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SUMMARY

The planetary boundary layer (PBL) resistance and heat-transfer laws express the surface fluxes of momen-
tum and heat through the PBL governing parameters. Since the late sixties, the dimensionless coefficients (A, B
and C) in these laws were considered as single-valued functions of internal stability parameters: 1t = u./|f|Ls
in the steady state PBLs, or 2/Ls in the evolving PBLs (u, is the friction velocity, f is the Coriolis parameter,
Ly is the surface Monin-Obukhov length, and % is the PBL depth). Numerous studies revealed very wide spread
of data in empirical plots of A, B and C versus p or A/Ls. Tt is not surprising that the above laws, although
included in all modern textbooks on boundary-layer meteorology, are not practically used. In the present paper
the resistance and heat-transfer laws are revised, accounting for the free-flow stability, baroclinicity and the rise
of a capping inversion. The coefficients A, B and C become functions not only of w or 4/Ls, but also of the
external stability parameter uy = N/|f| (where N is the Brunt—Viisild frequency in the free atmosphere above
the PBL), the parameter of baroclinicity ur =T/N (or the free-flow Richardson number Ri = (N/ r?= ;LI?Z,
where I is the geostrophic wind shear), and the ratio of the actual and equilibrium PBL depths &/ hg. Moreover,
the coefficient C is redefined to account for the effect of a capping inversion. It follows that A, B and C can
be considered as single-valued functions of u only in the steady-state, barotropic, nocturnal (that is short-lived)
PBL. On the other hand, the advanced laws cover a wide range of the PBL regimes. They are validated through
large-eddy simulations of different types of PBLs: truly neutral, conventionally neutral, nocturnal and long-lived.
This new development explains why prior formulations performed so poorly, and promotes advanced resistance
and heat-transfer laws as practical tools for use in environmental modelling applications.

KEYWORDS: Baroclinicshear  Free-flow stability =~ Large-eddy simulation ~ Non-local turbulence
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1. INTRODUCTION

The resistance laws for the barotropic planetary boundary layer (PBL) are presented
in modern textbooks on boundary-layer meteorology (e.g. Garratt 1992) and compre-
hensively discussed in recent papers of Hess and Garratt (2002a,b) and Zilitinkevich
and Esau (2002), so they do not require detailed introductory explanations. These laws
express the absolute value of the surface stress |T|,—0 = u,zk (u is the friction velocity,
and z is the height) and the cross-isobaric angle o (the angle between the surface stress
and the geostrophic wind) through the PBL governing parameters:

k ~
— cos & = In(CgRo) — A, (1a)
Cg

k ~
C_g sing = FB, (1b)

where C, and Ro are the geostrophic drag coefficient and the surface Rossby number:

G
E, Ro= .
G | f1zou

t Corresponding author: FMI, Vuorikatu 15 A, P.O. Box 503, 00101 Helsinki, Finland.
e-mail Sergej.Zilitinkevich@fmi.fi
© Royal Meteorological Society, 2005.

Cg———

@

s

1863




1864 S.S. ZILITINKEVICH and I. N. ESAU

Here, k is the von Karman constant (conventional value: k = 0.4), A and B are dimen-
sionless coefficients, f is the Coriolis parameter, zq, is the surface roughness length
for momentum, G is the geostrophic wind speed: G2 = ug + vg with components

= —(pf)"1ap/dy = G cos & and vg=(pf)” 18p/8x = G sin o (depth-constant in
the barotropic PBL), p is the air densﬁy, and p is the atmospheric pressure. On the
right-hand side (r.h.s.) of Eq. (1b), minus is applied to the northern hemisphere and plus
to the southern hemisphere.

The potential-temperature resistance law analogous to Eq. (1) reads:

kr
—— =In(CgRo) — (3a)
C1r
0
Cr = , (3b)
TR AbraL

where kr 1s the von Karman constant for the temperature, T, (conventmnal value:
kr =0.4), C is the same type of d1mens1onless coefficient as A and B, C1r is the
thermal resistance coefficient, 8, = -—ngu* is the temperature-scale based on the near-
surface turbulent flux of potential temperature Fy|,—q = Fgs, AfppL =6} — 6 is the
bulk increment in potential temperature across the boundary layer, 6, = 6|, is the
potential temperature at the PBL upper boundary (considered as a given parameter), and
6 is the aerodynamic potential surface temperature.

The latter is defined through the logarithmic extrapolation of 8(z) down to the level
z = zou- Needless to say, 6y differs from the actual surface temperature 6; (often referred
to as the radiometric temperature). The difference 6y — 6; ranges up to several K over
rough surfaces. Traditionally, it is expressed as:

=0 Ly 20 @
Oy kr  zor

where zor is the roughness length for temperature (e.g. Zilitinkevich et al. 2001).
When zor becomes very uncertain (over partially vegetated land and some other
very complex land surfaces) alternative approaches should be applied (see Mahrt and
Vickers 2002). In any case, introducing the aerodynamic surface temperature allows
separate consideration of the thermal resistances of the two layers of essentially different
nature:

® the PBL—in terms of Afpg;, = 6), — 69, Egs. (3),
e  the roughness layer—in terms of 6y — 65, Eq. (4), or using other schemes.

The present paper focuses on the PBL resistance laws.
Equations (3) in combination with Egs. (1) provide the PBL heat-transfer law:

Fos = —uy0y, = —CgCTRG AbppL.. &)

Equations (1) for the neutral PBL (with A and B treated as universal con-
stants: A = Ao and B = By) were derived by Rossby and Montgomery (1935) from
a turbulence closure model, and later by Kazanski and Monin (1961) from more gen-
eral similarity-theory reasoning. An overview of further studies of the resistance law
for the atmospheric neutral PBL is given by Hess and Garratt (2002a,b) and Hess
(2004).

Zilitinkevich et al. (1967) and Zilitinkevich and Chalikov (1968) extended
Egs. (1) to the stratified PBLs affected by the non-zero buoyancy fluxes at the surface.
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They showed that A and B depend on the internal stability parameter u based on the
Monin-Obukhov length scale Lg:

u

£
Qo= (62)
| fILs
3
—U
Li=—2=, 6b
5= B (6b)

where B =g/ T is the buoyancy parameter, g is the acceleration due to gravity, and
T is the absolute temperature. They also derived the temperature resistance law,
Egs. (3), with C dependent on (4, and made the first attempt to empirically determine
the resistance-law coefficients A, B, C, and the similar type of coefficient D in the
resistance law for humidity. In this context, the neutral stratification was defined as
the regime in which y is sufficiently small (1 < 10). According to this point of view,
the temperature flux Fyps could be non-zero (and the heat-transfer law keeps its sense)
when the stratification is practically neutral.

Zilitinkevich and Deardorff (1974) reformulated the resistance laws, employing the
actual boundary-layer depth & instead of the equilibrium PBL depth hg (or its basic
scale u/| f| employed in Egs. (1)—(3)). The generalized laws read:

k ,
—cosa=In— — A, (Ta)
g " Z0u '
k
— sino = —f—hB, . (7b)
Cg Us
k h
L —m—-cC. (8)
CTR Z0u

Here, the resistance-law coefficients A, B and C are considered as functions of h/Lg
rather than p, which allows extension of the theory to non-steady boundary layers with
time/space-dependent depthst. Equation (7b) is derived in section 2. In contrast to the
prior formulation, kC . ! sin & = FB, it explicitly shows that the cross-isobaric angle a
is controlled by the Coriolis parameter f.

As for the stable stratification, all the above analyses were limited to the nocturnal
PBLs, namely, the stable PBLs developed after sunset on the background of much
deeper residual layers which were neutrally stratified due to intensive mixing during the
daytime. In the steady-state nocturnal PBL (when the PBL depth 4 is fully determined
by us, f and Lg, then h = hg = (us/| f1) fu(n)) Egs. (7) and (8) reduce to Egs. (1)
to (3), wherein the coefficients A, B and C are expressed through A, B and C:

. h - - h
A=Asm e p_ LUy =G4 fE ©)
Uy fhE Us

Zilitinkevich (1975) determined asymptotic behaviours of the resistance-law
coefficients in Egs. (1) to (3) and (7) to (8) at large values of p and h/Ls,
respectively.

