
Simulating climate with a synchronization-based supermodel
Frank M. Selten,1, a) Francine J. Schevenhoven,2, 3 and Gregory S. Duane2, 4
1)Royal Netherlands Meteorological Institute, De Bilt, Netherlands
2)Geophysical Inst., Univ. of Bergen, Bergen, Norway
3)Bjerknes Centre for Climate Research, Bergen, Norway
4)Dept. of Atmospheric and Oceanic Sciences, Univ. of Colorado, Boulder,
USA

(Dated: 22 September 2017)

The SPEEDO global climate model (an atmosphere model coupled to a land and an
ocean/sea-ice model with about 250.000 degrees of freedom) is used to investigate the merits
of a new multi-model ensemble approach to the climate prediction problem in a perfect model
setting. Two imperfect models are generated by perturbing parameters. Connection terms
are introduced that synchronize the two models on a common solution, referred to as the su-
permodel solution. A synchronization-based learning algorithm is applied to the supermodel
through the introduction of an update rule for the connection coefficients. Connection co-
efficients cease updating when synchronization errors between the supermodel and solutions
of the “true” equations vanish. These final connection coefficients define the supermodel.
Different supermodel solutions, but with equivalent performance, are found depending on
the initial values of the connection coefficients during learning. The supermodels have a
climatology and a climate response to a CO2 increase in the atmosphere that is closer to the
truth as compared to the imperfect models and the standard multi-model ensemble average,
showing the potential of the supermodel approach to improve climate predictions.
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Complex numerical codes are being used to pre-
dict the behavior of real-world phenomena like
the climate or the economy. In this study we
demonstrate that predictions can be improved by
forming an ensemble of inter-connected different
imperfect climate models that synchronize on a
common solution, referred to as the supermodel
solution. This supermodel solution depends on
the connections. The connections are trained us-
ing observations of the truth such that the su-
permodel minimizes synchronization errors when
nudged to trajectories of the truth. This is the
first time that the potential of the supermodel ap-
proach is demonstrated in the context of a com-
plex global climate model. Due to its computa-
tional efficiency the synchronization-based learn-
ing approach is applicable to state-of-the-art cli-
mate models with millions degrees of freedom and
historical observations of the Earth’s global cli-
mate system.

I. INTRODUCTION

Global climate models are complex numerical codes
that integrate coupled sets of ordinary differential equa-
tions with prescribed time-dependent forcing terms in
time in order to produce projections of our future cli-
mate. It is commonly found that a multi-model averaged
climatology is closer to the observed climatology, which
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is defined as the average over 30 years and is referred to
as the climate normal. Model estimates tend to be dis-
tributed around the truth and therefor averaging across
models helps in reducing errors in the simulated mean
state20. Although improved climate statistics are use-
ful, climate adaptation and impact studies often require
climate trajectories as input9. However averaging tra-
jectories from multiple models without synchronization
leads to undesired smoothing and variance reduction.

Here we follow an alternative, synchronization-based
approach that produces improved climate trajectories by
combining climate models dynamically. This approach
was inspired by a study in which two different atmosphere
models were coupled to a single ocean model leading to
improved climate simulations when the ocean exchanged
heat with only one atmosphere model and momentum
with the other12. Here we dynamically combine models
by introducing connection terms into the model equa-
tions that nudge the state of one model to the state of
every other model in the ensemble, effectively forming a
new dynamical system with the values of the connec-
tion coefficients as additional parameters. For strong
enough connections the models synchronize on a com-
mon solution that depends on the values of the connec-
tion coefficients10,13. This solution is referred to as the
supermodel solution1. During a learning phase the su-
permodel is nudged to an observed trajectory and the
connection coefficients are adjusted by update rules that
depend on the synchronization error. The connection
coefficients cease to update when the synchronization is
perfect.

So far the supermodel approach was pioneered using
relatively simple dynamical systems only1,5,14 or with
very limited inter-model connections in a global climate
model context19. Here we demonstrate the potential of a
fully connected supermodel constructed from versions of
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a complex global climate model. This model, SPEEDO18

is described in section II which is followed by a discussion
of the supermodel implementation using SPEEDO in sec-
tion III. The synchronization-based learning is explained
in section IV and is applied to the SPEEDO supermodel
in section V. In the discussion section VI we discuss
the merits of the supermodel approach in relation to the
standard multi model ensemble approach. We conclude
the paper with a summary of open issues in section VII
and discuss the application of the synchronization-based
supermodel approach for state-of-the-art weather and cli-
mate models.

II. SPEEDO CLIMATE MODEL

The SPEEDO climate model consists of an atmo-
spheric component (SPEEDY) that exchanges informa-
tion with a land (LBM) and an ocean-sea-ice compo-
nent (CLIO) using coupling routines (Fig. 1). The cou-
pling routines perform re-gridding operations between
the computational grids of the different modules. A de-
tailed description of SPEEDO can be found in18. The
atmospheric model SPEEDY solves the primitive equa-
tions on a sphere using a spectral method15. The prim-
itive equations are derived from the Navier-Stokes equa-
tions with suitable approximations for atmospheric flow
at scales larger than a few kilometers23. The spectral
expansion into spherical harmonics is truncated at total
wavenumber 30 which corresponds to a spatial resolu-
tion at the equator of about 700 km. It has 8 vertical
levels and relatively simple representations of radiation,
convection, clouds, precipitation and turbulent heat, wa-
ter and momentum exchange at the surface. The solar
radiation follows the daily and seasonal cycle. In prin-
ciple the model consists of 31680 coupled ODE’s for the
spectral coefficients of the two horizontal wind compo-
nents U (east-west) and V (north-south), temperature
T and specific humidity q at the 8 vertical levels and
the log of surface pressure ps. Calculations in physical
space are performed on a Gaussian grid with approxi-
mately 3.75 degree spacing (48x96 grid-cells). Speedy
exchanges water and heat at the 2115 land points of the
land model LBM that uses three soil layers and up to two
snow layers to close the hydrological cycle over land and
a heat budget equation that controls the land temper-
atures. The horizontal discretisation is the same as for
the atmosphere model. The land surface reflection coef-
ficient for solar radiation is prescribed using a monthly
climatology. Each land bucket has a maximum soil wa-
ter capacity. The runoff is collected in river-basins and
drained into the ocean at specific locations of the ma-
jor river outflows. SPEEDY exchanges heat, water and
momentum with the ocean model CLIO8. CLIO solves
the primitive equations on a computational grid of 3 de-
gree horizontal resolution and 20 unevenly spaced lay-
ers in the vertical. It has a rotated grid over the North
Atlantic ocean in order to circumvent the singularity at
the pole. It has a free-surface and is coupled to a three-
layer thermodynamic-dynamic sea-ice model. The sea-ice
model takes into account the heat storage in the snow-ice

system and calculates the changes of snow and ice thick-
ness in response to surface and bottom heat fluxes. In
the computation of ice-dynamics, sea ice is considered to
behave as a viscous-plastic continuum as it moves under
the action of winds and ocean currents. In total CLIO
has about 200.000 degrees of freedom. The SPEEDO
equations can be written as

