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Abstract. Weather and climate models have improved steadily over time as witnessed by objective skill scores,
although significant model errors remain. Given these imperfect models, predictions might be improved by
combining them dynamically into a so-called “supermodel”. In this paper a new training scheme to construct
such a supermodel is explored using a technique called cross pollination in time (CPT). In the CPT approach
the models exchange states during the prediction. The number of possible predictions grows quickly with time,
and a strategy to retain only a small number of predictions, called pruning, needs to be developed. The method
is explored using low-order dynamical systems and applied to a global atmospheric model. The results indicate
that the CPT training is efficient and leads to a supermodel with improved forecast quality as compared to the
individual models. Due to its computational efficiency, the technique is suited for application to state-of-the art
high-dimensional weather and climate models.

1 Introduction

Weather and climate models remain imperfect despite con-
tinuous model development. For example at middle to high
latitudes, the simulated zonal wind stress maximum averaged
over an ensemble of state-of-the-art climate models lies 5 to
10◦ equatorward of observationally based estimates, which
means that on average the midlatitude winds are too strong
in the current models (IPCC, 2013).

Improving the models is a large research effort. A demand-
ing aspect is that there are many uncertain parameters and
approximations because not all physical processes are explic-
itly resolved. To model and tune all of these aspects requires
a huge computational effort. Even if the optimal solution can
be achieved, imperfections remain due to the complexity of
the climate system with interactions across scales over many
orders of magnitude. In order to improve predictions, it often
helps to average across model outcomes as model errors tend
to average out. Branicki and Majda (2015) provide some ev-
idence that this multi-model ensemble method (MME) does
indeed improve predictions under certain conditions. How-
ever, it is not straightforward which imperfect models and
what weights should be used for the MME forecast. Because

of this, almost all operational MME predictions are based on
equal weights.

In contrast to the standard MME, an alternative approach
is to let models exchange information during the simula-
tion which leads to new solutions. If the models complement
each other, these solutions potentially stay closer to the ob-
served trajectory than the trajectories of the imperfect mod-
els individually. Hence, both the short-term predictability and
the climate statistics will improve. The MME approach only
combines trajectories from an ensemble of models after the
simulation. This can lead to improved estimates of, for in-
stance, the true mean state. It cannot, however, produce tra-
jectories that remain closer to observed trajectories as com-
bining trajectories of different models leads to smoothing.

A successful approach of combining models is found in
van den Berge et al. (2011), where combining models into
one large supermodel (SUMO) by prescribing connections
between model equations is proposed. The connection co-
efficients are learned from historical observations. The opti-
mization of the coefficients is achieved by minimizing a cost
function. In Wiegerinck et al. (2013), it is noted that the size
of these coefficients is typically very large. If the connection
coefficients are large enough, the system will quickly syn-
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Figure 1. Cross pollination in time for three models, without pruning (a) and with pruning (b).

chronize into a joint state. This joint state can be described
as a weighted superposition of the imperfect models referred
to as weighted SUMO.

Since the minimization of a cost function can be computa-
tionally very expensive, we propose a new procedure in this
paper to construct such a weighted superposition of imperfect
models. The weights are learned from observed trajectories.
This new learning process is based on an idea proposed by
Smith (2001): cross pollination in time (CPT). CPT “crosses”
different model trajectories in order to create a larger solution
space with trajectories that potentially follow the observed
evolution more closely.

Our training method for a weighted supermodel is devel-
oped using the Lorenz 63 system (Lorenz, 1963) following
the perfect-model approach. The model with standard pa-
rameter values generates observations and imperfect models
are created by perturbing the parameter values. Next, we ap-
ply the method to a more chaotic and realistic global atmo-
spheric model with 1449 degrees of freedom by Marshall and
Molteni (1993).

Section 2 of this paper explains the training by cross pol-
lination. Applications of the method are described in Sect. 3
for the Lorenz 63 system and in Sect. 4 for the global at-
mospheric model. The final section discusses the results and
provides an outlook to apply the developed approach to state-
of-the-art models.

2 Training the supermodel

We assume that we have an observed trajectory, called the
“truth”. The training phase of CPT starts from an observed
initial condition in state space. From this initial state, the im-
perfect models run for one time step each ending in a dif-
ferent state (Fig. 1a). From these endpoints all models run

again. Continuing this process leads to a rapid increase in the
number of predictions with time. A larger region of the state
space thus can be explored. In order to retain only a small
number of predictions, a pruning step is required. We choose
to continue only those predictions that remain closest to the
truth; the others are discarded, as depicted in Fig. 1b.