+ Recall that convective PBLs never approach the steady state; they go on growing until the positive buoyancy flux
is maintained. In contrast, stable PBLs tend to develop towards the steady state. The ratio A/ kg is an important
governing parameter for this type of turbulent boundary layer. Alternatively the deviation of the PBL from the
steady state could be characterized by the dimensionless parameter | flh/u. (Arya 1975).
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In the steady-state truly neutral boundary layer, when the Monin—Obukhov length
is large (Ls — 00, so that u, h/Ls — 0) and the static stability in the airflow above
the PBL is neutral, the equilibrium boundary-layer depth is expressed by the classical
Rossby and Montgomery (1935) formula: hg = Cru /| f|, where Cg is a dimensionless
constant (CR~= O.~7, aifter laboratory e)iperiments and LEST).~T hen the resigtance law
coefficients Ag, By, Co, where Ag = Ag +In Cr, By = CIQIBO and Co=Co+InCgr
become constants (subscript 0 indicates truly neutral stratification).

Since the late 1960s, particular cases of the above laws were independently derived
(e.g. by Gill 1968), discussed and compared with experimental data in a large number
of papers (see overviews in: Zilitinkevich 1989; Byun 1991; Hess and Garratt 2002a,b;
Hess 2004). In the majority of these works, the PBL is considered to be neutral when
m or h/Lg is zero or sufficiently small. In the 1970s and early 1980s, much work
focused on experimental determination of the resistance-law coefficients A, B, C and D,
supposed to be single-valued functions of 1. However, empirical relationships of this
type showed such a wide spread of data that any interest in practical application of the
resistance laws gradually decayed. N
. To some extent, large spreads of data on empirical plots of the coefficients A and
B were explained at the expense of baroclinicity (e.g. Arya and Wynggard 1975; Joffre
1982, 1984). The baroclinic correction to the resistance law was formulated in a linear
approximation, neglecting the effect of baroclinic shear on turbulent mixing. It included
the following two steps. First, employing the surface values of the geostrophic wind
components (4go = ug|;—0, Vg0 = Vg|;=0), the barotropic resistance law (with A and B
dependent on w) was applied to determine . and the ‘barotropic part’, o, of the full
wind-turn angle, @ + «1. Second, the ‘baroclinic part’ of this angle, o;, was determined
as the full turn of the geostrophic wind across the PBL. A recent version of this model
and an overview of prior work are given by Djolov et al. (2004).

It was recognized long ago that not only baroclinicity, but the depth and the strength
of the capping inversions and the static stability in the free atmosphere affect bulk
features of stable PBLs (e.g. Csanady 1974; Byun, 1991; Overland and Davidson 1992;
King and Turner 1997). But the first attempts to quantify these effects were made only
recently (Zilitinkevich et al. 1998; Zilitinkevich and Esau 2002, 2003).

A new theoretical model presented in this paper goes further, and extends the
resistance and heat-transfer laws to long-lived, stable PBLs thereby accounting for the
following mechanisms:

e  Damping effect of the static stability in the free atmosphere on the PBL turbulent-
length scale;

e  Development of capping inversions at the PBL upper boundary;

e  Enhancing effect of the baroclinic shear on the PBL turbulent-velocity scale.

Prior models overlooked these mechanisms and were therefore applicable only to
the nocturnal PBLs. This explains the enormous spread of data points in old empirical
plots of A, B, C and D versus p.

 Atmospheric data give much lower and very uncertain estimates of Cg (e.g. Tjernstrom and Smedman 1993).
This is due to the fact that the atmospheric boundary layers usually considered as neutral (according to the criteria
Lg — o0 or 1 — 0) are, in fact, only conventionally neutral; Zilitinkevich and Esau (2002) and Hess (2004) have
demonstrated that their depths are strongly affected by the static stability in the free atmosphere.
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TABLE 1. LARGE-EDDY SIMULATION ESTIMATES OF EMPIRICAL CONSTANTS

Empirical Equation
Constant value Formula containing constant number
Cp 0.67 ut = u2(1 + Copir) (11)
Cnum 0.1 2 2 211/2
CnH 1.5 1 j/1 Cnm,NH} Ciom m) 14
Crm 1 L =\z) "\ L 7L
(M, H} N f
Cn 1
Ca 25 du T2 Cuz
a1

k 0.47 9z kz * Ly (15).
a i4 _ 1 41
p” 65 =—amy + In{ap +ma) (41a)
lb’o _13 B = by + bm?, (41b)

2 2 2)1/2
Cha 0.09 _I(x (E_AM E’ﬁﬁ)
Cra 1 a { (Ls ) "\ “

2 2 21172
Cya 0.15 _l(x Cnph Crsh
Cr R mp { ( L + In + L; (43)
Co 2 0 6, Coz '

AP I I [ E s ,
kr 0.47 9z krz * Ly “
iO 1‘21'1 C = —cm¢ + In(e® +mc) R cg —cmg . (56)
. 2 2 23 1/2

Ce 12 _l(E Cnch Crch
G i me {(L o) "\ o

In this paper, the free atmosphere is characterized by the Brunt-Viéisilé frequency,
N, and the baroclinic shears, I', = duz/0z and I'y = dvg /dz, which involve the dimen-
sionless parameters of the external stability uy and baroclinicity pr:

N 9\!/2
—— where N = (,68—> atz > h,
b4

KN =
A
1/2
r g aTN> (3T \?

=—, wherel =242/ 2= = — — : 10
pr=, Where T, +TY T 5y + ox (10)
Alternatively, the role of baroclinicity can be characterized by the free-flow
Richardson number, Ri = u2. On the rh.s. of Eq. (10) for T, the geostrophlc shear

is expressed through the large scale horizontal temperature gradient using the thermal-
wind equation. N and I" are taken to be depth- constant 1n a reasonable correspondence
with observations in the earth s atmosphere: N = 102stand '~ (3—-6) - 107371,
that correspond to 1y ~ 10?% and ur ~ @3~ 6)- 10~ 1,

Followmg Zilitinkevich and Esau (2003), the PBL baroclinic turbulent-velocity
scale ut is defined as:

2
2 _ Uy ) =172y _ 2
Wi =T g Y T GoR ) = ur(1 + Copur), (11)




1868 S.S. ZILITINKEVICH and I. N. ESAU

where C, = 0.67 is a dimensionless constant determined through LES validation of
the baroclinic PBL depth formulationt. In the barotropic PBLs, ut reduces to the
universally accepted scale u,.

A list of estimates of empirical constants, such as Cp, obtained through LES is given
in Table 1, together with the equations in this paper involving them.

Accounting for the u n-dependence, Zilitinkevich and Esau (2002) have explained
the wide spread of empirical data on A and B, as well as a seemingly paradoxical dis-
agreement between estimates in the atmospherg and egtimates from LES, direct numer-
ical simulation and laboratory experiments of A and B in boundary layers traditionally
considered as neutral. The key point is that numerical or laboratory models deal with the
truly neutral PBLs (u = 0 and uy = 0), whereas atmospheric PBLSs treated as neutral
(Iul < 10) are nearly always strongly affected by the free-flow stability (uy ~ 10%).
These two types of PBL are essentially different in nature. To distinguish between them,
Zilitinkevich and Calanca (2000) have proposed the following definitions: the PBL is
called ‘conventionally neutral’ when the buoyancy flux B Fj approaches zero at the sur-
face but the free flow above the PBL is stably stratified; the PBL is called ‘truly neutral’
when both the surface buoyancy flux, B Fys, and the free-flow Brunt—Viisili frequency,
N, are zero.

In the present paper the theory is further advanced and validated against new LES.

2. THEORETICAL MODEL

(a) Turbulent-length scales

Earlier versions of the resistance and heat-transfer laws were derived through
asymptotic matching of the near-surface profiles of the wind velocity components
u(z), v(z) and the potential temperature 8(z), with the defect-functions u(z) — u(h),
v(z) — v(h) and O(z) — 6(h) in the overlapping height interval zo, < z < h. Thus the
surface-layer model represented an essential starting point of the theory.

Prior derivations employed the Monin—Obukhov (1954) similarity theory for the
surface-layer profiles and the defect functions based on the PBL-depth formulations
of Rossby and Montgomery (1935) and Zilitinkevich (1972) for the neutral and stable
boundary layers, respectively.