ȧ = fa(a;pa) + ga(eh, ew, em)

ȯ = fo(o;po) + go(Poeh,Poew,Poem,Por)

l̇ = f l(l;pl) + gl(P leh,P lew, r) (1)

Here we formulate the model in terms of ordinary differ-
ential equations (ODEs) on a grid, instead of the more
usual partial differential equations (PDEs), to be explicit
about the numerical scheme and also for consistency with
the ODE scheme for learning intermodel connections that
is presented in Section IV. The bold lowercase characters
represent vectors with a the atmospheric state vector, o
the ocean/sea-ice state vector, l the land state vector, eh

the heat exchange vector between atmosphere and sur-
face, ew the water exchange vector, em the momentum
exchange vector and r the river outflows from land to
ocean. The exchange vectors depend on the state of the
atmosphere and the surface. The projection operators
P represent the re-gridding operations between the com-
putational grids. These operations are conservative so
that the globally integrated heat and water loss of the
atmosphere at any time at the surface equals the inte-
grated heat and water gain of the land and ocean. The
non-linear functions f represent the cumulative contri-
bution of the modelled physical processes to the change
in the climate state vector and depend on the values of
the parameter vectors p. Some of these parameters go
through a daily and/or seasonal cycle and/or have a spa-
tial dependence like the reflectivity of the surface. The
non-linear functions g describe how the exchange of heat,
water and momentum between the subsystems affect the
change of the climate state vector.

III. SUPERMODEL

In this study we consider the SPEEDO climate model
with standard parameter values as ”truth” and create
imperfect models of this truth by perturbing parameter
values in the atmospheric component. A supermodel is
formed by connecting two imperfect atmosphere mod-
els through linear nudging terms that nudge the state of
model 1 to model 2 and vice versa (see Fig. 2 and (2).
Both atmosphere models receive the same state informa-
tion from the ocean and land model and each calculate
their own water, heat and momentum exchange. The
ocean and land model receive the exchanges from both
atmospheres and use the average of both as input. The
supermodel state as at any time is defined as the average
of both model states. For strong enough nudging both at-
mospheres synchronize on a common evolution and there-
fore by taking the averaged state no significant spatial or
temporal smoothing is introduced. The SPEEDO super-
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FIG. 1. Schematic representation of the SPEEDO climate
model. The atmosphere needs surface characteristics (tem-
perature, roughness, reflectivity) in order to calculate the
exchange of heat, water and momentum. Coupler software
communicates this information between the components and
interpolates between the computational grids.

model equations are given by

ȧ1 = fa(a1;pa1) + ga(eh1 , e
w
1 , e

m
1 )−C12[a1 − a2]

ȧ2 = fa(a2;pa2) + ga(eh2 , e
w
2 , e

m
2 )−C21[a2 − a1]

ȯ = fo(o;po) + go(Poeh,Poew,Poem,Por)

l̇ = f l(l;pl) + gl(P leh,P lew, r)

as =
1

2
[a1 + a2] (2)

where C denotes a diagonal matrix with connection co-
efficients on the diagonal, the subscripts refer to the re-
spective models and the overbar denotes an average over
the two models.
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Land

LBM

Atmosphere 2

SPEEDY

FIG. 2. Schematic representation of the SPEEDO climate
supermodel. The two imperfect atmosphere models exchange
water, heat and momentum with the perfect ocean and land
model. The ocean and land model send their state infor-
mation to both atmosphere models. The atmosphere models
exchange state information with each other.

The supermodel equation can be written as

ȧs =
1

2
[fa(a1;pa1) + fa(a2;pa2)]+

1

2
[ga(eh1 , e

w
1 , e

m
1 ) + ga(eh2 , e

w
2 , e

m
2 )]+

1

2
[C12 −C21][a2 − a1] (3)

From this equation a number of interesting observa-
tions can be made. For equal connection coefficients
(C12 = C21) the last term vanishes and the super-
model solution becomes equal to the average of both im-
perfect model solutions. If the synchronization is per-
fect (a1 = a2 = as) then the supermodel solution
obeys the averaged imperfect model equations with equal
weights 1

2 . Solving the weighted averaged equations is

referred to as weighted supermodeling21 as opposed to
connected supermodeling. For unequal connection co-
efficients (C12 6= C21), with for instance model 1 more
strongly nudged to model 2 than vice versa, the last term
is non-zero and systematically pushes the connected su-
permodel solution every time-step toward the state of
model 2 (see Fig. 3).

Negative connection values imply that the model so-
lutions are driven apart. This is undesired as the aim is
to synchronize the models on a common solution. With-
out this constraint, the model with the negative coeffi-
cient will be driven away from the other model solution.
However, both solutions could still remain close together,
if the other model gets a positive connection coefficient
with larger value and chases the model with the nega-
tive coefficient. In this study we will restrict to positive
connection coefficients only.

As =
1
2 (A1 + A2 )

A1

A2

A2 − A1

FIG. 3. Graphical representation of one time-step of the con-
nected supermodel. Black arrows denote state vectors at ini-
tial time, grey arrows one time-step later. The change in
the supermodel state (green vector) is the averaged change of
model 1 (red vector) and model 2 (blue vector) plus a vector
due to the nudging terms (yellow vectors) pointing in the di-
rection of the model 2 state, assuming that the model 1 state
is more strongly pushed to the model 2 state than vice versa.
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IV. SYNCHRONIZATION-BASED LEARNING

The supermodel solution (2) depends on the choice of
the connection coefficient values C. A learning algorithm
that extends synchronization of states to synchronization
of parameters is applied in order to train the supermodel
to follow trajectories from the truth more closely as ex-
plained in the next section.