2.1 Determining weights

In the training phase, for each model, it is counted how often
for a particular variable its prediction remains closest to the
truth. The probabilities thus obtained can be used as weights
for the corresponding time derivatives of the variables. This
superposition of weighted imperfect models forms a super-
model which potentially has improved prediction skill.

2.2 Iterative method

In order to obtain convergence towards a supermodel that re-
flects the truth in the best possible way, the training is car-
ried out iteratively. The first iteration step leads to a first esti-
mate of the weights of the supermodel. In the second iteration
step, this supermodel is added as an extra imperfect model.
In the subsequent iteration steps, the previously obtained su-
permodel is replaced by the newly obtained supermodel. If
the added supermodel is closer to the truth than the initial
imperfect models, the constructed trajectory in the CPT pro-
cedure receives fewer contributions from the initial imperfect
models. Ideally, learning stops when the supermodel remains
closer to the truth than the individual imperfect models for all
time steps during the training.

Earth Syst. Dynam., 8, 429–438, 2017 www.earth-syst-dynam.net/8/429/2017/



F. J. Schevenhoven and F. M. Selten: An efficient training scheme for supermodels 431

 0

 10

 20

 30

 40

 50

z

Lorenz 63, before training (m   odel 1)

Truth
Model 1

z

(a)

 0

 10

 20

 30

 40

 50

 60

z

Lorenz 63, before training (m   odel 2)

Truth
Model 2

z

(b)

Figure 2. Trajectories of the imperfect models (purple), together with the true trajectory (green).

Table 1. Standard and perturbed parameter values for the Lorenz
63 system.

σ ρ β

Truth 10 28 8/3
Model 1 12.25 19 3.3
Model 2 7.5 35 1.9

3 Results Lorenz 63

In the Lorenz 63 system, a chaotic attractor appears for cer-
tain parameter values. The attractor has the shape of a butter-
fly and each “butterfly wing” contains an unstable fixed point
at its center, around which the trajectories alternately revolve
in an unpredictable pattern. The differential equations of the
system contain system parameters σ,ρ and β. The state space
is described by coordinates x,y,z (Eqs. 1–3).

ẋ = σ (y− x) (1)
ẏ = x(ρ− z)− y (2)
ż= xy−βz (3)

The standard parameter values are σ = 10, ρ = 28 and β =
8/3. Numerical solutions are obtained by using a fourth-
order Runge–Kutta time stepping scheme, with a time step
of 0.01.

The observed trajectory is generated by the model with
these standard parameter values. Two different imperfect
models are created with parameter values that deviate about
30 % from the standard parameter values, as denoted in Ta-
ble 1. In the Appendix it is explained why only two different
imperfect models are considered and how the imperfect pa-
rameter values are chosen.

The behavior of these imperfect models is quite different
from the truth as can be seen in Fig. 2. Two stable fixed points
characterize the attractor of model 1. Model 2 has a chaotic
attractor that resembles the truth, but its mean is shifted to-
wards higher z values.

Table 2. Weights of the supermodel of the Lorenz 63 system.

Model wx
i

w
y
i

wz
i

i = 1 0.5248 0.4385 0.5491
i = 2 0.4752 0.5615 0.4509

The training period T is chosen to be 200 time steps,
enough to revolve about two times around the unstable fixed
points. The number of iterations is 100. The same part of the
attractor is used for training in every iteration.

The weights wi , i ∈ {1,2} that are the result of the training
phase are listed in Table 2. They determine the superposition
of the imperfect models (Eqs. 4–6). For all three coordinates
x,y,z, they sum up to 1.

ẋsuper =

2∑
i=1

wxi ẋi (4)

ẏsuper =

2∑
i=1

w
y
i ẏi (5)

żsuper =

2∑
i=1

wzi żi (6)

After 45 iterations, the weights for ẏ and ż do not change
anymore. The weights for ẋ after 100 iterations are still not
constant, but the values differ only from the third decimal
onwards.

