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Summary

For the past decades, plate transmission effects have been extensively
studied with the incentive of applying the knowledge in GUW methods
in the industry. With these studies, multiple anomalous effects have
been identified, such as increase of on-axis pressure after transmission,
downshift of frequency compared to plane-wave theory, and narrowing
of transmitted beam. These effects are associated with leaky Lamb
modes when the plate is immersed with a significant fluid loading. The
studies on these effects have in general been performed with a point
receiver, though in applications in the industry, the receiver is always
of a finite order.

An Angular Spectrum Method (ASM) model is developed for the study
of plate transmission effects with a finite receiver. The model is based
on a model by Anderson and Martin, who derived a plate transmis-
sion model using baffled pistons as source and receiver. They used
the boundary condition that the normal particle velocity on the piston
source surface is constant, and used this to derive an expression for
the transmitted pressure on the surface of a finite receiver. Both of
these models are compared with a third model derived by Orofino and
Pedersen who developed a plate reflection model with baffled pistons
as source and receiver, but with constant pressure on the piston source
surface. They used this to derive an expression for the reflected nor-
mal particle velocity on the surface of a finite receiver. Their model is
converted to a plate transmission case, as Waag did, and some compar-
isons with his work are also performed. Orofino and Pedersen/Waag
excluded evanescent waves in the model, which may cause errors in the
nearfield where the evanescent waves may be of an significant order.
Therefore, the effect when excluding or including evanescent waves is
investigated, along with the differences of boundary conditions.

The developed model is used to study the influence of finite receiver in
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comparison with a point receiver, with a focus on the anomalous effects
associated with leaky Lamb modes. Additionally, Waag stated that the
frequency downshift is minimal when increasing the distance between
the source and plate, and plate and receiver, when the distances are
equal. There were not done any further inquisition to why. Therefore,
the model developed is also used to investigate the effects and frequency
downshift when the receiver is far from the plate, with and without
finite receiver.
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Chapter 1

Introduction

1.1 Background and motivation

Guided ultrasonic waves (GUW) in plate and pipelike structures have
been a topic of study since the beginning of the 20th century, with
Lamb [1], [2], and Rayleigh [3] introducing the dispersion equations for
plates in vacuum, before Reissner [4] and Osbourne and Hart [5] devel-
oped the equations for transmission and reflection of sound interacting
with plates immersed in fluid. Since then, the increasing knowledge
of the effects concerning GUW have lead to the development of nu-
merous methods that apply this knowledge in practical applications
[6]. Examples include the detection of defects or cracks in structures,
non-invasive measurement of flow, flow-assurance and integrity mea-
surements (such as early detection of hydrate growth in oil and gas
pipelines), material characterization, thickness and corrosion measure-
ments of pipelines, and structural health monitoring (e.g. the monitor-
ing of sand erosion within pipelines). With the non-invasive nature of
GUW comes advantages, which include the monitoring of flow without
any mechanical disturbance, the accessibility of GUW technology, i.e.,
a large number of transmitter and receiver technologies are available for
GUW excitation, and the advantage that a single probe can be used
to monitor a large area, also for hidden and coated structures, etc.
However, the interaction of sound between fluids and structures are
complex due to, e.g., interference effects, dispersive effects, diffraction
effects, and as a consequence, the general analysis and interpretation of
the behavior of sound. It therefore requires mathematical and numeri-
cal modeling tools which are able to include all aspects of propagation
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and interaction of sound with structures. This often involves a model
capable of calculating the generation, reflection and transmission, prop-
agation, and the receiving of sound within a measurement system. In
non-contact immersion methods, this system may consist of a source
radiating towards a fluid-immersed plate with a receiver, and some of
the more recent methods of modeling this system include the Gaussian
beam method, e.g., [7], the Finite Element Method (FEM), e.g., [8], [9],
[10], the Distributed Point Source Method (DPSM), e.g., [11], [12], and
the Angular Spectrum Method (ASM), e.g., [13], [14], [15], [16], [17],
[18], [19]. The Gaussian beam method approximates the sound field
emitted by an uniformly vibrating planar piston mounted in a rigid baf-
fle of infinite extent (”baffled piston model”), with a single main lobe
without sidelobes. The DPSM also approximates a baffled piston gen-
erated sound field, but with a piston surface consisting of many point
sources vibrating in phase. The sound field created by the superposi-
tion of the point sources is then used as an approximation of the sound
field. This method agrees with analytically calculated theory in the
farfield, but there are discrepancies in the nearfield [20]. The FEM can
take a real transducer into account, characterized by means of mate-
rial constants and dimensions. It can then simulate the real generated
pressure and many of the parameters associated with the transducer,
thus give a quantitative description of the measurement system. How-
ever, this approach is computationally demanding and therefore not
necessarily ideal for parametric studies and generic analysis. The ASM
decomposes the sound field emitted by the transmitter into infinitely
many plane waves. This allows for plane-wave theory to be applied, i.e.,
the use of plane-wave transmission/reflection coefficient for the plate,
and propagation with a plane-wave phase-shift from one distance to
another. The transmitter is usually approximated by a circular baffled
piston, e.g. [14], [15], [18], [19], [21], and the method include sidelobes
and nearfield generated by the baffled piston.

With the study of plate transmission and reflection, several deviations
from plane-wave theory, i.e., diffraction and dispersion phenomena,
have been observed and studied when a normally incident beam in-
teracts with a plate, [13], [18], [19], [22], [23], [24], [25], [26], [27], [28],
[29]. In 1982, Johnson and Devaney [13] studied reflections from a
plate, with a distance of 60 mm between the plate and receiver, and
discovered that the frequency of maximum reflection deviated from
plane-wave theory. They modeled their system using ASM with a finite
receiver and predicted the frequency downshift, which they compared
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with measurements. In 2003 Holland and Chimenti [22] reported of
a Lamb wave resonance that had a unusual efficient transmission of
airborne waves. This occurred at the zero group velocity (ZGV) when
exciting the thickness-extensional (TE) symmetric Lamb mode in the
plate. They argued that this was due to diffraction of the incident
wave, which can be approximated as infinitely many plane waves with
individual incident angles, which therefore has the potential to excite
the same Lamb mode at different angles. They also stated that at the
ZGV-point, the Lamb waves does not propagate in the plane of the
plate, but radiates back into the air. In 2005, Gibson and Popovics
[23] used the FEM to link an empirically determined correction factor,
which had been used to correct for the mentioned frequency downshift
in impact echo (IE) methods, to the ZGV mode of the symmetrical TE
Lamb mode. They compared the results with measurements with good
agreement.

Similar effects have also been discovered with the studies of a plate im-
mersed in water, i.e., effects associated with leaky Lamb modes. These
effects include a frequency downshift in comparison with plane wave
theory, an increase of on-axis transmitted pressure, and a narrowing
of the transmitted beam. In 2008, Lohne et al. [24] identified these
three effects with measurements. In 2011 [18], Lohne et al. devel-
oped an ASM model based on a farfield solution [30] of the baffled
piston model, which confirmed the measurements done in 2008. These
simulations were performed with a point receiver positioned 100 mm
from the plate, with the plate in the farfield of the transmitter. In
2014, Aanes [21] developed two models based on the FEM and ASM
method (FEM approach and Hybrid FEM-ASM approach). These two
models incorporate the transducer into the simulations allowing for
more realistic beam battern to interact with the plate, which enabled
a quantitative system description. These methods along with measure-
ments, confirmed the dispersion and diffraction phenomena observed
by Lohne et al. In 2015 Aanes et al. [25], [26], used the methods to
show a correlation between the effects and a leaky Lamb mode with
negative group velocity (NGV). It was also shown that with the ex-
citation of a leaky Lamb mode having positive group velocity (PGV),
there were no or only subtle frequency shifts, decrease of on-axis pres-
sure after transmission, and widening of the transmitted beam. The
dependence of the Poission’s ratio on these effects were also studied.
In 2016 and 2017, Aanes et al. [27], [28] showed that at the frequency
of increased transmitted pressure, the transmitted pressure does not
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decay as 1/distance, when the incident wave do. They also proposed
that the narrowing of beam and increase of pressure was due to the
phenomenon of opposite signs on the phase velocity and group velocity
(”backward wave propagation” [31]). In the same year, Waag [19] used
a model based on a model by Orofino and Pedersen [14], with a finite
receiver for the study of plate transmission. This model was used to
study, e.g., the frequency downshift phenomenon and its dependence
on the Poisson’s ratio of the plate, and its dependence of the distances
between the source and plate, and the plate and receiver, which was
set equal. It was found that when this distance is large relative to the
Rayleigh-distance, the frequency downshift effect is minimal. It was
however not done any further investigations to why the frequency shift
is minimal with increasing distance, and it is also not clear whether it
is the distance between source and plate or between plate and receiver
that is the determining factor of the minimal frequency shift. Glushkov
et al. [29] also did some work on these effects in 2017 and compared
with the work by Aanes et al. They built a semi-analytical model to
study the effects, and also studied some of the energy propagation and
flux in the plate itself, along with dispersion analysis.

Even though these effects have been studied both for a point and fi-
nite receiver for negligible fluid loading, they have not been extensively
addressed for a finite receiver when leakage is significant. In GUW
applications in the industry, the receiver is always finite. Waag did
some work on this, and it was mentioned that he studied the frequency
downshift with a model based on Orofino and Pedersen. The model by
Orofino and Pedersen is based on ASM using a baffled piston model for
the transmitter and receiver, which are limited to having the same ra-
dius, for plate reflection studies. They used the boundary condition of
constant pressure on the surface of the piston, and then solved for the
received normal particle velocity. Waag used their model for transmis-
sion analysis instead of reflection. Another study using a finite receiver
and plate, were done by Anderson and Martin [15] in 1995. They de-
rived a model based on ASM, similar to Orofino and Pedersen, but
focused on transmission studies. Unlike Orofino and Pedersen how-
ever, Anderson and Martin used a boundary condition with constant
velocity on the surface of the piston source, and solved for the pressure
at the finite receiver. In addition to the different boundary conditions
between the two models, there are also differences in factors and coor-
dinate systems. Additionally, the models of Orofino and Pedersen, and
subsequently Waag, does not consider evanescent waves, which may
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introduce errors in the nearfield of the baffled piston source, where the
evanescent waves may be of an significant order.

1.2 Objective

The objective of the present work is to study and investigate diffraction
and dispersion effects observed in plate transmission and with the ex-
citation of backward wave leaky Lamb modes. The work will focus on
these effects when using a finite receiver when the plate is significantly
fluid loaded.

To keep the study at a generic level, a model based on the ASM will
be developed where the transmitter and receiver are modeled as baffled
pistons. It will be based on the model by Anderson and Martin, and is
to be compared with their model and the model used by Waag, which
was based on the model by Orofino and Pedersen, and will therefore
be referred to as Orofino and Pedersen/Waag. The sound field gen-
erated by the models, without plate present, will also be compared
with baffled piston source models that are independent of the ASM for
further validation. Additionally, the validity of the constant pressure
and constant velocity boundary conditions, the exclusion or inclusion
of evanescent waves, and significance of differences in factors, are also
to be investigated.

The dispersion and diffraction effects in plate transmission will be stud-
ied using a finite receiver and highlighted by comparisons with a point
receiver. Further investigations of the effects and their distance de-
pendency between the plate and receiver, both with and without finite
receiver, will also be executed.

1.3 Outline of thesis

In Ch. 2, the three models of interest throughout the thesis are derived
and explained. Then some ASM independent models are presented,
followed by other preliminary definitions and theory required for the
results presented in the thesis.

In Ch. 3, the simulation setups are reviewed for each of the three
models. Some simulation challenges and how they were solved and
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handled, are also explained.

In Ch. 4, the measurement setup is explained, along with the measure-
ment methods and post-processing of data.

In Ch. 5, the three models are compared against each other and other
models, with and without plate, along with some discussion concern-
ing the potential differences between the simulation results. Then the
influence of a finite receiver is discussed, by comparing with the case
of a point receiver, with and without plate.

In Ch. 6, the simulation results of the transmitted pressure using the
model developed for the thesis as a function of distance and frequency
are presented. The observed phenomena are discussed.

In Ch. 7, conclusion of the results are given. Further work relevant to
the observed results are also proposed.

In Appendix A, Appendix B, Appendix C, the code for the implemen-
tation of models are given. In Appendix D, Appendix E, Appendix F,
Appendix G, Appendix H and Appendix I, the codes of the additional
routines used within the simulation programs are given.
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Chapter 2

Theory

This chapter introduces the theory of the three models, along with sup-
plementary theory. In Sec. 2.1., the derivation of the developed model
is presented, which is labeled as model 1. Following this, in Sec. 2.2.,
model 2, the model given by Anderson and Martin, is presented, but
only the major steps of the derivation will be shown and the math-
ematical differences with model 1 will be highlighted. In Sec. 2.3.,
Orofino and Pedersen/Waags model, model 3, is presented, and again
only the major steps will be shown with highlighting the mathematical
differences with model 1. In Sec. 2.4., two ASM independent models
which represent the pressure without plate, with and without finite re-
ceiver, are given. In Sec. 2.5., the required theory to understand the
mathematical difference between propagating and evanescent waves is
presented, followed by the definition of the plane-wave transmission co-
efficient in Sec. 2.6., where the dispersion equations given by Osbourne
and Hart [5] are also presented. In Sec. 2.7., some transfer functions
used to study transmission effects are defined. Finally, in Sec. 2.8., the
method of introducing losses in fluid is explained.

2.1 Model 1

The system is in the cylindrical coordinate system (r, z) where r rep-
resent the radial direction, and z represents the vertical direction. A
uniformly vibrating planar circular piston source centered in r = z = 0
in a rigid baffle of infinite extent is radiating normally towards an elas-
tic plate with thickness d, and interacts with the plate at a distance
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z = dT , creating guided waves in the plate, which reradiates into the
fluid at the lower side of the plate. The transmitted pressure is received
at a distance z = dT + dR with a baffled piston of radius b centered
in r = 0. Both the piston source and piston receiver are axisymmetric
around the z-axis. Constant and uniform velocity v0 on the surface
of the piston source is assumed. The plate is also assumed to be of
infinite extent in the radial direction, and the surfaces of the piston
source, plate, and piston receiver are aligned perfectly perpendicular
with the z-axis and is thus parallel with each other. The system is also
assumed to be lossless. See Fig. 2.1. for an illustration of the system.

r
a

z

v0

< pt(r, z = dT + dR, f) >

ρf , cf

d

dT

dR

b

Figure 2.1: The case of model 1, where a piston source, plate and piston
receiver are immersed in a fluid, in the cylindrical coordinate system.

The variables ρf , cf are the fluid density and sound velocity of the
fluid, respectively.
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To decompose a function vz(r, z) that represents the normal parti-
cle velocity (z-direction) into a plane-wave representation, a Hankel
transform/Fourier-Bessel transform is required [33], and in a arbitrary
plane z with time convention e−iωt where ω = 2πf is the angular fre-
quency, this is given as [32]

VZ(η, z, f) = 2π

∫ ∞
0

vz(r, z, f)J0(ηr) r dr, (2.1)

where J0 is the zeroth order Bessel function, and VZ(η, z, f) is the
angular spectrum, or decomposed normal particle velocity, which is
characterized by its wavenumber-dependence, i.e. the function is in the
wavenumber-space (k-space [33]). The field variables in wavenumber-
space will always be represented with capital letters. η is the horizontal
wavenumber.

The boundary conditions at the surface of the baffled piston source are
[30]

vz(r, z = 0, f) =

{
v0, r ≤ a
0, r > a

(2.2)

With a constant velocity, vz(r, z = 0, f) = v0, so the decomposed
normal particle velocity on the piston-source surface is given by [32]

VZ(η, z = 0, f) = VZ(η, f) = 2 πv0

∫ a

0

J0(ηr) r dr, (2.3)

which gives a known integral identity [34][p. 484, eq. 11.3.20.], [32],

VZ(η, f) = 2 πv0
1

η2

∫ aη

0

J0(x)xdx = 2πv0
a

η
J1(aη), (2.4)

where J1 is the first order Bessel function. This gives the decomposed
plane-wave, normal particle velocity on the piston source surface, also
known as the source aperture function, as [32], [15]

VZ(η, f) = πa2v0
2J1(aη)

aη
, (2.5)

where the fraction 2J1(aη)/aη is the directivity function or Jinc func-
tion. This has the property that

lim
x→0

2J1(x)

x
= 1, (2.6)
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which will be used later.

The field-variable of interest is the pressure, so the decomposed normal
particle velocity needs to be converted to pressure. This can be done
using Euler’s equation [30][p. 119, Eq. 5.4.10.]. In the time-domain,
Euler’s equation is

ρf ~v(r, z, t) = −∇p(r, z, t). (2.7)

Using a Fourier-transform to convert Eq. (2.7) into the frequency do-
main, the velocity and pressure are proportional to e−iωt, so Eq. (2.7)
becomes

iω ρf ~v(r, z, f) = ∇p(r, z, f). (2.8)

The particle velocity of interest on the piston-surface is the normal
component of the velocity, i.e., the velocity in the z-direction, so Eq.
(2.8) reduces to [33]

iω ρf vz(r, z, f) =
∂p(r, z, f)

∂z
. (2.9)

This equation is then converted to wavenumber-space by doing a spatial
Hankel transformation with respect to r of the spatial functions [33]

iω ρf 2π

∫ ∞
0

vz(r, z, f) r dr = 2π

∫ ∞
0

∂p(r, z, f)

∂z
r dr, (2.10)

iω ρf VZ(η, z, f) =
∂P (η, z, f)

∂z
. (2.11)

In the wavenumber-domain, the pressure at a distance z can be cal-
culated by using wave field extrapolation [33]. This is done by ex-
trapolating the plane-wave pressure in a plane at some distance z′ to
another plane at a distance z, using a simple plane-wave phase change
as eihf,z(z−z

′) where hf,z is the vertical wavenumber and is given as

hf,z =


√
h2f − η2, η ≤ hf

i
√
η2 − h2f , η > hf

(2.12)

where hf is the magnitude of the directional wavenumber in the fluid,
and η ≤ hf represent propagating waves, while η > hf represent evanes-
cent waves [33]. More on this in Sec. 2.5. If the initial distance is z′ = 0,
the calculation of the pressure at a distance z is given as

P (η, z, f) = P (η, z′ = 0, f) · eihf,z(z−z′) = P (η, f) · eihf,zz. (2.13)

10



This means that with P (η, z, f) ∝ eihf,zz the final relationship between
the particle velocity and pressure in wavenumber-space at the surface
of the piston is, [33], [15]

iω ρf VZ(η, z, f) = ihf,zP (η, z, f), (2.14)

P (η, z, f) =
ρfω

hf,z
VZ(η, z′ = 0, f) eihf,zz (2.15)

P (η, z, f) =
ρfω

hf,z
VZ(η, f) eihf,zz, (2.16)

which represents the angular spectrum of pressure, where the fraction
ρfω/hf,z represents the impedance of the fluid in the z-direction. The
equation is not valid for η = hf , because of the denominator in the
impedance term, hf,z, which would then become 0, and give a singu-
larity. In simulations this is solved with an approximation by sampling
very closely to this point, excluding the point η = hf , see Sec. 3. Do-
ing an inverse Hankel transform of Eq. (2.16) gives the spatial pressure
(free-field pressure) as [32]

p(r, z, f) =
1

2π

∫ ∞
0

P (η, z, f) J0(ηr) η dη. (2.17)

Including a plate can be done by using the angular spectrum, Eq.
(2.16), as the incident pressure P (η, z, f) = PI(η, z = dT , f) onto the
upper side of plate. This can be inserted into the plane-wave definition
of the transmission coefficient, as [30]

T (η, d, f) =
PT (η, z = dT + d, f)

PI(η, z = dT , f)
. (2.18)

The expression of the transmission coefficient is given in Sec. 2.6. The
transmitted plane-wave pressure on the surface at the lower side of the
plate is then

PT (η, z = dT + d, f) = PI(η, z = dT , f)T (η, d, f). (2.19)

Inserting Eq. (2.16) as PI(η, z = dT , f), the transmitted angular spec-
trum of the pressure becomes [15]

PT (η, z = dT + d, f) =
ρfω

hf,z
VZ(η, f)T (η, d, f) eihf,zdT , (2.20)

where the transmission coefficient handles the phase change in the prop-
agation trough the plate, so the plate thickness d needs to be subtracted
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in the propagation term [15]. Using wavefield extrapolation, the plane-
wave pressure can be propagated to a distance z = dT + dR, which
is done by multiplying with eihf,z(dR−d). The angular spectrum of the
transmitted the pressure at a distance z = dT + dR from the source is
then [15]

PT (η, z = dT + dR, f) =
ρfω

hf,z
VZ(η, f)T (η, d, f) eihf,z(dT+dR−d). (2.21)

Doing an inverse Hankel transform to get the free-field pressure in spa-
tial coordinates is done as [32]

pt(r, z = dT + dR, f) =
1

2π

∫ ∞
0

PT (η, z = dT + dR, f) J0(ηr) η dη.

(2.22)

To introduce a finite receiver, the spatial transmitted pressure, Eq.
(2.22), is averaged over the finite receiver with radius b [15]. This is
done as [15]

< pt(r, z = dT + dR, f) >=
1

πb2

∫
A

pt(r, z = dT + dR, f) dA, (2.23)

=
1

πb2

∫
A

1

2π

∫ ∞
0

PT (η, z = dT + dR, f) J0(ηr) η dη dA.

(2.24)

The only term that is dependent of spatial coordinates and needs to
be integrated, is the zeroth order Bessel function [15], so Eq. (2.23)
becomes

< pt(r, z = dT + dR, f) >=
1

πb2
1

2π

∫ ∞
0

PT (η, z = dT + dR, f) (2.25)

×
∫
A

J0(ηr) dA η dη,

=
1

πb2
1

2π

∫ ∞
0

PT (η, z = dT + dR, f)

×
∫ 2π

0

∫ b

0

J0(ηr) r dr dψ η dη,

(2.26)

where ψ is the angle of r in the plane of the receiver. Having circular
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symmetry, the integral becomes [32]

< pt(r, z = dT + dR, f) >=
1

πb2
1

2π

∫ ∞
0

PT (η, z = dT + dR, f)

× 2π

∫ b

0

J0(ηr) r dr η dη,

(2.27)

where the last term was shown in the derivation of Eq. (2.4) to have a
known solution, which gives the receiver aperture function defined as
H(η, f)

H(η, f) = πb2
2J1(bη)

bη
. (2.28)

The average pressure at the finite receiver is then given as

< pt(r, z = dT+dR, f) >=
1

πb2
1

2π

∫ ∞
0

PT (η, z = dT+dR, f)H(η, f) η dη.

(2.29)
The expression is independent of r so it is unnecessary to keep it, but
will be kept to follow the convention used in [15].

Note: with the property of the directivity function, given in Eq. (2.6),
the expression with a finite receiver, Eq. (2.29), can be shown to be
equal to the equation of a point receiver, Eq. (2.22) with r = 0. The
term 1/πb2 in Eq. (2.29) can be multiplied with the πb2 in the receiver
aperture function H(η, f), while letting the receiver radius go to zero
as

lim
b→0

2J1(bη)

bη
= 1. (2.30)

Eq. (2.29) becomes

< pt(r, z = dT + dR, f) >=
1

2π

∫ ∞
0

PT (η, z = dT + dR, f) η dη (2.31)

which is exactly equal to Eq. (2.22) if r = 0 because J0(0) = 1, i.e.,
it represents the on-axis pressure with a point receiver. This property
will be used in later sections where appropriate.

The derivations of Anderson and Martins model, and Orofino and Ped-
ersen/Waags model, will be done by referring to the derivation of Eq.
(2.29), and the important differences will be highlighted.
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2.2 Model 2: Anderson and Martin

Different to model 1, Anderson and Martin [15] derived a model in a
Cartesian coordinate system, and set the radius of the source equal to
that of the receiver. The case is illustrated in Fig. 2.2.: a baffled circu-
lar piston source with radius a centered at x = y = z = 0 is radiating
towards a plate with thickness d, positioned in front of a receiver with
radius a at distance z = dT + dR. The plate is perpendicular to the
z-axis, while the x- and y-axis are parallel to the plate, and the baffled
pistons have axial symmetry around the z-axis. The y-axis points out
of the page. The piston source, plate, and piston receiver are parallel
with each other, and the case is also lossless.

xa a

aa

z

y

v0

< pt(x, y, z = dT + dR, f) >

ρf , cf
dT

dR

d

Figure 2.2: The case of model 2, which is in a Cartesian coordinate
system with equal radius on the piston source and receiver.