A. From state synchronization to parameter
synchronization

Suppose we have two coupled dynamical systems:

ẋ = f(x;p)

ẏ = f(y; q)−K(y − x) (4)

where p and q are vectors of parameters, K(y − x) is a
nudging term that couples the two systems, and K is a
diagonal matrix of nudging coefficients. We will assume
that the equations are linear in the parameters p.

Suppose that when the two systems are identical, i.e.
when p = q, the two systems synchronize, that is, as
t → ∞, y(t) → x(t). We want to find some rule for
varying the parameters q, i.e. a dynamical equation such
that even if the two systems are not identical, p 6= q,
the systems will still synchronize, and the parameters
will become equal, that is, as t → ∞, y(t) → x(t), and
q(t) → p. The problem is that of “adaptive observers”
in the electrical engineering literature2,24.

First, for concreteness, we show how such a rule might
be derived for the simple case of two connected Lorenz
systems:

ẋ1 = σ(x2 − x1) ẏ1 = σ(y2 − y1)− c(y1 − x1)

ẋ2 = ρx1 − x2 − x1x3 ẏ2 = ρ̃y1 − y2 − y1y3
ẋ3 = −βx3 + x1x2 ẏ3 = −βy3 + y1y2 (5)

where the subscripts refer to the state vector elements.
If ρ̃ = ρ, the two dynamical systems are iden-

tical and are known to synchonize: As t → ∞,
(y1(t), y2(t), y3(t))→ (x1(t), x2(t), x3(t)), and e(t)2 → 0,
where the synchronization error e ≡ (y1−x1, y2−x2, y3−
x3). We claim that that in the case of non-identical sys-
tems, with ρ̃ 6= ρ, we can still arrange for synchronization
if we can allow ρ̃ to vary as a new dynamical variable,
specifically introducing the dynamical equation for ρ̃:

˙̃ρ = −(y2 − x2)y1

= −e2y1 (6)

To see why (6) implies (y1, y2, y3, ρ̃) → (x1, x2, x3, ρ),
consider the Lyapunov function L ≡ (y1 − x1)2 + (y2 −
x2)2 + (y3−x3)2 + (ρ̃−ρ)2. If we can show L(t)→ 0, we
will have the desired state and parameter synchroniza-
tion. Consider the time derivative

L̇ = L̇0 + 2 ˙̃ρ(ρ̃− ρ) (7)

where L0 ≡ e2 is the part of the Lyapunov function
formed from state errors alone. The key point is that

the time derivative of L0 differs from its value for ρ̃ = ρ,
because the dynamical equation for y2 is different. Specif-
ically, in the derivative

L̇0 =
d

dt

(
(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2

)
= 2(y1 − x1)

d

dt
(y1 − x1) + 2(y2 − x2)

d

dt
(y2 − x2)

+ 2(y3 − x3)
d

dt
(y3 − x3) (8)

(where we do not include parameter error explicitly), ev-
ery term on right hand side is exactly of the same form
as in the case of equal parameters, except for the term
that contains y2. The time-derivative factor in that term
can be written as:

d(y2 − x2)

dt
= (ρ̃− ρ)y1 + ρy1 − y2 − y1y3

− ρx1 + x2 + x1x3

= (ρ̃− ρ)y1 +
d(y2 − x2)

dt
|ρ̃=ρ (9)

where the last term is the value that the time-derivative
would have if the parameters were equal. Substituting
(9) into (8) gives

L̇0 = 2(y1 − x1)
d

dt
(y1 − x1) + 2(y2 − x2)

d

dt
(y2 − x2)|ρ̃=ρ

+ 2(y3 − x3)
d

dt
(y3 − x3) + 2(y2 − x2)(ρ̃− ρ)y1

= L̇0|ρ̃=ρ + 2(y2 − x2)(ρ̃− ρ)y1 (10)

Inserting (6) and (10) into (7), we have

L̇ =L̇0|ρ̃=ρ + 2(y2 − x2)(ρ̃− ρ)y1

− 2(y2 − x2)(ρ̃− ρ)y1

=L̇0|ρ̃=ρ (11)

Trajectories of the coupled identical systems monotoni-
cally approach synchronization after some point in time,
with L̇0|ρ̃=ρ < 0. So, by (11) the same can be said of
the trajectories of the non-identical systems, for which
L̇ < 0. The reason is that the dynamical equation (6) is
constructed so that changes in the time-derivative of L
due to explicit inclusion of parameter error in the Lya-
punov function will exactly cancel the changes due to the
implicit effect on the states through the dynamical equa-
tions.

To generalize the above argument to any pair of syn-
chronizing dynamical systems, consider two Lyapunov
functions of state error and parameter error:

L0(e) ≡ e2 =
∑
i

e2i (12)

L(e, r) ≡ e2 + s2 =
∑
i

e2i +
∑
j

s2j (13)

where e = y − x, and s = q − p. Because L0 and L
vanish only when all arguments vanish, if we can show
either that L0 → 0 or that L → 0 , we have synchro-
nization. If L → 0, we also have parameter matching.
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We seek a dynamical equation for q such that there is
a simple relationship between the Lyapunov function for
the case of unequal parameters and that for the case of
equal parameters. Since we already know L0|p=q → 0,
because the identical systems synchronize, we then have
L→ 0 as well.

To find a suitable parameter up date rule, q̇ = u(x),
we consider the time derivative of L:

L̇ = L̇0 + 2
∑
j

sj ṡj

= 2
∑
i

eiėi + 2
∑
j

(qj − pj)q̇j (14)

recalling that ṗi = 0. We seek to decompose ėi in (14)
as the sum of the value for a system with q = p and a
correction term due to the fact that q 6= p:

ėi = ėi|q=p +
∑
j

(qj − pj)
∂fi(y;p)

∂pj
(15)

The partial derivative with respect to parameter pj is the
co-factor of that parameter in the ith dynamical equa-
tion, since the parameter only appears linearly. Inserting
(15) in (14) yields:

L̇ = L̇0|q=p+2
∑
i

ei
∑
j

(qj − pj)
∂fi(y;p)

∂pj

+2
∑
j

(qj − pj)q̇j (16)

If we choose a parameter adaptation rule:

q̇j = −
∑
i

ei
∂fi(y;p)

