et al., 2008) indicated

a close to 0.10, while other samples from fjords along the

Norwegian coast indicated a smaller a, close to 0.05 (Sarvas and

Fevolden, 2005). To quantify the associated uncertainty range,

the FractionNEAC for each sample was calculated for both values

of a, while the average of the two estimates was reported as the

“best estimate.”

Comparison of PanI and SNP-based assignments
Validating the accuracy of the NEAC/NCC classification by the

PanI locus is important because the results directly influence

management decisions. Therefore, in parallel with the primary

monitoring programme where PanI was the sole marker used for

classification, we compared the estimated fraction of NCC/NEAC

between the PanI locus, otolith category, and newly developed

SNP markers. Specifically, a subset of 364 adults and 455 eggs

from Hessafjorden and Borgundfjord were analysed for a panel of

39 SNP markers (Table 1). In addition, an NEAC reference sam-

ple from the Barents Sea, comprising 100 adults, was included in

this analysis. The SNPs were selected using the information

from recent studies showing high differentiation between NEAC

and NCC (Hemmer-Hansen et al., 2013; Berg et al., 2016;

Kirubakaran et al., 2016), and comprised 11 SNPs from chromo-

some one (LG1) and 28 SNPs from other chromosomes

(LG2–16) (Kirubakaran et al., 2016).

The 39 SNPs were genotyped on the above-mentioned samples

using matrix-assisted laser desorption/ionization time-of-flight

mass spectroscopy (MALDI-TOF MS) assays (Agena Bioscience,

Inc., Hamburg, Germany). Primers used for genotyping are avail-

able from the authors. Genotyping was performed using the

IPLEX protocol following the manufacturer’s instructions (Agena

Bioscience). MassARRAY Typer software was used for automated

genotype calling (Agena Bioscience). Each allele was subsequently

inspected manually. SNPs with more than 20% missing data per

sample and a minor allele frequency below 0.05 were discarded.

As PanI is included in the tightly linked inversion in LG1

(Kirubakaran et al., 2016) a check for Linkage disequilibrium

(LD) among the 11 selected SNP’s from LG1 and PanI was per-

formed in Genepop 4.3 (Rousset, 2008). This included calculation

of the Pearson correlation coefficient between the allele frequency

of the PanIB and the LG1 SNP’s.
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We applied two assignment approaches using STRUCTURE

2.3.4 (Pritchard et al., 2000) and GeneClass2 (Piry et al., 2004),

both relying on the Bayesian framework. STRUCTURE was used

to estimate the number of population clusters (K) in our total

dataset. We used default parameters with a burn-in of 200 000

followed by 500 000 MCMC steps. Ten independent runs for

each K (1–5) were performed. The results from these runs were

uploaded to STRUCTURE HARVESTER (Earl and Vonholdt,

2012), which returned the most likely value of K using the

Evanno method (Evanno et al., 2005). CLUMPP (Jakobsson and

Rosenberg, 2007) found the optimal alignment of replicate cluster

analysis of the same data and corrected for label switching in

unsupervised cluster analysis. CLUMPP gives a mean individual

membership probability (Q), based on ten independent runs, for

belonging to each of the most likely clusters determined by

STRUCTURE HARVESTER. We set the threshold for Q at 0.7, so

that individuals with values above 0.7 were assigned to its most

likely cluster. Assignments in GeneClass2 were made with the

probability computation option, with simulations of 10 000 indi-

viduals following Paetkau et al. (2004). The individual Q value

from STRUCTURE and the probability estimates from

GeneClass2 were compared with Pearson’s correlation coefficient.