With the notational conventions used in Sec. 2.1., with the inclusion
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of a subscript A to denote Anderson and Martin, their expression in
the article, [15][p. 2633, Eq. 19.], is given as

< pt(x, y, z = dT + dR, f) >=
1

4π2

∫ ∞
−∞

∫ ∞
−∞

PA(hf,x, hf,y, z, f)

×HA(hf,x, hf,y, f) dhf,x dhf,y,
(2.32)

with

PA(hf,x, hf,y, z, f) =
ρfω

hf,z
HA(hf,x, hf,y, f)T (hf,x, hf,y, d, f) eihf,z(dT+dR−d),

(2.33)

and

HA(hf,x, hf,y, f) = πa2v0
J1(a

√
h2f,x + h2f,y)

a
√
h2f,x + h2f,y

. (2.34)

The independent variables hf,x and hf,y represent the horizontal wavenum-
bers in the x- and y-direction, respectively. The vertical wavenumber
hf,z is now given as [15]

hf,z =


√
h2f − (h2f,x + h2f,y), h2f,x + h2f,y ≤ h2f

i
√

(h2f,x + h2f,y)− h2f , h2f,x + h2f,y > h2f
(2.35)

The expression is otherwise similar to the expression in Sec. 2.1., Eq.
(2.29), though in Cartesian coordinates. The introduction of the fluid
impedance term, transmission coefficient and propagation is done very
similar to that of model 1, but Anderson and Martin set the source- and
receiver aperture functions equal, denoted with HA. In model 1 this is
equivalent to the source aperture function VZ(η) and receiver aperture
function H(η). Independent of radius of the source and receiver and
coordinate system, these functions are not equal because of the constant
v0 in the source aperture function. Additionally, the factor 2 is missing
from their aperture functions. The derivations of these two functions
are shown in Sec. 2.1., though for cylindrical coordinates. It is not
clear how Anderson and Martin did this in Cartesian coordinates. One
method may be to derive the expression using cylindrical coordinates,
and then convert back to Cartesian by the relation [32]

η =
√
h2f,x + h2f,y, (2.36)
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which will be shown in the following, with a derivation independent of
Anderson and Martins method. The conditions on the piston surface
in Cartesian coordinates with constant normal particle velocity is given
as

v(x, y, z = 0, f) =

{
v0,

√
x2 + y2 ≤ a

0,
√
x2 + y2 > a

(2.37)

The angular spectrum of the normal particle velocity on the piston
surface can be found using a two-dimensional Fourier transform as [33]

VZ(hf,x, hf,y, f) =

∫ √a2−x2
−
√
a2−x2

∫ a

−a
v(x, y, f) e−i(hf,xx+hf,yy) dx dy. (2.38)

If the velocity is constant, it becomes independent of the integral [32]

VZ(hf,x, hf,y, f) = v0

∫ √a2−x2
−
√
a2−x2

∫ a

−a
e−i(hf,xx+hf,yy) dx dy. (2.39)

The exponent can be written as the dot product of two vectors, and
the integrand variables change accordingly [32]

VZ(~η, f) = v0

∫ √a2−x2
−
√
a2−x2

∫ a

−a
e−i~η·~r d~r, (2.40)

where ~r = (x, y) and ~η = (hf,x, hf,y). Using the geometric version of
the dot product and changing the integration variables with respect to
cylindrical coordinates, Eq. (2.40) now turns to [32]

VZ(~η, z, f) = v0

∫ 2π

0

∫ a

0

e−i|~η||~r|cosψ r dr dψ, (2.41)

where |~r| = r =
√
x2 + y2 and |~η| = η =

√
h2f,x + h2f,y, and ψ represents

the angle of r in the receiver plane. Furthermore, by changing the
integral order as [32]

VZ(η, z, f) = v0

∫ a

0

( ∫ 2π

0

e−i η r cosψ dψ
)
r dr, (2.42)

it reveals a known solution on the integral inside the parenthesis [30][p.
512], [32], which is given as∫ 2π

0

e−i η r cosψ dψ = 2πJ0(−ηr) = 2πJ0(ηr). (2.43)
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The resulting expression is then

VZ(η, f) = 2πv0

∫ a

0

J0(ηr) r dr (2.44)

This integral has a known solution, which was shown in the derivation
of Eq. (2.4), so

VZ(η, f) = 2πv0
1

η2

∫ aη

0

J0(x)xdx = 2πv0
a

η
J1(aη) = πa2v0

2J1(aη)

aη
(2.45)

The decomposed velocity on the piston surface with a two-dimensional

description of the wavenumbers using η =
√
h2f,x + h2f,y, can then be

written as

VZ(hf,x, hf,y, f) = πa2v0
2J1(a

√
h2f,x + h2f,y)

a
√
h2f,x + h2f,y

(2.46)

By using the pressure and particle velocity relationship, Eq. (2.14), the
decomposed particle velocity is converted to pressure and propagated to
the distance z = dT . Then by introducing the transmission coefficient,
propagating the pressure to a distance z = dT + dR, and doing an
inverse two-dimensional Fourier transform, the expression of the free-
field transmitted pressure becomes

pt(x, y, z = dT + dR, f) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

PT (hf,x, hf,y, z = dT + dR, f)

× ei(hf,xx+hf,yy) dhf,x dhf,y,
(2.47)

where the angular spectrum is given as

PT (hf,x, hf,y, z = dT + dR, f) =
ρfω

hf,z
VZ(hf,x, hf,y, f)T (hf,x, hf,y, d, f)eihf,z(dT+dR−d).

(2.48)

Averaging Eq. (2.47) over a finite receiver with radius a as in the same
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way as in Sec. 2.1., which becomes

< pt(x, y, z = dT + dR, f) >=
1

πa2

∫
A

pt(x, y, z = dT + dR, f) dA

(2.49)

=
1

πa2

∫
A

1

4π2

∫ ∞
−∞

∫ ∞
−∞

PT (hf,x, hf,y, z = dT + dR, f)

× ei(hf,xx+hf,yy) dhf,x dhf,y dA
(2.50)

The only term that is dependent on the spatial integral and needs
to be integrated over the surface, is the complex exponential function
ei(hf,xx+hf,yy) so Eq. 2.50 becomes

< pt(x, y, z = dT + dR, f) >=
1

πa2

∫
A

1

4π2

∫ ∞
−∞

∫ ∞
−∞

PT (hf,x, hf,y, z = dT + dR, f)

×
∫
A

ei(hf,xx+hf,yy) dAdhf,x dhf,y. (2.51)

The last integral in Eq. (2.51) is similar to the integral that lead to
Eq. (2.46), and thus will give the receiver aperture function as

∫
A

ei(hf,xx+hf,yy) dA = H(hf,x, hf,y, f) = πa2
2J1(a

√
h2f,x + h2f,y)

a
√
h2f,x + h2f,y

.

(2.52)

However Anderson and Martin states that∫
A

ei(hf,xx+hf,yy) dA = VZ(hf,x, hf,y, f), (2.53)

i.e., that it is equal to the source aperture function in Eq. (2.46), which
is not true. The claim is correct if dividing by v0 as

∫
A

ei(hf,xx+hf,yy) dA = πa2
2J1(a

√
h2f,x + h2f,y)

a
√
h2f,x + h2f,y

= VZ(hf,x, hf,y, f)/v0.

(2.54)

The derivation done is meant to serve as a justification of the allegation
that setting the aperture functions equal is not correct, and that the
factor 2 should be included in the aperture functions. It also appears
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that they neglected the factor 1/πa2 that comes with the averaging, so
the total factor missing in their expression is calculated to be 4/πv0a

2.
In Sec. 5.2., it is shown that the inclusion of this factor is correct when
comparing with an ASM independent model. For the results in the
thesis, their expression, Eq. (2.32), will be used in simulations as it is
given in their article.

2.3 Model 3: Orofino and Pedersen/Waag

Different to model 1 and model 3, Orofino and Pedersen (and subse-
quently Waag), used a constant pressure on the source piston surface
as a boundary condition, and derived an expression for the normal par-
ticle velocity on the receiver surface. Their expression will be used for a
case of transmission instead of reflection, which was also done by Waag.
This is done by replacing their reflection coefficient with a transmission
coefficient. They also used the same distance between the source-plate
and plate-receiver, but this will be replaced with the distance used with
model 1 and 2, i.e., z = dT + dR.

The case of transmission is shown in Fig. 2.3. A baffled circular piston
source with constant pressure p0s on the surface of the piston with
a radius a centered at r = z = 0 is radiating towards a plate with
thickness d, where the transmitted normal particle velocity is received
by a receiver with radius a at position z = dT + dR. The coordinate
system is cylindrical, with the plate perpendicular to the z-direction,
with the r-axis as shown in the figure, and the baffled pistons have
axial symmetry around the z-axis. The source, plate, and receiver are
assumed to be perfectly parallel, and the case is lossless. The original
expression that Orofino and Pedersen gives is [14][p. 1245, Eq. 29.]

V (ω) = 2π

∫ π/2

0

cos θf
ρfcf

(
2J1(hfa sin θf )

hfa sin θf

)2

R(θf , ω) eihf2w0 cos θf

× hf sin θf hf cos θf dθf , (2.55)

where R(θ, ω) denotes the reflection coefficient, and w0 is the equal
distance between source-plate and plate-receiver. Orofino and Pedersen
describes their expression as electrical signal output, denoted V (ω).
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r
a

z

p0

< vt,z(r, z, f) >

ρf , cf

d

dT

dR

a

Figure 2.3: The case of model 3, which is in the cylindrical coordinate
system, similar to model 1, but with constant pressure on the surface
of the piston source, and the field variable of interest is the normal
particle velocity.

As this notation is a bit ambiguous considering they did not include any
real transducer into their expression, and because they did not include
the constant value p0 of the pressure on the surface of the piston source,
the notation V (ω) is suspected to represent a transfer function, i.e., the
averaged particle velocity at the surface of the receiver divided by p0.
This will therefore be used when representing their model, and the
notation conventions used with model 1 and 2 will also be used. This,
along with a transmission coefficient instead of reflection coefficient
and the changing of w0 = z/2 = (dT + dR)/2, gives their expression as
[19][p. 43, Eq. 24]

< vt,z(r, z = dT + dR, f) >

p0
= 2π

∫ π/2

0

VT,Z(θf , z = dT + dR, f)HO(θf , f)

× hf sin θf hf cos θf dθf (2.56)

which was also done by Waag. The subscript O denotes Orofino, cap-
ital subscript T denotes transmitted angular spectrum, and capital
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subscript Z denotes the z-direction of the angular spectrum of nor-
mal particle velocity. The transmitted angular spectrum of the normal
particle velocity is given as

VT,Z(θf , z = dT +dR, f) =
cos θf
ρfcf

HO(θf , f)T (θf , d, f) eihf (dT+dR−d) cos θf

(2.57)
where the source and receiver aperture functions are defined equal as

HO(θf , f) =
2J1(hfa sin θf )

hfa sin θf
. (2.58)

The derivation of Eq. (2.57) can be done with the same method as
for model 1 in Sec. 2.1., because both are in cylindrical coordinates,
though Orofino and Pedersen used the independent variable θf instead
of η as used in model 1. θf is the angle between the direction of the
individual plane waves in the spectrum and the z-direction, where the
relationship between θf and the horizontal and vertical wavenumbers
are given as [14]

η = hf sin θf , (2.59)

hf,z = hf cos θf , (2.60)

dη = hf cos θf dθf . (2.61)

The decomposition of constant pressure on the baffled piston surface is
done with the same method as decomposing constant velocity on the
surface, but with a constant p0 as the value of the constant pressure.
Furthermore, converting the decomposed pressure on the source surface
to normal plane-wave particle velocity is done by solving for the normal
particle velocity in Eq. (2.14). Then the introduction of propagation,
transmission and finite receiver are carried out the same way as model
1. However, notice that in Eq. (2.56), the upper integration limit is
set to π/2. This is the same as exclusively integrating the propagating
waves, and not the evanescent. If evanescent waves were included, the
change of the integration limits if using the relationship given by Eq.
(2.59), would be

ηlower = 0→ θf,lower = 0, (2.62)

ηupper =∞→ θf,upper = π/2− i∞. (2.63)

When the i∞ term is included in θf,upper, the integration includes
evanescent waves. The notation π/2 − i∞ is used in an article by
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Lobkis and Chimenti [35] without any references or proof, so the fact
that θf → π/2 − i∞ when η → ∞, will now be shown for the sake of
validity. Using the definition of the inverse sine function [36],

sin θf =
η

hf
, (2.64)

θf = sin−1(
η

hf
), (2.65)

θf = −i ln
(
i
η

hf
+

√
1− η2

h2f

)
[36], (2.66)

and with (η/hf )
2 � 1 this can be approximated as

θf ≈ −i ln
(
2i
η

hf

)
, (2.67)

= −i(ln 2iη − lnhf ), (2.68)

and using that a + ib = |r|eiλ where |r| =
√
a2 + b2 and λ = tan−1 b

a
,

the complex logarithm-term can be written as

θf ≈ −i(ln |r|+ ln eiλ − lnhf ). (2.69)

With |r| =
√

0 + b2 = 2η and because a = 0 the limit of λ is lim
x→∞

λ =

tan−1(x) = π/2 [37], so Eq. (2.69) becomes

θf ≈ −i(ln 2 + ln η + iπ/2− lnhf ), (2.70)

where ln η � ln 2− lnhf so

θf ≈ π/2− i ln η, (2.71)

lim
η→∞

θf ≈ π/2− i∞ = θf,upper. (2.72)

Note that when η/hf > 1, the angle θf becomes complex, which intro-
duces evanescent waves in the angular spectrum. This will be shown
in Sec. 2.5.

Continuing on the analysis of the expression Eq. (2.57), the first term
is the inverted normal impedance as used in model 1 and 2. By using
that hf,z = hf cos θ and hf = ω/cf , the first term can be written as

cos θf
ρfcf

=
hf,z
ωρf

, (2.73)
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and it is clear that this is the inverse of the normal impedance as
used in the pressure models, model 1 and 2, Eq. 2.21 and Eq. 2.33,
respectively. This is because of the relationship between pressure and
particle velocity as seen in Eq. (2.14). The aperture functions have
also been set equal, as Anderson and Martin, to HO(θf , f). If Orofino
and Pedersen/Waags expression represents a transfer function, which is
an assumption, this is valid. It also appears that Orofino and Pedersen
neglected the πa2 that comes with both the aperture functions, the
factor 1/πa2 that comes with the averaging, and it’s also not clear to
why there is a 2π outside the integral, and not 1/2π as in model 1. The
total factor missing was calculated to be a2/4π, though there are not
any particle velocity models independent of the ASM to compare this
with.

If including evanescent waves, the expression simply becomes

< vt,z(r, z = dT + dR, f) >

p0
= 2π

∫ π/2−i∞

0

VT,Z(θf , z, f)HO(θf , f)

× hf sin θf hf cos θf dθf ,
(2.74)

with the angular spectrum given in Eq. (2.57). This will be referred to
as ”modified model 3”, and even though evanescent waves are included,
the vertical wavenumber is in this case still given as hf,z = hf cos θf
which will be discussed further in Sec. 2.5. The modified model 3 will
be used to compare with model 3 which excludes.

Although model 3 (and modified model 3) is defined as a transfer func-
tion, where the denominator p0 is a scalar, it fundamentally represents
the normal particle velocity. The model will therefore be referred to as
a representation of normal particle velocity, even though it mathemat-
ically represents a transfer function.

2.4 Additional comparison models with-

out plate

In order to establish validity of the three models, it is necessary to
compare simulations without plate with other models that are inde-
pendent of the ASM and without plate. This section will introduce
two additional models to compare with.
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2.4.1 Williams’ model

Williams [38] derived an expression for the average velocity potential
over a finite receiver (without plate) that has the same radius as the
source. The model was derived with the baffled piston model as defined
in the present study, with a constant velocity of the surface of the source
piston. The derivation of the average pressure will not be shown, but
is done in [32], where the expression in cylindrical coordinates is given
as (time convention e−iωt)

< p(r, z, f) >= ρfcfv0e
ihf z

{
1− 4

π

∫ π/2
0

eihf (
√
z2+4a2 cos2 θ−z) sin2 θ dθ

}
,

(2.75)
where θ represents the angles of deviations from a collimated beam [38],
and is not the same as θf used in model 3, Eq. (2.56).

2.4.2 Kinsler et al. model

Kinsler et al. gives in [30] an expression for the on-axis pressure in
free space without plate, i.e., with a point receiver on the acoustic axis.
This is also based on the baffled piston model, with a constant velocity
on the surface of the piston. The expression is given in cylindrical
coordinates as (time convention eiωt)

pax(r = 0, z, f) = pax(z) = 2ρfcfv0
∣∣sin{1

2
hfz

[√
1 + (a/z)2 − 1

]}∣∣ ,
(2.76)

which is valid for z > 0. This can be used to compare with model 1
when b→ 0, without plate.

2.5 Propagating and evanescent waves

This section is meant to elaborate on evanescent waves, and explain a
bit further what this means mathematically.

The vertical wavenumber for model 1 is given as

hf,z =


√
h2f − η2, η ≤ hf

i
√
η2 − h2f , η > hf

(2.77)
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and for model 2 as

hf,z =


√
h2f − (h2f,x + h2f,y), h2f,x + h2f,y ≤ h2f

i
√

(h2f,x + h2f,y)− h2f , h2f,x + h2f,y > h2f
(2.78)

and for modified model 3,

hf,z = hf cos θf . (2.79)

It is important to note that the sign of the square root is important
for the physical behavior of the wave. In this case, the sign is set as
positive. When hf,z becomes complex, the exponential term in model
1 and 2 goes from being a complex number, to becoming a simple
decaying exponential term, given as

eihf,zz = e−z
√
η2−h2f , (2.80)

or for model 2
eihf,zz = e−z

√
(h2f,x+h

2
f,y)−h

2
f . (2.81)

When this happens, the angular spectrum of model 1 and model 2
become evanescent. The larger the frequency or the distance from
the source, the faster these waves decay with respect to the horizon-
tal wavenumber. For the modified model 3, the evanescent waves are
introduced via the exponential term

eihf,zz = eihf cos θf z, (2.82)

when θf becomes complex as shown in Sec. 2.3., which may be defined

as θ̂f = π/2− iθ′′f . The cosine of a complex number is [39]

cos(π/2− iθ′′f ) = cos π/2 cosh θ′′f + i sin π/2 sinh θ′′f (2.83)

= i sinh θ′′f , (2.84)

where the hyberbolic function sinh θ′′f > 0. This will then give a decay-
ing exponential term.

2.6 Transmission coefficient

The plane-wave transmission coefficient for an elastic plate is given in
[15], but a more rigorous derivation is done by Aanes in [21] (though
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with time convention eiωt). In [15], with time convenction e−iωt, it is
given as

T (η, d, f) =
iY (A+ S)

(S − iY )(A+ iY )
(2.85)

with Y , S and A equal to

Y =
ρfhp,z

ρphf,z
, (2.86)

S = (k2p − 2η2)2 cot(hp,z
d

2
) + 4η2hp,zkp,z cot(kp,z

d

2
), (2.87)

A = (k2p − 2η2)2 tan(hp,z
d

2
) + 4η2hp,zkp,z tan(kp,z

d

2
), (2.88)

where hp = ω/cp,l and kp = ω/cp,s, while ρp represents the density of
the plate. hp,z represents the vertical longitudinal wavenumber in the
plate and kp,z represents the vertical shear wavenumber in the plate.
To get a visualization of the different wave numbers, see figure 2.4.

dθp,s
θp,l

θf

kp,z

η

η

ρp, cp,l, cp,s

ρf , cf
hf,z

hp,z

PI(η, z, f) PR(η, z, f)

z

Figure 2.4: The wavenumbers of the propagating waves in the plate.
PI(η, z, f) represents an incoming plane wave in the fluid while
PR(η, z, f) represents a reflected wave in the fluid.

The vertical wavenumbers of the longitudinal and shear waves, hp,z and
kp,z, are given by

hp,z =

{√
h2p − η2, η ≤ hp

i
√
η2 − h2p, η > hp

(2.89)

kp,z =

{√
k2p − η2, η ≤ kp

i
√
η2 − k2p, η > kp

(2.90)

26



Setting η = 0 gives the transmission coefficient when the incident wave
is a normally incident single plane wave. The symmetric cut-off fre-
quencies, the frequencies of maximum or minimum transmission, for
the Lamb modes is then given as [21]

fSli =
(2i− 1)cp,l

2d
, i = 1, 2, ...., (2.91)

fSsi =
2icp,s

2d
, i = 1, 2, ...., (2.92)

which corresponds to the frequencies of symmetrical TE modes and
thickness shear modes (TS) respectively, and the cut-off frequencies for
anti-symmetric Lamb modes are

fAli =
2icp,l
2d

, i = 1, 2, .... (2.93)

fAsi =
(2i− 1)cp,s

2d
, i = 1, 2, ...., (2.94)

which again corresponds to the frequencies of anti-symmetrical TE
modes and TS modes, respectively.

2.6.1 Dispersion equations

In an article by Osbourne and Hart [5], dispersion equations for anti-
symmetrical and symmetrical leaky Lamb modes of a plate immersed
in water are given. The equations are given in terms of the horizontal
wavenumber and phase velocity which in this case is η and cph = ω/η,
respectively, so

Symmetric:

4
[(

1− 1

2

c2ph
c2s,p

)2
coth

(
η
d

2

(
1−

c2ph
c2p,l

) 1
2
)
−
(
1−

c2ph
c2p,l

) 1
2
(
1−

c2ph
c2p,s

) 1
2

× coth
(
η
d

2

(
1−

c2ph
c2p,s

) 1
2
)]

+
ρf
ρp

c2f
c2p,s

1(
1− c2ph

c2f

) 1
2

c4ph
c2fc

2
s

(
1−

c2ph
c2p,l

) 1
2

= 0, (2.95)
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Antisymmetric:

4
[(

1− 1

2

c2ph
c2p,s

)2
tanh

(
η
d

2

(
1−

c2ph
c2p,l

) 1
2
)
−
(
1−

c2ph
c2p,l

) 1
2
(
1−

c2ph
c2p,s

) 1
2
∗

× tanh
(
η
d

2

(
1−

c2ph
c2p,s

) 1
2
)]

+
ρf
ρp

c2f
c2p,s

1(
1− c2ph

c2f

) 1
2

c4ph
c2fc

2
p,s

(
1−

c2ph
c2p,l

) 1
2

= 0. (2.96)

Notice at the end of the first line in Eq. (2.96), there is an asterisk.
This is there to suggest that Osbourne and Hart in [5] [p. 7, Eq. 26.]
forgot to include the square root, which is included in their symmetrical
equation [5][p. 7, Eq. 25] in their article. Later calculations using this
also agrees with simulations, which are shown in Sec. 5.4.

2.7 Transfer functions in plate transmis-

sion

In order to investigate plate transmission effects with a point receiver,
the pressure-to-pressure transfer function Hpp(f) as a function of fre-
quency have been frequently used, e.g [18], [21], [26], [25], [27], [28],
[29]. This is defined as

Hpp(f) =
pt(r = 0, z = dT + dR, f)

pi(r = 0, z = dT , f)
, (2.97)

where pi(r = 0, z = dT , f) is the on-axis pressure on the surface on the
upper side of the plate at a point receiver, while pt(r = 0, z = dT+dR, f)
is the transmitted on-axis pressure at the point receiver. Because this
transfer function requires a point receiver, only model 1, Eq. (2.29
with b → 0) can be used to calculate this function. See Fig. 2.5. for
an illustration of the transfer function.

28



I:

dT

a
Source

pi(r = 0, z = dT , f)

dT

dR

II:

pt(r = 0, z = dT + dR, f)

d

Source
a

Figure 2.5: Hpp(f) illustrated. pi(r = 0, z = dT , f) represents the on-
axis, free-field pressure at the upper side of the plate where z = dT ,
while pt(r = 0, z = dT + dR, f) is the on-axis free-field transmitted
pressure at z = dT + dR.

In addition to this, in order to see the influence of a finite receiver in the
case of plate transmission, the newly defined Hp<p>(f) for the thesis is
also of interest. This transfer function is the ratio of the transmitted
average pressure at a finite receiver and the on-axis pressure on the
upper side of the plate as a function of frequency, giving the transfer
function

Hp<p>(f) =
< pt(r, z = dT + dR, f) >

pi(r = 0, z = dT , f)
, (2.98)

which again can only be used with model 1, Eq. (2.29), because the
model allows for a different radius on the source and receiver. See Fig.
2.6. for an illustration of the transfer function.

I:

dT

a
Source

pi(r = 0, z = dT , f)

dT

dR

II:

< pt(r, z = dT + dR, f) >

d

Source
a

a

Figure 2.6: Hp<p>(f) illustrated. pi(r = 0, z = dT , f) represents the
on-axis, free-field pressure at the upper side of the plate where z = dT ,
while < pt(r, z = dT + dR, f) > is the average transmitted pressure at
the finite receiver at z = dT + dR.
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In order to compare model 1 and 2 with plate transmission with each
other, a third transfer function, H<p><p>(f), will also be used. This is
defined as the ratio between the average transmitted pressure and the
average incoming pressure as a function of frequency, as

H<p><p>(f) =
< pt(r, z = dT + dR, f) >

< pi(r, z = dT , f) >
, (2.99)

where an illustration is given in Fig. 2.7.

I:

dT

a
Source

dT

dR

II:

< pt(r, z = dT + dR, f) >

d

Source
a

a

< pi(r, z = dT , f) >

a

Figure 2.7: H<p><p>(f) illustrated. < pi(r, z = dT , f) > represents
the average pressure at a finite receiver at the upper side of the plate
where z = dT , while < pt(r, z = dT+dR, f) > is the average transmitted
pressure at a finite receiver at z = dT + dR.

Equivalently, for model 3 yields a particle velocity to particle velocity
transfer function

H<pv><pv>(f) =
< vt(r, z = dT + dR, f) >

< vi(r, z = dT , f) >
, (2.100)

which can be compared with Eq. (2.99).