∂pj
(17)

then the last two terms in (16) cancel and we have

L̇ = L̇0|q=p (18)

which we claim is enough to give L→ 0, and hence syn-
chronization, in the unequal-parameter case. That is be-
cause we already know that the Lyapunov function for
the equal-parameter case is monotonically decreasing for
some finite region of state space, i.e. L̇0|q=p ≤ 0 in this

region, and L̇0|q=p = 0 only if x = y. Under an assump-
tion of ”high-quality synchronization”, where after some
time there is no bursting away from the synchronization
manifold, there is a finite distance from the manifold
below which all points belong to the attractive region,
so once a trajectory enters the region it cannot leave,
since a decreasing L0 implies decreasing distance from
the manifold. Then L̇ ≤ 0 in this region as well, implying
y(t) → x(t), and q(t) → p as desired. (Strictly speak-

ing, L̇ ≤ 0 could imply that L converges to a positive
constant value, and not to 0, but since L̇ = L̇0|q=p = 0
only if x = y, the strict inequality holds except possi-
bly on the synchronization subspace x = y, which is not
dynamically invariant except when q = p. )

The rule (17) can be generalized a bit: If we start
with a more general Lyapunov function L(e, s) = e2 +

∑
j

1
δj
s2j , which is positive definite for arbitrary positive

constants δj , we can derive a rule:

q̇j = −δj
∑
i

ei
∂fi(y;p)

∂pj
(19)

in place of (17). A still more general form of the param-
eter adaptation rule was proved in7.

B. Synchronization-based learning of inter-model
connections

We apply the parameter adaptation rule (19) to the
inter-model connections in a supermodel based on two
imperfect SPEEDY atmospheres. The configuration is
depicted in Fig. 4 with corresponding equations:

ȧ0 = fa(a0;pa0) + ga(eh0 , e
w
0 , e

m
0 )

ȧ1 = fa(a1;pa1) + ga(eh1 , e
w
1 , e

m
1 )

− C12[a1 − a2]−K[a1 − a0]

ȧ2 = fa(a2;pa2) + ga(eh2 , e
w
2 , e

m
2 )

− C21[a2 − a1]−K[a2 − a0]

ȯ = fo(o;po) + go(Poeh0 ,Poew0 ,Poem0 ,Por)

l̇ = f l(l;pl) + gl(P leh0 ,P lew0 , r)

as =
1

2
[a1 + a2]

Ċµν = uµν (20)

where uµν denote parameter update rules for the connec-
tion coefficient values of model µ nudged to model ν. The
two imperfect atmosphere models (a1 and a2) are nudged
to the truth (a0) with fixed nudging strength K. Truth
is represented by the SPEEDY model with standard pa-
rameter values (a0). The ocean and land model send
their state information to all atmosphere models but re-
ceive the water, heat and momentum exchange from the
true atmosphere only. The imperfect atmosphere mod-
els exchange state information and are nudged to each
others state. Note that intermittent nudging of models
to reality accomplishes the task of data assimilation in
numerical weather prediction6,22, so during training the
supermodel effectively does continuous data assimilation.

Imperfect model 1

SPEEDY

Ocean/
sea-ice
CLIO

Land

LBM

Imperfect model 2

SPEEDY

Truth

SPEEDY

FIG. 4. Schematic representation of the SPEEDO climate
supermodel during synchronization-based training.
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The parameter adaptation rule for a supermodel is ob-
tained by forming the parameter vector q from the set
of connection coefficients Cµν,ii, for µ and ν ranging over
the labels of the separate models, and the index i over
the dimension of the state vector5. If one assumes the
truth is a supermodel for “correct” values of Cµν then
application of the rule (19) to the supermodel (20) using
ei = as,i − a0,i gives:

Ċµν,ii = δµν,i[aµ,i − aν,i][as,i − a0,i] (21)

where index i is the index of the state vector and the
adaptation rates δµν,i are arbitrary constants. In princi-
ple the adaptation rates can be chosen different for each
inter-model connection element of the state vector, but in
this study we will choose a single adaptation rate for all
elements and drop the subscripts from here on. The rule
(21) has a simple interpretation: the time integral of the
right-hand side gives the temporal covariance between
truth-supermodel synchronization error, (as,i−a0,i), and
the inter-model nudging term, (aµ,i − aν,i). It indeed
makes sense to adapt the inter-model nudging strength,
for a given pair of corresponding variables, depending
on the sign and magnitude of this covariance. The con-
nection coefficients cease updating when this covariance
is zero and/or the synchronization error vanishes. In
principle one could consider allowing different connection
strengths for each state vector element. For SPEEDY
this would imply adapting N(N − 1) times 31680 coef-
ficients with N the number of imperfect models in the
supermodel. In this study we will impose spatial invari-
ance on the connection coefficients and only consider de-
pendence on the physical variable that is being nudged
in order to keep the number of adjustable coefficients rel-
atively small. The nudging is applied to the velocity and
temperature fields only, not to surface pressure and at-
mospheric humidity. It turns out that synchronization of
the total state can be achieved by nudging these three
fields only and an advantage is that it requires less com-
munication between the atmospheres during the simula-
tion. This choice for the nudging results in six connection
coefficients for the inter-model connections between two
imperfect models. The adaptation rules for the connec-
tion coefficients become

ĊTµν = δ

8∑
k=1

96∑
i=1

48∑
j=1

[Tν(λi, φj , pk)− Tµ(λi, φj , pk)]

× [T0(λi, φj , pk)− Ts(λi, φj , pk)]

ĊUµν = δ

8∑
k=1

96∑
i=1

48∑
j=1

[Uν(λi, φj , pk)− Uµ(λi, φj , pk)]

× [U0(λi, φj , pk)− Us(λi, φj , pk)]

ĊVµν = δ

8∑
k=1

96∑
i=1

48∑
j=1

[Vν(λi, φj , pk)− Vµ(λi, φj , pk)]

× [V0(λi, φj , pk)− Vs(λi, φj , pk)] (22)

where λi denotes the longitude, φj the latitude and pk
the pressure level. The right-hand side of these equations
corresponds to the spatial covariance between the truth-
supermodel synchronization error and the inter-model

nudging terms. The adaptation rule in this case adjusts
the connection coefficient of temperature, for example,
between model µ and ν when the temperature differ-
ence between model µ and ν spatially and temporally
covaries with the truth-supermodel synchronization er-
ror in temperature. This procedure makes sense because
the inter-model temperature difference is proportional to
the inter-model nudging term, and one wants to use more
or less inter-model nudging, in a given direction, depend-
ing on whether the nudging tends to decrease or increase
truth-supermodel synchronization error.