For the samples of adults and eggs, each individual was

assigned to one of the two clusters NEAC or NCC, as described

above. Based on this assignment, the PanI genotype frequency for

each cluster was calculated. Thereafter, the PanI genotype

frequency for each of the two clusters was translated into a

probability for each of the genotypes to belong to either NCC

or NEAC. For the fishery samples, the fraction of NEAC was

estimated with:

FractionNEAC ¼ ðcountPanIAAaÞ þ ðcountPanIABbÞ
þ ðcountPanIBBcÞ: (2)

The variables countPanIAA, countPanIAB, and countPanIBB are the

sums of the genotypes for a specific sample from the catches, and

a, b, and c are the probabilities for each of the three PanI geno-

types of belonging to the NEAC group. This enabled us to calcu-

late the Pearson correlation coefficient between the estimates

from Equations (1) and (2). To test the level of differentiation

between locally assigned NEAC and NCC, we made an FST test

based on Weir and Cockerham (1984) h estimator for both LG1

and the total dataset.

Comparison of PanI and otolith-based assignments
NCC and NEAC have traditionally been identified and monitored

in Norwegian fisheries using otolith structure (Rollefsen, 1933).

This identification is based on morphological differences in shape

and relative distance between the two innermost translucent

zones in the otolith corresponding to cod older than two years.

Table 1. Samples of spawning cod (n¼ 6802) and eggs (n¼ 3478) collected during spawning season 2009–2016 in Hessafjorden and the
MPA and the coastal area of Møre.

Location Type Marker type
Sampling year

Total
2009 2010 2011 2012 2013 2014 2015 2016

Hessafjorden Adult Samples 13 20 23 24 10 14 13 6 123
Pan1 (n) 1 032 931 1 100 1 130 533 672 582 288 6 268
SNP (n) – – 117 48 126 – 32 – 323

Egg Samples – – – 5 5 – 7 8 25
Pan1 (n) – – – 182 46 – 175 609 1 012
SNP – – – – – – – – –

MPA locations – – – – – – – – –
Aspevågen Adult Samples – – 2 2 – – 1 – 5

Pan1 (n) – – 56 66 – – 48 – 170
SNP (n) – – – – – – 48 – 48

Egg Samples – – – 5 5 – 5 7 22
Pan1 (n) – – – 199 217 – 256 393 1 065
SNP (n) – – – 146 163 – 174 – 483

Åsefjorden Adult Samples – – – – – – 5 – 5
Pan1 (n) – – – – – – 75 – 75

Egg Samples – – – 3 3 – – 7 6
Pan1 (n) – – – 128 104 – – 299 531
SNP – – – – – – – – –

Borgundf.j Central Adult Samples – – 1 – 3 – – – 4
Pan1 (n) – – 5 – 92 – – – 97
SNP (n) – – – – – – – 0

Egg Samples – – – 3 3 – 7 7 20
Pan1 (n) – – – 108 37 – 224 501 870
SNP (n) – – – – – – – –

Godøy (Møre) Adult Samples – – – – 4 – – – 4
Pan1 (n) – – – – 192 – – – 192
SNP (n) – – – – 48 – – – 48

NEAC (Barents Sea) Adult SNP (n) – – – – 100 – – – 100

The MPA includes the spawning grounds Aspevågen, Borgundfjorden central and Åsefjorden. All samples were analysed for PanI, and a sub-sample was also ana-
lysed for 39 SNPs (see Material and methods). n, number of individuals. NEAC is a reference sample from the Barents included in the SNP analysis.
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The NCC are coded otolith type 1 and 2, while NEAC otolith

type 4 and 5, where 2 and 4 are uncertain types (Berg and Albert,

2003). Otolith-classification corresponded well with the genetic

assignment of NEAC/NCC from Lofoten (Wennevik et al., 2008)

and fjords farther north (Berg et al., 2005; Stransky et al., 2008).

In the Hessafjorden gillnet fishery, most of the catch was headed

and gutted prior to landing. Thus, otoliths in the primary genetic

monitoring programme described above were not available for

comparison to the PanI results. However, upon request, fish in a

sub-sample of the genetic samples from the commercial catch

were not headed before being landed and were sampled by the

NDF. This included 847 cod that were used to compare the esti-

mated fractions of NEAC/NCC with the results for PanI.

