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Abstract 

Global warming is amplified in the cold and white Arctic, where strong positive 

feedback mechanisms associated with, e.g., changes in surface conditions and the 

vertical structure of the Arctic atmosphere enhance the warming. The Arctic sea ice 

cover is described as a sensitive indicator for global warming, despite substantial 

internal climate variability in the region. The contribution to Arctic climate change 

from the oceanic heat source – the deep Atlantic layer – is to a large extent unknown, 

as there are only sparse measurements of the upward heat fluxes from the ocean, and 

it is not well understood which factors make the heat fluxes vary, laterally and 

temporally. This is perhaps one of the last big unknowns in the Arctic climate puzzle.  

The Arctic warming has a distinct regional maximum where the winter sea ice 

decline and the surface warming are greatest. The northern Barents Sea is in this 

‘Arctic warming hotspot’ and here the warming extends high up into the lower 

atmosphere and deep down into the water column. The Arctic warming hotspot has 

been linked to large-scale changes in the atmospheric circulation and mid-latitude 

weather extremes. As a consequence of the warming, structural changes are observed 

in the Barents Sea ecosystem, a productive and complex Arctic-boreal shelf 

ecosystem, inhabiting both valuable commercial fish stocks and vulnerable sea ice-

associated marine mammals. The varying position of the sea ice edge in the Barents 

Sea is a complicating factor for activities across a range of sectors, including 

research, ecosystem management, fisheries, petroleum, shipping and tourism, and is 

therefore both a national and a geopolitical issue.  

The triggering factors and governing mechanisms for the ongoing rapid warming are 

not well understood, although increased heat losses to the atmosphere in autumn and 

winter is a likely consequence of the reduced sea ice cover. It is not known what role 

the ocean plays in the Arctic warming hotspot, and what the ongoing processes here 

can tell us about how the Arctic climate will develop as the planet become warmer. 

The northern Barents Sea has been monitored annually in joint Norwegian-Russian 

ecosystem surveys since the early 1970’s, resulting in unique data documenting the 
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changes in the Arctic. The data describes the entire water column’s interannual 

variability and development through five decades of climate change. In this thesis, the 

data set is employed to investigate the interaction between the sea ice cover and the 

three layers of the water column, the Surface-, the Arctic and the Atlantic layers, and 

how changes relate to other factors such as surface air temperature, surface wind 

patterns, upstream Atlantic Water temperature and sea ice import from the interior 

Arctic Ocean. With focus on the vertical water column structure, the objectives are to 

identify the key factors that control the vertical heat fluxes from the deep Atlantic 

layer towards the surface, and the key factors that maintain the stratification of the 

water column. The role of the ocean for the Arctic warming hotspot, the wider Arctic, 

and the global climate system is further discussed. 

The main findings of this thesis are that the intermediate, cold and fresh Arctic layer 

plays a key role in limiting the vertical heat exchange in the water column, and that 

the interannual variability of the Arctic layer salinity is a controlling factor for the 

strength of the vertical mixing and thus the upward fluxes of heat and salt from the 

deep Atlantic layer. The salt flux implies a freshwater input is needed to maintain the 

stratification. The sea ice import from the interior Arctic domain is the main 

freshwater input to the area, affecting the Barents Sea ice cover directly through 

adding ice, and indirectly through adding freshwater that maintains the stratification 

and makes the conditions for new sea ice growth favourable.  

A sharp decline in the sea ice inflow to the Barents Sea after ~2005 has resulted in a 

large, significant and comprehensive shift in the water column structure in the 

northern Barents Sea. By 2016, the water column had lost about one meter (40 %) of 

its normal freshwater content and was weakly stratified, much warmer, and with a 

very limited winter sea ice cover. If the sea ice import does not soon recover, the 

stratification in the northern Barents Sea will likely break down completely, and 

make the entire Barents Sea ice free all year round, with unknown consequences for 

the circulation, the water mass distributions and the ecosystem in the Barents Sea. 

The exact timing of such a breakdown is hard to predict due to substantial variability 

in the atmospheric forcing and the sea ice import, but given the rapidly declining 
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Arctic sea ice thickness and extent and reduction in thick, old ice in the Eurasian 

Basin, sufficiently large sea ice inflows to recover the stratification in the northern 

Barents Sea become less and less probable. 

The results of this thesis highlight the importance of the stratified boundary layers in 

the Arctic air-ice-sea column, limiting vertical exchange of properties. Local positive 

feedback mechanisms, in addition to less import of fresh water in the form of sea ice, 

have been found to be essential for the changes that have led to the Arctic warming 

hotspot. The mechanisms outlined in the thesis will continue to play a key role, when 

larger areas with cold, stratified and sea ice covered Arctic waters will transform to 

warmer, weaker stratified, seasonally ice-covered waters. The thesis shows that the 

present northern Barents Sea is in an unstable state that depends on regular freshwater 

input, and that stratification and distribution of freshwater are crucial aspects of the 

new Arctic on a warmer planet.  
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1. Introduction 

1.1 Global warming hotspot in the Arctic 

Since the prehistoric transition from hunting societies to agriculture societies ten 

millennia ago, humans have been blessed with a very stable climate (Feynman & 

Ruzmaikin, 2007). Due to our emissions of greenhouse gases and global warming, 

this is no longer the case. In the era of human history, climate has never changed 

faster (e.g., Houghton et al., 2001; Root et al., 2003; Walther et al., 2002). One of the 

key features of the rapid on-going global warming is that it amplifies in the cold and 

white Arctic (Figure 1), where longer melt seasons make the Arctic darker, and more 

incoming solar radiation is absorbed in the soil- and ocean surfaces (e.g., Manabe & 

Stouffer, 1980; Holland & Bitz, 2003; Screen & Simmonds, 2010; Serreze & Barry, 

2011). This so-called surface albedo feedback and temperature feedbacks related to 

characteristics of the Arctic atmosphere are two of many positive feedback 

mechanisms that causes the Arctic to warm about twice as fast as the global average 

(Serreze & Barry, 2011; Pithan & Mauritsen, 2014). Arctic amplification is also seen 

in paleoclimate records, and is recognised as an inherent characteristic of the global 

climate system (Serreze & Barry, 2011).  

 

 

 
 

Figure 1. Left panel: Global temperature anomalies for the period 2000–2009 rel. to the 1951–1980-

mean (NASA GISS). Right panel: Yearly surface temperature anomalies and trends for the Arctic 

(>64 °N; blue and red) and the entire globe (black) as indicated. Excerpt from Figure 2 in Comiso & 

Hall (2014), licensed under CC BY 3.0. 
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The Arctic sea ice cover is a highly sensitive climate variable that both responds to, 

and acts to amplify, human-induced global warming (Notz & Stroeve, 2016), but 

internal climate variability related to changes in the atmosphere (Ding et al., 2017) 

and to fluctuations in the ocean on multi-decadal time scales also significantly 

impacts it (Polyakov et al., 2002).The result is that the Arctic sea ice cover is rapidly 

becoming thinner, younger and more dynamic (e.g., Carmack et al., 2015; Figure 2), 

leading to increased heat flues to the atmosphere (Serreze et al., 2009) and maximum 

warming in autumn and winter (Screen & Simmonds, 2010; Bintanja & van der 

Linden, 2013). The rapid climate change in the Arctic brings large changes to Arctic 

indigenous societies and ecosystems adapted to the cold, harsh, light- and nutrient-

limited Arctic environment (e.g., Huntington et al., 2005; Nuttall et al., 2005; Hoegh-

Guldberg & Bruno, 2010). It also has socio-economic impacts across a range of 

sectors, including fisheries, oil and gas, shipping, tourism and research. Forecasting 

of the Arctic sea ice cover is therefore a matter of great interest and concern (Serreze 

& Stroeve, 2015).  

 
Figure 2. Linear decadal trends (red lines) and patterns of change in (a) anomalies in Arctic sea ice 

extent, (b) multiyear sea ice coverage on 1 Jan, and (c) sea ice thickness from submarine (blue), 

satellites (black), and in situ/electromagnetic surveys (circles); error bars show uncertainties in 

observations. Excerpt from Figure 1 in Carmack et al. (2015), ©2015 American Meteorological 

Society. 
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It is not known to which degree the poleward transports of heat in the atmosphere and 

the ocean are contributing to Arctic amplification (Pithan & Mauritsen, 2014). The 

oceanic heat import to the Arctic is with the poleward Atlantic Water flow, entering 

the Arctic Ocean in two branches, through the Fram Strait and via the southern 

Barents Sea. Both continue as subsurface flows below fresher, lighter upper layers 

eastwards in the Eurasian Basin (e.g., Schauer et al., 2002; Figure 3). The 

contribution from the oceanic heat source to the fast-declining Arctic sea ice cover is 

to a large extent unknown, but has been proposed to be modest or negligible owing to 

its subsurface presence below the cold halocline (Aagaard et al., 1981). Recently, 

however, considerable upward heat fluxes from the deep Atlantic layer have been 

observed along the Eurasian Basin margins (Polyakov et al., 2012c; Polyakov et al., 

2013). The “heat in the deep” may become increasingly important in the development 

towards a new Arctic (Carmack et al., 2015; Polyakov et al., 2017), and knowledge of 

the factors that control variability in the upward heat fluxes in the stratified interior 

Arctic Ocean is needed (Carmack et al., 2015).  

 

Figure 3. Schematic of the circulation in the Arctic Ocean from Carmack et al. (2015), modified 

from Polyakov et al. (2012a), showing the circulation of the Atlantic Water (red and pink), surface 

water (blue) and intermediate Pacific Water (dashed), ©2015 American Meteorological Society. 
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The largest decline in winter sea ice cover, and strongest increase in surface 

temperatures, in the Arctic are found in the northern Barents and Kara Seas (Screen 

& Simmonds, 2010; Comiso & Hall, 2014; Figure 4). In this ‘Arctic warming 

hotspot’, the warming extends into the lower atmosphere (Screen & Simmonds, 

2010) and throughout the entire water column (Lind & Ingvaldsen, 2012; Smedsrud 

et al., 2013). Stretching from seabed to surface and into the lower atmosphere, the 

warming hotspot is evidently a strong signal in the Arctic amplification pattern, and it 

has been linked to changes in the large-scale atmospheric circulation (Cohen et al., 

2014) and extreme mid-latitude weather (Petoukhov & Semenov, 2010), and causes 

structural ecosystem changes (Fossheim et al., 2015). Due to less sea ice and more 

absorption of heat in summer, warmer surface waters delay ice freezing and warms 

the lower atmosphere in autumn and winter in the northern Barents and Kara Seas, as 

also seen in many other areas in the Arctic (Screen & Simmonds, 2010). The 

mechanisms causing this region to have elevated warming are not well understood—

the role of the ocean largely unknown. What is triggering the rapid change here? Can 

we learn from the ongoing warming to deepen our understanding of the development 

towards a new Arctic on a warmer planet? And, has upward heat fluxes from the deep 

Atlantic layer played a part in the Arctic warming hotspot?  

 

 

 

Figure 4. Right panel: (a) Surface air temperature trends (°C decade−1) during Oct–Jan, 1989–2009, 

from observations (colored dots) and from ERA-Interim (shading). (b) Corresponding trends for sea 

ice concentration (% decade−1). Excerpt from Figure 2 in Screen & Simmonds (2010), ©2010 

American Geophysical Union. Left panel: Surface temperature trends for the entire Arctic using Aug 

1981–Nov 2012 advanced very high resolution radiometer (AVHRR) data. Excerpt from Figure 2 in 

Comiso & Hall (2014), licensed under CC BY 3.0. 
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1.2 Objectives of this thesis 

The Arctic Ocean is generally poorly observed, being largely inaccessible most of the 

year, but the northern Barents Sea is an exception, having been annually monitored 

since the early 1970s. The unique data set from the northern Barents Sea enables 

detailed studies of the interplay between the different layers of the water column and 

the sea ice cover during five decades of ongoing climate change in the Arctic water 

column, right in the centre of the Arctic warming hotspot. Here, the data set is applied 

to evaluate the role of the ocean in the warming, with focus on the water column 

structure, the processes that act to maintain or disintegrate the structure, and recent 

changes in it. The objectives of the thesis are (1) to describe the mean state and 

normal variability of the water column, (2) to identify key factors that determine the 

vertical heat fluxes from the deep Atlantic layer and maintenance of the stratification, 

and (3) to evaluate the role of the ocean and the processes that leads to the substantial 

changes observed in the region. The work was divided in three papers. First, the mean 

state, variability and distribution of water masses were described, with a focus on the 

deep Atlantic layer (Paper I). Next, the role of the intermediate Arctic layer was 

investigated (Paper II). Finally, the seasonal Surface layer, sea ice cover, heat and 

freshwater contents and the sea ice inflow to the region were studied, and recent 

disappearance of Arctic Water discussed (Paper III). Fundamental changes in the 

northern Barents Sea’s water column structure were found, and a conceptual scheme 

following the Atlantic Water flow into the Arctic was proposed, linking the vertical 

processes with lateral inflows of sea ice above and Atlantic Water below.  
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2. Background 

2.1 At the entrance to the Arctic 

The Barents Sea is the deepest and largest shelf-sea of the Arctic Ocean, situated at 

the entrance to the deep polar basin (Figure 5). The Barents Sea is ~1.6 million km2 

and has an average depth of 230 m, but the bathymetry is diverse with deep trenches 

cutting between several banks and islands (Figure 6). It is bordered by the Norwegian 

and Russian mainland’s in the south, the eastern steep continental shelf-slope towards 

the Norwegian Sea in the west, the Svalbard and Franz Josef Land archipelagos and 

northern continental shelf-slope in the north, and the far-stretched island Novaya 

Zemlya in the east. The Barents Sea is one of the two places where the poleward 

flowing warm and saline Atlantic Water – the main oceanic heat source in the Arctic 

– encounters the cold and stratified Arctic Ocean, the other direct encounter area is 

north of Svalbard (Figure 3).  

The Arctic Ocean is largely inaccessible throughout the year due to its perennial sea 

ice cover, and for centuries there where large white, undiscovered areas on the Arctic 

map. Scientists speculated that although ice-covered at the coasts they had visited, the 

interior Arctic could be warmer and have open water due to the inflow of the warm 

Atlantic Water (Rudels, 2012). The first major successful scientific exploration of the 

interior Arctic Ocean was the Fram expedition in the late 19th century, led by Dr. 

Fridtjof Nansen. His specially designed, modern research vessel at the time, “Fram”, 

was frozen into the ice-pack in the north-eastern Laptev Sea, and drifted across the 

Polar Basin over three years, 1893–96. Nansen found that the interior Arctic Ocean 

was a sea ice-covered, very cold and deep ocean, with Atlantic Water found as a 

subsurface layer underneath a lighter, thin layer of fresh and cold waters (Nansen, 

1902). He noted that the stratification made from this thin ‘Arctic layer’ isolated the 

heat of the deeper, denser ‘Atlantic layer’ from direct contact with the surface, 

thereby enabling sea ice to cover the interior Arctic Ocean. The Arctic environment is 

also recognized by its cold and dense lower atmosphere having increasing 

temperature with height (i.e., low-level inversion; Sverdrup, 1933; Serreze et al., 
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1992) and complex processes in its sea ice cover with ridging and rafting, melt ponds 

formation, snow cover and seasonal melt and growth cycles (e.g., Wadhams, 2000). 

The mean circulation of the wind-driven sea ice and surface waters are transpolar and 

anticyclonic, whereas the Atlantic layer has cyclonic circulations in all sub-basins 

(e.g., Rudels, 2012). It is less known how the intermediate Arctic- or halocline layer 

in the Arctic circulates (Jones, 2001). 

 

Figure 5. Bathymetry of the Arctic Ocean from the International Bathymetric Chart of the Arctic 

Ocean (IBCAO) Version 3.0, from Jakobsson et al. (2012), doi:10.1029/2012GL052219. 
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Mosby (1938) discovered that in the ice-covered northern Barents Sea, Atlantic 

Water enters from the north, deep in the two troughs between Svalbard and Franz 

Josef Land (Figure 6). The Atlantic Water is further advected south-westward in the 

deep trenches of the northern Barents Sea, all the time below the fresher, colder 

Arctic layer (Pfirman et al., 1994), and Atlantic Water has been observed year-round 

in Olga Basin, the innermost part of the northern Barents Sea trench-system 

(Abrahamsen et al., 2006). Atlantic Water does not enter the northern Barents Sea at 

the surface or upper layers due to the lighter Arctic water mass occupying the area. 

The oceanic Polar Front, separating the Arctic and Atlantic water masses, is 

topographically controlled and largely stationary in the western Barents Sea where 

the bathymetry is steep (Loeng, 1991; Gawarkiewicz & Plueddemann, 1995; Harris et 

al., 1998). The Arctic layer therefore becomes colder, fresher and thicker southwards 

in the northern Barents Sea, and in the Olga Basin just north of the Polar Front, it has 

its purest Arctic-type conditions (Lind & Ingvaldsen, 2012). The conditions within 

the interior northern Barents Sea therefore resembles the conditions in the interior 

Arctic Ocean, with a cold, stratified and sea ice covered water column with upward 

fluxes from its deep Atlantic layer.  

On its eastward transfer through the southern Barents Sea, the Atlantic Water spreads 

out and occupies most of the area south of the Polar Front at surface in direct contact 

with the atmosphere and is efficiently cooled (Smedsrud et al., 2010 Figure 3). In 

contrast, the branch going through the Fram Strait is a narrow northward flowing 

current hugging the continental shelf-slope west of Svalbard, the West-Spitsbergen 

Current, and although some cooling and recirculation occurs in the Fram Strait, it 

keeps more of its heat before turning east at the northern tip of Spitsbergen (e.g., 

Beszczynska-Möller et al., 2012). North of Svalbard and in the south-eastern Barents 

Sea, Atlantic Water directly encounters and melts sea ice (Årthun et al., 2012; 

Onarheim et al., 2014) forming halocline waters that likely contribute to the halocline 

of the interior Arctic Ocean (e.g., Steele et al., 1995, Rudels et al., 2004; Rudels, 

2016). 
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Figure 6. Detailed bathymetry of the Barents Sea showing depth (blue-coloured contours), the 

studied area in the northern Barents Sea (black outline) and position of the stationary, western part of 

the Polar Front (grey line). From Lind & Ingvaldsen (2012), ©2012 Elsevier. 

The Atlantic Water continues eastward as a subsurface current below fresher 

halocline waters in the Arctic Ocean, via the Kara Sea for the Barents Sea branch 

(Figure 3). The deep Atlantic Water gradually becomes colder and fresher on its 

journey in the deep within the Arctic Ocean (Rudels, 2012), and within the northern 

Barents Sea (Mosby, 1938; Pfirman et al., 1994). This indicates that vertical mixing 

with the overlying Arctic layer is an important process for vertical heat fluxes up 

from the deep Atlantic layer into the cold and stratified Arctic regime. It has been 

known for more than a century that there is enough heat in the deep Atlantic layer to 

melt the entire sea ice cover several times (Nansen, 1902), but the vertical fluxes have 

for decades been considered weak and negligible (Aagaard et al., 1981). There are 
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only sparse measurements of the upward heat fluxes from the deep Atlantic layer, 

varying from negligible (0.05 Wm−2; Fer, 2009) to moderate O(5−10) Wm−2 in 

stratified areas (Polyakov et al., 2012c), to very strong in areas where Atlantic Water 

directly encounters sea ice north of Svalbard (e.g., Carmack et al., 2015). Compared 

with the interior Arctic Ocean, the northern Barents Sea probably has stronger 

turbulence-generating forcing due to tidal effects on the shallow shelf with varying 

bathymetry and degree of mixing, and occasional observations of heat fluxes vary 

from O(10) to O(100) Wm−2 (Sundfjord et al., 2007). Process-studies are needed to 

improve the understanding of the vertical heat fluxes in the stratified interior Arctic, 

particularly identification of other factors that the heat fluxes depend on but that are 

more easily measured (Carmack et al., 2015). Given the rapid development towards a 

new Arctic on a warmer planet, this is perhaps one of the last important “white 

points” to map in the Arctic climate system.  