V. RESULTS

A. Imperfect models

First SPEEDO with standard parameter values (the
”truth”) was integrated for 400 years using present-day
atmospheric CO2 concentrations. The global mean sur-
face temperature of this simulation rises from 13 degrees
Celsius to about 14.2 degrees during the first 50 years, re-
mains fairly stable for about 300 years and subsequently
starts to cool during the final 50 years (Fig. 5). Slow
cooling trends in the deep ocean are present during the
whole simulation and in the end stabilize the ocean and
reduce the mixing of heat from the deep ocean to the
cold surface waters in the North Atlantic. Consequently
the North Atlantic surface waters cool, Arctic sea-ice ex-
pands and the global mean surface temperature drops.

From this simulation we selected January 1, 2001 in
the middle of the relatively stable period as initial con-
dition for the supermodel experiments. We integrated
SPEEDO for 40 years for two sets of perturbed param-
eters (Table I). The parameters concern parameterized
descriptions of horizontal and vertical mixing processes
due to unresolved turbulent motions. Imperfect model 1
(red line) warms around 1.4 degrees with respect to the
truth, imperfect model 2 (blue line) cools around 0.5 de-
grees. The amplitude of these climate differences are not
unrealistic as differences of more then a degree in global
mean temperature are not uncommon between state-of-
the-art climate models. For reference the perfect model
was also integrated for 40 years (green line), referred to
as the control simulation. It deviates from the truth due
to sensitive dependence on initial conditions as it was
initiated from a perturbed first of January 2001 state.

perfect imperfect 1 imperfect 2

relaxation timescale
of convection

6 hours 4 hours 8 hours

relative humidity
threshold

0.9 0.85 0.95

momentum diffusion
timescale

24 hours 18 hours 30 hours

TABLE I. Parameter values in perfect and imperfect models.
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FIG. 5. Global mean temperature time-series for SPEEDO
with standard parameter values (truth). The perfect model
and the two imperfect models were initiated in year 2001 and
integrated for 40 years.

B. Synchronization

Before we start to connect the two imperfect models
and train the connection coefficients, we first have a look
at the synchronization errors when the models are nudged
to the truth.

During training synchronization errors determine the
updates to the connection coefficients. For effective train-
ing synchronization errors should be significantly larger
for the imperfect models than for the perfect model for
given model-to-truth nudging strength K. Ideally the
trained supermodel will have synchronization errors close
to the perfect model. We investigated the magnitude
of the synchronization error in relation to the nudging
strength K by running the configuration depicted in Fig.
6. The perfect and imperfect models receive the state in-
formation from the truth at every time-step and their
states are nudged accordingly. Only the truth exchanges
water, heat and momentum with the surface (ocean and
land) models. The other models receive the state infor-
mation from the surface models, calculate each their own
water, heat and momentum exchange, but this informa-
tion is not communicated back to the surface models.

The models are initialized from randomly perturbed
January 1, 2001 states and integrated for two weeks
with K set to zero in order to allow the models to de-
synchronize. Next K is set to a value of 1/24 hours−1

and the integration is continued for the rest of the year.
Sensitive dependence on initial conditions and model er-
rors cause a rapid increase of the synchronization error
during the first two weeks (Fig. 7a). The error reduces
rapidly when K is set to 1/24 hours−1 after two weeks,
levels off within a couple of weeks and remains fairly sta-
ble for the remainder of the year. The perfect model does
not synchronize perfectly with the truth, but the average
error is only 0.01 degree Celsius. Given daily fluctua-
tions at given locations of tens of degrees, this is a very
small synchronization error. The synchronization error is
about 10 times larger for imperfect model 1 and 6 times
for imperfect model 2. The synchronization error is al-
most independent of nudging timescale between 24 and 4
hours for the perfect model, but for the imperfect models

the errors are reduced by more than 60 % over this range
(Fig. 7b). Note that nudging only part of the total state
vector (the surface pressure field and the humidity field
are not nudged) is sufficient to achieve this high degree
of synchronization.

Based on these synchronization experiments we choose
a nudging timescale of 24 hours. The nudging keeps the
imperfect models close to the truth, but at the same time
there is room for a ten-fold reduction in synchronization
error by updating the inter-model connection coefficients.

Imperfect 1

SPEEDY

Ocean/
sea-ice
CLIO

Land

LBM

Truth

SPEEDY

Imperfect 2

SPEEDY

Perfect

SPEEDY

FIG. 6. Schematic representation of the SPEEDO configura-
tion for the synchronization experiments.
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FIG. 7. (a) Synchronization error as measured by the root of
the globally averaged mean squared surface air temperature
difference between model and truth for a nudging timescale
of 24 hours for the perfect model (green), imperfect model
1 (red) and imperfect model 2 (blue). (b) Time-averaged
synchronization error during the final 10 months of the inte-
grations as a function of nudging timescale.

C. Learning

In the first learning experiment, the SPEEDO super-
model was initialized at January 1, 2001 in the configu-
ration depicted in Fig. 4 using initial connection coeffi-
cient values in (22) equal to 1/8 hours−1. The nudging
timescale corresponding to K in (20) was set to 24 hours
as motivated in the previous section. The rate of learning
δ in the update rules of (22) was set to 24000. With these
parameter choices the SPEEDO supermodel was trained
for 10 years by integrating (20) with update rules uµν
given by (22). The six connection coefficients (CTµν , CUµν ,

CVµν in Fig. 8ab) converge within the first months to
values that remain fairly stable during the remaining 10
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years of the training. A small annual cycle is visible sug-
gesting that the optimal nudging coefficients have a weak
seasonal dependence. It is obvious from the graph that
C12 and C21 lie symmetrical around the initial value for
each of the three variables. This is due to the fact that
according to the update rules (22) Ċµν = −Ċνµ. Another
consequence is that the asymptotic values depend on the
initial value.

In the second learning experiment, the SPEEDO su-
permodel was initialized with connection strengths equal
to 1/24 hours−1. Indeed the asymptotic values are dif-
ferent in this case (Fig. 8cd). In addition the symmetry
is broken due to additional constraints that the connec-
tion values are not allowed to go below zero or above 1/4
hours−1. An upper bound is imposed in order to prevent
numerical instabilities for too strong nudging and allow
some desynchronization at times when the truth is hard
to follow by both imperfect models. The numerical in-
stabilities could be prevented by reducing the time-step
but we chose to keep the time-step fixed at 30 minutes
and impose an upper bound on the nudging strength.