This approach is justified when applied to nocturnal stable PBLs, i.e. to the
comparatively short-lived PBLs separated from the free flow by a neutrally stratified
residual layer, which keeps a ‘memory’ of the daytime mixing. In such PBLs, except
for the thin logarithmic boundary layer close to the surface, the turbulent-length scale
is limited to the ‘local Monin-Obukhov length’ L, defined similarly to Eq. (6b) but
employing local (z-dependent) values of the turbulent fluxes of momentum, 7(z), and
potential temperature, Fp(z) (Nieuwstadt 1984).

More generally, including the truly neutral PBLs (in which L~! = 0) and the long-
lived stable PBLs (that is the PBLs bordering upon the stably stratified free atmosphere,
without any intermediate residual layer), the turbulent-length scales are restricted by
the following alternative limits: local (z-dependent) static-stability scale L, non-local
external static-stability scale Ly, and the rotational scale L f»namely:

3/2

T Uy Uy

L = , - L f = .
—BFy N |f1

T In the imaginary case that the free atmosphere is neutrally stratified (N = 0) but baroclinic (" > 0), the

baroclinic shear causes the overall generation of turbulence, so that the very concepts of the turbulent boundary
layer and the PBL turbulent-velocity scale become inapplicable.

Ly = (12)
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In baroclinic PBLs, the baroclinic turbulent-velocity scale uT, Eq. (11), should be
substituted for u, in the above expression for Ly.

The scales L and Ly are inherent to the nocturnal and to the conventionally neutral
PBLs, and reflect the damping effect on turbulence of the turbulent buoyancy flux within
the PBL and the static stability in the free flow, respectively. Clearly, in each concrete
case the basic role is played by the stronger effect, that is by the smaller scale: L, Ly
or L ;. Moreover, their relative importance is different at different heights because L
depends on z through the relationships 7(z) and Fp(z).

In further analysis, we employ a recently created LES database representing three
different types of stable PBL: nocturnal; long-lived and conventionally neutral; and
the truly neutral PBL (see section 3). LES data shown in Fig. 1 demonstrate that the
normalized fluxes of momentum and potential temperature can to a reasonable accuracy

. be considered as self-similar functions of the dimensionless height ¢ = z/A:

T F '
S =@, - =Tr®). (13)
% s

As shown in the appendix, such a self-similarity is consistent with scaling analy-
sis of the Ekman equations. It has also been disclosed in prior analyses of field data
(e.g. Lenshow et al. 1988; Sorbjan 1988; Wittich 1991). Within the PBL, the power-
law approximations based on the field experiments over the Great Plains of the USA,
f)y=Q0-¢ Y32 and fry(¢) = 1 — ¢, are quantitatively quite close to the exponen-
tial approximations: f;(¢) =exp(—38/ 3{2) and frp(Z) = exp(—2§2), which better fit
LES data in Fig. 1, and correspond to smooth decay of turbulence rather than its abrupt
cut off at the PBL boundary. :

It follows that the ratio L/Ly and therefore the role of Ly is small in the upper
part of the PBL, and increases towards the surface. In other words, the role of the scale
Ly is most pronounced in the surface layer. This non-trivial conclusion is consistent
with analyses of data from observations in presumably long-lived stable PBLs over
Greenland (Zilitinkevich and Calanca 2000) and Antarctica (Sodemann and Foken
2004). New LES data shown in Fig. 2 (and, later, in Fig. 5) strongly support this
conclusion.

It is worth emphasizing that our derivation of the resistance and heat-transfer laws
is based on the assumption that the ratios 7/ ui and Fy/ Fps are universal functions of ¢,
but concrete forms of these functions are not required.

Accounting for the alternative limits, L, Ly and Ly, generalized turbulent-length
scales, Ly, i}, can be determined through the interpolation:

2 2 21172
L (l) + (C{NM,NH}> + (C{fMJH}> (14)
L{M,H} L Ly Lf ’

which gives priority to the smaller scales. Dimensionless coefficients Civy,nH) and
Cifm sr) can be different for the turbulent transports of momentum (M) and heat (H).

Recall that the scale Ly was already applied to measure the PBL depth (Kitai-
gorodskii and Joffre 1988) and to generalize the Monin—Obukhov similarity theory for
the surface layer (Zilitinkevich and Calanca 2000; Zilitinkevich 2002). The inverse
quadratic interpolation between Ls= L|;=0 and Ly was employed to derive an
advanced PBL-depth model (Zilitinkevich and Baklanov 2002; Zilitinkevich and Esau
2002, 2003; Zilitinkevich et al. 2002).

Now, using the composite scale Ly instead of L, and matching the log layer in the
close vicinity of the surface and the z-less stratification layer aloft, the familiar velocity
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C=2/h

{=z/h

Figure 1. Normalized vertical profiles of: (a) turbulent flux of momentum r/uﬁ, (b) turbulent flux of poten-

tial temperature Fy/Fys, (c) Monin-Obukhov length-scale L/Lg, and (d) potential-temperature-scale 0, /0.

The dimensionless height ¢ = z/k is based on the planetary boundary layer (PBL) depth k. Large-eddy sim-

ulation (LES) data represent: nocturnal PBLs (crosses), long-lived PBLs (circles) and conventionally neutral

PBLs (squares). Lines shown are: fa) r/uﬁ = exp(—%‘(z) or (1—17)3/2; gb) Fy/Fygs = exp(—2§2) or (1 —2¢);

() L/Lg = exp(—2;’2) or (1 - ;“)5 4 (d) 6,/04s = exp(-—%—;’z) or (1-2¢) /4. Solid and dashed lines represent
exponential- and power-law approximations, fespectively. See text for further details.
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10 10° 10 10 10 10
z/\(z) z/LM(z)

Figure 2. Dimensionless velocity gradient @y = (kz /%) (8u/dz) versus alternative dimensionless heights

based on different z-dependent turbuleni-length scales: (a) z/L, Eq. (12); () z/Lu, Eq. (14) with Cyy = 0.1,

Cpy = 1. Large-eddy simulation (LES) data represent three different types of stable planetary boundary layers:

nocturnal (crosses), long-lived (circles) and conventionally neutral (squares). The lines are: (a) traditional scaling

@y =1+ 2.5z/L; (b) multi-limit scaling ®pr = 1+ 2.5z/Ly . The best fit is achieved with k = 0.47. See text
for further details.

gradient formulation becomes:

pa 172 C, /2
T (1o ) (15)
9z kz Ly kL

where C, is a dimensionless constant. Recall that the ‘z-less stratification layer’ is the
height interval within the stably stratified turbulent flow in which the vertical size of
turbulent eddies is controlled by negative buoyancy forces rather than the distance from
the surface. Equation (15) differs from the Nieuwstadt (1984) formulation only due to
the difference between L s and L.

Equation (15) affords an analytical expression of the eddy viscosity:

—1
Ky = krl/? (1 +cuzz—> A~ kCTIT 2Ly (16)

= Bu/dz M

Its approximate version, Ky ~ kC,; L1214, corresponds to the z-less stratifica-
tion layer (z > C; 7). Principally similar formulations for the potential-temperature
gradient 90 /3z, and the eddy conductivity Ky, are derived in subsection 2(d).

In the surface layer (at z < 10~ 1h), substituting u, for 71/2 and Fy for Fy (then
Ly — Lags) and, neglecting the effects of the free flow stability and the earth’s rotation
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by taking Cyp, Cey = O (then Ly = L), Egs. (15) and (16) reduce to the traditional
Monin—-Obukhov similarity theory formulation. The latter has been verified against
experimental data in numerous papers, which give estimates of C, in the interval
2 <Gy <3. As is evident from Eq. (14), this uncertainty can, at least partially, be
caused by the difference between Lg and Ly, and—in shallow PBLs—by unnoticed
use of data beyond the surface layer. Indeed, factual length scales L and L u decrease
with increasing height (see Fig. 1), which inevitably leads to artificial overestimation
of the coefficient C,, if data analysis is based on the traditional depth-constant Monin—
Obukhov length scale L.

Equation (15) is applied to the absolute value of the wind speed [u| = (u? + v?2)1/2
rather that to its longitudinal component « (aligned with the turbulent stress at the very
surface). The contribution to |u| from the transverse component v caused by the Coriolis
force is small in the surface layer but becomes significant above it.