2.2 A dynamic and complex region 

The Barents Sea is essentially divided into two parts with distinctly different climate, 

Atlantic in the south and Arctic in the north, separated by the oceanic Polar Front 

(Loeng, 1991). Whereas the southern Barents Sea has been known for its large 

interannual to decadal fluctuations in temperature and fisheries for more than a 

century (Helland-Hansen & Nansen, 1909), the northern Barents Sea has in contrast 

been considered to have a very stable and cold climate (Mosby, 1938; Loeng, 1991). 

The major Atlantic Water inflow through the passage in southeast, between Fugløya 

and Bjørnøya, or Barents Sea Opening (BSO), has large variability in transport and 

properties (Ådlandsvik & Loeng, 1991; Furevik, 2001), a net inflow of 1.8 Sv 

(Ingvaldsen et al., 2004) and affects the climate the southern Barents Sea (e.g., 

Ådlandsvik & Loeng, 1991; Årthun et al., 2012). The Atlantic layer in the northern 

Barents Sea is renewed by advection from a branch of the Atlantic Water boundary 

current along the northern slope of the Barents, the continuation of the inflow to 

Arctic through the Fram Strait. It enters Barents Sea from the north as a deep inflow 

below the fresher, lighter Arctic layer through the two troughs between Svalbard and 
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Franz Josef Land (Mosby, 1938; Pfirman et al., 1994; Lind & Ingvaldsen, 2012; 

Figure 7). In addition, some Atlantic Water enters the region in the deep from the 

southern Barents Sea, crossing the Polar Front below the Arctic layer (Loeng, 1991).  

Despite the stable climate, the northern Barents Sea is a dynamic region with a 

multitude of different water masses and processes active on shorter time scales. In 

addition to the Atlantic Water inflow, Arctic Water presence and sea ice cover, sea 

ice melts in spring and forms an annual surface mixed layer that warms during 

summer (Loeng, 1991). In winter, dense water is produced on the shallow banks from 

cooling and brine release during sea ice growth (Midttun, 1985), producing water 

with a variety of densities that fills the deep trenches of the Barents Sea and the deep 

polar basin at different depths (Årthun et al., 2011). Surface and Arctic Waters have 

been considered entering the Barents Sea from the northeast and flowing south-

westward in the northern Barents Sea (Novitskiy, 1961; Tantsiura, 1973) and seem to 

tend to anticyclonic circulation within the Barents Sea, but there are no published 

volume estimates of this current system (Loeng, 1991). One of the first 

comprehensive studies of the hydrographic features of the Barents Sea was by Loeng 

(1991), and Pfirman et al. (1994) described in more detail the distribution and 

modification of water masses in the northern Barents Sea. The core characteristics of 

Pfirman et al. (1994) and extreme values found by Mosby (1938) are here combined 

and the water masses in the northern Barents Sea defined as surface water/melt water 

(−1.9<T<4.0°C, S<34.0), Arctic Water (T<0.0°C, 34.0<S<34.7), Atlantic Water 

(T>0.0°C, S>34.7) and bottom water/Cold Dense Water (T<0.0°C, S>34.75), where 

salinities are practical salinity units (psu), see Sections 1 and 3 of Lind & Ingvaldsen 

(2012) for a more detailed literature review and description of the water masses in the 

northern Barents Sea. 
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Figure 7. Schematic of the northern Barents Sea showing the subsurface inflow of Atlantic Water to 

the Barents Sea from the north, a branch of the Arctic Ocean Boundary Current that carries warm and 

saline Atlantic Water subsurface in the Arctic Ocean. ©2012 Institute of Marine Research, graphics 

by Hanne Clausen. 

2.3 The Barents Sea marine ecosystem 

The Barents Sea has a rich ecosystem inhabiting the currently greatest stock of 

Atlantic cod in the world (Ingvaldsen et al., 2015) and several other important 

commercial fish and crustacean species such as capelin, snow crab and king crab 

(e.g., Sakshaug et al., 2009; Alvsvåg et al., 2008). The ecosystem has two distinct 

food-webs, boreal and Arctic. Although adapted to each of the regimes in the 

southern and northern Barents Sea, there are strong interactions between them 

(Dalpadado et al., 2012). The marginal ice zone is an important region for such 

interactions, and also a productive zone where upwelling of nutrient-rich waters cause 

phytoplankton blooms, feeding the zooplankton and higher trophic levels (e.g., 
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Sakshaug & Slagstad, 1992; Oziel, 2017). There are also seasonal migrations of 

several boreal species, grazing in the northern areas in summer (e.g., Haug et al., 

2017). The southern, boreal part is characterized by having many species and 

important fish generalists that increase the connectivity and resilience of the food-

web (Kortsch et al., 2015). In contrast, the northern, Arctic part is adapted to the 

extreme cold, light- and nutrient-limited Arctic environment. It is characterized by 

having few species with smaller body-sizes, and there is less connectivity in the 

Arctic food-web (Kortsch et al., 2015), indicating less resilience to change. The 

Arctic ecosystem has key species such as sea ice-algae and the amphipod T. libellula 

that are closely connected to, respectively, the sea ice cover and Arctic water mass 

(Dalpadado et al., 2012), and comprises polar cod and ice-associated marine 

mammals such as polar bear, harp seal and the rare bowhead whale (Haug et al., 

2017).  

 

Figure 8: Illustration of the Barents Sea ecosystem showing its complexity with strong interactions 

between the boreal (Atlantic) and Arctic food-webs. ©2006 Institute of Marine Research, graphics by 

Arild Sæther. 
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2.4 Implications of climate change in the Barents Sea 

Recent warming and sea ice loss in the Barents Sea has wide-spread implications. 

The lower atmospheric warming has been linked to mid-latitude weather extremes 

(Petoukhov & Semenov, 2010) and large-scale changes in the atmospheric circulation 

(Cohen et al., 2014; Francis & Vavrus, 2015). The adjacent Svalbard archipelago, 

west of the northern Barents Sea, has experienced abnormal climate since the early 

2000s, having had extreme winter temperatures, tundra melt, and more frequent 

storms bringing extreme precipitation, massive erosion of coastal zones, landslides 

and snow avalanches (Førland et al., 2011; AMAP, 2017). The changing climate in 

the Barents Sea is causing structural changes in the Barents Sea ecosystem as boreal 

fish species have started grazing in the northern areas in summer (Fossheim et al., 

2015; Haug et al., 2017). This increases the competition for food for the Arctic 

species, that have retracted northwards to where depth might limit further migration 

(Fossheim et al., 2015). The conditions for marine mammals in the north have also 

deteriorated (Haug et al., 2017). There are wide societal impacts of changing 

conditions in the Barents Sea, as the highly varying sea ice cover induces large 

limitations for operations within several sectors, such as ecosystem management, 

fisheries, petroleum, shipping, research and tourism. The future development and 

state of the Barents Sea, particularly its sea ice edge and ecosystem state will 

therefore have large implications for stakeholders, policymakers, non-governmental 

organizations and commerce. 
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3. Data and methods 

3.1 Data 

This thesis is an observational study using an extensive data set of in situ ocean 

temperature and salinity from the northern Barents Sea. The Barents Sea has been 

monitored annually in joint Norwegian-Russian ecosystem surveys since the start of 

the 1970s (Michalsen et al., 2013). The data set now covers nearly five decades and is 

a true treasure in the context of polar research. The late summer situation has been 

monitored each year in August and September when there is a three-layer structure 

with the annual summer surface layer of melt water, over the winter-cooled 

intermediate Arctic layer and the deep Atlantic layer. 

The data were interpolated horizontally at every fifth meter from 0 to 200 m depth, 

resulting in gridded ocean temperature and salinity maps at each vertical level, each 

year. This interpolation was performed on triangular finite element grids specifically 

designed for each of the 51 vertical levels, and accompanying error fields were 

applied to remove extrapolated areas (Troupin et al., 2012; Papers II and III). The 

gridded data were averaged over a subarea covering 85,000 km2 for each vertical 

level and each year. The subarea covered both banks and troughs with different 

hydrography, and the spatial averaging smoothed out this local variability. The 

extent, diverse topography and good data coverage in the subarea ensured that the 

results were representative of the northern Barents Sea. The resulting annual 

temperature-salinity profiles were used to construct time series from each of the 

layers and cores in the water column.  

The effect of other driving factors for the interannual variability in the northern 

Barents Sea were also evaluated using observational time series of atmospheric 

temperature, sea ice area and import, precipitation and upstream Atlantic Water 

temperature, reanalysis wind fields, and temperature and circulation in the Atlantic 

Water at 200 m in the northern Barents using a numerical general circulation model 

(the latter only used for descriptions in Section 3 of Paper I). 
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3.2 Methods 

A general description of the mean hydrography in the northern Barents Sea and the 

inflow, variability and impact of the Atlantic Water inflow from the north was given 

in Paper I, showing the horizontal distribution of mean temperature and standard 

deviation during 1970–2009 at 0, 50, 100 and 200 m depth, and extracting time series 

from the area where Atlantic Water enters from the north (Figure 6-point NW). 

Vertical distribution of temperature and salinity were shown along a section from 

south of the Polar Front, following the trench out to the northern shelf-slope (Figure 

6-red line). Driving factors for the temperature variability in the Atlantic Water were 

identified. Using observed series of surface air temperature, sea ice area and upstream 

Atlantic Water temperature at Svalbard, and Ekman transport and Ekman pumping 

velocities derived from reanalysis wind fields, spatio-temporal relationships were 

analysed using Empirical Orthogonal Functions. 

Layer-mean time series were constructed for Papers II and III by identifying the 

vertical position of each feature in the water column each year, i.e., the pycnocline, 

Arctic core, Arctic/Atlantic-interface and Atlantic core. This procedure was chosen in 

preference to the classical, static water mass definitions that traditionally have been 

used to characterize and identify each of the water masses in the northern Barents Sea 

(i.e., Mosby, 1938; Loeng, 1991; Pfirman et al., 1994) because large changes in the 

layers were expected during the five decades with data. Capturing the actual 

variability and change in layer characteristics could reveal and quantify the interplay 

between each of the three layers and the sea ice cover, which could potentially give 

insight into the transfer of heat from the deep Atlantic layer to the sea ice cover and 

deepen the understanding of maintenance and disintegration of the cold and stratified 

Arctic-type conditions in the northern Barents Sea and Arctic in general.  

3.3 Hypotheses 

Buoyancy represents the opposing force that hinders vertical movement in the water 

column, and interannual variability in the stratification may therefore affect the 
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vertical mixing in the lower part of the water column between the Arctic and Atlantic 

layers. An intriguing point is that any mixing between the two layers would make 

them more similar in salinity and temperature, which reduces the stratification and 

makes the lower part of the water column more prone to vertical mixing, i.e., a 

positive mixing feedback. Salinity generally determines the stratification in cold 

waters, which implies that a positive salinity feedback in the vertical mixing may 

enhance the variability in mixing caused by other factors. The Arctic layer salinity 

has larger variability than that of the Atlantic layer, and this led to the hypothesis that 

the Arctic layer salinity largely controls the amount of mixing between the Arctic and 

Atlantic layers. Further, the salt flux and related positive feedback induces a need for 

a downward freshwater input to maintain the Arctic layer and stratification, thus to 

keep the water column in its cold, stratified and sea ice covered state. These two 

hypotheses made the basis for Papers II and III, respectively. 

3.4 Assumptions 

The residence times of the Arctic layer in the northern Barents Sea is essentially 

unknown. Observations of advection of Arctic waters have never been published, and 

it is also difficult to assess its residence times from models, since models have not 

been capable to simulate, with sufficient accuracy, the stratified water column 

structure of the northern Barents Sea (V. Lien, T. Hattermann, personal 

communication) or the Arctic Ocean (Holloway et al., 2007; Zhang & Steele, 2007). 

This leads to some caution when the results are interpreted, as effects of advection of 

Arctic Water and complete budgets could not be estimated. It was however 

considered a reasonable starting point to assume that local processes are primary and 

advection secondary in shaping the Arctic layer, since the Arctic Water is mainly 

being produced from cooling and brine release during sea ice growth in winter 

(Mosby, 1938; Rudels et al., 2004). The focus therefore was on identifying primary 

factors and mechanisms that drive most of the interannual variability in the different 

layers of the water column. A priori hypotheses were put forward and evaluated using 

the extensive observational data set, descriptive statistics and correlation analyses 
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(see individual papers for details). Highly significant results were considered to imply 

that the hypotheses could not be falsified, indicating local processes probably are 

primary in shaping the Arctic layer, leaving advection secondary, or that the 

processes found to be important in the studied region can be generalised for a larger 

area. 
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4. Summary of papers 

4.1 Paper I: Variability and impacts of Atlantic Water 
entering the Barents Sea from the north 

This paper has two main parts: The first part gives a general description of the mean 

state, variability and horizontal and vertical distribution of the water masses in the 

northern Barents Sea based on the observations from 1970–2009 and previous 

literature. The focus was on the Atlantic Water at 200 and 100 m depth, the Arctic 

Water at 50 m and the surface melt water throughout the four decades. The second 

part of the paper identified the primary factors that drive the interannual to multi-

annual variability in the subsurface Atlantic Water inflow temperature to the Barents 

Sea from the north. It was found that the primary driving factor is advection of 

Atlantic Water, driving the general variability in Atlantic Water temperature in the 

whole northern Barents Sea. The second driving factor was found to be the local wind 

field in the northern part of the Barents Sea, causing upwelling at the shelf-slope and 

increased cross-shelf exchange that amplifies the inflow of Atlantic Water to the 

Barents Sea from the north. This weather pattern became more dominant towards the 

end of the time series, probably due to large-scale changes in the atmospheric 

circulation (Zhang et al., 2008). This probably caused a positive anomaly in the 

inflowing of Atlantic Water, observed as increased Atlantic Water-temperature 

towards the end of the time series. The temperature increase in the Atlantic Water at 

200 m depth in the northern Barents Sea accelerated after the late 1990s. The Arctic 

Water had low and stable temperatures ~−1 °C until it started to warm rapidly in 

~2000. This warming could not be explained by temperature changes in the surface 

water alone, but was probably caused by vertical mixing with the deeper Atlantic 

Water. The observed Arctic Water warming motivates for Paper II. 
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4.2 Paper II: Arctic layer salinity controls heat loss from 
deep Atlantic layer in seasonally ice-covered areas of 
the Barents Sea 

The vertical mixing and transfer of heat between the intermediate Arctic layer and the 

deeper Atlantic layer is here investigated, testing the hypothesis that the Arctic layer 

salinity is a key controlling factor (see Chapter 3.3). The slope of the mixing line 

between the Arctic and Atlantic cores defines the stratification and buoyancy force in 

the lower part of the water column, i.e., the opposing force that vertical motion must 

defeat to produce mixing. This implies that the weaker the stratification is, the more 

vertical mixing occurs, providing that the turbulence-generating forcing is relatively 

stable on interannual time scales. The factors that determine the slope of the vertical 

mixing line could therefore determine the transfer of heat up from the deep Atlantic 

layer. Using a subset of the observational data set where the data coverage was good 

through 1970–2011, the Arctic layer salinity was found to control the stratification 

and amount of mixing with the Atlantic layer, as hypothesized. There is considerable 

variability in Arctic layer salinity and thereby vertical mixing to leave a readily traced 

signal in the Atlantic layer temperature—being modified from the mixing. Vertical 

heat fluxes from the deep Atlantic layer are therefore varying primarily due to salinity 

variations in the layer above, not from temperature variations in the Atlantic layer 

itself. For some, this may be a quite contra-intuitive result at first, given that Atlantic 

Water is known for having large temperature fluctuations (Helland-Hansen & 

Nansen, 1909). There is also a positive feedback in the salt flux since mixing brings 

salt up and reduces the stratification and in turn increases the salt flux (and heat flux). 

This ‘mixing feedback mechanism’ thus acts to enhance the variability in mixing and 

stratification. Overall, the findings imply that the Arctic layer salinity plays a key role 

in the cold, stratified and sea ice covered water column. The upward net salt flux 

implies that a downward freshwater input is necessary to keep the northern Barents 

Sea stratified and sea ice covered. This gives the motivation for Paper III.  
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4.3 Paper III: Declining sea ice import and freshwater loss 
causes Arctic warming hotspot 

Paper III addresses the freshwater input to the northern Barents Sea and its effect on 

maintaining the stratification of the cold and stratified water column, hence limiting 

the upward heat and salt fluxes from the deep Atlantic layer. It also investigates the 

changes in water column structure due to the ongoing climate change in the Arctic 

warming hotspot. The sea ice import was found to be influencing the Barents Sea ice 

cover directly by adding ice and indirectly through being the primary freshwater input 

that maintains the stratification and conditions for sea ice growth in winter. The sea 

ice import to the Barents Sea has large interannual variability but a sharp decline after 

the record winter 2002/03. Comparing 2010–2016-means with the climatic reference 

period 1970–1999, the data set documents a large and significant water column shift 

towards higher Surface layer salinities and increased Arctic layer salinity, giving 

weaker stratification (30 and 11% reduction in the upper and lower part of the water 

column, respectively) and higher temperatures in the entire water column. The result 

has been erosion of the Arctic layer with heat input from above and below, an 

extreme increase in the upper ocean heat content of 3.8 ± 0.6 standard deviations 

above the 1970–1999-mean and a major freshwater loss of ~1 m, or 40 %. Unless the 

sea ice import soon recovers, the stratification will most likely break down and the 

northern Barents Sea become warm, well-mixed and sea ice free all year round, in all 

practical aspects, part of the Atlantic domain. This means removal of the habitat of 

the whole Arctic food-web comprising sea ice-associated marine mammals, ice-algae, 

Arctic amphipods and the Arctic fish species feeding on them (e.g., polar cod), with 

unknown consequences for the commercial species in the Barents Sea ecosystem. The 

interpretation also indicates a general eastward displacement of properties and 

conditions downstream/eastwards along the Atlantic Water-pathway as the Arctic 

warms. 
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5. Discussion 

5.1 The cold, stratified and sea ice covered northern 
Barents Sea  

This thesis confirms the general view that the northern Barents Sea used to have a 

remarkably stable cold and stratified, sea ice covered water column structure before 

the rapid climate shift event started in the early 2000s. In the stable period, the 

Surface- and Atlantic layers both had quite large interannual variability in 

temperature, but the intermediate Arctic layer was always very stable and cold with 

temperatures around −1 °C (Fig. 6a of Paper I; Fig. 2 of Paper III) and the winter sea 

ice cover kept re-freezing each autumn. The Arctic layer had, however, considerable 

salinity variations earlier, much larger than the Atlantic layer, and this is now known 

to be an important characteristic of the cold and stratified water column structure. 

Being formed by the annual sea ice melt water, the Surface layer usually has had a 

low, but varying salinity, in line with literature (Loeng, 1991; Pfirman et al., 1994). 

Observations of sea ice import from the north, between Svalbard and Franz Josef 

Land, has been published earlier and shown to be highly varying, from import to 

export between years (Kwok et al., 2005). The inflow through the eastern passage, 

Franz Josef Land–Novaya Zemlya, is, however, shown here to be much more 

important, being two–three times larger and consistently giving net import (Fig. 3c of 

Paper III). The low auto-correlation between years in the inflow is in line with the 

large stochasticity in atmospheric forcing on sea ice motion (Serreze & Stroeve, 

2015). 

