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Abstract

ALICE and its Inner Tracking System detector in the LHC at CERN will undergo
a major upgrade during its second long shutdown taking place in 2019 and 2020.
New silicon sensors called ALPIDE will be utilized, which requires a new readout
electronics system due to different interfaces and higher demands regarding band-
width and latency. The readout chain consists of staves containing the sensors, a
layer of readout unit boards gathering data from and controlling the sensor staves,
and a layer of common readout units multiplexing and compressing data from the
readout units before forwarding it to the O² data center system.
As part of the ALICE collaboration, The University of Bergen is in charge of the
development of several components in this readout chain. All development sites
for the readout electronics should have the readout chain in place so that design
and integration tasks can be done locally. As part of the work in this thesis, the ITS
readout chain is integrated and tested. The working readout chain is then used to
develop various control communication interfaces along the chain, such as an I²C
interface for an auxiliary FPGA on the readout unit, and a high-speed interface for
uploading data to the flash memory on the readout unit.
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Nomenclature

ALICE A Large Ion Collider Experiment (One of four main experiments in
the LHC)

ALPIDE Alice Pixel Detector (Sensor IC used in the ITS)

CERN The European Organization for Nuclear Research

CRU Common Readout Unit (Component of the ITS readout chain)

DAQ Data Acquisition

DCS Detector Control System

DMA Direct Memory Access

FIFO First In First Out queue

FLP First-Level Processing (First level of O2 facility)

FPGA Field-Programmable Gate Array (Type of reconfigurable IC)

FSM Finite State Machine

GBT GigaBit Link (A high-bandwidth, radiation hard, optical link)

GBT-SCA GBT Slow Control Access IC

GBTx IC that implements the GBT protocol

I²C Two-wire protocol for serial communication

IC Integrated Circuit

ITS Inner Tracking System (Central detector of ALICE)

LHC Large Hadron Collider (Particle Accelerator)

LTU Local Trigger Unit

O² Computing facilty of ALICE

PA3 ProAsic 3 (Flash-based, auxiliary FPGA on the RU)
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RU Readout Unit (Component of the ITS readout electronics)

RUv0-CRU RUv0 with CRU emulation firmware

RUv1 Version 1 of the Readout Unit

SEU Single Event Upset (A type of radiation effect where a memory bit
changes value unexpectedly)

SWT Single Word Transaction (Custom GBT frame that does not contain
experiment data)

TPC Time Projection Chamber (A detector in ALICE)

TTC Timing and Trigger Control

UART Universal Asynchronous Receiver-Transmitter

WP10 Work Package 10 (ITS readout electronics development project)
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1 Background

1.1 CERN, ALICE and ITS

The European Organization for Nuclear Research (CERN) is a scientific research or-
ganization located on the border between Switzerland and France near the city of
Geneva[1]. CERN is most known for its particle accelerator complex, consisting of
a succession of machines that accelerate particles in order to increase their energies.
Each machine boosts the energy of a beam of particles, before passing it on to the
next. The last step in this chain is the Large Hadron Collider (LHC), the largest par-
ticle accelerator in the world, capable of pushing the beams to energies of 6.5 TeV,
at 99.9999991% the speed of light. It consists of a ring-shaped tunnel, with a cir-
cumference of 27 km, buried between 50 and 175 meters below ground. This tunnel
can be seen in figure 1. Inside the tunnel is two beam pipes surrounded by various
electromagnets and radiofrequency cavities which accelerate and guide the beam of
particles. The two beams travel in opposite directions, and they are eventually made
to collide by crossing their paths. By studying how the particles behave during these
high-energy collisions, one can learn about fundamental physics.
Distributed along the LHC ring, there are four major experiments, which record data
from the particle collisions. One of these experiments is A Large Ion Collider Experi-
ment (ALICE). ALICE studies the properties of quark-gluon plasma, a state of matter
formed under extreme temperature and density, which the LHC can produce during
the particle collisions. Such matter was likely what the universe consisted of in the
moments right after the Big Bang. ALICE is an international collaboration of around
174 institutes in around 42 countries. One of these is the University of Bergen.
The Inner Tracking System (ITS) is the detector at the heart of ALICE[2]. It consists
of seven barrel-shaped layers of sensors wrapped around the beam pipe where the
particle collisions take place. Its main task is to locate the primary vertex of collisions
with high accuracy. Figure 2 shows ALICE with ITS highlighted.

1.2 ITS upgrade

During the second long shutdown of the LHC, scheduled to take place from 2019 to
2020, ALICE, including the ITS, will undergo a major upgrade to improve its resolu-
tion and data rate for higher accuracy. The current sensor system of the ITS will be
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Figure 1: LHC seen from the air

Figure 2: Overview of ALICE, with ITS highlighted in red[3]
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Figure 3: The layers of sensor staves in the ITS after its upgrade

replaced by silicon pixel ALPIDE (Alice Pixel Detector) chips, developed by CERN
specifically for the ITS upgrade[4]. These sensor chips will be mounted on staves,
and the staves will be arranged concentrically around the beam pipe, separated into
an inner barrel consisting of three layers, and an outer barrel consisting of four lay-
ers, as shown in figure 3. The radius of the sensor barrels will vary from 22 mm in
the innermost layer, to 400 mm in the outermost layer[5].
The ALPIDE sensors use entirely different interfaces for control and data readout
than the existing sensor systems. In addition, the data bandwidth is greatly in-
creased. For these reasons, the readout electronics is to be upgraded as well. The
readout chain will be redesigned to use a layer of Common Readout Units (CRU)
to combine and multiplex data from the detector before forwarding it to the data
computing system for processing and storage. This computing system is also being
upgraded during the second long shutdown. The new computing system is called
O²[6]. Each CRU is connected to several Readout Units (RU), which again are con-
nected to the actual sensor staves.
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1.3 About this thesis

1.3.1 Objective

The University of Bergen is part of the ALICE collaboration, and is responsible for
part of the development of the new ITS readout electronics. It will therefore be nec-
essary to set up a readout chain in Bergen for development and testing purposes.
The setup should be as similar as possible to the ones used in other collaborating de-
velopment sites such as CERN and The University of Texas at Austin, but it will not
be possible to exactly replicate these setups since mass production of several com-
ponents of the readout electronics has not started and existing supply is not enough
for distributing the same components to all development teams. The software and
firmware of the setup must therefore be adapted to the available hardware. The
setup must be tested to ensure functionality.
One of the university’s responsibilities is designing firmware for an auxiliary FPGA
(PA3) on the readout unit, a circuit board which is an important part of the readout
electronics. In this thesis various interfaces between this FPGA and the top level
software is designed and tested using the local readout chain setup. These interfaces
include access to the register bus, and a high-speed interface for uploading data to a
flash memory chip on the readout unit.

1.3.2 Structure

The readout electronic chain and its most relevant components and protocols are
introduced in more detail in chapter 2. In chapter 3, the local setup of the readout
chain is integrated and tested in various configurations. In chapter 4 an interface
for accessing the register bus on the RU PA3 FPGA from top level software is im-
plemented and tested. In chapter 5, a higher-speed interface for writing data to the
flash memory on the RU is implemented and tested. In chapter 6, participation in a
radiation testing campaign for the RU and its components is discussed. Finally, the
thesis is summed up and the results discussed in chapter 7.
Appendixes include more detailed information about setting up the CRU and read-
out chain, structured as a manual, as well as more details about testing the CRU, and
finally a manual for using the software for the PA3 developed in chapter 4 and 5.
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2 The upgraded ITS readout electronics chain

2.1 Structure

In total the upgraded ITS will consist of 24 120 ALPIDE detector chips, which results
in a detection area of 10 m² with more than 12.5 billion pixels[7]. Each stave is con-
nected to its own readout unit, resulting in a total of 192 readout units as there will
be 192 sensor staves in the ITS.
The readout units are electronic boards that are tasked with controlling and gather-
ing data from the ALPIDE sensor chips on the staves. They will also forward trigger
information from the ALICE trigger system to the sensor chips. The readout units are
to be mounted approximately 4 meters away from the sensor barrels. The beam colli-
sions will produce a lot of radiation in the area around ALICE, therefore the readout
units will require radiation hardening in order to operate properly. In the next layer
of the chain are common readout units, which will combine and multiplex data from
multiple readout units before forwarding it to the data computing facility (O²) for
processing and storage. The CRUs are mounted in computers located in an inter-
mediary computer room, called the counting room, away from the radiated ALICE
cavern and does therefore not require radiation hardening like the readout units do.
These computers are reachable from the main Detector Control System (DCS) over
the network. DCS controls the readout chain by sending commands and monitoring
the system. Experiment data is forwarded from the FLP node to the O² computing
system for processing and storage. A block diagram overview of the readout chain
is shown in figure 4.

13



Figure 4: Block diagram of the ITS readout chain after the upgrade

2.2 Readout Unit (RU)

The readout unit is a circuit board with several components and ports. It is located
between the sensor staves and the common readout units in the readout chain.
The heart of the board is the main FPGA, a Xilinx Ultrascale, which runs the main
firmware that manages the readout process and stream of data. In figure 5, the Ul-
trascale is hidden under the heatsink. There is also secondary flash-based FPGA,
a Microsemi ProAsic3 A3PE600L, hereafter referred to as PA3. In figure 5, the PA3
and flash memory chip are the two black ICs in the upper left corner of the board, as
marked.
The readout unit includes high-speed Firefly ports for electrically connecting to its
designated ALPIDE chip stave. It also contains three GBTx chips and slots for suit-
able optical transceivers like VTRx’s for connecting to a CRU using the GBT link. Up
to three GBT uplinks (from the CRU to the RU) can be used for data, although in
normal operation (50 kHz Pb-Pb collisions) only one uplink is needed. One of the
GBT links will also be used for control, and one will be used for trigger information.
The GBTx chip used for control is connected to a GBT-SCA ASIC, which can be used
for various slow control tasks. The main communication with the PA3 will use an
I²C master module on the GBT-SCA. This interface is discussed in chapter 4.
The readout unit hardware, firmware and software development is organized as a
project called Work Package 10 (WP10), assigned to a team of engineers and students.
The University of Bergen is in charge of designing the firmware for the PA3.
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Figure 5: The Readout Unit board, version 1

2.2.1 PA3

The PA3 auxiliary FPGA on the RU handles configuration of the Ultrascale, using
data from a flash memory chip which it can write to and read from. In addition
to initial configuration at power-up, the PA3 will also continuously re-configure the
Ultrascale during operation, by overwriting configuration memory without actually
resetting or pausing the Ultrascale operation. This technique is known as scrubbing,
and it should ensure a reliable operation of the main FPGA as any unwanted er-
ror in the configuration caused by single event upsets (SEU) will be cleaned within
seconds, without having to shut down the detector and lose valuable experiment
time[8]. The programming and scrubbing of the Ultrascale happens through the
selectmap protocol, one of several interfaces on the Ultrascale that can be used to
access its configuration memory.
The firmware on the PA3 consists of a flash interface with accompanying read and
write controllers, which together handle access to the external flash memory chip.
The write controller is designed in chapter 5 of this thesis. There is also the config-
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uration controller, which controls the selectmap interface to the Ultrascale for con-
figuration and scrubbing. The register interface is implemented as a Wishbone bus,
accessible by an I²C module. A block diagram of the full firmware as of version A200
can be seen in figure 6.
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Figure 6: Block diagram of the firmware on the PA3 FPGA.

2.3 Common Readout Unit (CRU)

The CRUs act as an interface between the Front Electronics (RUs with ALPIDE sen-
sors), the detector control system, the data computing facilities, and the trigger net-
works[9]. The CRU mainly consists of an FPGA and multiple data links, specifically
optical GBT links connected to RUs, TTC-PON carrying trigger and timing informa-
tion, and a PCI-express interface for communicating with its host computer which
is part of the O² First Level Processing (FLP) system. The CRU will organize (tag
and multiplex) and compress (discard useless frames etc.) the data to reduce the
bandwidth requirement for the final readout chain steps.
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Figure 7: Version 2 of the PCIe40 DAQ board CRU implementation[10]

The final CRUs are implemented on the PCIe40 DAQ board that are developed by
the LHCb team, a different experiment of the LHC. This board can be seen in fig-
ure 7. The FPGA on this board is an Intel Arria 10 GX (10AX115S3F45E2SG). For
development and testing purposes, a version of the CRU firmware has also been
implemented on an Arria 10 GX development kit board, and individual teams such
as the ITS WP10 team have implemented CRU emulators on other hardware such
as prototype readout unit boards, because the final CRU boards have very limited
availability during the development phase.
The common modules of the firmware for the CRU is developed by the ALICE DAQ
group. The firmware is modular and its base will include the necessary modules
for the interfaces common to most detectors in ALICE. The CRUs will not only pro-
cess data from ITS, but also other detectors, such as the Time Projection Chamber
(TPC). Each of these systems have their own requirements for the CRU and GBT
links. Therefore the system must be able to accommodate a variety of specifications
and functionalities. For this purpose, a user logic module at the heart of the firmware
is left to be customized by detector teams if they need additional features or special-
ized behavior. A typical user logic module would forward trigger data from the trig-
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Figure 8: Block diagram of the FLP node with the CRU and its firmware[10]

ger network, specifically Local Trigger Units (LTU), to the RUs, and forward readout
data from the RUs to the PCI-e Direct Memory Access (DMA) interface. The data
may be divided and packaged based on triggers, or it may forward the data as-is.
For the ITS detector, the CRU does not process triggers due to especially strict la-
tency requirements. Instead, the LTUs are directly connected to the RUs, as can be
seen in figure 4.
Each CRU will have 24 GBT links available[11]. Since each RU uses 3 GBT links, this
means that each CRU can be connected to a maximum of 8 RUs. Each FLP node will
house one CRU. A block diagram of the FLP node with CRU can be seen in figure 8.