In the case of the Lorenz 63 system, the superposition of
the imperfect Lorenz 63 models again forms a Lorenz 63 sys-
tem because the parameter values σ , ρ, β appear linearly in
the differential equations. Hence, the supermodel is a Lorenz
63 system for which the parameter values can be calculated.
The supermodel parameters are almost perfect, as is shown
in Table 3. This is possible because for all three perturbed
parameters, one of the models has an imperfect parameter
value smaller than the standard parameter value and the other
model has one that is larger (Table 1). Hence, for each of
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Figure 3. Trajectory of the supermodel (blue), together with the
true trajectory (green).

Table 3. Parameter values of the truth and the supermodel.

σ ρ β

Truth 10 28 8/3
Supermodel 9.993 27.983 2.669

the parameters, one can find a linear combination of the im-
perfect parameter values with positive weights whose sum
is equal to 1, which represents the standard parameter value
(Eqs. 7–9).

σsuper =

2∑
i=1

wxi σi (7)

ρsuper =

2∑
i=1

w
y
i ρi (8)

βsuper =

2∑
i=1

wzi βi (9)

If this supermodel is integrated for a long time period, the
attractor of the supermodel and the truth look quite similar,
as can be seen in Fig. 3.

3.1 Climate measures

Straightforward measures to compare the attractor of the su-
permodel and the truth are the mean, standard deviation and
covariance. The calculation of these statistics is based on 500
runs of 5000 time steps. The error estimation of a 95 % confi-
dence interval is also calculated. In Table 4, it can be seen that
the statistics of both the true and the supermodel attractor are
very similar. In particular, the standard deviations for each of
x,y and z are the same up to the first decimal. The largest
differences are in the covariance between x,z and y,z. How-
ever, these differences are within the 95 % uncertainty inter-
vals and are thus not significant. The sizes of all confidence
intervals for both the truth and the supermodel are almost
identical.

Figure 4. Measure of the forecast quality. At times ti a short inte-
gration of time T starts from observed initial conditions and slightly
perturbed conditions. The fixed time interval between times ti is de-
noted by d .

Table 4. The mean, standard deviation (SD) and covariance for
the truth and the supermodel. The 95 % error estimation is given
in brackets.

Truth Supermodel

Mean x 0.073 (0.099) 0.033 (0.098)
Mean y 0.073 (0.099) 0.034 (0.098)
Mean z 23.552 (0.012) 23.528 (0.012)

SD x 7.843 (0.010) 7.844 (0.009)
SD y 8.939 (0.011) 8.942 (0.010)
SD z 8.618 (0.012) 8.623 (0.012)

Cov. xy 61.529 (0.150) 61.547 (0.148)
Cov. xz 0.189 (0.266) 0.057 (0.268)
Cov. yz 0.247 (0.336) 0.109 (0.334)

3.2 Forecast quality

Along with the measures of the climate statistics of the mod-
els, a measure for the quality of the “weather prediction” can
also be constructed. This measure reflects the forecast quality
of the models on shorter timescales. The squared Euclidean
distance between the true trajectory and the trajectory of a
model with a slightly perturbed initial condition is calculated
and averaged over a number of forecasts, as shown in Fig. 4.
On the true attractor, this value converges for large enough a
forecast time T to a value corresponding to the average dis-
tance between two arbitrary states. This distance is used to
normalize the measure of the forecast quality.

The initial perturbation is chosen in the order of 10−1. The
number of forecasts is equal to 1000, and the distance be-
tween the initial states d is 10 time steps. Figure 5 shows
that the ability of the supermodel and the true model to pre-
dict the observed truth is about the same. In comparison, the
imperfect models lose their prediction skill very quickly.
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Figure 5. Forecast quality of the imperfect Lorenz 63 models (purple) and the supermodel (blue) compared to the true Lorenz 63 model
(green).

Table 5. Parameter values of the imperfect QG models.

τE R1 R2

Truth 2.0 0.1150 0.0720
Model 1 1.5 0.1165 0.0705
Model 2 1.5 0.1130 0.0725
Model 3 2.4 0.1130 0.0705
Model 4 2.4 0.1165 0.0725