The learning experiments result in different super-
model solutions as defined by the asymptotic connection
values. These are summarized in Table II. The synchro-
nization error when connected to the truth is similar for
both supermodels (Fig. 9), despite the difference in the
connection values. The connections of supermodel 1 are
about twice as strong as the connections of supermodel
2. The relative strengths between the connections are
therefor about the same. This suggests that only the
relative strengths matter and that the supermodel solu-
tion is invariant under multiplication of all connections
by a constant factor provided that the imperfect models
synchronize. The initial value of the coefficients during
learning selects a particular factor.

It appears that short training periods suffice to train
the inter-model connection coefficients, despite the long
time-scales present in the climate. During the learning
phase the imperfect atmosphere models receive the true
ocean, land and sea-ice states and are able to learn how
the true atmosphere interacts with these states. The im-
perfections concern fast atmospheric processes (turbu-
lence and convection) and can thus be trained on these
time scales. In order to verify that the training of the
inter-model connection coefficients does not depend on
the ocean/sea-ice state, we repeated the learning exper-
iments starting in year 2151 of the reference simulation.
The state of the ocean and sea-ice is different and the
thermo-haline circulation in the North-Atlantic basin is
about to collapse, causing a rapid cooling of the sea sur-
face temperatures in the North-Atlantic and a growth of
the Arctic sea-ice cover. Nevertheless, the training con-
verges on similar connection values (not shown).

The trained supermodels have smaller synchronization
errors as compared to both imperfect models (Fig. 9)
but not as small as the perfect model. For compari-
son we evaluated the synchronization errors of the un-
trained supermodel with equal weights of 1/24 hours−1.
The training has reduced the synchronization error in the
east-west component of the wind at 850 hPa by only a
small margin (Fig. 9).

It is hoped that the reduction in synchronization error

when the supermodel is nudged to truth will be reflected
in improved simulations of climate when the supermodel
is run freely to simulate climate. If indeed only the rel-
ative strengths of the connections matter, then both su-
permodel solutions should give similar results. In the
next sections we will investigate climate simulations of
both supermodel solutions in comparison to the perfect
and imperfect models and the untrained supermodel.
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FIG. 8. Time-series of the connection coefficients during the
training when initialized at 1/8 hours−1 (a and b) and 1/24
hours−1 (c and d). The first 14 days of the training are plot-
ted in the left panels, right panels display the whole 10 year
training period. The black dot denotes the initial values.

CT
12 CT

21 CU
12 CU

21 CV
12 CV

21

supermodel 1 0.22 0.03 0.17 0.08 0.17 0.08
supermodel 2 0.12 0.01 0.08 0.04 0.08 0.04

TABLE II. Connection coefficient values of the two super-
model solutions.
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els when connected to the truth for different nudging strengths
from similar synchronization experiments as in Fig. 7b.
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D. Climate

The two trained supermodels and the untrained super-
model are initialized at January 1, 2001 and integrated
for 40 years. The evolution of the global mean temper-
ature of both trained supermodels shows no sign of a
drift with respect to the truth or the perfect model, un-
like the imperfect models and the untrained supermodel
(Fig. 10). The synchronized evolution of the imperfect
models in the untrained supermodel produces a global
mean temperature close to the average of the global mean
temperature of the two imperfect model evolutions.

In the trained supermodels imperfect model 1 is more
strongly nudged to imperfect model 2 for all connections
than vice versa (Table II). In this case (3) implies that
the supermodel solution is systematically pushed away
from the averaged solution toward the evolution of im-
perfect model 2. This makes sense as the warming of
imperfect model 1 with respect to the truth is stronger
than the cooling of imperfect model 2 (Fig. 10).
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FIG. 10. The global mean surface temperature evolution for
the truth, the perfect model, the two imperfect models, the
two trained supermodels and the untrained supermodel. All
models are initialised at January 1, 2001 of the truth.

Another measure of the quality of the climate simu-
lations are errors in the climatological mean fields. As
an example Fig. 11 shows the error in the time average
over the final 30 years of the simulations of the east-west
component of the wind at the 200 hPa pressure level (at
about 10 km height). The mean winds of imperfect model
1 have errors that reach 5 m/s in the Southern Hemi-
sphere. The error pattern has a rich spatial structure,
but is to a considerable extent opposite in sign as com-
pared to imperfect model 2. An improved estimate of the
true mean winds is obtained by taking the average of both
models, commonly referred to as the multi-model average
in climate science. The error pattern of the multi-model
average is very similar to the error pattern of the un-
trained supermodel with equal coefficients. Both trained
supermodels have smaller errors than the untrained su-
permodel. The training based on synchronization errors,
essentially a training based on short-term prediction er-
rors, has also proved useful for supermodel simulation
of long-term climate. For reference the bottom panel of
Fig. 11 shows the errors of the perfect model. Due to
sampling uncertainties the mean state of the truth is not

exactly reproduced in a 30 year simulation with the per-
fect model. The errors in the mean state of the trained
supermodels are larger as compared to the perfect model,
especially in the tropical region. An optimally weighted
multi-model average was determined and is also shown
in Fig. 11. Adding 0.24 times the mean state of imper-
fect model 1 and 0.76 times the mean state of imperfect
model 2 leads to a similar estimate of the true mean state
as provided by both trained supermodels.

Imperfect model 1 200 hPa zonal wind error Imperfect model 2 200 hPa zonal wind error

Equal weighted multi-model average wind error Supermodel with equal connections wind error

Super model 1 wind error Supermodel model 2 wind error

Multi-model optimal weighted average wind error Perfect model wind error

a b

c d

e f

g h

FIG. 11. Difference in the east-west component of the wind
at the 200 hPa pressure level averaged over model years 2011-
2040 for the various models with respect to the truth. Con-
tours denote areas where the difference is larger than the sam-
pling error at 95% confidence (solid for positive difference,
dotted for negative). Positive values imply stronger mean
winds blowing eastward. Units: m/s.

Globally averaged errors for a number of different cli-
matological fields paint the same picture (Fig. 12). The
untrained supermodel has similar errors as the multi-
model average. An optimally weighted multi-model aver-
age has smaller errors, comparable to those of the trained
supermodels, in the nudged variables and also in variables
that are not nudged, like precipitation and cloud-cover.
There is still room for some improvement to match the
small errors (due to sampling) obtained with the perfect
model simulation.