2.4 GBT Link

The GigaBit Transceiver (GBT) architecture is an optical serial data link developed
at CERN, designed for use in the LHC, which requires high bandwidth as well as
radiation hardening[12]. It is frame based, with one 120-bit frame transmitted con-
tinuously at an interval of 25 ns. This results in a raw serial line rate of 4.8 Gb/s. 25
nm corresponds to the LHC bunch crossing interval. The bunch crossing interval is
the time between bunches of particles crossing each other in the LHC. In other words
it is the time between potential collisions.
The GBT link is implemented in the ITS readout chain in two ways. A radiation
hardened ASIC called GBTx is used on the readout unit. This ASIC can can accept
data in parallel as input, serialize and encode the data, and output it to a laser trans-
mitter, and opposite for the downlink. The laser transmitter used is a custom unit
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Figure 9: GBT standard frame structure

also designed at CERN to be radiation hardened. On the common readout unit, the
GBT link controller is implemented as a module on the FPGA.
The GBT protocol specifies three different frame modes; the standard GBT frame
mode, the wide frame mode, and the 8B/10B frame mode.
ITS will use the standard GBT frame, illustrated in figure 9. This frame starts with a
4 bit long header. The header can be either 0b0101, which signals that the frame con-
tains valid data, or 0b0110, which signals the opposite, for example if the transmitter
is idle, or the frame contains non-data information, such as Single Word Transactions
(SWT). Then follow 4 bits for slow control information, of which the first 2 bits are
for Internal Control (IC), strictly reserved for control of the GBTx ASIC. The last 2
bits for slow control is for External Control (EC). Next follows the main data payload
of 80 bits. The data and EC fields are not pre-assigned and can be used for differ-
ent purposes such as Data Acquisition (DAQ), Timing and Trigger Control (TTC)
or experiment control, depending on requirements. The last 32 bits are used for er-
ror correction. This leaves 84-bits per frame, or 3.36 Gb/s, of usable bandwidth, of
which 3.2 Gb/s is dedicated to data.
Before transmitting the frame, the data, EC and IC fields are fed through a scram-
bling algorithm which DC balances them. Then, a Reed-Solomon encoder generates
the 32 error correcting bits based on the scrambled data in addition to the header.
The receiver does the opposite; first decoding and checking the error correction bits,
then de-scrambling the data before the IC, EC and data fields can be read. This is
illustrated in figure 10.
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Figure 10: GBT link block diagram

The 4-bit header is used to track frames and synchronize the receiver to the trans-
mitter. The header is not affected by the scrambling so that it can be easily detected.
When a GBT receiver is powered up, it enters a frame-lock acquisition mode in which
it searches for valid headers. Once a configurable amount of frames with valid head-
ers have been detected in succession, it considers the link established and enters
frame-tracking mode. In this mode, it receives data and operates normally, while
keeping track of invalid headers. Once a configurable amount of frames in succes-
sion is found to be invalid, it considers the synchronization lost and re-enters the
acquisition mode. Typically multiple invalid frames are needed to trigger this, so
that occasional random single event upsets aren’t enough to cause the link to fall out
of synchronization.
The data field (80-bit) of the GBT frame is used to transmit the data. GBT frames are
differentiated into control frames and data frames, with the header specifying data
valid for the latter only. Control frames start with a 4 bit identifying header. Four
headers are defined: IDLE, SOP (Start Of Packet), EOP (End Of Packet) and SWT.
IDLE frames contain no information. SOP and EOP, as the names suggest, mark the
start and end of packets of data from the detectors. They contain various metadata
relating to the packets such as length and tags.
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Single Word Transactions frames can contain arbitrary data used for special control
or data transfers. In the GBT downlink, this will normally be the only type of GBT
frames. In the uplink, SWT frames may only be sent in between data frames, in
other words between EOP and SOP control frames. In the ITS readout electronics,
SWT frames are for example used to access the register bus on the readout unit main
FPGA.

2.4.1 Slow Control

Part of the GBT link is the slow control system. The 2 bytes in the EC field of the
GBT frame payload is forwarded to a dedicated ASIC for slow control called GBT-
SCA. This chip is part of the readout unit board as mentioned. On the CRU main
FPGA, the SCA communication is implemented as part of the GBT VHDL module.
The GBT-SCA ASIC contains several communication modules, including a range of
GPIO, ADC and DAC pins, as well as I²C, SPI and JTAG masters[13]. These modules
are connected to various components on the board such as the FPGAs. An I²C mod-
ule will be used for communication with the readout unit PA3 auxiliary FPGA in an
interface that is discussed in chapter 4.
Communication with the GBT-SCA is done using the High Level Data Link Control
(HDLC) serial protocol. This protocol is command based. Rather than reading and
writing directly to registers, transactions specify a command ID, a transaction ID
and data if the command requires it. Command IDs determine what the GBT-SCA
chip will do, for example writing or reading registers or executing operations. Every
command transaction returns a package with the same transaction ID. The return
packet contain status info and returned data if there is any.
The IC slow control field is used for accessing the GBTx registers, for configuration
and monitoring. This field can also control the laser transceivers through a master
communication module on the GBTx chip, accessible through its registers.

2.5 ALF/FRED (DCS interface)

The readout process is monitored and controlled by the ALICE Detector Control
System (DCS). The DCS system accesses the readout chain through the FLP node
and CRU over a network link. One of the protocols considered for the communi-
cation between the CRU and DCS is called ALF (On the CRU side) and FRED (On
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the DCS side). This protocol is based on Distributed Information Management Sys-
tem (DIM). DIM is a communication system for distributed/mixed environments,
originally developed for one of the experiments of the Large Electron–Positron Col-
lider, an earlier particle accelerator at CERN[14]. It provides a network transparent
inter-process communication layer.
The CRU host computer runs a DIM server, which acts as a bridge between the DIM
network and the CRU driver, allowing DCS to communicate with the CRU from the
control center without physical access to the CRU host computer.
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3 Readout chain setup and integration

3.1 Variations of the setup

Several different implementations of the ITS readout chain has been set up and
tested. Special focus is given to the CRU, as well as control functionality, as the
setup in Bergen will at first be mostly used for development of the CRU and the PA3
auxiliary FPGA on the RUv1, rather than data readout related activities.

3.1.1 Arria 10 DK CRU and VLDB

This implementation of the readout chain consists of the Arria 10 Development Kit
CRU, and a VLDB (The Versatile Link Demo Board) in place of a readout unit. As in-
troduced in chapter 2.3, the Arria 10 DK runs the same firmware as the final PCIe40-
based CRU. The VLDB is a demonstration and development board for the GBT link
system. It can be seen in figure 11. The board contains a GBTx chip with one GBT link
and all e-links exposed on mini-HDMI ports, a GBT-SCA chip with various modules
such as I²C, GPIO, ADC, DAC and SPI exposed to pins, and custom FEASTMP rad-
hard DC-DC converters developed at CERN. It is used to test the main functionality
of the CRU and GBT link before it is replaced by a readout unit in the setup. The
setup is illustrated in figure 12.

Figure 11: The VLDB board
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Figure 12: Block diagram of hardware setup with the Arria 10 DK CRU and the
VLDB

3.1.2 Arria 10 DK CRU and RUv1

This setup replaced the VLDB with a readout unit, as can be seen in figure 13. The
CRU to RU link is based on the same components and protocol (GBT) as the CRU to
VLDB link, so in theory the integration procedure should be similar. Version 1 of the
readout unit (RUv1 for short) is used. This board is described in chapter 2.2. This is
the setup that most accurately reflects the actual readout chain that will be used in
operation in ALICE, with one exception: It lacks the ALPIDE sensor chip as software
for controlling the sensor interface module on the readout unit is not ready for the
Arria10 DK CRU implementation as of this thesis’s completion.

3.1.3 RUv0-CRU and RUv1

In this setup the Arria 10 DK CRU is replaced with a readout unit version 0 running
CRU emulation firmware. An ALPIDE sensor slave will also be connected to the RU
in this setup. The setup is illustrated in figure 14.
During the development phase, very few units of either the final PCIe40 board or
the Arria 10 DK board is available. There are not enough boards to provide all the
detector teams with their own CRU for development and testing purposes. For this
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Figure 13: Block diagram of hardware setup with the Arria 10 DK CRU and the RUv1

reason, the ITS team uses a different board to emulate the CRU, namely an older
version (v0a) of the Readout Unit, RUv0a for short, seen in figure 15. When used as
the CRU emulator, it is referred to as RUv0-CRU.
This is the readout chain setup that most accurately reflects the setup of other WP10
development groups, which are used for development of the Ultrascale FPGA on the
RU, as well as during radiation testing campaigns for the readout unit. Therefore it
is necessary to replicate this setup in Bergen, in addition to the Arria 10 DK-based
setups. The RUv0-CRU firmware is developed by one of the WP10 teams that also is
in charge of the firmware for the main FPGA on the RUv1.
The RUv0-CRU board contains a Xilinx Kintex-7 XC7K325T FPGA, and is connected
to a test computer using USB (interface is provided by a Cypress FX3 chip). The
board is also built to accommodate a daughterboard containing a GBTx and GBT-
SCA chip, as well as a Firefly connectors for ALPIDE sensors, but these will not
be used in the CRU emulation configuration. The board will emulate the CRU by
implementing the GBT-FPGA module on its main FPGA, which can send and receive
data using an optical transceiver module plugged into an SFP slot on the board.
The board can then be connected to a normal readout unit to control it and receive
readout data, like the actual CRU. There are drawbacks to this emulation, such as
significantly worse bandwidth over USB compared to PCI-express, and only one
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Figure 14: Block diagram of hardware setup with the RUv0-CRU, RUv1 and ALPIDE
chip.

GBT channel is available, however until more CRU boards are available it is the only
option.
This setup differs from the Ultrascale firmware development team’s setup in two
ways. First, the setup in Bergen only use one ALPIDE sensor, while the Ultrascale
team uses a whole stave as will be used during operation in ALICE. Secondly, the
Ultrascale team powers the setup with programmable power supplies that can be
adjusted and powered on remotely. Because of this, some of their software scripts
automate this process and this code will need to be removed if the scripts are to be
used for the Bergen setup.
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Figure 15: Version 0 of the readout unit board, used as a CRU emulator

3.2 Hardware and software setup

3.2.1 Arria 10 DK CRU and VLDB

The Arria 10 DK CRU is set up first as it is used with both the VLDB and RUv1.
The CRU is a PCI-express card and must thus be mounted in a host computer. The
computer chosen is a Supermicro server with an Intel Xeon E5-1650 CPU with 12
threads, 8 GB RAM, and an SSD, already present in the lab. This falls short of the
CRU development team’s recommended specifications, specifically the RAM capac-
ity is somewhat low. The amount of RAM is also less than the recommended specs
from Intel for synthesis for the Arria 10 FPGA used in the CRU. However, since
the CRU in this lab setup will likely not be used under maximum stress with every
available GBT channel, the computer hardware is judged to be acceptable. Also, the
machine has several free RAM slots, so if any problems are encountered, the capacity
can easily be upgraded.
The CRU host computer is set up with CentOS 7.3, as recommended by CERN. The
computer needs a series of drivers and programs to communicate with the CRU.
Intel Quartus Prime Standard Edition is installed to program the FPGA on the CRU,
and also for building and developing the firmware. The CRU also uses onboard
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clock generators on the Arria 10 SDK board. These must be configured to supply
the firmware with the correct clocks. The Arria 10 GX Development Kit software
package contains utilities for configuring the clock generators. It is downloaded and
the clocks were successfully configured by launching the ClockController tool. All
clocks are set to 240 MHz. The drivers, tools and toolchain for the CRU and ALICE
development is also installed, most importantly the ReadOut Card (ROC) drivers
and software, necessary for the host computer to control and communicate with the
CRU. These are provided by the ALICE O2 group.
The FPGA is programmed by using the onboard USB Blaster module on the Arria
10 DK card. A USB cable is connected from the PC itself, to this port at the back of
the CRU. The ALICE CRU team release pre-compiled firmware bitstreams for ev-
ery CRU release, for this setup the latest such release is used rather than building
the firmware manually. It is necessary to calibrate the CRU before use, and allocate
memory hugepages for the ROC software. Hugepages are a dedicated portion area
of memory reserved in the Linux kernel for a specific purpose[15], in this case DMA
over PCI-e from the CRU. Scripts for calibration and hugepage allocation is dis-
tributed together with the firmware releases. The CRU’s FPGA and clock chips are
volatile, which means they lose their configuration and have to be re-programmed
and re-calibrated every power cycle.
The VLDB is integrated and connected to the CRU to complete the first of the three
readout chain setups.
The VLDB needs a 5V input voltage, this is supplied from a TTi QL355TP bench
power supply. A mini-HDMI cable is used to connect the GBTx chip to the GBT-
SCA chip using the exposed slow-control-dedicated e-ports, as illustrated in figure
12. A VTRx optical transceiver module is attached to the VLDB and it is connected to
the CRU GBT channel 0 (fiber cables marked A1 and A8) from the CRU transceiver.
The GBTx on the VLDB is configured using the USB-I2C dongle included with the
VLDB, and the GBTx Programmer Java application[16].

3.2.2 Arria 10 DK CRU and RUv1

The CRU is kept as for the previous setup with the VLDB, but the VLDB is switched
for a readout unit version 1.
The RUv1 is powered by 5V using a TTi QPX1200 power supply. A VTRx optical
transceiver was mounted on the RUv1 in the first slot corresponding to GBTx chip
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0, and it was connected to the CRU GBT channel 0 (fiber cables marked A1 and A8)
from the CRU transceiver.
The same USB-I2C adapter as used in the VLDB tests will be used to configure the
GBTx chip on the RUv1. This is connected to the pin header J12. RUv1 has an error in
layout so the I2C dongle wire needs to have its two rows switched when connecting
it. To make the connection, individual jumper wires are therefore used instead of the
included cable. Once configured, it is possible to fuse the GBTx so that it no longer
has to be configured at power up. However, it was decided against doing this to this
RUv1 in the case the fused configuration would need later modifications, as it is a
non-reversible action.
The auxiliary PA3 FPGA on the RUv1 must be programmed manually. A Microsemi
FlashPro 3 programmer is used. A method of programming the PA3 remotely over
the GBT link using the JTAG module on the GBT-SCA is also being developed.
The main FPGA on the RUv1 can be programmed by the auxiliary non-volatile PA3
FPGA if the appropriate firmware is stored in the flash memory chip. on the board.
This can be done automatically on boot-up if a certain DIP switch on the board is set.
Programming can also be triggered by writing the “start configuration” command
to the PA3 configuration controller module control register. This is only possible if
the PA3 as well as the GBTx chip has already been configured.

