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The synchronization of loosely coupled chaotic systems has increasingly found applications to

large networks of differential equations and to models of continuous media. These applications

are at the core of the present Focus Issue. Synchronization between a system and its model, based

on limited observations, gives a new perspective on data assimilation. Synchronization among

different models of the same system defines a supermodel that can achieve partial consensus

among models that otherwise disagree in several respects. Finally, novel methods of time series

analysis permit a better description of synchronization in a system that is only observed partially

and for a relatively short time. This Focus Issue discusses synchronization in extended systems

or in components thereof, with particular attention to data assimilation, supermodeling, and their

applications to various areas, from climate modeling to macroeconomics. Published by AIP
Publishing. https://doi.org/10.1063/1.5018728

Synchronization among regular oscillators such as a com-

plex organism’s circadian rhythms, pendulum clocks on

a common wall, or blinking fireflies establishes a surpris-

ing order in natural systems. Theoretical and numerical

results obtained over the past 25 years with coupled cha-

otic systems suggest that synchronistic relationships

could possibly occur between systems whose internal

behavior is not ostensibly regular, extending greatly the

potential range of synchronism in nature. More recently,

synchronization has been explored in naturally occur-

ring, chaotic systems with very large numbers of varia-

bles and in models thereof; the latter are typically

governed by sets of ordinary differential equations

(ODEs) on large networks or by partial differential equa-

tions (PDEs) on continuous media. An important instance

is the synchronization between a system and its real-time

computational model that can be induced by a limited set

of observations of the system. Such truth–model synchro-

nization corresponds to the well-established practice of

data assimilation, used extensively in meteorology, ocean-

ography, and the climate sciences in general. An exten-

sion of this idea is to allow a set of alternative models of

the same real system to synchronize with one another, as

well as the real system, by exchanging data and thus

forming a supermodel. Such a supermodel offers a poten-

tial solution to problems of divergent predictions by dif-

ferent expert models, and it has been shown to improve

upon the common practice of merely averaging over

model outputs. This Focus Issue sheds further light on

the uses of synchronization for data assimilation and for

supermodeling, as well as on current developments in

synchronization within and between extended systems,

natural and social, in general.

I. SETTING THE STAGE

Synchronization theory arose in the early 1990s in the

context of secure communications methodology.1 Over the

last quarter-century, synchronization of chaotic systems that

are coupled loosely, i.e., through only a few of their many

dynamical variables, has begun to find real-world applica-

tions that are much broader and cover many areas of the sci-

ences. In particular, the scientific community has been

moving from synchronization in network models to synchro-

nization of extended, classically continuous systems that

arise in nature and society.

Synchronization is possible both within such a continu-

ous system and between two or more such systems. In the

former case, we have a new description of coherence. In the

latter case, the principle remains the same as for a pair of

coupled ODEs: exchange of a surprisingly small amount of

energy or information will cause large systems to synchro-

nize, despite spatio-temporal chaos within the individual sys-

tems and despite the complexity of the system as a whole.

Because of the great overall interest in synchronization,

as well as because of its increasing importance within the field

of chaos as a whole, there have been already a number of

Focus Issues and an even larger number of individual articles

in this journal on the topic. The present issue deals with cur-

rent applications to extended real-world systems and detailed

models thereof (G. S. Duane and M. Ghil conceived and

planned this Focus Issue. All four Guest Editors carried out

the editorial tasks.). These applications require a direct repre-

sentation of the continuum or of a realistically large network.

a)Author to whom correspondence should be addressed: gregory.duane@
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Of special interest is the relationship between such a

system and its model, which can itself be characterized as

one of synchronization, either in the context of control the-

ory or of data assimilation. To the extent that chaos synchro-

nization with very limited coupling describes relationships

among real systems, and especially between a real system

and its model, we have a validation6 of the philosophical

concept of synchronicity2–5—an organizing principle said at

times to be on a par with causality and having captured the

popular imagination.

A. A brief history of chaos synchronization

To recap the history of the subject, the earliest investiga-

tions in synchronized chaos were due to Fujisaka and

Yamada7 and Afraimovitch et al.8 Truly widespread interest

was spurred by the work of Pecora and Carroll,1 who

obtained synchronization of two Lorenz systems9 by

completely replacing one variable, e.g., the X variable, in the

“slaved” system by the value of the corresponding variable

in the “master” system.