Ideally one should compare attractors in order to make
judgements about the quality of the climate simulations
instead of just comparing the mean states. For such high-
dimensional systems as SPEEDO the evaluation of the
probability density in state space is computationally too
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expensive since too much data is required in order to
yield representative results3, but other statistical prop-
erties of the attractors might be compared. As an ex-
ample we evaluated the 95% percentile of three-hourly
sums of convective rainfall at each location. The results
are plotted in Fig. 13. The convective rainfall extremes
are largest in tropical areas and in the regions of the
extra-tropical stormtracks (panel a). In general imper-
fect model 1 overestimates and imperfect model 2 under-
estimates the convective precipitation extremes (panel c
and d). Supermodel 1 simulates the precipitation ex-
tremes more accurately. The root mean squared error
is 1.2 mm/day as compared to 2.7 and 2 mm/day for
imperfect model 1 and 2 respectively.
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FIG. 12. Normalized errors with respect to the truth in vari-
ous meteorological fields averaged over model years 2011-2040
for the various models. At each location the difference in the
mean state is normalized by 1.96 times the standard devia-
tion of the 30 yearly values, divided by square root of 30. The
normalized errors in this graph correspond to the root of the
globally averaged squared normalized differences. With this
normalization the perfect model has errors around value one.

E. Climate response

Climate models are commonly used to make projec-
tions of the future climate by assuming scenarios for fu-
ture emissions of greenhouse gasses. Here we explore
whether the trained supermodel is capable of simulating
the climate change due to a doubling of the CO2 con-
centration. In model year 2041 the CO2 concentration
is doubled and the various models are integrated for 30
years. Global mean temperature time-series are plotted
in Fig. 14. The global mean temperature in the super-
model remains close to the truth after the doubling of
CO2. Imperfect model 1 and 2 simulate a similar warm-
ing but the reference state at the onset of doubling is
warmer in imperfect model 1 and colder in imperfect
model 2. In response to the CO2 change, also the at-
mospheric circulation changes (Fig. 15). The change of
the east-west component of the wind at 850 hPa in the

Perfect model 3 hour convective precipitation extreme Supermodel error

Imperfect model 1 error Imperfect model 2 error

a b

c d

FIG. 13. 95% percentile of convective precipitation three-
hourly sums (mm/day) in the perfect model (a), and differ-
ences with respect to the perfect model for supermodel 1 (b)
and both imperfect models (c and d). Calculations are per-
formed for the years 2011-2040.

supermodel is best simulated by the supermodel (15),
especially in the tropical regions around Indonesia.
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FIG. 14. Global mean temperature time-series for the various
models. In model year 2041 the CO2 concentration is doubled
and in response the climate starts to warm.

VI. DISCUSSION: SUPERMODELING VERSUS A
POSTERIORI COMBINATIONS OF MODEL RESULTS

When compared to the optimally weighted multi-
model mean, the supermodel yields similar accuracy.
However, in addition the supermodel produces actual tra-
jectories that are closer to the true trajectories. Temper-
ature time-series of imperfect model 1 are systematically
too warm in most geographical locations and too cold in
imperfect model 2. These time-series cannot be averaged
to more accurately represent true time series since the
time-series are not synchronized and their mean is not a
solution of the dynamical equations. In the supermodel
the models converge on a synchronized time-series with
a more accurate mean temperature. For climate impact
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Perfect model change in zonal wind at 850 hPa Supermodel error

Imperfect model 1 error Imperfect model 2 error

a b

c d

FIG. 15. Change in the east-west component of thef wind at
850 hPa due to a CO2 doubling in the perfect model (a) and
the error in the simulated wind change for supermodel 1 (b)
and both imperfect models (c and d). The change is calcu-
lated by subtracting the average wind before CO2 doubling
during model years 2016-2040 from the average wind during
2056-2070. The contours indicate regions where the differ-
ence is statistically significant at the 95% confidence level.
The root of the global mean squared error is plotted in the
lower left corner.

studies this is a great advantage since it eliminates the
need for bias corrections (correction of time-series in or-
der to remove the error in the mean).

One is interested not only in the mean behavior of the
models and supermodel, but in internal variability. The
interesting properties of the various attractors are usually
captured in probability density functions (pdf’s). There
is significant ambiguity in methods to combine pdf’s of
different climate models. Suppose, as a thought experi-
ment, that one has two different models of the same sys-
tem, each of which exhibits Gaussian statistics in some
variable, but with different means and different variances.
That is, suppose that the pdf of some state variable x is
given by pdf’s P1, P2 in the two models:

P1(x) = N1 exp
(x− µ1)2

2σ2
1

P2(x) = N2 exp
(x− µ2)2

2σ2
2

(23)

where N1,2 are normalization factors. If the means are
not greatly separated |µ1 − µ2| < σ1, σ2 and the shapes
are similar, σ1 ≈ σ2, we might guess that the difference
is due to some systematic error and that the true distri-
bution is a Gaussian with the average mean:

Pm(x) = Nm exp
(x− µm)2

2σ2
(24)

with µm = (µ1 + µ2)/2, and σ ≈ σ1 ≈ σ2. If we were
instead to blindly average the pdfs, we would in general
have a non-gaussian distribution with σ > σ1, σ2, incor-
rectly inflating the variance. So it might seem that a
recipe for intelligently combining pdfs is accessible.

But what if the true distribution were bimodal, with
the means of the two modes more widely separated than

in the above case of small systematic error, and what if
each model, for reasons of its own dynamical imperfec-
tions, is biased in favor of one mode? Then a simple av-
erage of pdf’s, that would capture the bimodality, would
be preferable to the “intelligent” combination described.
Without prior information about the form of the true
distribution, no general prescription for combining the
pdf’s is possible. It might not even be possible at all
to combine the pdf’s of different models into a pdf that
reflects the true model well. In1 for example, two peri-
odic attractors and one stable fixed point attractor were
used to construct a chaotic supermodel. The supermodel
has similar statistics compared to the true chaotic sys-
tem, while a combination of the pdf’s of the non-chaotic
systems cannot give a good approximation of the true
chaotic pdf. The extent to which such extreme behavior
occurs in real climate models is an open question, but the
construction of an actual dynamical system is arguably
the soundest way to represent the true physical variations
within the modeled climate.

The choice of models in a supermodel configuration is
also more flexible than in multi-model averaging. In cases
where the constituent models are all on one side of the
truth, the introduction of an additional imperfect model
into the supermodel that is on the opposite side can help
to improve the supermodel16. But unlike the situation
with multi-model averaging, the new imperfect model,
included in the scheme with significant weight, can be a
highly unrealistic model, such as one with a fixed-point
attractor.