3.2.3 RUv0-CRU and RUv1

The Ultrascale FPGA on the RUv0a board is programmed with a Xilinx DLC10 USB
programmer with the firmware for the RUv0-CRU[17].
The RUv0-CRU firmware requires an external 120MHz clock signal on the
FPGA_REFCLK<1> SMA connectors. This is provided by a Silicon Labs Si5338-EVB
Clock Generator board. It was configured to output a differential 120MHz signal on
output 0, and the two clock signals with opposite polarity was connected to the SMA
connectors on the RUv0a. The FX3 USB interface chip on the board is programmed
to establish USB communication. This was done using the CyUSB software from
Cypress with the slfifo_uart FX3 firmware also included in RUv0-CRU repository.
A GBT link compatible (850nm laser wavelength) transceiver was inserted into slot
J4 on the RUv0-CRU. The RUv1 is set up as with the previous Arria 10-based readout
chain, and connected to the transceiver on the RUv0-CRU with a fiber-optic cable.
A firefly cable is connected between the ALPIDE chip with carrier slave adapter
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board, and the RUv1’s fourth firefly port, the one physically closest to the VTRx
transceiver. A power supply with 12V output powers the RUv1 board, which draws
around 2.5A when running. A second power supply with two channels, both out-
putting 1.8V powers the ALPIDE. One channel powers the analog and the other
powers the digital circuit.

3.3 Test descriptions

3.3.1 CRU register access

This is first and most elementary test performed. The register bus on the CRU is
accessed by reading a known register such as the firmware version register, as well as
writing to then reading back a writable register. This is done using the ROC software
for the Arria 10 DK CRU, and with software developed by the RUv1 Ultrascale WP10
for the RUv0-CRU[18]. This test checks whether the CRU is configured correctly and
can be reached from the test computer, a prerequisite for all other tests.

3.3.2 CRU data benchmark

This test measures the possible data rate between the CRU and the test computer.
This is only tested on the Arria 10 DK CRU, as the data rate with the RUv0-CRU
is insignificant in comparison due to its USB interface rather than PCI-express like
the Arria 10 DK. The test is performed with a dedicated DMA benchmarking script
included in the ROC software.

3.3.3 GBT loopback

This test checks whether the GBT link between the CRU and RU is working. The test
consists of configuring the GBTx on the readout unit with a loopback configuration
which makes it return all GBT data as-is to the CRU. The CRU can then output a
data pattern. The incoming GBT stream is checked for validity. These tests have
already been designed for the Arria 10 DK CRU and are distributed by the CRU
development team[19].
When both boards are configured, the status register of the GBTx was read using the
GBTx programmer application. It showed “Idle” meaning that the GBT link is run-
ning and synchronized. Now the loopback test can be performed. The loopback test
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software is included in the Python script gbt.py included with the CRU firmware
releases. First the GBT data stream needs to be initialized using the command pa-
rameter “init”. A second parameter indicates the link numbers. We write 0-3 to
include all four GBT links on the CRU. Then, the GBT link error counters are reset
with the command “cntrst”. Now the error counters can be displayed using the com-
mand “cntstat”. With link 0 receiving valid data from the loopback, it is expected to
see no errors for this link but a high amount of errors for the other links.
For the RUv0-CRU, this test is not performed.

3.3.4 SCA access

In this test the GBT-SCA chip on the readout unit is accessed. First simply reading
and writing registers is attempted, then various modules such as GPIO and I²C is
used. This test will determine whether the GBT-SCA chip and communication with
it works as excepted.
Python scripts with functions for controlling some of the modules on the GBT-SCA
is available from the developers of both the Arria 10 DK CRU and the RUv0-CRU,
and the tests are based on these scripts.
First, it is attempted to establish a connection. This function sends a reset then con-
nect packet to the GBT-SCA, and reads the response to verify success.
Next, the GPIO module of the GBT-SCA chip is tested. On the VLDB, the GPIO pins
are exposed on the board to various interfaces, such as switches and LEDs. These
can be used to check whether the operations worked. However, on the RU, these
pins are not exposed and the test results are therefore not easily verifiable at this
point. However it will later become possible to check the result using the FPGAs on
the RU which is connected to some of the GBT-SCA’s GPIO pins.
Before the GPIO module can be used, it must be enabled. This is done by setting
a byte in a control register of the GBT-SCA. The GPIO module must be configured
by settings registers, to enable or disable, and set direction (input/output) of GPIO
pins. Then, commands to write or read the GPIO pin value registers can be executed.
The I²C module is also tested, as it will be used later for setting up a communication
interface with the readout unit’s PA3 FPGA. The I²C module is enabled in the same
way as the GPIO module, by setting its control bit in the control register to high. The
I²C module must also be configured with the baud rate. It is set to 1MHz (max) for
this test. An Then a write transaction command is sent, with the chip ID and data as
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the SCA command package payload.
For the VLDB, the chip ID was set to 0b1111000. An oscilloscope was connected to
the I²C data and clock pins to monitor the result.
For the RUv1, as with the GPIO test, the I²C pins are not exposed and the result
cannot easily be checked at this point. The I²C module is instead tested later using
the PA3 FPGA as an I²C slave.

3.3.5 DCS interface (ALF/FRED)

In this test, a dummy FRED client is used to connect with an ALF server running on
the CRU host computer to access the previously tested ROC low level functions over
the network rather than locally.
An ALF server is included with the ROC software already installed on the computer.
The DIM protocol also needs a DNS server running somewhere on the network. This
server application is downloaded from the official DIM web page, and for testing
purposes it is run on the same host as ALF and FRED application. A FRED sample
client is also included with the ROC software. This program sends various com-
mands such as communicating with the GBT-SCA chip to the server. This program
is used to test the ALF/FRED functionality.

3.3.6 Readout from the ALPIDE chip

This test attempts to start a readout process and receive sensor data from the ALPIDE
chip connected to the RUv1. This test is only performed on the RUv0-CRU + RUv1
setup, because the Arria 10 DK CRU lacks software for interfacing with the ALPIDE
controller on the RUv1 Ultrascale FPGA. Software for the RUv0-CRU-based setup is
available from the Ultrascale firmware development team. A series of scripts need
to be run, which will initialize the Ultrascale on the RUv1 and RUv0-CRU and start
a readout test. The script will perform the test and report the result.
Some of these scripts must be modified to work with this setup, as they are made
for the Ultrascale team’s setup with a full sensor stave with 8 ALPIDE chips. Some
places the number of chips can be selected as a parameter to the functions, but other
places it is hard coded. These lines of code are rewritten for the one chip setup. The
ALPIDE chip availabe in Bergen has the chip ID 0, this is used as a parameter for
the functions that need them, with the exception of setup_readout and test_readout,
which takes a parameter of a list of transceiver IDs. These are the opposite of the
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chip ID order, so the transceiver ID passed to these functions is 8.

3.4 Test results and discussion

3.4.1 CRU register access

Reading and writing to the register bus of both the Arria 10 DK CRU and RUv0-CRU
is successful.

3.4.2 CRU data benchmark

The DMA benchmark completed successfully with no errors with the Arria 10 DK
CRU. The achieved data rate with default settings was 28.44 Gbps, or 3.56 GBps.
This is not ideal, in theory a speed of over 6 GB/s should be possible.
In order to improve the data rate, the parameters of the benchmark script is tweaked.
First, error-checking was disabled. This improved the speed to 4.47 GBps. It was
also attempted to use a different hugepage configuration. Instead of using 128*2
MiB hugepages, a single 1 GiB hugepage was allocated and used, by modifying the
ROC software configuration files. A further increase in data rate was observed, at
4.67 GBps. This is still significantly lower than the theoretical result, but it is enough
for development purposes.
If necessary, it is likely that the data rate can be improved by upgrading the host
computer to reduce performance bottlenecks such as RAM, storage or CPU speed. It
may also be further improvable by tweaking the configuration of the ROC software.

3.4.3 GBT loopback

During loopback no errors were seen on link 0 and a high amount of errors on other
links. It is concluded that the GBT link is working.

3.4.4 SCA access

Reading and writing to registers on the GBT-SCA was successful on both the VLDB
and RUv1.
It was attempted to set all GPIO pins connected to LEDs on the VLDB to high, and
then low. It was observed that the LEDs turned on and off as expected. After setting
the direction to input, it was attempted to read the GPIO values of pins connected
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to switches, when the switches were enabled and then disabled. The values of these
bits were read back as high and then low, as expected. It is therefore concluded that
the communication with the GPIO module works as expected.
When the I²C write transaction was executed, the expected data could be observed
on the oscilloscope, namely the chip ID being read out. However, due to lack of
an I²C slave to assert an ACK signal, full functionality of transactions could not be
tested at this time. Nevertheless, control communication with the I²C module of the
GBT-SCA is concluded to work.
Communication with the I²C module on the RUv1 was also successful. For this
board, the full I²C functionality was thoroughly tested later in preparation for the
work in chapter 4.

3.4.5 DCS interface (ALF/FRED)

The DNS server and ALF server is started, and the ALF client is run. Activity corre-
sponding to the commands executed by the ALF client is observed on the ALF server
console, so the communication between client and server is working. The behavior
and returned data from the server’s operations is also as expected. The ALF/FRED
interface is therefore concluded to be working.

3.4.6 Readout from the ALPIDE chip

Communication with the ALPIDE chip was working, however unexpected behavior
during readout was observed. The event counter of the ALPIDE controller reports
a value in the order of thousands even though only one trigger is sent. This may be
caused by an incorrect configuration in the ALPIDE chip, such as triggering contin-
uously rather than only when receiving a trigger signal.
Due to preparations for irradiation test campaigns, it was prioritized to work on
essential control component tests rather than readout from the ALPIDE. Therefore,
this problem was not resolved.
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3.4.7 Test result summary

All performed tests on the readout chain variations were successful, with the excep-
tion of readout from the ALPIDE. This is not critical, as the ALPIDE is not needed
for the ongoing development in Bergen. Results are summarized in table 1.

A10 CRU + VLDB A10 CRU + RUv1 RUv0-CRU + RUv1
CRU register access Passed Passed Passed

CRU data benchmark Passed, 4.67 GBps Passed, 4.67 GBps N/A
GBT loopback Passed Passed N/A

SCA access Passed Passed Passed
SCA GPIO module Passed N/A N/A

SCA I²C module Passed (no slave) Passed Passed
ALF/FRED Passed Passed N/A

ALPIDE readout N/A N/A Partial failure

Table 1: ITS readout chain test results
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4 Communication with the RU Auxillary FPGA

4.1 Background

At the early stage of the PA3 development process in Bergen, communication with
the PA3 Wishbone bus was only accomplished with an USB to UART cable directly
connected to the PA3 from a computer. This is only a temporary solution, as an
electrical UART interface will not be available on the readout unit during operation
in ALICE. It is therefore necessary to develop an interface for communicating with
the PA3 Wishbone bus over the GBT link via the CRU.

4.2 I²C interface

The PA3 communication interface is implemented with an I²C connection between
the PA3 and the GBT-SCA chip. I²C is a protocol for inter-chip communication that
uses two bidirectional lines: SCL (clock) and SCA (data)[20]. Simplified, an I²C trans-
action consists of a 7-bit slave address (chip ID) followed by a R/W bit and an ACK
bit response, then data grouped into bytes, each also followed by an ACK bit.
On the readout unit, the PA3 is connected to two of the GBT-SCA’s I²C master mod-
ules, channel 0 and 5. Both channels will not be needed, as the PA3 will only have
one bus, and it will not be possible to increase the data rate by using both channels
as the GBT-SCA chip can not process commands in parallel. I²C master channel 0 on
the GBT-SCA is chosen for the interface. The full path of accessing the PA3 Wishbone
bus from the Arria 10 CRU host computer can be seen in figure 18.
Initially, on PA3 firmware version A112 and earlier, the PA3 Wishbone bus had a
data width of 32 bits and address width of 16 bit. The 7-bit I²C slave address of the
PA3 was set to 0b0011010. This meant the I²C protocol worked as follows:
To write to the Wishbone bus, a 6-byte I²C write is transmitted. The first two bytes of
data contain the 16-bit Wishbone address. The last four bytes contain the 32-bit data
value.
To read from the Wishbone bus, a 2-byte I²C write is transmitted, containing the
Wishbone address. Then, a 4-byte I²C read command is transmitted, and the re-
turned 4 bytes is the read data value.
However, it was eventually decided to change the Wishbone bus to a data width of
8 bits and an address width of 7 bits as of version A200. This will in theory lead to a
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8-bit Write (production version, vA200)

Byte Addr + '0' Data

8-bit Read (production version, vA200)

Byte Addr + '1' Data

32-bit Write (vA112)

Byte ChipID + '0' Address Address Data Data Data Data

32-bit Read (vA112)

Byte ChipID + '0' Address Address ChipID + '1' Data Data Data Data

Figure 16: Comparison between the I²C transactions for the new 8-bit and the old
32-bit PA3 bus

significant increase in speed, because both read and write transactions could use the
GBT-SCA’s single byte transaction command rather than multi-byte transactions. To
initiate a multi-byte transaction in the GBT-SCA I²C master, multiple HDLC com-
mands need to be issued to the GBT-SCA: Setting the control register to update the
number of bytes in the transaction, setting/getting the data registers, and sending
the transaction, at a minimum. For Wishbone read operations, this sequence even
needs to be performed twice as a read operation involves both a multi-byte write
and a multi-byte read I²C transaction. In contrast, to initiate a single byte transaction
only one command is needed, for either read and write operations. Additionally,
the I²C transactions themselves are shorter, as they only contain two bytes, as can be
seen in figure 16.
To be able to use such single byte transactions, the I²C slave address field needs to be
used as the Wishbone address, hence the 7 bit address width. This is not technically
correct use of the I²C protocol, because the register bus address is not a slave address
which this 7-bit field is meant for. Some values for this field is also reserved, such as
0b11110XX which indicates that the I²C transaction use a 10-bit addressing scheme
instead. However, in this case it is judged to be acceptable, due to the significant
advantages and the fact that the slave address is not needed as there is only one
slave connected to the I²C master. All PA3 Wishbone registers can fit into a 7-bit
address space, even if excluding all reserved addresses, although this is not strictly
necessary because the I²C module on the PA3 is not designed to differentiate these
special addresses from others.
Since communication with the GBT-SCA chip on the RUv1 board has already been
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successfully tested with both the Arria 10 CRU- and RUv0-CRU-based readout chains
in chapter 3, implementing the software for communicating with the PA3 via I²C is
relatively straight-forward.
On the PA3 FPGA firmware, the I²C controller module is implemented by Arild
Velure1. This chapter will present the software for the FLP node (CRU host com-
puter) to perform the communication.