Figure 2 shows the dimensionless velocity gradient @y = (kz/TV/%)(8u /dz), as
dependent on the two versions of the dimensionless height, z /L in Fig. 2(a) and z/L y;
in Fig. 2(b), and include LES data from the entire PBL. It is seen that the generalized
length scale Ly (employed in Fig. 2(b)) provides uniform representation of the three
different types of stable PBL (conventionally neutral, nocturnal and long-lived); by this
means it leads to a better collapse of LES data than the traditional scale L. Moreover,
this figure confirms applicability of Eq. (15) throughout the PBL and gives quite certain
estimates of empirical constants: k = 0.47, C, = 2.5, Cypy = 0.1 and Cmy=1.

To derive a general form of the resistance law, we begin with thé nocturnal PBL
(N=0and Ly>» L, so that Ly = L), we then consider the conventionally neutral
PBL (BFys =0and L f > L,sothat Ly = Ly), and subsequently the truly neutral PBL
(N =0and BFgs =0, sothat Ly, = L £); finally we interpolate between the resistance
laws inherent to these three types of the PBL.

(b) Resistance law for nocturnal PBLs
In the surface layer (z < 10~14) within the barotropic nocturnal PBL (I' =0, N =
0, Ly > L), taking 712 = uy and L = Lg, Eq. (15) yields the following expressions for
the longitudinal velocity component u:

o az<CrlL,
ou Uy z kz
2 = PO ) ¥ 4
Uk —

¢ s L Az C,lLs,

Bom X atz < C; L

k 20u
U= (18)

Ux (ln CuLzs()u + Cuzz—s - 1) atz > C, L.

Assuming that the vertical profiles of turbulent fluxes are self-similar, Egs. (13)
and (15) in the z-less stratification layer yield du/dz ::k_lCuu*Ls_ 1£,(2), where
Ju (@) = fre fr“l. Then, to account for the effect of baroclinicity, we simply add the
baroclinic wind shear I,

du  Cuuy
£:k_L’S—fu(§)+Fu~ (19)

This additional term ensures the required upper-boundary condition du [0z —> Ty,
whereas in the surface layer the term I, is practically negligible compared to the main
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term (see appendix of Zilitinkevich and Esau 2003). Integrating Eq. (19) over z from an
arbitrary height z to the PBL upper boundary z = h yields:

Culty

kLg

Here, the function ®, is defined as &, = f; fu(@)d¢, and u(h) =ugy is the

u-component of the geostrophic wind at the PBL upper boundary. The latter consists
of the barotropic and baroclinic parts:

u(h):ugo—}—f‘uh:Gcosa—{—Fuh, 2D

where G and « are the surface values of the geostrophic wind speed and the cross-
isobaric angle. Substituting Eq. (21) for (k) in Eq. (20) yields the longitudinal velocity
defect function:

Cyush

kL

which is valid in the height interval Ls/h < ¢ < 1.

Consider Eq. (22) in the z-less stratification part of the surface layer: Ls/h <
¢ < 1. Here, the term [',h¢ is negligible because ¢ < 1. Then, substituting the lower
line on the r.h.s. of Eq. (18) for u(z) yields: :

h
uh) —u(z) = Dy (8) + Tuh(1 = &), (20)

Geosa —u(z) = @, () — Tyht, | 22)

gGeose o Ly Mt oy =ata = constant). - (23)
Uy Cuzou Ls Ly
The left-hand side (1.h.s.) of Eq. (23) does not depend on . Thus, in the overlapping
region the combination C,{¢ + ®,(¢)} on the rh.s. must be a dimensionless constant
(assigned as a). Rearranging the terms in Eq. (23) yields the resistance law Eq. (7a) with
the following A-coefficient:

h h h h
A=—a—+In—+InC, +1=—a— +In— + constant, 24
ap, Thng, tieGer = magin g, constan @9
which holds true asymptotically at 2/Ls > 1.

To determine the transverse velocity component, v, consider the Ekman equations:

0ty 8_51_
f(v——vg)—!--é?——(), —fu—ug)+ 52 =0. 25

Here, t, and 7, are the components of the vertical flux of momentum along the
horizontal axes x and y. The x-axis is aligned with the surface stress to make 7, =0
at z = 0. Hence the boundary conditions are:
u,v=0, tx::ui, 1y =0 at 7=0; 26)
u-—>ug, V—>Ug, Ty, Ty —> 0 at z — oo.
Limiting our analysis to the z-less stratification part of the surface layer, we take
u(z) from the lower line on the r.h.s. of Eq. (18) and ug = G cos & from Eq. (23). This
gives the longitudinal velocity-defect function:

Cutts h a
—Ug N —i{t—=). 27
T T L, (5 cu> 27

Then, substituting Eq. (27) for u —ug in Eq. (25b), integrating over z and
accounting for the boundary condition 7,|,—o =0 gives the transverse component of
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the momentum flux:

afush h Cu » . afush h
k Ly Tk Ly

" 2a
In the surface layer, the longitudinal component of this flux can be taken to be
constant with depth: 7, ~ 7|, = u2. Then Eq. (16) for the eddy viscosity reduces to:

Ty = (28)

-1

Kyt = kitsz (1 + Cui> . 29)

L

Next, dv/9dz and v are determined:
v 1, af h z Cua [ h\?

—=Z = 14+, | — — ; 30
5~ K k2Ls( i "‘Ls> 2 (L) /¢ ¢

Cua h 2 2
~— - , 31
T (L) e @1

where approximate expressions correspond to the z-less stratification part of the surface
layer. ' '

To extend the surfaceglezlyer formulation, Eq. (30), to the upper portion of the PBL,
we substitute L(z) = L, ff/ ) f ;91 (¢) for L and add the baroclinic wind shear, T, to

the r.h.s. of the equation:

ov C.a ( h

) v
P Ls) fefu(@) + Ty, (32)

where f, = f 1%9 fr_z’ (recall the similar reasoning used in the derivation of Eq. (19)).
Integrating Eq. (32) over z from z to & yields:

Cua [ b\

v(h) —v() = —=5 (‘L“) Py(E) +Tyh(1 - 0. (33)
S

Here, &, = f ; Su(&)¢ d¢ is auniversal function of ¢, and v(h) = Vg, is the v-component

of the geostrophic wind at the PBL upper boundary, which consists of the barotropic and
baroclinic parts:

v(h) = vgo + I'yh = G sina + [yh. (34)
Substituting Eq. (34) for v(h) in Eq. (33) yields the transverse velocity-defect function:
. Cua ( B\
Gsina —v(z) = _7:2_ (f) JhDy(8) — T'yhe, (35)
S

valid in the height interval L/hg < ¢ < 1. In the z-less stratification part of the surface
layer, substituting Eq. (31) for v(z) and neglecting the term I'yA¢, Eq. (35) reduces to:

Gsina Cua(h>2ﬂz

Ly

k o=

2
{2 +20,(0)) = —bf—h (ﬁ) (b = constant). (36)
Uy 2k

Uy Up \ Lg

Here, the combination C,a(2k)~!{¢? +2®,(¢)} turns into a universal dimension-
less constant (assigned b) because the Lh.s. of Eqs. (36) does not depend on ¢.




STABLE AND NEUTRAL PLANETARY BOUNDARY LAYERS 1875

Equation (36) is nothing but the resistance law Eq. (7b) with the resistance-law coef-

ficient:
B \2
B=b|—} . 37
(Ls> &7

Like Eq. (24), this expression holds true asymptotically at h/Ls > 1.

In the barotropic steady state, the nocturnal PBL depth becomes hg = Cs(Lgit/
| £1)1/2, where Cs =~ 1 (e.g. Zilitinkevich and Esau 2003); so the dimensionless par-
ameter in Egs. (35)—(37) becomes 4/Ls = Cs wl/2, where u is the traditional internal
stability parameter, Eq. (6a). Recall that the very concept of the nocturnal PBL (that is
the stable PBL with zero static stability in the free flow: N = 0) loses its sense in the
baroclinic atmosphere. Indeed, in the case that N =0 but T’ > O the shear-generated
turbulence would appear throughout the troposphere.