Moreover, the thesis documents that sea ice inflow from the northeast is a key factor 

for the Barents Sea ice cover, in addition to the already identified major driver, the 

Atlantic Water inflow from the southwest (Årthun et al., 2012; Onarheim et al., 

2014). The effect is two-fold: First, the direct effect from adding ice (r=0.47), 

secondly, the indirect effect from adding freshwater that increase the stratification – a 

precondition for local sea ice growth (r=0.53 when the Barents Sea ice area has a one-
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year time lag), see Fig. 3 of Paper III. This shows that sea ice inflow is a key variable 

for the Barents Sea, in line with numerical simulations (Ellingsen et al., 2009; 

Koenigk et al., 2009).  

The deep Atlantic layer in the northern Barents Sea is continually renewed by 

advection of Atlantic Water entering the Barents Sea as a deep inflow from the north 

(Paper I). The Atlantic Water temperature varies due to temperature signals advected 

with the Atlantic Water flow, but also due to local winds affecting the cross-shelf 

exchange of Atlantic Water (Paper I) and due to varying degree of modification from 

mixing with the Arctic layer (Paper II). Advection in the Surface and Arctic layers 

are still basically unknown, but the Surface layer likely resembles the sea ice motion 

which is highly stochastic but net south-eastward into the Barents Sea. And, the 

highly significant results of Papers II and III indicate that the local processes 

probably are primary in determining the interannual variability of temperature and 

salinity in the Arctic layer, leaving advection secondary. Another possibility is that 

the processes found to be important can be generalised for a larger area. 

There is a strong seasonal cycle in the northern Barents Sea, where winter cooling 

progresses downward from the surface. Brine release from sea ice growth causes the 

Surface layer salinity to increase, and when reaching the salinity at the base of the 

pycnocline, the two upper layers merge to form one winter-cooled layer (Rudels et 

al., 2004). Any heat stored in the Arctic layer will therefore be contributing to less sea 

ice growth and larger heat losses to the atmosphere in winter. 

5.2 Processes that maintain or disintegrate the water 
column structure  

There is a tight two-way connection between the sea ice cover and the Arctic layer, 

each of them ensuring presence of the other, as the Surface layer of melt water 

absorbs the incoming radiation and shelters the winter-cooled Arctic layer from 

warming in summer, and loses the absorbed heat to the atmosphere in autumn. The 

heat is thus never transferred down to the Arctic layer, ensuring the winter-cooled 
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water is stored through the summer, a precondition for sea ice growth in the coming 

winter (Paper III). The melt water also supplies the Arctic layer with freshwater and 

maintains the stratification in the lower part of the water column (Paper III). 

There is a positive feedback mechanism in the vertical mixing between the Arctic and 

Atlantic layers, since mixing reduces the stratification and makes the water column 

more prone to vertical mixing. The mixing is largely confined by the stratification 

induced by the low Arctic layer salinity (Paper II), but is considerable and varying 

between years – dependent on the Arctic layer salinity – and causes varying upward 

heat fluxes from the deep Atlantic layer. The corresponding upward salt flux implies 

that a freshwater input is needed to maintain the stratification in the region, otherwise 

the stratification eventually breaks down. The sea ice import to the Barents Sea from 

the interior Arctic Ocean is the main freshwater input and primary factor for 

maintaining the northern Barents Sea in the cold, stratified and sea ice covered state. 

(Paper III).  

5.3 Observed changes in the water column structure 

Due to declining sea ice import from the interior Arctic in the 2000s, the northern 

Barents Sea has undergone a large and significant shift, and the 2010–2016-mean 

water column is significantly warmer and more saline than 1970–1999-means in all 

three layers, weakly stratified and less sea ice covered (Paper III). It has an extremely 

high upper ocean heat content and a record low freshwater content, and an 

abnormally warm Arctic layer after being consistently cold, stratified and sea ice 

covered throughout the first four decades of the observational record. The sudden 

decline in sea ice import has induced a rapid slowing down of the process that acts to 

maintain the stratification and triggered a rapid climate shift event, showing that the 

ocean is a major player in the Arctic warming hotspot. The dependence of regular, 

external freshwater inputs has made the northern Barents vulnerable to sustained low 

sea ice imports from the Arctic. As the Arctic sea ice cover became thinner and less 

compact, probabilities for high sea ice inflows to the Barents Sea dropped. The 

general decline in thick, old ice from the Eurasian Basin during the early 2000s 
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(Polyakov et al., 2012b; Carmack et al., 2015) also likely contributed to the decline. 

Unless the sea ice import recovers, the stratification will eventually break down and 

make Atlantic Water occupy the entire water column of it, causing the region to 

transition to a warm and sea ice free Atlantic type of climate. 

5.4 Are the changes reversible? 

With his process-oriented two-layer model, Stigebrandt (1981) showed that the sea 

ice cover vanishes abruptly when the freshwater supply is reduced below some 

threshold value. Building on this model, Jensen et al. (2016) found that the 

stratification in the model breaks down even for small freshwater inputs, before the 

vertical density difference vanishes, showing that a tiny stratification is not a possible 

solution. These findings correspond well with the mixing feedback and rapid climate 

shift documented in this thesis, and support that rapid climate shift events have taken 

place in the past climate history (Dokken et al., 2013). The process and triggering 

factor is, however, different from that proposed by Dokken et al. (2013). Paper III, 

Stigebrandt (1981), Linders & Björk (2013) and Jensen et al. (2016) all show that 

insufficient freshwater input at the surface is driving the change. This indicates that 

the Atlantic Water inflow is not a trigger, but a response variable to the 

“atlantification” and rapid climate shift events in the past, as discussed by Polyakov 

et al. (2017) and Dokken et al. (2013).  

Although natural variability causes variations in the Arctic sea ice cover (e.g., Ding et 

al., 2017), it is highly unlikely to have caused the sudden rapid change in the northern 

Barents Sea after decades/centuries with a stable Arctic climate (e.g., Nansen, 1902; 

Mosby, 1938; Paper III). The positive mixing feedback and anticipated transition to 

an Atlantic climate in the northern Barents Sea (Paper III) will most likely be a 

permanent and irreversible change, in the sense that it would likely require 

extraordinary large sea ice inflows over several consecutive years to rebuild a 

freshwater reservoir large enough to transition back into the cold, stable Arctic 

climate. This is not likely to happen given the ongoing global warming and rapidly 

diminishing Arctic sea ice cover (Notz & Stroeve, 2016).    
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6. Future Arctic 

6.1 In a stage of transition 

The results of Paper III imply that it is the loss of freshwater, or failure to maintain 

the stratification that “allows” larger heat fluxes up from the Atlantic layer, showing 

that the freshwater is leading the game in the ongoing transition. The Arctic layer 

functions as the freshwater reservoir of the water column and implies there is 

memory in the dynamical system over several years, meaning, the larger the reserves, 

the larger perturbations can the water column handle without its stratification 

breaking down. The positive salt feedback associated with the vertical mixing opens 

the possibility for an instability mechanism and permanent transition to a different 

stable state in the dynamical system (Scheffer et al., 2009). But the timing of the shift 

is dependent on the stochasticity or randomness – “when a perturbation becomes 

large enough, it happens” (Scheffer et al., 2009). If the sea ice import should recover, 

the northern Barents Sea could in theory re-build its freshwater reservoir and re-

establish in the cold and stratified state, after which it could endure several “bad 

years” with little sea ice import. But, given the present development of the Arctic this 

is very unlikely, as discussed above.  

This is in line with a one-dimensional column model study showing Arctic ocean 

regions with very strong stratification can maintain their conditions, in terms of not 

having a decreasing thickness of their sea ice cover without external freshwater 

input/sea ice import, whereas areas that are weakly stratified needs an external 

freshwater input, otherwise, the sea ice cover thins (Linders & Björk, 2013). Hence, 

stratification and thickness of the sea ice cover are positively interrelated, and 

negatively correlated with the dependence on sea ice import/external freshwater 

input. Another, analytical study showed that when the stratification becomes weak 

enough, it breaks down abruptly before vanishing entirely (Jensen et al., 2016), 

showing that a “tiny” stratification is not a possible solution. Breakdown of the 

stratification changes the conditions entirely within short time, in coherence with 

rapid climate shifts in paleoclimate records, showing the Nordic Seas had Arctic 
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climate during cold climatic periods, but rapidly changed to Atlantic climate as the 

climate warmed (Dokken et al., 2013). It is a debated question whether changes in the 

deep Atlantic layer or changes in the freshwater input has led the game in these rapid 

climate shift events in the past. 

How the next years will play out is open due to the stochastic nature of the 

atmospheric forcing and sea ice flows and dynamic ice cover (Serreze & Stroeve, 

2015; Carmack et al., 2015). But, there is a high probability that the northern Barents 

Sea will flip over to the warm and well-mixed state and become totally sea ice free 

within the next decade or two. It may also occur sooner.  

6.2 General remarks on possible stable states 

Based on this, it appears that the water column can structurally be in two different 

stable states, either cold, stratified and sea ice covered or warm, well-mixed and sea 

ice-free, essentially the two very different dynamical regimes of the Arctic and 

Atlantic domains. The difference is presence, or not, of a light upper layer that 

suppresses heat and salt fluxes from the deeper, denser layer. Between these stable 

states, lays an unstable state where the water column is weakly stratified, has large 

upward fluxes of heat and salt and a highly seasonal sea ice cover, cf., conditions in 

the northern Barents Sea (Paper III). In the unstable state, the water column is 

sensitive to perturbations and highly dependent on regular “external” freshwater 

input/sea ice import to sustain its stratification. When in either of the two stable 

states, much larger and persistent perturbations would be needed to shift it out of its 

current state, cf. Scheffer et al. (2009). The change in the water column structure 

when following the Atlantic Water pathway from the Atlantic domain, through the 

frontier region and into the Arctic therefore mirror these three states (see Fig. 4 of 

Paper III). 

The atmosphere in the Arctic domain is also distinctly different from that of the 

Atlantic, in that the Arctic has a cold, dense layer of air near the ground and a 

temperature inversion limiting vertical motion in the lower part of the atmosphere 
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(Serreze et al., 1992). This is an intriguing analogy to the stratification and limiting 

vertical exchange of properties that the oceanic boundary layer exhibits in the Arctic. 

Together with the sea ice cover at the surface, these three inherent characteristics of 

the Arctic all hinders vertical fluxes of any property, especially near the sea surface. 

Moreover, these characteristics are all linked to the most important positive feedback 

mechanisms known to give Arctic amplification (if accepting the oceanic feedback 

mechanism described here as important), that is, the temperature feedback related to 

the vertical structure of the Arctic atmosphere (Pithan & Mauritsen, 2014), the 

surface albedo feedback related to the sea ice cover and the oceanic mixing feedback 

related to the stratification in the water column. Together, these local feedbacks may 

be sketching a picture of an Arctic environment that is “self-sustained when healthy” 

with stabilizing factors in its stable cold, stratified and sea ice covered state. But 

positive feedback mechanisms work both ways, and when a large enough 

perturbation occurs, e.g., the rapid, ongoing global warming, the stratification 

becomes weaker, in both the ocean and the atmosphere, and the sea ice cover 

diminishes. In all, this picture matches Arctic amplification being an inherent 

characteristic of the global climate system. 

6.3 The future Barents Sea  

A fundamental shift to Atlantic climate in the northern Barents Sea will certainly 

have major consequences for the Barents Sea ecosystem, since it implies removal of 

the habitat of the Arctic food-web. The net effect on the commercial species is more 

open since capelin, a key prey for cod and other boreal fish species, feed on species 

that are tightly linked to the sea ice edge (Dalpadado et al., 2012). An interesting 

question is whether the Kara Sea will take over as the frontier region and become a 

new productive zone with the marginal ice zone and interactions between the boreal 

and Arctic ecosystems. Contrary to expectations, the Arctic warming appears to be an 

eastward, rather than a northward shift of climate zones, following the continental 

shelves eastward into the Eurasian Basin. The circulation in the Barents Sea will 

probably change if the northern Barents Sea becomes flushed with Atlantic Water in 
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a final stage of such a transition. Will the stratification break down abruptly? What 

will happen with the Polar Front when the fresher water mass in the north disappears? 

These are a few of the intriguing questions to pursue related to a new Barents Sea. 

6.4 The future Arctic 

The changes seen here may mirror the general tendencies in the Arctic. Several 

modelling studies predict that the Arctic should become more stratified due to 

increased runoff, but will that freshwater be distributed properly over the Arctic 

interior? The faith of the northern Barents Sea implies that the future Arctic becomes 

less stratified as it gets more seasonal characteristics with a seasonal sea ice cover, 

and thus may become highly dependent on regular freshwater inputs to keep being 

stratified. Key questions for the future Arctic are, will those inputs be sufficient to 

combat increasing upward fluxes of heat and salt from the deep Atlantic layer? Areas 

producing excess ice will likely, over years, feed other areas of the Arctic with sea 

ice/freshwater, but will inputs from the Siberian rivers be sufficiently distributed over 

the Arctic Ocean or rather follow the Arctic coast as a coastal current? 

The changes observed in the Arctic warming hotspot do match the bigger picture of 

changes over the entire Eurasian Basin in the 2000s, with freshwater loss (Morison et 

al., 2012), thinning of the sea ice cover (Rothrock et al. 1999), loss of old, thick ice 

(Polyakov et al., 2012b), increased upward heat fluxes from the deep Atlantic layer 

(Polyakov et al., 2017)—particularly during winter convection of the upper layers of 

the water column (Polyakov et al., 2013), and the development towards a seasonal sea 

ice cover (Serreze et al., 2007). 

Hence, a substantial proportion of the Arctic Ocean is probably heading towards a 

seasonal state, where it too probably becomes dependent on freshwater inputs to keep 

being stratified. The Arctic domain has already lost much of its sea ice cover, and the 

findings in Paper III implies the Arctic sea ice cover now is insufficient for sustaining 

the stratification of the frontier region and that the Arctic domain is about to shrink. 

Noteworthy, paleoclimate records indicate that the shifts towards warmer conditions 
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has generally been very rapid. The observed freshwater loss over the entire Eurasian 

Basin (Morison et al., 2012) is therefore alarming, meaning roughly half of the Arctic 

Ocean is moving towards the unstable, weakly stratified state where it is sensitive to 

perturbations.  

6.5 Global consequences 

The results of this thesis confirm that the northern Barents Sea is a highly pressured 

Arctic region, where global warming is more amplified than in the Arctic in general. 

This is due to its function, being the frontier region of the Arctic domain that 

confronts the Atlantic domain, and the interior Arctic domain must serve it with 

excess sea ice to sustain the stratification in its most pressured area. The failure to do 

so implies that the Arctic domain is shrinking in response to global warming and 

Arctic amplification, and the frontier region is “lost” to the Atlantic domain. This is 

part of the process termed “atlantification” (Polyakov et al., 2017). If the new 

freshwater pattern of the Arctic Ocean continues (Morison et al., 2012), the entire 

Eurasian Basin will likely continue the process towards increasingly seasonal 

conditions, in where it too probably will become dependent of and sensitive to annual 

freshwater inputs to sustain stratified, cf. documented process in the Arctic warming 

hotspot (Paper III).  

This apparently is a self-magnifying process, and is perhaps a parallel to Arctic 

amplification and the two possible stable states, stratified or well-mixed, since they 

are all related to the stratified boundary layers inherent of the Arctic air-ice-sea 

column, limiting vertical heat exchange in the upper ocean, across the sea ice covered 

surface and in the lower atmosphere, the latter having cold lower layers with an 

inversion/temperature increasing with height. If the ongoing process of weakening 

stratification in the Eurasian Basin continues, larger parts of it will likely shift to 

Atlantic climate and reduce the relative proportion of Earth having Arctic conditions. 

A warmer Arctic induces weaker meridional temperature gradients and a weaker jet 

stream with a wavier pattern increasing the probability for extreme weather (Cohen et 

al., 2014; Francis & Vavrus, 2015). In depth process-studies and development of 
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numerical general circulation models with a proper representation of the vertical 

structure of the Arctic environment is needed to understand the development of the 

Arctic and the globe in a warmer future later in this century, cf. difficulty in 

simulating the halocline vertical structure of the Arctic Ocean (Holloway et al., 2007; 

Zhang & Steele, 2007). The Arctic system has a peculiar vertical structure limiting 

exchange of properties across the sea surface and within the atmospheric and oceanic 

boundary layers, and this is probably the most important feature of it. The dynamical 

vertical processes of downward freshwater input, varying stratification and responses 

in the upward heat and salt fluxes include important feedback processes that are key 

to simulate a changing Arctic moving towards a more seasonal and probably unstable 

state. 

6.6 Final remarks 

The ongoing shift has relevance not only understanding the changes occurring today, 

but for interpretations of rapid climate shifts in the past and future climate shifts. In 

general, when a dynamical system is under pressure from large perturbations and 

reaches a critical stage, this stage can give insight into the underlying mechanisms 

because variability is enhanced in such periods (Scheffer et al., 2009). The ongoing 

shift can therefore give insight into the Arctic system as an integrated unity, enabling 

detailed exploration of relations between different climate variables, functioning 

within the different states, threshold values, critical points and state transformations. 

It may also give insight into responses in the global climate system as the Arctic 

undergoes rapid change. 

The unique observational data set collected from this special Arctic region includes a 

thirty-year climatological reference period, 1970–1999, and two decades of large and 

comprehensive climate change thereafter, with both physical and biological 

parameters. This is an extraordinary opportunity for studying the integrated change in 

physical and ecological parameters, in the ocean, on the surface and in the 

atmosphere due to climate change. An extended monitoring program in the northern 

Barents Sea covering all seasons and with extensive measurements of advection 
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should therefore be considered. An extraordinary research program, the Nansen 

Legacy—inspired by the polar pioneer Fridtjof Nansen, will take place in the coming 

years and hopefully provide the high-resolution advection data and year-round 

measurements needed to get a more complete picture of the ongoing processes.  

 

 

“Happiness is the struggle towards a summit and, when it is attained, 

it is happiness to glimpse new summits on the other side.” 

–Fridtjof Nansen 

 

 

 

 

The hut on Franz Josef Land, covered in snow, in which Fridtjof Nansen and Hjalmar Johansen spent 

the winter of 1895–96, after trying to reach the North Pole by skis. A drawing, based on Nansen's 

photograph, 31st of December 1896. Source: Wikipedia Commons. 
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a b s t r a c t

Branches of the submerged Atlantic Water (AW) slope-current in the Nansen Basin enter the Barents

Sea from the north between Svalbard and Franz Josef Land. Using hydrographic observations from

annual surveys during 1970–2009, the mean state, variability and trend of the AW in the northern

Barents Sea were documented, and the dominant driving forces were identified. The AW temperature

has a strong positive trend over the last 40 years that accelerated in the late 1990s. The most important

driving factor is the upstream temperature in the West Spitsbergen Current, which influences the entire

region occupied by AW. This driving factor has pronounced multiannual variability and has a significant

increasing trend, although it cannot account for the accelerated increase since the late 1990s. The

secondary forcing is associated with the wind stress curl/Ekman pumping on the shelf-break towards

the Arctic Ocean, causing cross-shelf exchange between the Barents Sea and the Arctic Ocean.

This process increases the penetration of AW onto the shelf and is mostly confined to the northern

shelf. The signal is dominated by multidecadal variability with a notable shift in the late 1990s/early

2000s, thereby amplifying the AW temperature increase compared with the upstream conditions.