Synchronization was later shown to occur for general

types of loose coupling between chaotic systems, such as the

addition of a simple relaxation term, labeled diffusive cou-

pling. It was suggested that this phenomenon may be useful

in cryptography, since the driving variable could be used as

a carrier signal that would be difficult to distinguish from

noise. However, as might be guessed from the Ma~ne-Takens

theorem,10 the resulting codes were not difficult to break,

despite a series of proposals for more sophisticated

synchronization-based encryption schemes.11

In applications to real chaotic systems, though, one does

not expect to find perfect synchronization, especially when

the systems to be synchronized are not identical. Complete

synchronization typically degrades in two ways: (a) through

intermittent bursting away from synchronized motion,12 via

on-off intermittency;13 and (b) through generalized synchro-

nization, in which case there is still a perfect correspondence

between the states of two synchronized systems, but the cor-

respondence function is not the identity.14

Intermittent synchronization has indeed been found in

natural systems, including the form of spatially intermittent

synchronization known as chimeras.15 Generalized synchro-

nization has remained largely a theoretical construct because

the correspondence function is typically an intractable, often

nowhere differentiable function,16 whose existence can only

be established indirectly. When this function is close to the

identity in any sense, the observed behavior can be charac-

terized simply as approximate synchronization. Such is the

case in multi-scale systems, where synchronization is nearly

perfect only on larger scales and the smaller scales act to

compensate differences between the systems in a complex

way, e.g., Ref. 17.

Chaos synchronization generalizes a phenomenon that

had been studied already much earlier, namely, the synchro-

nization of regular oscillators, presumably first discussed by

Huygens,18 who described anti-synchronization between

pendulums suspended on a common wall. In chaotic systems,

a form of regular synchronization still appears as phase

synchronization, in situations in which it is possible to assign

a phase to the state of the system, even when the trajectory is

not cyclical.19 Phase synchronization is relatively easy to

detect in real systems, provided that the signal is suitably

pre-filtered.20

Synchronization between PDE systems, as first described

by Kocarev et al.,21 opened the door to a theoretical descrip-

tion of synchronization between spatially extended systems.

Early applications of synchronization to such physical systems

were to ferromagnetic materials22 and to lasers.23

Duane24 applied these ideas to fluid dynamics, specifi-

cally to models of atmospheric flow in the Northern and

Southern Hemispheres, demonstrating a weak synchroniza-

tion effect. This application also pointed out a fundamental

difficulty in applying the Pecora-Caroll1 scheme to extended

systems: The signals that connect the systems in both direc-

tions are transmitted by waves, with a resulting time delay in

the connection. Substantial delays in the transmission of sig-

nals also occur in large socio-economic systems.25

Synchronization between different, widely separated

parts of the same extended system is greatly weakened by

such delays in the usual case, with nearly continuous burst-

ing away from synchronized motion. Of course, synchroniza-

tion between adjacent elements of a given system is not

impeded. Implications for describing the resulting coherent

structures are still a topic of investigation.

Synchronization has mainly been investigated as a phe-

nomenon of classical physics. But the strongest evidence of

synchronicity in the physical world is probably that provided

by the Einstein-Podolsky-Rosen (EPR) correlations in quan-

tum systems, lending such systems a fundamentally nonlocal

character. Recent attempts to describe such behavior objec-

tively26,27 can be interpreted as implying synchronization6

but remain highly speculative. A jump from classical to

quantum systems is one future prospect for the extension of

the developments discussed in this issue.

B. Synchronization between the system and the model

Synchronization between two extended systems of the

same type, or where a correspondence function is obvious,

has a straightforward application: We can imagine that one

system is a model of the other. In a fairly common situation,

the model may be an imperfect representation of the “real”

system, e.g., have much lower dimension than the latter. An

obvious application is the control of the real system by the

model, thus extending the notion of controlled chaos.28,29

While unidirectional coupling of model to reality pro-

vides a useful view of control in general, and biological

motor control in particular, the opposite direction of cou-

pling, from reality to model, may be viewed as providing a

description of perception. A computational model that

receives a recurrent but limited stream of data from the sys-

tem it represents carries out a form of machine percep-

tion36—and of machine learning, if the model adapts along

the way—that is useful for predicting the future behavior of

the system. That is, the model synchronizes with the real sys-

tem, requiring only small intermittent adjustments to main-

tain the synchronization indefinitely.