Tissue samples from the weekly catch in Hessafjorden were

sent to IMR, samples were analysed, and the estimated fraction of

NEAC reported back to the NDF within 8 h. This regime was

implemented throughout the spawning season in the period

2009–2016, resulting in a unique dataset that included the allele

frequencies of �6500 cod sampled in Hessafjorden over multiple

weeks and years.

Results
Estimation of NEAC in the commercial catch based upon
PanI
The estimated fraction of NEAC in Hessafjorden typically varied

between 40 and 65% in the period mid-March until the end of

the spawning season (Figure 3). The estimated fraction of NEAC

in Hessafjorden did not exceed the 70% threshold set by the NDF

to open the MPA to commercial fishing for any sustained period,

and consequently, the MPA remained closed in all years. In the

years in which sampling was initiated in middle February, the

estimated fraction of NEAC tended to be low, indicating that

NCC initially dominated this region, followed by a pulse of

NEAC. This is presumably a result of the NEAC arriving from its

long-distance migration from the Barents Sea. The peak in the

estimated fraction of NEAC in Hessafjorden was during March

and April, before it once again tailed off towards the end of the

sampling season in some years, presumably as NEAC left the

region (Figure 3).

On the basis of the above patterns up to 2013, it was decided

that beginning in 2014, cod would be sampled only in

Hessafjorden during the period in which NEAC was expected to

arrive in significant numbers (i.e. March–April). In 2014, the

fraction of NEAC in the first sample (14 March) was 71.8%.

However, it decreased in subsequent samples, remaining below

70% for the rest of the sampling period. Although, the fraction of

NEAC in 2014 was larger than in previous years (more than 40%

until early-April), it decreased to below 20% by the end of the

season, as in previous years, once again illustrating the exodus of

NEAC from the region. In 2013, three additional samples of cod

were collected in the coastal waters outside Hessafjorden (Godøy,

Figure 2). These samples showed a larger fraction of NEAC early

in the season than samples taken from Hessafjorden at the same

time (Figure 3).

Over all sampling years, the fraction of NEAC in the catches in

Hessafjorden increased steadily from 2009 with a peak fraction of

NEAC in 2014 (Figure 4). Interestingly, this trend was clearer for

the March samples than for the April samples. The curve in April

may be more strongly influenced by the difference in timing of

NEAC leaving the region between years, while the curve for

March more closely reflected the NEAC peak.

Estimation of NEAC in the rod and line fishery permitted
inside the MPA
Approximately 350 cod were captured by rod and line inside the

MPA. These were also genotyped with PanI to estimate frequen-

cies in NEAC (Figure 3). With few exceptions, samples from

either Aspevågen, Borgundfjorden central, or Åsefjord, displayed

a similar, or as in most cases, lower estimated fraction of NEAC

than in Hessafjorden at the same time. This is not surprising

given that NEAC migrate through Hessafjorden on their way into

the MPA, but nevertheless reveals a large frequency of NCC

within the MPA. Importantly, none of the samples from the MPA

revealed NEAC fractions greater than 70%, confirming results

from immediately outside the MPA that it should remain closed

to commercial harvest.

Estimation of NEAC in the egg samples
Eggs were sampled four years at three spawning locations inside

the MPA, as well as in Hessafjorden (Figures 1 and 5). In all four

years, and at all four locations, the abundance of stage-I cod eggs

peaked in the second half of March. Peak egg production coin-

cided with the approximate timing of the peak NEAC fraction in

the region. In 2013, the largest abundance of eggs was from the

spawning ground at “Aspevågen.” However, in the other years,

the abundances of eggs were similar among the sampled regions.