Additionally, coastal upwelling along northern Svalbard and the winter-mean surface air temperature

were found to impact the AW temperature variability, although they were of less importance than the

wind stress curl. Variability in the sea ice cover does not appear to influence the subsurface AW

temperature.

Variability in the AW temperature is transferred to the Arctic Water (ArW), and the vertical extent

of the ArW varies considerably. Before the early 2000s, the ArW temperature was stable and low;

afterwards, both the variability and the temperature increased. Our results indicate that the ArW in the

northern Barents Sea is mainly heated from below.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decade, pronounced changes in the Arctic
climate have been reported. These changes include an accelerat-
ing sea ice decline (Comiso et al., 2008), strong positive surface air
temperature anomalies, and a dipole pattern of the near surface
atmospheric pressure, which favours stronger meridional winds
compared with previous decades (Overland and Wang, 2005;
Overland et al., 2008; Zhang et al., 2008).

The Barents Sea also experienced large climate changes in the
last decade. The winter mean surface air temperature (SAT) in the
northern Barents Sea has increased by 2.5 1C since the millennial

shift, and the summer sea ice concentration has decreased by 14%
(Zhang et al., 2008). Both changes were linked to the near-surface
atmospheric dipole pressure pattern (Zhang et al., 2008). Addi-
tionally, there has been observed increasing oceanic heat flux to
the Barents Sea from the Norwegian Sea (Skagseth et al., 2008).
With the rapid climatic changes observed in the Arctic as a whole
and the more regional warming in the Barents Sea, significant
changes are expected in the ocean climate in the northern Barents
Sea. Processes in the Barents Sea may, due to the water mass
exchange across the northern and eastern boundaries of the
Barents Sea, influence the properties of the halocline, the Atlantic
Water (AW) and the intermediate water in the Arctic Ocean (e.g.,
Rudels et al., 1994, 2004; Steele et al., 1995; Schauer et al., 1997;
Aagard and Woodgate, 2001). Changing physical conditions in the
Barents Sea will also have an impact on the Barents Sea ecosys-
tem. In the 2000s, many species have been observed further north
in the Barents Sea than previously (ICES, 2011).
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The Barents Sea is bounded to the north by the Arctic Ocean.
Following the definition used in Jakobsson et al. (2004), we use
the Nansen Basin continental slope as the northern boundary of
the Barents Sea (Fig. 1). This definition differs from that given by
the International Hydrographic Organisation (1953) in ‘‘Limits of
Oceans and Seas’’, which uses a line between Nordaust-
landet and Franz Josef Land. We find the definition of Jakobsson
et al. (2004) more appropriate as it includes the entire shallow
shelf in the Barents Sea.

The Barents Sea borders the warmer Norwegian Sea in the
south, and warm AW enters the Barents Sea from the Norwegian
Sea in the southwest. The AW in the south is separated from the
Arctic Water (ArW) in the north by the oceanic Polar Front, a
dominant hydrographic feature of the near-surface waters of the
Barents Sea (Fig. 1; Loeng, 1991; Pfirman et al., 1994). The Polar
Front is located in the southern portion of our study area.
A detailed description of our study area is given in Section 3.

The northern Barents Sea is a seasonally ice-covered marginal
ice zone (Kvingedal, 2005). There is a highly fluctuating sea ice
transport to/from the Arctic Ocean (Kwok et al., 2005) due to

cyclone activity (Sorteberg and Kvingedal, 2006), causing strong
interannual variability in the extent and concentration of the sea
ice. The region also has a complex topographic structure, with
deep trenches cutting between shallow banks (Fig. 1).

Information on the water masses present in the northern
Barents Sea can be found in, e.g., Rudels (1986), Loeng (1991),
Pfirman et al. (1994), Steele et al. (1995) and Løyning (2001).
Following the definitions in Loeng (1991), the water masses in the
northern Barents Sea are surface water/melt water, ArW,
(modified) AW and bottom water/Cold Dense Water

AW enters the northern Barents Sea from the north through
the Northern Barents Sea Opening (NBSO, Fig. 1) (Mosby, 1938;
Hanzlick and Aagard, 1980; Pfirman et al., 1994; Steele et al.,
1995; Matishov et al., 2009). The AW is advected south-westward
below the ArW and has been observed year-round in the Olga
Basin (Abrahamsen et al., 2006). The AW entering the northern
Barents Sea through the NBSO is a branch of the AW slope-
current, the submerged AW boundary current coming from Fram
Strait and propagating eastward along the Nansen Basin conti-
nental shelf slope (Mosby, 1938; Pfirman et al., 1994; Steele et al.,

Fig. 1. Bathymetry of the Barents Sea (from Gebco—http://www.gebco.net/). The study region (black bordered region), the Polar Front (grey line), the openings of the

Barents Sea (the Barents Sea Opening (BSO), the Northern Barents Sea Opening (NBSO) and the Barents Sea Exit (BSX)), the annually observed CTD transect at Sørkapp

(black thick line), the constructed hydrography transect (red line), the saddle point between Hopen Trench and Olga Basin (O) and location NW (X) is denoted.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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1995). The variability in the temperature and extent of the AW
entering through the NBSO is largely unknown.

Smaller fractions of AW also enter the northern Barents Sea as
a submerged flow from the south across the �200 m deep saddle
point between the Hopen Trench and the Olga Basin (Novitskiy,
1961; Loeng, 1991; Pfirman et al., 1994; Aksenov et al., 2010).
This AW is cold (�0 to 0.5 1C) due to the strong atmospheric heat
loss in the southern Barents Sea, but it maintains a high salinity.
Thus, these waters are denser and flow below the AW entering
through the NBSO, which is both freshened and cooled from
mixing with ArW (Pfirman et al., 1994).

ArW usually occupies the layer between 20 and 100 m in the
northern Barents Sea (Pfirman et al., 1994; Løyning, 2001) and has
a temperature minimum ranging from �1.8 to �1 1C at 50–75 m
(Loeng, 1991). Presently, there is no consistent understanding of
the formation and advection of ArW in the Barents Sea. According
to Mosby (1938), ArW develops locally due to sea ice formation
and heat loss to the atmosphere in winter and is modified by
mixing in summer, while Novitskiy (1961) and Tantsiura (1973)
claimed that it is advected into the region from the northern Kara
Sea and partly from the Arctic Ocean. Steele et al. (1995),
however, argued that all the water masses in the northern Barents
Sea were generated from AW by varying degrees of heat loss to
the atmosphere and ice melting and that at least part of this water
mass (the Cold Halocline Water) is advected from the Barents Sea
toward the Arctic Ocean. ArW is subject to strong water mass
modifications and vertical mixing in the regions where subsurface
AW enters from the north (Pfirman et al., 1994; Sundfjord et al.,
2007). Downward and upward heat fluxes of 15–20 Wm�2

between the ArW and the surrounding water masses have been
estimated (Sundfjord et al., 2007). Thus, the variability in the AW
and ArW might influence each other.

Cold Dense Water is formed through heat loss to the atmo-
sphere and brine release during winter (e.g., Midttun, 1985). This
water flows along the bottom and exits the Barents Sea through
the Franz-Victoria Trough (e.g., Årthun et al., 2011; Platov, 2011).
Characteristics of this outflow have been addressed by, e.g.,
Rudels (1986), Steele et al. (1995), Schauer et al. (1997) and
Rudels and Friedrich (2000).

The hydrography in the northern Barents Sea has a complex
vertical structure due to the multitude of active processes, such as
the AW (e.g., Mosby, 1938; Pfirman et al., 1994) and ArW inflows
(Novitskiy, 1961; Tantsiura, 1973); the melting, formation and
import/export of sea ice (e.g., Steele et al., 1995; Kvingedal, 2005;
Kwok et al., 2005); winter convection and mixing of the compo-
nents to produce Cold Dense Water with a variety of densities
(e.g., Midttun, 1985; Steele et al., 1995; Rudels et al., 2004; Årthun
et al., 2011); the lateral exchanges with extremely small Rossby
radius (�1 km) due to the strong stratification and high latitude
(e.g., Gill, 1982); and the interaction of topographically steered
flows with cascading plumes (e.g., Schauer et al., 1997; Ivanov
et al., 2004).

Although the water mass exchanges in the southern boundary
of our study region are limited due to the Polar Front, the
exchanges across the NBSO are not well known. Direct current
measurements in and/or near the NBSO have only been per-
formed twice: one east of Kvitøya (Aagaard et al., 1983) and the
other in the AW slope-current north of Kvitøya (Ivanov et al.,
2009). Several numerical model studies (Maslowski et al., 2004;
Johansen, 2008; Aksenov et al., 2010) have provided volume and
heat transports across the gateway, but the results differ con-
siderably, ranging from �0.4 to 0.4 Sv and from 0.5 to 6 TW into
the Barents Sea.

An overview of the ocean currents and circulation in the
Barents Sea from model studies can be found (e.g., Maslowski
et al., 2004; Aksenov et al., 2010; Postlethwaite et al., 2011). All

the authors show the AW slope-current in the Nansen Basin, and
Maslowski et al. (2004) and Aksenov et al. (2010) also show its
branching off bringing AW into the NBSO. According to Aksenov
et al. (2010), the AW makes excursions into the trenches of the
NBSO, where it interacts with the water masses there before
recirculating in the Franz Victoria Trough. This pattern is con-
sistent with a recent model study by Platov (2011), although his
main focus was on dense water flow from the Barents Sea toward
the Arctic Ocean. However, all the published studies focus on the
entire Barents Sea (or even larger regions) or on specific pro-
cesses. Thus, inferring details on the ocean currents of the north-
ern Barents Sea from these studies is difficult. Consequently, the
general circulation of the northern Barents Sea is not well known.

At the current stage, basic knowledge of the distribution (both
horizontal and vertical) and the temporal variability of the water
masses in the northern Barents Sea is lacking. Details on vertical
structure, vertical heat fluxes and other parameters in the region
can be found in recent publications (e.g., Sundfjord et al., 2007,
2008; Matishov et al., 2009). However, all of these studies are
based upon and focus on short time scales or small spatial scales.
Here, we utilise vertical temperature and salinity data covering
most of the sea ice-free northern Barents Sea annually over the
period 1970–2009. We establish a picture of the general oceano-
graphic conditions (‘‘the mean state’’), we investigate variability
on the multiannual and decadal time scales, and we investigate
the oceanographic processes and external factors important for
the observed variability. The objectives of this paper are (1) to
give a basic description of the AW inflow to the Barents Sea from
the north and its impact on the ArW, and (2) to identify the
factors driving the multiannual variability of the AW temperature.
We investigate heat advected with the AW slope-current and its
upstream surface heat loss, ice cover and wind stress curl/Ekman
pumping as possible driving factors.

The paper is organised as follows: the data and methods are
described in Section 2. In Section 3, we use descriptive methods to
give a background description of the mean state, variability and
processes important for the temperature variability in the north-
ern Barents Sea. A statistical analysis of the observational data are
presented and discussed in Section 4, and the findings are
summarised and the implications are discussed in Section 5.

2. Data and methods

We define our study area to be bounded in the south by 771N,
in the north by the Nansen Basin continental slope, and within the
zonal band 20–501E (Fig. 1). The reason for the regional definition
is threefold: (1) it covers the inflow and distribution of AW to the
Barents Sea coming from the north; (2) it excludes most of the
AW dominating the Barents Sea south of the Polar Front
(Figs. 1 and 2); and (3) the area has reasonably good annual
hydrographic data coverage. However, because the AW inflow
from the north is likely to be influenced by driving factors outside
the region (e.g., upstream AW temperature and large-scale atmo-
spheric forcing), we also include forcing factors outside our main
study area.

2.1. Data acquisition and processing

The data consist of hydrographic observations, numerical
model results and parameterisations of driving forces (driving
factors).

2.1.1. Hydrographic observations

This paper is based on Conductivity–Temperature–Depth
(CTD) profiles and water bottle data sampled during annual joint
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Norwegian–Russian surveys designed to cover the entire Barents
Sea in August–October. Over the study period of 1970–2009, the
number of station profiles sampled varied between 128 and 914,
with a total of more than 17,000 profiles. The data from Norwe-
gian stations are available at the International Council of the
Exploration of the Sea (http://www.ices.dk) and the World Ocean
Database (http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html).
The Russian data were sampled by the Knipovich Polar Research
Institute of Marine Fisheries and Oceanography (http://www.
pinro.ru). Quantifying the general accuracy of the dataset is not
feasible, as it spans low-accuracy water bottle samples from the
early 1970s to high-accuracy Seabird CTD-data from the last
decades. A subset of the dataset, the northern Barents Sea, is
used here (Fig. 1). We classify the observations into water mass
definitions that comprise the core characteristics given by
Pfirman et al. (1994) and the extreme values found by Mosby
(1938) (Table 1).

Temperature observations at 0, 50, 100 and 200 m were
interpolated onto a horizontal grid with a 1/61 meridional
resolution (18 km) and a 1/21 zonal resolution (10–14 km). For
each separate vertical level, a two-dimensional algorithm (Taylor,
1976) combining Laplacian and cubic spline interpolation was
applied. No extrapolation or smoothing was performed except for
the implicit effect of the interpolation. This approach resulted in
one interpolated temperature field for each autumn season at
each vertical level.

Time series of observed temperature were extracted from the
gridded temperature fields at northwest location (NW) (see Fig. 1
for position). The NW position was chosen to provide information
about the southward flow of AW entering through the Franz
Victoria Trough (excluding AW originating from the Barents Sea
Opening (BSO; see Fig. 1)). Horizontal correlation fields between
the temperature time series at location NW and the horizontal
fields of the gridded temperature at the respective depths (not
shown) revealed that the correlation coefficient exceeded 0.5 in
most of the area between 78–811N and 30–451E at all depths,
indicating that location NW is representative for the temperature
variability in the northern Barents Sea.

2.1.2. Numerical ocean model

Results from a regional coupled ice-ocean model covering the
Barents and Kara seas, the northern parts of the Norwegian and
Greenland seas and the southern part of the Nansen Basin (see
Fig. 1 in Budgell, 2005) were used in this study to describe the
ocean currents and seasonality. The ocean part was a three-
dimensional baroclinic general ocean model based on Regional
Ocean Modelling System (ROMS) version 2.1. The model had a
stretched spherical coordinate grid (Bentsen et al., 1999) with a
horizontal resolution varying from 7.8 to 10.5 km and 32 general-
ised sigma-coordinate vertical levels, which were stretched to
enhance the resolution near the surface and the bottom. The
atmospheric forcing was the ERA-40 Reanalysis, and the mixing
scheme was the generic length scale (GLS) k–kl scheme (Mellor
and Yamada, 1982; Warner et al., 2005). The initial conditions

were archived five-day mean fields from a large-scale model
covering the North Atlantic and Arctic oceans (see Fig. 2 in
Budgell, 2005). The boundaries were forced with interpolated
five-day mean fields from the large-scale model and with tidal
velocities and free surface heights from eight constituents of the
Arctic Ocean Tidal Inverse Model (Padman and Erofeeva, 2004).
The large-scale model had similar horizontal and vertical grids as
the regional model, with a 50-km horizontal resolution and 30
vertical levels. This model was forced with the NCEP/NCAR
Reanalysis, with surface flux corrections as developed by
Bentsen and Drange (2000). The model did not simulate tides,
and it had an LMD (Large et al., 1994) vertical mixing scheme. The
sea ice module dynamics were based on elastic–viscous–plastic
rheology after Hunke and Dukowicz (1997) and Hunke (2001),
while the thermodynamics consisted of two ice layers and one
snow layer and was based on Mellor and Kantha (1989) and
Häkkinen and Mellor (1992). For more details about the model,
see Budgell (2005).

Budgell (2005) compared the model results from the Barents
Sea with sea surface temperature (from satellite), hydrographic
sections, time series from long-time moored instruments (in the
BSO) and sea ice concentration (from satellite). He concluded that
the model setup produces realistic ice-ocean seasonal and inter-
annual variability, and the agreement is particularly good for
temperature time series in the southern Barents Sea. However, a
detailed comparison of the model results with observed subsur-
face hydrography in the northern Barents Sea, where the vertical
gradients are strong due to ArW overlaying AW, did not show
consistent vertical distributions (Johansen, 2008). The inflow of
AW spanned a thicker vertical layer in the model compared with
the observations, with the main deficiency in the upper layers,
where the model showed an inflow of AW at too shallow depths.
This problem, in turn, had an impact on the modelled ArW, which
was too warm and saline at the �50 to 100 m depth (Johansen,
2008). Thus, no vertical integrated estimates, e.g., volume and
heat fluxes, can be calculated from the simulation. Additionally,
due to the improper representation of the upper AW boundary,
and because we do not know exactly why this occurred, the
model cannot be used to quantify the vertical movements in the
water column.

Despite the poor representation of the vertical gradients, the
horizontal distribution of the modelled AW temperature at 200 m
was accurate (Johansen, 2008; and compare Fig. 2a and the
temperature field in Fig. 4). Thus, we find the model to be a
reasonable tool for describing the general flow and temporal
variability of the seasonal cycle at 200 m, which is the depth of
AW inflow in the NBSO.

2.1.3. Driving factors

2.1.3.1. AW inflow. AW in the West Spitsbergen Current (WSC)
has been observed annually in August–October since 1977 in a
CTD transect westward from Sørkapp, the southern tip of
Spitsbergen (Fig. 1). This section gives a continuous interannual
time series of the WSC summer/autumn hydrography (Blindheim
et al., 2000; Saloranta and Haugan, 2001). Here, we use the mean
50–200 m AW temperature. Although the series is nearly
1000 km upstream of the NBSO, and modifications of the WSC
over 1000 km can be significant (Saloranta and Haugan, 2004),
the series has been found to have coherent signals with the
subsurface hydrography (100–300 m layer) northwest of Svalbard
at approximately 801N in the 1980s and 1990s (Saloranta and
Haugan, 2001). We therefore considered this series the most
appropriate for investigating the impact of upstream temperature
variations on the AW entering the northern Barents Sea from
the north.

Table 1
Definitions of northern Barents Sea water masses, modified from Pfirman et al.

(1994) and Mosby (1938).

Water mass Temperature range (1C) Salinity range (psu)

Surface waters �1.9oTo4.0 So34.0

Arctic Water To0.0 34.0oSo34.7

Atlantic Water T40.0 S434.7

Cold Dense Water To0.0 S434.75
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2.1.3.2. Surface air temperature. Daily values of SAT in
Longyearbyen, Svalbard, available from the Norwegian Meteoro-
logical Institute, were combined into an annual time series of

winter-mean (December–March) SATs. The air temperature was
observed 2 m above ground in Longyearbyen from 1969 to 1975
(37 m above sea level) and at Longyearbyen Airport from 1976 to

Fig. 2. (a) Mean interpolated temperature (1C) and (b) temperature standard deviation (1C) at surface, 50, 100 and 200 m depth based on observations in August–October

from 1970 to 2009. For definition of O and X, see Fig. 1.
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2009 (28 m above sea level). We use the winter-mean SAT as an
index for the direct heat loss from the WSC to the atmosphere. A
higher SAT can decrease the local heat loss, resulting in a higher
AW temperature when it enters the Arctic Ocean (e.g., Saloranta
and Haugan, 2001). There is a relatively strong co-variability
between the SAT in Longyearbyen and the northerly wind stress
component on the Svalbard shelf (Cottier et al., 2007), indicating
that the SAT in Longyearbyen is comparable with the open sea
SAT. Part of the heat loss from the WSC has been shown to occur
laterally (Saloranta and Haugan, 2004; Nilsen et al., 2006;
Tverberg and Nøst, 2009). Our analysis did not include the
variability of the lateral heat loss.