Finally, the last transfer function of interest, which is used in e.g. [25]
and [28], is the transfer function Hplate

pp which is defined as the ratio
between the on-axis transmitted pressure at the surface of the lower
side of the plate, and incident on-axis pressure on the upper side of the
plate, as

Hplate
pp =

pt(r = 0, z = dT + d, f)

pi(r = 0, z = dT , f)
. (2.101)

This will be used to reproduce some results from [25] and [28], in Sec.
6.1.
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2.8 Introducing losses in fluid

Losses in fluid can be introduced in order to overcome sampling chal-
lenges, and losses will only be introduced in the fluid and not the plate,
for reasons which will be discussed in Sec. 5.1.1. and Sec. 5.4.

The losses in fluid can be defined in terms of a loss-factor Qf where
the relationship between Qf and the absorption coefficient αf , is [30]

αf =
1

2

hf
Qf

, (2.102)

which is incorporated in the wavenumber of the fluid as

ĥf = hf + iαf (2.103)

Qf is kept constant, which means that αf is proportional with fre-
quency, and not frequency squared. A proportionality with frequency
squared is used in e.g. [30]. With the introduction of a complex
wavenumber, there is not at singularity at η = hf , which can be shown

with the insertion of ĥf into hf,z as

hf,z =
√
ĥ2f − η2, (2.104)

=
√
h2f + i2hfαf − α2

f − η2, (2.105)

and with η = hf , it becomes

hf,z =
√
i2hfαf − α2

f . (2.106)
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Chapter 3

Simulation setups and
methods

This chapter explains the simulation setups and methods used within
the different models. First the simulation parameters are presented in
Sec. 3.1., with an explanation of the choice of parameters, before the
simulation methods used with model 1 are explained in Sec. 3.2. In
Sec. 3.3, the simulation methods used for model 2 are explained, and in
Sec. 3.4., the simulation methods used with model 3 are also explained.
All the models were implemented using MATLAB®.

3.1 Simulation parameters

The following parameters have been used in all the simulations unless
otherwise specified:

• 1 kHz ≤ Frequency ≤ 1000 kHz with a step of ∆f = 1 kHz,

• a = b = 10.55 mm,

• cf = 1485 m · s−1,

• ρf = 1000 kg ·m−3,

• v0 = 1 m · s−1,

• ρp = 8000 kg ·m−3,

• cp,l = 5780 m · s−1,
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• cp,s = 3130 m · s−1,

• Poisson’s ratio σ = 0.293

• dT = 270 mm,

• dR = 106.05 mm,

• d = 6.05 mm,

• z = dT + dR = 376.05 mm,

• Qf = 50 · 103,

• ∆z = 1 mm,

where a, cf , ρf , ρp, cl, cs, σ, dT , dR, d are the parameters used in pre-
vious work within the acoustics group at the University of Bergen, [18],
[21], [25], [27], [28]. The radius a is the effective radius of the trans-
ducer used and built by Aanes in [21], when adjusted to a frequency of
575 kHz which is the frequency of maximum source sensitivity, see [21].
The effective radius is determined by using the relationship [21]

a =
1.6137

hf sin θ−3dB
(3.1)

where θ−3dB is the 3dB-angle of the real transducer. This means that
comparisons between measurements and simulations may be a bit off
for lower or higher frequencies than 575 kHz, and the effect of this will
be shown in Sec. 5.5.

The loss factor Qf will be introduced when simulating the models at
low frequencies with plate transmission. In Sec. 5.4., the presence of
surface waves, known as Scholte-waves, in the transmission coefficient is
discussed, which appears as singularities in the transmission coefficient.
In order to be able to calculate the models’ field variables at low fre-
quencies, these singularities need to be dampened with the introduction
of loss, if not, the simulations are inflicted by undersampling effects.
The loss factor of Qf = 50 · 103, was determined by checking at which
loss factor the models were able to produce a non-undersampled field
variable while maintaining decent computational efficiency at these low
frequencies.
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3.2 Model 1

3.2.1 Maximum wavenumber

Common for all models, is that the independent variables are the
first variables that are determined. In model 1, this is the horizon-
tal wavenumber η, where the maximum wavenumber ηmax needs to be
determined. The requirement of the maximum wavenumber is that it
is set to a point where the angular spectrum is truncated when the
evanescent part is negligible. Knowing this, a temporary array is cre-
ated, streching from hf to a high number with a step of 1 rad·m−1. The
expression of the angular spectrum, Eq. (2.21), is then calculated for
this range of wavenumbers, until the decaying pressure in Decibels is
below some threshold-limit, which is set to −200 dB. This means that
the absolute value of the angular spectrum at this point is less than
1 · 10−10 which is deemed as negligible. Whenever this limit is reached,
the wavenumber is stored and set as the maximum wavenumber. See
Appendix D for the implementation of this algorithm in MATLAB®.

3.2.2 Non-uniform sampling

With the maximum wavenumber found, a non-uniform sampling rou-
tine is run. In Sec. 2.1., it was stated that when there are no losses
in the fluid and η = hf , there is a singularity in the angular spec-
trum because of the inverse proportionality with hf,z, which becomes
zero. In order to avoid this, but still sample close to this point, a non-
uniform sampling method was implemented. Additionally, the singu-
larities in the transmission coefficient caused by the surface waves are
also sampled closely, even with losses, to ensure that they are decently
represented in the transmission coefficient. The wavenumbers at which
these waves appear are labeled as the symmetric Scholte-wave ηS and
the antrisymmetric Scholte-wave ηA which is bigger than ηS. First
the algorithm of non-uniform sampling without a plate is explained, in
order to set some preliminary theory for when a plate is included.

The algorithm of non-uniform sampling, FindEta, see Appendix E,
without a plate, first sets a vector with a small sampling step around hf .
With a given hf the algorithm sets a minimum and maximum limit on
the sampling area around hf . These limits have been chosen to be
ηhf ,min = hf − hf/N and ηhf ,max = hf + hf/(N − 1) where N is the
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number of samples and is an even number. The sampling step in this
area is then

∆ηhf =
ηhf ,max − ηhf ,min

N
=
hf (2N − 1)

N(N − 1)
, (3.2)

and the wavenumber vector is

ηhf = ηhf ,min + l∆ηhf , l = 0, 1, ... N − 1. (3.3)

In Fig. 3.1. the idea is simply illustrated.

hf − hf/N

η > hfη < hf

Propagating waves Evanescent waves

η = hf

η

ηhf

hf + hf/(N − 1)

η = 0

η = ηmax

Figure 3.1: The algorithm of non-uniform sampling sets some bound-
aries around hf where an extra small sampling step is to be used.

The reason that ηhf ,max was set to hf + hf/(N − 1), i.e., with the
subtraction N − 1 in the denominator, is to avoid that the vector hits
hf exactly. If the wavenumber vector is given as in Eq. (3.3), it means
that in order to hit hf exactly, the following is true

ηhf ,min + l∆ηhf = hf . (3.4)

Inserting Eq. (3.2) for ∆ηhf and with ηhf ,min = hf−hf/N , the equation
becomes

hf − hf/N + l
hf (2N − 1)

N(N − 1)
= hf . (3.5)

Solving for l gives

l =
N − 1

2N − 1
, (3.6)

where the left side l is an integer while the right side is less than 1,
which is a contradiction, i.e., it is not possible to hit hf . If ηhf ,min and
ηhf ,max had an addition and subtraction of hf/N respectively, l would
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be equal to l = N/2, and would give the singularity and numerical
error in the simulations.

When hf is sampled, the vector of wavenumbers for the entire spectrum
are declared with the concatenation of three sets: the wavenumbers for
the propagating part of the spectrum ηprop, the wavenumbers for ηhf ,
and wavenumbers for the evanescent part ηevsct. Using the following
relationships for the minimum and maximums wavenumbers for the
propagating and evanescent parts

ηprop,min = 0, (3.7)

ηprop,max = ηhf ,min, (3.8)

ηevsct,min = ηhf ,max, (3.9)

ηevsct,max = ηmax, (3.10)

where the individual sampling steps are given by

∆ηprop =
ηprop,max

N
, (3.11)

∆ηevsct =
ηevsct,max − ηevsct,min

N
. (3.12)

Finally the individual vectors are

ηprop = l∆ηprop, l = 0, 1, ... , N − 1, (3.13)

ηevsct = ηevsct,min + l∆ηevsct, l = 0, 1, ... , N − 1. (3.14)

The final η vector is then created by concatenating the three vectors
ηprop, ηhf , ηevsct. It should also be mentioned that the choice of N for
the sampling step of the evanescent part, Eq. (3.12), is doubled in
the nearfield where the evanescent part may need a high number of
samples.

A similar routine is also run when a plate is included, but the wavenum-
bers ηS and ηA needs to be determined. This is done by using the dis-
persion equations by Osbourne and Hart, Eqs. (2.95) and (2.96), and
inserting a temporary wavenumber vector η and phase velocity cph. The
minima at η > hf are found for the two equations, which then represent
ηS and ηA. Once these are decided, the non-uniform sampling routine
is run. The upper limit around hf is set to ηhf ,max = ηS + ηS/(N − 1)
because the wavenumber ηScholte,S is very close to hf . The sampling
step however, is doubled as

∆ηhf ,S =
ηhf ,max − ηhf ,min

2N
, (3.15)
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to ensure that both the singularity at hf and ηS is sampled good
enough. The wavenumber vector is then set as

ηhf ,S = ηhf ,min +m∆ηhf ,S, m = 0, 1, ... , 2N − 1. (3.16)

Following this, the wavenumber-vector around the antisymmetric Scholte-
wave at wavenumber ηA are found, where the limits are set as ηA,min =
ηA − ηA/N and ηA,max = ηA + ηA/(N − 1), where the sampling step is

∆ηA =
ηA,max − ηA,min

N
, (3.17)

with the wavenumber vector

ηA = ηA,min + l∆ηA, l = 0, 1, ... , N − 1. (3.18)

This also requires the space between ηS and ηA to be sampled, where
the minimum and maximum wavenumber are set as

ηStoA,min = ηhf ,max, (3.19)

ηStoA,max = ηA,min, (3.20)

(3.21)

with the sampling step

∆ηStoA =
ηStoA,max − ηStoA,min

N
, (3.22)

which gives the wavenumber vector as

ηStoA = ηStoA,min + l∆ηStoA, l = 0, 1, ... , N − 1. (3.23)

Finally the remaining wavenumber vectors for the propagating and
evanescent part are set as

ηprop,min = 0, (3.24)

ηprop,max = ηhf ,min, (3.25)

ηevsct,min = ηA,max, (3.26)

ηevsct,max = ηmax, (3.27)

where the respective sampling steps and wavenumbers are defined in
Eqs. (3.11), (3.12), and Eqs. (3.13), (3.14). The final vector for η is
created by concatenating ηprop, ηhf ,S, ηStoA, ηA, ηevsct.
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3.2.3 The implementation of equations

In Appendix A the code for the program and the implementation of Eq.
(2.29) are shown. First all the constant variables are declared. Then the
program iterates through two for()-loops, where the outer loop iterates
through a vector of distances, while the inner loop iterates through a
vector of frequencies. This is convenient if the pressure as a function
of frequency and distance is to be calculated. Inside the inner loop,
a number of samples N is set, which in general has been set to N =
512×512 = 218. This allows for a fairly fast computational time, which
for a typical scenario, e.g. calculation of transmitted pressure, takes
about 5 s per calculation. This means that 900 points of calculation
takes approximately 1 h, which was deemed fast enough. Following this
is the determining of the maximum horizontal wavenumber, and the
non-uniform sampling routine. When this is finished, all the terms in
the expression are declared, and the final expression is then integrated
using a trapezoidal method by MATLAB®, trapz(x, y), which takes an
integration limit x and an integrand y as input. The integration limit
is simply the η-vector calculated in the program, while the integrand
is the integrand of Eq. (2.29).

3.3 Model 2

Although model 2 is three-dimensional, where the independent wavenum-
bers, hf,x and hf,y, are in two dimensions, the deciding of maximum
wavenumber and the non-uniform sampling routine are run with the
wavenumbers in one dimension which conveniently lets the routines
described in Sec. 3.2.1. and Sec. 3.2.2. to be used.

3.3.1 Non-uniform sampling

Exploiting symmetry, only the maximum wavenumber in one direction
is needed, e.g., hf,x,max. When this is determined, the non-uniform
sampling around hf and the singularities caused by the Scholte-waves,
are found with the same method as in Sec. 3.2.2. This returns a
temporary vector that stretches from 0 to hf,x,max, which can be la-
beled as hf,x,temp. Declaring then a new vector equal to hf,x,temp, but
which is set negative and flipped using MATLAB® fliplr(). This is
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concatenated with hf,x,temp, and creates a one-dimensional vector hf,x,
stretching from −hf,x,max to hf,x,max which is also equal to hf,y. The
two-dimensional matrix form of these two are created using MATLAB®

meshgrid(hf,x, hf,y) which creates two matrices [hf,x], [hf,x], where one
have equal elements in the column-direction, while the other have equal
elements in the row-direction. Declaring then η =

√
[hf,x]2 + [hf,y]2 for

further calculations.

3.3.2 The implementation of equations

The implementation of the expression Eq. (2.32) is exactly the same
as described in Sec. 3.2.3., though the trapezoidal method is handled
a bit differently. When the integration limits are two-dimensional, the
trapz() routine is simply run twice. Also, the number of samples is set
as N = 1024 × 1024 = 220 samples, which needs some commenting.
The sampling of the spectrum is, as stated, in two dimensions. This
means that the amount of samples is limited if computational efficiency
are of importance. With this, model 2 is very sensitive to undersam-
pling effects, and especially for low frequencies within the approximate
interval between f = 10 kHz and f = 80 kHz, model 2 struggles to
sample correctly. The results of this is shown in Sec. 5.5. This prob-
lem can be fixed by increasing the number of samples, but with this
comes more computational demanding calculations. With the amount
of samples N = 1024 × 1024 the computational time is about 40 s for
the calculation of one point in the case of plate transmission, which
would require even more time if the frequency range subjected to un-
dersampling were to be sampled better. The sampling method could
perhaps be improved, but because the frequencies of undersampling is
for a small range of frequencies, it was deemed unimportant to improve
the methods and calculation time. See Appendix B for the code.

3.4 Model 3

Orofino and Pedersen/Waag neglects evanescent waves, so the maxi-
mum angle can simply be set to θf,max = π/2. The sampling step is
then

∆θf =
θf,max
N

(3.28)
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and the angle-vector is

θf = l∆θf , l = 0, 1, ... , N − 1 (3.29)

If however including evanescent waves, the same routines as described
with model 1 in Sec. 3.2. are run, where ηmax is found and used to
decide a temporary wavenumber vector. The threshold of truncating
the algorithm is different however, because the spectrum of model 3
in dB is much less than 0, see Sec. 5.3.1., so the threshold is set as
a difference. The algorithm checks when the difference between the
maximum value of the particle velocity spectrum and some later value
in the evanescent part, is bigger than approximately 200 dB. With ηmax
determined and the wavenumber-vector created, it is simply converted
to θf by using the relationship

θf = sin−1
η

hf
, (3.30)

which is then used for the further implementation. Besides this, the
rest of the implementation and handling of the integration is also as
done as with model 1. The number of samples used with model 3 when
excluding evanescent waves have been set to N = 1024 ∗ 32 = 215

samples, while the same number of samples as model 1 are used when
including evanescent waves. See Appendix C for the code.
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Chapter 4

Experimental setup and
methods

To confirm and validate simulations, it is of interest to do compar-
isons with measurements. In Sec. 4.1., an overview of the technical
experimental setup used to do measurements is given. In Sec. 4.2., the
methods used when measuring the transfer functions defined in Sec.
2.7. are described, before the post-process of the measurements are
explained in Sec. 4.3.

4.1 Experimental setup

The signal flow in the experimental setup without plate when using a
hydrophone is illustrated in figure 4.1. This setup was developed and
used by Aanes in [21]. The computer sets the parameters of the signal
in the signal generator - length of signal in time, voltage amplitude,
frequency, and burst rate - that is to be sent to the transducer which
is in-house built [21]. Aanes built two transducers, ”prototype no. 2”
and ”prototype no. 3”, for the frequency range of 350 kHz to 1000 kHz,
and in the present work, ”prototype no. 3” is used as source.
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Figure 4.1: The experimental setup when doing hydrophone measure-
ments.

The time length of the signal is set to 130 µs, the voltage amplitude to
20 Vp−p, and the burst rate varied between 25 Hz and 100 Hz depend-
ing on other parameters, e.g. distance between source and receiver.
A low burst rate is used if there is a big distance between the source
and receiver. The signal generator then sends a signal with the given
parameters to ”prototype no. 3” located in a water tank (with size
height×width× length = 60×75×160 cm3), and radiates towards the
PVDF needle hydrophone (Precision Acoustics Ltd.). The hydrophone
has a probe length of 100 mm, with 1 mm in diameter, and an uncer-
tainty of ±0.8 dB [40]. The received signal is terminated with 50 Ω in
parallel with an amplifier (HVA-10M-60-F, Precision Acoustics Ltd.)
which has an input impedance 1 MΩ and an amplifier gain of approx-
imately 46 dB [21]. This is connected through an coaxial cable with
the DC-coupler(Precision Acoustics Ltd.). The amplified signal is then
filtered in a bandpass filter (100 kHz − 2 MHz) of type Krohn Hite
Model 3940, and the signal is received by the oscilloscope (Tektronix
DPO3012). The computer also sets the oscilloscope parameters, i.e.,
the amount of samples, the time of how long the oscilloscope waits be-
fore storing the data in the computer, and the amount of bursts to find
an average of. The amount of samples is set to 100 · 103 samples, while
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an average of 256 bursts is used in the present work.

The signal flow in the experimental setup when using a finite receiver
is illustrated in figure 4.2.

Figure 4.2: The experimental setup when doing finite receiver measure-
ments

Similar to the hydrophone setup, but without the DC-coupler and the
50 Ω termination, as the DC-coupler is the supply voltage needed for
the hydrophone preamplifier. The parameters on the signal generator
were similar to that of the hydrophone, except for the voltage amplitude
which is set to 100 mV. ”Prototype no. 2” is used as a receiver.

The motor-stages are illustrated in figure 4.3, which are independent
of whether the receiver is finite or a hydrophone. The linear stage
Parker 404XE T09 sets the position of the receiver in the y-direction,
the linear stage Micos LMS-100 sets the position in the x-direction,
and the Parker 404XE T07 sets the position in the z-direction. The
rotary Micos PRS100 controls the angle of incidence of the source. The
different stages are controlled with commands through drivers which
again are controlled with the computer.

45



Source Receiver

z

y

• Parker 404XE T07 Linear stage (z)

• Parker 404XE T09 Linear stage (y)

• Micos LMS-100 Linear stage (x)

Receiver side:

• Micos PRS-100 (rotary)

Source side:

Figure 4.3: The different motor stages of the setup. The x-axis repre-
sents the width of the tank, the y-axis represents the height, while the
z-axis represents the length. The positive x-axis goes into the screen.

4.2 Methods

4.2.1 Aligning the source and receiver

To be able to measure the on-axis pressure with a hydrophone, the
hydrophone has to be perfectly parallel and in center of the source. A
laser with horizontal and vertical beams is put on the opposite side
of the source so that the laser-cross is in the center of it. Then the
hydrophone is placed in front of the laser again, so that the cross is
in the center on the backside of the hydrophone. The hydrophone is
then simply moved along the x-axis to find the maximum pressure via
the readings on the oscilloscope, and then along the y-axis. The rotary
stage is also used to rotate the source to check if the pressure increases
or decreases with a small rotary step. This method of aligning the
source and receiver is the same if using a finite receiver.

4.2.2 Measuring Hpp(f)

The setup when measuring Hpp(f) is illustrated in Fig. 4.4.
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Figure 4.4: The setup and steps when measuring Hpp(f).

The plate is a AISI 316L stainless steel plate with a thickness d =
6.05 mm, length of 760 mm and width of 500 mm [21]. First the pressure
at z = dT is measured as a function of frequency. Then the plate is
inserted and the hydrophone is positioned at z = dT + dR to measure
the transmitted pressure as a function of frequency. Measuring the
distances between the elements are done using in-house constructed
measuring pieces or with the use of the arrival time on the oscilloscope
without the plate present.

4.2.3 Measuring Hp<p>(f)

This transfer function was not measured because the receiver sensitivity
on the transducers have not yet been determined.

4.2.4 Measuring H<p><p>(f)

The setup when measuring H<p><p>(f) is illustrated in Fig. 4.5.
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Figure 4.5: The setup and steps when measuring H<p><p>(f)

The steps are the same as when the receiver is a hydrophone in Sec.
4.2.2.

4.3 Post-processing of data

4.3.1 Hpp(f)

The measured voltage at the respective distances are converted from
the time-domain to the frequency domain, by using Fourier analysis
to retrieve the voltage in the frequency domain. By then using the
relationship between the receiver sensitivity, voltage and pressure as
[21]

p(f) =
V (f)

Mhyd(f)
, (4.1)

where p(f) is the pressure, V (f) is the measured voltage, and Mhyd(f)
is the receiver sensitivity of the hydrophone. The receiver sensitivity
was calibrated by National Physics Laboratory(NPL) [40], but was also
calibrated by Aanes [21].
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4.3.2 H<p><p>(f)

The receiver sensitivity is not yet determined for the transducers, but
the transfer function is relative, so the voltages in the frequency domain
can be used. This can be shown by using the relationship for the
pressure, voltage, and receiver sensitivity, the transfer function can be
calculated as

H<p><p>(f) =
< pt(r, z = dT + dR, f) >

< pi(r, z = dT , f) >

=

<Vt(r,z=dT+dR,f)>
Mv(f)

<Vi(r,z=dT ,f)>
Mv(f)

=
< Vt(r, z = dT + dR, f) >

< Vi(r, z = dT , f) >
, (4.2)

which is compared with simulations in Sec. 5.5.

Because the receiver sensitivity is not determined, the transfer function
Hp<p>(f) can not be measured. The reason is that the transfer function
is the ratio between the average transmitted pressure at the surface of
the receiver and the on-axis pressure on the upper side of the plate. In
order to find this ratio, the respective voltages needs to be converted
to pressure by using the receiver sensitivity.
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Chapter 5

Comparison of the models

This chapter will compare the models, without plate and with plate,
in order to establish potential differences, confirm validity of the mod-
els, and investigate the influence of a finite receiver. The simulation
parameters given in Sec. 3.1. will be used unless otherwise stated.

In Sec. 5.1., simulation results of model 1 without plate are presented,
with some examples of the calculated magnitude and phase of the an-
gular spectrum, followed by comparisons with the models by Kinsler
et al. and Williams, before some discussion concerning the exclusion
or inclusion of evanescent waves. In Sec. 5.2., the results of model 2
without plate are presented, with examples of magnitude and phase of
the angular spectrum and comparisons with Williams’ model. Then in
Sec. 5.3., the results of model 3 without a plate are presented, with
representations of the magnitude and phase of the angular spectrum,
comparisons with Williams’ model, along with discussions of the effect
of inclusion or exclusion of evanescent waves and the boundary condi-
tion of constant pressure. Model 1, 2, and 3, will be compared with
Williams’ model, which implicitly compares the three models with each
other, so this will not be done explicitly. Before presenting the results
with plate, the Scholte-waves’ representation in the transmission coef-
ficient are discussed in Sec. 5.4., before the results and comparisons of
the three models with a plate in the farfield of the source are presented
in Sec. 5.5. In Sec. 5.6., the results when the plate is in the nearfield
of the source, using Waag’s transmission setup, are discussed. Finally,
the influence of a finite receiver is discussed, both with and without a
plate, in Sec. 5.7.
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5.1 Model 1: Without Plate

5.1.1 Magnitude and phase of the angular spec-
trum

The magnitude of the angular spectrum of model 1, Eq. (2.21), at
two distances are almost identical. In Fig. 5.1., the magnitude of the
angular spectrum without plate, T (η, d) = 1, at the distances z =
200 mm and z = 1000 mm with frequency f = 500 kHz are presented.

Figure 5.1: The calculated |P (η, z, f = 500kHz)| for the distances z =
200 mm and z = 1000 mm at a frequency f = 500 kHz. hfa = 22.

The spectrum is truncated at approximately the point when it is less
than 200 dB as explained in Sec. 3.2.1. The minima are caused by the
directivity function becoming approximately zero. The only change
between the two magnitudes, is with the evanescent part, which decays
faster with respect to η as z increases. A closer look on the evanescent
part is shown in Fig. 5.2. to highlight the differences.
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Figure 5.2: Zoomed in on the evanescent part in Fig. 5.1. The black
dotted line represents where η = hf .

Because the magnitudes are almost equal, the change of spatial pressure
at the two distances are due to a change of phase, which is very different
for the two distances. In Fig. 5.3. the phase of the angular spectra at
these two distances are presented.

Figure 5.3: The phase of P (η, z, f = 500kHz) of model 1 without plate
simulated for the distances z = 200 mm and 1000 mm at a frequency
f = 500 kHz. hfa = 22.