(¢) Extension of the theory to other types of PBLs

The above analysis is immediately applicable to the conventionally neutral PBL,
with the only principal difference being that the local Monin—Obukhov length scale L(z),
Eq. (12a), and its surface Value Ly = —u*(ﬁ Fys)~! are both substituted by the “depth-
constant length-scale C NML N>, Where Cyps is a dimensionless constant (after Flg 2,
Cnum = 0.1). Thus in the conventionally neutral PBL the vertical gradients of the velocity
components are expressed by formulae similar to Egs. (19) and (32) but based on the
length scale Ly = u,/N:

du _ CuCnmits v C,Clya ( h

2

with the correction functions f,n(¢) and f,n(¢) different from the functions f,(¢) =
fro(&) f;l (¢)and f, (&) = fre(L) fr_3 (¢) that appeared in Eqgs. (19) and (32). It follows

that the resistance-law Eqgs. (7) hold true, but the coefficients A and B become functions
ofh/Ly:

Cnuh Cnuh
A=—ay L +In M 4+ constant, B=by
Ly Ly

2
CNMh> , (39)

Ly

where ay and by are dimeénsionless empirical constants different from a and b, Cyy =
0.1 is the constant already determined from Fig. 2. Equations (39) are asymptotic
expressions corresponding to Cyprh /Ly > 1.

In the barotropic steady state, the conventionally neutral PBL depth becomes
hg = Ccu*(IfIN)1/2, where C¢ ~ 1.3 (see Zilitinkevich and Esau 2003); so that the
dimensionless parameter in Eq. (39) becomes h/Ly = Ccuy ", where wy is the exter-
nal stability parameter, Eq. (10a). This result also holds true in the baroclinic regime,
when hg = CCuT(]le)l/2 and Ly =ut/N. Thus the effect of baroclinicity on the
resistance-law coefficients manifests itself only through the dependence of / on the
parameter of baroclinicity ur, Eq. (10b).

Similarly to the above analysis, in the truly neutral PBLs the turbulent-length scale
is Ly =uy/| f|. Then A and B become functions of 2/L ¢:

Ciyh
A= M

Cuh Crph 2
+1In ™M + constant, and B=25 Mz , 40)
f L;

YL Ly
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- Figure 3. Large-eddy simulation (LES) data on the geostrophic-drag resistance-law coefficient A = In(h/zo,) —
k(ug/uy) (with k = 0.47) versus the composite stratification parameter m 4, Eq. (42), with Cya = 0.09, Cp = 1.
Data points represent new LES for: nocturnal PBLs (crosses), long-lived PBLs (circles) .and conventionally
neutral PBLs (squares). Earlier LES data, namely, Brown et al. 1994 (diamonds) and Kosovic and Curry 2000
(stars) do not show systematic deviations from new LES. Larger spread in old data of Brown et al. (1994)
is to be expected because of the inevitably lower quality of the LES of that time. In (a) error bars show the
=+3 standard deviation intervals for each LES run (with 96% statistical confidence); (b) employs log-linear
coordinates to demonstrate how the theory performs in near-neutral and moderate-stability regimes. The line

is A= —1.4my + In(1.65 + m4). See text for further details.

which each include an empirical constant Csy = 1 (already determined from Fig. 2) and
new constants ay and b r. Generally, h/L ¢ is a variable parameter; it tends to a constant
(h/Ly=Cr=0.7) only in the steady state when & = hg = Cru./|f|. As already
mentioned, the above formula is very well confirmed by LES and laboratory experiment
data, which give Cr = 0.7. The effect of baroclinicity is not relevant to this regime
because the baroclinic shear (I' > 0) on the background of the neutral static stability
(N =0) would inevitably result in the appearance of developed turbulence throughout
the troposphere.

To link the three alternative resistance-law formulations, namely, Egs. (24) and (37)
for the nocturnal PBL, Egs. (39) for the conventionally neutral PBL, and Egs. (40) for
the truly neutral PBLs, we employ the same inverse quadratic interpolation between the
turbulent-length scales as in Eq. (14). This yields general expressions:

A=—amp +In(ag +my), (41a)
B = by +bm3, (41b)
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Figure 4. ‘Same as in Fig. 3, but for the cross-isobaric-angle resistance-law coefficient B = k(vg/fh) (with k =

0.47) versus mp, Eq. (43) with Cyp = 0.15, Cip = 1. The lines show the theoretical dependence B = —2 + lOm

Notice that data points (shown as diamonds) are taken from older LES, which causes their larger spread. See text
for further details.

where m 4 and mp are composite stratification parameters:
2

(n 2 ek (CunV)

'"A—{(L—s) (%) ()] )
N fowhY | (cer

’"B-{(L—s) () ()] @)

where Cpyy = CNMaNa_l Cnp = CNMbNb_ CfA = CfMafa"l Cﬂ; = Cbefb—l, agp
and by are dimensionless constants to be determined empirically.

LES data shown in Figs. 3 and 4 confirm Egs. (41) to (43) and give quite certain
estimates of the constants: a = 1.4, ag = 1.65, Cya =0.09, Cpa = 1; b =10, by = -2,
Cvg=0.15,Cp=1.

In the truly neutral PBLs m4 ~ mp ~ h/L y; hence A and B are functions of 2 /L ¢.
This explains the wide spread of data in prior estimates of the resistance-law coefficients
for the truly neutral stratification. Only in the steady state (when & — hg = Cru+/| f|,
so that m4 and mp tend to non-zero limits: m4 — CpuCr = 0.7 and mp — CpCr =
0.7) do these coefficients turn into constants:

A — Ag=—aCpuCr +In(ag + CuCr) =0.07, B — By=bo+bCjrCx =2.9.
(44)
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Notice that our stratification parameters m4 and mpg could be less than C A /B81CR
= 0.7 in the evolving neutral PBLs whose depths, %, do not approach the equilibrium
limit, h = hg = Crux/| f|.

Equations (7) and (41) to (43) comprise the resistance law covering a range of
neutral and stable PBL regimes, including long-lived stable PBLs and baroclinic PBLs.
Recall that the traditional approach did not distinguish between the truly neutral and
the conventionally neutral PBLs. Accordingly, in the traditional format (with m4 =
h/Ls) all data representing different conventionally neutral PBLs would correspond to
h/Ls =0, thus causing a considerable spread of data points (cf. Figs. 10 and 11 in
section 4).

In this context, 4 is considered as a given parameter. In the steady state it is equal to
the equilibrium stable PBL depth, /g, controlled by the three dimensionless parameters:
W, iy and pr (Zilitinkevich and Esau 2003). Thus our formulation accounts for the
effect of baroclinicity on the resistance-law coefficients A and B through the dependence
of hg on ur, Eq. (10). In non-steady regimes, & can be calculated using prognostic
relaxation-type equation: di/ds ~ ¢, Y(hg — h), where ts ™~ h/uy is the PBL relaxation
time-scale (see subsection 3.2 in Zlhtmkewch and BaKlanov 2002).

(d) Proper PBL and capping inversion

Notice that stable PBLs experience persistent cooling due to the negative (down-
ward) heat flux at the surface Fys = Fp|,—0 < 0. This cooling results in rising of the
capping temperature inversion at the PBL upper boundary. Hence the temperature pro-
file inevitably changes its shape in the course of timie and the steady state is never
achieved. At the same time, numerous experimental studies convincingly demonstrate

- that the temperature profile in the surface layer (at z < 0.14) is at least approximately
self-similar.

It looks reasonable to assume that the non-stationary changes are basically related
to the capping inversion, whereas the temperature profile in the proper PBL shifts in a
quasi-stationary manner, keeping its self-similar shape. This approach allows separate
consideration of the two essentially different mechanisms:

e  Maintaining a self-similar temperature profile in the proper PBL, controlled by
instantaneous values of the turbulent fluxes of temperature and momentum and the
free-flow Brunt—Viisila frequency.

e  Rising of the capping inversion and strengthening of the temperature increment
A6y across it.