126601-2 Duane et al. Chaos 27, 126601 (2017)



The coupling between reality and model needed to

maintain the synchronous state defines the computational

process of data assimilation. Originating in weather predic-

tion, cf. Bengtsson et al.30 and references therein, where

complex numerical models of a large fluid dynamical system

are continually fed new data from observations, data assimi-

lation has extended to oceanography31 and other areas of the

geosciences.

The synchronization view of data assimilation is a

framework that conceptually encompasses several algorith-

mic approaches. The diffusive coupling form commonly

used for synchronization is known as nudging in the data

assimilation literature.30–32

If the coupling coefficients are allowed to vary in time,

then one can show that—subject to linearity assumptions—

their optimal time-dependent values have the same form in

terms of the evolving error statistics as in the classical

Kalman filter algorithm.35 Variants and extensions of the lat-

ter subsume or are equivalent to many of the data assimila-

tion methods used currently in operational practice.31,33,90

It is, in fact, difficult to devise new methods based on

the synchronization view that has not already been consid-

ered in the data assimilation literature. An exception that

remains to be fully investigated is the treatment of strong

nonlinearities, as may occur at times of regime transition,

where both sequential-estimation algorithms of the Kalman

filter type and optimal-control–based algorithms of the varia-

tional type may have difficulties.31,34 In this case, the syn-

chronization view could possibly provide new algorithms

that can improve the tracking of the transitions.35,36

A well-known extension of both operational data assimi-

lation and the synchronization approach to it is to estimate

model parameters at any given instant of time, as well as

model states. In the augmented state-vector method of data

assimilation, parameters to be estimated are treated as addi-

tional state variables and often assumed to be constant in

time. The basic assumption of this method is not always con-

sistent with the results of the estimation, since the estimated

parameters may actually turn out to vary in time, thus com-

pensating for the model’s not being quite consistent with the

observations.37

In synchronization, the dynamical equations can be

readily extended so that model parameters are allowed to

depend on time and have their own equations, which permit

them to synchronize with the presumably time-independent

parameters of the natural system being observed.38 Duane

and Hacker39 have applied the latter dynamical approach to

a mesoscale atmospheric model, but here too, the advantages

of the synchronization view remain to be investigated

further.

The goal of synchronizing a model with observed

behavior in a natural system or with the simulations of a

very detailed model may be much more general than having

trajectories actually coincide, as in data assimilation. Ideally,

one may wish for qualitative similarity, as might be achieved

through the model’s attractor approaching the geometry and

properties of the natural system’s or detailed model’s attrac-

tor. Such is the case in predicting the future behavior of the

climate system for instance, where the weather on a specific

future date is of little interest, but one would like to have

something deeper than merely statistical predictions of mean

state and variance.

Actually, an early form of synchronization, from the

study by Afraimovitch et al.,8 achieved exactly this type of

attractor matching, labeled non-isochronic synchronization,

but this line of investigation was apparently abandoned. The

phenomenon appeared later under the nomenclature of mea-

sure synchronization in investigations of Hamiltonian sys-

tems,40 for which Liouvilles’s theorem precludes collapse of

the trajectories of two systems to a lower-dimensional, syn-

chronized subspace, but their attractors still match in a suit-

ably defined sense. The work of Afraimovitch et al.8

suggests that measure synchronization is not limited to

Hamiltonian systems, and hence, it remains a possible

approach to attractor learning.

As in the case of data assimilation, a rich literature on

model reduction exists: rigorous results on attractor similar-

ity between full and reduced models have been proven,41,42

and numerous examples of successful computations have

been given.43–45 Still, as in the case of data assimilation, the

synchronization point of view might offer algorithmic

improvements, as well as a new way of better understanding

old results.

C. Supermodels

So far, we have progressed from synchronization

between extended systems in nature (Sec. I A) to synchroni-

zation between systems and their models (Sec. I B). The next

phase of development in the worldview under consideration

is synchronization between models. We envision different

models of the same reality, each imperfect but in a different

way. Imagine, for instance, that each model is the result of a

local optimization in the space of all possible models. Such

is commonly the case when different groups of modelers

make different ad hoc choices about the structure of the

models in dimensions that are not well informed by theory or

by empirical evidence.