4.3 Software for the Arria 10 CRU

4.3.1 Design

During development, several software implementations were written, for the early
32-bit Wishbone bus and for the final 8-bit bus, and with different low level libraries
including the O² ReadoutCard software[21] in C++.
The final software presented here is based on the CERN Git repository CRU-ITS[22],
an early version of a control interface to the Arria 10 CRU modules that is needed by
the ITS WP10 team such as SCA and SWT, written in Python. Functions for control-
ling the SCA I²C master modules were added to this repository in the SCA interface
class including initial configuration, and reading and writing single- and multi-byte
transactions.
An abstraction class for the PA3 was created. This instantiates the SCA interface class
and implements read and write functions that calls the SCA single-byte with only
address (and data for write) parameters for an easy to use high-level interface for
accessing the PA3 Wishbone bus. Some helper functions such as register dumping
for debugging and monitoring were also implemented. Pseudocode for the class
structure with its essential function can be seen in figure 17.

4.3.2 Testing

The software was tested on the PA3 firmware version A200 with the 8-bit Wishbone
bus, and the Arria 10 DK CRU with firmware v2018-01-16. It was able to read and
write the Wishbone bus without any issues.
A benchmark function was created to measure the speed of the bus access. The func-
tion repeated a read or write operation one million times, and used the difference in
time between the start and the end divided by a million to get an estimate of the

1arild.velure@cern.ch
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c l a s s PA3 ( ) :
i n i t ( ) :

sca . i n i t ( )
sca . i2cEn ( 0 )

read ( addr ) :
re turn ( sca . i2cRd_7b ( 0 , addr ) >> 16) & 0 x f f

wri te ( addr , data ) :
sca . i2cWr_7b ( 0 , addr , data )

Figure 17: Pseudocode for implemented functions for accessing the RUv1 flash mem-
ory using the Arria 10 CRU

Figure 18: Communication chain for the PA3 I²C interface
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time spent for each transaction. The result was an access time of 39 µs for both read
and write transactions. No errors in read data were detected throughout the million
transactions, suggesting a reliable operation.

4.3.3 C++ ALF/FRED implementation

A simple library with functions to read and write from the PA3 bus was also imple-
mented in C++ based on the demonstration FRED client mentioned during chapter
3.3.5. This could be used to interface the PA3 with DCS. The functions are based on
the style used for the UART library used to communicate with the PA3 during early
development. Both the read and write function takes two arguments: An uint8_t for
address, and for the write function an uint8_t for data. For the read function, the
second argument is a pointer to an uint8_t which is filled with the returned data.
The code for this library can be found on UoB’s git server2.

4.4 Software for the RUv0-CRU

4.4.1 Design

The WP10 team in charge of the RUv1 Ultrascale FPGA has written basic test soft-
ware for the RUv0-CRU including SCA communication code. This test code is lo-
cated in the CERN Gitlab repository RUv1_Test[18]. The software for I²C commu-
nication is based on these libraries, however during development there was many
changes to both the I²C protocol such as the aforementioned change from 32-bit
to 8-bit PA3 Wishbone bus, as well as upgrades of the SCA controller module on
the RUv0-CRU firmware, therefore the functions for I²C communication had to be
rewritten and updated several times. The final implementation consists of PA3 regis-
ter read and write functions as well as helper functions such as register dumping for
debugging and monitoring implemented in an existing class for SCA-related func-
tionality, written in Python. Pseudocode for the PA3 related functions in this class
can be seen in figure 19.
These functions and other PA3 related variables such as register address constants
have also been gathered in a dedicated abstraction class for the PA3, similar to the
Arria 10 DK software implementation discussed above. This class depends on the
SCA interface class containing the actual PA3 Wishbone read and write functions,

2https://gitlab.uib.no/gmi001/alf2bus
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c l a s s Sca ( ) :
i n i t i a l i z e ( ) :

[ . . ]
s e l f . enable_channel ( [ . . ] )

r e a d _ p a 3 _ r e g i s t e r ( addr ) :
re turn ( sca . i2cRd_7b ( 0 , addr ) >> 16) & 0 x f f

w r i t e _ p a 3 _ r e g i s t e r ( addr , data ) :
sca . i2cWr_7b ( 0 , addr , data )

Figure 19: Pseudocode for implemented functions for accessing the RUv1 flash mem-
ory using the RUv0-CRU

which it instantiates at initialization. The SCA chip’s I²C module is also enabled
during this class’ instantiation.

4.4.2 Testing

The software was tested on the PA3 firmware version A200 with the 8-bit Wishbone
bus, and the RUv0-CRU with firmware v2018-01-16. It was able to read and write
the Wishbone bus successfully.
A benchmark function was created to measure the speed of the bus access, as with
the Arria 10 version of the software. The results were an access time of 46 000 µs for
both read and write transactions. This is far slower than the results with the Arria 10
DK CRU, likely because of bottlenecks in the USB to RUv0-CRU interface. But this is
not seen as a prioritized problem, as the RUv0-CRU will not be used in production.
No errors in read data were detected throughout the million transactions, suggesting
a reliable operation.

4.5 Discussion

4.5.1 Results

In this chapter access to the readout unit’s PA3 FPGA’s Wishbone bus using the
GBT-SCA’s I²C master module has been presented. Demonstration software run-
ning on the test computer interfacing with both the Arria 10 DK CRU emulator and
the RUv0-CRU has been developed and tested successfully.
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UART I²C
Arria 10 DK CRU RUv0-CRU

8-bit PA3 bus ? 39 µs 46 000 µs
32-bit PA3 bus 19 µs 180 µs (R) / 130 µs (W) ?

Table 2: Comparison of PA3 bus access time

4.5.2 Performance

The I²C communication has a large amount of overhead on most layers of commu-
nication, such as software to CRU, HDLC protocol from the CRU to the GBT-SCA,
and configuration and commands the GBT-SCA before it sends an I²C transaction.
With the RUv0 as a CRU emulator, the chain is especially slow as it appears to be
bottle-necked by the USB communication.
The choice of adapting single-byte transactions using the I²C slave address as Wish-
bone address greatly increased the performance of the bus access. As mentioned, a
bus access transaction takes approximately 39 µs with an Arria 10 DK CRU. For ref-
erence, this should in theory result in uploading a 25 MB bitfile to the flash memory
taking approximately 16 minutes if transferred by I²C.
The benchmark test was repeated for the previous scheme of multi-byte transactions
with 32-bit data and 16-bit addresses. The result was 180 µs for read operations
and 130 µs for write operations. This means that the single-byte transacting scheme
increased the speed by approximately 4.7x and 3.4x for read and write operations
respectively. This is as mentioned mainly due to the reduced number of commands
needed to send to the GBT-SCA chip to initiate single-byte transactions compared to
multi-byte transactions.
The performance results is summarized in table 2.

4.5.3 DCS implementation

It will eventually be necessary to integrate the software using the ALICE Detector
Control System’s software libraries and frontend for use in operation. A proof of
concept with PA3 bus read and write functions written in C++ has been written.
This library uses the O² ReadoutCard library[21] for low level functions for commu-
nicating with the SCA chip through the Arria 10 CRU. DCS will likely only need
access to a few select registers such as status registers for modules critical to the
PA3’s operation. This might include the configuration controller, to check whether
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or not scrubbing of the Ultrascale is ongoing without errors. If the error is easily fix-
able, such as by resetting the PA3, this should also be exposed to the DCS interface
so that the DCS shift leader can perform this task without having to wait for experts
to arrive. However, some registers should not be exposed to the DCS control panel
like this. An example would be the clock configuration register, which could cause
the PA3 to lose clock depending on configuration of the RUv1 in terms of available
clock sources. In the case of error that can not be resolved easily, a detector expert
could access the rest of the registers through specialized low level tools, such as the
Python software discussed in this chapter.

43



5 High-speed interface between Ultrascale and PA3 flash

controller

5.1 Background

Due to the volatile nature of SRAM-based FPGAs, firmware for the Ultrascale Ultra-
scale on the Readout Unit need to be stored in a flash memory chip on the board.
The PA3 auxiliary FPGA is responsible for programming the Ultrascale FPGA using
the content of this flash, and also for writing to the flash. It is possible to do this over
Wishbone access such as UART or I²C, these methods are, however, slower than de-
sired for such a task, with the Arria 10 CRU I²C implementation using 15 minutes
or more to transfer one 25 MB firmware bitfile. Therefore, a new higher-speed in-
terface for writing to the flash memory of the readout unit should be designed and
implemented. This interface will be discussed in this chapter.

5.2 Description of the solution

It is decided to use a FIFO on the Ultrascale FPGA on the readout unit, which can be
directly read by the PA3. Writing to the Ultrascale FIFO is done through its Wishbone
bus, which has significantly faster access speed and bandwidth than the GBT-SCA’s
I²C module, because it uses the main 80-bit data payload field of the GBT protocol in
a so-called Single Word Transaction (SWT), rather than the EC field which only occu-
pies 2 bits for each GBT frame, as described in section 2.4. In addition, communica-
tion with the GBT-SCA has extra overhead as the path between CRU and GBT-SCA
is more complex than the path between the CRU and the Ultrascale FIFO. The team
in charge of the Ultrascale firmware designed a custom protocol using such SWTs to
access the Wishbone bus on the Readout Unit from the Common Readout Unit. Sim-
plified, this protocol writes the address and value of the desired Wishbone register
in the GBT frame data field. These values are doubled to provide extra protection
against SEUs.
A new write controller on the PA3 that takes data directly from this FIFO and loads
it into the flash interface buffer is needed. This write controller module would have
to act as a bridge between incoming data to the flash from the Ultrascale FIFO, and
the flash interface. To initiate a page write to the flash, some control signals must
first be written to the flash interface module, namely the address of the page to the
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Figure 20: Chain for uploading data to the flash using the Ultrascale FIFO interface

written to, and the size of the page. As of now, the page size signal is set to a constant
4096 bytes, but this would need to be dynamic in the future to for example be able
to read and write the spare section of flash pages. The spare section is an extra
section of flash pages which can, for example, be used to hold ECC information.
When these configuration signals are set, a write page command can be send to the
flash interface by setting the command signal to the page write command value and
pulsing an execute signal. The flash interface will then read from the write controller
FIFO until it had read a full page, which it will then write to the flash memory.
During a redesign of the PA3 firmware it has been decided that the existing 4096
byte page buffer on the Wishbone bus, as well as a page buffer in the flash inter-
face module, should be removed. Instead, the flash interface will read data from a
single FIFO queue. It was therefore decided to combine the writing from the bus
and the Ultrascale FIFO into a single module called the write controller, which will
control the flash interface and expose it to a FIFO containing the data to be written
to the flash. This design will reduce the overall complexity and footprint of the PA3
firmware, especially the amount of memory cells needed. This path for uploading
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data is illustrated in figure 20.

5.3 Design for buffered flash interface

Prior to the specifications of the PA3 firmware redesign with the new memory-less
flash interface was ready, work began on a temporary solution to interfacing the
Ultrascale FIFO with the flash on the PA3 on the firmware version A112. A few de-
signs were considered, such as a module that only copies data from the Ultrascale
FIFO into the page buffer with a command, and lets all other control communica-
tion, such as initiating flash page writes and block erasing, happen over the I²C with
the existing flash interface. However, it was observed that this method was quite
slow, because of bottlenecks in the I²C communication. With this method, several
I²C transactions would have to occur for every page written to the flash, such as set-
ting the page address and triggering the commands for data transfer from the FIFO
and writing to the flash, and this appeared to cause relatively large delays between
each page write, especially if the RUv0-CRU was used as a CRU emulator.
A new module is designed to only take one set of Wishbone commands and config-
urations before each task of writing to the flash. The starting page address must be
set, then the module would read data from the Ultrascale FIFO and send it to the
flash page buffer in order. A byte counter would keep track of the page buffer posi-
tion, and when the whole page buffer was filled, the module automatically initiated
a flash page write command to the flash interface, and incremented its page address
register, and started over. After the desired number of pages had been written, a
stop command would send the module back to its idle state.
This high level of automation has some disadvantages, such as being more prone to
bugs. For example, if for some reason a byte was duplicated or lost when sent to
the Ultrascale FIFO, the byte counter would become off by one and the flash page
write commands would not happen at the correct point. It also introduces more
corner cases during operation, which will need to be tested thoroughly. However,
this style of module was still deemed more favorable due to the higher speed and
ease of interfacing with it on a software level.
This module was finished and tested and with the RUv0-CRU it was able to success-
fully write an RUv1 bitfile of 24.1 MB to the flash in about 5 minutes and 30 seconds,
of which 21 seconds were used to erase blocks, which was done over the flash in-
terface and not through this module. This is faster than the I²C and UART interface,

46



Figure 21: Block diagram of the RUv1 with the high-speed (red) and low-speed
(blue) paths for writing to the flash, with the old PA3 firmware using page buffers

but not as fast as desirable.
A block diagram of this write controller and the data path through the RUv1 can be
seen in figure 21.