A larger z introduces a faster rate of change in the phase with respect to
η. If looking at the phase-term, hf,zz, and differentiating with respect
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to η, it becomes

∂hf,zz

∂η
= − ηz

hf,z
, (5.1)

which means that the rate of change in the phase is proportional to
−ηz and therefore decays faster when the product increases, if η < hf .
When η > hf,z the phase jumps to ±π/2 (because the angular spectrum
becomes purely imaginary) depending on the sign of the directivity
function in Eq. (2.21), which is illustrated in Fig. 5.4. where the phase
from Fig. 5.3. is zoomed in on the transition where η = hf .

Figure 5.4: Zoomed in on the phase in Fig. 5.3., at the transition
between η ≤ hf and η > hf . The black dotted line represents η = hf .

At this frequency and distance, the evanescent part decays very fast,
so the threshold limit is reached when η is just slightly bigger than hf .
This means that the sign of the directivity function does not change
within this short range of η > hf , but if the threshold limit for ηmax
is increased to e.g. 1000 dB, the variation of phase between π/2 and
−π/2 in the evanescent part is clear. An illustration of this can be
shown by increasing the threshold limit to 1000 dB and calculate the
angular spectrum at z = 200 mm at f = 500 kHz, see Fig. 5.5. This is
just to illustrate the variation between π/2 and −π/2.
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Figure 5.5: The phase of P (η, z = 200 mm, f = 500kHz) when increas-
ing ηmax. The variation between π/2 and −π/2 as η > hf is clear.

As z increases, the transition between propagating and evanescent
waves is harder to sample correctly, because of the fast rate of change
in the phase and the fast decaying exponential term in the magnitude,
which may introduce undersampling effects. This can however be re-
solved by introducing a small amount of losses in the fluid or increase
the number of samples, but in order to keep computational efficiency,
it’s more convenient to introduce losses. If the amount of losses is very
small, this compromise is worth implementing. The complex loss-factor
dampens the oscillations making the transition to ±π/2 in the phase
smoother, while it also dampens the spike in the magnitude. In Fig.
5.6., the angular spectrum at z = 200 mm at the frequency f = 500 kHz
is presented both with and without loss. The spike is clearly damp-
ened down, while the effect of loss in the magnitude for the rest of the
spectrum is of negligible difference compared to the lossless case. In
Fig. 5.7., the phase for the angular spectra of Fig. 5.4. are shown at
the transition when η = hf .
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Figure 5.6: The magnitude |P (η, z = 200 mm, f = 500kHz)| at z =
200 mm at the frequency f = 500 kHz with and without loss. hfa = 22.

Figure 5.7: The phase of P (η, z = 200 mm, f = 500kHz) at z = 200 mm
at the frequency f = 500 kHz with and without loss. The black dotted
line represents the point when η = hf .

The transition into the evanescent part is smoother, and therefore easier
to sample. This is convenient to exploit if the distances are very large.
An example of the spatial pressure with losses is shown in Sec. 5.1.2.,
Fig. 5.17.
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5.1.2 Comparisons with additional models

As mentioned in section 2.1, model 1 can be used to find the on-axis
pressure with a point receiver by letting the receiver radius b go towards
zero in Eq. (2.29). If T (η, d) = 1, model 1 can then be compared with
the on-axis expression for a point receiver by Kinsler et al. defined in
Sec. 2.4.2., Eq. (2.76), which is shown in Fig. 5.8. at f = 500 kHz
as a function of distance to z = 120 mm. The Rayleigh-distance is
approximately RA = 110 mm.

Figure 5.8: Model 1 compared to Kinsler et al.’ model simulated as
a function of distance to z = 120 mm at frequency f = 500 kHz. The
Rayleigh-distance is approximately RA = 110 mm. hfa = 22.

They produce similar results, but with some differences in the mini-
mums. In Figs. 5.9 and 5.10 model 1 is compared to Kinsler et al.
at the frequencies f = 40 kHz and f = 1000 kHz, respectively, as a
function of distance. These frequencies were simply chosen to show a
bigger range of frequencies, where 40 kHz represents a low frequency,
and 1000 kHz represents a high frequency.
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Figure 5.9: Model 1 compared with Kinsler et al.’ model simulated as
a function of distance to z = 120 mm at frequency f = 40 kHz. The
Rayleigh-distance is approximately RA = 9 mm. hfa = 2

Figure 5.10: Model 1 compared with Kinsler et al.’ model simulated
as a function of distance to z = 230 mm at frequency f = 1000 kHz.
The Rayleigh-distance is approximately RA = 220 mm. hfa = 45.

In figure 5.11, the magnitude of model 1 with a finite receiver b =
10.55 mm, is compared with the magnitude of Williams’ model, Eq.
2.75, as a function of distance to z = 120 mm at f = 500 kHz.
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Figure 5.11: The magnitudes of model 1 and Williams’ model simulated
as a function of distance to z = 120 mm with frequency f = 500 kHz.
hfa = 22.

In Fig. 5.12. the phase of the models are plotted.

Figure 5.12: The phases of model 1 and Williams’ model simulated
as a function of distance to z = 120 mm with frequency f = 500 kHz.
hfa = 22.

The reason that the phase does not vary between −π and π is because
of the stepsize of the distance. 1 mm was used, but the models still
produce the same results, which is the important attribute. In order
for the phase to be correct, a simulation with ∆z = 0.1 mm was run,
but both the models still did not vary consistently between −π and π.
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This was therefore neglected as this would require simulations for all
the models running over a very long period of time. Again, in order to
show a bigger frequency range, model 1 calculated with the frequencies
f = 40 kHz as a function of distance to z = 120 mm are compared with
Williams’ model in Fig. 5.13. where the phase is given in Fig. 5.14.

Figure 5.13: The magnitudes of model 1 and Williams’ model simulated
as a function of distance to z = 120 mm with frequency f = 40 kHz.
hfa = 2

Figure 5.14: The phase of model 1 and Williams’ model simulated as
a function of distance to z = 120 mm with frequency f = 40 kHz.
hfa = 2

In Fig. 5.15., the magnitudes of model 1 and Williams’ model have been
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calculated as a function of distance to z = 500 mm with f = 1000 kHz.
The phase of the models are shown in Fig. 5.16.

Figure 5.15: The magnitudes of model 1 and Williams’ model simulated
as a function of distance to z = 500 mm with frequency f = 1000 kHz.
hfa = 45

Figure 5.16: The phases of model 1 and Williams’ model simulated as
a function of distance to z = 500 mm with frequency f = 1000 kHz.
hfa = 45

At the three frequencies, model 1 produce the same results as Williams’
model.

In Sec. 2.8., the absorption coefficient was shown to be proportional to
the frequency, which means that for the frequency range in the present
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study, the maximum loss will be at f = 1000 kHz. To illustrate the
amount of losses introduced with a Q-factor Qf = 50 ·103, a simulation
with losses in model 1 compared to Williams’ model without losses, as
a function of distance to z = 500 mm with the frequency f = 1000 kHz
is shown in Fig. 5.17.

Figure 5.17: Model 3 when using losses compared with Williams’ model
which is lossless at f = 1000 kHz.

The difference in dB at 500 mm is approximately 0.2 dB. In other
words, the difference will be even smaller for lower frequencies and
distances.

5.1.3 The effect of evanescent waves

Because model 3 neglects evanescent waves, which is also a model for
the normal particle velocity, it is of interest to see this effect in model
1 because it represents pressure. Using model 1 with a finite receiver
and without a plate, but excluding evanescent waves, the pressure as a
function of distance at f = 500 kHz is compared in Fig. 5.18.
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Figure 5.18: Model 1 as a function of distance to z = 120 mm, excluding
evanescent waves, compared with Williams’ model at f = 500 kHz.
hfa = 22.

Overall they both match, but close to the source z ≤ 10 mm, there is
less agreement, see Fig. 5.19. for a closer look.

Figure 5.19: Zoomed in on the nearfield of Fig. 5.18.

The cause of this is clear if looking at the angular spectrum at, e.g.,
z = 3 mm when evanescent waves are included and when they are
excluded, see Fig. 5.20.
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Figure 5.20: The magnitude of the angular spectrum |P (η, z =
3 mm, f = 500 kHz)| of model 1 at z = 3mm with frequency f =
500 kHz, with and without evanescent waves. hfa = 22.

Just as η is slightly bigger than hf , the evanescent waves have a sig-
nificant magnitude which influences the integration. If left out, the
spatial pressure will be undersampled and incorrect in the nearfield, as
seen in Fig. 5.19. This effect is even more significant at the frequency
f = 40 kHz, if calculating model 1 as a function of distance z = 120 mm
with frequency f = 40 kHz and compared with Williams’ model, see
Fig. 5.21.

Figure 5.21: The magnitude of model 1 as a function of distance to z =
120 mm, excluding evanescent waves, compared with the magnitude of
Williams’ model at f = 40 kHz. hfa = 2.
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There is a great deviance between the two. This is also evident if
comparing the phases, see Fig. 5.22.

Figure 5.22: The phases of model 1 and Williams’ model as a function
of distance to z = 120 mm, when excluding evanescent waves in model
1, at f = 40 kHz. hfa = 2.

The exclusion of evanescent waves at f = 40 kHz is not a good ap-
proximation, and again the reason can be explained by looking at the
angular spectrum. In Fig. 5.23., the magnitude of the angular spec-
trum is calculated for f = 40 kHz at a distance of z = 100 mm.

Figure 5.23: The magnitude of the angular spectrum |P (η, z =
100 mm, f = 40 kHz)| of model 1 at z = 100mm with frequency
f = 40 kHz.
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When η > hf the evanescent part is significant if compared with the
magnitude of the propagating part, which will affect the spatial inte-
gration and therefore cause undersampling effects.

Model 1 produces the same results as analytical models, in the nearfield
and farfield, without plate. It was also seen that the exclusion of evanes-
cent waves is not a good approximation for low frequencies. This was
due to the significance of evanescent waves just as η is slightly bigger
than hf , which is a phenomenon for the pressure ASM models, i.e., for
model 1 and 2. This will therefore not be studied using model 2 in Sec.
5.2.

5.2 Model 2: Without plate

5.2.1 Magnitude and phase of the angular spec-
trum

In Fig. 5.24. an incision of the magnitude of the angular spectrum,
Eq. (2.33), at the axis of hf,x where hf,y = 0 is plotted for a frequency
of f = 500 kHz at z = 200 mm and z = 1000 mm without plate.

Figure 5.24: The magnitude of the angular spectrum |PA(hf,x, hf,y =
0, z, f = 500 kHz)| of model 2 with frequency f = 500 kHz at z =
200 mm and z = 1000 mm. hfa = 22.

Notice that compared with model 1, the spike at hf,x = hf are not as
good sampled. This is because of the limitations in number of samples
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as mentioned in Sec. 3.3.2. An example of the phase of the angular
spectrum of model 2, can be seen in Fig. 5.25., which was calculated
with frequency f = 500 kHz at z = 200 mm.

Figure 5.25: The phase of the angular spectrum PA(hf,x, hf,y = 0, z =
200 mm, f = 500 kHz) of model 2 with frequency f = 500 kHz at z =
200 mm. hfa = 22.

The phase is also subjected to undersampling effects as the rate of
change increases.

5.2.2 Comparisons with additional models

In figure 5.26, model 2 Eq. (2.32) with T (hf,x, hf,y, d, f) = 1, and
Williams’ model Eq. (2.75), have been calculated with f = 500 kHz
as a function of distance to z = 120 mm, and there is a magnitude
difference. Also note that the unit of the pressure is wrong. This is
because of the factor missing from model 2, as stated in Sec. 2.2., which
was calculated to be 4/πv0a

2. Multiplying model 2 with the missing
factor gives the plot in figure 5.27.
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Figure 5.26: Model 2 without plate compared with Williams’ model,
simulated with frequency f = 500 kHz as a function of distance to
z = 120 mm. hfa = 22.

Figure 5.27: Model 2 mulitplied with missing factor compared with
Williams’ model, simulated with frequency f = 500 kHz as a function
of distance to z = 120 mm

The phase at f = 500 kHz of the two models are compared in Fig. 5.28.
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Figure 5.28: The phases of model 2 and Williams’ model, simulated
with frequency f = 500 kHz as a function of distance to z = 120 mm.

For consistency, model 2 mulitplied with missing factor is compared
with Williams’ model for the frequency f = 40 kHz in Fig. 5.29., as a
function of distance to z = 120 mm. The simulation have multiplied
with the missing factor.

Figure 5.29: Model 2 multiplied with missing factor compared with
Williams’ model, simulated as a function of distance to z = 120 mm
with frequency f = 40 kHz. hfa = 2.

The phase at f = 40 kHz for the two models are presented in Fig. 5.30.
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Figure 5.30: The phases of model 2 and Williams’ model, simulated as
a function of distance with frequency f = 40 kHz. hfa = 2.

What is perhaps a bit difficult to see in Fig. 5.29. is that as the distance
increases, some undersampling effects starts to appear. If extending the
distance to z = 150 mm and zooming in, the effects are more visible,
see Fig. 5.31.

Figure 5.31: Model 2 with missing factor compared with Williams’
model, simulated as a function of distance with frequency f = 40 kHz
for a distance between 100 mm and 150 mm.

These deviances are very small, but for greater distances they may be
more significant, which will be shown in Sec. 5.5.. The undersampling
effects are a result of the limit in number of samples as stated in Sec.
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3.3.2. At this frequency, the evanescent part is crucial to sample with
enough samples, which was also seen in Sec. 5.1.3. In Fig. 5.32.,
model 2 with missing factor is compared with Williams’ model at f =
1000 kHz. The phase at f = 1000 kHz for the two models are plotted
in Fig. 5.33. Apart from the missing factor, model 2 produce the same
results as Williams’ model, however, model 2 has some limitations in
terms of number of samples and computational efficiency, because it is
a three-dimensional description.

Figure 5.32: Model 2 multiplied with missing factor compared with
Williams’ model, simulated as a function of distance to z = 230 mm
with frequency f = 1000 kHz. hfa = 45.

Figure 5.33: The phases of model 2 and Williams’ model, simulated
as a function of distance to z = 230 mm with frequency f = 40 kHz.
hfa = 45.
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5.3 Model 3: Without plate

5.3.1 Magnitude and phase of the angular spec-
trum

The magnitude of the angular spectrum of model 3 without plate, Eq.
(2.57) with T (θf , d) = 1, at the distance z = 200 mm with frequency
f = 500 kHz is compared with the same case when including evanescent
waves (modified model 3), are presented in Fig. 5.34.

Figure 5.34: The magnitude of the angular spectrum |VZ(θf , z =
200 mm, f = 500 kHz)| of model 3 and modified model 3, at the dis-
tance z = 200 mm with frequency f = 500 kHz. hfa = 22.

The unit should be m4 · s · kg−1, but because of the missing πa2 term
in the aperture function, as stated in Sec. 2.3., the unit is incorrect.
The phase of the angular spectra in Fig. 5.34. are shown in Fig. 5.35.
See Sec. 5.1.1. for comparisons with the angular spectrum and phase
of model 1. The phase of the plane-wave component of model 1 in
Fig. 5.3. is equal to the plane-wave component in Fig. 5.35., which
means that the plane-wave pressure and plane-wave particle velocity
are in phase with each other. The spectrum of model 3 in Fig. 5.34.
is truncated at θf = 90◦. The effect of the inverse impedance term
of model 3 is clear as the spectrum goes toward 0 instead of infinity
which was seen with model 1 and 2. When excluding evanescent waves,
there is not much difference compared to when they’re included in Fig.
5.34., which is due to the large distance and frequency. However, at
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e.g. z = 3 mm at the same frequency, the significance of the evanescent
waves may be higher. In Fig. 5.36. the angular spectrum of model
3 at the distance z = 3 mm with frequency f = 500 kHz is compared
to the same case when including evanescent waves. The magnitude
of the evanescent waves are relatively low compared to the rest of the
spectrum and in Sec. 5.3.3. this will be shown to not matter for the
spatial values if excluding the evanescent part.

Figure 5.35: The phase of the angular spectrum VZ(θf , z =
200 mm, f = 500 kHz) presented in Fig. 5.34. hfa = 22.

Figure 5.36: The magnitude of the angular spectrum |VZ(θf , z =
3 mm, f = 500 kHz)| of model 3 at the distance z = 3 mm with fre-
quency f = 500 kHz compared with modified model 3 when including
evanescent waves. hfa = 22.
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5.3.2 Comparison with Williams

In order to compare model 3 with Williams’ model, a method is to do
a normalization of the two models. In Fig. 5.37., model 3, Eq. (2.56)
with T (θf , d) = 1, have been calculated as a function of distance with
frequency f = 500 kHz, and normalized to it’s value at z = 120 mm.
The same is done with Williams’ model.

Figure 5.37: Model 3 compared with Williams’ model as function of
distance with frequency f = 500 kHz. Both models are normalized
with their values at z = 120 mm. hfa = 22.

The phase of the models at the same frequency and distance range are
shown in Fig. 5.38.

Figure 5.38: The phases of model 3 and Williams’ model as function
of distance with frequency f = 500 kHz. Both models are normalized
with their values at z = 120 mm. hfa = 22.
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The phases match, but there are clear differences in magnitude in
Fig. 5.37 in the nearfield, with more distinct interference effects for
Williams’ model, before it starts to decay as 1/z. They converge to-
wards the same value at z = 120 mm, which is important to note when
introducing the results including plate in Sec. 5.5. and Sec. 5.6. In Fig.
5.39., the two models are again compared through normalization with
their respective values at z = 120 mm, but at frequency f = 40 kHz.

Figure 5.39: The magnitudes of model 3 compared with Williams as
function of distance with frequency f = 40 kHz. Both models are
normalized with their values at z = 120 mm. hfa = 2.

The phase of the two models are shown in Fig. 5.40.

Figure 5.40: The phases of model 3 and Williams’ model as function of
distance with frequency f = 40 kHz. Both models are normalized with
their values at z = 120 mm. hfa = 2
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The phases in Fig. 5.40. are different from one another, as opposed
to the phases in e.g. Fig. 5.38. This may be caused by hfa → 0,
where the baffled piston goes towards a point source, for which the
consequence is that pressure and particle velocity becomes more out
of phase in the nearfield [30]. Finally, the two models are compared
through normalization with their respective values at z = 500 mm at
frequency f = 1000 kHz in Fig. 5.41, with the respective phase in Fig.
5.42. At this frequency their dynamics are almost indistinguishable.
These results will be important when introducing a plate and with the
calculations of the transfer functions defined in Sec. 2.7.

Figure 5.41: Model 3 compared with Williams’ model as function of
distance with frequency f = 1000 kHz. Both models are normalized
with their values at z = 500 mm.

5.3.3 The inclusion or exclusion of evanescent waves

In Fig. 5.43. modified model 3 with evanescent waves and model 3
without evanescent waves at f = 500 kHz have been simulated as a
function to a distance to z = 120 mm, without plate.
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Figure 5.42: The phases of model 3 and Williams’ model as function
of distance with frequency f = 1000 kHz. Both models are normalized
with their values at z = 500 mm.

Figure 5.43: Model 3 without evanescent waves compared to modified
model 3 with evanescent waves as a function of distance to z = 120 mm
with f = 500 kHz.

There is only slight deviance in the nearfield, which can be seen in Fig.
5.44.
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Figure 5.44: Zoomed in on the nearfield of Fig. 5.43.

Otherwise the two simulations are very similar. In Fig. 5.45. the same
case has been simulated, but at a lower frequency, f = 40 kHz, as a
function of distance to z = 120 mm.

Figure 5.45: Model 3 without evanescent waves and modified model
3 with evanescent waves as function of distance to z = 120 mm with
f = 40 kHz. hfa = 2

There is a significant difference in the nearfield, but further out in the
field, the difference is small. In Fig. 5.46 the respective phases at
the same frequency are plotted. Again there is a difference, but for
lower distances compared to the magnitude. They become equal at
approximately z = 10 mm.
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Figure 5.46: The phases of model 3 without evanescent waves and
modified model 3 with evanescent waves as function of distance to
z = 120 mm with f = 40 kHz. hfa = 2

In Sec. 5.1.3., it was shown that excluding evanescent waves in the
angular spectrum of the pressure for low frequencies was a poor ap-
proximation. Interestingly, this not is necessarily true for model 3, i.e.
particle velocity, in the farfield, which seems to be caused by the inverse
impedance relationship when compared to pressure, which in turn does
not influence the spatial integration. In Fig. 5.47., the magnitude of
the angular spectrum of modified model 3 with frequency f = 40 kHz
at distance z = 100 mm is plotted. The evanescent part just after
|θf | > 90◦ is not as significant as with the pressure shown in Sec. 5.1.3.,
Fig. 5.23., because of the inverse impedance term. However, in in Fig.
5.48. the angular spectrum of modified model 3 have been calculated
at the distance z = 3 mm with frequency f = 40 kHz. The evanescent
part has approximately the same magnitude as the propagating part.
Ergo, leaving this out will cause the difference shown in Fig. 5.45.

5.3.4 Validity of constant pressure as boundary
condition

Model 3 uses a constant pressure as a boundary condition for the baf-
fled piston model, which is unusual, as the boundary condition for the
baffled piston model usually is constant velocity [32], [30], [38], [21].
Younghouse [16] also used a constant pressure as boundary condition
in the derivation of an angular spectrum model based on the baffled
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Figure 5.47: The magnitude of the angular spectrum of modified model
3 |VZ(θf , z = 100 mm, f = 40 kHz)| with evanescent waves with fre-
quency f = 40 kHz at distance z = 100 mm. The black dotted line
represents where θf = 90◦.

Figure 5.48: The magnitude of the angular spectrum |VZ(θf , z =
3 mm, f = 40 kHz)| of model 3 with evanescent waves with frequency
f = 40 kHz at distance z = 3 mm. The black dotted line represents
where θf = 90◦.
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piston model. Unlike Orofino and Pedersen he did not do any conver-
sion to particle velocity, but propagated the pressure to a distance. He
stated that this is only valid for distances bigger than approximately
z ≈ a(ahf )

1
3 without giving any references to this, though it is believed

to stem from parabolic equation approximations. He used a point re-
ceiver and this approximation refers to such a case. In Sec. 5.7.1. it is
shown that the nearfield when using a finite receiver is ”longer” than
when using a point receiver. The pressure when using a finite receiver
does not decay as 1/z at the Rayleigh distance, as the point receiver
do. It can therefore be indicated that Younghouse’s distance approxi-
mation of when the constant pressure boundary condition is valid, also
applies for the case when using finite receiver, though for an even big-
ger distance. In addition to Younghouse’s statement, Tjotta [41] stated
that the constant pressure is valid as a boundary condition if the sur-
face of the piston is compliant, which is not the case for the present
study, as the piston is assumed to be baffled.

Model 3 simulates the normal particle velocity at the surface of a re-
ceiver. It was seen that the dynamics in the nearfield does not match
with Williams. This may due to the fact that this represents particle
velocity, or that the pressure boundary condition is seemingly not a
valid boundary condition in the nearfield for the baffled piston model.

5.4 Scholte-waves in the plane-wave trans-

mission coefficient

Before the comparisons with plate transmission in Sec. 5.5., it is nec-
essary to discuss the phenomenon of surface waves in the plane-wave
transmission coefficent, defined with Eq. (2.85), specifically known as
Scholte-waves [42]. The parameters for the plate simulations are given
in Sec. 3.1.

When working with the plate transmission analysis and not including
losses, it was found that for a certain η > hf , the transmission coeffi-
cient goes far above unity, see Fig. 5.49., where a closer look is shown
in Fig. 5.50.
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Figure 5.49: The magnitude of the transmission coefficient |T (η, d =
6.05 mm, f = 500 kHz)| at f = 500 kHz goes over unity when η > hf ,
where the red dotted line represents η = hf .

And with an even closer look, the spike actually consists of two spikes,
see Fig. 5.51.

Figure 5.50: Zoomed in on Fig. 5.49. The red dotted line represents
η = hf .
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Figure 5.51: Zoomed in on Fig. 5.50.

The phenomenon was due to the presence of surface-waves at the in-
terface of the plate-fluid/fluid-plate, also known as Scholte-waves [43],
[44], [29], which can either trigger antisymmetric or symmetric modes
at the interfaces between the fluid-plate and plate-fluid. These are not
leaky Lamb-modes.

Osbourne and Hart [5] did a mathematical analysis of the dispersion
equations, defined in Sec. 2.6.1., Eqs. (2.95), (2.96), and found an
antisymmetrical and a symmetrical mode which are not near the leaky
Lamb modes [5]. The analysis show that at low frequencies the phase
velocity of the antisymmetric mode goes to zero, while the phase ve-
locity of the symmetric mode goes towards the velocity of the wave in
fluid. At high frequencies, both of the phase velocitites go asymptoti-
cally towards the velocity in the fluid.

The dispersion equations, Eqs. (2.95) and (2.96), can be used to find
the wavenumbers at which there is Scholte-waves. The result is plotted
in Fig. 5.52. for low frequencies.
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Figure 5.52: The dispersion diagram for lower frequencies of the sym-
metric and antisymmetric Scholte waves.

If the dispersion diagram is plotted in terms of the phase velocity in-
stead, see figure 5.53, it shows the exact behavior of the two Scholte-
waves as described in [43], [24], [5], [29], for low frequencies. Using then
the wavenumbers found for the symmetric and antisymmetric Scholte-
waves at f = 500 kHz, the two spikes in Fig. 5.51. can be identified,
see Fig. 5.54.

Figure 5.53: The dispersion diagram in terms of phase velocity cph, of
the symmetric and antisymmetric Scholte waves for lower frequencies.
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Figure 5.54: The Scholte-wavenumbers found at f = 500 kHz inserted
in Fig. 5.51.