2.1.3.3. Sea ice concentration and area. We got monthly averaged
sea ice concentrations derived from SMMR and SSM/I passive
microwave remote sensing data from the National Snow and Ice
Data Center. The final processed data were used for the period
1978–2007 (Cavalieri et al., 1996; Meier et al., 2006). Because the
processing of this data set was temporarily suspended, near-real-
time ice concentration data were used to cover the time period
2008–2009 (Maslanik and Stroeve, 1999).

The ice area was calculated for the region 20–501E and 77–821N
(0.32million km2) and combined into winter-mean (December–
March) and summer-mean (June–September) values. The northern
Barents Sea is mostly ice-covered, with a mean sea ice concentration
of more than 90% in winter and spring (Kvingedal, 2005), thereby
isolating the ocean from the atmosphere. A decrease in sea ice
concentration/area in winter can impact the ocean by increasing
the heat loss. Hence, we use the winter-mean ice area to evaluate the
atmospheric influence on the surface and subsurface water masses
during winter. The summer-mean ice area is included for quantifying
summer heating of the upper layer water masses.

2.1.3.4. Wind stress curl, Ekman transport and pumping. Monthly
mean surface wind fields (10 m above sea level) were available
from an atmospheric hindcast archive covering the Norwegian
and Barents Seas produced by the Norwegian Meteorological
Institute (Eide et al., 1985; Reistad and Iden, 1998) from 1970
to 2008. The archive data had a six-hourly temporal resolution on
a 75-km evenly distributed rotated polar-stereographic grid. This
source was chosen instead of the more commonly used NCEP/
NCAR or ERA-40 reanalyses due to its higher resolution.

Based on the hindcast archive, we calculated monthly mean
surface wind stress and the associated Ekman transport and
pumping. The effects of sea ice on the ocean surface stress curl
were accounted for in the analysis using two different
approaches. The first approach was calculating the wind stress
s¼(tx,ty)¼raCaUaUa using the lower threshold value for the mean
air-ocean and air–ice drag coefficient (Ca¼2.7�10�3) for outer
marginal ice zones (�50% ice concentration) (Guest et al., 1995;
also used by Sundfjord et al., 2007 for the northern Barents Sea).
With this approach, we assume that all the momentum in the ice
is transferred to the ocean. The other parameters involved in the
calculation were air density ra¼1.25 kg m�3 and surface wind Ua

referenced to 10 m above sea level.
The other approach included the sea ice concentration directly in

the calculations. Drifting ice affects the momentum transfer from the
atmosphere to the ocean (e.g., Wadhams, 2000; Leppäranta, 2005).
Depending on its characteristics, sea ice act to either enhance or
reduce the momentum transfer (Leppäranta, 2005). A detailed
description of the equations and parameterisations involved in these
calculations is given in Appendix A. As seen in Appendix A, it is not
straightforward to include the effect of sea ice on the ocean surface
layer, and several crude assumptions were made. The air–ice drag
coefficient was parameterised from the sea ice concentration
(Andreas et al., 2010). However, the ice-ocean drag coefficient

parameterisation requires the sea ice roughness characteristics and
the draft/length ratio (Lu et al., 2011), which are unknown. Addition-
ally, calculating the sea ice drift introduces large errors, particularly
because both ocean velocity and sea ice thickness are unknown.

Monthly mean Ekman transport using both the above
approaches was calculated with Ue¼(ue,ve)¼(1/rwf)(ty,�tx),
where rw¼1025 kg m�3 is the mean ocean mixed layer density,
and f¼2O sin jmean is the Coriolis acceleration at the mean grid
latitude jmean¼79.161N. The monthly mean Ekman pumping
(also using both approaches) was calculated with

we ¼ ð1=rwf Þð@ty=@x�@tx=@yÞ ð1Þ

The derived monthly fields were combined to annual fields.
The wind stress curl is an important driver for ocean circula-

tion, and Ekman pumping is an efficient process creating vertical
movement in the ocean (Gill, 1982). Coastal upwelling is the most
dominant and strongest Ekman pumping case, and it has been
found to have a strong influence on the cross-shelf exchange of
AW along the West Spitsbergen coast (Cottier et al., 2007). Ekman
pumping in the open ocean is substantially weaker, but it can still
be important at seasonal or longer time scales (deSzoeke, 1980).
Ekman pumping has been shown to induce strong open ocean
downwelling/upwelling in the northern Arabian Sea (Bauer et al.,
1991). Thus, wind stress curl and Ekman pumping fields were
included in the analysis to investigate their effect on the cross-
shelf exchange of AW across the NBSO.

2.2. Statistical methods

To relate the observed temperature variability to relevant
driving factors, an Empirical Orthogonal Function/Principal Com-
ponent (EOF/PC) analysis was performed on the gridded tem-
perature fields, and the derived PCs were correlated with the
driving factors. The EOF/PC analysis provides a compact descrip-
tion of the spatial and temporal variability of data series by
finding structures that explain the maximum variance and iden-
tify centres of action (centres of maximum variance) (Emery and
Thomson, 2004). The outputs are spatial fields of variability
modes (EOFs) with corresponding time series giving the temporal
variability of each mode (PCs). The analysis was performed on the
fields at 50 and 200 m to capture the variability in the ArW and
AW least influenced by mixing (see Section 3.3.1). An analysis for
100 m showed similar results, and the PCs at 100 m were always
between those for 50 and 200 m (not shown). EOF/PC analysis
was also used to find the dominant modes of variability in the
annual mean Ekman pumping fields.

A five-year moving average was applied to the PCs and the
driving factors before correlation analysis. The reason for this
approach was twofold: (1) the spatial coverage of the observa-
tions in this area varies, which may influence the estimated
interannual variability when using statistical analysis. To mini-
mise this problem, but still utilise all observations, time filtering
was found to be appropriate. (2) Due to the advection and
propagation of anomalies, time lags may be expected when
considering upstream conditions (e.g., Pfirman et al., 1994). Due
to the complexity of representing all the relevant forcing factors,
we found it necessary not to include lags in the analysis.

The linear trend was removed from the filtered PCs and driving
factors, and the resulting series were standardised. To adjust for
autocorrelation in the series, the effective number of degrees
of freedom was calculated in accord with Pyper and Peterman
(1998):

1

Nn
¼

1

N
þ

2

N

XN=5

j ¼ 1

rxxðjÞryyðjÞ
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where Nn is the effective number of degrees of freedom of the
time series X and Y, N is the sample size and rxx(j) and ryy(j) are the
autocorrelations of X and Y at lag j. Following the

recommendation by Pyper and Peterman (1998), a maximum of
N/5 lags were included in the calculation of Nn. Linear correlation
coefficients between the filtered, detrended and standardised

Fig. 3. (a) Temperature (1C) and (b) salinity (psu) observed in September 1999 (upper panels), September 2004 (middle panels) and September 2007 (lower panels) in a

transect from northern Hopen Trench (HT), crossing over the saddle point (SP) between HT and Olga Basin, to the Franz Victoria Trough (FVT) constructed with Ocean Data

View (Schlitzer, 2009). See Fig. 1 for position of transect and definition of O and X. Also shown above each panel is the annual mean Ekman pumping (cm day�1) at the

transect. The Ekman pumping is discussed in Section 3.3.1.
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time series were calculated using the derived effective number of
degrees of freedom. The presented correlation coefficients are
significant on the 95% level unless otherwise mentioned.

3. The northern Barents Sea—water masses and processes

A thorough description of the northern Barents Sea hydrography is
lacking in the literature. Thus, we find it necessary to give a general
description of the northern Barents Sea hydrography and its temporal
variability and to present the mean state and variability of the driving
factors included in this paper.

3.1. General description

In this section, the horizontal and vertical distribution of water
masses are described based on the hydrographic observations
from 1970 to 2009, and the general circulation is outlined based
on the numerical model results.

3.1.1. Horizontal water mass distribution (from observations)

The overall picture from the surface temperature fields is that the
temperature in the northern Barents Sea is decreasing northwards
(Fig. 2a). The high standard deviation shows strong interannual
temperature variability (Fig. 2b), and the strongest interannual
variability is found where the seasonal variability in sea ice cover
is large. ArW dominates the whole study area at 50 m, with a mean
temperature below �1 1C (Fig. 2a). At 100 m, ArW is evident only in
the central area, being limited by AW intruding into the area both
from the north and the south. The region occupied by ArW has low
interannual variability compared with the surrounding areas
(Fig. 2b). AW entering the area from the north through the troughs
of the NBSO is clearly visible at 100 m, and this water mass fills the

entire trench system of the northern Barents Sea at 200 m (Fig. 2a).
Weaker indications of AW originating from the BSO and crossing the
�200-m-deep saddle point between Hopen Trench and Olga Basin
can be seen in the enhanced standard deviation northeast of the
saddle point at 100 m (Fig. 2b).

3.1.2. Vertical water mass distribution (from observations)

The vertical temperature and salinity transects from the
northern Hopen Trench and into the Arctic Ocean through the
Franz Victoria Trough (see Fig. 1) were constructed from the CTD
profiles sampled in 1999, 2004 and 2007 (Fig. 3). The data were
not sampled continuously, but all profiles in each transect were
observed within two to three weeks. The surface layer in all three
years reached down to 15–30 m (Fig. 3). The surface layer shows
large lateral variability but is more homogeneous in the vertical.
From 1999 to 2007, the surface layer became warmer and slightly
more saline. The ArW is evident as the layer with minimum
temperature between the surface layer and the (modified) AW
(Fig. 3). In all three years, the layer was thickest, coldest and
freshest in Olga Basin, gradually becoming thinner, warmer and
more saline toward the Franz Victoria Trough. This northward
thinning is probably caused by strong water mass modifications
and vertical mixing in the regions where subsurface AW enters
from the north (Pfirman et al., 1994; Sundfjord et al., 2007). The
AW entering from the north is evident at 50–300 m in the Franz
Victoria Trough (Fig. 3). This AW submerges under the ArW in the
Franz Victoria Trough and shows a gradual descent southward.
The temperature and extent (lateral and vertical) of AW in the
northern Barents Sea varies considerably between years. In 1999
and 2007, the AW core in the Franz Victoria Trough was situated
at 100–200 m, and when penetrating southward, the AW became
substantially mixed from below and above. In 2004, the AW

Fig. 4. Mean 1993–2001 simulated temperature (1C—filled contours) and velocity (cm s�1—arrows) at 200 m depth from the regional ocean circulation ROMS model.

Velocity in every fifth grid cell is shown (see reference arrow).
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extended up to the surface layer on the shelf-break, there was a
substantially higher temperature at the 200–400 m depth layer
near the Franz Victoria Trough, and there was a stronger inflow of
AW to the northern Barents Sea. Also evident in 2004 is a
reduction in salinity causing a weaker stratification (not shown)
and a fresher and thicker ArW layer compared with the two
other years. The AW originating from the BSO and crossing the
Polar Front is evident as colder, more saline water near the
bottom in the Olga Basin, below the AW originating from the
NBSO. Cold Dense Water is present near the bottom in the Franz
Victoria Trough.

3.1.3. Ocean currents (from the numerical model)

The 1993–2001 mean model velocity and temperature at
200 m (Fig. 4) shows the AW slope-current along the shelf-slope
north of the Barents Sea flowing as one single current after the
remerging of the inner Svalbard Branch and the outer Yermak
Branch. The slope-current has a speed of 15–20 cm s�1 and a
temperature of �3 1C. Part of the AW enters the Barents Sea
through the troughs of the NBSO. The major inflow occurs
through the Franz Victoria Trough, although there is also some
recirculation in this trough. Once entering the northern Barents
Sea, the AW cools substantially, and the AW temperature
decreases to �0.5 1C when reaching the south of Kvitøya. The
circulation continues cyclonically in the Olga Basin, and intensi-
fies along the northern slope of the Great Bank. Then, the strongly
modified AW either exits to the Arctic Ocean through the Franz
Victoria Trough or flows into the area east of the Great Bank. The
model indicates a substantial cooling of the AW slope-current
when passing the Franz Victoria Trough.

3.2. Temporal variability

Seasonal, interannual, and multiannual variability are investi-
gated using time series from the NW location (see Fig. 1 and
Section 2.1.1).

3.2.1. Seasonal variability (from the numerical model)

Information about the seasonal variability in the sub-surface
layers in this area is sparse. To evaluate whether the CTD
observations (from autumn) are suitable for studying the multi-
annual temperature variability of the AW, the seasonal variability
of the AW layer was investigated in the numerical model results
from 200 m. The annual temperature, salinity, and velocity cycles
at location NW (Fig. 1) were extracted from the model fields
(Fig. 5). Due to the strong high-frequency variability, a 30-day
moving average was applied to the current speed to highlight the
seasonal cycle.

The temperature cycles at NW (Fig. 5a) indicate that the
minimum usually occurs in March (mean ��0.5 1C) and the
maximum in late September/early October (mean �2 1C). This
result is consistent with the seasonal cycle observed in the AW in
the southern Barents Sea (Loeng, 1991; Furevik, 2001), but one
month earlier than the maximum observed in the AW slope-
current core in the Nansen Basin (Ivanov et al., 2009). The model
seasonal range is �2.5 1C, which is substantially higher than that
observed both in the southern Barents Sea and in the slope-
current. The salinity cycle has the same shape as the temperature:
high and relatively stable salinities throughout summer and
autumn and lower and more varying salinities in winter and
spring (Fig. 5b). This pattern indicates more mixing in winter and
spring (consistent with Sundfjord et al., 2008, their Fig. 5). There
is no clear seasonal cycle in current speed (Fig. 5c), but the model
indicates a minimum in summer and early autumn. The inter-
annual variability is large. The annual-mean current has a

maximum speed of �4 cm s�1 in winter, decreasing to
�3 cm s�1 in summer. The majority of the current directions
were toward the west–southwest, reflecting a strong topographic
steering (Fig. 5d).

In summary, the model results indicate that the annual CTD
observations were sampled close to the maximum in the seasonal
cycle of the AW temperature and salinity, which occurred during
a season with relatively slowly varying temperature and salinity.
This implies that the observations had low sensitivity towards
sampling time (i.e., low synoptic error). This result suggests that
the interannual variability in the autumn observations is the true
interannual variability and not an artificial variability due to
sampling errors. Therefore, the annual autumn CTD observations

Fig. 5. Daily values of (a) temperature (1C), (b) salinity (psu) and (c) current speed

(cm s�1) simulated in the regional circulation ROMS model at location NW (see

Fig. 1 for location) at 200 m from 1993 to 2001. The thin lines are annual cycles

and the thick line is the mean annual cycle. Current speed has been filtered with a

30-day moving average. (d) Frequency distribution of simulated current directions

at location NW at 200 m from 1993 to 2001 (daily values; the total number of days

is 3285 days).
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should be suitable for studying the interannual to multiannual
variability of the AW.

3.2.2. Interannual to multiannual variability and trends (from

observations)

The interannual temperature variability from observations at
location NW (Fig. 1) shows that the surface water is dominated by
the interannual variability and has no increasing or decreasing
trend (Fig. 6a). At 50 m, however, the temperature was extremely
stable, with no trend until the late 1990s; but thereafter, both the
temperature and the interannual variability increased substan-
tially. Although there has been an increase in sampling intensity
and an approximately ten-day shift in sampling time during the
study period, this cannot account for the shift in variability. The
interannual variability at 200 m is greater than at 50 m, but
smaller than at the surface. However, the temperature at 200 m
has large long-term changes, and it spans a range from �0.7 1C
(in 1987) to 2.7 1C (in 2004). The most pronounced temperature
increase started in the mid/late 1990s. The temperature at 100 m
was dominated by ArW (To0 1C) up to the mid/late 1990s and by
AW (T40 1C) thereafter.

The total temperature increase during 1970–2009 was esti-
mated from statistically significant linear trends (at the 95%
confidence level) in the gridded mean 50–200 m fields for the
entire Barents Sea (Fig. 6b). All the boundary areas where AW
enters show a statistically significant linear trend at intermediate

depths. The temperature rise in and near the NBSO clearly comes
from the north and is not due to water advected through the
Barents Sea from the BSO. The lack of statistically significant
trends at 50–200 m in the central part of the ocean probably
reflects the vertical transformation/sinking of the water masses
when passing through the Barents Sea, as the Barents Sea is an
efficient cooler (Smedsrud et al., 2010). Still, similar trends might
be found in deeper layers (below 200 m) in the central and
eastern parts. However, the temperature variability below
200 m is affected by variability in dense water formation, and
exploring this variability is beyond the scope of this paper. Also
evident in Fig. 6b is a strong temperature rise southwest and
northwest of Spitsbergen. We investigate in Section 4 whether
this signal has been important for the temperature increase in the
northern Barents Sea.

3.3. Driving factors

The mean state and variability of the driving factors to be
investigated in Section 4 are presented below.

3.3.1. Wind, Ekman transport and pumping (from atmospheric

hindcast)

The 1970–2008-mean surface wind stress field is generally
easterly (Fig. 7a), resulting in an Ekman transport toward the north
in the entire area (Fig. 7b—arrows). The general wind stress effect is

Fig. 6. (a) Time series of temperature at NW extracted from the gridded temperature fields at surface, 50, 100 and 200 m depth. (b) Estimated linear increase (during

1970–2009) in autumn temperature at 50–200 m depth, shown where the trend is statistically significant on the 95% level.
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hence a transport of the upper waters from the northern Barents Sea
toward the Arctic Ocean. Ekman pumping (Eq. (1)) occurs
(Fig. 7b—filled contours) due to the lateral gradients in the wind
stress and the presence of land, and it has large local differences. The
mean wind stress and Ekman transport has similar patterns, though
are weaker, when sea ice concentration is included directly in the
calculations (Fig. 7c and d). The fields are also shifted clockwise due
to the turning angle y0 (Eq. (A.3)). However, the overall pattern is
the same as when ice cover is not included. The shape of the mean
Ekman pumping field is not sensitive to the choice of algorithm
(compare Fig. 7b and d–filled contours); however, it is slightly
weaker overall if sea ice concentration is implemented. (The slight
difference in Ekman pumping sign north of Franz Josef Land is
attributed to the difference in the period covered (starting in 1979 if
sea ice is implemented)).

The 1970-2008-mean Ekman pumping calculated with the
approach described in Section 2.1.3 shows that the strongest
upwelling (positive Ekman pumping) is north and northwest of
Spitsbergen (Fig. 7b–filled contours), where the Ekman Pumping
is always positive and has annual mean values ranging from 0 to
50 cm day�1, with an average of 22 cm day�1 (not shown).
Weaker upwelling is evident further northeast in the Nansen
Basin (Fig. 7b–filled contours). The annual mean ranges from �7
to 23 cm day�1 in this area (not shown). The mean Ekman
pumping is also positive (upwelling) over the outer shelf and
shelf-break at the northern boundary of the Barents Sea, which
means that, in this area, the subsurface AW will be lifted in the
water column. The upper boundary of AW on the Nansen Basin
continental shelf slope north of the Barents Sea has been observed

to vary between 50 and 200 m, whereas the lower boundary is
located beyond the shelf-break (between 800 and 900 m) (Ivanov
et al., 2009). Thus, increasing the upper boundary of AW is likely
to increase the penetration of AW onto the Barents Sea shelf. The
Ekman pumping is close to zero or negative (downwelling) over
the Barents Sea (Fig. 7b–filled contours).

Indications of increased cross-shelf exchange due to upwelling
caused by Ekman pumping are also evident in the vertical
transects (Fig. 3). The high temperature and deep maximum
(200–400 m depth) in 2004 compared to 1999 and 2007 indicates
a stronger upwelling of AW in the Franz Victoria Trough, and the
annual mean Ekman pumping (drawn above the vertical transects
in Fig. 3) shows consistently higher values in this region during
2004 compared with the two other years.