The two dozen or so models of the Earth’s climate that

are used for future projections thereof46 provide a good

example. In a supermodel, one uses terms that are common

to synchronization and data assimilation methods, such as

diffusive coupling, to connect the models. As with natural

systems that are sufficiently similar so that a simple corre-

spondence function can be defined, the models may synchro-

nize to a certain degree, and the differences become

absorbed in the behavior of less important degrees of free-

dom, typically on smaller and faster scales.

The construction of such a supermodel effectively

reduces the parameter-estimation task to a remarkable

extent. Instead of having to learn a large number of model

parameters or the model’s qualitative structure, one only

needs to estimate a much smaller set of model-to-model con-

nection coefficients. There is one for each field in each

ordered pair of numerically discretized PDE models, since it

is natural to assume, to a first approximation, that the coeffi-

cients are spatially uniform.
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As shown in Fig. 1, the models are all coupled to a sin-

gle reality, as well as to each other, at least in the learning

phase. Any algorithm that can be used for estimating param-

eters in a data assimilation or synchronization context can

then be applied to estimate the connection coefficients.

Several preliminary tests have resulted in approximate syn-

chronization between models, as well as between the models

and the system being observed.48,49 The supermodel can

then be used for predictive purposes in the same manner as

any of the constituent models. If desired, the models can be

disconnected, after training, from the natural system or the

more detailed model thereof, so as to solve the sensitivity

problem of how the synchronized attractor responds to

changes in any ancillary parameters.

If data assimilation can be compared to perception, then

the inter-model data assimilation in a supermodel might be

compared to self-perception and thus—proceeding to a realm

no longer regarded as metaphysical47—to consciousness.36

More mundane applications are also envisioned in the near

term.

The supermodeling concept has been validated using

relatively simple models that are governed by systems of

ODEs48 or PDEs.49 In the realm of practical modeling of

extended systems, the scheme has been applied so far (i) to

combine a pair of highly detailed climate models, but with

very limited model-to-model connections;50 and (ii) to sim-

pler models of cancer tissue development, with untrained

connection coefficients and again with limited coupling.51

The stage has thus been set for further investigations in the

application of synchronization to combine alternative real-

time computational models.

D. How synchronized are a set of time series?

An ancillary problem in the broad field of synchroniza-

tion is that of determining from observational data alone to

which extent a set of time series does reflect synchronization

of the subsystems that have generated the available data. The

issue arises in the study of real-world systems in a way that

it did not for the synchronization of the highly idealized sys-

tems or circuits that were initially studied. Solving this prob-

lem entails the usual issues of pre-filtering the time series, to

eliminate spurious noise, and then to analyze the pre-filtered

time series in terms of their shared properties.

In its simplest form, the problem is to find out whether

two time series x1(t) and x2(t) are, according to Osipov

et al.,52 frequency locked, phase locked, or completely syn-

chronized. The classical way of doing this is to define, for

each of the two time series, the associated analytic signal

wk(t)¼ xk(t)þ iyk(t), where k¼ 1 or 2. Here, i is the imagi-

nary unit and y(t), dropping henceforth the indices k, is the

Hilbert transform H½xðtÞ� of x(t), which is given by the

Cauchy principal value of a singular integral. Analytically,

then, one can define the polar representation of the complexi-

fied signal wðtÞ ¼ AðtÞ exp ½/ðtÞ�, where A is the amplitude

and / is the phase of the signal x(t).
The two signals x1(t) and x2(t) are, for instance, phase

locked52 if the difference D1;2/ ¼ j/1ðtÞ � /2ðtÞj does not

grow in time. The problem with this polar representation is

that the Hilbert transform yðtÞ ¼ H½xðtÞ� of a given x(t) is

numerically ill-posed and that, for the typically short and

noisy time series found in climate records,53,54 it is well-nigh

impossible to test over just a very few full periods whether

the phase difference D1,2(t) between two nearly equal perio-

dicities in the two time series increases with time or not.

These numerical issues are discussed in greater detail by

Feliks et al.,54 and successive steps toward a greatly

improved pre-filtering and subsequent synchronization anal-

ysis have been proposed and tested in both the climatic54–57

and the macroeconomic58,59 context.

II. THIS FOCUS ISSUE

A. Synchronization in extended systems

We begin with a few papers on the general phenomenon

of synchronization in extended chaotic systems.