Thus the behavior of the transmission coefficient for these wavenum-
bers are caused by the presence of Scholte-waves. The answer of why
the pressure of the angular spectrum is seemingly that much greater
after transmission at this particular phase velocity and wavenumber
remains unanswered as this would require a level of research that is
beyond the scope of this thesis. It is still of interest to discuss whether
these surface waves affect the sound field after plate transmission. In
simulations however, it proved very difficult to get good simulations
at low frequencies without any undersampling-effects, especially if the
plate was in the nearfield of the source. This was therefore solved with
the introduction of a complex wavenumber ĥf in the fluid (loss in the
fluid), and as a consequence, the spikes gets sufficiently damped down
and affects the simulations less. This also reflects the fact stated by
Glorieux et al. [45], that the energy of the Scholte-waves mainly exists
in the fluid. An example of when loss is included in the transmission
coefficient at f = 500 kHz, using a Q-factor of Qf = 5 · 103 is shown in
Fig. 5.55. Even with such a small amount of loss, the Scholte-waves’
influence on the transmission coefficient are significantly damped, but
still goes above unity.
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Figure 5.55: The transmission coefficient with loss versus without loss
using Qf = 5 · 103 at f = 500 kHz.

5.5 Comparison of transmission models with

plate in farfield

The transfer function of interest is H<p><p>(f) and H<pv><pv>(f), de-
fined in Sec. 2.7., Eq. (2.99) and Eq. (2.100), respectively. Loss in fluid
have been included in all the simulations. The three models will not
be individually presented because they give surprisingly equal results,
which in turn will be discussed.

Using model 1, 2, and 3 with plate, Eqs. (2.29), (2.32), (2.56), respec-
tively, the results of the transfer functions are shown in Fig. 5.56. The
different maxima and minima, which are due to the excitation of leaky
Lamb modes in the plate, are labeled using the associated leaky Lamb
mode label following the convention used in [21] and [28]. The frequen-
cies of maximum or minimum transmission in the respective models are
given in Tab. 5.1 along with their associated leaky Lamb mode label.
The frequencies was determined using a smaller step-size, 0.1 kHz, for
more accuracy, and then rounded up to integers.
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Figure 5.56: The transfer function |H<p><p>(f)| using model 1 and
model 2, and the transfer function |H<pv><pv>(f)| using model 3.

Table 5.1: The frequencies of maximum and minimum transmission
between the models.

Label: Model 1 [kHz] Model 2 [kHz] Model 3 [kHz]
A1 259 259 259
S−2 460 460 460
S2 518 518 518
A2 775 775 775
A3 957 957 957

Except at frequencies below approximately f = 30 kHz, there is virtu-
ally no difference in the three models, which is not surprising. H<p><p>(f)
and H<pv><pv>(f) are relative to the pressure or particle velocity at
270 mm and in Sec. 5.3.2., it was shown that distance-relative normal
particle velocity and pressure have very similar dynamics, especially
as the distance increases. Because of this, the transfer functions will
therefore be indistinguishable. Also in Sec. 5.3.3., it was shown the
exclusion of evanescent waves in model 3 gives very similar results if
compared to a simulation that includes evanescent waves, especially
with high frequencies or large distances. Additionally, the missing fac-
tors in model 2 and model 3 does not matter, again because the transfer
functions are relative.

For the lower frequencies, some deviance between the models, and the
transfer functions H<p><p>(f) and H<pv><pv>(f) are found, see Fig.
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5.57. for a closer look.

Figure 5.57: Zoomed in on the lower frequencies in the comparison of
the transfer function |H<p><p>(f)| using model 1 and model 2, and the
transfer function |H<pv><pv>(f)| using model 3.

Model 2 is afflicted by undersampling effects. At the frequency range
between approximately 10 kHz and 80 kHz model 2 struggles to sample
correctly, even though losses are included. It was shown in Sec. 5.2.
that model 2 had some undersampling effects at 40 kHz due to it not
being able to sample the angular spectrum close enough. However,
as seen in Fig. 5.57., this is exclusively for the frequency range be-
tween 10 kHz and 80 kHz, as it is able to calculate the transfer function
for lower and higher frequencies than this range. Why this frequency
range is particularly hard to sample have not been investigated, as this
frequency range is not important for the scope of the thesis.

Between the transfer functions, there is deviance for very low frequen-
cies, i.e., lower than approximately 15 kHz, see Fig. 5.58. for a closer
look. This difference may be due to model 3 excluding evanescent
waves, so in Fig. 5.59. the modified model 3 have been simulated with
evanescent waves, and the resulting transfer function is different when
excluding evanescent waves.
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Figure 5.58: The transfer functions for frequencies below 30 kHz.

Figure 5.59: The transfer functions for frequencies below 30 kHz, in-
cluding the transfer function calculated using modified model 3 with
evanescent waves.

It seems therefore that the exclusion is not valid for these frequencies,
but the validity of the dampening of Scholte-waves should be confirmed
through measurements or other methods. The difference using model
1 and 3 could be due to the fact that as hfa → 0 the baffled piston
source goes towards that of a point source where the pressure and
particle velocity are more out of phase [30].

In order to verify the results of the transfer function, model 1 is used
to compare with measurement, which implicitly verifies the other two
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models as well because of their similarity. The results of simulation
compared to measurement are presented in Fig. 5.60.

Figure 5.60: The measured and simulated transfer function
|H<p><p>(f)| with plate and finite receiver using model 1 to calculate
the simulation.

The frequencies of maximum and minimum transmission are given in
Tab. 5.2.

Table 5.2: The differences in frequencies of maximum and minumum
transmission between model 1 and measurements.

Label: Simulated [kHz] Measured [kHz]
S−2 460 460
S2 518 518
A2 775 771
A3 957 955

The deviance of frequency and magnitude between measurements and
simulations at the maximum associated with the A2-mode is charac-
teristic to the ASM: similar results can be seen in e.g. [21] and [18].
Furthermore, the indicated deviance of magnitude at the A3 mode, may
be because of the radius of the piston used in simulations. In Sec. 3.1.
it was shown how the radius of the piston was determined, and stated
that the radius is determined by using the angle θ−3dB of the real trans-
ducer at 575 kHz. Adjusting the radius to, e.g., a frequency of 850 kHz
of the real transducer, the radius is a = 12.2 mm. Using model 1 to
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calculate H<p><p>(f) with this radius as source- and receiver radius,
the magnitude at A3 fits better, see Fig. 5.61.

Figure 5.61: |H<p><p>(f)| calculated using model 1 with radius a =
b = 12.2 mm compared with measurement.

The magnitude on the S−2 deviates, because the radius is adjusted for a
high frequency. Ideally, the radius of the piston source in the simulation
program would be frequency dependent, by determining the effective
radius for the real transducer for a wider range of frequencies, but this
is not done at the present time.

5.6 Comparison of transmission models with

plate in nearfield

Waag used Orofino and Pedersens model for a transmission-case as
done here, i.e. model 3. An incentive to compare with him, is that
he had the plate in the nearfield, which may introduce differences con-
sidering the the exclusion or inclusion of evanescent waves, and the
different dynamics seen with normal particle velocity and pressure in
the nearfield. Waag’s simulation parameters were:

• a = b = 10 mm,

• cf = 1500 m · s−1,

• ρf = 1000 kg ·m−3,
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• ρp = 7945 kg ·m−3,

• cp,l = 5790 m · s−1,

• cp,s = 3300 m · s−1,

• dT = 40 mm,

• dR = 50 mm,

• d = 10 mm,

• z = dT + dR = 90 mm,

• fl1 = 298500 kHz,

where fl1 is the cut-off frequency of the leaky Lamb mode he labeled
as S2, which can be calculated using Eq. (2.91). For more details
concerning Waag’s work, see the dissertation [19].

In Waag’s dissertation, there is specifically a plot [19][p. 91, Fig. 2.] to
compare with. The data of this plot were retrieved from Waag himself
[46]. Only model 1, model 3 and modified model 3, will be used to
compare with Waag’s result, because it was shown in Sec. 5.5. that
model 1 and 2 gives equivalent results. Additionally, it was shown
that model 2 does not handle the low frequencies properly, and it is
therefore difficult to get decent simulations when the plate is at an
even shorter distance from to the source. This because the number of
samples required to sample the Scholte-waves have to be quite large as
the evanescent part is more significant at shorter distances. Regardless,
model 1 and model 2 both represent the principle of using constant
normal particle velocity velocity on the piston source surface which is
used to solve for an expression for pressure at the receiver surface, and
the comparison with Waag is mainly meant to serve as comparison of
the different principles used.

The data retrieved by Waag was somewhat corrupted in the sense that
the data had shifted slightly from what is believed to be correct, due
to article writing processes [46]. The data is the transmitted particle
velocity as a function of frequency, normalized to its maximum trans-
mitted value, in dB. This means that the plot should go to 0 at the
maximum value, but the retrieved data did not. This was solved by
adding the difference between 0 and maximum value to the data. The
results of this can be seen in Fig. 5.62.
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Figure 5.62: The retrieved data from Waag compared to the shifted
data.

The original data does not go to zero, and is at a constant value below
the shifted data. The shifted data will be used for further comparisons.

In Fig. 5.63., model 3 has been used for the same case in order to
reproduce Waag’s data.

Figure 5.63: Waag’s shifted data reproduced using model 3 compared
to the shifted data retrieved from Waag.

The reproduced results match with Waag, which also adds validity to
the simulations shown using model 3. In Fig. 5.64., a simulation using
model 1 have been calculated with Waag’s parameters.
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Figure 5.64: Waag’s shifted data compared with model 3 and model 1.

Once again there are only very subtle differences between model 1 and
3 in the overall frequency range, with more deviance for very low fre-
quencies. A closer look at the magnitude for the frequencies between
0 ≤ Frequency/fl1 ≤ 0.3, which approximately corresponds to fre-
quencies less than 90 kHz, are shown in Fig. 5.65.

Figure 5.65: Zoomed in the lower frequency range of Fig. 5.64.

The difference between model 1 and 3 may be caused by the fact that
model 1 represent pressure, while model 3 represent particle velocity.
In Sec. 5.5., Fig. 5.59., it was however seen that the exclusion of
evanescent waves in model 3 gives a different results to compared when
evanescent waves are included. This may very well be the reason in
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Fig. 5.65., so in Fig. 5.66. modified model 3 have been simulated with
evanescent waves.

Figure 5.66: Model 3 compared to modified model 3 including evanes-
cent waves for Waag’s plate transmission setup.

The exclusion of evanescent waves are in general valid, but zooming in
on lower frequencies, see Fig. 5.67., there is again a difference when
including evanescent waves.

Figure 5.67: Zoomed in on the lower frequencies of Fig. 5.66. The
frequencies below Frequency/fl1 ≤ 0.3 corresponds to frequencies less
than approximately 90 kHz.

In Sec. 5.5. it was seen that model 3 when including evanescent waves
compared to when excluding evanescent waves gives different results for
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frequencies less than approximately 15 kHz. The same is seen in Fig.
5.67., but for a wider range of frequencies, which is due to the plate
being in the nearfield where the significance of the evanescent waves
increases.

Modified model 3 including evanescent waves are compared with model
1 from in Fig. 5.68.

Figure 5.68: Modified model 3 compared to model 1 with Waag’s trans-
mission setup.

For frequencies less than Frequency/fl1 = 0.05 which corresponds ap-
proximately to to 15 kHz, there are some differences, which again may
be because the pressure and particle velocity are more out of phase as
hfa→ 0 [30].

5.7 Finite receiver compared to point re-

ceiver

This section will show and discuss some differences when using a point
receiver compared with a finite receiver, without and with plate.

5.7.1 Without plate

In Sec. 5.1.2., model 1 was validated through the comparison with
Kinsler et al.’s model for the on-axis pressure with a point receiver,
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and through the comparison with Williams’ model for a finite receiver.
Comparing then the simulations of model 1 without plate, using a point
receiver and finite receiver for a frequency f = 500 kHz as a function
of distance to z = 120 mm, the results are given in Fig. 5.69.

Figure 5.69: Model 1 with point receiver compared to model 1 with
finite receiver as a function of distance to z = 120 mm with frequency
f = 500 kHz. hfa = 22. RA = 110 mm.

The impact of the finite receiver compared to the point receiver is
clearly seen, and while the pressure at the point receiver decays as 1/z
at the Rayleigh distance, the pressure at the finite receiver does not.
To see this, the relation

|pressure| ∝ A

z
,

A ∝ |pressure| × z, (5.2)

can be used. Multiplying the simulations in Fig. 5.69. with the distance
z, the results are given in Fig. 5.70.
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Figure 5.70: The calculations in Fig. 5.69 multiplied with the distance.

The constant A in the point-receiver case is constant at approximately
z = 100 mm while the finite-receiver case is not constant for any dis-
tance in the figure. Extending the simulations to z = 300 mm, A for
the finite receiver is constant at approximately z = 250mm, and the
pressure at the point receiver and finite receiver become approximately
equal, see Fig. 5.71.

Figure 5.71: The calculations in Fig. 5.70. extended to 300 mm.

The Rayleigh distance is not a good approximation to when the pres-
sure decays as 1/z for the finite receiver. The reason is that the wave
need a bigger distance to diverge, in order for the wavefront to become
approximately planar over the surface of the finite receiver. This can
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be verified by looking at the spatial distribution of the spatial pres-
sure, which can be done by using the expression derived without finite
receiver, Eq. (2.22) with T (η, d) = 1. The spatial distribution at
z = 110 mm and z = 250 mm at frequency f = 500 kHz to a radial
distance r = 100 mm have been calculated and plotted in Fig. 5.72.

Figure 5.72: The spatial distribution of the pressure at a distance z =
120 mm and at z = 250 mm with frequency f = 500 kHz.

Zooming in on the radial distance up to r = 20 mm, because the ra-
dius of the receiver is 10.55 mm, reveals why the pressure with a finite
receiver is different at the two distances, see Fig. 5.73.

Figure 5.73: Zoomed in on the spatial distribution in Fig. 5.72. to a
radial distance r = 20 mm.
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For r ≤ 10.55 mm at z = 250 mm the pressure is more or less constant
with increasing r. Averaging this with respect to r will therefore give
an average value close to the pressure value of the on-axis component
where r = 0. At z = 110 mm for r ≤ 10.55 mm, the pressure is far from
constant, so the average pressure at the finite receiver will be less than
the pressure value of the on-axis component.

In Fig. 5.74. model 1 with a point receiver compared to model 1 with
finite receiver have again been plotted as a function of distance, but for
a frequency of f = 40 kHz.

Figure 5.74: Model 1 with point receiver compared to model 1 with
finite receiver as a function of distance to z = 120 mm with frequency
f = 40 kHz.

Again, the Rayleigh-distance, which is approximately 9 mm, is not a
good measure for the farfield in finite receiver case. This can also be
verified with a simulation at a frequency of f = 1000 kHz, see Fig. 5.75.
These results will come in handy for understanding the results of Sec.
5.7.2.
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Figure 5.75: Model 1 with point receiver compared to model 1 with
finite receiver as a function of distance to z = 230 mm with frequency
f = 1000 kHz. RA = 220 mm.

5.7.2 With plate

To study the influence of a finite receiver in plate transmission, the
transfer function Hp<p>(f), defined in Sec. 2.7., Eq. (2.98), can be
compared to the point receiver transfer function Hpp(f), Eq. (2.97).
Using model 1, the two transfer function are calculated in Fig. 5.76.

Figure 5.76: The transfer functions Hp<p>(f) and Hpp(f) calculated
using model 1.

The frequencies of maximum and minimum transmisson are given in
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Tab. 5.3.

Table 5.3: The different frequencies of maximum and minumum trans-
mission of Hp<p>(f) and Hpp(f).

Label: Hpp(f) [kHz] Hp<p>(f) [kHz]
A1 259 259
S−2 458 460
S2 517 518
A2 775 775
A3 956 957

In order to confirm that Hpp(f) is calculated correctly, a comparison
between measured and simulated Hpp(f) are presented in Fig. 5.77.

Figure 5.77: The transfer function Hpp(f) calculated with model 1
compared with measurement.

The frequencies of maximum and minimum transmission of the simu-
lated and measured Hpp(f) are given in Tab. 5.4.
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Table 5.4: The differences in frequencies of maximum and minumum
transmission between simulated and measured Hpp(f).

Label: Simulated [kHz] Measured [kHz]
S−2 458 458
S2 517 518
A2 775 772
A3 956 955

Looking at the results for low frequencies in Fig. 5.76., i.e., frequencies
less than f = 350 kHz, the two transfer functions are almost equal.
This is because the transmitted beam is wide, and almost constant
with respect to the radial direction, so the average pressure will be
almost equal to the on-axis component. In Fig. 5.78. the transmitted
pressure using model 1 without finite receiver, Eq. (2.22), have been
calculated with z = 376.05 mm up to a radial distance of r = 20 mm
for a frequency of f = 200 kHz. The simulation have been normalized
with the on-axis component to see the dynamics in magnitude with
respect to r, a bit clearer.

Figure 5.78: The spatial distribution of the pressure at z = 270 mm
and z = 376.05 mm at frequency of f = 200 kHz normalized to the
on-axis component.

The pressure at at r = 10.55 mm is approximately 0.1 dB less than the
on-axis component. With such a small difference, the average trans-
mitted pressure will be almost equal to the on-axis component, which
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in turn gives almost equal transfer functions, because the denominator
in both transfer functions are equal.

At the transfer functions’ maximum magnitude, which is caused by
exciting the S−2-mode in the plate, there is a deviance in magnitude
and a shift of frequency, where the point receiver transfer function
Hpp(f) has a higher magnitude compared to Hp<p>(f), with maximum
transmission at a lower frequency. The reason can again be explored
by looking at the spatial dristribution of the pressure on the upper side
of the plate, z = 270 mm, and at z = 376.05 mm on the lower side of
the plate, see Fig. 5.79.

Figure 5.79: Spatial distribution of pressure at the distances z =
270 mm and z = 376.05 mm with frequency f = 458 kHz.

The transmitted beam is narrower and less constant with increasing r,
which means that the average pressure received by the finite receiver
will be less than that of a point receiver.

The shift of frequency can also be explained by similar means. In Fig.
5.80., the spatial distribution at z = 376.05mm for the frequencies
f = 458 kHz, f = 459 kHz, and f = 460 kHz are plotted.
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Figure 5.80: Spatial distribution of pressure at the distance z =
376.05 mm with frequencies f = 458 kHz, f = 459 kHz and f =
460 kHz.

The spatial distribution at the different frequencies are overall simi-
lar, but the pressure at f = 460 kHz is slightly bigger than the other
frequencies with increasing r. This means that the average pressure
at the receiver will be slightly higher at f = 460 kHz than the other
frequencies.

The difference of magnitude at the A3-mode between the two transfer
functions is approximately 0.5 dB. The small difference is due to a
widening of the beam at these frequencies [21]. This can further be
explained by looking at the spatial distribution of the pressure at the
frequencies f = 956 kHz and f = 957 kHz. In Fig. 5.81. the spatial
pressure have been calculated for a distance z = 376.05 mm for these
frequencies.
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Figure 5.81: Spatial distribution of transmitted pressure at the distance
z = 376.05 mm with frequencies f = 956 kHz and f = 957 kHz.

The spatial pressure at f = 957 kHz is equal or higher than the pressure
at f = 956 kHz when r is increasing. At approximately r = 10.55 mm
the difference of the pressure at f = 957 kHz compared to the on-
axis component is less than 1 dB, which again gives an almost equal
average pressure to the on-axis component. Because the pressure at
f = 957 kHz is generally higher with increasing r compared to the
pressure at f = 956 kHz, there is also a frequency shift of maximum
when using a finite receiver.
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Chapter 6

The receiver distance
dependency of plate
transmission effects

This chapter will introduce simulation results when increasing the dis-
tance between the plate and receiver. In Sec. 6.1. some of the previous
work done on this will be discussed and reproduced with model 1, before
the continuation of this work is presented in Sec. 6.2. The phenomena
observed in this section, will be discussed in more detail in Sec. 6.3.

The simulation parameters are given in Sec. 3.1., though the frequency
range from now on will be between 350 kHz to 1000 kHz which is the
frequency range of excitation of the leaky Lamb modes of interest. The
simulations are also lossless, because the Scholte-waves’ significance in
the spectrum disappear for high frequencies and large distances due to
the fast decaying exponential term.

6.1 Comparisons with previous work

In the articles [25] and [28], the transfer function Hplate
pp (f) is used to

compare with the single plane-wave transmission coefficient as a func-
tion of frequency. If Hplate

pp (f), and the plane-wave transmission coeffi-
cent with a single incident plane wave, T (η = 0, d, f), are compared as
a function of frequency, the differences can be seen in Fig. 6.1. using
model 1 Eq. (2.29 with receiver radius b→ 0) to calculate Hplate

pp (f).
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Figure 6.1: |Hplate
pp (f)| compared with the single plane-wave transmis-

sion coefficient, as a function of frequency.

The frequency of maximum transmission predicted by the transmission
coefficient is f = 477 kHz, while the frequency of maximum transmis-
sion in Hplate

pp (f) is f = 455 kHz. The maximum caused by the A3

mode in the plate, is f = 955 kHz for the transmission coefficient, and
f = 957 kHz for Hplate

pp (f).

In the articles by Aanes et al. [27] and [28], some figures of the trans-
mitted field as a function of distance are shown for certain frequencies.
In [27][p. 4 Fig. 5], the on-axis pressure for f = 457 kHz is shown.
457 kHz is the frequency of maximum transmission which Aanes et al.
found with the Hybrid-ASM, when the point receiver is situated 100mm
from the plate. This deviates slightly with the results given in section
5.7.2, but as the Hybrid FEM-ASM is based on the FEM and ASM,
some differences may be introduced.

Using model 1, Eq. (2.29 with receiver radius b → 0), the on-axis
pressure at frequency f = 457 kHz is plotted as a function of distance
to z = 800 mm in Fig. 6.2.
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Figure 6.2: The on-axis pressure as a function of distance at f =
457 kHz to a distance of z = 800 mm with plate. hfa = 20.

The empty space indicates the distance where the plate is situated. The
incident pressure has a 1/z behavior while the transmitted pressure is
clearly different. The behavior is also apparent in the results presented
in [27].

In Fig. 6.3. the spatial distribution of the pressure as a function of
radial and vertical distance is plotted, using Eq. (2.22), up to a radial
distance of 100 mm and a vertical distance of 530 mm from the plate,
and z = 800 mm from the source. Similarly, Aanes et al. shows this in
both the articles [27] [28], though for a Cartesian coordinate system.

Figure 6.3: The spatial distribution of the pressure at f = 457 kHz.
hfa is approximately hfa = 20.
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The result is similar with Aanes et al., though the pressure magnitude
is different. This is due to a different constant velocity chosen on the
surface of the piston.

6.2 Nearfield and farfield after plate trans-

mission

Using model 1 and a point receiver, Eq. (2.29 with receiver radius
b→ 0), the on-axis transmitted pressure as function of distance and fre-
quency is plotted in Fig. 6.4. for frequencies 350 kHz ≤ f ≤ 1000 kHz
from the lower surface of the plate at z = 276.05 mm, to a distance
z = 3996.05 mm.

Figure 6.4: The on-axis transmittted pressure for frequencies between
350 kHz to 1000 kHz from the distance z = 276.05 mm to a distance
z = 3996.05 mm.

The maxima caused by the excitation of the S−2-mode and A3-mode
in the plate, are changing with distance and frequency, which will be
discussed in Sec. 6.3. The simulation in Fig. 6.2. can then be extended
to 3996.05 mm, see Fig. 6.5.
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Figure 6.5: The on-axis pressure as a function of distance with fre-
quency f = 457 kHz from a distance z = 0 to a distance z =
3996.05 mm. hfa = 20.

Notice that the minimum at approximately z = 1200 mm is also visible
in Fig. 6.4., which changes with frequency and distance. The trans-
mitted pressure at z = 276.05 mm is approximately 4 dB higher than
the incident at z = 270 mm. Interestingly, the behavior with increasing
distance is similar to that which is found in the nearfield of the piston
source, with variation of negative and positive interference effects. At
approximately z = 3000 mm the pressure decays as 1/z, which is more
clear if using the relation given in Eq. (5.2). The results are plotted in
Fig. 6.6.

Figure 6.6: The constant A as a function of distance to z = 3996.05 mm
at f = 457 kHz. At approximately z = 3000 mm A is constant and the
pressure decays as 1/z.
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In Fig. 6.4., at f = 700 kHz, there is no excitation of any leaky Lamb
modes in the plate or any significant plate transmission effects, except
for a decreased magnitude of the transmitted pressure. The pressure
at f = 700 kHz as a function of distance is plotted in Fig. 6.7.

Figure 6.7: The on-axis pressure as a function of distance with fre-
quency f = 700 kHz from a distance z = 0 to a distance z =
3996.05 mm.

The transmitted pressure at z = 276.05 mm is approximately 25 dB
lower than the incident. The transmitted pressure also decay as 1/z,
see Fig. 6.8.

Figure 6.8: The constant A as a function of distance with frequency
f = 700 kHz from a distance z = 0 to a distance z = 3996.05 mm.
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In Fig. 6.9., the pressure as a function of distance at f = 956 kHz have
been plotted.