In the present paper we focus on the heat-transfer law for the proper PBL. Recall
that the potential temperature in the free atmosphere (outside the PBL) is specified as a
linear function of height: 6 = g9 + B~ ! N?z. Then, given the PBL depth A, the basic-
state potential temperature at the PBL upper boundary is an easily determined external

parameter’y:
2

B0 = 600 + %h, @)

To dlStll’lgLIlSh between the proper PBL and the capping inversion, we determine

the inversion half-depth, 8(;1, as the height interval between the PBL
upper boundary, z=h, and the inflexion pomt Just below th1s level, that is the height
z2=h— —8(;1, at which 89/3z approaches a minimum (8%6/9z2 = 0) and starts increas-
ing (then no inflexion point means no capping inversion). Considering the potential

T In our LES, g is simply the initial value of 8 at the surface: 6gg = 6|;=0,;=0-
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temperature at this height, 8,_o=60| _, 1. , as a reference value of 8 at the upper
p g z=h—16cs PP

boundary of the proper PBL, the potential-temperature increment across the capping
inversion, Afcy, is defined as:

Abct = Op+0 — Op—o- (46)

As already mentioned, we leave the theoretical determination of Afcy for a separate
paper, and limit our analysis to the derivation of the heat-transfer law for the proper PBL
in terms of the potential-temperature increment across the PBL:

ABppL. = 00 — 6p. 47

Clearly, in the PBLs with no capping inversions (e.g. nocturnal PBLs) this definition
reduces to the traditional one: Afpgy, = 6} — 0y = G190 — G-
Consider the similarity-theory formulation for the potential-temperature gradient:

8 0, Cez>
— =1+ —1, 48
0z  krz ( Ly -8

based on the traditional turbulent temperature scale 6, = —Fy7~1/? and the generalized
z-dependent turbulent-length scale L g, Eq. (14). Equation (48) is derived similarly to
Eq. (15), through matching the temperature-gradient scales 6,./z and 6,./L i for the log-
layer and the z-less stratification layer, respectively.

Figure 5 shows LES data on &y = (k7z/604)(96/3dz) as dependent on either z/L
(Fig. 5(a)) or z/L i (Fig. 5(b)) in the height interval 0 < z < h — %8(;1 for the nocturnal
(crosses) and long-lived (circles) stable PBLst. It confirms applicability of Eq. (48)
throughout the proper PBL, and demonstrates that our generalized scaling provides
reasonably good collapse of practically all LES data taking the following values of
dimensionless constants: k7 = 0.47, Cy = 2 and Cyg = 1.5. In other words, the scale
Ly is applicable to both nocturnal and long-lived PBLs in contrast to the traditional
scale L which applies only to the nocturnal PBLs.

Recalling the turbulent-flux profile approximations (given in Fig. 1), Fig. 5 supports
an analytical eddy conductivity formulationz:

—Fp 1/2 2\ -1._1/2
Ky=——=krt?z 1+ Co— ) =krC; 'Ly, 49
H 30/02 TT Z<+ QLH> 7Cy T /°Ly (49)

where the approximate expression corresponds to the z-less stratification layer (z >
c;'Ly.

In further analysis we exclude the capping inversion layer and derive the heat-
transfer law for the proper PBL.

T In the conventionally neutral PBLs the potential-temperature flux approaches zero at the surface: Fy|,—¢ = 0.
Hence, the temperature scale 6, is inappropriate and data representing these PBLs cannot be shown in Fig. 5.

% Similar scaling reasoning in combination with analysis of LES data could be applied to derive a simple analytical
formulation for the eddy diffusivity. Such a formulation could be useful in modelling the dispersion of pollution,
especially in strong static-stability regimes, when traditional formulations often give poor results.
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2

10

2/L(z) 2L (2)

* Figure 5. Dimensionless potential-temperature gradient ® gz = (kr 12y /—Fp)(86/0z) versus alternative

dimensionless heights: (a) z/L and (b) z/Lg with Cyg =1.5 and Cgy = 1. Crosses and circles represent

nocturnal and long-lived planetary boundary layers (PBLs), respectively. Data on conventionally neutral PBLs are

not included. The lines are: (a) @y =1+ 2z/L; (b) Py =1+ 2z/L . The best fit is achieved with ky = 0.47.
See text for further details.

(e) Heat-transfer law

Consider first the nocturnal PBL. In the surface layer within this PBL, Eq. (48)
yields:

Oss atz<C_1L
30 0 k STe s
39 _ s (1+Cei>z rZ (50)

Cyf
0% atz > C, 'L,
kr L

— In— atz<C9_1LS

62y

Oss ( Lg Z ) -1
— | In +Cyp— —1 atz > C, L.
kr Cozou L o

In the z-less stratification part of the PBL (at L(z) < z < k), accounting for the
self-similarity of the normalized turbulent fluxes, v/ ui = f:(¢) and Fy/Fys = fro(2),
Eq. (48) reduces to:

fo(£), (52)

0z kTLS
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Figure 6. " Same as in Figs. 3 and 4, but for the potential-temperature resistance-law coefficient C = In(h/z0,) —

kr (ABppL/Oss) (with kr = 0.47) versus mc, Eq. (57) with Cyc = 1.2 and Cyc = 1. Data points represent new

LES for nocturnal (crosses) and long-lived PBLs (circles); LES data for conventionally neutral PBLs are not

included (here 6,5 — 0, which is why the temperature resistance law loses physical meaning). The line is
C=—4.1mc +In(e'? +me) 212 — 4.1mc. See text for further details.

where fy = flgg f? =1 at ¢ — 0. Integrating Eq. (52) from z to h — —5—8(;1 yields the
potential-temperature defect function:

Co(h — 38cD)Bss

Coh0
Oh—o — 0(z) = s Qg(0) & - L*S
P S S

Po(£), (33)

where ®g = f; fo(2)d¢. The approximate expression on the rh.s. of Eq. (53) is

justified when the capping inversion layer is comparatively shallow: %3(:1 <L h.
Considering Eq. (53) in the z-less stratification part of the surface layer and
substituting the lower line of Eq. (51) for 8(z) on the 1.h.s. of Eq. (53) yields:
On—o— G Lg h h
—In —1=Cop—{¢ + ®9(¢)} =c— (c =constant). (54)
Oss Cozou Ls Ly
The r.h.s. of Eq. (54) is simply a universal constant (assigned c) because the Lh.s.
of this equation does not depend on z.
Equation (54) is consistent with the temperature-resistance law, Eq. (8) (provided
that the temperature increment across the PBL is defined after Eq. (47)) and implies the
following asymptotic expression of the coefficient C at A/L¢ > 1:

C=—ch/Ly)+In(h/Ly)+InCy+1=—c(h/Ls) +1In(h/Lg) + constant.  (55)

kr
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Employing the same approach as in section 2(c), Eq. (55) is extended to include both
the near-neutral and the long-lived stable PBLs:

C = —cmc + In(exp(cg) + m¢) = ¢g — cmg, (56)

where m¢ is a composite stratification parameter:

B (Cheh Y (Creh )
me {(Ls>+(LN)+(Lf> | ©D
Cnc, Cre, ¢ and ¢q are dimensionless constants of the same type as the constants in
Egs. (42) and (43).

LES data shown in Fig. 6 confirm Egs. (56), (57) with reasonable accuracy and give
estimates of the dimensionless constants Cyc = 1.2, Cic = 1, ¢ = 4.1 and c¢g = 12. The
large value of ¢ justifies the approximate version of Eq. (56). Equations (5), (8), (12),
(56) and (57) comprise the heat-transfer law.

In the near-neutral steady-state PBL (when A — hg = Cru./| f|), the stratification
parameter m¢ and the potential-temperature resistance-law coefficient C approach lim-
its: m¢ — CgcCr =0.7 and C — Cgp = ¢p ~ cCycCr =9.1. Typically, in the stratified
PBLs, mc > 0.7; but mc could be less than the above limit in shallow evolving PBLs.

Recall that the baroclinic versions of the turbulent-length scale and the equilibrium
PBL depth are Ly =ut/N, and hg ~ uT(lle)_l/Z, where uT in given by Eq. (11).
Hence the effect of baroclinicity on the ratio 2/Ly can be neglected, at least as a
first approximation (cf. the same conclusion in the discussion of Eq. (39) at the end
of subsection 2(c)).