Finally, it should be mentioned that there is one ad-
vantage of multi-model runs that naively appears to be
lost in supermodeling: the ability to extract spread in-
formation from an ensemble of models, as an indicator
of model error. But one can easily consider an ensem-
ble of supermodels4, defined by variations in the con-
nection coefficients determined from fluctuations during
the learning process or from different learning strategies.
The ensemble spread enables to gauge uncertainties due
to model errors and due to imperfect knowledge of the
initial state.

VII. SUMMARY AND CONCLUDING REMARKS

This is the first time that synchronization-based su-
permodeling is applied to complex global climate mod-
els and its potential to improve climate simulations is
demonstrated. The SPEEDO climate model with stan-
dard parameter values is regarded as truth, two imper-
fect models are constructed by perturbing three param-
eters. Due to the different parameter setting, one model
warms with respect to the truth, the other cools. A
supermodel is constructed by connecting the tempera-
ture and velocity fields of both models through nudging
terms and the supermodel synchronizes on a common so-
lution. Imposing spatial invariance while allowing differ-
ent connection strengths for the different meteorological
fields yields six adjustable connection coefficients. Using
the fact that synchronization of states between two con-
nected systems can be extended to synchronization of
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parameters, when these vary between the two systems,
the inter-model connection coefficients within the super-
model are dynamically adjusted, along with the states, so
that the supermodel synchronizes with truth, from which
it continuously receives data in the learning phase. After
a quick adjustment during the first couple of weeks of
the training, the coefficients exhibit only small fluctua-
tions around a stable long-term mean value during the
ten year training period. These stable, long-term mean
values of the coefficients define the supermodel. During a
40 year climate simulation the supermodel preserves the
correct global mean temperature. Moreover the globally
averaged errors in all 30 year mean meteorological fields
examined are smaller than the errors in the imperfect
models. In addition the supermodel is able to reproduce
the correct warming in response to a doubling of the CO2

concentration.
The synchronization-based learning algorithm reaches

locally optimal values of the connection coefficients.
There appears to be a degeneracy, as explained in Sec-
tion V C in that, depending on initial coefficient values,
the algorithm picks from a family of equally good coeffi-
cient values - we conjecture that what matters is not the
absolute value of the connection coefficients, but their
relative strengths. On the other hand, a more refined
connection scheme might yield even better results. Dur-
ing learning the connection values exhibit a weak depen-
dence on the seasonal cycle, for instance, suggesting that
a seasonal dependence of the connection strengths might
further improve the supermodel climate simulations.

There is no guarantee that the learning algorithm con-
verges on the globally optimal connection coefficients.
Other learning approaches based on matching finite seg-
ments of the trajectories instead of just the instantaneous
states, as in1, or minimization of errors in climate statis-
tics like the mean or the variance over multi-year long
trajectories by iterative methods as in17,21, might yield
even better supermodel solutions.

In state-of-the-art weather forecasts, models are ini-
tialised from observed states that are not on the model
attractor. During the forecasts the trajectories system-
atically transition to the model attractor and in a cou-
ple of weeks most of the long-term climate errors have
developed11. We therefor expect that the training based
on short-term prediction errors in this study could also
be successfully applied to state-of-the-art weather and
climate models. We restricted the evaluation of the su-
permodel to climate timescales, but we expect that short-
term prediction errors are improved with respect to the
imperfect models since the learning is based on one time
step predictions of the truth. Weather prediction with
supermodels remains to be evaluated.

In the present study only imperfections in the atmo-
spheric component have been considered. It remains to
be seen how imperfections in the land- and ocean models
affect the learning. In principle the supermodel approach
can be extended to include multiple imperfect ocean- and
land models with inter-model connections that can be in-
cluded in the learning.

The magnitude of the synchronization errors between
supermodel and truth is only slightly reduced when the
learning process is initialized with uniform connections.

Nevertheless, the climate properties of the supermodel
with the learned coefficients are much better than those
of the supermodel with the initial connection coefficients.
It seems that even a small reduction of synchronization
error in the training phase is heuristically useful for cor-
recting the dynamics of the model, but more work is
needed to assess the universality of this behavior.

Nonnegative connection coefficients are imposed dur-
ing the learning in order to induce synchronization of the
imperfect models in the supermodel. One could allow
negative coefficients during the learning. In that case one
model tries to flee from the other model, but at the same
time the other model chases that model at a faster pace
and the imperfect model trajectories can still remain ap-
proximately in synch. Other regions of phase space can
be explored by the supermodel by allowing negative con-
nections, which might lead to an improved supermodel
solution.

Although the supermodel is not trained to be able to
simulate the correct response of the climate to a pertur-
bation like the doubling of the atmospheric CO2 concen-
tration, we find this to be the case in this study. The
full extent of the robustness of the supermodel solution
against variations in ancillary parameters remains to be
determined.

In the perfect model approach of the present study,
the truth is inside the model class of imperfect models.
It remains to be seen how well the supermodel scores
when the truth is outside of the imperfect model class,
a situation that arises when climate models are used to
simulate a much more complex reality21.

In applying the supermodel approach to an ensemble
of different, state-of-the-art climate models, it must be
noted that the different models employ different numer-
ical representations of the various meteorological fields,
and especially that they are formulated on different nu-
merical grids. SPEEDO models have been shown to
synchronize even when only some meteorological fields
are connected, or only some spatial scales. One solu-
tion to the problem of different numerical grids would
be to transform the grid representation to a spectral
representation and do the exchange of state information
and nudging in spectral space only for wavenumbers that
are well resolved in all participating models in the su-
permodel, and then transform the nudging tendencies
back to the respective grids. Synchronization of the con-
stituent models might be expected, despite the different
grid representations.

In the present study we have assumed perfect knowl-
edge of the truth. In reality observations of the truth
are incomplete and noisy. The influence of noisy and in-
complete observations on the learning of the supermodel
remains to be investigated, but we are encouraged by the
success of data assimilation for weather prediction under
the same circumstances.

We have applied the supermodel approach in the
context of simulating the Earths climate, but its
application domain is much wider. In any modeling
context where different models exist of a complex, real
system, like ecological systems or economical systems,
where data assimilation from the real systems yields
truth-model synchronization, and where enough good
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quality observational data is present, the supermodel
approach potentially leads to more accurate predictions.
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