3.3.2. Effects of advection, surface heat loss and sea ice (from

observations)

There is substantial inter- and multiannual variability in AW
temperature at the WSC (Fig. 8). The annual unfiltered tempera-
ture values varies from 2.7 1C (in 1978) to 5.0 1C (in 1991 and
2006). Warm periods (high temperature over several years) are
observed in the early 1980s, the early 1990s and in the mid-
2000s. The time series indicates that the AW temperature at the
WSC was equally high in the early 1990s as in the mid-2000s;
thus, the increase in the observed AW temperature in the north-
ern Barents Sea in the 2000s cannot be explained by the
temperature increase in the WSC alone. Over the period 1977–
2009, the WSC showed a pronounced temperature increase and a

Fig. 7. (a) Mean 1970–2008 total tangential stress on the ocean surface (N m�2) using algorithm in Section 2.1.3 (in effect, the wind stress). (b) Mean 1970–2008 Ekman

transport (arrows) and Ekman pumping (cm day�1—filled contours) using algorithm in Section 2.1.3. (c) Mean 1979–2008 total tangential stress on the ocean surface

(N m�2) using algorithm with sea ice implemented (see Appendix A). (d) Mean 1979–2008 Ekman transport (arrows) and Ekman pumping (cm day�1—filled contours)

using algorithm with sea ice implemented (see Appendix A). See lower right corners for reference arrow.
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statistically significant positive trend (on the 95% confidence
level) of 0.44 1C decade�1.

The winter-mean SAT in Longyearbyen varies from �20.0 1C
(in 1989) to �6.2 1C (in 2006) (Fig. 8). In contrast to the WSC,
there was a substantial winter-mean SAT increase from the 1990s
to the 2000s. Over the period 1970–2009, the winter-mean SAT

had a statistically significant linear trend (95% confidence level) of
0.78 1C decade�1.

The sea ice area ranges from 87% coverage (0.28 million km2)
in winter and 53% coverage (0.17 million km2) in summer during
the cold years of 1981–1982 to 53% coverage (0.17 million km2)
in winter and 6% coverage (0.02 million km2) in summer during
the warm years of 2006–2007 (Fig. 8). The summer ice area
started decreasing in the late 1980s/early 1990s, while the winter
ice area shows a pronounced decrease starting in the late 1990s.
After the millennium shift, both the winter and summer ice area
shows large interannual variability, but the general trend is a
reduction in ice cover compared with the previous decades. The
linear decreasing trend (statistically significant on the 95% con-
fidence level) is 5.5% (0.018 million km2) decade–1 for winters
and 4.8% (0.015 million km2) decade–1 for summers during period
1978–2009.

4. Statistical analysis—results and discussion

To identify the most important driving forces for the observed
temperature changes described in Section 3, we use statistical
analysis on the spatial temperature fields and the driving factors.
The results of the EOF/PC analysis of the temperature and Ekman
pumping fields are presented in Section 4.1, and the results of the
correlation analysis between the derived PCs and the driving
factors are presented and discussed in Section 4.2.

4.1. EOF/PC analysis

4.1.1. Observed temperature fields

In the AW layer (200 m depth), the two leading modes (EOF1-
T200 and EOF2-T200), explaining together 64% of the temperature
variability, are presented (Fig. 9a and b). For the ArW layer (50 m),
only the first mode (EOF1-T50), explaining 29% of the variability,
is shown (Fig. 9c) because it was the only mode representing
variability associated with ArW. The second mode at 50 m was
more closely related to the variability in AW south of the Polar
Front and will not be analysed here.

EOF1-T200 explains 40% of the temperature variability in the
AW layer. The spatial correlation field between PC1-T200 and the
original temperature field (not shown) has large areas with
individual correlation coefficients of r40.70. Thus, in these areas,
EOF1-T200 explains more than 49% of the interannual variability.
The positive sign of EOF1-T200 over the entire area deeper than
200 m (Fig. 9a) indicates simultaneous temperature increases or
decreases in the region. EOF2-T200, however, has a positive sign
in the NBSO and a negative sign east of the Great Bank (Fig. 9b).
The positive sign pattern has a maximum amplitude near the
shelf-break in the Franz Victoria Trough it streches and south-
westward into the trench system that is dominated by AW
(Fig. 2a). EOF2-T200 thus represents a variability of AW flow that
is more confined to the shelf-break and the Franz Victoria Trough
compared with EOF1-T200. EOF2-T200 explains 24% of the
variability in the AW, but the spatial correlation field between
PC2-T200 and the original temperature fields (not shown) indi-
cate that EOF2-T200 explains more than 49% of the temperature
variability in the NBSO.

In the ArW layer (at 50 m), EOF1-T50 explains 29% of the
temperature variability (Fig. 9c). The spatial correlation field
between PC1-T50 and the original temperature fields at 50 m
(not shown) exceeds r 40.70 in most of the ArW area. Thus,
despite the relatively low explanation percentage for the entire
area, EOF1-T50 explains more than 49% of the interannual
variability in the ArW. The positive sign of EOF1-T50 over most

Fig. 8. Time series of temperature at the West Spitsbergen Current at Sørkapp

(TWSC; upper panel), winter-mean surface air temperature in Longyearbyen

(SATDJFM; middle panel) and ice area in winter (DJFM) and summer (JJAS) (lower

panel). The ice area was calculated for the box 77–821N, 20–501E, and is given in

percentage of the total area of the box (which is 0.32 million km2).
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of the northern Barents Sea indicates a simultaneous temperature
increase or decrease in the entire horizontal ArW layer.

4.1.2. Ekman pumping

EOF/PC analysis was performed on both Ekman pumping fields
(derived from the approaches described in Section 2.1.3 and
Appendix A). Although the mean Ekman transport/pumping fields

were relatively consistent in the two approaches (Fig. 7b and d),
the variability was not consistent; consequently, the EOF/PC
analysis differed between the two approaches. The simplest
approach (described in Section 2.1.3), assuming all the momen-
tum in the ice is transferred to the ocean and not implementing
the sea ice concentration directly, gave the highest correlations
with the PCs from the observed temperature fields. Consequently,
this approach will be presented here, but the time series (PCs) of
the other approach, implementing sea ice concentration directly
(described in Appendix A), are shown and discussed in Fig. 11 and
Section 4.2. Calculating the Ekman pumping from the numerical
model was not feasible due to the unrealistic vertical distribu-
tions and the associated mixing in the model.

The two leading modes from the EOF/PC analysis of the Ekman
pumping fields together explain 42% of the variability (Fig. 10a
and b). The first mode (EOF1-We) represents a situation with
positive Ekman pumping anomalies in the Nansen Basin and in an
east-west band just south of the shelf-break (Fig. 10a); thus, it
represents variability associated with an open ocean upwelling
signal. The wind anomalies causing this Ekman pumping varia-
bility are easterly winds north of Franz Josef Land and north of
Spitsbergen that increase and decrease northwards, respectively
(Fig. 10c). This leads to positive upwelling anomalies north of
Franz Josef Land and negative upwelling anomalies north of
Spitsbergen. The westerly wind anomaly in the interior northern
Barents Sea (Fig. 10c) causes less downwelling here (i.e., a positive
Ekman pumping anomaly), as shown in Fig. 10a. The pressure
field associated with this wind pattern would be a weak high-
pressure anomaly west of Spitsbergen and a low-pressure anom-
aly between Svalbard and Franz Josef Land.

As discussed in Section 3.3.1, increased upwelling near and
just south of the shelf-break increases the penetration of AW onto
the shelf, as was observed in 2004. South of the shelf-break, the
amplitude of EOF1-We decreases rapidly and turns weakly
negative, indicating that the Ekman pumping associated with this
mode is limited to the northern Barents Sea. The mode explains
25% of the variability in the Ekman pumping fields; however, the
spatial correlation field between PC1-We and the original Ekman
pumping fields (not shown) indicates that EOF1-We explains
more than 49% of the Ekman pumping variability in the Nansen
Basin, south of Svalbard and south of Franz Josef Land.

The second Ekman pumping mode (EOF2-We) represents a
situation with anomalously strong Ekman pumping in a band
along the shelf-break north of, the NBSO and south-westward in
the northern Barents Sea (Fig. 10b). This pattern is associated with
cyclonic wind anomalies around Svalbard (Fig. 10d), which
pushes water off the coast and causes the positive Ekman
pumping anomalies around Svalbard. This wind field must be
caused by a strong low-pressure anomaly over Svalbard. The
southerly wind anomaly in the northern Barents Sea decreases
toward the east. This causes convergent Ekman transport and a
negative Ekman pumping anomaly south of Franz Josef Land.

The positive Ekman pumping anomaly on the shelf-break
north of Svalbard will (Fig. 10b) bring AW onto the shelf upstream
of the NBSO. Cottier et al. (2007) observed a similar upwelling
process west of Spitsbergen that caused penetration of AW onto
the west Spitsbergen shelf. As it is likely that the AW on the shelf
and inner slope north of Svalbard enters the northern Barents Sea,
this process may increase the inflow directly. In addition, the
higher upwelling between Kvitøya and Hopen can bring the AW
from the upper part of the water column to the same depth as the
ArW. Because horizontal mixing in the ocean is more efficient
than vertical mixing, this can increase the overall mixing between
AW and ArW. Thus, the Ekman pumping associated with this
signal can impact most of the western part of the northern
Barents Sea. EOF2-We explains 17% of the Ekman pumping

Fig. 9. (a) The first and (b) the second EOF of the gridded temperature fields at

200 m, and (c) the corresponding first EOF at 50 m, all shown in units of standard

deviation (1C). The EOF/PC analysis was performed on the area enclosed by the

black line.
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variability in the whole area. However, the spatial correlation
field between PC2-We and the original Ekman pumping field (not
shown) indicates that EOF2-We explains more than 49% of the
Ekman pumping variability in the western NBSO area.

4.2. Correlation analysis

Focusing on multiannual variability, the correlation coeffi-
cients between the PCs of the temperature fields and the driving
factors are given in Table 2. Each PC is shown together with its
driving factor(s) in Fig. 11.

4.2.1. Driving forces for Atlantic Water temperature variability

The PC of the first AW mode, PC1-T200, is strongly positively
correlated with the AW temperature at the WSC (r¼0.77,

Table 2), showing that variability in the upstream temperature
is the dominant source of variability in the AW layer. If the trend
is not removed from the time series prior to correlation analysis,
the coefficient increases to r¼0.87, indicating that this signal may
drive both the trend and the multiannual variability of EOF1-
T200. Including time lags do not increase the correlation. This
may indicate that the real time lag is less than one year, i.e., that
the AW temperature at the WSC affects the AW temperature at
the northern Barents Sea within the same year. The PC1-T200 also
has a moderate correlation with PC2-We (r¼0.51; statistically
significant on the 90% confidence level), the coastal Ekman
pumping around Svalbard, indicating that the increased inflow
due to upstream coastal upwelling also influences on the AW
temperature in the northern Barents Sea.

A visual inspection of the time series reveals that multiannual
variability dominates and that the covariation between PC1-T200

Fig. 10. (a) The first and (b) the second EOF of the annual mean Ekman pumping fields (using approach in Section 2.1.3) shown in units of standard deviations (cm day�1).

Wind anomalies (m s�1) causing one standard deviation change in Ekman pumping for (c) PC1-We and (d) PC2-We; see lower right corners for reference arrow.

Table 2
Correlation coefficients between the PCs of the temperature fields in 50 and 200 m and the driving factors. All time series were filtered with a five-year moving average,

detrended and standardized before the coefficients were calculated. The analysis has been adjusted for auto-correlation, and the coefficients are significant on the 95% level

unless otherwise mentioned.

PC1-T200 PC2-T200 PC1-T50 TWSC SATDJFM Ice areaDJFM Ice areaJJAS PC1-We PC2-We

PC1-T200 1.00 – – 0.77 – – – – 0.51a

PC2-T200 – 1.00 0.48 – 0.61 – – 0.84 –

PC1-T50 – 0.48 1.00 – – – – – –

TWSC 0.77 – – 1.00 – – – – 0.62

SATDJFM – 0.61 – – 1.00 – �0.67 0.55 –

Ice areaDJFM – – – – – – – – –

Ice areaJJAS – – – – �0.67 – 1.00 – –

PC1-We – 0.84 – – 0.55 – – 1.00 –

PC2-We 0.51a – – 0.62 – – – – 1.00

a Significant on the 90% level.
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and the identified driving factors varies over the time period
(Fig. 11a). Multiple linear regression shows that the temperature
variability in the WSC and coastal upwelling (PC2-We) together
explain 64% of the variability in PC1-T200. The WSC has the
strongest influence during the first part of the study period,
explaining as much as 95% of the variability up until 1992. During
the same period, PC2-We explains only 25% of the variability. The
influence of PC2-We is stronger toward the last part of the study
period. From 1986 onwards, the variability in the WSC and
PC2-We has a more equal influence on PC1-T200 than earlier,
explaining 59 and 51% of the variability, respectively.

The PC of the second AW mode, PC2-T200, is highly correlated
with PC1-We (r¼0.84, i.e., explaining 71% of the variability in
PC2-T200), showing that positive anomalies of open ocean

upwelling in the NBSO strongly influences the AW temperature
in the northern Barents Sea. Following Proshutinsky and Johnson
(1997), upwelling along the Arctic continental shelf-slopes lifts
the pycnocline between the ArW and the AW, and consequently,
more AW will penetrate onto the shelves (their Fig. 3). This effect
will be most pronounced near the shelf-break, consistent with
Fig. 9b. Nevertheless, the effect will increase the heat content of
the northern Barents Sea, and more heat will be available for
mixing with ArW. This finding also corresponds with Abrahamsen
et al. (2006), who suggested that the circulation of AW in the
northern Barents Sea is controlled by winds between Svalbard
and Franz Josef Land. PC2-T200 also has a moderate correlation
with the winter-mean SAT in Longyearbyen (r¼0.61). The AW in
the WSC is subjected to both direct surface heat loss to the
atmosphere and strong lateral subsurface heat loss (Saloranta and
Haugan, 2004; Nilsen et al., 2006; Tverberg and Nøst, 2009). The
moderate correlation with winter-mean SAT indicates that the
variability of direct surface heat loss impacts on the temperature
signal advected clockwise around Svalbard on the multiannual
time scale.

PC2-T200 and PC1-We are dominated by multidecadal varia-
bility, with rapid shifts occurring in the late 1970s and the late
1990s (Fig. 11b). The co variability of the series is coherent
throughout the study period, and both series have overall maxima
in the late 2000s. In total, PC1-We and winter-mean SAT explain
together 76% of the variability in PC2-T200.

The PCs of the Ekman pumping fields where sea ice concentra-
tion was implemented directly in the calculation (i.e., the approach
described in Appendix A), PC1-We_Ice and PC2-We_Ice, are shown
for comparison in Fig. 11a and b. Although there are some
similarities between the PCs with and without ice cover included,
there are also substantial differences. The time series with ice cover
included has no statistically significant correlation to any of the
other time series in this study. The PCs with ice cover included
covers a shorter time period (sea ice concentration is available from
1979) than PC1-We and PC2-We. However, performing the correla-
tion analysis on PCs of Ekman pumping fields not including ice
cover for the shorter period 1979–2009 did not change the result.

The most likely reason for the poor co-variability between the
observed AW temperature and the calculated Ekman pumping
including ice cover is the rather crude assumptions, which had to
be made when performing the air-ice and ice-ocean stress
calculations (Section 2.1.3 and Appendix A). Thus, it is possible
that a relationship would have appeared if other assumptions had
been made and more sea ice variables were known. Still, we
found a strong relationship with the calculated Ekman pumping
using a mean air-ocean and air–ice drag coefficient for outer
marginal ice zones. In this simplified approach, all the variability
in the Ekman pumping comes from the wind stress curl and not
from the variability in the ice cover. This situation is also
consistent with the lack of relation/correlation between the AW
temperature and the sea ice area in summer or winter (Table 2).
We interpret the result as that the main forcing factor is likely to
be the wind stress curl. It is also likely, or at least possible, that
the process from which the wind stress curl acts on the ocean is
through Ekman pumping, although firm conclusions on the
process cannot be made on the basis of our analysis.

When analysing Ekman pumping, we use annual mean velocities,
which, in most of the area, are below 10 cm day�1 or 37 m year�1

(Figs. 3 and 7). A vertical movement of less than 40m year�1 seems
rather insufficient to cause stronger cross-shelf exchanges of AW. The
main reason for using annual means is that we do not know the time
lag between the shelf-slope and the interior part of the northern
Barents Sea. Using a mean advection speed of 4–5 cm s�1, a first
approximation gives that thewater involved in causing themaximum
amplitude in EOF1-T200 (200–500 km south of the shelf-break;

Fig. 11. Standardized detrended and filtered time series of the PCs of the gridded

temperature fields and the driving factors identified by the correlation analysis in

units of standard deviation. (a) The PC of the first AW mode (PC1-T200),

temperature of the West Spitsbergen Current at Sørkapp (WSC), the PC of the

second Ekman pumping mode (PC2-We) and the PC of the second Ekman pumping

mode using the approach implementing sea ice concentration directly (PC2-

We_Ice; see Appendix A). (b) The PC of the second AW mode (PC2-T200),

winter-mean surface air temperature in Longyearbyen (SAT) and the PC of the

first Ekman pumping mode (PC1-We) and the PC of the first Ekman pumping

mode using the approach implementing sea ice concentration directly (PC1-

We_Ice; see Appendix A). (c) The PC of the first ArW mode (PC1-T50) and the

PC of the second AW mode (PC2-T200).
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Fig. 9a) crossed the shelf-break 4–6 months earlier (i.e., in late winter
or early spring). The Ekman pumping is substantially stronger in
winter than in summer, with 2000–2008 winter-mean (November–
April) velocities of 21 cm day�1 averaged over the area north of the
shelf-break from Nordaustlandet and eastward (not shown). This
velocity would give a cumulative lift of the water column of 38m
during the winter. The values greatly differ between years, and both
2004 and 2007—years of high observed AW temperature in
Fig. 3—were years with high winter-mean Ekman pumping values
(25 and 34 cm day�1, respectively). Nevertheless, because we do not
know, which period of the year the Ekman pumping is most
important, we find it appropriate to consider annual means. Other
mechanisms, e.g., lateral and vertical mixing of the AW slope-current;
heat loss to the atmosphere and to sea ice melting upstream of the
submergence of the AW slope-current; and mixing with cascading
cold density plumes might also have an impact on the thickness and
vertical distribution of the AW slope-current. In particular, variability
in the submergence of AW north of Spitsbergen may play an
important role.

Our results show that on multiannual time scales, the AW
temperature in the northern Barents Sea depends on the upstream
temperature (in the WSC), on cross-shelf exchange caused by the
wind stress curl in the open ocean, (weakly) on the the wind stress
curl in the coastal areas and (weakly) on upstream direct surface
heat loss. The most likely process associated with the wind stress
curl is Ekman pumping. We find no relationship between the
subsurface AW and sea ice area during summer or winter.

4.2.2. Impacts on Arctic Water

The temperature variability in ArW, represented by PC1-T50, is
not related to any of the investigated driving factors (Table 2), but
it has a moderate significant correlation of r ¼ 0.48 with the AW
temperature itself (PC2-T200). This result indicates that vertical
mixing transfers heat from the AW upwards to the ArW. The
effect will likely be strongest in the NBSO, where EOF2-T200 and
EOF1-We have maximum amplitude (Figs. 9b and 10a). This
finding is consistent (1) with Fig. 2b showing a higher variability
of ArW in the NBSO area, (2) with Fig. 3 showing a thinner,
warmer and more saline ArW layer in the northern part of the
transect and (3) with Sundfjord et al. (2007) showing that wind
stress, tidal mixing and tidal-generated internal waves cause
significant turbulent mixing between ArW and AW in this area.