3. LARGE-EDDY SIMULATIONS

In this paper we systematically use data from numerical simulations based on a new
LES code (Esau 2004a). This code solves the momentum, temperature and continuity
equations for an incompressible Boussinesq fluid:

duy 1 w9 (1 g
=2, o (z”i”f M ”'f) ERACAE TR
and 90 5 3
u;
e (u:® ), — =0. 59
o~ ax, O TTE) o 9

Here, u; = {u, v, w}, ©, p are large-scale velocity, potential temperature and pres-
sure; 7;j, Te; are subgrid-scale turbulence stress and temperature flux tensors; fw; =
{f(vg —v—w-cote), f(—ug+u), fu-coty)} are the components of the Coriolis
force; ¢ is the latitude; §;; = 1 ati = j and §;; = 0 at i # j; the repeating indices imply
summation.

The code uses the fully conservative second order central-difference scheme
(Morinishi er al. 1998) for advection, and the fourth order Runge-Kutta scheme
(Jameson ez al. 1981) for time stepping. The direct fractional-step pressure correction
scheme (Armfield and Street 1999) ensures incompressibility in the code. This set of
numerical schemes is a kind of standard in computational fluid dynamics. Moreover,
Andren et al. (1994) concluded that differences in numerical schemes have a minor
effect on LES results. Later, Brown et al. (2000) reported that LES resulis are encourag-
ingly insensitive to the choice of numerical schemes, as long as simulations resolve some
part of the inertial sub-range of scales. The computational mesh is the staggered C-type.
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The grid spacing is uniform and almost isotropic. The horizontal grid size Ay, is larger
than the vertical grid size A, but their ratio A, /A, is always less than four.

An important part of the LES technique is a subgrid turbulence closure. This LES
code employs a dynamic mixed closure (Vreman et al. 1994):

i = {(uu ;) — (@7) @)} + (—20218:515:1, (60a)
1 (Ou; Ouj
Sij == ~A 60b
) (axj + ax,') (60b)
_ 0
g = —2 Pr; 1182‘|S,-,~|57j, 61)

where, Pr; is an empirical turbulent Prandtl number taken after Kondo et al. (1978).

The first term {(u;u;) — (ui) (u)} represents the direct dissipation of energy in
nonlinear interactions of large eddies. The filter (denoted by overbar) determines the
scale interval in which this direct energy dissipation is possible. In the present LES
code the interval has the size of two grid cells. This term was not included in prior
environmental LES codes; its importance has been recognized only recently through
analyses of data from atmospheric field experiments (Sullivan et al. 2003).

The second term —2/2|5;;|S;; in Eq.(60a) and the term —2 Pr;" 12]S;;1(3©/9x;) in
Eq. (61) represent a Smagorinsky type of eddy viscosity closure (Smagorinsky 1963).
It parametrizes local and instant energy dissipation by small eddies through numerical
solution of a variation problem for the mixing-length scale [;(x;, ) at every time step.
Comparative tests of this LES code are presented by Esau (2004a). v

It is worth mentioning that advantages of the dynamic mixed closure become
important only in the case of strong flow anisotropy or very strong static stability.
Both cases are actually equivalent since the strong static stability increases the eddy
anisotropy. In these cases the first term in Eq. (60a) becomes large or even dominant.
Most of the LES runs in our database correspond to moderate flow anisotropy and
static stability, thus the subgrid turbulence closure should not be considered as a critical
component of the present study.

The design of all LES runs followed a standard scheme. The LES domain had
64 grid points in each direction. Chapman (1978) provided the following criterion
of a well-resolved boundary-layer flow: 15-30 computational levels within the PBL;
we followed this criterion. The PBL always comprised about 1/2 to 2/3 of the LES
domain. Accordingly, the physical resolution varied from about 0.5 m (for very stable
PBL runs) to more than 50 m (for truly neutral PBL runs).

Figure 7 shows the quality of the LES in terms of the ratio Q of the subgrid
turbulent kinetic energy (TKE) to the resolved TKE: Qg = foh ESCS dz/ foh ERES dz,
presented as dependent on the dimensionless resolution A, /Ly, where A, is the vertical
grid size, and Ly is the turbulent-length scale. Clearly, both ratios Qg and A,/Lm
should be small in a well-resolved LES. Our LES runs satisfied the conditions Qg < 1/4
and A,/Lwm < 1, which gives grounds to expect that the subgrid-scale effects were
negligible.

The upper-boundary conditions are of von Neumann type, or stressless rigid lid,
Vi =V, 0=V, p=0, w=0.

The lower-boundary conditions are:

e  Prescribed subgrid-scale turbulent flux of potential temperature 7g;;

® Logarithmic wall law: 153 = {«lu;(z = AZ/Z)]/ln(AZ/ZzO)}Z, i1 =T =0,
where A, /2 is the height of the first computational level.
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Figure7. Theratio Qg = foh ESGS dz/ [ ERBS 4z of the subgrid to the resolved portions of the turbulent kinetic
energy as dependent on the dimensionless vertical resolution A, /L p. The smaller Og and A, /Ly are, the higher
is the quality of the large-eddy simulation run. See text for further details.
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Figure 8. Temporal evolution of the resistance-law coefficients Ag, Bp, and the planetary boundary layer (PBL)
depth hppp, in the large-eddy simulation (LES)-generated truly neutral PBL (G =5 m s™1, zoy =0.1 m,
F=10"*5"1, Fps =0, N = 0). Squares show mean values averaged over 1 h intervals. Error bars show the £3
standard deviation intervals for each hour. The solid line shows filtered 10-minute data. See text for further details.
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Figure 9. Same as in Fig. 8, but for the resistance-law coefficients A, B, C and the PBL depth hpg;. in the LES-
generated long-lived stable PBL (G =5ms™!, zg, = 0.1 m, f = 107% 57!, Fgs =0.005 Kms~!, N =0.015"1).
See text for details.

The initial mean profiles are specified as linearly increasing potential temperature
(a prescribed depth-constant temperature gradient) and a prescribed depth-constant wind
velocity at all levels down to the surface. The initial flow is laminar with imposed very
small random perturbations at the first three to five computational levels. The initial
profiles, perturbations, surface fluxes and the Coriolis force are not adjusted to each
other; hence every run goes through a spin-up phase. During this period (usually 3-5
model hours) all turbulence characteristics are statistically unsteady. As an example,
Figs. 8 and 9 show the temporal evolution of the A, B and C coefficients in the truly
neutral and the long-lived stable PBL runs.

The typical run duration is 64800 s (18 model hours). We accept that the basic
characteristics of turbulence reach steady state in the last 7 model hours. Averaging over
this time interval is used to create the database.

To account for the residual, long-term variations of turbulent characteristics, we
(probably for the first time in LES practice) calculated and plotted not only the mean
values of the modelled parameters (in particular the A, B and C coefficients) but also
their standard deviations. These residual variations are partially caused by incomplete
achievement of the steady state. This effect is especially pronounced for such sensitive
parameters as the cross-isobaric angle, « (therefore the B coefficient) and the tempera-
ture increment across the proper PBL, Afpgy, (therefore the C coefficient). It causes the
rather large scatter of data points in Figs. 4 and 6. In very stable PBLs, the scatter could
also be caused by the turbulence intermittency (Mahrt 1985).
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Figure 10. Traditional presentation of the geostrophic-drag resistance-law coefficient A = A — In(| f|hg/u.) as
a single-valued function of the internal stability parameter p = u,/|f|L. Data points are taken from different
sources: points shown as crosses, circles and squares are new large-eddy simulation (LES) data for the nocturnal,
long-lived and conventionally neutral planetary boundary layers, respectively; points shown as diamonds and stars
represent earlier LES data from Brown et al. (1994) and Kosovic and Curry (2000), respectively. Other symbols
are field data: asterisks—Cabauw (Nieuwstadt 1981), triangles—Wangara (Yamada 1976), plus signs—different
Russian sites (Zilitinkevich and Chalikov 1968). The curves show old analytical approximations (summarized by
Byun 1991): full line—Vachat and Musson-Genon, dashed line—Arya, dash-dotted line—Long and Guffey, line
with plus signs—Brost and Wyngaard, and the line with diamonds—Derbyshire. Error bars show the +3 standard
deviation intervals. See text for further details.