4 Results for a quasi-geostrophic model

Given the encouraging results from the Lorenz 63 system, the
CPT method is next applied to a more complex model with
1449 degrees of freedom: a three level quasi-geostrophic
(QG) global atmosphere model developed by Marshall and
Molteni (1993). The model solves the quasi-geostrophic
potential vorticity equation on the sphere using a spectral
method with spherical harmonic functions. A triangular T21
truncation is used. The performance of this model is quite
realistic. According to Corti et al. (1997), the simulation of
teleconnections and blockings in the Pacific and Atlantic re-
gions is “surprisingly accurate”. The evolution of the quasi-
geostrophic potential vorticity at the three levels is given by

q̇1 = J (ψ1,q1)−D1(ψ1,ψ2)+ S1, (10)
q̇2 = J (ψ2,q2)−D2(ψ1,ψ2,ψ3)+ S2, (11)
q̇3 = J (ψ3,q3)−D3(ψ2,ψ3)+ S3, (12)

where q is the potential vorticity, ψ the stream function,
D(ψ) a linear operator that represents dissipative terms and S
a constant potential vorticity (PV) source. The index i refers
to the pressure level. Here, the potential vorticity is defined
as

Table 6. Weights of the imperfect QG models at 200, 500 and
800 hPa.

Model w200
i

w500
i

w800
i

i = 1 0.653 0.217 0.093
i = 2 0.347 0.459 0.235
i = 3 0.000 0.157 0.215
i = 4 0.000 0.167 0.457

q1 =∇
2ψ1−R

−2
1 (ψ1−ψ2)+ f, (13)

q2 =∇
2ψ2+R

−2
1 (ψ1−ψ2)−R−2

2 (ψ2−ψ3)+ f, (14)

q3 =∇
2ψ3+R

−2
2 (ψ2−ψ3)+ f (1+

h

H0
), (15)

where f is the Coriolis parameter, R1 and R2 are the Rossby
radii of deformation of the 200–500 and 500–800 hPa layer,
respectively, h is the orographic height, and H0 is a scale
height. To create different imperfect models, three parameter
values are varied:

– τE – timescale in days of the Ekman damping (τE in
Eq. A11 of Marshall and Molteni, 1993)

– R1 – Rossby radius of deformation of the 200–500 hPa
layer

– R2 – Rossby radius of deformation of the 500–800 hPa
layer.

Four different imperfect models are used for the CPT train-
ing phase; their parameters are denoted in Table 5. The im-
perfect values of the Rossby radii of deformation are chosen
to differ only a few thousandths from the true value since
even a small deviation leads to very different behavior of the
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model. Numerical solutions are obtained by using a fourth-
order Runge–Kutta time stepping scheme, with a time step
of 1/36 day.

The training period T is 100 time steps, which corresponds
to an integration period of about 3 days. Most of the develop-
ment of weather systems can be captured within 3 days. The
number of iterations is 20. With every iteration, a new part of
the attractor is used for training by continuing the observed
trajectory to get a better sampling of the attractor.

In Table 6 the resulting weights for the different levels are
shown. After 20 iterations, the weights are not completely
converged, they differ by a few percent per iteration, but there
is no increasing or decreasing trend. Note that at the 200 hPa
level the superposition of models consists solely of model 1
and model 2. The only parameter with imperfections affect-
ing this level is R1, and the imperfect value of this parameter
is equal for models 1 and 4. The same holds for models 2 and
3. Since at every time step in the CPT training, every model
receives the same state, the tendencies of models 1 and 4 are
the same at this level and the same holds for models 2 and 3.
Therefore the corresponding weights of models 3 and 4 are 0
since these are never chosen during the CPT training.

In an additional experiment we left out the imperfect
model with the poorest short- and long-term predictability
in order to test the hypothesis that the addition of a relatively
bad model can still improve the quality of the supermodel so-
lution. The same imperfect models are used. The model with
the poorest predictability is model 1 (Table 7), so the super-
model is constructed out of models 2, 3 and 4. Note that these
three models still span the same uncertainty range in the three
parameters. The same CPT training phase is applied.

The CPT training provides weights that determine a su-
perposition of models that is capable of following observed
trajectories more closely. But to what extend do the values of
these weights matter? Is training really necessary? In order
to assess this, we evaluated the quality of a supermodel with
equal weights given to each imperfect model in the superpo-
sition.

4.1 Climate measures

As measure of the long-term behavior of the quasi-
geostrophic model we choose to compare the geostrophic
winds of the different models. The potential vorticity cal-
culated by the model determines these winds. The true
model, imperfect models and supermodel are integrated over
900 days in a perpetual winter simulation.

As statistical measure (RMSE), the errors in the 900-day
average wind strength at the 200, 500 and 800 hPa level at
each location are averaged over the globe:

RMSE=

√√√√ 1
N

N∑
i=1

(‖utruth
i ‖−‖u

mod
i ‖)

2,

with i denoting the grid point, u the zonal wind, v the merid-
ional wind and N the total number of grid points.