The temporal variability of PC1-T50 and PC2-T200 (Fig. 11c)
indicates that the rapid increase in ArW temperature that
occurred in the late 1990s (Fig. 6a) was linked to the raised
subsurface AW interface. Thus, it is likely that the AW reached
high enough in the water column during the late 1990s/early
2000s to substantially impact the ArW at 50 m.

5. Discussion and summary

The first objective of this paper was to give a basic description
of the AW inflow to the Barents Sea from the north (between
Svalbard and Franz Josef Land) and its impacts on the ArW. We
find that most of the AW in the northern Barents Sea enters the
area from the north. Since the AW that enters from the north is
below the ArW, this AW is subjected to a relatively slow heat loss
rate (through mixing) compared with being in direct contact with
the atmosphere (through direct surface heat loss), as AW in the
southern Barents Sea is. The AW entering the Barents Sea from
the north therefore maintains a temperature above 0 1C far into
the northern Barents Sea trench system. The hydrographic obser-
vations show that the AW temperature in the northern Barents
Sea increased substantially during 1970–2009 and that the AW
temperature increase accelerated in the late 1990s.

ArW occupies the upper 20–100 m of the northern Barents Sea,
with temperature down to the freezing point. The ArW layer is
thickest, coldest and freshest in the Olga Basin just north of the
Polar Front, and gradually thins toward the Franz Victoria Trough.
The vertical extent of the ArW layer varies on interannual time
scales due to the variations in mixing with the AW. We also find
that the temporal variability in the ArW temperature is partly
influenced by the variations in the AW. Before the late 1990s/
early 2000s, the ArW temperature was extremely stable and low;
after this period, the temperature and the interannual variability
increased. This effect was caused by increased penetration of AW
onto the northern Barents Sea shelf. Note that we ignored the
factors producing and/or advecting ArW into the region. We also
chose a method (EOF/PC analysis) that analyses the variance in
the fields. As the temperature variability in the ArW is weak
compared with the AW, this is not the most suitable method for
the general identification of structures in the ArW. Consequently,
we can only evaluate the impact of AW on ArW.

The second objective of this paper was to identify the factors
driving the multiannual temperature variability of the AW enter-
ing the Barents Sea from the north. Our conclusion is that the
most dominant driving factor is upstream temperature variations
in the WSC advected with the AW, and this forcing causes a
simultaneous temperature response over most of the northern
Barents Sea AW layer. The signal has multiannual variability and a
strong trend, but it cannot account for the observed accelerating
temperature increase in the northern Barents AW in the late
1990s. Also of importance for the multiannual variability in the
AW temperature is the wind stress curl along the coast north of
Svalbard. The most likely process is that the wind stress curl
causes coastal upwelling, which brings AW onto the shelf north of
Svalbard and increases the amount of AW entering the Barents
Sea through the NBSO.

The second most important driving factor of the AW temperature
is the open ocean wind stress curl in the Nansen Basin and the
NBSO. The probable mechanism is that the wind stress curl causes
Ekman pumping, which lifts the AW slope-current in the Nansen
Basin and increases the cross-shelf exchange and the penetration of
AW onto the shelf. This process will in turn cause higher AW
temperature on the northern Barents Sea shelf and the shelf-break
facing the Nansen Basin. This signal has multidecadal variability
with rapid shifts, including an abrupt increase in the late 1990s.
Thus, the enhanced warming of the northern Barents Sea in the late
1990s was caused by an increased open-ocean wind stress curl/
Ekman pumping over the shelf-break. We also find that upstream
direct surface heat loss from the WSC to the atmosphere may have
an effect with similar temporal variability. Variability in the sea ice
cover does not appear to influence on the AW temperature.

The accelerating AW temperature increase in the northern
Barents Sea during the late 1990s and the early 2000s may have
been linked to changing large-scale atmospheric circulation in the
Arctic. According to Proshutinsky and Johnson (1997), upwelling
along the Arctic continental shelf-slopes and the penetration of
AW onto the Arctic shelves are associated with the large-scale
atmospheric circulation in the Arctic Ocean. During anticyclonic
atmospheric circulation, the sea surface height increases in the
central Arctic Ocean and decreases on the surrounding shelves.
This pushes the pycnocline down in the centre of the basin and
lifts it up on the shelf-slopes. Thus, AW advected along the shelf-
slopes is lifted, and the penetration onto the shelves increases.
The period of increased upwelling in the late 1990s and early
2000s coincides with the prevailing anticyclonic atmospheric
circulation in the Arctic from 1997 to 2008 (A. Proshutinsky,
personal comm., 2010). During the 2000s, an abnormal dipole
pattern of the Arctic atmospheric circulation also occurred (Zhang
et al., 2008).
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The inflow of warm AW through the BSO has a strong impact on
the Barents Sea climate variability (e.g., Loeng, 1991; Sandø et al.,
2010). Regional downscaled climate models indicate that future
heating due to anthropogenic signals will dominate in the Barents
Sea south of the Polar Front (Ellingsen et al., 2009). The location of the
front in the western Barents Sea is strongly linked to topography.
Strong changes in location have not been observed earlier and are not
predicted to happen in the future (Loeng, 1991; Ellingsen et al., 2009).
Still, our results document increasing temperature and a decreasing
vertical extent of the ArW from below, and it links these changes to
the inflow of AW through the NBSO. Because this AW inflow is cooled
through vertical mixing rather than direct surface heat loss, which is
the case in the southern Barents Sea, it has much stronger impacts on
the ArW. Thus, major changes in the ArW and the Polar Front in the
future will most likely be caused by the AW coming from the north
and below, not from the AW entering in the upper waters in the BSO.
A detailed study of the formation and modification processes of ArW
in the Barents Sea is needed before conclusions can be made on this
topic. Nevertheless, our results have shown that future generations of
regional downscaled climate models should have a good representa-
tion of the subsurface flow of AW coming from the NBSO and the
factors controlling its variability.

The ocean general circulation model results from this and other
studies indicate that a part of the AW following the Nansen Basin
shelf slope eastward takes a detour in the northern Barents Sea
before re-entering the Nansen Basin through the Franz Victoria
Trough. During this detour, the AW is substantially cooled and
freshened through mixing with the ArW, and the outflow through
the Franz Victoria Trough modifies the AW slope-current down-
stream of the NBSO. This modification of the slope-current is
consistent with Schauer et al. (1997). Thus, the modelled circulation
pattern indicates that not only the large transit of AW through the
Barents and Kara seas from the BSO to the St. Anna Trough is
transformed in the Barents Sea; also the AW entering the Arctic
Ocean through Fram Strait, specifically the Nansen Basin AW slope-
current, is modified by water mass transformations in the Barents
Sea due to the detour that parts of the AW take in the northern
Barents Sea. Furthermore, the latter transformations impact on the
AW slope-current downstream of the NBSO, and these changes arise
from mixing with the ArW.
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Appendix A. Ekman pumping analysis with sea ice
concentration implemented

An alternative Ekman pumping analysis was carried out with
the aim of implementing the effect of the drifting sea ice cover in

the northern Barents Sea. The principal components of this EOF
analysis (PC1-We_Ice and PC2-We_Ice) are shown in Fig. 11a
and b. A detailed description of the method is given below.

For each grid cell of the surface wind field Ua at 10 m above sea
level (from the atmospheric hindcast fields, Section 2.1.3), the
total tangential stress on the ocean surface was calculated as

s¼ ðtx,tyÞ ¼ raCaUaUa for A¼ 0 ðA:1aÞ

and

s¼ ðtx,tyÞ ¼ rwCwUiU i for A40 ðA:1bÞ

where ra¼1.25 kg m�3 is the mean air density, Ca¼Ca(A)¼1.5�

10�3
þ2.233�10�3A�2.333�10�3A2 is an empirically based

parameterisation of the air-ocean and air–ice drag coefficient for
areas that are a mixture of open water and sea ice (Andreas et al.,
2010), A is the fractional sea ice concentration field (from remote
sensing data from the National Snow and Ice Data Centre, Section
2.1.3) ranging from 0 for open water to 1 for complete ice cover,
and rw¼1025 kg m�3 is the mean ocean mixed layer density.

Cw ¼ ðCeAD=2LÞ½1�ðAD=Lð1�AÞÞ1=2�2þðCrAHr=pDrÞ½1�ðHr=DrÞ
1=2

�2

þCsAð1�ðmHr=DrÞÞ ðA:2Þ

is the total ice-ocean drag coefficient parameterisation by Lu et al.
(2011), derived according to the quadratic drag law. Ce and Cr are
form drag coefficients of a single floe edge and a single ridge keel,
respectively, Cs is the skin friction drag coefficient of the ice
bottom, D/L is the ice floe draft/length ratio, Hr/Dr is the ice floe
ridging intensity (Hr is the ridge keel depth and Dr is the distance
between ridge keels) and m¼10 is assumed to be constant and is
related to the shadowing effect on the ice bottom between
adjacent ridges (Eq. (12) of Lu et al., 2011). Eq. (A.2) is valid only
for Hr/Drr1/m (m¼10) and Ao1/(1þD/L). The first right-hand
term of (A.2) becomes zero for AZ1/(1þD/L).

In estimating Cw, we followed Lu et al. (2011) and set Ce¼1.0
(Horner, 1965), Cr¼0.5 (found by Pite et al. (1995) for ridge keel
slope angles of �101), Cs¼2.0�10�3 (measured under a rela-
tively smooth ice bottom in the Beaufort Sea by Hunkins (1975))
and Hr/Dr¼1/100 (moderate ridging intensity close to that mea-
sured in the Barents Sea by Overgaard et al. (1983)). The draft
over length ratio varies from D/L¼1/10,000 for large floes in the
central ice zone to D/L¼1/10 for pancake ice or floes in the
marginal ice zone. Sensitivity studies by Lu et al. (2011) showed
that the form drag of the floe edge (the first right-hand term of
Eq. (A.2)) is always the dominant term for large draft over length
ratios (D/LZ1/100). However, for small D/L, Cw mostly depends
on the form drag of the floe keel or the skin friction (second and
third right-hand terms of Eq. (A.2), respectively). Thus, when
parameterising Cw for ice fields with a highly varying D/L, such as
from a marginal ice zone to a central ice pack as in the northern
Barents Sea, it is important to treat D/L as a variable. To our
knowledge, an empirical relationship between D/L and A has not
been published. However, we deduced such a relationship by
combining the empirical formulas H¼DþF¼9.46Fþ0.15 (for
first-year ice based on the isostatic equilibrium equation by
Alexandrov et al. (2010)) and L¼31F/(1�A) (Mai, 1995; and
applied by Lüpkes and Birnbaum, 2005), where H is the total ice
thickness and F is the freeboard. Setting D¼1 and solving for L

gave L¼3.114657/(1�A).
Finally, the ice velocity is

U i ¼Na½cosy0,siny0�UaþUwg ðA:3Þ

(Leppäranta, 2005), where Na¼(raCa/rwCw)
1/2 is the wind factor

(the Nansen number), y0¼�251 is the turning angle and Uwg is
the geostrophic ocean current. We assumed Uwg¼0 ‘slippery ice’,
an assumption that Perrie and Hu (1997) found adequate for
similar conditions. Eq. (A.3) also assumes the ice velocity is
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negligible compared with the wind velocity, an assumption that is
valid in most cases. For each grid cell of the sea ice concentration
field A, the nearest surface wind grid cell was found through
nearest neighbour interpolation and was applied in Eq. (A.3).
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Abstract In the seasonally ice-covered northern Barents Sea an intermediate layer of cold and relatively
fresh Arctic Water at ~25–110m depth isolates the sea surface and ice cover from a layer of warm and
saline Atlantic Water below, a situation that resembles the cold halocline layer in the Eurasian Basin. The
upward heat flux from the Atlantic layer is of major concern. What causes variations in the heat flux and how
is the Arctic layer maintained? Using observations, we found that interannual variability in Arctic layer salinity
determines the heat flux from the Atlantic layer through its control of stratification and vertical mixing. A
relatively fresh Arctic layer effectively suppresses the upward heat flux, while a more saline Arctic layer
enhances the heat flux. The corresponding upward salt flux causes a positive feedback. The Arctic layer
salinity and the water column structures have been remarkably stable during 1970–2011.

1. Introduction

The northern Barents Sea has had the largest reductions in winter sea ice cover in the Arctic Ocean [Parkinson
and Cavalieri, 2008; Screen and Simmonds, 2010]. These changes were accompanied by increasing tempera-
tures in the entire water column [Lind and Ingvaldsen, 2012; Smedsrud et al., 2013] as well as in the lower tro-
posphere [Screen and Simmonds, 2010; Cohen et al., 2014]. The latter has been linked to cold winter extremes
in midlatitudes [Petoukhov and Semenov, 2010; Cohen et al., 2014]. There have also been substantial changes
in the northern Barents Sea ecosystem in the last decade, impacting the food chain from plankton production
[Dalpadado et al., 2014], via fish distribution [Fossheim et al., 2015], to marine mammals [Bogstad et al., 2015].

The northern Barents Sea has a seasonal ice cover, a surface mixed layer of meltwater in summer and autumn
(“the surface layer”), an intermediate, cold, and relatively fresh layer of Arctic Water (“the Arctic layer”), and in
most of the region a deep, warm, and saline layer of Atlantic Water (“the Atlantic layer”). In some areas dense
water formed by cooling and brine release is present near the bottom [e.g.,Midttun, 1985; Årthun et al., 2011].
The Arctic layer in the northern Barents Sea resembles the cold halocline layer of the Arctic Ocean, and
particularly of the Eurasian Basin, in that it has a vertical salinity gradient, a negligible vertical temperature
gradient, and that it isolates the surface mixed layer and sea ice cover from the deep Atlantic layer. The cold
halocline layer of the Arctic Ocean has been widely discussed and investigated [e.g., Steele et al., 1995; Rudels
et al., 1996; Steele and Boyd, 1998; Bourgain and Gascard, 2011; Polyakov et al., 2013], and particular attention
has been given to how it is maintained andwhat its effect is on the upward heat fluxes from the Atlantic layer,
since this is of major importance for understanding changes in the Arctic sea ice cover.

The Arctic layer in the northern Barents Sea is the remnants of the winter mixed layer formed by cooling and
brine release in winter [e.g., Rudels et al., 1996]. The temperature minimum at ~50–75m depth with typical
characteristics of S~34.45–34.5 and Θ~�1.8°C [Loeng, 1991] marks the vertical extent of the local winter
convection [Rudels et al., 2004]. Air-ice-ocean interaction in the marginal ice zone could modify Atlantic
Water present at the surface such that it forms Arctic Water at intermediate depths with properties equivalent
to lower halocline water in the Arctic Ocean [Steele et al., 1995]. The winter mixed layer is supplied with
freshwater through net precipitation, ice import, river runoff, and “the separator effect” (cf. salt separation
in connection with ice production over shallow areas) [Rudels et al., 2004]. Sea ice import from the Nansen
Basin and Kara Sea is probably the most important freshwater source for the northern Barents Sea [Kwok
et al., 2005; Ellingsen et al., 2009]. There are basically no observation-based estimates of Arctic Water advec-
tion within or across the boundaries of the Barents Sea.
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The Atlantic layer in the northern Barents Sea (S~ 34.8–35.0 and Θ~ 0–4°C) has a temperature maximum at
~150–200m depth and occasionally several deeper temperature maxima. It is supplied by a subsurface
inflow of Atlantic Water to the Barents Sea from the north—a branch of the eastern boundary current enter-
ing the Arctic Ocean through the Fram Strait [e.g., Mosby, 1938; Lind and Ingvaldsen, 2012]— and from the
south—the continuation of the branch entering the Arctic Ocean through the Barents Sea [Loeng, 1991].
The strengths and variations in temperature and salinity of the Atlantic Water inflows are unknown. The
Atlantic layer is further modified on its way through the northern Barents Sea by mixing with the Arctic
Water above [e.g., Pfirman et al., 1994]. Observations from the period 1970–2009 showed a positive trend
in the Atlantic Water temperature, with a more rapid warming after the late 1990s that also affected the
Arctic Water [Lind and Ingvaldsen, 2012].

Observations and simulations have shown that velocity shear and turbulent mixing are rather weak away
from coastal boundaries in the northern Barents Sea [Sundfjord et al., 2007, 2008]. This corresponds well with
observed velocity shear below the surface mixed layer in the interior Arctic Ocean [Fer, 2009; Rainville et al.,
2011]. The small vertical turbulent transport of heat allowsmaintenance of the cold halocline layer [Fer, 2009].
The weak turbulent mixing and the vertical structure in the northern Barents Sea, where temperature and
salinity increase with depth, are conditions favorable for double-diffusive convection. Such convection has
been observed in the region [Sundfjord et al., 2007] and may cause significant vertical fluxes of heat and salt.
However, Polyakov et al. [2013] observed stronger mixing and winter intensification in the Eurasian Basin.
They suggested that the winter intensification is a combination of brine-driven convection, large velocity
shears caused by storms, and reduced stratification in the upper layers.

The full interplay between the surface-, Arctic-, and Atlantic layers in the northern Barents Sea, as well as the
equivalent cold halocline layer in the Eurasian Basin, is poorly understood. In particular, it is not known to
what extent the variability in the characteristics of the Arctic layer (i.e., salinity, temperature, and thickness)
influences turbulent mixing and heat flux from the Atlantic layer below. In these cold waters, density is mainly
controlled by salinity. Thus, the salinity difference between the Arctic and Atlantic waters in the northern
Barents Sea maintains a stratification that impedes turbulent mixing. The working hypothesis for this paper
is that the Arctic layer salinity determines the interannual variability in stratification in the part of the water
column separating the Arctic and Atlantic layers and that this in turn largely determines the bulk turbulent
mixing between the two water masses. This implies that the Arctic Water salinity affects the heat flux from
the Atlantic layer and thus controls the isolating effect of the Arctic layer.

We use an extensive set of temperature and salinity fields interpolated from late summer/autumn in situ data
collected over a period of 42 years (1970–2011). Having defined a schematic two-layer vertical model, we
identify the annual depths and characteristics of the Arctic and Atlantic cores and estimate the annual buoyancy
frequency of the part of the ocean column bounded by the cores. The effect of the buoyancy frequency varia-
bility on the turbulentmixing and corresponding changes inmean properties of the two layers are investigated.
The data and methodologies are presented in section 2, and results are given in section 3. Implications of the
findings are discussed in section 4 before the paper is summarized and concluded in section 5.

2. Data and Method
2.1. Data Set

Temperature and salinity fields of the Barents Sea were interpolated from a set of 70,000 conductivity-
temperature-depth (CTD) profiles and water bottle stations. The data are from August and September every
year from 1970 to 2011 and were sampled by the Institute of Marine Research and Knipovich Polar Research
Institute of Marine Fisheries and Oceanography in joint Norwegian-Russian surveys designed to cover the
entire Barents Sea. The data were interpolated horizontally on finite element grids at 51 vertical z-levels and
regridded on a 25× 25 km area-conserving grid. (For further details on the interpolation, see Text S1 in the
supporting information.) The gridded data were averaged over a subset covering 85,000 km2 for each year
and each vertical level (hereby denoted “the study area,” in total, 135 grid cells; Figure 1a). Of the total set
of 70,000 CTD profiles, the study area covered approximately 1800 in total (i.e., 13.3 CTD profiles per grid cell
on average). The averaging produced one mean vertical temperature-salinity (TS) profile with a vertical resolu-
tion of 5m for each year from 1970 to 2011 (Figure 1b). These TS profiles provided the mean interannual TS
variability during the four decades for a bulk part of the northern Barents Sea.
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The extent of the study area, its diverseness in topography, and the very good data coverage ensured that the
results were representative for the northern Barents Sea. There is considerable local hydrographic variability
in space and time as well as substantial regional differences within the study area. These regional differences
were averaged out in the annual mean TS profiles. For additional details on the study area, including an
evaluation of the sensitivity to depths where data are discarded, see Text S2 and Figure S1.