The PanI estimates indicated that the majority of the eggs

sampled within the three localities inside the MPA, as well as in

Hessafjorden, originated from NCC spawning in all four years

sampled and that the NEAC contribution was typically<30%

(Figure 6). Furthermore, with a few exceptions, no clear differ-

ence in the fraction of NEAC in the egg samples was observed

among the four locations (except for data from 2015). Thus, the

relative contribution of NEAC to the egg recruitment was similar

within and immediately outside the MPA. Collectively, these data

demonstrate that NEAC may spawn at all three locations within

the MPA, as well as in Hessafjorden outside the MPA, but never-

theless, egg production in this region predominantly originates

from NCC spawning.

A comparison of the NEAC fraction in eggs from the four loca-

tions with the adult cod sampled in the same years indicated that

the fraction of NEAC adults in Hessafjorden was larger than that

in the eggs (compare Figures 3 and 6). For example, late March

estimates in adults and eggs in Hessafjorden in 2013–2015 indi-

cated that adults were typically 40–60% NEAC (Figure 3), but

estimates of NEAC eggs were approximately half (Figure 6).

Comparison of PanI- and SNP-based assignments
Nine hundred and two eggs and adults were genotyped with 39

SNPs, in addition to PanI, to compare the two methods. We suc-

cessfully genotyped 364 of 419 adults, and 455 of 483 eggs while

permitting up to a maximum of 20% missing SNP data per indi-

vidual (Figure 5; Table 1). LD was observed among the 11 SNP’s

in LG1and PanI, in the NEAC reference sample (22 of 66 pairwise

comparisons), but the few LD observed (below 5%) in the MPA

and Hessafjorden samples were randomly distributed. Positive

correlation was found between the PanIB allele and the number of

linked SNP’s (Pearson r¼ 0.83, p< 0.001) in the total SNP

dataset.
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Similar assignments of two clusters (K¼ 2) were observed with

Geneclass 2.0 and STRUCTURE (Pearson r¼ 0.82, p< 0.001).

Based on this result, we used only STRUCTURE to estimate

further assignments. The NEAC from the Barents Sea were all

assigned to one cluster together with some fish from the Godøy

and the MPA samples (green bars in Supplementary Figure S1).

The threshold for assigning individuals to NEAC and NCC was

set to a Q-value of 0.7 and 0.3, respectively. Only small differences

were observed in the estimates between adults and eggs. The level

of differentiation between the NEAC and NCC group on the basis

of the SNP markers was highly significant based on the SNPs

from both LG1 (FST¼ 0.31, p< 0.001) and LG2–16 (FST¼ 0.24,

p< 0.001). Individuals assigned to the second cluster were

interpreted as NCC (red bars in Supplementary Figure S1).

The frequencies of the PanI genotypes (AA, AB, and BB) for each

of the fish groups assigned to NEAC and NCC are presented

(Table 2).

For the PanI genotype frequencies on the basis of the SNP

assignment, we grouped the 6900 fish into NEAC and NCC and

obtained an independent estimate of NEAC in the catches of

adult cod (filled symbols: Figure 3) and the egg samples (filled

symbols or red lines: Figure 6). We found a high correlation

Figure 3. Estimated fraction NEAC in the catches from Hessafjorden, located just outside the MPA. Samples from within the MPA
(Aspevågen, Borgundfjorden, and Åsefjorden) were collected in some year and in 2013 also outside Hessafjorden (Godøy see Figure 2). The
estimated fraction is on the basis of Equation (1) (open symbols) and Equation (2) (filled symbols)—see text for details. The hatched line
represents error rate: the a¼ 0.05 (upper line) and a¼ 0.10 (lower line). The horizontal dotted line shows 70% (for details see text).
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between the estimated fraction of NEAC based upon the SNP

assignment and by using PanI directly (Pearson r¼ 0.99, p< 0.001).