Figure 6.9: The on-axis pressure as a function of distance with fre-
quency f = 956 kHz from a distance z = 0 to a distance z =
3996.05 mm.

The transmitted pressure at z = 276.05 mm is approximately 6 dB lower
than the incident, and there are minimal interference effects. Again the
constant A is plotted in Fig. 6.10.

Figure 6.10: The constant A as a function of distance with frequency
f = 956 kHz from a distance z = 0 to a distance z = 3996.05 mm.

At approximately z = 2000 mm, the pressure decay as 1/z.
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Quantitatively, Eq. (5.2) can also be used at all the distances and
frequencies in Fig. 6.4., where the results are plotted in Fig. 6.11.

Figure 6.11: The amplitude of the pressure after plate transmission.

A constant color means that the pressure is decaying as 1/z. The
pressure for the range of frequencies associated with the S−2-mode
are in general not decaying as 1/z just after transmission, though for
the pressure at the frequencies associated with the A3-mode, does (al-
most) decay as 1/z after a relatively short distance. The pressure after
transmission have also been simulated using a finite receiver, using Eq.
(2.29), see Fig. 6.4.

Figure 6.12: The transmittted pressure using a finite receiver for fre-
quencies between 350 kHz to 1000 kHz from the distance z = 276.05 mm
to a distance z = 3996.05 mm.
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Again, the transmitted pressure maxima associated the S−2-mode and
A3-mode are changing with distance and frequency. In Fig. 6.13., the
pressure with a finite receiver as a function of distance with frequency
f = 457 kHz is plotted.

Figure 6.13: The pressure after plate transmission using a finite re-
ceiver.

The dynamics with distance is very similar to the point receiver case,
which is confirmed if plotted against the point receiver for the same
frequency and distances, see Fig. 6.14.

Figure 6.14: The pressure as a function of distance at f = 457 kHz
using a finite receiver compared to when using a point receiver.

At z = 270 mm the pressure at the finite receiver is only approximately
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0.5 dB less than the pressure at the point receiver, but because there
is a narrowing of the lobe after transmission, as discussed in section
5.7.2, the transmitted pressure using a finite receiver is less, which is
approximately 2 dB lower than the pressure at the point receiver. The
minimum in Fig. 6.14, when using a finite receiver is interestingly
higher than when using a point receiver, which is also apparent in
the spatial distribution presented in Fig. 6.15., at the distance z =
1166 mm with the frequency f = 457 kHz.

Figure 6.15: The pressure as a function of radial distance after plate
transmission at f = 457 kHz at the distance z = 1166 mm.

In Fig. 6.16. the pressures using a point receiver and a finite receiver
as a function of distance at f = 700 kHz are compared. At z = 270 mm
the pressure at the finite receiver is approximately 1 dB less than at
the point receiver, and at z = 276.05 mm the transmitted pressure at
the finite receiver is also approximately 1 dB lower than the pressure
at the point receiver.
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Figure 6.16: The pressure as a function of distance after plate trans-
mission at f = 700 kHz using a finite receiver compared to when using
a point receiver.

In Fig. 6.17. the pressures using a point receiver and a finite receiver
as a function of distance at f = 956 kHz are compared.

Figure 6.17: The pressure as a function of distance after plate trans-
mission at f = 956 kHz using a finite receiver compared to when using
a point receiver.

The incident pressure at z = 270 mm at the finite receiver is approxi-
mately 2 dB less than at the point receiver, while the pressure is only
approximately 0.4 dB less at z = 276.05 mm. This is due to the widen-
ing of the beam, as discussed in Sec. 5.7.
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6.3 Frequency shift of maximum on in the

transmitted pressure

In the previous section it was stated that the maximum of transmit-
ted pressure changes with frequency and distance. This section will
show this more clearly. The case when having a point receiver will be
discussed in order to generalize the results.

In Fig. 6.18., the figure in the last section, Fig. 6.4., is again plotted,
but with a tracing of the maxima on the respective modes.

Figure 6.18: The pressure after transmission as a function of distance
and frequency. The black lines represent the tracing of maxima.

The frequencies of maximum transmission at 276.05 mm and 3996.05 mm
are given in Tab. 6.1.

Table 6.1: The frequencies of maximum transmission at the minimum
and maximum distance of Fig. 6.18.

z [mm] S−2 [kHz] A3 [kHz]
276.05 455 957
3996.05 477 955

The frequencies of maximum transmission at the their respective end-
distances are the predicted frequencies of maximum transmission when
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using the plane-wave approximation with the transmission coefficient,
as seen in Sec. 6.1., Fig. 6.1.

The pressure at the two distances as function of frequency are plotted
in Fig. 6.19. They have been normalized with their maximum pressure
value in order to compare the two.

Figure 6.19: The pressure as a function of frequency at distances z =
276.05 mm and z = 3996.05 mm.

The pressure as a function of distance for the two frequencies f =
455 kHz and f = 477 kHz are plotted in Fig. 6.20.

Figure 6.20: The pressure as a function of distance with frequencies
f = 455 kHz and f = 477 kHz.
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Two measurements were performed in an attempt to confirm that the
frequency change is a fact, though the current setup in the laboratory is
not eligible for measurements at distances bigger than approximately
875 mm between the source and receiver. In Fig. 6.21. the transfer
function Hpp(f) was measured for a distance of 626 mm as a function
of frequency and compared with simulations.

Figure 6.21: |Hpp(f)| measured compared with simulation as a function
of frequency with z = dT + dR = 626 mm.

The frequencies of maximum and minimum transmission are given in
Tab. 6.2 for the measurement and simulation.

Table 6.2: The frequencies of maximum transmission for measured
Hpp(f) at z = dT + dR = 626 mm.

Label: Simulated [kHz] Measured [kHz]
S−2 463 463
S2 517 517
A2 775 775
A3 956 953

The transfer function with the receiver at z = 875 mm was also mea-
sured, and the resulting transfer function compared to simulations is
given in Fig. 6.22.
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Figure 6.22: |Hpp(f) measured compared with simulation as a function
of frequency with z = dT + dR = 875 mm.

The frequencies of minimum and maximum transmission are given in
Tab. 6.3.

Table 6.3: The frequencies of maximum transmission for Hpp(f) at
z = dT + dR = 875 mm.

Label: Simulated [kHz] Measured [kHz]
S−2 465 466
S2 519 517
A2 773 775
A3 955 955

Compared to the measurement with the receiver at z = 626 mm, the
magnitudes are lower than the simulated magnitude. However, the
measured magnitudes are less than 1 dB at S−2-mode and A3-mode.
The trend in the measurements is that the frequencies of maximum
transmission associated with the excitation of the these modes in the
plate, change with increasing distance from the plate, though this
should be confirmed for an even bigger distance, preferably at z =
3996.05 mm.

In the following sections, Sec. 6.3.1. and Sec. 6.3.2., an analysis that
tries to explain why there is a frequency change of the maximum on
S−2 will be performed. This is done by analysis of magnitude and
phase of the angular spectrum, before a hypothesis on the physical
interpretation is given.
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6.3.1 Magnitude and phase at 455 kHz

As shown in Sec. 5.1.1., the angular spectrum does not change with
distance, except for a faster decaying evanescent part. In Fig. 6.23.,
the magnitude of the angular spectra of the pressures at the distances
276.05 mm and 3996.05 mm with f = 455 kHz are plotted.

Figure 6.23: The magnitudes of angular spectra of pressure at the
distances 276.05 mm and 3996.05 mm.

This means that in order to explain why the spatial pressure is different
at this frequency at the two distances, besides the physical and obvious
reason that the pressure decays as a function of distance, the answer
lies within the phase of the respective distances.

Before going into the analysis of the phase, MATLAB® has a function
that comes in handy as a tool of analysis. Additionally to their function
trapz(), they also have a cumtrapz() function, which is an accumulated
integration; it shows all the steps in the trapezoidal integration as func-
tion of the integration variable, in this case η. With this, it is possible
to see exactly which parts of the magnitude and phase of the angular
spectrum that contributes for the final integrated value. As an exam-
ple, the results of this function can be seen in Fig. 6.24., where the
function have been used for the integrand of Eq. (2.29 with b→ 0) at
f = 455 kHz at distance z = 276.05 mm.
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Figure 6.24: The magnitude of the accumulated integration of Eq. (2.29
with b→ 0) at f = 455 kHz at the distance z = 276.05 mm.

From approximately η = 300 rad · m−1 the magnitude and phase in
the integration basically have negligible influence on the final value at
ηmax ≈ 1940 rad ·m−1. In order to understand this, all the steps from
the incident wave to the transmitted wave needs to be investigated, by
looking at the magnitude and phase of the angular spectrum in the
individual steps. The magnitude and phase of the angular spectrum of
the incident wave at frequency f = 455 kHz at z = 270 mm is plotted
in Fig. 6.25.

Figure 6.25: The magnitude and phase of PT (η, z = 270 mm, f =
455 kHz) with f = 455 kHz at the distance z = 270 mm. hfa = 20.
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Note that the phase for low η has a small rate of change until the phase
is equal to the first −π, and that this is unique compared to the rest of
the phase. This part of the phase between η = 0 and η = η−π,1 where
η−π,1 is the wavenumber where the phase first equals −π, will therefore
be termed as ”the unique phase”. In Fig. 6.26., the magnitude and
phase of Fig. 6.25. are zoomed in for the wavenumbers between η = 0
and η = 1400 rad · m−1 in order to compare with the transmission
coefficient in the following.

Figure 6.26: Zoomed in on Fig. 6.25.

The incident magnitude and phase, changes when multiplied with the
transmission coefficient, where the magnitude and phase of the tran-
mission coefficient is given in Fig. 6.27, along with a labeling of the
associated leaky Lamb modes of the different maxima in the spectrum.
The transmission coefficient is relative, so the phase represents the
phase-difference between the transmitted and incident pressure. It is
the phase-difference which gives the characteristic increase of trans-
mitted pressure, which will be explained. Notice that the phase of the
transmission coefficient rises before exciting the S−2-mode, while the
phase of the incident angular spectra in Fig. 6.26. decreases almost
within the same interval of η. Adding these two together will give an
almost constant rate of change, because the rate of change to the phase
in the transmission coefficient for η ≤ ηS−2

is approximately equal to
the rate of change in the incident phase for η ≤ η−π,1, though with
opposite signs.
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Figure 6.27: The magnitude and phase of the transmission coefficient
at f = 455 kHz.

The sum of the rate of change in the phases are plotted in Fig. 6.28.
for η ≤ 200 rad ·m−1.

Figure 6.28: The sum of rate of change to the phases of the angular
spectrum of the incoming wave at z = 270 mm and the transmission
coefficient at f = 455 kHz.

The spikes around η ≈ 150 rad · m−1 are caused by the high rate of
change as the phase jumps from −π to π. When adding the phase-
difference of the transmission coefficient to the phase of the angular
spectrum, this will introduce an almost constant phase with respect to
η in the transmitted angular spectrum, within this interval of η. In

125



Fig. 6.29. the magnitudes of the angular spectra at the upper and
lower side of plate are plotted together at the frequency f = 455 kHz.

Figure 6.29: The magnitude and the angular spectrum at f = 455 kHz
at the distances z = 270 mm and z = 276.05 mm.

The magnitude of the spectrum at the lower side is generally less than
the upper side. In Sec. 6.1., Fig. 6.1., it was seen that the transmitted
pressure at f = 455 kHz was larger than the incident. This means
that the increase of the pressure in space at the lower side, has to be
due to the difference of phase in the angular spectrum, considering the
magnitude of the transmitted angular spectrum is generally less than
the incident angular spectrum. In Fig. 6.30., the phase and magnitude
of the spectrum at the lower side of the plate is plotted. The unique
phase has an even smaller rate of change compared to the unique phase
at the upper side, which was predicted in Fig. 6.28. In Fig. 6.31 the
rate of change for the two phases at z = 270 mm and z = 276.05 mm
for η ≤ 200 rad ·m−1 are plotted.
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Figure 6.30: The magnitude and phase of the angular spectrum at
f = 455 kHz at the distance z = 276.05 mm.

Figure 6.31: The rate of change of the phase of the angular spectra at
f = 455 kHz at the distance z = 270 mm and z = 276.05 mm.

The phase at the lower side stays approximately constant for a bigger
interval of η compared to the upper side. Finally if the accumulated
integration is compared for the two, the unique phase reveals its im-
portance, see Fig. 6.32.
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Figure 6.32: The accumulated integration at f = 455 kHz at the dis-
tance z = 270 mm and z = 276.05 mm.

This, with the phase-differences in Fig. 6.31., suggests that the small
rate of change for the unique phase at the lower side of the plate,
introduces more constructive interference in the integration, compared
to the integration on the upper side of the plate. Then as η becomes
bigger, the rest of the phase introduces a periodic extinction of the
magnitude-components in the integration, which effectively means that
the unique phase is the determining factor for the spatial value of the
pressure. The reason that there is less oscillations of the accumulated
integration at the lower side as η becomes bigger and the phase becomes
periodic, is because the accumulated value achieved for low η is high
relative to the rest of the magnitude in the spectrum, so the periodicity
of the phase affects the integration less.

Furthermore, if the spectrum and phase at z = 3996.05 mm is drawn
into the comparisons, similar arguments can be used to understand
why the pressure is less at this distance compared to 276.05 mm. The
phase and magnitude at z = 3996.05 mm of frequency f = 455 kHz are
shown in Fig. 6.33.
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Figure 6.33: The magnitude and phase of the angular spectrum at
f = 455 kHz at the distance z = 3996.05 mm.

Note that the interval of η for the unique phase at z = 3996.05 mm, does
not include the S−2-peak in the magnitude of the spectrum. The phase
for low η from Fig. 6.33. is compared with the phase at 276.05 mm, in
Fig. 6.34.

Figure 6.34: The phase for low η of the angular spectrum at f =
455 kHz at the distance z = 276.05 mm and z = 3996.05 mm.

Once again, the phase at 276.05 mm has a low rate of change, compared
to the rate of change of the phase at 3996.05 mm. The accumulated
integration at these two distances are shown in Fig. 6.35.
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Figure 6.35: The magnitude of the accumulated integration of the
integrand at f = 455 kHz at the distance z = 276.05 mm and z =
3996.05 mm.

The results in Fig. 6.35. confirms that when the magnitude of the ac-
cumulated value for the unique phase is low relative to the rest of the
magnitude of the angular spectrum, there are great interference and
variation throughout the accumulated integration. The accumulated
integrated value achieved for the distance z = 3996.05 mm for the in-
terval for the unique phase (approximately for η ≤ 50rad ·m−1) is low
relative to the magnitude of the spectrum. However, the main attribute
to notice, is that as z increases, the unique phase has a faster rate of
change, which means that the unique phase will exist for a smaller and
smaller range of η. Then, as η−π,1 becomes smaller and goes toward
η = 0, the contribution of the S−2-peak in the magnitude of the an-
gular spectrum will disappear from the integration, and the pressure
behaves as if there was a single, normally incident plane wave to the
plate. Similar behavior is shown in Sec. 6.3.2.

6.3.2 Magnitude and phase at 477 kHz

This section will use the same arguments in Sec. 6.3.1. for the same
distances, but at the frequency f = 477 kHz.

In Fig. 6.36. the phase and magnitude of the angular spectrum on the
upper side, z = 270 mm are plotted.
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Figure 6.36: The phase and magnitude of the angular spectrum at
f = 477 kHz at the distance z = 270 mm. hfa = 21.

This shows very similar results compared to the case at f = 455 kHz in
Fig. 6.25. However, the transmitted angular spectrum will be different,
where the phase and magnitude of the transmission coefficient at f =
477 kHz are plotted in Fig. 6.37.

Figure 6.37: The phase and magnitude of the transmission coefficient
at f = 477 kHz

The S−2-mode is now excited for a smaller wavenumber of the inci-
dent wave as compared with frequency f = 455 kHz, which causes the
maximum in the angular spectrum at the lower side of the plate to
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change accordingly. This can be seen in Fig. 6.38., where the phase
and magnitude of the angular spectrum at z = 276.05 mm are plotted.

Figure 6.38: The phase and magnitude of the angular spectrum at
f = 477 kHz at the distance z = 276.05 mm.

The magnitude of maximum transmission is now for a interval starting
at η = 0, with an almost constant magnitude up until η ≈ 50 rad ·m−1.
The phase, as opposed to the case at f = 455 kHz, has a rate of change
that is higher, when compared to the incident phase, in the interval of
the unique phase, see Fig. 6.39.

Figure 6.39: The rate of change of the phase at f = 477 kHz at the
distance z = 270 mm and z = 276.05 mm.

The magnitude of the incident angular spectra and the transmitted
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angular spectrum for this interval of η are plotted in figure 6.40.

Figure 6.40: The magnitude of the angular spectrum at f = 477 kHz
at the distance z = 270 mm and z = 276.05 mm.

For the case at f = 455 kHz, it was seen that the unique phase is the
determining factor for the value of the spatial pressure. The spatial
pressure was higher on the lower side, even though the magnitude of
the angular spectrum in the interval of the unique phase was generally
lower than the incident; the unique phase was more constant with re-
spect to η than the incident phase, which introduced more constructive
interference in the integration than at the incident side. Analogously at
f = 477 kHz, the magnitude of the angular spectrum in the interval of
the unique phase on the lower side is generally lower than the incident;
the unique phase however, is less constant than the incident side, which
introduces more destructive interference in the integration than at the
incident side. This gives a spatial pressure which is less on the lower
side of the plate. The accumulated integration at f = 477 kHz for the
two distances are plotted in Fig. 6.41., which also confirms this.
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Figure 6.41: The magnitude of the accumulated integration at f =
455 kHz at the distance z = 276.05 mm and z = 3996.05 mm.

It was stated in the last section that as z increases, the wavenum-
ber η−π,1 goes toward zero, i.e., towards the plane-wave component
in the angular spectrum. With this, the reason to why there is a
frequency shift of the maximum - why the pressure at the distance
z = 3996.05 mm for the frequency f = 477 kHz is higher than the pres-
sure at frequency f = 455 kHz at the same distance - can be explained.
The magnitude and phase of the angular spectrum at z = 3996.05 mm
for the frequency f = 477 kHz is plotted in Fig. 6.42.

Figure 6.42: The magnitude of the accumulated integration at f =
455 kHz at the distance z = 276.05 mm and z = 3996.05 mm.
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The unique phase is close to η = 0, and in this case, as a opposed
to the same distance with frequency f = 455 kHz, the maximum due
to excitation of the S−2-mode is included within the interval of the
unique phase. A comparison between the magnitude and phase of the
angular spectrum at z = 3996.05 mm for the frequencies f = 455 kHz
and f = 477 kHz for η ≤ 200 rad ·m−1, is presented in Fig. 6.43. and
Fig. 6.44, respectively

Figure 6.43: Zoomed in on the magnitude for small η of the angular
spectrum at f = 455 kHz compared with the magnitude of the angular
spectrum at f = 477 kHz.

Figure 6.44: Zoomed in on the phase of the angular spectrum at f =
455 kHz compared with the magnitude of the angular spectrum at f =
477 kHz.
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In both cases, the unique phase will give a constructive interference for
a short interval of η. The significant difference however, is that the
maximum for the magnitude of the angular spectrum at f = 455 kHz
is not included within this interval of η, while the maximum at f =
477 kHz is included within this interval. The result is a bigger spatial
pressure, i.e. a shift of frequency for the maximum spatial pressure
after transmission at the distance z = 3996.05 mm.

To summarize, it was seen that when increasing the distance between
the plate and point receiver, the unique phase, which is the determining
factor for the value of the spatial pressure, goes towards η = 0. This
means that the spatial value relies more and more on the magnitude
of the angular spectrum close to η = 0, i.e., the magnitude of the
normally incident plane wave. A physical interpretation of this, may
be that when the receiver is close to the plate, the on-axis component
is afflicted by interference effects because of the excitation of backward
wave mode in the plate [28][29]. Then as the receiver moves further
and further away from the plate, and thus the interference region, it is
only receiving the on-axis component which was normally incident to
the plate, which also had a plane-wave like condition on the wavefront
because the plate is in the farfield of the source. In other words, the
maximum transmission is at f = 477 kHz when the receiver is a great
distance from the plate, but in the nearfield of the plate, the on-axis
component received is afflicted by interference. This is however not
confirmed and remains a hypothesis, and should be further investigated,
e.g, by a similar study when exciting the A3-mode of the plate.
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Chapter 7

Conclusion and further work

A short summary and conclusions of the results in the thesis are given
in Sec. 7.1., before some further work are proposed in Sec. 7.2.

7.1 Observations and conclusions

Three ASM-type of models based on the baffled piston model and de-
veloped for the case of plate transmission with a finite receiver, were
derived and implemented in MATLAB® to use in simulations. The first
model, model 1, which was developed for the thesis, used a constant
velocity on the surface of the piston, which in turn were used to solve
for the transmitted average pressure at the surface of a finite receiver
in cylindrical coordinates. The second model, model 2, developed by
Anderson and Martin, also used a constant velocity on the surface of
the piston, and then solved for the average transmitted pressure at the
surface of a finite receiver in Cartesian coordinates. The third and fi-
nal model, model 3, developed by Orofino and Pedersen/Waag, used a
constant pressure on the surface of the piston and then solved for the
transmitted normal average particle velocity on the surface of a finite
receiver. The models were compared, without plate, against models
independent of the ASM, with an expression for the on-axis pressure
using a point receiver, given by Kinsler et al. [30], and an expression
for the average pressure on the surface of a finite receiver, given by
Williams [38]. Discussions concerning differences when compared with
the ASM independent models ensued, before model 1, model 2 and
model 3 were compared against each other in the case of plate trans-
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mission. Following this, a study on the influence of a finite receiver
both with and without plate were performed, in comparison with a
point receiver. Finally, the transmitted pressure when increasing the
distance between the plate and receiver was simulated and presented,
along with some discussions concerning the phenomenons observed.

When comparing model 1 with the models by Kinsler et al. and
Williams without plate, it was shown overall good agreement in the
comparisons. It was also shown that the exclusion of evanescent waves
is not a good approximation for low frequencies, but gave better re-
sults for higher frequencies, especially in the farfield. This is because
the evanescent waves decay faster with increasing distance and fre-
quency, which means that they contribute less in the integration, and
thus contribute less for the value of the spatial pressure. Model 2 was
shown to miss some factors, and as a consequence, model 2 did not cal-
culate the same magnitude as Williams’ model. If multiplying model
2 with the missing factor however, there were good agreement when
comparing with Williams’ model, though with model 2 there are some
challenges with computational efficiency versus the amount of samples
due to model being a three-dimensional description. Model 3 was also
compared with Williams’ model with a normalization method, and it
was seen that they converge towards the same value with increasing
distance. There were differences in the nearfield, which may either be
due to the fact that model 3 represents particle velocity or that the
constant pressure boundary condition is seemingly not a valid bound-
ary condition for the baffled piston model, as Younghouse and Tjotta
stated. For model 3, the exclusion of evanescent waves introduced small
differences compared to when they were included, it was though bigger
differences for low frequencies. Still, the differences at low frequencies
between when excluding evanescent waves and including them, were
less than compared to model 1. This was due to the inverse normal
impedance term, which was not of significant order in the magnitude
of angular spectrum for the normal particle velocity, i.e., model 3.

When comparing the three models including plate, they gave very simi-
lar results, when using the transfer functions defined in Sec. 2.7., which
also agreed with measurements. As the transfer functions are relative,
the missing factors of model 2 and 3 does not matter, and because
model 3 has the same dynamics as pressure in the farfield, this will
give the same results as model 1 and 2. It was also seen with plate
transmission, that the exclusion of evanescent waves in model 3 were a
valid approach, except for low frequencies.
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When introducing a finite receiver it was seen that the Rayleigh-distance
is not a good approximation for when the pressure decays as 1/z. This
was due to the wave needing a bigger distance to diverge in order for
the wavefront of the wave to become planar over the finite receiver
surface. When this happens, the average pressure at the receiver sur-
face becomes equal to the pressure at a point receiver, and they decay
equally as 1/z. When introducing a plate and exciting the S−2-mode
of the plate, the maximum pressure at a finite receiver was at a higher
frequency compared to the frequency of maximum when using a point
receiver. This was due to magnitude of the pressure being slightly
higher in the radial direction for a larger frequency, so that the average
pressure on the surface of the receiver was higher at this frequency.
This effect was also seen when exciting A3-mode in the plate, which
introduced a bigger frequency upshift than that of the point receiver.

Concerning the behavior of the transmitted pressure when increasing
the distance between plate and receiver (independent of the receiver
being finite or point), it was shown that the frequencies of pressure
maximum due to the excitation of the S−2-mode and A3-mode in the
plate, shift toward the cut-off frequencies of the TE modes in the plate
with increasing distance from the plate. In the angular spectrum for
the S−2-mode, this was due to the unique phase, which was seen to be
the determining factor to the value of the spatial pressure, which goes
towards the plane-wave component of the spectrum as the distance
increases.