We take a Monte Carlo approach to assess the uncertainty
of the RMSE values. For 98 different initial conditions, a tra-
jectory of 900 days is computed with the true model. Then
the RMSE is calculated for these trajectories with respect to
one other true trajectory of observations. The 95 % percentile
of these values is listed in Table 7. This table reveals that,
with respect to this climate measure, the supermodel is indis-
tinguishable from the true model. The RMSE values of the
imperfect models are significantly larger. Note that the super-
model was not trained to reproduce the observed mean state,
but apparently training on a 3-day timescale is sufficient.

The RMSE values of the supermodel without the inclusion
of the worst model are comparable with the values of the
second-best imperfect model (model 4). The RMSE values
of the equally weighted supermodel are even worse.

4.2 Forecast quality

As was done for the Lorenz 63 system, the forecast quality
can be measured by calculating the mean squared error be-
tween the true trajectory and the trajectory of a model with
a slightly perturbed initial condition and then averaging this
over a number of forecasts. The mean squared error is taken
over all three levels and all spectral coefficients. The num-
ber of forecasts is 100, and the distance d between the initial
states is 1000 time steps. In Lorenz (1969) it is mentioned
that an initial perturbation in the smallest length scale leads
to large errors in all scales after 2 weeks. For that reason the
initial perturbation is chosen in the order of 10−4 as it leads
to an almost complete loss of predictability after 14 days.

The forecast quality of the supermodel is not as good
as that of the true model, but the supermodel greatly im-
proves the predictability as compared to the imperfect mod-
els (Fig. 6).

The forecast quality of the supermodel without the inclu-
sion of the worst model also improves compared to the im-
perfect models, but it is clearly not as good as the forecast
quality of the supermodel with the inclusion of this worst
model (Fig. 6). Thus, the inclusion of relatively bad models
can still contribute towards a superior supermodel.

The equally weighted supermodel turns out also to per-
form better than the imperfect models (Fig. 6) but signifi-
cantly worse than the supermodel with the weights trained
by CPT. Hence, training does add value to the quality of the
supermodel.

5 Conclusions

In this study we have demonstrated that a new training
method based on cross pollination in time leads to a dynami-
cal combination of forecast models (a weighted supermodel)
with superior forecast quality and improved climatology. The
CPT training is based on short-term trajectories only, but it

Earth Syst. Dynam., 8, 429–438, 2017 www.earth-syst-dynam.net/8/429/2017/



F. J. Schevenhoven and F. M. Selten: An efficient training scheme for supermodels 435

Table 7. The root mean squared error of the wind strength (m s−1) over 900 winter days. For the true model, the average RMSE is given.
The value for which 95 % of the RMSE values is below that value is given in brackets.

Model 800 hPa 500 hPa 200 hPa

Model 1 1.92 1.95 2.27
Model 2 1.80 1.37 2.31
Model 3 1.10 0.90 1.79
Model 4 1.42 1.36 2.06
True model 0.48 (0.65) 0.78 (0.92) 1.66 (2.05)
Supermodel 0.45 0.80 1.77
Supermodel equally weighted 1.56 1.51 2.63
Supermodel without worst imperfect model 1.42 1.38 2.09
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Figure 6. Forecast quality of imperfect QG models (purple), the QG supermodel (dark blue), the QG supermodel generated without the
worst imperfect model in forecast quality (medium blue) and the QG supermodel generated with equal weights (light blue) compared to the
forecast quality of the true QG model (green).

turned out that the errors in the climatology are also greatly
reduced. The results indicate that a supermodel with weights
trained by CPT can give significantly better predictions than
a supermodel consisting of the same imperfect models with
equal weights.

State-of-the-art models are far more complex than the ex-
amples from this paper, but in principle the approach is ap-
plicable to state-of-the-art models as well. With an increased
number of uncertain parameters, it is to be expected that more
imperfect models are required to construct a supermodel with
improved prediction skill. This will increase the amount of
computation time, but if during the CPT training, the num-
ber of trajectories is pruned back to a single prediction, the
computational cost of CPT grows only proportionally to the
number of imperfect models.

In this study the imperfect models differed in parameter
values only but were structurally identical. In reality, imper-
fect state-of-the-art weather models differ in structure, gener-
ally solving different equations on different grids using dif-
ferent numerical methods. In this case, methods from data
assimilation might be used in order to cross states between
models, as is done by Du and Smith (2017). Alternatively, a

common state space might be defined, with models project-
ing their states into this common state space and the CPT
training limited to this common state space.