5.4 Write controller design for new memory-less flash interface

When the temporary solution for the old firmware was finished, work began on the
write controller module for the redesigned PA3 firmware with the memory-less flash
interface, version A200. The module is meant to be an intermediary to abstract away
the multiple ways of writing to the flash, to a single interface that the flash controller
can read from. The flash interface requires a FIFO that it can read data from, as
well as a control interface that takes a flash address, commands and outputs status
signals.
Writing from the Wishbone bus to the flash requires buffering the data in a FIFO that
the flash controller can read from. At first, it was planned to place this FIFO in front
of the write controller, and then use the write controller as a multiplexer to forward
either the bus buffer FIFO or the Ultrascale FIFO to the flash controller. However, it
was discovered multiple problems with this approach. For one, the Ultrascale FIFO’s
output is delayed with one clock cycle. This means that either the bus FIFO needs
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Figure 22: Block diagram of the RUv1 with the high-speed (red) and low-speed
(blue) paths for writing to the flash, with the new PA3 firmware using a memory-less
flash interface module

to also be delayed to match the Ultrascale FIFO, and then the flash interface would
need to handle this delay.
Instead, it was decided to use a buffer flash FIFO behind the write controller module,
and connect this single FIFO to the flash controller. This buffer FIFO would have no
output delay so it would be very simple to interface with for the flash controller.
The write controller module would write to this buffer FIFO, either directly from the
Wishbone bus using a register, or copy data from the Ultrascale FIFO into the buffer
FIFO, accounting internally for the clock cycle delay by using a state machine.
Otherwise, the module would work mostly like the previous design. A start com-
mand would initiate the write operation, and the module would start writing to the
buffer FIFO as data comes in, automatically keeping track of the page number and
initiating page writes to the flash controller. This would continue until a stop com-
mand is received.
A block diagram of this write controller and the data path through the RUv1 can be
seen in figure 22.
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Figure 23: Detailed block diagram of the write controller and connections to inter-
faced modules.

5.4.1 Bus interface

The module is controlled and monitored through various signals accessible through
the Wishbone bus on the PA3.
The input control signals are listed and described in table 3. In the VHDL module
and block diagram (figure 23), these signals are grouped under the name WB_IN.

Signal name Width in bits Description
command 7 Command signal (see table 4

for commands).
execute 1 Executes the command in the

command signal if pulsed.
addr 24 Flash page address from

which to start writing.
fifo_data 8 Data to write to the flash in

bus write mode.
fifo_we 1 Write enable signal for the

data in fifo_data.

Table 3: List of input signals for the FIFO Write Controller module
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Command name Description Value
WRITE_XIL Starts writing to the flash with the

Ultrascale Ultrascale FIFO as data input.
“0000001”

WRITE_BUS Starts writing to the flash with the PA3
Wishbone bus (fifo_data / fifo_we) as
data input.

“0000010”

STOP Stops writing to the flash and return to
idle mode.

“0000100”

CLEAR_ERRORS Clears error signals (see table 5). “0001000”

Table 4: List of commands for the FIFO Write Controller module

The output status signals are listed and described in table 5. In the VHDL module
and block diagram (figure 23), these signals are grouped under the name WB_OUT.
They provide all necessary information for operation, monitoring and simple de-
bugging. The first bit (idle) is usable as a ready signal, as the module can accept new
commands (except STOP) when and only when the main state machine is in the idle
state. There are only 8 bits of output signals, so they can all fit inside a single WB
register if necessary.

Signal name Width in bits Description
idle 1 High if the module is idle and ready to

receive a command.
activeInput 1 This signal is high if the input is the

Ultrascale FIFO, low if the input is the
WB bus (or if the module is idle).

flashFifoEmpty 1 High if the flash FIFO is empty.
flashFifoFull 1 High if the flash FIFO is full.
xilFifoEmpty 1 High if the Ultrascale FIFO is empty.
stopping 1 High if the stop signal is set and the

module will cancel operation shortly.
errorWrongCommand 1 High if the module received an invalid

command.
errorFifoWrite 1 High if data is written to the FIFO

interface on the WB bus when the
module cannot accept it.

Table 5: Overview of the status signal outputs for the FIFO Write Controller module
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5.4.2 Operation

The design is based on three processes. The main process controls the primary states
and command interface of the module using a finite state machine (FSM). The state
machine starts in the idle state. Here it waits for a command from the Wishbone
control register. Once a command has been received, it latches the start page address
signal, and proceeds to the next state called AwaitFirstData. This state polls two
signals. One is the stop signal. If this is high, the module returns to the idle state.
The other is the flash FIFO empty signal. If this signal is low, it means that the user
has started writing data to the FIFO, and therefore a page write command is sent
to the flash interface once it is ready. The flash interface will then start to read out
the data from the flash FIFO. The next state waits until the whole page has been
read by the flash interface and the page write operation is complete by polling for a
trx_done signal from the flash interface. It then returns to the AwaitFirstData state.
This behavior is represented as a flow diagram in figure 24.
The next processes handles data input from the Ultrascale FIFO. The Ultrascale FIFO
readout process polls for the FIFO empty signal from the Ultrascale FIFO and sets
the read enable signal when there is data in the FIFO. It then waits for a clock cycle
until the data is available on the data signal, and sets the flash FIFO write enable
signal while forwarding the data from the Ultrascale. This means that the maximum
data rate when reading from the Ultrascale FIFO is 1 byte every 3 clock cycles. This
could be made faster in several ways, such as dropping the wait cycle after reading
data once and immediately read the next byte. The disadvantage by this method is
that the empty signal will be one cycle delayed, and thus it is possible to attempt
reading a value from the Ultrascale FIFO when it is in fact empty. Another method
is to redesign the Ultrascale FIFO and its link to the PA3 to remove the extra clock
cycle of delay. However such optimization is deemed unnecessary because the link
is already fast enough. 1 byte every 3 clock cycles at 40 MHz will mean a whole
24 MB bitfile can be written in 24MB/(40MHz/3) = 1.8 s. The actual speed is
bottlenecked elsewhere anyway, and is therefore significantly slower. This is tested
and confirmed in the next section.
Fetching data from the Wishbone bus is more straight forward. No process is needed,
only forwarding of the write enable and data signals to the integrated FIFO. How-
ever the write enable and data from the Wishbone bus and Ultrascale is multiplexed
with the activeInput signal to make sure only one source is able to write to the FIFO
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Figure 24: Flow diagram of the FIFO Write Controller VHDL module for the RU
Auxillary FPGA

at a time.
The last process that handles the stop signal. This process simply watches for the
stop command, and sets the stop signal high if it is triggered. It also clears the stop
signal when the state machine is idle, or during resets.
The reason for separating the behavior logic into separate processes instead of us-
ing one FSM for everything was to reduce complexity. The stop command can be
accepted during any state, so by separating it into its own process, the main FSM
does not need to check for this command in every one of its state cases. Similarly,
to allow the WB bus or Ultrascale FIFO to continuously write data to the flash FIFO,
even during page write operations by the flash interface, readout logic would have
to be implemented in every state in the main FSM, and it would also have to contain
two separate branches of states due to the difference in readout for the WB bus and
Ultrascale FIFO data sources.
In the main FSM another method for keeping track of page write cycles, rather than
polling for the flash interface trx_done signal, was considered. A counter could in-
crement every time data was written to the flash FIFO and execute the flash interface
page write command for a new page when the counter reached the page size. But
it was decided against this due to increased complexity of the flash writer module.
There is limited available space in the PA3, and additional redundant logic is unde-
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Figure 25: Block diagram of the testbench of the PA3 write controller module

sirable.

5.5 Simulation

Before testing on hardware, the module was simulated on logic level using Model-
sim. A testbench VHDL entity is created, and various instances and dummy models
are created, such as the write controller itself, the flash module, and a simple Ul-
trascale FIFO model. The testbench uses the Bitvis Universal VHDL Verification
Methodology (UVVM) library for utility and logging functions. A block diagram of
the testbench can be seen in figure 25.
Five tests were implemented in the testbench. The first checks all outputs for default
values after a reset. Two tests checks writing one page and multiple pages respec-
tively using the Ultrascale FIFO interface. The last two tests checks writing one page
and multiple pages respectively using the Wishbone interface. All tests completed
with no errors.
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5.6 Software

In chapter 4.3, a Python class for PA3-related functions for the Arria 10 CRU was
introduced. This class is extended with functions for uploading data to the flash
using the write controller module. Two main functions are implemented, one for
uploading data through the Ultrascale FIFO, and one through the Wishbone bus
over I²C in case the Ultrascale FIFO is not available, such as when the Ultrascale is
not configured with its firmware. Both functions will take a starting block number
and a bitfile path as parameters, with two optional parameters of a block number and
path of a scrubbing bitfile as well. The functions work by first looping through the
amount of blocks required by the data and issuing commands to the flash interface to
erase these blocks. Then, the starting block number is written and a write operation
is started, and the bitfile data is fed to the write controller through the appropriate
route until it is finished. This is repeated for the scrubbing file if its parameters are
set. Finally, the configuration page containing the address and size of the bitfiles are
assembled and written to page 0 of the flash using the same method as the bitfiles
themselves.
In addition, two simpler functions are implemented to write a single page. Finally, a
function for reading a page is also implemented. This uses the I²C Wishbone access
since the Ultrascale FIFO data path is unidirectional. The write controller is also not
used. Instead a read page command is issued to the flash interface directly, which
starts writing data to a read FIFO which can be accessed on the Wishbone bus byte
by byte.
Since the Ultrascale FIFO needs an SWT interface to receive data, an SWT software
class already present in the CRU-ITS Gitlab repository[22] is instantiated and used
in the PA3 class.
In summary, the top level flash functions are implemented in the PA3 class can be
seen in figure 26.

5.7 Testing

The module for PA3 firmware version A112 with the buffered flash interface was
fully tested by writing bitfiles to the flash several times, and verifying the flash con-
tent afterwards. The PA3 configuration controller was also able to successfully pro-
gram the Ultrascale with the uploaded bitfile. The speed of uploading a 24.1 MB
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c l a s s PA3 ( ) :
[ . . . ]
f l a s h W r i t e B i t f i l e ( f i l e , blockAddr , [ sc rubFi le , scrubBlockAddr ] )
f l a s h W r i t e B i t f i l e I 2 C ( f i l e , blockAddr , [ sc rubFi le , scrubBlockAddr ] )
f lashWritePage ( addr , data )
f lashWritePageI2C ( addr , data )
flashReadPage ( addr )

Figure 26: Implemented functions for accessing the RUv1 flash memory using the
Arria 10 CRU

bitfile is approximately 33 seconds, significantly faster than other methods.
The module for the new PA3 firmware version A200 with the memory-less flash
interface module was also tested successfully. The testing was done by using the
software presented in section 5.6 with the Arria 10 DK CRU to upload a bitfile to the
flash using the high-speed data path via the Ultrascale FIFO, and then triggering the
PA3 to configure the Ultrascale with the newly uploaded bitfile. The Ultrascale was
successfully configured using this method, suggesting that the data uploaded to the
flash was error-free. A few pages from the flash was also read back and inspected
manually for mismatches, but none were detected. The speed of the data upload
was measured, and it is approximately the same as with firmware version A112, as
expected.
This test was repeated for the data path via Wishbone access over I²C rather than the
Ultrascale FIFO, and this too resulted in a successful configuration of the Ultrascale.
Uploading the bitfile this way took about 15 minutes, which is faster than with the
PA3 version A112, as expected.

5.8 Discussion

5.8.1 Result

An interface for writing to the flash memory on the PA3 has been implemented and
tested successfully. The interface uses a FIFO interface on the Ultrascale FPGA which
can be written to via the Wishbone bus, and read to from a write controller module
on the PA3 FPGA.