Comparison of PanI and otolith-based assignment
The 847 cod for which both PanI and otoliths were sampled were

primarily captured in Hessafjorden. A high correlation was

observed between the PanIAA genotype and the fraction of NCC

estimated with otoliths, and between the PanIBB genotype and the

fraction of NEAC estimated otoliths (Table 3). The large number

of individuals with both PanIAA and otolith type 1 is evidence

of a high fraction of NCC. In general, assignments based

on genetic information alone (Table 2) were correlated with

assignments based on otolith morphology (Table 3). An ideal

correspondance between PanI and otolith typing would give few

fish in otolith assumed uncertain NCC (type 2) or assumed

uncertain NEAC (type 4). Among fish with otolith type 4, the

PanIAA, allele occurred with a frequency of 50%, indicating the

uncertainty of genetic classification. However, only 20 fish were

classfied as type 4 so this conclusion may be weak.

Discussion
Increased regulation of harvest is a natural consequence of man’s leg-

acy of over-exploitation of many of the world’s fisheries. As a com-

ponent of this, MPAs can provide fish with a safe haven, which may

result in recruitment and spillover effects into neighbouring seas

(Villegas-Rios et al., 2017). However, when MPAs contain both frag-

ile resources in need of protection, as well as resources which could

in-principle be sustainably harvested, commercial, and biological

interests may conflict. The “real-time” genetic monitoring described

here provides a tool to help manage this conflict in the MPA and

neighbouring seas. Some of the salmon fisheries in the North Pacific

have been actively managed using similar approaches for several dec-

ades (Schwartz et al., 2007; Dann et al., 2013; Larson et al., 2014).

However, together with the commercial NEAC/NCC fishery in oper-

ation in Lofoten, northern Norway, which we also are managing by

“real-time” genetic methods (G. Dahle and T. Johansen, unpublished

data), the programme described here represents the only marine

fishery managed “real-time” in the Atlantic to our knowledge.

Has the MPA been successful?
The monitoring programme presented here was designed to

provide the Norwegian Directorate of Fisheries with the ability

Figure 4. Estimated yearly average fraction of NEAC for March
(solid line) and April (broken line) in the commercial catches from
Hessafjord, located just outside the MPA, in the period 2009–2015.
This is based upon the capture of more than 6500 adult cod
analysed with the locus PanI.

Figure 5. Estimated abundance of stage-I cod eggs sampled throughout the spawning season at three locations within the MPA (Aspevågen,
Bogundfjorden central, Åsefjorden), in addition to Hessafjorden just outside the MPA. Peak spawning in all years was towards the end of
March. No eggs were sampled in 2014.
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to open the MPA for commercial harvest, if the proportion of

the cod in the fishery just outside the MPA exceeded a 70%

NEAC contribution. While there was an increase in NEAC frac-

tion during 2009–2014 (Figure 4), it never exceeded 70% for

any sustained period in any of the years (Figure 3). In 2016, the

fraction of NEAC did not exceed 20% throughout the spawning

period. Therefore, the MPA remained closed, thus fulfilling the

primary objective of protecting the NCC stock component from

potential overharvest within the MPA. For this primary objec-

tive, the programme has been a huge success and is still in

operation.

While the monitoring programme has been a success from a

fishery-regulation point of view, it is pertinent to ask whether the

MPA established in Borgundfjord since 2009 has led to an

increase in NCC in the region. This was not evaluated in the

present study. Nevertheless, in March and April each year, NCC

was the most abundant of the cod stocks in the MPA (based

upon samples from the MPA itself and immediately outside in

Hessafjorden), and not least, egg production in the MPA was

clearly dominated by NCC during peak spawning in this area

(Figures 5 and 6). If the MPA had been opened to commercial

harvest at this time, a large number of NCC, which provide most

Figure 6. Estimated fraction of NEAC in samples of eggs collected in 4 years from spawning locations within the MPA (Aspevågen,
Åsefjorden, and Borgundfjorden central), and in Hessafjorden, throughout the spawning season. The estimated fraction is on the basis of
Equation (1) (open symbols) and Equation (2) (closed or filled symbols)—see text for details. The hatched line represents the a¼ 0.05 (upper
line) and a¼ 0.10 (lower line) for the PanI method. See text for details. The horizontal dotted line: 70%.