Colon and Ghil60 address synchronization in the context

of Boolean delay equations (BDEs).61 BDEs represent a

mathematical framework for modeling networks that evolve

continuously in time, unlike cellular automata, which are dis-

crete in both the variables and the time. The use of continu-

ous time allows one to use, in general, a distinct delay si, j in

the action of a given Boolean variable xi on another Boolean

variable xj, with si, j 6¼ sj, i6¼ sk, l for (i � k)(j � l) 6¼ 0. Previous

work had already shown that the presence of delays modifies

substantially the dynamics on various networks, as one might

suspect from the case of delay differential equations (DDEs)

vs. ODEs: the solutions of the DDE _x ¼ �xðt� p=2Þ are

FIG. 1. Schematic diagram of a supermodel: A small set of alternative mod-

els are coupled to each other with connection coefficients Cij
l , different for

each model pair {(i, j): 1� i, j� J} and for each field variable {l: 1� i,
j�L}. The coefficients need to be optimized, while the models are coupled

unidirectionally to the observations from a natural system or from a high-

end simulation thereof. The latter coupling uses coefficients Ki, e.g.,

Kalman gain matrices as they arise in standard data assimilation schemes.31

The trained connections induce partial synchronization between models as

well as between the models and the data. (Adapted from Groth and Ghil,87

and Duane6).

126601-4 Duane et al. Chaos 27, 126601 (2017)



periodic, while those of the ODE _x ¼ �xðtÞ tend to the

unique, stable fixed point x¼ 0.

The BDE framework thus allowed the authors to study

damage propagation and synchronization in economic supply

networks under the much more realistic assumption of het-

erogeneous time lags. The study proceeded from simple to

complex network topologies, including both Erd€os-R�enyi

and scale-free networks, as well as network structures based

on the statistics of over 1 million Japanese firms.62 Key

results included criteria for the collapse, survival or partial

survival of the network, given a local perturbation, as well as

cases of cyclostationary waves propagating through the net-

work. The heterogeneity of delays can have a crucial effect

on synchronization of such waves or the loss thereof.

The paper by Yao et al.63 is also a study of the effects of

time lags in internally synchronized networks, with varying

topologies. Here, the network elements are chaotic pendu-

lums. The authors find that the time lags play a decisive role

in the synchronization process, inasfar as the threshold value

of the coupling strength for complete synchronization

strongly depends on the time delay in the coupling, while the

specific topologies are relatively unimportant in the synchro-

nization behavior.

Moskalenko et al.64 studied the relationship between

chaotic synchronization and microwave signal amplification

in unidirectionally coupled beam–plasma systems. This

paper addresses a challenging issue in the synchronization of

systems possessing multiple time scales that has not been

sufficiently investigated. Can one detect synchronization

between two or more systems on some time scales, while the

trajectories of the systems on other scales are not correlated?

The study’s key tool is wavelet analysis, and the main result

is that synchronization within a limited range of time

scales—referred to as time scale–synchronization—leads to

amplification of output power in numerical simulations, con-

firming the previously reported experimental results.

B. Synchronization between data and models

This section of the issue presents several extensions of

and alternatives to the view of data assimilation as synchro-

nization of a natural or socio-economic system and its

model—as discussed in Sec. I B above.

Penny65 presents a hybrid method for data assimilation

that combines time-dependent coupling coefficients, as in

Kalman filtering,31 with time-independent coefficients, as in

older methods. The method proves superior in situations

where there is not enough information to get sufficiently

complete and reliable error statistics, as required in the

Kalman filter approaches.66 The hybrid method is applied to

a realistic ocean model.

Weiss and Grooms67 introduce a coupling scheme for

data-assimilation-as-synchronization that relies on coherent

structures, an idea previously explored by Ide and Ghil,68,69

among others. Here, it is ocean eddies that are represented as

vortices, to reduce the number of observations required for

given predictability. Various ways for doing so, including

reliance on coherent structures or on preferred instability

modes, had been reviewed by Ghil.70 Specifically, since

coherent structures manifest internal synchronization, the

results of Weiss and Grooms67 suggest that internal synchro-

nization within a system facilitates synchronization with

another system, as previously hypothesized by Duane71 to be

the case more generally.

Abarbanel et al.72 eschew the notion of an objective

nature state that synchronizes with a model, in keeping with

the usual positivist worldview of contemporary physics.