55



UART I²C Ultrascale FIFO
RUv0-CRU Arria 10 RUv0-CRU Arria 10

PA3 vA112 (32-bit) 8 min Hours 50 min 5-6 min 33 s
PA3 vA200 (8-bit) N/A Hours 15 min 5-6 min 33 s

Table 6: Comparison of approximate time needed to upload an Ultrascale bitfile (24.1
MB) to the flash memory on the RUv1

5.8.2 Performance

The speed of the interface depends on the specific CRU implementation used. With
the PCI-e Arria 10 board it takes 33±0.5 seconds to write an Ultrascale bitfile of
24.1MB size to the flash memory. This is significantly better than the existing in-
terfaces using the I²C master on the GBT-SCA chip, or the direct UART interface to
the PA3. With the RUv0-CRU connected to the host computer via USB2, it takes
just over 5 minutes to write the same bitfile, in addition to 21 seconds of erasing the
flash. This is still faster than using the I²C interface, but comparable to the debug
UART interface. Curiously, with USB3 connectivity, the uploading takes longer than
USB2, at a little over 6 minutes. This is despite USB3 having a higher bandwidth
and packet frequency. It may be possible to optimize the USB communication mod-
ule in the RUv0-CRU or the FX3 chip to reduce these numbers, however this is not
regarded as a priority due to the fact that the RUv0-CRU will not be used as the CRU
in operation in ALICE.
Even with the Arria 10 DK CRU, the performance bottleneck is not in the PA3 firmware
and the write controller module. This was determined by inspecting the empty sig-
nal of the FIFO queue in the write controller using an oscilloscope. It is empty the
majority of the time. The empty signal only goes low (data is written to the FIFO)
for two clock cycles approximately every 12 clock cycles. In other words the data is
immediately read by the flash interface when available in the FIFO. The write con-
troller read from the FIFO on the Ultrascale once every three clock cycles when data
is available. We can therefore conclude that the bottleneck lies before the FIFO on
the Ultrascale.
The PCI-e, GBT and Ultrascale-to-PA3 FIFO links’ raw bandwidth is significantly
higher than the demonstrated speed. This likely means that the bottleneck lies in
either the SWT controller in the CRU firmware, the SWT to Wishbone controller in
the Ultrascale firmware, or the software code execution speed. As mentioned, the
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Wishbone bus access protocol built on GBT SWT frames use one frame per Wish-
bone access, by doubling the address and data values in the 80-bit frame payload.
This provides extra reliability, but it is not fast. Since this protocol is a likely suspect
for the bottleneck, it might be worth redesigning this protocol to have the possi-
bility of including several Wishbone transactions in the same GBT frame. A simi-
lar technique, called prefetching, is employed in the USB communication with the
RUv0-CRU, where several Wishbone accesses can be queued and included in the
same USB transfer. However, the USB frame frequency is much lower than that of
the GBT link, so it is not certain if any time will be gained in this way.
Another possibility for speeding up the SWT Wishbone access protocol would be to
have a special frame type which only contained data values which would be written,
in order, to the same address as the last normal Wishbone transaction. In addition to
an 8-bit header with a flag indicating this type of frame, a single GBT frame of this
type could fit 7 Wishbone write transactions, potentially speeding up write opera-
tions by 7 times. However this is likely to move the bottleneck elsewhere, such as
the Ultrascale-PA3 FIFO interface or the write controller. The Wishbone implemen-
tation on the Ultrascale might also be a larger bottleneck than the SWT protocol, as it
has relatively slow overhead such as arbitration and triplication. Therefore it might
require a redesign for SWT protocol optimizations to be worthwhile.

5.8.3 Reliability

The write controller is not the highest priority for reliability on the PA3, because it
will likely not be used during ALICE run periods. The flash will only be written to
during technical stops when the beam is off and radiation and downtime is not of
concern. Therefore this module will not be triplicated, to save space on the FPGA.
However, certain signals that might trigger activity in other critical modules, such
as the flash interface command and execute signal, might need TMR anyway.
Nevertheless, the module has been designed with reasonable reliability in mind. The
firmware is no more complex than it needs to be, which reduces the risk of corner
case bugs. As described in section 5.4.2, the fastest data path, from the Ultrascale
FIFO, has been conservatively designed to use three clock cycles every byte read,
to make sure all signals such as empty and data is sampled accurately. Some error
signals have been implemented which can and is be checked by software during
flash write operations to make sure no bytes have been missed or otherwise errors
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have occurred during the write process.
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6 Irradiation testing

6.1 Background

Since the readout unit will be operating in an irradiation environment in the ALICE
detector cavern, it needs to be tested for radiation robustness during development.
Radiation can cause several unwanted effects in electronics. For example, so called
Single Event Upsets (SEUs) are caused by a high-energy particle or photon striking
the electronics, and is completely random in nature. Such an event can for example
induce a current in a node on the FPGA, causing a bit in a register to change its value.
This is called a bitflip, and can lead to failure if the value of this register is critical
for the operation of the FPGA. Another radiation effect that can cause failures are
dose effects, which are not entirely random like SEUs, but is likely to happen once a
total dose of radiation has been deposited in the electronics and could permanently
render the affected component unusable. However, the components used on the
RUv1 is resilient enough to dose effects, and the ALICE run times short enough, that
the random SEUs are of more concern.
The goal of the irradiation testing is to gain data on how frequently readout elec-
tronics, specifically the RUv1 board, would fail under radiation, as well as how these
failures manifest themselves and how to best mitigate them. One can estimate the
probability of failure by measuring the number of failure events over the irradiation
time period. Since the average radiation flux both in the irradiation test, and during
operation in ALICE, is known, one can calculate an estimate for the probability of
a failure during an ALICE run by simply dividing the probability estimate for the
test with the ratio of the flux during the test and the flux in the RUv1 positions in
the ALICE cavern. This is because the probability of a SEU, and thus failures SEUs
might cause, scales linearly with increased flux.
The main SRAM-based Ultrascale FPGA on the readout unit is more susceptible to
SEUs than the auxiliary flash-based PA3. For this reason, the irradiation testing will
place heavier focus on the Ultrascale, and it needs a higher level of protection in its
firmware than the PA3. However, since the work in this thesis is centered around
the PA3 and the communication links, this will be discussed in detail as well.
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6.2 Test setup

The procedures at the different irradiation campaigns for the ITS readout electronics
are usually approximately the same. At arrival to the beam testing facility, the RUv1
board is mounted to a stand which can be moved in two axes remotely, as shown in
figure 27. This is used to adjust the position of the board in front of the beam so that
it exactly hits the desired component on the board. On some setups, a plate of lead
is mounted in front of the RUv1, with coverable holes over the components, so that
only the components under the open holes is irradiated and the rest of the board is
shielded. For neutron beam testing, there is usually no such plate, as it would not
absorb much of the neutron radiation anyway. All the communication and power
cables that are needed for the RUv1 is attached and stretched out of the radiation
area, as the board is not physically accessible during the beam test due to radiation.
In a safe distance from the beam, the rest of the system was set up. This includes an
ALPIDE sensor stave, an RUv0-CRU, and various power supplies and other equip-
ment needed to support the readout electronics. The RUv0-CRU is connected to a
laptop, which is remotely connected to for controlling the test setup. The team is lo-
cated in the control room away from the irradiation environment. The whole setup
is illustrated in figure 28.
A notable difference between the setup in the Bergen lab and the beam test setup was
that all cards are powered by programmable Hameg power supplies. This allows
for remote controllable power cycling, which is necessary during the test to reset
the system after failures or latch-ups in the FPGA. This usually happens a few times
each testing campaign.
The test procedure is automated by a Python script. Briefly explained, the script
powers up, configures and initialized the system and starts a readout session, record-
ing data from the ALPIDE stave. Periodically, preferably continuously, the Ultra-
scale is scrubbed by the PA3 to restore its configuration memory. Eventually, either
the script will finish normally after a specified amount of time, or the radiation will
cause errors. The errors can either be in the data being recorded in which case it
won’t be detected until later when the data is analyzed, or it can cause a critical
failure of the test sequence such as being unable to communicate with the board. If
that happens, it is logged and the system is reset until fixed and the test sequence
restarted.
All relevant data from the test, such as readout data, logs with events and register
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Figure 27: Mount with an RUv1, on the Prague beam test. Front shielding plate with
a hole above the Ultrascale FPGA to be radiated can be seen.

dumps, are kept for analysis.

6.3 Ultrascale beam test in Prague

At the start of December 2017, the RUv1 were to be tested in radiation for three days
at a cyclotron facility, Řež, outside of Prague in the Czech Republic3. The participants
were the author, as well as five other members of the ITS WP10 team4.
The focus of the testing was the Ultrascale main FPGA, and the test routine was to
run a script described above while the Ultrascale was radiated. A second test was
also planned for the flash chip on the RUv1, to calculate an estimate on how many
bitflips in the flash one must expect per period of time. A known pattern would be
written to the flash, then it would get irradiated with a known luminosity. Then the
content of the flash would be read back and the amount of bitflips would be counted.
During this beam test, it was planned to use and test the PA3 scrubbing feature.

3https://www.ujv.cz/en
4Matteo Lupi, Matthias Bonara, Tomas Vanat, Joachim Schamback, and Magnus Ersland.
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Figure 28: Block diagram of typical setup used for beam tests of the readout unit.

However, as a backup scrubbing solution, a JTAG Configuration Manager (JCM)
is also mounted behind the shielding plate near the RUv1. The JCM is a tool that
can program and scrub the FPGA over JTAG[23]. It can also read back the FPGA
configuration memory, which can be used to inspect exactly where the configuration
file was corrupted in the case of a single event upset or a failure in scrubbing.

6.3.1 PA3 I²C communication problem when prefetching

No problems with the I²C communication directly attributed to the radiation was
observed.
However, a few other problems were discovered under operation, including the I²C
communication with the PA3 failing when the communication with the CRU was
prefetched for efficiency. It was discovered that this was because of insufficient wait-
ing time between commands. The SCA chip with the I²C master does not have a
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FIFO queue interface, so each I²C transaction must be finished before a new one can
be started. But with the prefetching of commands to the CRU, there was no time for
this. Due to how the prefetching works with queuing commands and sending mul-
tiple of them in the same USB packets, it is also not feasible to implement a normal
busy polling, to halt operation until the SCA chip is ready. Therefore, a static de-
lay period was added between operations instead. The delay is implemented in the
RUv0-CRU firmware, so it is therefore deterministic and accurate, so once the ap-
propriate delay period is found, it should work the same way every time. Another
benefit is that the software controlling the USB communication does not slow down.
All the commands to the CRU is sent and then cached on the board, ready to be ex-
ecuted once the delay ends. After this delay was implemented and the delay period
found by trial and error, PA3 I²C communication worked even with prefetching of
the commands. This was preliminary tested by creating a script that runs the PA3
register dumping function, described in the PA3 I²C communication chapter, over
and over again in a loop for many minutes, equivalent to tens of thousands of I²C
read operations, without observing any errors.

6.4 PA3 beam test in Oxford

In March 2018, a three day long beam test took place at ChipIR at STFC (Science and
Technology Facility Council) Rutherford Appleton Laboratory near Oxford, Eng-
land5. ChipIR is a facility at the ISIS Neutron and Muon Source Target Station 2
that provides a test beam of neutrons of an energy spectrum typical for atmospheric
environments, around 200 to 800 MeV[24].
The focus of the test was the auxiliary PA3 FPGA on the readout unit. The partici-
pants were the author, as well as four other members of the ITS WP10 team6. The ITS
WP10 team only had parasitic access to the beam for the first two days. This means
we were able to place the readout unit in the beam and run tests, but we had no
control over the configuration or downtime of the beam. As neutrons are not easily
absorbed, the readout unit has near full flux even if it is placed behind other compo-
nents being tested. On the last day of the test, 12 hours were dedicated to testing the
readout unit where the WP10 has control of the facility.

5https://www.isis.stfc.ac.uk/Pages/ChipIR.aspx
6Matteo Lupi, Matthias Bonara, Hartmut Hillemanns, and Magnus Ersland.
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6.5 Results

From the results of the beam test at Prague and others, it is estimated that the Ul-
trascale will experience one single event upset in its configuration memory ever 40
seconds during operation in ALICE, with an average flux of 1*10³ cm-²s-¹, consider-
ing the cross-section of the configuration RAM of 2.55*10-¹5 cm²bit-¹ and the amount
of bits in the configuration RAM of 1.52*108[25].
The results of the flash memory on the Prague test showed that the SEU cross section
differs significantly between flipping a bit from 0 to 1, and 1 to 0. Bits of 0 are the
most vulnerable, the cross section for 0 to flip to 1 is estimated to be 10-¹6 cm²/bit,
and for 1 to 0, the estimate is 10-²¹ cm²/bit.
The PA3 proved to be relatively reliable in the radiation environment. Some SEUs
were observed, particularly in the a CRC checking module that verified data being
written to the Ultrascale during scrubbing. However these bitflips are not critical, as
even if it is caused by an erroneous configuration, the next scrub cycle would repair
the bit again within a couple of seconds. Only one time did the system become
unresponsive and had to be reset by cycling the power. It is not confirmed whether
this was because of a critical failure in the PA3 or another component. Other times
when the Ultrascale became unresponsive, the PA3 Wishbone bus was still available
and the system could be restored by resetting the PA3 using the Wishbone bus.

6.6 Conclusion and mitigation of radiation effects

6.6.1 Ultrascale

The two most important techniques for mitigation the effects of radiation in the main
FPGA is Triple Modular Redundancy (TMR) for logic, Error-Correcting Code (ECC)
for memory, and scrubbing. TMR solves the immediate effects of upsets by trip-
lication the logic of the FPGA, and using a majority voting scheme to select the
correct signal values if an error occurs. For example, if a logic block is responsi-
ble for calculating the CRC code for some data, the calculation is done three times
in parallel. Suppose that one of the logic blocks experience an error caused by a
single event upset, and the resulting CRC code is wrong. The majority voter then
disregards this erroneous code and instead outputs the correct code from the two
other logic blocks since this result represents the majority. Some critical modules
of the Ultrascale FPGA, such as the clock networks and Mixed-Mode Clock Man-
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agers (MMCMs) and the Dynamic Reconfiguration Port (DRP) cannot be wrapped
by TMR protection, however due to low cross sections they have been shown to not
be statistically affected by SEUs in 10 hours of running in ALICE, which is a typical
mode of operation[25].
TMR can be broken by accumulating radiation effects that causes more than one of
the three TMR blocks of a module to fail. Therefore the configuration of the FPGA
needs to be regularly repaired to prevent this. This is the purpose of scrubbing. As
explained in the background chapter, the PA3 scrubs the Ultrascale by overwriting
its configuration memory with the data from a scrubbing bitfile store in the flash
memory. This process does not disrupt the operation of the Ultrascale, as for exam-
ple a normal reconfiguration would. A scrubbing cycle takes around 4 seconds, but
this could possibly be optimized in the future.