2.2. Method
2.2.1. Defining the Layers
The temporal mean of the 42 annual TS profiles showed three evident layers (Figure 1c): (1) a relatively fresh,
warm, homogenous surface layer; (2) a cold, moderately fresh Arctic layer (the bulk part is <�0.5°C) with a
negligible vertical temperature gradient and a temperature minimum at 55m (“the Arctic core”); and
(3) a warm, saline Atlantic layer (the bulk part is >�0.2°C) with a temperature maximum at 185m
(“the Atlantic core”). The depth span of the part of the Arctic layer having a constant or negligible vertical
temperature gradient (i.e., <0.01°m�1) varied in time and space from only a few meters to several tens of
meters, and it is averaged out in the temporal-spatial mean profile. Some annual profiles had relatively low
temperatures below the Arctic layer, but there was always a temperature maximum below showing
presence of (modified) Atlantic Water. There were evidence of mixing between the layers (i.e., linear transi-
tions in temperature and salinity). The TS transitions were very sharp from the surface layer to the Arctic
layer (i.e., the pycnocline) and more gradual from the Arctic core to the Atlantic core (i.e., the mixing line
between the cores).

In order to define the layers in each annual TS profile, an algorithm was developed (the full description is
given in Text S3). The Arctic and Atlantic cores were identified by the temperature minimum and the deeper
temperature maximum. The pycnocline was identified by the maximum in salinity gradient above the Arctic
core and the Arctic/Atlantic interface by the midpoint in temperature between the cores. The Arctic layer was
defined as the vertical layers from the pycnocline to the Arctic/Atlantic interface. Annual mean TS values were
calculated for each layer (see Text S3 and Figure S2 for details).

Figure 1. (a) Map of the northern Barents Sea showing the study area with the number of years with data coverage in each grid cell. (b) TS diagram of each annual TS
profile averaged over the study area (annotations are the Arctic core (blue dot), the Atlantic core (red dot), and the midpoint in TS space between the cores
(black dot)). (c) The 1970–2011mean TS profile (annotations are the Arctic core (open black circle), the Atlantic core (open black square), the pycnocline (dash-dotted
line), and the Arctic/Atlantic interface (dashed line)).
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2.2.2. Estimation of Buoyancy Frequency
The buoyancy frequency or Brunt-Väisälä frequency N is a fundamental measure for stratified fluids because it
quantifies the opposing force a fluid particle feels when being perturbed vertically. It is defined by

N2 ¼� g
ρ0

dρ0 zð Þ
dz

(1a)

where g is the acceleration due to gravity, ρ0 is the unperturbed density, and z is the vertical coordinate [e.g.,
Gill, 1982]. We estimated the annual buoyancy frequency between the Arctic and Atlantic cores by inserting

dρ0 zð Þ
dz

≈
Δρ0
Δz

¼ ρArctic_core � ρAtlantic_core
zArctic_core � zAtlantic_core

(1b)

into (1a), where ρ is the potential density and z is the vertical depth of each core, g=9.81m s�2, and mean
potential density, ρ0 = 1028 kgm�3. The Richardson number (Ri=N2/(du/dz)2) is a measure of the relative
strengths of buoyancy and velocity shear, and Ri< 0.25 is a necessary condition for turbulence to occur
[Gill, 1982]. This implies that moving a water parcel 10m vertically for the median value of N estimated here
(4.1 · 10�3 s�1) demands a velocity shear>0.08m s�1. This is a large velocity shear compared to themeasured
velocities in the area, which are on the order of 0.01–0.1m s�1 [Sundfjord et al., 2007]. However, the data set
used here is averaged over a large area and many subsequent observations, and local effects (e.g., due to
topography) and higher-frequency variability (e.g., combined effects of winds and tides) will be more likely
to induce turbulence occasionally for weak rather than for strong stratification even if the mean Ri> 0.25.
2.2.3. A Two-Layer Model
The observations represent the late summer situation, and the observed vertical structure is a result of Arctic
Water that formed during the preceding winter by cooling and brine release, advection of Atlantic Water
below, and mixing between the two water masses. To investigate mixing between the layers and to be able
to distinguish between cause and effect, a simple two-layer vertical model was defined. The model consisted
of two homogenous layers: a winter mixed layer of Arctic Water with temperature and salinity as observed in
the Arctic core in autumn, above a layer of Atlantic Water with temperature and salinity as in the Atlantic core.
This situation would correspond to the end of the winter season. The observed situation in late summer, with
a constant gradient between the cores (Figure 1c), would be a result of mixing between the two layers. The
core properties were considered to contain the original properties from winter. The associated buoyancy
frequency, based on calculations between the cores, gave a measure of the potential for mixing between
the layers.
2.2.4. Statistical Analysis
Correlation coefficients between the time series were estimated (Table S1 in the supporting information). To
adjust for autocorrelation, the effective number of degrees of freedom n* was calculated for each cumulative
correlation in accordance with Pyper and Peterman [1998]:

1
n*

¼ 1
n
þ 2
n

Xn=5

j¼1

rxx jð Þryy jð Þ (2)

where n is the sample size (up to and including year n) and rxx( j ) and ryy( j) are the autocorrelations of the time
series X and Y (up to and including year n) at lag j. A maximum of n/5 lags were included in the calculation of
n*. The statistical significance of the linear correlation coefficients was calculated using the derived effective
number of degrees of freedom, and the significance criterion was 99%. Linear trends were removed prior
to the correlation analysis. No temporal smoothing was applied. Sliding 15 years correlation coefficients were
estimated with and without 1 year time lags to examine varying strengths of the relationships over time and
causal relations.

3. Results

Hovmöller diagrams of temperature and salinity with indicated core and interface depths showed the
temporal development of the layers over the 42 years (Figure 2) (see Text S3 and Figure S2 for more details).
The surface layer had the highest temperatures, the largest temperature variations, and a positive trend
of 0.26°C decade�1, whereas the Arctic layer generally had low (<0°C) and relatively stable temperatures
(Figures 2a and S2a). The Atlantic layer temperature had large interannual variability, multiannual periods
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with sustained high or low values, and a positive trend of 0.15°C decade�1. The variations in salinity were
largest in the surface layer, moderate in the Arctic layer, and very small in the Atlantic layer (Figures 2b
and S2b). There were no obvious trends in salinities or layer thicknesses over the complete time period being
studied. The Arctic layer thickness varied mainly due to changes in the depth of the Arctic/Atlantic interface
and ranged from 40 to 120m (Figures 2 and S2c). There is a near-perfect anticorrelation (r=�0.94) between
the Arctic and Atlantic layer thicknesses since the pycnocline depth is varying very little compared with the
Arctic/Atlantic interface (Figures 2 and S2c).

The Arctic core was colder than �0.5°C and generally near 55m depth, whereas the Atlantic core had larger
interannual variability in both temperature and depth (~150–200m, Figure 2). The depth of the Atlantic core
was, however, noticeably stable at ~170m from the early 1980s to mid-1990s. Density variations in both of
the cores were driven by their respective salinity variations and were much larger in the Arctic core due to
its higher variability in salinity (Figure S3a). Buoyancy frequency variations were in turn mainly driven by
density variations (i.e., salinity variations) in the Arctic core (Figure S3b).

The Arctic core salinity, the buoyancy frequency, and the Atlantic layer mean temperature all had strong
interannual variability and sustained periods of larger and smaller values compared with the 1970–2011
mean (Figures 3a–3c). Standardized time series showed that the three time series covaried with a strength

Figure 2. Hovmöller diagram of (a) temperature and (b) salinity. Annotations are the Arctic core (blue line), the Atlantic core
(red line), the pycnocline (black line), and the Arctic/Atlantic interface (gray line).
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that varied over time (Figure 3d). In particular, the Atlantic layer mean temperature was “off-track” with the
two others in the late 2000s. The statistical analysis showed that the Arctic core salinity had a strong negative
correlation with the buoyancy frequency (r=�0.81, Table S1 in the supporting information), which in turn
had a moderate positive correlation with the Atlantic layer mean temperature (r=0.51). Both of these rela-
tionships were strengthened from the early 1980s to the late 1990s, and the latter relationship was substan-
tially stronger when the Atlantic layer mean temperature lagged 1 year (Figures 3e and 3f). The Arctic core
salinity also had a significant negative correlation with the Atlantic layer mean temperature over the same
period when the Atlantic layer mean temperature lagged 1 year (Figure 3g). The statistical analysis showed
that the core properties of the two layers were independent of each other and that the surface layer mean
salinity had a moderate positive correlation with the mean salinity of the two deeper layers (r= 0.56 and
0.52, respectively).

Figure 3. Time series of (a) Arctic core salinity (SArctic core), (b) buoyancy frequency (N), (c) Atlantic layer mean temperature (TAtlantic mean), and (d) standardized
anomalies of �SArctic core, N, and TAtlantic mean. In Figures 3a–3c, the baseline is the 1970–2011 mean. Fifteen years sliding correlation coefficients (black lines)
with the 95% significance level indicated (gray lines)between (e) SArctic core and N, (f) N and TAtlantic mean with a 1 year time lag (TAtlantic mean@+1yr), and
(g) SArctic core and TAtlantic mean@+1yr.
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4. Discussion
4.1. The Cold, Fresh Arctic Layer

The northern Barents Sea hydrography resembles the Eurasian Basin of the Arctic Ocean as it consists of a
three-layer structure with a seasonally varying surface layer, a cold, fresh Arctic layer (resembling the cold
halocline in the Arctic Ocean), and a warm, saline Atlantic layer. Regarding the Arctic Ocean, there has been
some debate on the persistence of the cold halocline layer. While some studies have concluded that the
Eurasian Basin cold halocline layer does not appear to be a permanent feature [Steele and Boyd, 1998; Björk
et al., 2002], others have shown that when the layer was defined both in terms of its salinity gradient and
its thickness, it was a stable feature for the same area and time period [Bourgain and Gascard, 2011]. Some
studies have reported direct effects of Atlantic Water on sea ice reduction in the Arctic [Årthun et al., 2012;
Polyakov et al., 2012a, 2012b; Onarheim et al., 2014]. However, the documented effect has so far been limited
to inflow regions where there is direct contact between Atlantic Water and sea ice, and not where Atlantic
Water has been separated from sea ice by an Arctic layer or a cold halocline layer. A major question is how
and to what extent the heat from the Atlantic layer can be transferred through the Arctic layer or the cold
halocline layer to the surface. Other major questions are what causes variations in the heat transfer and
how the Arctic layer or cold halocline layer is maintained.

In this study we investigate the effects of varying stratification in the part of the ocean column bounded by
the Arctic and Atlantic cores. As far as we know, this method has never before been applied to a correspond-
ingly extensive observation-based data set. Here the Arctic layer is investigated for a relatively small area
compared with the entire Arctic Ocean, but by using observational data with high spatial and temporal reso-
lution over a long time period (42 years), it is possible to investigate relationships between the Arctic and
Atlantic layers on an interannual scale with high degree of confidence.

4.2. Heat Loss From the Atlantic Layer

Forming a relatively homogenous horizontal layer bounded by the Arctic layer above and the bottom below,
the Atlantic layer in the northern Barents Sea will mainly lose heat (and salt) by vertical mixing and mainly
gain heat and salt from advection of “new” Atlantic Water into the area. Advection is always active, and
variations in it must be considered when discussing observed changes.

Salinity in the Arctic layer is the main factor contributing to the interannual variability of buoyancy frequency
in the ocean column between the Arctic and Atlantic cores (r=�0.81, Table S1). This indicates that the Arctic
core salinity determines 66% of the interannual variability in the buoyancy frequency when considering the
entire time span. The Arctic core salinity is the only factor having substantial impact on the stratification
(Figure S3), because salinity variations determine density variations at low temperatures and because
Atlantic Water shows very little interannual variability in salinity compared with Arctic Water.

Buoyancy frequency, in turn, is seen to affect the Atlantic layer mean temperature (r= 0.51). The correlation
increases to r= 0.63 when the Atlantic layer mean temperature lags 1 year, which should be expected since
mixing between the water masses is a very slow process and the mixing is probably most intense during win-
ter, causing a delayed response. If only vertical mixing was active, that is, if there were no advection of new
Atlantic Water, the fluxes of heat and salt from the Atlantic layer would correspond. Changes in Atlantic core
temperature and salinity from 1 year to the next did show some coherence (not shown), but the signal in
salinity was indistinct due to very weak variability. Mixing coefficient estimates based on the changes in tem-
perature of the cores from 1 year to the next ranged from�2.3 to 1.3 · 10�4m2 s�1. All processes that alter the
temperatures will influence these estimates, including horizontal mixing and advection in the two layers and
exchanges with the atmosphere during winter. The years with the unphysical negative values could thus be
due to strong advection of new warm Atlantic Water in the Atlantic layer, causing this advected signal to
dominate over cooling from vertical mixing with the Arctic layer. There are, however, no observations that
can support or contradict this hypothesis. The layered structure has been remarkably stable over the four
decades, implying some overall balance between the effects of mixing and advection.

Despite being generally a slow process, the results show that vertical mixing is important for the hydrography
of the northern Barents Sea. Given that the Atlantic layer mean temperature generally is lower after a year
of weak stratification, the variations of the Arctic layer salinity and the Atlantic layer temperature are
clearly indicative of mixing between the two layers being the main source of heat loss for the Atlantic layer.
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The results also demonstrate that Arctic layer salinity is the main driver of variability in stratification and
vertical mixing, and it is therefore the main driver for heat loss from the Atlantic layer.

In addition to heat loss, variations in lateral heat advection will cause changes in the Atlantic layer tempera-
ture. The relation between Arctic layer salinity and Atlantic layer temperature varies with time and was stron-
ger in the period between the early 1980s and the late 1990s than before and after that interval (Figures 3d
and 3g). The relation weakened after 2005, with a positive anomaly in the Atlantic layer temperature despite
weak stratification. This was likely caused by increased lateral heat advection, in line with Årthun et al. [2012]
and Lind and Ingvaldsen [2012], but other explanations such as weaker winds and less mixing cannot be ruled
out. During this period, the Atlantic layer mean temperature was higher than the long-term average despite
weak stratification and hypothesized strong mixing/high heat loss. If the stratification had been stronger,
more of the advected heat would probably have been kept in the Atlantic layer and the temperatures would
hence have been even higher.

The vertical mixing appears as a clear signal on the Arctic layer mean temperature and salinity, which are both
positively correlated with Atlantic layer mean temperature and salinity (r= 0.52 and 0.54, respectively; see
Table S1). The correlations become insignificant when the Arctic layer lags 1 year, indicating that the Arctic
layer characteristics are largely determined by exchanges with the atmosphere in winter. As the Arctic layer
becomes warmer and more saline from mixing with the Atlantic layer, it also becomes thinner (r=�0.53
between Arctic layer thickness and Arctic layer mean temperature). This agrees with the spatial relation
between temperature, salinity, and thickness in the vertical section of temperature and salinity in Figure 3
of Lind and Ingvaldsen [2012] which is also inverse proportional: The Arctic layer is colder, fresher, and thicker
in Olga Basin and gradually becomes warmer, saltier, and thinner toward northwest in the trench system, i.e.,
near the Atlantic inflow in Franz-Victoria Trough where the upward heat and salt fluxes probably are larger.

4.3. Maintenance of the Arctic Layer

Our results show that high salinity in the Arctic core will increase the turbulent mixing between the Arctic and
Atlantic layers, which will make the Arctic layer even more saline due to the high salinity of Atlantic Water
(r= 0.54). This will decrease the stratification and make the ocean column more prone to turbulent mixing
(a positive feedback). Consequently, the Arctic layer needs a regular supply of freshwater to be sustained;
otherwise, it will be slowly eroded from below.

An important source of freshwater in this region is downward mixing of surface meltwater in fall and early
winter. Ice import from the Nansen Basin and Kara Sea can be substantial and explain part of the year-to-year
variability in the Barents Sea ice cover [e.g., Hilmer et al., 1998], and it is one of the two major freshwater
sources for the Barents Sea [Kwok et al., 2005]. Observations indicate huge interannual variability in ice import
(from�280 km3 to 340 km3) that averages to only 40 km3 [Kwok et al., 2005]. A simulation also indicated very
large interannual variability (from 143 to 1236 km3 yr�1), and this caused substantial variability in annual ice
melt and freshwater content that affected the stratification, vertical mixing rates, and heat loss from the
Atlantic Water [Ellingsen et al., 2009]. This finding is in line with Aagaard and Woodgate [2001] who also found
that ice import, melting, and freshwater injection into the interior ocean are important processes in the
northern Barents Sea.

Our results are in line with the former investigations and also demonstrate that the freshwater input is critical
for maintaining the Arctic layer and keeping its isolating effect. Over the 42 years, the Arctic layer salinity and
water column structures (i.e., core depths, interface depths, and buoyancy frequency) in the study area were
remarkably stable in spite of the large changes in the Barents Sea and the Arctic climate in general. This may
indicate some delay or stabilizing factor, perhaps due to accumulated freshwater in the Arctic layer in com-
bination with the positive salinity feedback. However, it is beyond the scope of this paper to investigate this.
Still, sustained major reductions in freshwater input to the Arctic layer will at some point start a slow erosion
of the Arctic layer from below which eventually changes the northern Barents Sea into a warmer, vertically
homogeneous domain like the southern Barents Sea. Thus, future ice reductions in the Arctic Ocean, if asso-
ciated ice import decreases substantially, will most likely change the water column structure in the northern
Barents Sea entirely. This will likely have a substantial impact on the Arctic Ocean, as the northern Barents Sea
has been found to give a considerable contribution to maintenance of the cold halocline layer in the Arctic
Ocean [e.g., Steele et al., 1995] as well as to water mass transformations affecting the deeper parts of the
Arctic Ocean [e.g., Rudels et al., 1994; Aagaard and Woodgate, 2001].
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5. Conclusions

The objective of this paper is to investigate the effect of the Arctic layer salinity on turbulent mixing between
the intermediate, cold Arctic layer and the deep, warm Atlantic layer in the northern Barents Sea using
observational data with high spatial and temporal resolution over a period of 42 years. We find that salinity
variations of the Arctic layer determine 66% of the interannual variability in stratification, which in turn seem
to largely determine heat loss in the Atlantic layer. The relative strengths of the effect of mixing and advec-
tion varied over the study period: The mixing effect was particularly evident from the early 1980s to late
1990s, whereas advection probably dominated between 2005 and 2010, a period of stronger advection of
Atlantic Water coming from the north [cf. Lind and Ingvaldsen, 2012].

This mixing process constitutes a positive feedback because stratification decreases whenmixing occurs. This
implies that the Arctic layer is depending on freshwater supply to remain relatively fresh compared with the
Atlantic layer, which keeps the heat and salt fluxes from the Atlantic layer at a minimum. Compared with the
large changes in the northern Barents Sea in general (e.g., in the sea ice field), the water column structure and
the Arctic layer salinity have been noticeably stable over the investigated 42 years. There is a clear analogy
between the Arctic layer in the Barents Sea and the cold halocline layer in the Eurasian Basin. Processes that
keep the Arctic layer relatively fresh are important for limiting the heat loss from the Atlantic layer and main-
taining conditions favorable for ice production.
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