7.2 Further work

The program developed for thesis could be used for further investiga-
tions when varying other parameters, e.g., the distance between the
source and plate, the radius of source or receiver, thickness of plate,
Poisson’s ratio of the plate, etc. This would contribute to the further
investigations needed on the hypothesis of the physical interpretation
proposed to why the frequency shift is dependent on distance. This also
requires further measurements at longer distances than what is done
in the thesis, ideally at approximately 3996.05 mm. A similar investi-
gation of the frequency shift on the pressure due to the excitation of
A3-mode in the plate is necessary. Some further study on the impact of
the finite receiver of the transmitted pressure with increasing distance
could contribute to this as well. In Sec. 6.2., Fig. 6.14., there was
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a minimum of pressure, which for the finite receiver was higher than
with the point receiver. This reason, and why there is a dip in the first
place, could contribute to a further understanding of the behavior of
the transmitted field.

The Scholte-waves and its significance in measurements and in plate
transmission should be investigated. Also the understanding of why
the surface wave on the lower side of plate is seemingly tens of factors
higher in magnitude than the surface wave on upper side, would be
very interesting.
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Appendix A

Model 1

%%Implementation o f model 1 .
%Dec lares a l l cons tan t s and vec tors ,
%be f o r e s t a r t i n g the for−l oop s as
%de s c r i b ed in Ch . 3 .

%Author : Simen Midtbo , s t a r t e d 20 . 11 . 17 .

clear ;

% %Def in ing f requency range
f min = 350 e3 ;
f max = 1000 e3 ;
f s t e p = 1e3 ;
f v e c t o r = [ f min : f s t e p : f max ] ;

%Medium prop e r t i e s
c f = 1485 ; %speed o f sound
r h o f = 1000 ; %Freshwater dens i ty ,

%Pla te p r o p e r t i e s
rho p = 8000 ; %dens i t y o f p l a t e
c s = 3130 ;%.∗ (1 − (1 i /500)) ; %t ran s v e r s e

%sound in p l a t e
c l = 5780 ;%.∗ (1 − (1 i /1000)) ; %l o n g i t u d i n a l −−−
%
% %Transducer p r o p e r t i e s :
a = 10.55 e−3; %e f f e c t i v e rad ius o f p i s t on
b = 0 ; %rad ius o f r e c e i v e r
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v 0 = 0 ;

% %Distances and p l a t e t h i c kn e s s
d = 6.05 e−3; %th i c kn e s s o f p l a t e
d t = 270e−3; %sender to upper s i d e o f p l a t e
d r = 100e−3; %lower s i d e o f p l a t e to r e c e i v e r

% %Indexes .
idx = 1 ;
jdx = 1 ;
count = 1 ;

PFront f = [ ] ;
PRec f = [ ] ;

v e l o c i t y = f a l s e ; %Ca l cu l a t e s v e l o c i t y i f t rue .
save = true ; %Saves i f t rue .
l o s s = f a l s e ; %Inc lude s l o s s i f t rue .
i n c e v s c t = true ; %Inc lude s evanescent waves i f

%true .

cnt = 1 ;

%Distance−vec t o r
dtvec to r = [875 e−3] ;

%I t e r a t e s through the d i s tance−vec t o r
for z = dtvec to r
idx = 1 ; %Index .
PRec = 0 ;

%I t e r a t e s through the frequency−vec t o r
for f = f v e c t o r

%Set the angu lar f requency .
w = 2∗pi∗ f ;

%Set the f l u i d−wavenumber .
h f = w/ real ( c f ) ;

%Ca l cu l a t e s l a s t maximum.
lambda = (2∗pi )/ h f ;
last max = a ∗ ( ( a/lambda ) − ( lambda /(4∗ a ) ) ) ;
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%This i s to make the cho ice o f N a b i t dynamic ,
%but N = 512∗512 works in genera l
%fo r most t ype s o f c a l c u l a t i o n s .
i f i n c e v s c t == true && z > d t
i f f <= 100 e3
N = 1024∗1024;
else
N = 512∗512;
end
e l s e i f i n c e v s c t == true && z <= d t
i f f s t e p == 0.1 e3
N = 512∗512;
else
N = 512∗512;
end
e l s e i f i n c e v s c t == f a l s e && z <= d t
N = 512∗512;
else
N = 512∗512;
end

%Ca l cu l a t e s Ray le igh d i s t ance .
r ayd i s t ( idx ) = ( h f ∗a ˆ2)/2 ;

%Sets the o r i g i n o f the v e c t o r s .
Origo = 1 ;

%I f not i n c l u d i n g evanescent waves => etamax = h f .
i f i n c e v s c t == f a l s e
etamax = h f ;
else
etamax = 0 ;
end

i f etamax == 0

%Finds etamax
etamax = FindEtaMax (
last max ,
b , c f , c l , c s , rho p , d ,
d t , z , h f , rho f , w, a , v 0 , v e l o c i t y ) ;
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i f z > d t
%Sets a temporary eta−vec t o r to f i nd temporary
%etaS and
%etaA
e ta s t ep = etamax/N;
eta = [ 0 : e t a s t ep : etamax − e ta s t ep ] ;

%I t e r a t e s through the d i s p e r s i on a l gor i thm 3
%times to enhance accuracy f o r eta S , eta A ,
%whi l e s imu l t aneous l y
%c a l c u l a t i n g the e t a v e c t o r .
for i t = 1 :3
[ etaA , etaS ] = OsbourneHartSholte ( eta , w, c l ,

c s , rho p , rho f , c f , d , h f ) ;
e ta = FindEta ( z , last max , h f , eta , etamax ,

etaA , etaS , N) ;
end
disp ( ’Done with Scho l t e i t e r a t i o n s . ’ )
else
%I f z l e s s than d t , do :
eta = 1 ; %dummy
etaS = 1 ;
etaA = 1 ;

eta = FindEta ( z , last max , h f , eta , etamax ,
etaA , etaS , N) ;

end
else
%I f e xc l ud ing evanescent waves do :
etamaxstep = ( etamax )/(N) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;
etaS = 1 ;
etaA = 1 ;
eta = FindEta ( z , last max , h f , eta , etamax ,

etaA , etaS , N) ;
end

%I f l o s s = true , c a l c u l a t e the corresponding
%complex h f
i f l o s s == true
Qf = 0 .5 e5 ;
a lpha f = 0 . 5∗ ( h f . / Qf ) ;
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complex k = h f + 1 i ∗ a lpha f ;
a l p h a f l i s t ( jdx ) = imag( complex k ) ;

else
%This i s j u s t to have some dummy va lue s .
a l p h a f l i s t = 1 ;
complex k = h f ;
Qf = 1 ;
end

disp ( ’Done with nonuniform sampling . ’ )

%Def in ing the source aper ture func t i on
v 0 = 1 ;
DirHSender = (2 .∗ b e s s e l j (1 , a .∗ eta ) ) . / ( a .∗ eta ) ;
DirHSender ( Origo ) = 1 ;
AmpHSender = v 0 ∗pi∗a ˆ2 ;
HSender = AmpHSender .∗ DirHSender ;

%Def in ing the r e c e i v e r aper ture func t i on H:
i f b == 0
HRec = 1 ;
else
DirHRec = (2 .∗ b e s s e l j (1 , b .∗ eta ) ) . / ( b .∗ eta ) ;
DirHRec ( Origo ) = 1 ;
AmpHRec = pi∗bˆ2 ;
HRec = AmpHRec.∗DirHRec ;
DirHRec = 0 ;
end

%Ca l cu l a t e s the v e r t i c a l wavenumbe f o r f l u i d .
kap f z = ( ( complex k )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;

%I f d i s t ance z g r ea t e r than d t = c a l c u l a t e
%transmiss ion c o e f f i c i e n t .
i f z > d t
T = GetTransmis s i onCoe f f i c i en ( complex k , w,
c f , c l , c s , eta , rho f , rho p , d ) ;
disp ( ’ Retr i eved t ransmi s s i on c o e f f i c e n t . ’ )
else
T = 1 ;
end
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%Ca l cu l a t i n g the impedance :
i f v e l o c i t y == true
Zimp = kap f z . / ( r h o f ∗w) ;
else
Zimp = ( rho f .∗w) . / kap f z ; %impedance
end

%Pressure at the su r f a ce o f the p i s t on .
PfkAmpl = Zimp .∗HSender ;

%Ca l cu l a t i n g the propagat ion term
PropTerm = exp(1 i . ∗ ( kap f z ) . ∗ z ) ;

%Ca lcu l a t e the angu lar spectrums
i f z <= d t
PfkRec = PfkAmpl .∗PropTerm ;
else
PfkRec = PfkAmpl .∗PropTerm . . .

.∗exp(1 i . ∗ ( kap f z ).∗(−d ) ) . ∗T;
end

%In t e g r a t i o n s .
i f b == 0
%In t e g r a t i on i f b = 0.
Integrand = PfkRec .∗ eta ;
PrRec = ( (1 )/ (2∗ pi ) )∗ trapz ( eta , Integrand ) ;
else
%In t e g r a t i on wi th f i n i t e r e c e i v e r .
Integrand = PfkRec .∗HRec .∗ eta ;
PrRec = (1/( pi∗b ˆ2 ) ) . ∗ ( ( 1 ) / ( 2 ∗ pi ) ) . . .

∗trapz ( eta , Integrand ) ;
end

disp ( [ 2 0∗ log10 (abs (PrRec ) ) , z ∗1000 , f ] )

PRec( idx ) = PrRec ;

idx = idx + 1 ;
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end

disp ( [ z ∗1000 , f . / 1 0 0 0 ] )

PRec f = [ PRec f PRec ’ ] ;
%Concatenate va l u e s determined wi th in the
%f i r s t for−l oop . This method
%complex con juga t e s the complex va lues , which does
%not matter f o r magnitude , but f o r phase .
%Transpose back i f phase i s o f i n t e r e s t .

PFront = [ ] ;
jdx = jdx + 1 ;

PrFrontPlateAvg = 0 ;
end
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Appendix B

Model 2

%%Implementation o f Anderson e t . a l a r t i c l e
%”Resonant t ransmiss ion o f a
%three−dimensiona l a cou s t i c sound beam through
%a s o l i d p l a t e in a i r :
%theory and measurement”
%1995

%Author : Simen Midtbo , s t a r t e d 10 . 10 . 17 .

%%NB: This program more or l e s s i s run e x a c t l y as
%model 1 . Wi l l on ly
%%comment the b i g g e r changes .

clear ;

% %Def in ing f requency range and vec t o r
f min = 1000 e3 ;
f max = 1000 e3 ;
f s t e p = 1e3 ;
f v e c t o r = [ f min : f s t e p : f max ] ;

%Medium prop e r t i e s
c f = 1485 ; %speed o f sound
r h o f = 1000 ; %Freshwater d en s i t y

%p l a t e p r o p e r t i e s
rho p = 8000 ; %dens i t y o f p l a t e
c s = 3130 ;%.∗ (1 − (1 i /500)) ; %t ran s v e r s e

%of sound in p l a t e
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c l = 5780 ;%.∗ (1 − (1 i /1000)) ; %l o n g i t u d i n a l −−−

% %transducer p r o p e r t i e s :
U 0 = 1 ; %Par t i c l e v e l o c i t y over the t ransducer .
a = 10.55 e−3; %e f f e c t i v e rad ius o f p i s t on
b = a ; %rad ius o f r e c e i v e r : 0 = po i n t r e c e i v e r
%
% %Distance
d = 6.05 e−3; %th i c kn e s s o f p l a t e
d t = 600e−3; %sender to upper s i d e o f p l a t e
d r = 100e−3; %upper s i d e o f p l a t e to r e c e i v e r

% %Indexes .
idx = 1 ;
jdx = 1 ;
count = 1 ;

PFront f = [ ] ;
PRec f = [ ] ;

s ave = true ;
l o s s = f a l s e ;
i n c e v s c t = true ;

cnt = 1 ;

%Se t t i n g d i s t ance vec t o r
dtvec to r = [120 e−3:1e−3:500e−3] ;

jdx = 1 ;
for z = dtvec to r
idx = 1 ;

PRec = 0 ;
for f = f v e c t o r
etamax = 0 ;
w = 2∗pi∗ f ;

k = w/ real ( c f ) ;

lambda = (2∗pi )/k ;
last max = a ∗ ( ( a/lambda ) − ( lambda /(4∗ a ) ) ) ;
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i f z < last max | | f < 100 e3
N = 1024 ;
else
N = 1024 ;
end

U 0 = 1 ;

r ayd i s t ( idx ) = (k∗a ˆ2)/2 ;

i f etamax == 0
%Find etamax
etamax = FindEtaMax (b , c f ,

c l , c s ,
rho p , d , d t , z , k ,

rho f , w, a , U 0 ) ;

i f z > d t
etamaxstep = ( etamax )/(N∗1024) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;

for i t = 1 :3
[ etaA , etaS ] = OsbourneHartSholte and ( eta , w, c l ,

c s , rho p , rho f ,
c f , d , k ) ;

eta = FindEta and2 (k , eta , etamax , etaA , etaS ,
(N/ 2 ) ) ;

end

disp ( ’Done with Scho l t e i t e r a t i o n s . ’ )
else
etamaxstep = ( etamax )/(N/2 ) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;

etaS = 1 ;
etaA = 1 ;

eta = FindEta and2 (k , eta , etamax , etaA , etaS ,
(N/ 2 ) ) ;

end
else
etamaxstep = ( etamax )/(N/2 ) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;
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etaS = 1 ;
etaA = 1 ;
eta = FindEta and2 (k , eta , etamax , etaA , etaS ,

(N/ 2 ) ) ;
end

%Se t t i n g the one−dimensiona l h o r i z on t a l v e c t o r
%s t r e t c h i n g from 0 to
%etamax
kxOI = eta ;

%Fl i pp ing the temporary vec t o r
kxOIrev = − f l i p l r ( kxOI ) ;

%Concatenating the f l i p p e d and o r i g i n a l
kx = [ kxOIrev ( 1 :end−1) kxOI ] ;
ky = kx ;

%Se t t i n g the o r i g i n .
i f mod( length ( kx ) , 2) == 0
Origo = ( length ( kx )/2) + 1 ;
else
Origo = ce i l ( length ( kx ) / 2 ) ;
end

%Creat ing matr ices
[ k X , k Y ] = meshgrid ( kx , −ky ) ;

%Dec lar ing the two−dimensiona l e ta f o r f u r t h e r
%implementat ion
eta = (k X .ˆ2 + k Y . ˆ 2 ) . ˆ 0 . 5 ;
k X = 0 ;
k Y = 0 ;

i f l o s s == true
Qf = 0 .5 e5 ;
a lpha f = 0 . 5∗ ( k . /Qf ) ;
complex k = k + 1 i ∗ a lpha f ;
a l p h a f l i s t ( idx ) = imag( complex k ) ;

else
a l p h a f l i s t = 1 ;
complex k = k ;
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Qf = 0 ;
end

disp ( ’Done with nonuniform sampling . ’ )

%Def in ing aper ture func t i on
DirHSender = ( b e s s e l j (1 , a .∗ eta ) ) . / ( a .∗ eta ) ;
DirHSender ( Origo , Origo ) = 0 . 5 ;
AmpHSender = U 0∗pi∗a ˆ2 ;
Hsender = AmpHSender .∗ DirHSender ;
DirHSender = 0 ;

%de f i n i n g the aper ture funcc t i on H:
i f b == 0
HRec = 1 ;
else
DirHRec = ( b e s s e l j (1 , b .∗ eta ) ) . / ( b .∗ eta ) ;
DirHRec ( Origo , Origo ) = 0 . 5 ;
AmpHRec = pi∗bˆ2 ;
HRec = AmpHRec.∗DirHRec ;
DirHRec = 0 ;
end

kap f z = ( ( complex k )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;

i f z > d t
T = GetTransmis s ionCoe f f i c i en and ( complex k ,

w, c f ,
c l , c s , eta , rho f ,

rho p , d ) ;
disp ( ’ Retr i eved t ransmi s s i on c o e f f i c e n t . ’ )
else
T = 1 ;
end

%f ind i n g the pre s sure in f−k domain :

Zimp = ( rho f .∗w) . / kap f z ; %impedance
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PfkAmpl = Zimp .∗ Hsender ; %pres sure
Zimp = 0 ;
Hsender = 0 ;

%Propagat ing f a c t o r s :

PropTerm = exp(1 i . ∗ ( kap f z ) . ∗ z ) ;

%%%The in t eg rands
i f z <= d t
Pfk = PfkAmpl .∗ PropToPlate ;
PfkRec = Pfk .∗HRec ;
else
PfkFront = PfkAmpl .∗HRec .∗PropTerm . . .

.∗exp(1 i . ∗ ( kap f z ).∗(−d ) ) ;
PfkRec = PfkAmpl .∗HRec .∗PropTerm . . .

.∗exp(1 i . ∗ ( kap f z ).∗(−d ) ) . ∗T;
end

PfkAmpl = 0 ;
PropTerm = 0 ;
HRec = 0 ;
kap f z = 0 ;
T = 0 ;
Pfk = 0 ;
PfkFront = 0 ;

%%%Doing the two−dimensiona l d i s c r e t e i n t e g r a t i o n .
i f b == 0
PrRec = ( (1 )/ (4∗ pi ˆ 2 ) ) . . .

∗trapz ( ky , trapz ( kx , PfkRec , 2 ) ) ;
else
PrRec = ( (1 )/ (4∗ pi ˆ 2 ) ) . . .

∗trapz ( ky , trapz ( kx , PfkRec , 2 ) ) ;
end

PfkRec = 0 ;

PRec( idx ) = PrRec ;

disp ( [ z ∗1000 , f . / 1 0 0 0 ] )

idx = idx + 1 ;
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end

disp ( z ∗1000)

PRec f = [ PRec f PRec ’ ] ;

jdx = jdx + 1 ;

PrFrontPlateAvg = 0 ;
end
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Appendix C

Model 3

%Implementation o f Orofino/Pedersen a r t i c l e :
%Eva luat ion o f angle−dependent
%s p e c t r a l d i s t o r t i o n f o r i n f i n i t e p lanar e l a s t i c
%media v ia angu lar
%spectrum decomposi t ion
%1993
%Author : Simen Midtbo , s t a r t e d 10 .17 .

%%NB: This program more or l e s s i s run e x a c t l y as
%model 1 . Wi l l on ly
%%comment the b i g g e r changes .

clear ;

N = 4096∗4096;
f v e c t o r = [ 1 e3 : 1 e3 : 1 e3 ] ;

%Medium prop e r t i e s
c f = 1485 ; %speed o f sound
r h o f = 1000 ; %Freshwater d en s i t y

%transducer p r o p e r t i e s :
a = 10.55 e−3; %e f f e c t i v e rad ius o f p i s t on
b = a ;

%p l a t e p r o p e r t i e s :
d = 6.05 e−3; %th i c kn e s s
rho p = 8000 ; %dens i t y o f p l a t e
c s = 3130 ; %trans v e r s e o f sound in p l a t e
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c l = 5780 ; %l on g i t u d i n a l −−’’−−−

%Distance
d t = 501e−3; %sender to upper s i d e o f p l a t e
d r = 100e−3; %upper s i d e o f p l a t e to r e c e i v e r

%d t v e c t o r = [ 0 : 0 . 1 e−3:100e−3];

%Indexes .
idx = 1 ;
jdx = 1 ;

UFront = [ ] ;
URec = [ ] ;

UFront f = [ ] ;
URec f = [ ] ;

t = 140e−6;

dtvec to r = [ d t + d r + d ] ;

save = f a l s e ;
i n c l e v s c t = true ;
l o s s = true ;

for f = f v e c t o r
idx = 1 ;
disp ( f )
for z = dtvec to r
disp ( idx )
w = 2∗pi∗ f ;

Origo = 1 ;

k = w/ c f ;

i f i n c l e v s c t == true ;

etamax = FindEtaMax (b , c f ,
c l , c s ,
rho p , d ,

d t , z , k , rho f , w, a , U 0 ) ;
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i f z > d t

etamaxstep = ( etamax )/(N) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;

for i t = 1 :3
[ etaA , etaS ] = OsbourneHartSholte ( eta , w, c l ,

c s , rho p , rho f , c f , d , k ) ;
eta = FindEta (k , eta , etamax , etaA , etaS , N) ;
end

disp ( ’Done with Scho l t e i t e r a t i o n s . ’ )
else
etamaxstep = ( etamax )/(N) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;

etaS = 1 ;
etaA = 1 ;

eta = FindEta (k , eta , etamax , etaA , etaS , N) ;

end

%
else
etamax = k ;
etamaxstep = k/N;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;
etaS = 1 ;
etaA = 1 ;
eta = FindEta (k , eta , etamax , etaA , etaS , N) ;
end

thetaz = asin ( eta . / k ) ;

i f l o s s == true
Qf = 0 .5 e5 ;
a lpha f = 0 . 5∗ ( k . /Qf ) ; %Qf = 0.5 e5
complex k = k + 1 i ∗ a lpha f ;
a l p h a f l i s t ( idx ) = imag( complex k ) ;

else
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a l p h a f l i s t = 1 ;
complex k = k ;
Qf = 0 ;
end

%de f i n i n g the aper ture func t i on H fo r the sender :
DirHTrans = (2 .∗ b e s s e l j (1 , a .∗ eta ) ) . / ( a .∗ eta ) ;
DirHTrans (1 ) = 1 ;
HTrans = DirHTrans ;

DirHRec = (2 .∗ b e s s e l j (1 , b .∗ eta ) ) . / ( b .∗ eta ) ;
DirHRec (1 ) = 1 ;
HRec = DirHRec ;

i f z > d t

%Def in ing the t ransmiss ion c o e f f i c i e n t
%fo r the p l a t e :
k z = ( complex k .ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;

kap f z = ( complex k ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;
kap l z = ( (w/ c l )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;
kaps z = ( (w/ c s )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;

A = ( (w. / c s ) . ˆ 2 − 2∗( eta ) . ˆ 2 ) . ˆ 2 . . . .
.∗ tan ( kap l z . ∗ ( d . / 2 ) ) . . .
+ 4 .∗ (w. / c ) . ˆ 2 . ∗ kaps z .∗ kap l z . . .
.∗ tan ( kaps z . ∗ ( d . / 2 ) ) ;

S = ( (w. / c s ) . ˆ 2 − 2∗( eta ) . ˆ 2 ) . ˆ 2 . . . .
.∗ cot ( kap l z . ∗ ( d . / 2 ) ) . . .
+ 4 .∗ ( eta ) . ˆ 2 . ∗ kaps z .∗ kap l z . . .
.∗ cot ( kaps z . ∗ ( d . / 2 ) ) ;

Y = ( rho f . / rho p ) . ∗ ( kap l z . / kap f z ) . ∗ (w. / c s ) . ˆ 4 ;

T = (1 i .∗Y. ∗ ( S +d t + A) ) . / ( ( S − 1 i .∗Y ) . . . .
. ∗ (A + 1 i .∗Y) ) ;

R = (A.∗S − Y. ˆ 2 ) . / ( ( S − 1 i .∗Y) . ∗ (A + 1 i .∗Y) ) ;

T( isnan (T) ) = 0 ;
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R( isnan (R) ) = 0 ;
else
kap f z = ( complex k ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;
T = 1 ;
end

ZimpInv = ( ( cos ( thetaz ) ) . / ( r h o f .∗ c f ) ) ;
UfkAmpl = ZimpInv .∗HTrans ;

%Propagat ing f a c t o r s :
PropToPlate = exp(1 i .∗ complex k .∗ cos ( thetaz ) . ∗ z ) ;

i f z > d t
PropTerm = exp(1 i .∗ complex k .∗ cos ( thetaz ) . . . .