6.6.2 Flash memory

The RUv1 will use three techniques to mitigate the effects of radiation. As men-
tioned, after radiation testing of the flash it was observed that the likelyhood of a bit
0 flipping to 1 due to an SEU is far more likely than a 1 flipping to 0. Configuration
bitfiles are predominantly made up of 0’s, with a ratio of approximately 20:1 for a
scrubbing file and 50:1 for a programming file for the Ultrascale[26]. For this reason,
to minimize the number of SEUs in the flash memory, stored bitfiles will be flipped
in value, so the predominant content are 1’s instead. When reading the file out from
the flash and into the configuration of the Ultrascale, the content will be flipped back
to their original values.
The second mitigation measure is adding hamming encoding to the bitstream. The
bitstream will be divided into 128 byte blocks, and ECCs for the blocks will be in-
serted after each one before writing to flash. Then when writing the flash content
to the Ultrascale configuration memory, the ECC will be calculated again and its
integrity will be verified.
The third measure is to make use of the dual-bank feature of the flash memory
chip to duplicate the written file. The flash memory chip on the RUv1 (Samsung
K9WBG08U1M) contains two identical banks of memory, accessible using chip en-
able signals. If both chip enable signals are active, one can write to both banks at
the same time with no speed penalty. This will be done when writing bitfiles to the
flash. If the content of the two banks are different when reading back, we know the
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content has been corrupted.
This gives a probability of a fatal error in the flash memory as the probability of
a double bitflip in the same ECC encoded block in both banks of the flash. This
probability can be calculated using the estimations for the cross section observed in
the Prague beam test. The result is a probability P = 1*10-40 of a fatal error (double
bitflip in the same ECC block) in any of the 192 readout units in ALICE, over the
course of a 10 hour run[26]. This is an acceptable result.

6.6.3 PA3

The PA3 proved more reliable than the Ultrascale during the Oxford beam test. This
is to be expected as the PA3 is a flash-memory based FPGA with larger flash cells
than the flash memory. The larger structure implies that more charge must be de-
posited in the flash cell to be able to flip its value. Additionally, the number of flash
cells are significantly lower than for the flash memory. No confirmed unrecoverable
failures in the configuration memory were detected.
Some non-critical SEUs in the design space registers were detected in the PA3. A
CRC module was integrated in the PA3 firmware that continuously calculated a
CRC for the bitfile data during scrubbing. Mismatches in this CRC was observed
numerous times, but it did not cause failures. The mismatches were likely caused by
temporary transients that were latched by a register, or bitflips in the SRAM buffer
memory cells. This does not affect the configuration memory of the PA3.
The final PA3 firmware will feature some protection against SEUs using TMR, like
the Ultrascale. Not all modules will be wrapped in TMR due to limited resources
on the PA3, only the most critical components that is used under operation such as
the Wishbone bus, flash controller and configuration controller. This can be seen in
figure 6. This, in combination with the generally low susceptibility for SEU should
make the PA3 robust enough for operation in ALICE. This TMR protection was not
present in the firmware version A112 used in this beam test, it will be implemented
as of version A200.

66



7 Summary and conclusion

After the second long shutdown of the Large Hadron Collider at CERN, the Inner
Tracking System in ALICE will be upgraded and a new readout system is needed.
The University of Bergen is part of the collaboration developing this readout system.
In this thesis, an up-to-date readout electronic chain has been set up and tested in
the microelectronics lab at the University of Bergen to be used in this development
effort. The readout chain setup consists of a readout unit version 1, and a common
readout unit. Two implementations of the CRU have been used and tested. The first
is an Arria 10 development card, mounted in a computer modeling an FLP node.
The second is a readout unit board version 0, with CRU emulation firmware. The
former is closer to the final hardware that will be used in the ALICE upgrade, but
the latter was also needed to match the hardware used by other development groups
that lacks Arria 10 implementations of the CRU.
The readout chain was tested to work reliably in all cases, except triggering of an
ALPIDE sensor slave attached to the readout unit. The ALPIDE was not prioritized,
as this thesis and the team at Bergen is more focused on other aspects of the readout
chain, such as the PA3 auxiliary FPGA on the readout unit.
When the readout chain was set up and tested, it was used to develop various com-
munication protocols along the chain, most importantly wishbone bus access on the
PA3 from the CRU software via the I²C master on the GBT-SCA. Software for this
purpose was written in both Python based on the central WP10 development group’s
software for the CRU, and in C++ based on the ReadoutCard library from the O² data
center software group. During the work on this thesis, the PA3 firmware was also
moved to a different wishbone bus configuration with single byte data and address
widths. The software for I²C communication was adapted for this new format as
well, and significant performance improvements were measured.
A path for uploading data to the flash memory chip on the PA3 with higher speed
than the I²C interface was also implemented and tested. It uses a FIFO interface
between a write controller module on the PA3 and the Ultrascale FPGA which is
filled by Ultrascale bus accesses that uses the data field of the GBT protocol rather
than the SCA EC field, resulting in higher bandwidth and far lower overhead. This
data path was measured to be the fastest method of writing to the flash, with a bitfile
upload using only about 30 seconds. It is also likely possible to reduce this time even
further by eliminating bottlenecks, as much optimization on the Ultrascale and CRU
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side has not been attempted.
The author participated in two irradiation testing campaigns, where the readout unit
was tested for reliability in an irradiated environment. The results from these tests
show that with sufficient protection through TMR of the critical modules, the com-
ponents on the RUv1 is sufficiently radiation hard to work with an acceptable prob-
ability of failure in ALICE.
Potential future work related to the work in this thesis includes fully integrating
the PA3 communication interfaces with the DCS, and integrating and testing the
final version of the CRU based on the PCIe40 DAQ board. This should be relatively
similar to the process with the Arria 10 DK CRU.
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A Instructions for setting up Arria 10 DK CRU in host

computer

A.1 Hardware

Mount the Arria 10 DK in a free PCI-e slot in the host computer. Insert a QSFP plug
with 8 optical fiber cables (4 bidirectional channels, 850nm) into the appropriate port
on the CRU. Connect a USB cable from the host computer to the micro-USD slot in
the back panel of the CRU (integrated USB Blaster programmer).

A.2 Software

The computer should run CentOS 7.3, as recommended by CERN. The computer
needs a series of drivers and programs to work with the CRU. First, install Intel
Quartus Prime to program the FPGA on the CRU, or to build the firmware if needed.
The CRU uses onboard clock generators on the Arria 10 Development card. These
must be configured. Install the Arria 10 SDK7 which contains utilities for configuring
these clocks. Launch the ClockController.sh tool with root which is part of the Board
Test System included with the SDK in folder examples/board_test_system. Set all
clocks to 240 MHz.
Next, the drivers, tools and toolchain for the CRU and ALICE development is in-
stalled. This is provided by the CERN ALICE O2 group. Both the FLP Prototype soft-
ware8 and additional ReadoutCard software components9 must be installed. Step by
step instructions and commands for doing this can be found in the links in the foot-
notes.

A.3 Firmware

The CERN CRU team release pre-compiled firmware bitstreams for every CRU re-
lease, these can be programmed directly to the CRU using the Quartus programming
tools. The bitfiles are found on CERN’s internal wiki page “ALICE Web > CRU >

7https://www.altera.com/content/dam/altera-www/global/en_US/support/boards-
kits/arria10/FPGA/arria10GX_10ax115sf45_fpga_v15.1.2p2.zip

8https://alice-o2.web.cern.ch/node/157
9https://alice-o2.web.cern.ch/node/161
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”CruHwFwSwDev”10.
To be able to program the Arria 10 you might need to set up USB Blaster drivers.
These drivers can be found in the Intel Quartus installation folder. Do these com-
mands (adjusting the file path if a different Quartus version is installed):

cd /opt/intelFPGA_pro /17.1/qprogrammer/ d r i v e r s /wdrvr/l inux64
./ s e t u p _ i n s t _ d i r
./ conf igure
./ conf igure .wd

Then the firmware bitfile can be programmed to the Arria 10 by running this com-
mand as root in the same folder as the bitfile:

quartus_pgm −−cab le =1 −−mode=JTAG −−operat ion ="p ;XXX"

Replace XXX with the name of the bitfile, for example cru-preint9-pcie40.sof.

A.4 Initialization

The CRU must be initialized before use. After programming the Arria 10 on the
CRU, first run the transceiver calibration script like this, as root:

system−console −c l i −−s c r i p t =standalone−s t a r t u p . t c l

The script is found in the subfolder utils of the firmware releases.
Now reboot the host computer (using the restart button or via the OS, so that the PC
doesn’t lose power).
Then the card is ready for control tasks such as communicating with the GBT-SCA.
But to use data readout related functionality you must also allocate hugepages. This
is done by running the script roc-setup-hugetlbfs as root, which is part of the ROC
driver tools.

A.5 Reconfiguration after power cycles

The CRU’s FPGA and clock chips are volatile, which means they lose their configu-
ration and have to be reprogrammed every power cycle. In addition, it is necessary
to re-calibrate the CRU, and allocate memory hugepages for the ROC software. In
other words, the instructions in the two last sections must be repeated for every
power cycle.

10https://twiki.cern.ch/twiki/bin/viewauth/ALICE/CruHwFwSwDev
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A.6 Connecting to RUv1

To connect to an RUv1, connect one of the fiber cables to a transceiver in the slot next
to the Firefly ports on the RUv1. The transceiver must used 850 nm wavelength,
such as the VTRx. The fiber cables marked A8 and A1 is the default GBT channel 0.
If the GBTx is not fused, it must be configured. This is done with the GBTx Java
Programmer application11 and the USB-I2C dongle. Connect the dongle to the CRU
host PC, and to the RUv1 (but on RUv1.0 the two rows on the header is reversed so
a manual cable must be constructed). Java runtime must also be installed before the
programmer tool can be used. Now run the programmer tool with this command as
root:

j ava − j a r programmerv2 . 2 0 1 8 0 1 1 6 . j a r

Click "import i.." button. Choose RUv1_Test/modules/gbt/software/GBTx_configs/
GBTx0_Config.xml (part of the RUv1_Test repository12. Click "Write GBTX" button.
To verify, click "Read GBTX" button, and state should say "Idle, 18’h".
Now you can reach the RUv1 using their relevant software tools (see last appendix
chapter for PA3 software instructions), if the FPGAs are programmed.

A.7 Tips

With some software such as ROC and Quartus tools, they might need both root ac-
cess and path variables to be able to work, so a custom sudo alias, “mysudo” that
carried over the path variables to the sudo command was created, by adding the
following line to the .bashrc file:

a l i a s mysudo= ’sudo env "PATH=$PATH"
"LD_LIBRARY_PATH=$LD_LIBRARY_PATH" "QUARTUS_ROOTDIR=$QUARTUS_ROOTDIR" ’

Now, software could be run from the terminal using the commands “mysudo [pro-
gram]”.
A lot of the commands and steps in this chapter are taken from the CRU getting
started guide which can be found on the CruHwFwSwDev twiki page linked in a
footnote earlier. This guide also contains some more useful information.
A dedicated email for CRU support also exists, namely alice-cru-fw-support@cern.ch.

11https://espace.cern.ch/GBT-Project/VLDB/Control/Forms/AllItems.aspx?RootFolder=/GBT-
Project/VLDB/Control/Java%20programmer%20(GBTx%20programming%20tool

12https://gitlab.cern.ch/alice-its-wp10-firmware/RUv1_Test
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B More details on testing of CRU

B.1 Card detection

One of the ROC software tools is roc-list-cards. This program lists all ROC cards in
the system, including the CRU if it is detected. After configuring the software as
described in the chapter “Setup”, the program detected the CRU successfully and
gave the following output:

[gitlemikkelsen@iftnc041239 py]$ mysudo roc-list-cards

infoLoggerD not available, falling back to stdout logging

===============================================================

# Type PCI Addr Vendor ID Device ID Serial FW Version

--------------------------------------------------------------

0 CRU 05:00.0 0x1172 0xe001 0 n/a

===============================================================

The line warning about infoLoggerD was disregarded as it is acceptable to only view
the result in the terminal for these tests. This line, if present, will be omitted in the
following documentation.
However, the program also attempts to open up a DMA channel to the card and read
some information such as the FW Version. This fails in the above command because
the memory for the DMA has not yet been allocated. The memory is allocated by
setting up hugepages designated to the ROC software. There is a script for setting
up the hugepages called roc-setup-hugetlbfs. This is run as root:

[ g i t l e mi k ke l se n @i f tn c 04 1 23 9 CRU] $ mysudo roc−setup−hu get lb f s
F i l e ’/ e t c /f lpproto type . d/hugepages−2MiB . conf ’ not found , a l l o c a t i n g

d e f a u l t amount of 2 MiB hugepages : 128
F i l e ’/ e t c /f lpproto type . d/hugepages−1GiB . conf ’ not found , a l l o c a t i n g

d e f a u l t amount of 1 GiB hugepages : 0
Adding ’pda ’ group
Creat ing huge t lb f s mounts
S e t t i n g permissions on hu ge l tb f s mounts

Hugepages :
S ize Minimum Current Maximum Defaul t

2097152 128 128 128 *
1073741824 0 0 0
[ . . ]
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It is observed that a couple of configuration files can be used to customize the num-
ber of hugepages in specific sizes, but since these files have not been created, the
default settings of 128*2MiB hugepages are used. Now that the hugepages are set
up, the roc-list-cards program is run again:

[ g i t l e mi k ke l se n @i f tn c 04 1 23 9 CRU] $ mysudo roc−l i s t −cards
2017−11−27 1 2 : 3 3 : 4 0 . 1 6 5 8 3 6 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Acquiring

DMA channel lock
2017−11−27 1 2 : 3 3 : 4 0 . 1 6 6 6 8 5 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Acquired

DMA channel lock
2017−11−27 1 2 : 3 3 : 4 0 . 1 9 8 6 0 9 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0]

I n i t i a l i z i n g memory−mapped DMA b u f f e r
2017−11−27 1 2 : 3 3 : 4 0 . 1 9 9 4 2 9 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] S c a t t e r−

gather l i s t s i z e : 1
2017−11−27 1 2 : 3 3 : 4 0 . 2 0 2 2 2 7 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Buf fer i s

hugepage−backed
2017−11−27 1 2 : 3 3 : 4 0 . 2 0 2 3 1 7 Enabling l i n k ( s ) : 0
2017−11−27 1 2 : 3 3 : 4 0 . 2 0 3 4 3 4 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Releas ing

DMA channel lock
=========================================================================
# Type PCI Addr Vendor ID Device ID S e r i a l FW Version

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 CRU 0 5 : 0 0 . 0 0 x1172 0 xe001 0 20171016−180400−6
cce25a6

=========================================================================

Now, the program aquires a DMA link with the CRU successfully, and reads the FW
version which consists of the date and part of its git commit hash. The output above
was from a test performed on firmware released 2017-10-16, but the procedure and
result is the same as on the firmware and ROC software used when the CRU first
arrived in September.