Table 2. Pan genotypes (in numbers) shown for NEAC and NCC as
classified by 39 SNP loci as assigned by STRUCTURE (Pritchard et al.
2000).

Genotype NCC NEAC Total % NEAC

Adult
PanIAA 213 5 218 20
PanIAB 7 11 18 61
PanIBB 4 45 49 91

Total (n) 224 61 285 –
Egg

PanIAA 258 3 261 1
PanIAB 6 10 16 61
PanIBB 1 17 18 94

Total (n) 265 30 295 –

The cod were classified into NEAC and NCC for both adult cod and eggs.
% NEAC, percent among the PanI genotypes.

Table 3. For 857 cod collected for genetic analyses we also collected
otoliths.

Otholith type

NCC NEAC

Genotype 1 2 4 5 Total (n) % NEAC

PanIAA 464 20 10 18 512 5
PanIAB 101 7 5 63 176 39
PanIBB 13 3 5 138 159 90
Total (n) 578 30 20 219 847 –

On the basis of Rollefsen (1933) the otoltith typing 1 and 2 is in assessment
assigned NCC and 5 and 4 assigned to NEAC. The table compare the assign-
ment of cod on the basis of otoliths with PanI genotypes. High correlation
was observed between genotype PanIAA common in NCC and PanIBB most
common in NEAC as in Wennevik et al. (2008). % NEAC, percent among the
PanI genotypes.
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of the recruitment in the MPA, would have been harvested and

thus the overall recruitment of NCC would have been reduced in

the region.

Catchability of cod is greater during spawning due to the

aggregation of individuals. In general, reducing fishing pressure

in a spawning area can benefit fish populations by reducing mor-

tality directly (Gruss et al., 2014), and by reducing disturbance

(Morgan et al., 1997). Clarke et al. (2015) protected a spawning

ground for local cod west of Scotland, but found no effect in

terms of abundance, biomass, and reduced mortality. They indi-

cated that this may have been due to the bycatch of juvenile cod

in the local Nephrops fishery, and further suggested that efforts to

halt the decline in the local cod stock may have been too late.

Continuation of our NEAC/NCC time series in Borgundfjord is

imperative to be able to evaluate the status of the NCC stock in

the MPA. However, this would have to be combined with other

methods of assessing success, such as estimates of adult abun-

dance in the region, and estimates of the local spawning stock

biomass on the basis of egg abundance combined with genetic

analyses as described here. This work is in progress and provides

a non-invasive and cost-effective way to measure spawning stocks

in coastal areas. In the meantime, redirection of the commercial

fleet to areas and seasons that optimises the match between quota

and actual catch by stock is encouraged.

The observed discrepancy between adult abundance and
egg recruitment
The monitoring programme implemented in this study has not

only permitted regulation of the fishery and its potential influence

with the MPA, but has also revealed insights into the interaction

between NEAC and NCC in this region in time and space. One of

the most striking results is that the estimated fraction of NEAC in

the eggs sampled was consistently lower than the estimated frac-

tion of NEAC in the adults in the same period, both within the

MPA and in Hessafjorden (compare Figures 3 and 6). To illus-

trate, the estimated fraction of NEAC in the adult catch in

Hessafjorden in 2013–2015 was typically 40–60% during late

March during peak spawning in the area (Figure 5). In contrast,

the estimated fraction of NEAC in the predominantly stage-1

eggs recruited in Hessafjorden at the same time was typically less

than 20–30% (Figure 6). This reflects about a�2-fold discrepancy

between the estimated fraction of NEAC adults in the region and

the estimated contribution of NEAC eggs.

