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Abstract 
 

Fourier transform infrared spectroscopy (FTIR) spectroscopy is a rapid and non-destructive 

technique applied with little or no sample preparation step. This work presents the use of FTIR 

spectroscopy combined with partial least squares (PLS) regression and standard addition based 

on the net analytical signal (SANAS) methods of multivariate calibrations to predict the 

quantity of chitin in fish diets. Besides, the attenuated total reflectance (ATR)-FTIR 

spectroscopy characterization study was conducted on chitin powders purified from shrimp and 

black soldier flies (BSF) exhibited close similarity in all infrared (IR) vibrational bands of the 

spectrum. 

The estimation accuracy of PLS model was based on the root mean squared error of cross-

validation (RMSECV), root mean squared error of prediction (RMSEP) and correlation 

coefficient (R2) values. Precision (coefficient of variation, 5.64%), linearity, limit of detection 

(LOD = 0.026 % w/w) and limit of quantification (LOQ = 0.084 % w/w) were also estimated 

to validate the PLS multivariate calibration model. The correlation coefficient (R2) and 

RMSECV between the predicted and measured percentages of chitin calibration sets were 

0.982 and 0.220. RMSEPs for purified, raw, and demineralized BSF insect prediction samples 

were 20.7, 11.2, 1.53 % chitin (w/w) respectively. The % of chitin (w/w) predicted for purified, 

raw and demineralized BSF insect samples were 66.8, 31.9 and 16.9. In addition to this, 8.90, 

8.60 and 10.51 % chitin (w/w) were estimated in three random insect-based fish diet test 

samples. Throughout the study, second-derivative Savitzky-Golay (15-point window size) 

third order polynomial expression was applied as a spectra data pre-processing method. 

The net analyte signal (NAS) of analyte component is obtained by projecting the spectral data 

to the subspace orthogonal to the other components (interferents) in the mixture. The NAS 

vector of the analyte in the unknown sample and standard spiked with varying concentrations 

of the analyte were calculated.  Plots of Euclidean norms of NAS vectors against the spiked 

concentration of standards have been done. The analyte in the unknown sample is estimated by 

extrapolating at the opposite of abscissa intercept. This linear standard addition plot is similar 

to the univariate calibration model which made it very easy to interpret the results. Several 

sources of chitin and types of fish feed were investigated. The correlation coefficients for all 

calibration models were above 0.9900, with the exception of purified chitin from black soldier 

fly (0.9641). The predicted weight percentage of chitin obtained in purified and raw black 

soldier fly powders were 9.32 and 1.66 whereas in one fish feed sample without insect added 

and other three insect-included fish feed samples were estimated, 1.07,1.65, 3.12 and 3.82 % 

chitin (w/w) respectively. The percentage of chitin quantified in the purified and raw black 

soldier flies by the use of net analyte signal method were not in agreement with the acid 

detergent fiber method.  

 

Keywords: chitin; BSF insect-based fish feed; FTIR spectroscopy; multivariate calibration; 

PCA; PLS; SANAS. 
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1. Introduction 

Aquaculture is the fastest growing animal food production sector worldwide and is becoming 

the main source of aquatic animal food for human consumption (Ottinger, et al., 2016). To 

satisfy the continuing demand of fish and seafood for the rising global population, the 

aquaculture industry has relied on the production of fishmeal formulated to meet the nutritional 

requirement of targeted fishes. Fishmeal is generally added to animal diets to increase feed 

efficiency and growth through better feed palatability; it enhances nutrient uptake, digestion, 

and absorption (Ayoola, 2015). High availability of essential amino acids, phospholipids and 

fatty acids in fishmeal promotes optimum development, growth, and reproduction. However, 

the steady decline in catches of wild fish and increased demand of aquaculture feeds has 

resulted in a rapid decrease in availability of fishmeal and fish oil and their concurrent price 

increase (Henry, et al., 2015). It is estimated that approximately 30% of the total fish catch is 

converted to fish meal and fish oil for use in animal and fish feeds. Due to the tremendous 

expansion of aquaculture and limited resource available from the sea, it has been attracting an 

interest in fishmeal alternatives.  

Nowadays, soybeans and other terrestrial plants rich in proteins and lipids have been introduced 

to replace fishmeal and fish oil (Mandrile, et al., 2018). However, the presence of 

antinutritional factors, problems of inflammation digestive tract, decreased palatability and 

price volatility of soybean meal are of a great concern (Henry, et al., 2015). To overcome this 

problem, insects are becoming the potential candidates as an animal protein source (Barroso, 

et al., 2014).  