In the case when a supermodel solution hardly improves
the prediction skill as compared to the imperfect models, one
might experiment with the introduction of an additional im-
perfect model that has in some sense the “opposite” error
behavior as compared to the other imperfect models. This
additional imperfect model can have worse prediction skill,
but it might still contribute to a superior supermodel solution.
For the quasi-geostrophic atmosphere model in this study, it
was demonstrated that a model with poor forecast quality still
contributed towards an improved supermodel.

A remarkable result of this study is that even if only a
relatively small part of the attractor is used for training, the
method results in a supermodel with improved climatology.
There is evidence in Rodwell and Palmer (2007) that clima-
tological errors develop quickly during the first few days of
weather forecasts, implying that short-term training can re-
duce climatological errors. If this result carries over to the
state-of-the-art models, then computationally expensive long
climate simulations as in Shen et al. (2016) can be avoided
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during training. Using relatively short integrations only can
still improve the climatology of a supermodel.

As indicated above, there are several ways to apply and
further develop the CPT training methodology presented in
this study. It is not only applicable to weather and climate
models but also to numerical models of other complex sys-
tems, for example economical or biological models. Cross

pollination in time as applied in this paper is a promising ap-
proach for combining models dynamically in order to further
improve predictions.

Data availability. No data sets were used in this article.

Earth Syst. Dynam., 8, 429–438, 2017 www.earth-syst-dynam.net/8/429/2017/



F. J. Schevenhoven and F. M. Selten: An efficient training scheme for supermodels 437

Appendix A

The supermodeling approach only works well if the im-
perfect models are on “opposite” sides of the truth. We
took this into account in the choice of the imperfections.
The imperfect values of the parameters and the number
of imperfect models is based on the convex hull principle.
In one dimension this convex hull principle basically says
that if there is one parameter value σ1 smaller than the true
value σ and one parameter value σ2 larger than the true
value, there are positive weights w1,w2 such that a linear
combination w1σ1+w2σ2 is exactly equal to σ . In the case
of Lorenz 63, the equations for ẋ, ẏ and ż each contain only
one parameter that appears linearly in the equation. Since we
apply different weights for the different equations for ẋ, ẏ
and ż, we need only two imperfect models per equation to
be able to reconstruct exactly the true parameter value with
positive weights. This convex hull principle can be extended
to more dimensions:

Definition. Let x1, . . .,xk be vectors in Rn and let λ1, . . .,λk
be nonnegative scalars whose sum is unity.
(a) The vector

∑k
i=1λix

i is said to be a convex combination
of the vectors x1, . . .,xk .
(b) The convex hull of the vectors x1, . . .,xk is the set of all
convex combinations of these vectors.

In this definition, the vectors xi, i ∈ 1, . . ..k represent the
imperfect parameter values x per model i and λi, i ∈ 1, . . .k
the corresponding weights. This convex hull generalizes
the “in between” concept for one dimension. To be able to
reproduce the n-dimensional vector x, it has to lie inside the
convex hull of vectors x1,x2, . . .,xk .

We can write this as a matrix–vector equation, where the
last row indicates that the sum of the weights has to be equal
to 1 and the vector x represents the true parameter values:
x1

1 x2
1 · · · xn+1

1
x1

2 x2
2 · · · xn+1

2
...

...
. . .

...

x1
n x2

n · · · xn+1
n

1 1 · · · 1




λ1
λ2
...

λn
λn+1

=

x1
x2
...

xn
1

 .

For parameter vectors of size n, we have n+ 1 constraints,
since the sum of the weights also has to equal 1. Hence, we
know that to be able to reproduce the true parameter vector
x, for n parameters that appear linearly in one differential
equation for a state variable, n+ 1 linearly independent vec-
tors of these parameters are needed which form a convex hull
around the true parameter vector.

For the quasi-geostrophic model, the imperfect parameters
do not appear linearly in the equations. Therefore, choosing
the parameter perturbations such that they form a convex hull
around the true parameter values will not necessarily result in
a model that reproduces the truth. Nevertheless, in practice
we found that this approach still worked well. In this case,
choosing the imperfect parameter values on opposite sides of
the truth created “opposite” behavior such that the imperfect
models could compensate for each other.
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