There may be several potentially interlinking factors influenc-

ing the discrepancy between adults and eggs. We suggest that the

most likely explanation is that while NEAC do indeed migrate

into Hessafjorden and the MPA, and to some degree overlap on

the spawning grounds with NCC in this region, many of the

NEAC caught in this area may have migrated back out to the

outer-coastal areas to spawn in areas such as Ona, Ulla, and

the region between Svinøy and Fauskane, which are known

spawning grounds for NEAC (Figure 2). Earlier, it was assumed

that NEAC and NCC shared the same spawning grounds in this

region (Godø, 1977). A way of testing this could be to tag indi-

vidual cod captured in the MPA, and see if any are recaptured in

the commercial fishery on these known spawning banks in the

outer coastal areas.

Peak NCC spawning seems to take place 23–24 March each

year. The spawning peak of NEAC, as estimated in Lofoten, is

later and varies little between years (Olsen et al., 2010). This may

be the first indication that time of spawning is different between

NEAC and NCC. An extensive egg sampling regime could be

used to look for potential differences in timing and location of

NEAC and NCC spawning-recruitment in the Møre area.

Previous time series have followed the development of a popu-

lation on the basis of juvenile cod within a fjord system in the

south of Norway by sampling the sites once a year (Knutsen et al.,

2003; Knutsen et al., 2011), but not to the same extent by collect-

ing adults and egg during the whole spawning period as in the

present study. Clarke et al. (2015) evaluated spawning grounds

for cod west of Scotland (without DNA sampling), but did not

collect egg samples. In our study, we collected egg samples over 3

months in 4 years. Although we observed increased amount of

cod eggs (Figure 4) we did not see increased fractions of NEAC

(Figure 6). Even though we observe some increase of egg produc-

tion within the MPA, more research is needed to evaluate

whether the number of NCC spawners is really increasing.

Temporal increase in estimated NEAC fraction
The estimated fraction of NEAC captured in the commercial fish-

ery in Hessafjorden displayed a distinct increase with time in

the period 2009–2014 (Figure 4). This trend coincides with the

increase in the NEAC spawning stock biomass measured in the

Barents Sea by ICES (ICES, 2015c).

NEAC migrate from coastal areas of Norway where they are

recruited, to the Barents Sea for feeding, and then back to the

Norwegian coastline to spawn (Olsen et al., 2010). Each year, we

observed an increase in the estimated NEAC fraction in

Hessafjorden from February onwards, with a peak in late March.

The timing of the NEAC “arrival” in this region overlaps with the

peak in the estimated NEAC fraction in Lofoten, northern

Norway (G. Dahle and T. Johansen, unpublished data, see Figure 2).

single-stock of NEAC could in principle explain why we appear to

observe a temporal increase in NEAC fraction in multiple areas

simultaneously both within and among years. To test this theory,

more extensive genetic comparisons between NEAC captured on

the spawning grounds in different areas of Norway is required.

Methodological validation
The high correlation between PanI genotypes and assignments

with SNP markers strongly supports that the PanI locus is a good

indicator of NEAC/NCC fraction in the catch, and can be used to

rapidly estimate this in both adult and egg samples. The PanI

SNP is found in LG1 and appears to be linked to a cluster of

more than 500 genes (Kirubakaran et al., 2016) of which we

included 11 loci in our SNP panel. Similar differentiation between

NEAC and NCC is also observed in other linkage groups as LG2,

LG7, and LG12 (Hemmer-Hansen et al., 2013; Berg et al., 2016),

but only the cluster of SNPs in LG1 is assumed to be linked to

adaptation in NEAC. We therefore tested the eleven SNPs found

in LG1 combined with the 28 assumed neutral SNPs from the

other LGs when assigning individual cod to NEAC and NCC for

identifying the local PanI frequency. We demonstrated that both

panels show similar estimates of NEAC (Figures 3 and 6; Table

2). This is supported by a recent study which found similar differ-

entiation between NEAC and NCC both by assumed selective and

neutral markers on the basis of a panel of more than 9000 SNPs

(Berg et al., 2016).
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Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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