. ∗ ( z − d ) ) ;
end

%In t e g r a t i n g
i f z <= d t
Ufk = UfkAmpl .∗ PropToPlate ;
Integrand = Ufk .∗HRec .∗ complex k .∗ sin ( thetaz ) . . .
.∗ complex k .∗ cos ( thetaz ) ;
UrFrontPlateAvg = 2∗pi∗trapz ( thetaz , Integrand ) ;
UFront ( idx ) = UrFrontPlateAvg ;
else
Ufk = UfkAmpl .∗T.∗PropTerm ;
Integrand = Ufk .∗HRec .∗ complex k .∗ sin ( thetaz ) . . .
.∗ complex k .∗ cos ( thetaz ) ;
UrRecAvg = 2∗pi∗trapz ( thetaz , Integrand ) ;
URec( idx ) = UrRecAvg ;
end

disp (20∗ log10 (abs (URec( idx ) ) ) )
idx = idx + 1 ;
end

jdx = jdx + 1 ;
i f z <= d t
UFront f = [ UFront f UFront ’ ] ;
else
URec f = [ URec f URec ’ ] ;
end
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end
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Appendix D

FindEtaMax

function etamax = FindEtaMax ( last max , b , c f ,
c l , c s , rho p , d , d t , z , k , rho f , w, a ,
U 0 , v e l o c i t y ) ;

%I f z = 0 , the pre s sure w i l l decay to slow ,
%so the etamax w i l l be huge .
%Etamax at z = 0 was t h e r e f o r e emp i r i c a l l y
%determined ins tead , which g i v e s
%decent va l u e s in genera l . Could perhaps be
%more accura te determined .
i f z == 0
etamax = 10ˆ4 ;
return
end

%Declares the ” i n f i n i t e ” etamax , which i s
%temporary .
In fEta = 20 e3 ;
etamax = 0 ;

%Some va lue s to use in search o f etamax .
Origo = 1 ;
found = f a l s e ;
s t a r t = k ;
count = 1 ;

%%%%Find dB−t h r e s h o l d .
while found == f a l s e
i f count == 1
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%This i s j u s t in case the v e l o c i t y
%i s t rue . As s t a t e d in Ch . 3 ,
%the t h r e s h o l d f o r the v e l o c i t y i s a
%d i f f e r e n c e . This f i n d s the
%va lue to compare so t ha t the
%d i f f e r e n c e i s b i g g e r than 200 dB .
etatemp = [ 0 : 1 : k−10e−6] ;
kz temp = (k .ˆ2 − etatemp . ˆ 2 ) . ˆ 0 . 5 ;
else
%Finds the temporary eta−vec t o r and
%temporary v e r t i c a l
%wavenumber f o r the evanescent par t .
etatemp = [ s t a r t : 1 : In fEta ] ;
kz temp = 1 j . ∗ ( etatemp .ˆ2 − k . ˆ 2 ) . ˆ 0 . 5 ;
end

%Gets t ransmiss ion c o e f f i c i e n t in case
%t h i s i s t ransmiss ion .
i f z > d t
T = GetTransmis s i onCoe f f i c i en (k , w,
c f , c l , c s , etatemp , rho f , rho p , d ) ;
else
T = 1 ;
end

%Ca l cu l a t e s the propaga t ing term ,
%or evanescent term .
expfunc = exp(1 j .∗ kz temp .∗ z ) ;

%Ca l cu l a t e s the impedance term ,
%depending on i f i t ’ s p a r t i c l e
%v e l o c i t y or pre s sure .
i f v e l o c i t y == true
zterm = kz temp . / ( r h o f .∗w) ;
else
zterm = ( rho f ∗w) . / kz temp ;
end

%de f i n i n g the source aper ture func t i on :
DirHSender = (2 .∗ b e s s e l j (1 , a .∗ etatemp ) ) . . .
. / ( a .∗ etatemp ) ; %D i r e c t i v i t y
DirHSender ( Origo ) = 1 ;
AmpHSender = U 0∗pi∗a ˆ2 ;
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HSender = AmpHSender .∗ DirHSender ;

%Ca l cu l a t e s the spectrum depending i f
%i t ’ s t ransmiss ion or not .
i f z <= d t
avgPfk = zterm .∗HSender .∗ expfunc ;
else
avgPfk = zterm .∗T.∗HSender .∗ expfunc . . . .
.∗exp(1 j .∗ kz temp .∗(−d ) ) ;
end

%Finds the Dec i be l v a l u e s o f the c a l c u l a t e d vec to r .
avgPfk log = 20∗ log10 (abs ( avgPfk ) ) ;

%Sets the comparing−va lue to use f o r v e l o c i t y .
i f count == 1
compValue = max( avgPfk log ) ;
count = count + 1 ;
else
%Just to ensure t ha t the va l u e s checked
%are b i g g e r than h f .
%This may though not be necessary , but
%haven ’ t changed i t a t
%the pre sen t time .
i nd ex s t a r t = find ( etatemp > s t a r t ) ;
i nd ex s t a r t = index s t a r t ( 1 ) ;

%I t e r a t e s through the c a l c u l a t e d Dec i be l v a l u e s .
for i = index s t a r t : length ( avgPfk log )
i f v e l o c i t y == true
%Checks to f i nd a d i f f e r e n c e b i g g e r than 200 dB .
i f abs ( avgPfk log ( i ) ) − abs ( compValue ) > 200

%Sets etamax and breaks .
etamax = etatemp ( i ) ;
found = true ;
break
end
else

%Finds when the pre s sure spectrum i s be low 200 dB .
i f abs ( avgPfk log ( i ) ) > 200
etamax = etatemp ( i ) ;
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found = true ;
break
end
end
end

%I f etamax not found , inc rea se i n f e t a and
%repea t proces s . This
%may not be necessary but i s j u s t a precaut ion .
i f etamax == 0
s t a r t = InfEta ;
In fEta = InfEta + 20 e4 ;
end
end
end
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Appendix E

FindEta

%This i s the non−uniform sampling method as
%de s c r i b ed Ch . 3 .
%Author : Simen Midtbo
function eta = FindEta ( z , last max , k , eta ,

etamax , etaA , etaS , N)

%I f etaA = 1 and etaS = 1 => no transmiss ion .
i f etaA == 1 && etaS == 1

%I f e xc l ud ing evanescent waves , do
i f etamax == k
hfmin = k − ( k/N) ;
hfmax = k ;
h f s t ep = (hfmax − hfmin )/ (N) ;
e tah f = [ hfmin : h f s t ep : hfmax − h f s t ep ] ;

etapropmax = hfmin ;
etapropmin = 0 ;
etapropstep = ( etapropmax − etapropmin )/ (N) ;
etaprop = [ etapropmin : e tapropstep :

etapropmax − etapropstep ] ;

e ta = [ etaprop e tah f ] ;
else
%I f i n c l u d i n g evanescent waves
%wi thout t ransmiss ion :
hfmin = k − ( k/N) ;
hfmax = k + (k/(N − 1 ) ) ;
h f s t ep = (hfmax − hfmin )/ (N) ;
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e tah f = [ hfmin : h f s t ep : hfmax − h f s t ep ] ;

etapropmax = hfmin ;
etapropmin = 0 ;
etapropstep = ( etapropmax − etapropmin )/ (N) ;
etaprop = [ etapropmin : e tapropstep :

etapropmax − etapropstep ] ;

etaevsctmax = etamax ;
etaevsctmin = hfmax ;

%This i s j u s t to enhance the r e s o l u t i o n i f in
%n e a r f i e l d . May not be
%important , but j u s t a f a i l s a f e .
i f z < last max
e t a ev s c t s t ep = ( etaevsctmax − etaevsctmin )/(2∗N) ;
e t a ev s c t = [ etaevsctmin : e t a ev s c t s t ep :

etamax − e t a ev s c t s t ep ] ;
else
e t a ev s c t s t ep = ( etaevsctmax − etaevsctmin )/ (N) ;
e t a ev s c t = [ etaevsctmin : e t a ev s c t s t ep :

etamax − e t a ev s c t s t ep ] ;
end

%Concatenate the eta−v e c t o r s .
eta = [ etaprop e tah f e t a ev s c t ] ;

end

e l s e i f etaA − etaS > 0 .5
%For low f r e qu en c i e s .
hfmin = k − ( k/N) ;
hfmax = etaS + ( etaS /(N − 1 ) ) ;
h f s t ep = (hfmax − hfmin )/(2∗N) ;
e tah f = [ hfmin : h f s t ep : hfmax − h f s t ep ] ;

etapropmax = hfmin ;
etapropmin = 0 ;
etapropstep = ( etapropmax − etapropmin )/ (N) ;
etaprop = [ etapropmin : e tapropstep :

etapropmax − etapropstep ] ;
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etaAmin = hfmax ;
etaAmax = etaA + etaA/N;
etaAstep = (etaAmax − etaAmin )/N;
etaA = [ etaAmin : etaAstep : etaAmax − etaAstep ] ;

%samples the space between the two s c h o l t e waves
etahfSpaceAmin = hfmax ;
etahfSpaceAmax = etaAmin ;
etahfSpaceA = [ etahfSpaceAmin : e tapropstep : etahfSpaceAmax − etapropstep ] ;

etaevsctmax = etamax ;
etaevsctmin = etaAmin ;

i f z < last max
e t a ev s c t s t ep = ( etaevsctmax − etaevsctmin )/(2∗N) ;
e t a ev s c t = [ etaevsctmin : e t a ev s c t s t ep :

etamax − e t a ev s c t s t ep ] ;

else
e t a ev s c t s t ep = ( etaevsctmax − etaevsctmin )/ (N) ;
e t a ev s c t = [ etaevsctmin : e t a ev s c t s t ep :

etamax − e t a ev s c t s t ep ] ;
end

%Concatenate the eta−v e c t o r s .
eta = [ etaprop e tah f etaA e ta ev s c t ] ;

else
%For h i gher f r e qu enc i e s .
hfmin = k − ( k/N) ;
hfmax = etaA + ( etaA /(N − 1 ) ) ;
h f s t ep = (hfmax − hfmin )/(2∗N) ;
e tah f = [ hfmin : h f s t ep : hfmax − h f s t ep ] ;

etapropmax = hfmin ;
etapropmin = 0 ;
etapropstep = ( etapropmax − etapropmin )/ (N) ;
etaprop = [ etapropmin : e tapropstep :

etapropmax − etapropstep ] ;

etaevsctmax = etamax ;
etaevsctmin = hfmax ;
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i f z < last max
e t a ev s c t s t ep = ( etaevsctmax − etaevsctmin )/(2∗N) ;
e t a ev s c t = [ etaevsctmin : e t a ev s c t s t ep :

etamax − e t a ev s c t s t ep ] ;
else
e t a ev s c t s t ep = ( etaevsctmax − etaevsctmin )/ (N) ;
e t a ev s c t = [ etaevsctmin : e t a ev s c t s t ep :

etamax − e t a ev s c t s t ep ] ;
end

%Concatenate the eta−v e c t o r s
eta = [ etaprop e tah f e t a ev s c t ] ;

end
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Appendix F

GetTransmissionCoefficien

%Ca l cu l a t e s the t ransmiss ion c o e f f i c i e n t .
%Input : A l l parameters to c a l c u l a t e t ransmiss ion
%c o e f f i c i e n t .
%Output : Transmission Co e f f i c i e n t
%Author : Simen Midtbo

function [T] = GetTransmis s i onCoe f f i c i en (k , w,
c f , c l , c s , eta , rho f , rho p , d)

kap f z = ( ( k )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;
kap l z = ( (w/ c l )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;
kaps z = ( (w/ c s )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;

%Def in ing the tan and cotan terms o f the
%transmiss ion c o e f f i c i e n t as
%de f ined in Ch . 2 .
tan 1 = sin ( kap l z . ∗ ( d . / 2 ) ) . / cos ( kap l z . ∗ ( d . / 2 ) ) ;
tan 2 = sin ( kaps z . ∗ ( d . / 2 ) ) . / cos ( kaps z . ∗ ( d . / 2 ) ) ;
cotan 1 = 1 ./ tan 1 ;
cotan 2 = 1 ./ tan 2 ;

%The ant isymmetric term .
A = ((w./ c s ) . ˆ 2 − 2 .∗ ( eta ) . ˆ 2 ) . ˆ 2 . ∗ tan 1 . . .

+ 4 .∗ ( eta ) . ˆ 2 . ∗ kaps z .∗ kap l z .∗ tan 2 ;

%The symmetric term
S = ( (w. / c s ) . ˆ 2 − 2 .∗ ( eta ) . ˆ 2 ) . ˆ 2 . ∗ cotan 1 . . .

+ 4 .∗ ( eta ) . ˆ 2 . ∗ kaps z .∗ kap l z .∗ cotan 2 ;

%This i s j u s t to not have any l i n g e r i n g unused
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%vec t o r s .
tan 1 = 0 ;
tan 2 = 0 ;
cotan 1 = 0 ;
cotan 2 = 0 ;

%The Y term .
Y = ( rho f . / rho p ) . ∗ ( kap l z . / kap f z ) . ∗ (w. / c s ) . ˆ 4 ;

%Again not to have any unused v e c t o r s l i n g e r i n g .
kap f z = 0 ;
kap l z = 0 ;
kaps z = 0 ;

%The numerator o f the t ransmiss ion c o e f f i c i e n t .
num = (1 i .∗Y. ∗ ( S + A) ) ;

%The denominator o f the t ransmiss ion c o e f f i c i e n t .
den = ( ( S − 1 i .∗Y) . ∗ (A + 1 i .∗Y) ) ;

T = num./ den ;

dummyNaN = isnan (T) ; %To make sure t ha t va l u e s are
%zero and not nan .

T(dummyNaN) = 0 ;
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Appendix G

OsbourneHartScholte

%This rou t ine f i n d s the ant i symmetr i ca l and
%symmetrica l Scho l t e−wave wavenumber by use o f
%Osbourne and Harts equa t i ons g iven in Ch . 2 .
%Input : A l l the r e qu i r ed parameters do c a l c u l a t e
%Osbourne and Harts equa t i ons
%Output : EtaA and etaS
%Author : Simen Midtbo

function [ etaA , etaS ] = OsbourneHartSholte ( eta ,
w, c l , c s , rho p , rho f , c f , d , h f ) ;

%Dec lar ing a l l r e l e v an t v a r i a b l e s .
cp = w./ eta ;
c d = c l ;
c r = c s ;
rho s = rho p ;
rho w = rho f ;
c w = c f ;

%Fol lowing Osbourne and Hart equat ion wi th
%f = h a l f the t h i c kn e s s o f p l a t e .
f = d/2 ;

%Ensuring t ha t minimum found i s b i g g e r than h f
etasmin index = find ( eta > h f ) ;

%Because the equa t ions decay wi th eta , t h i s i s
%to ensure t ha t the minimum i s w i th in h f + 0.1
etasmax index = find ( eta > h f + 0 . 1 ) ;
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%I f e ta does not have an element g r ea t e r than
%h f + 0.1 , the endindex i s
%simply the l e n g t h o f e ta .
i f isempty ( etasmax index ) == true

etasmax index = length ( eta ) ;
end

%Se t t i n g up the e ta to c a l c u l a t e the
%symmetrica l equat ion .
e ta s = eta ( etasmin index ( 1 ) : etasmax index ( 1 ) ) ;
%Se t t i n g up the phase v e l o c i t y to c a l c u l a t e the
%symmetrica l equat ion .
cps = w./ e ta s ;

%Dec lar ing terms o f Osbourne and Harts equat ion
%given in Ch . 2 .
%Symmetrical :
term1 = (1 − 0 . 5∗ ( cps . / c r ) . ˆ 2 ) . ˆ 2 ;
term2 = coth ( e ta s .∗ f .∗ ( 1 − ( cps . / c d ) . ˆ 2 ) . ˆ 0 . 5 ) ;
term3 = (1 − ( cps . / c d ) . ˆ 2 ) . ˆ 0 . 5 . . .

.∗ ( 1 − ( cps . / c r ) . ˆ 2 ) . ˆ 0 . 5 ;
term4 = coth ( e ta s .∗ f .∗ ( 1 − ( cps . / c r ) . ˆ 2 ) . ˆ 0 . 5 ) ;
term5 = ( rho w/ rho s ) . ∗ ( c w . / c r ) . ˆ 2 ;
term6 = 1 ./ (1 − ( cps . / c w ) . ˆ 2 ) . ˆ 0 . 5 ;
term7 = ( cps . ˆ 4 . / ( c w . ˆ 2 . ∗ c r . ˆ 2 ) ) ;
term8 = (1 − ( cps . / c d ) . ˆ 2 ) . ˆ 0 . 5 ;

S = 4 .∗ ( term1 .∗ term2 − term3 .∗ term4 ) . . .
+ term5 .∗ term6 .∗ term7 .∗ term8 ;

%Antisymmetrica l
term1 = (1 − 0 . 5∗ ( cp . / c r ) . ˆ 2 ) . ˆ 2 ;
term2 = tanh ( eta .∗ f .∗ ( 1 − ( cp . / c d ) . ˆ 2 ) . ˆ 0 . 5 ) ;
term3 = (1 − ( cp . / c d ) . ˆ 2 ) . ˆ 0 . 5 . . .

.∗ ( 1 − ( cp . / c r ) . ˆ 2 ) . ˆ 0 . 5 ;
term4 = tanh ( eta .∗ f .∗ ( 1 − ( cp . / c r ) . ˆ 2 ) . ˆ 0 . 5 ) ;
term5 = ( rho w/ rho s ) . ∗ ( c w . / c r ) . ˆ 2 ;
term6 = 1 ./ (1 − ( cp . / c w ) . ˆ 2 ) . ˆ 0 . 5 ;
term7 = ( cp . ˆ 4 . / ( c w . ˆ 2 . ∗ c r . ˆ 2 ) ) ;
term8 = (1 − ( cp . / c d ) . ˆ 2 ) . ˆ 0 . 5 ;

A = 4 .∗ ( term1 .∗ term2 − term3 .∗ term4 ) . . .
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+ term5 .∗ term6 .∗ term7 .∗ term8 ;

%Finds the minimum of the symmetrica l equat ion .
index S = find (20∗ log10 (abs (S ) ) . . .

== min(20∗ log10 (abs (S ) ) ) ) ;

%Finds the minimum of the ant i symmetr i ca l equat ion .
index A = find (20∗ log10 (abs (A ) ) . . .

== min(20∗ log10 (abs (A) ) ) ) ;

%Dec lar ing etaS and etaA
etaS = eta s ( index S ) ;
etaA = eta ( index A ) ;

%Sometimes the accuracy i s b ig , so f i nd (min) e t c .
%f i n d s many minimum va lue s equa l
%to one another .
i f length ( etaA ) > 1

etaA = etaA ( 1 ) ;
end

i f length ( etaS ) > 1
etaS = etaS ( 1 ) ;

end
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Appendix H

Spatial Distribution

%The s p a t i a l d i s t r i b u t i o n ca l c u l a t i on , us ing
%model 1 .
%This i s very s im i l a r to the program model 1 ,
%so only major s t e p s w i l l be
%commented .

%Author : Simen Midtbo , s t a r t e d 15 . 2 . 1 8 .

clear ;

% %Def in ing f requency range
f min = 458 e3 ;
f max = 458 e3 ;
f s t e p = 1e3 ;
f v e c t o r = [ f min : f s t e p : f max ] ;

%Medium prop e r t i e s
c f = 1485 ; %speed o f sound
r h o f = 1000 ; %Freshwater d en s i t y

%Pla te p r o p e r t i e s
rho p = 8000 ; %dens i t y o f p l a t e
c s = 3130 ;
c l = 5780 ;
%
% %Transducer p r o p e r t i e s :
a = 10.55 e−3; %e f f e c t i v e rad ius o f p i s t on
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b = 0 ; %rad ius o f r e c e i v e r
v 0 = 0 ;

% %Distances and p l a t e t h i c kn e s s
d = 6.05 e−3; %th i c kn e s s o f p l a t e
d t = 270e−3; %sender to upper s i d e o f p l a t e
d r = 100e−3; %lower s i d e o f p l a t e to r e c e i v e r

% %Indexes .
idx = 1 ;
jdx = 1 ;
count = 1 ;

%Declares the empty vec to r to s t o r e pre s sure
%sva l u e s in .
pr = [ ] ;

v e l o c i t y = f a l s e ; %Ca l cu l a t e s v e l o c i t y i f t rue .
save = f a l s e ; %Saves i f t rue .
l o s s = f a l s e ; %Inc lude s l o s s i f t rue .
i n c e v s c t = true ; %Inc lude s evanescent waves i f
%true .

cnt = 1 ;

%Distance−vec t o r
dtvec to r = [ 276 . 0 5 e−3] ;

%I t e r a t e s through the d i s tance−vec t o r
for z = dtvec to r
idx = 1 ; %Index .
PRec = 0 ;

%I t e r a t e s through the frequency−vec t o r
for f = f v e c t o r

%Set the angu lar f requency .
w = 2∗pi∗ f ;

%Set the f l u i d−wavenumber .
h f = w/ real ( c f ) ;

%Ca l cu l a t e s l a s t maximum.
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lambda = (2∗pi )/ h f ;
last max = a ∗ ( ( a/lambda ) − ( lambda /(4∗ a ) ) ) ;

%This i s to make the cho ice o f N a b i t dynamic ,
%but N = 512∗512
%works in genera l f o r most t ype s o f c a l c u l a t i o n s .
i f i n c e v s c t == true && z > d t
i f f <= 100 e3
N = 1024∗1024;
else
N = 512∗512;
end
e l s e i f i n c e v s c t == true && z <= d t
i f f s t e p == 0.1 e3
N = 512∗512;
else
N = 512∗512;
end
e l s e i f i n c e v s c t == f a l s e && z <= d t
N = 512∗512;
else
N = 512∗512;
end

%Ca l cu l a t e s Ray le igh d i s t ance .
r ayd i s t ( idx ) = ( h f ∗a ˆ2)/2 ;

%Sets the o r i g i n o f the v e c t o r s .
Origo = 1 ;

%I f not i n c l u d i n g evanescent waves =>
%etamax = h f .
i f i n c e v s c t == f a l s e
etamax = h f ;
else
etamax = 0 ;
end

i f etamax == 0

%Finds etamax
etamax = FindEtaMax ( last max , b , c f , c l , c s ,
rho p , d , d t , z , h f , rho f ,
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w, a , v 0 , v e l o c i t y ) ;

i f z > d t
%Sets a temporary eta−vec t o r to f i nd temporary
%etaS and
%etaA
e ta s t ep = etamax/N;
eta = [ 0 : e t a s t ep : etamax − e ta s t ep ] ;

%I t e r a t e s through the d i s p e r s i on a l gor i thm 3
%times to
%enhance accuracy f o r eta S , eta A ,
%whi l e s imu l t aneous l y
%c a l c u l a t i n g the e t a v e c t o r .
for i t = 1 :3
[ etaA , etaS ] = OsbourneHartSholte ( eta , w, c l ,
c s , rho p , rho f , c f , d , h f ) ;
e ta = FindEta ( z , last max , h f , eta , etamax ,
etaA , etaS , N) ;
end
disp ( ’Done with Scho l t e i t e r a t i o n s . ’ )
else
%I f z l e s s than d t , do :
eta = 1 ; %dummy
etaS = 1 ;
etaA = 1 ;

eta = FindEta ( z , last max , h f , eta , etamax ,
etaA , etaS , N) ;

end
else
%I f e xc l ud ing evanescent waves do :
etamaxstep = ( etamax )/(N) ;
eta = [ 0 : etamaxstep : etamax − etamaxstep ] ;
etaS = 1 ;
etaA = 1 ;
eta = FindEta ( z , last max , h f , eta , etamax ,
etaA , etaS , N) ;
end

%I f l o s s = true , c a l c u l a t e the corresponding
%complex h f

188



i f l o s s == true
Qf = 0 .5 e5 ;
a lpha f = 0 . 5∗ ( h f . / Qf ) ;
complex k = h f + 1 i ∗ a lpha f ;
a l p h a f l i s t ( jdx ) = imag( complex k ) ;

else
%Just to have some dummy va lue s .
a l p h a f l i s t = 1 ;
complex k = h f ;
Qf = 1 ;
end

disp ( ’Done with nonuniform sampling . ’ )

%Def in ing the source aper ture func t i on
v 0 = 1 ;
DirHSender = (2 .∗ b e s s e l j (1 , a .∗ eta ) ) . / ( a .∗ eta ) ;
DirHSender ( Origo ) = 1 ;
AmpHSender = v 0 ∗pi∗a ˆ2 ;
HSender = AmpHSender .∗ DirHSender ;

%Ca l cu l a t e s the v e r t i c a l wavenumbe f o r f l u i d .
kap f z = ( ( complex k )ˆ2 − eta . ˆ 2 ) . ˆ 0 . 5 ;

%I f d i s t ance z g r ea t e r than d t
%= ca l c u l a t e t ransmiss ion c o e f f i c i e n t .
i f z > d t
T = GetTransmis s i onCoe f f i c i en ( complex k , w, c f ,

c l , c s , eta , rho f , rho p , d ) ;
disp ( ’ Retr i eved t ransmi s s i on c o e f f i c e n t . ’ )
else
T = 1 ;
end

%Ca l cu l a t i n g the impedance :
i f v e l o c i t y == true
Zimp = kap f z . / ( r h o f ∗w) ;
else
Zimp = ( rho f .∗w) . / kap f z ; %impedance
end

%Pressure at the su r f a ce o f the p i s t on .
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PfkAmpl = Zimp .∗HSender ;

%Ca l cu l a t i n g the propagat ion term
PropTerm = exp(1 i . ∗ ( kap f z ) . ∗ z ) ;

%Ca l cu l a t e s the spectrums .
i f z <= d t
PfkASM = PfkAmpl .∗PropTerm ;
else
PfkASM = PfkAmpl .∗PropTerm . . .
.∗exp(1 i . ∗ ( kap f z ).∗(−d ) ) . ∗T;
end

%%%Finding the s p a t i a l d i s t r i b u t i o n o f pre s sure .
[ p r i , r ] = Four i e rBe s s e l (PfkASM, eta ) ;
p r i = (1/(2∗ pi ) ) . ∗ p r i ;
pr = [ pr p r i ’ ] ;
disp ( [ idx , f ] )

idx = idx + 1 ;

end

disp ( [ z ∗1000 , f . / 1 0 0 0 ] )
jdx = jdx + 1 ;

PrFrontPlateAvg = 0 ;
end
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Appendix I

FourierBessel

%Runs a Four ie rBesse l t rans format ion
%(HankelTransform )
%Author : Simen Midtbo
function [ pr , r ] = Four i e rBe s s e l (PfkASM, eta )

%Def ines the r a d i a l d i r e c t i o n vec t o r
r = [ 0 e−3:1e−3:20e−3] ;

pr = PfkASM(1 : length ( r ) ) ;
for i = 1 : length ( r )
disp ( [num2str( i ) , ’ Four i e rBe s s e l ’ ] )

%Sets up the in tegrand per . r−va lue
in tegrand = PfkASM . . .
.∗ b e s s e l j (0 , ( r ( i ) . ∗ eta ) ) . ∗ eta ;

%In t e g r a t e s per . r−va lue to ge t the s p a t i a l
%pres sure .
pr ( i ) = trapz ( eta , integrand ) ;
end
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