4. VERIFICATION OF RESISTANCE AND HEAT-TRANSFER LAWS AGAINST LES DATA

Earlier atmospheric measurements gave very uncertain estimates of the A, B and C
(or A, B and C) coefficients, which are considered—according to the theoretical expec-
tations of the time—as single-valued functions of u = u./|f|Ls (or h/Ls). Although
data from particular field-experiment programmes, such as Cabauw (Nieuwstadt 1981)
or Wangara (Yamada 1976), could show reasonable collapses, data summaries including
results from different experimental sites always exhibited enormously huge scatter (e.g.
Zilitinkevich. and Chalikov 1968; Zilitinkevich 1975). Besides insufficient accuracy of
earlier experiments, this huge scatter could to some extent be caused by the newly rec-
ognized effects, namely the free-flow stability, baroclinicity and deviations from the
equilibrium state, overlooked in the prior resistance and heat-transfer formulations.

As illustrations, Figs. 10-12 present the A, B and C coefficients in the traditional
way——as functions of u, combining data from earlier atmospheric measurements, earlier
LES and a new LES database. In this old format, the earlier and the new LES data, al-
though they showed reasonably good results in Figs. 3, 4 and 6, only added to the scatter.
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Figure 11. - Same as in Fig. 10, but for the cross-isobaric-angle resistance-law coefficient §(u) = (| flhg/us)B.

It is not surprising that old analytical approximations for A(u), B(u) and C(u) taken
from Byun (1991) reflect this scatter and look rather chaotic. Unfortunately the earlier
atmospheric data did not include sufficient information to enable them to be presented
in the new format. In any event, the striking difference between Figs. 10—-12 based on
the old theory and Figs. 3, 4 and 6 based on the advanced theory catches the eye.

The advantage of new theory is very clearly seen in the weak- and moderate-
stability regimes. Indeed, the traditional type of functions A(u), B(it) and C (i) exhibit
incomparably larger scatter at small values of the internal stability parameter, u, than
the new functions A(m ), B(mp) and C(m¢) at small values of the composite stability
parameters m 4, mp and mc. Pronounced scatter of data on C(m¢) at very small m¢
is not surprising because small values of m¢ imply very small temperature fluxes and
temperature increments across the PBL, which inevitably result in considerable errors
in the estimates of 0,, AfppL. and mc.

5. CONCLUSIONS

In the traditional context, the terms ‘stably stratified atmospheric PBL’ and ‘noc-
turnal PBL” were considered as synonyms, whereas the term ‘neutrally stratified PBL’
was applied to all PBLs characterized by the zero buoyancy flux at the surface (Fyps = 0)
without any regard to the Brunt—Viisild frequency, N, in the free atmosphere above

the PBL. In contrast, we distinguish between the following essentially different types of
stable PBLs:
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Figure 12. Same as in Figs. 10 and 11, but for the temperature resistance-law coefficient 6’(;/) =C—
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e Short-lived PBLs, namely, the nocturnal stable (Fps <0, N =0) and the truly
neutral (Fys = 0, N = 0) PBLs that develop against neutrally stratified residual layers.
They exhibit basically local nature. In these regimes, the Monin—Obukhov similarity
theory realistically describes the surface-layer turbulence.

e Long-lived PBLs, namely, the thoroughly stable (Fgs < 0, N > 0) and the con-
ventionally neutral (Fyp, = 0, N > 0) PBLs that develop over a sufficiently long period
to approach the-stably stratified free atmosphere. Their basic features (including the
surface-layer scaling) are essentially controlled by the non-local effect of N. In these
regimes, the classical similarity theory is no longer applicable; besides the familiar
Monin—-Obukhov length scale L, an important role is played by the external stability
scale Ly = uy/N.

At N = 0, the effect of baroclinicity would result in making the overall troposphere
turbulent. It is not surprising that the traditional models of short-lived PBLs did not
account for this effect. On the contrary, additional mixing due to the baroclinic shear (I'")
is very naturally included in the long-lived-PBL model through the baroclinic turbulent-
velocity scale utr = u,(1 + CbF/N)l/z.

In the present paper, the resistance and heat-transfer laws are advanced, covering
non-steady PBLs and accounting for the effect of NV, both of which were disregarded in
prior models and are now reflected through the composite stratification parameters m 4,
mp and mc, see Eqgs. (42), (43) and (57), whereas the effect of I" is included through
the baroclinic PBL-depth formulation (Zilitinkevich and Esau 2003).
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In contrast to prior formulations, the newly derived resistance-law formula for the
cross-isobaric angle, Eq. (7b), explicitly shows the role of the Coriolis parameter f.

The proposed theory sheds light on the cause of a very wide spread of data in prior
empirical graphs presenting the resistance-law coefficients as single-valued functions
of a sole stratification parameter, such as u = u,/| f|Ls or h/L. It is shown that this
spread was to a large extent caused by effects unaccounted for in the traditional context.
Analogous graphs based on the new theory show much better correspondence with data.

The resistance and heat-transfer laws given by Egs. (5), (7), (8), (41) to (43), (56)
and (57) provide the physical background for an advanced surface-flux calculation
scheme applicable to a wide range of PBLs including very shallow boundary layers.
Such a scheme would respond to the urgent demand from operational modellers. Indeed,
all currently used surface-flux schemes are based on the concept of ‘the surface layer’,
which implies that the turbulent fluxes are taken to be depth-constant (t = ui, Fy = Fys)
from the surface z. =0, up to the lowest computational level z = z;. Clearly, this
assumption is justified only when the PBL height, A, is an order of magnitude larger
than z;. However, in operational models z; must not be taken too small (in particular, z;
is close to 30 m in the most advanced numerical weather prediction and climate models:
ECMWF+, HIRLAME, ECHAMS, etc.). At the same time, as recognized recently, the
typical height of long-lived stable PBLs is just a few dozen metres (Zilitinkevich and
Esau 2003). Traditional surface-flux schemes completely fail in such cases (see Esau
2004b) so there is simply no alternative to an approach based on resistance laws.

New advancement of the resistance and heat-transfer laws makes them principally
applicable to the oceanic upper and bottom boundary layers. Notice that the role of the
external stability parameter uy, Eq. (10a), is absolutely dominant in the upper layer of
water, because of the very strong static stability typically observed in the thermocline
below the PBL. It is conceivable that the advanced laws—reformulated and validated
against oceanographic data—can be used as the physical basis for improved calculations
of the key parameters characterizing the oceanic boundary layers: turbulent fluxes of
momentum and scalars at the ocean bottom; velocity and direction of the surface-drift
currents; increments in the temperature, salinity and other scalar admixtures across thin
films at the water surface (see Zilitinkevich and Kreiman 1991). Such calculations are
required in a number of practical problems, such as the modelling of CO; exchanges
between the atmosphere and the ocean, and modelling the transport and dispersion of
oil films at the water surface.

LES data analyses performed here to support our background assumptions and
to validate final results (and LES database as such) could be of interest beyond this
research. In particular, they confirm well-pronounced self-similarity of normalized
turbulent-flux profiles (Fig. 1) and reveal feasibility of the generalized scaling based
on Eq. (14) for all kinds of stable PBLs (Figs. 2 and 5).
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APPENDIX

Self-similarity of the vertical profile of the momentum flux

In the nocturnal PBLs, the assumption of self-similarity of the vertical turbulent

flux of momentum is consistent with the following scaling analysis of the Ekman

equations. Taking 7/ uﬁ = fr(¢) and Fy/Fys = fro(¢), the approximate eddy-viscosity

formulation, Eq. (16), becomes Ky = K3, fgkm (), where K3 = kC,; Ly, Lg is a depth-

constant eddy-viscosity scale and fxar(¢) = fr2 f F_el is a universal function decreeing

" towards the PBL upper boundary (our LES-based analytical approximations give fxy =

exp(—10¢2/3)). Then, differentiating Eq. (25) over z, multiplying by Ky, using the

PBL height-scale & ~ (Ky, /| f 172 and going to dimensionless variables ¢ = z/h and
Tix,y) = t{x,y}/ui, yields:

-~ 37y "N 9T
r}’+fKM(§)'5‘%__:07 __T_x"l‘fKM(g)—a-%:O_

The boundary conditions, Eq. (26), take the form T, =1, ?y =0 at { =0 and

T, =0, ’fy =0 at { — o0. Thus the problem becomes self-similar, which ensures that

7y and T, are single-valued functions of ¢. Figure 1 confirms this conclusion and gives
grounds to extend it to long-lived and conventionally neural PBLs.
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