B.2 Register access

Next it was attempted to read and write registers using the roc-reg-* programs.
These implement low level functions for directly communicating with the CRU over
the PCI-e interface. They are meant for development and debug purposes only, the
underlying code will be used under the hood of higher level software such as the
ALF/FRED network communication tools.
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For read register access test, it will be attempted to read the version and error info of
the board support package (BSP) module in the firmware. This module has the base
address of 0x00200000, and the first four registers (each 32-bit) of this address space
is dedicated to the version and error info. The fourth register (0x0020000C) should
be a constant value representing the ASCII string “vinf”.
The roc-reg-read program is used to read the register. This takes three parameters:
“id”, which is the PCI ID of the CRU, displayed in the output of the roc-list-cards
program. As seen in the previous test, the id of our CRU is 05:00.0. The second
paramter is “channel”, for access to the avalon bus, the channel to be used is 2. The
third parameter is “address”, the register address. The program is run:

[ g i t l e m i k k e l s e n @ l o c a l h o s t ~] $ mysudo roc−reg−read −−id = 5 : 0 . 0 −−channel=2
−−address =0 x0020000c

0 x76696e66

The program ran successfully and output the value “0x76696E66”. If one convert
each byte to ASCII, the result is “vinf”, as expected.
Next, writing to a register is tested. A writable register that will be used later is the
data register of the SCA submodule of the GBT link #0 module. This Avalon slave
has a base address of 0x04224000, and the write data register is located at address
0x04224020. The roc-reg-write program will be used, which has the same parameters
as roc-reg-read, in addition to the “value” with the 32-bit data to be written. A test
value of 0xDEADBEEF is attempted written and then read back.

[ g i t l e m i k k e l s e n @ l o c a l h o s t ~] $ mysudo roc−reg−write −−id = 5 : 0 . 0 −−channel=2
−−address =0x04224020 −−value=0xdeadbeef

0 xdeadbeef
[ g i t l e m i k k e l s e n @ l o c a l h o s t ~] $ mysudo roc−reg−read −−id = 5 : 0 . 0 −−channel=2

−−address =0x04224020
0 xdeadbeef

The register was successfully written to.

B.3 DMA benchmark

Next the included PCI-e DMA benchmark tool was tested. This reads a stream of
data from the CRU and measures the achieved bandwidth. This is done using the
ROC program roc-bench-dma. Before this program can be used, hugepages must be
allocated using roc-setup-hugetlbfs.
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This program has numerous parameters to configure variables such as memory buffer
sizes. For the tests, a data size of 10GiB is used with the parameter “bytes=10Gi”.
Like with the register access programs, the CRU PCI-e ID need to be speficied with
the parameter “id”. All data links also need to be enabled with the parameter
“links=’0-31’”. For the first test, the buffer is adjusted to fit the default hugepage
configuration of 128*2MiB hugepages with the parameters “buffer-size=256Mi” and
“superpage-size=2Mi”. This produced the following output:

[ g i t l e m i k k e l s e n @ l o c a l h o s t ~] $ mysudo roc−bench−dma −−id = 5 : 0 . 0 −−bytes =10
Gi −−buffer−s i z e =256Mi −−superpage−s i z e =2Mi −−l i n k s ="0−31"

2017−11−28 1 3 : 0 0 : 3 7 . 2 4 2 6 3 9 DMA channel : 0
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 2 7 4 6 IOMMU enabled
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 5 1 5 Using b u f f e r f i l e path : /var/ l i b /huge t lb f s

/g loba l/pagesize−2MB/roc−bench−dma_id = 5 : 0 . 0 _chan=0_pages
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 6 6 9 Buf fer s i z e : 268435456
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 6 9 8 Superpage s i z e : 2097152
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 7 3 8 Superpages in b u f f e r : 128
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 7 6 9 Page s i z e : 8192
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 7 9 4 Page l i m i t : 1310720
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 8 1 8 Pages per superpage : 256
2017−11−28 1 3 : 0 0 : 3 7 . 2 4 3 8 4 2 Generator data s i z e : < i n t e r n a l defaul t >
2017−11−28 1 3 : 0 0 : 3 7 . 3 3 3 4 9 7 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Acquiring

DMA channel lock
2017−11−28 1 3 : 0 0 : 3 7 . 3 3 4 2 4 1 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Acquired

DMA channel lock
2017−11−28 1 3 : 0 0 : 3 7 . 3 6 2 0 8 2 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0]

I n i t i a l i z i n g memory−mapped DMA b u f f e r
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 5 9 4 1 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] S c a t t e r−

gather l i s t s i z e : 1
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 7 7 9 8 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Buf fer i s

hugepage−backed
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 7 8 7 4 Enabling l i n k ( s ) : 0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 7 9 0 7 Card type : CRU
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 7 9 6 6 Firmware i n f o : 20171016−180400−6 cce25a6
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 7 9 8 0 S t a r t i n g benchmark
2017−11−28 1 3 : 0 0 : 3 7 . 4 0 7 9 9 7 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] S t a r t i n g

DMA
Time Pushed Read Errors C
0 0 : 0 0 : 0 3 1310720 1306372 0 4 3 . 6
2017−11−28 1 3 : 0 0 : 4 0 . 6 4 8 7 2 4 Popped 0 excess pages
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2017−11−28 1 3 : 0 0 : 4 0 . 6 4 8 7 6 7 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Stopping
DMA

Seconds 3 .0203
Pages 1310720
Bytes 1 .07374 e+10
GB 10 .7374
GB/s 3 .55508
Gb/s 28 .4406
Errors 0
2017−11−28 1 3 : 0 0 : 4 0 . 6 4 8 8 8 7 Benchmark complete
2017−11−28 1 3 : 0 0 : 4 0 . 6 4 9 8 4 8 [ pc i = 0 5 : 0 0 . 0 s e r i a l =0 channel =0] Releas ing

DMA channel lock

The benchmark completed successfully with no errors. The achieved data rate was
28.44 Gbps, or 3.56 GBps. This is not ideal, in theory a speed of well over 6 GB/s
should be possible.
In order to improve the data rate, it was attempted to tweak the parameters of the
benchmark. First, errorchecking was disabled with the parameter “no-errorcheck”.
This improved the speed to 4.47 GBps:

[ g i t l e m i k k e l s e n @ l o c a l h o s t ~] $ mysudo roc−bench−dma −−id = 5 : 0 . 0 −−bytes =10
Gi −−l i n k s ="0−31" −−no−errorcheck −−superpage−s i z e =2Mi −−buffer−s i z e
=256Mi

[ . . . ]
Time Pushed Read Errors C
0 0 : 0 0 : 0 2 1310208 1310208 n/a 4 4 . 3
[ . . . ]
Seconds 2 .40026
Pages 1310720
Bytes 1 .07374 e+10
GB 10 .7374
GB/s 4 .47345
Gb/s 35 .7876
Errors n/a
[ . . . ]

Then, it was attempted to use a different hugepage configuration. Instead of us-
ing 128*2MiB hugepages, a single 1GiB hugepage was allocated and used. This
first required creating a config file /etc/flpprototype.d/hugepages-1GiB.conf with
the content “1”. Now, roc-setup-hugetlbfs was run again, and this set up the 1GiB
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hugepage. Now, roc-bench-dma was run again with the following parameters re-
moved: “buffer-size” and “superpage-size”. These will be set to their default values
which is 1Gi and 1Mi respectively, as can be observed in the program output:

[ g i t l e m i k k e l s e n @ l o c a l h o s t ~] $ mysudo roc−bench−dma −−id = 5 : 0 . 0 −−bytes =10
Gi −−l i n k s ="0−31" −−no−errorcheck

[ . . . ]
2017−11−28 1 3 : 0 5 : 3 0 . 8 8 8 9 5 5 Using b u f f e r f i l e path : /var/ l i b /huge t lb f s

/g loba l/pagesize−1GB/roc−bench−dma_id = 5 : 0 . 0 _chan=0_pages
2017−11−28 1 3 : 0 5 : 3 0 . 8 8 9 1 1 7 Buf fer s i z e : 1073741824
2017−11−28 1 3 : 0 5 : 3 0 . 8 8 9 1 4 8 Superpage s i z e : 1048576
2017−11−28 1 3 : 0 5 : 3 0 . 8 8 9 1 7 1 Superpages in b u f f e r : 1024
[ . . . ]
Time Pushed Read Errors C
0 0 : 0 0 : 0 2 1307648 1307648 n/a 4 4 . 3
[ . . . ]
Seconds 2 .30026
Pages 1310720
Bytes 1 .07374 e+10
GB 10 .7374
GB/s 4 .66791
Gb/s 37 .3433
Errors n/a
[ . . . ]

A further increase in data rate was observed, at 4.67 GBps.
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C Instructions for using the PA3 I2C communication

and write controller module

C.1 Ready made software tools

The git repository CRU_ITS in branch GM_dev13 contains python scripts for inter-
facing with the PA3 using the Arria 10 CRU. Specifically software/py/PA3.py, with
software/py/pa3.py being a Python Fire wrapper to run from command line like
this: python pa3.py [function] [arguments]. This software can be adapted to the
RUv0-CRU by changing all the referenced functions for SCA and SWT classes to the
appropriate classes made for the RUv0-CRU tools in the git repo RUv1-Test14.

C.2 I2C communication

Before I2C communcation can be done, the GBT-SCA chip must be initiated and its
I2C module must be enabled. It is enabled by sending a command to channel 0 with
cmd 0x02 and data 0xff000000. This sets the whole control register containing the
I2C modules to 1, effectively enabling all of them. Then the specific channel used
for the PA3 I2C (#3) is configured to be 1 MHz and otherwise default by writing a
command to channel 3 with cmd 0x30 and data 0x0b000000. This is all done in the
PA3.py function init().
An I2C write transaction can be initiated by sending a command to the GBT-SCA
chip channel 3, cmd 0x82 and data 0xYYZZ0000 where YY is 7-bit address and ZZ is
8-bit data. This is done in PA3.py function write(addr, data).
An I2C read transaction can be initiated by sending a command to channel 3, cmd
0x86, data 0xYY000000 where YY is 7-bit address, then reading the response from
the GBT-SCA chip, of which bit 23 down to 16 will be the read value of the register.
This is done in PA3.py function read(addr).
Function usage summary is as follows:

python pa3 . py i n i t
python pa3 . py read ADDRESS
python pa3 . py wri te ADDRESS VALUE

13https://gitlab.cern.ch/alice-its-wp10-firmware/CRU_ITS/tree/GM_dev
14https://gitlab.cern.ch/alice-its-wp10-firmware/RUv1_Test
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C.3 Writing data to flash

To write data to flash, first erase the blocks that will contain the data, by writing the
address of the flash block to registers 38, 37, 36 where bit 0 of register 36 is the least
significant bit, and bit 7 of register 38 is the most significant bit (although the flash
address can’t get big enough for bit 7 here to be used). Then send erase command to
flash interface by writing data 0xA0 to register 32. Now wait until flash is ready by
polling register 33 until bits 5 down to 3 are all 0. Repeat this for all blocks.
Then start a write operation by writing the address of the flash page to start writing
to to register 38, 37 and 36 again, then write data 0b10000001 (if you want to use
Ultrascale FIFO path) or 0b10000010 (if you want to use I2C path) to register 51
(write ctrl command register).
Now start writing data to the selected path. To write data to the Ultrascale FIFO,
write two and two bytes to address 0 of the module WB2FIFO on the RUv1 (see
SWT software tools for implementation). To write data using I2C, send one byte
each to register 49.
Continue writing all data until finished. Data must be a multiple of 4096, otherwise
fill up with 0’s until a multiple of 4096 is reached.
Then stop the write operation by writing 0b10000100 to register 51.
To be safe, you can read the status register (51), if no errors occurred and the write
operation finished, it should have value 0. If it doesn’t, refer to table 5 and the
bitmapping of register 52 to find out what is wrong.
Functions for writing single pages or whole bitfile including configuration page, ei-
ther via I2C or Ultrascale FIFO, are found in PA3.py as functions flashWrite*().
Function usage summary is as follows:

python pa3 . py flashReadPage PAGE_ADDRESS [−−hexi fy ]
python pa3 . py f l a s h W r i t e B i t f i l e BITFILE [PAGE_ADDR=0x100 ]

[ SCRUBFILE ] [SCRUBFILE_ADDR]
python pa3 . py f l a s h W r i t e B i t f i l e I 2 C BITFILE [PAGE_ADDR=0x100 ]

[ SCRUBFILE ] [SCRUBFILE_ADDR]
python pa3 . py t e s t−f l ash−a c c e s s
And more . . . ( see PA3 . py )
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C.4 Example

Below is a practical example of software usage. First the Arria 10 DK CRU and an
RUv1 need to be set up and configured as explained in appendix A. Then, the follow-
ing series of commands will initiate communication, upload a bitfile and scrubbing
file (via I2C) to the flash and then program the Ultrascale with that bitfile. This must
be done from a bash terminal in the software/py folder of the CRU_ITS repository.
It is also assumed that an RUv1 bitfile exists with the path ~/RUv1.bit, as well as its
scrubbing bitfile at ~/RUv1_scrub.bit.

python pa3 . py i n i t
python pa3 . py f l a s h W r i t e B i t f i l e I 2 C ~/RUv1 . b i t 0 x100 ~/RUv1_scrub . b i t 0 x200
python pa3 . py wri te 8 0x81
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