Instead, these authors maximize a posteriori probabilities for

a given stream of input data. This maximization relies on an

Euler-Lagrange path integral approach, in which entire tra-

jectories are matched to the data, as suggested by Eyink and

Restrepo.73,74 The authors72 find similarities between the

path integral approach and synchronization.

This path integral approach results in a formalism for

data assimilation that Abarbanel et al.72 note is equivalent to

the 4dVar scheme used in operational practice by several

meteorological centers. Restrepo,74 on the other hand, had

focused on a comparison of the path integral method with

ensemble Kalman filtering.

There is an interesting dichotomy between Abarbanel’s

(and Restrepo’s74) path integral approach and resulting

second-order equations, on the one hand, and the first-order

synchronization by diffusive-coupling formulation, on the

other hand. This dichotomy reflects the methodological

dichotomy between 4dVar approaches and 3dVar–Kalman

filter approaches that are both commonly used in operational

practice. The latter dichotomy is but a modified form of the

classical duality between optimal control and sequential esti-

mation, respectively.31

The short paper by Duane75 studies the recently pro-

posed “FORCE” algorithm for learning in neural networks

with fully general neuron-to-neuron connection patterns as a

particular instance of data assimilation for parameter estima-

tion. The parameters to be estimated in such recurrent neural

networks are the synaptic weights. The FORCE algorithm,

which ensures synchronization of network output with a

training signal, is found to be equivalent to Kalman Filtering

with a peculiar state-dependent form for the time-dependent

couplings between training signal and model. Duane75 sees

therewith a promising role for applications of data-assimila-

tion-as-synchronization in machine learning and, possibly, in

biological learning.

C. Supermodeling: Synchronization among models

The papers in this section discuss general developments

in the theory and practice of supermodeling.

Kirtman et al.76 present results obtained with an interac-

tive ensemble of climate models, a setting that is a forerun-

ner of supermodeling. The climate models used have an

atmospheric and an oceanic component, and the two compo-

nents are coupled only at the ocean–atmosphere interface. In

the common practice of ensemble forecasting or climate sim-

ulation,46 one uses a unique model with distinct realizations

that are started from an ensemble of initial states and might

include also random changes in some parameter values. In

an interactive ensemble, the realizations are coupled to each

other during the climate simulation. The context of the study
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is the predictability of atmospheric signals arising from

ocean dynamics. In particular, the influence of oceanic

meso-scale activity is analysed by the interactive ensemble

approach.

Two sets of experiments are designed, which differ in

the unique ocean model being used: one has higher horizon-

tal resolution, which allows oceanic eddies to be resolved,

and the other does not. In each one of the two sets, an ensem-

ble of copies of the same atmospheric model, the

Community Atmospheric Model version 4 (CAM4), are cou-

pled by surface fluxes of heat, water mass, and momentum to

a single, shared copy of the ocean model, namely, a high-

resolution (HR) or a low-resolution (LR) version of the

Parallel Ocean Program version 2 (POP).

Averaging the fluxes of the N atmospheric copies enhan-

ces the atmospheric signal that is induced by the ocean state

since unsynchronized atmospheric fluctuations are averaged

out. Presenting these averaged fluxes to the ocean leads to a

higher degree of synchronization as measured by local corre-

lations between sea surface temperature (SST) and convec-

tive precipitation.

The conclusion, as in the Weiss paper,67 is that coherent,

i.e., internally synchronized, ocean eddies enhance predict-

ability. This enhancement is apparently due to an increased

dependence of the atmospheric internal dynamics on the

ocean state, so that the atmospheres increasingly synchronize

with one another. The same generalized synchronization is

likely to occur in a supermodel, in which the atmospheres

differ from one another.

Selten et al.77 present the first fully connected super-

model, composed of several atmospheric models coupled to

each other, as well as to a common ocean–sea ice component

and to a common land surface model. The models crudely

represent all elements of the climate system but are simpler

than those used in high-end climate projection experi-

ments.46 Synchronization-based parameter estimation is used

to train the connection coefficients, as illustrated in Fig. 1

and discussed in Sec. I C. The paper demonstrates the robust-

ness of the supermodel, with its trained connections, against

variations in ancillary parameters that represent CO2 concen-

tration changes in both the atmosphere being observed and

the constituent models. An important finding is that training

of the supermodel on short time scales improves its long-

term climate simulation.

Wiegerinck and Selten78 address the problem of attrac-

tor learning in supermodels, in a situation where the models

contain fewer degrees of freedom than the simulated ground

truth, nature or control run. Two situations are investigated:

(i) in the first one, the ground truth is given by a chaotically

driven Lorenz9 model and the imperfect models are two

Lorenz models with constant forcing; (ii) in the second one,

the ground truth is given by a highly simplified global atmo-

spheric model with good climatological properties, the spec-

tral three-level, quasi-geostrophic (QG3) model of Marshall

and Molteni79 and the imperfect models are lower-resolution

QG models.

In both situations, the supermodel is defined in the limit-

ing case where the connection coefficients become infinite

but with fixed ratios between different connections. This

setting yields essentially a single model defined by weighted

combinations of the tendencies for each variable in the con-

stituent models. It is referred to as weighted supermodeling

as opposed to connected supermodeling. Minimizing the dis-

tance between attractors as a function of such weights is

shown to give a performance superior to that of a supermodel

with weights chosen by short-range optimization schemes

for finite-horizon prediction skill.

D. Applications in the natural and social sciences

The remaining papers focus on applications of synchro-

nization and supermodeling in various physical and socio-

economic systems.

Shen et al.80 develop further the interactive ensemble

construct of Kirtman et al.,76 as reviewed in the previous

subsection, by using two distinct atmospheric models cou-

pled through surface fluxes to the same ocean model. In this

case, both the atmospheric models and the ocean model are

based on the Community Earth System Models (COSMOS)

developed at the Max-Planck-Institut f€ur Meteorologie,

Hamburg. The atmospheric models are both 5th-generation

European Centre–Hamburg (ECHAM5) general circulation

models and differ only in their convection scheme, while the

oceanic model is the Max Planck Institute Ocean Model

(MPIOM).

The paper addresses the question of how two models

exhibiting qualitatively similar erroneous behavior could

combine in a supermodel to yield qualitatively correct

behavior. The promising answer is worked out in focusing

on the Tropical Pacific, where strong nonlinearities are at

work in the coupled atmosphere–ocean system giving rise to

the El Ni~no–Southern Oscillation81,82 cycle. It is these nonli-

nearities that appear to be responsible for a better result than

would arise from a simple linear combination of two differ-

ent mechanisms, both of which, taken separately, give the

same qualitative error in sea surface temperature patterns in

the two models.

Read et al.83 provide an instance of synchronization in

experimental fluid dynamics. The authors study the classical

apparatus of a rotating differentially heated annulus that

mimicks large-scale atmospheric flows,84 but they introduce

periodic forcing that is meant to imitate seasonal changes in

the pole-to-equator temperature difference. They investigate

therewith phase synchronization of the fluid wave motion

between the two concentric, rotating cylinders with the tem-

perature oscillations imposed at the cylindrical boundaries.

The periodicity in the forcing is imposed by superposing

on the otherwise constant temperature difference between

the cylinders recurrent pulses of duration 0.1< d< 1.0, with

1.0 being the nondimensional length of the cycle, while the

waves are amplitude-modulated at constant forcing with a

period P 6¼ 1.0. Arnol’d tongues of complete synchronization

were observed for sufficiently large d, with some degree of

synchronization occurring even for small d. The authors

imply that this result might point to a mechanism for so-

called teleconnections17,24,85 in the atmospheres of Earth and

other planets on time scales that are both shorter and longer

than a year.
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Auer and Hellmann86 study synchronization in large

power grids involving distributed generation of power.

Internal phase synchronization emerges among nodes of the

grid, and disruptions to the grid are accompanied by loss of

synchronization. A stability analysis then identifies the nodes

most sensitive to such disruptions.

Groth and Ghil87 present an application of advanced

spectral methods to the study of synchronization in macro-

economic time series for over 100 countries. The authors are

among the originators of the methodology of multivariate

singular spectrum analysis,56,88,89 and this methodology is

applied here to detect internal phase synchronization without

having to define a phase for each subsystem. The results

include identifying synchronized clusters of activity, as well

as sources of disruption. The key result is the characteriza-

tion of an internally synchronized world business cycle,

along with the relative phases of the five indicators—gross

domestic product (GDP), gross fixed capital formation

(GDI), consumption expenditure (CON), exports (EXP), and

imports (IMP) of goods and services—used for each of the

104 countries in the sample (see Fig. 2).
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