Insects are part of the natural diet of freshwater and marine fish, and they are generally rich in 

amino acids, fatty acids (monounsaturated and polyunsaturated), several micronutrients (Cu, 

Fe, Mn, Mg, P, Se and Zn) and vitamins (such as riboflavin, pantothenic acid, biotin, and folic 

acid). Since the nutrient composition of all insects is dependent on the feed and their stage of 

development, nutrient enrichment via the addition of certain food supplements, such as omega-

3 (eicosapentaenoic acid 20:5ω-3; docosahexaenoic acid 22:6ω-3) is very important (Rumpold 

& Schlüter, 2013). Compared to conventional livestock, insects require less water input and 

can be reared in organic waste. This leads to high feed conversion efficiency, low greenhouse 

gas and ammonia emission, lower environmental footprint, few animal welfare issues, and 

reduced zoonosis transmission risks (Henry, et al., 2015; Magalhães, et al., 2017; Mandrile, et 

al., 2018). 
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At the beginning of the century, the European Commission Regulation 999/2001 has banned 

the use of the processed animal protein (PAP) in animal nutrition to protect from transmissible 

spongiform encephalopathies (TSE). However, the commission (i.e. Regulation (EU) N0 

2017/893) has recently approved to uplift partially the feed ban rules regarding the use of insect 

processed animal proteins (PAPs) for aquaculture animals. The authorization is only limited to 

seven insect species: black soldier fly (BSF), house fly, yellow mealworm, buffalo worm, 

house cricket, banded cricket, and field cricket. From the approved list of seven insects, BSF 

larvae (Hermetia illucens) is the most promising insect species attracting commercial 

exploitation (Caligiania, et al., 2018). It processes organic waste very quickly, the adult flies 

do not eat, thus restraining bacterial growth and thereby reducing production of bad odour to a 

minimum.  The larvae of BSF have been reported as a chief source of crude protein (42.1%) 

and found also about 56.9% in the defatted meal of BSF larvae which is comparable to soybean 

meal and slightly less than that of fishmeal. In addition, BSF larvae have better amino acid 

profiles and their fatty acid composition is dependent on the fatty acid composition of the diet 

(Makkar, et al., 2014).  

A study carried out on feeding trail of juvenile turbot fish showed a decreased feed intake and 

growth performance with increasing incorporation of BSF larvae meal (>33%, DM) due to low 

palatability. The reduced palatability and growth performance resulted from decreased diet 

acceptability and feed intake that can be attributed to the presence of chitin, which influences 

lipid and protein digestibility (Kroeckel, et al., 2012). Li, et al., (2017) have reported that 

manifestation of dietary stress and intestinal histopathological damage of juvenile Jian carp fed 

with >75% defatted BSF larvae meal.  In addition to this, a feeding trial of Atlantic salmon 

with 85% of BSF larvae to replace fishmeal protein and soy protein resulted in a significant 

reduction of apparent digestibility of protein, lipid and all amino acids. In a recent study, it was 

observed that insectmeal (lower than 600 g/kg) in combination with insect oil in the diets of 

fresh-water Atlantic salmon did not adversely affected the growth performances, feed 

utilization, apparent digestibility and whole-body composition (Belghit, et al., 2018). 

Moreover, the effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic 

cod, Atlantic salmon, and Atlantic halibut was investigated. Atlantic cod and Atlantic halibut 

seem unaffected by up to 5% chitin addition in the diet, while in Atlantic salmon the growth 

and nutrient utilization are affected negatively by adding chitin in the diet at levels higher than 

1% (Karlsen, et al., 2017). 
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On the contrary, another study demonstrated that chitin has protective effects against 

salmonids, enhance the respiratory burst, improve phagocytic activities in gilthead bream and 

significantly increases the white blood cell count in chitin-fed groups (Cuesta, et al., 2003).  A 

dietary inclusion of mealworm (tenebrio molitor) meal on European sea bass (Henry, et al., 

2018) and yellow catfish (Su, et al., 2017) showed improved immune response and bacterial 

resistance without any negative growth effects.  

Even though the BSF larvae meal is permitted to be used as a fish meal alternative, an efficient 

infrastructure should be put in place to guarantee the quality and safety of final products. The 

ideal infrastructure should have a battery of validated analytical techniques to certify not only 

the quality and quantity of nutrients and antinutrients but also important insect components 

(e.g. chitin) generally overlooked by the insect-based food industry. 

 

Chitin exists rarely in a pure form in nature but instead is usually in a complex matrix with 

other compounds. Its determination from insects has been based on acid detergent fiber (ADF) 

method assuming structural similarity between chitin and cellulose. The alleged structural 

similarity has resulted in an overestimation of chitin due to the substantial amounts of amino 

acids contained in the ADF fractions (Finke, 2007). Chitin content is quantified based on the 

difference from total nitrogen content after subtracting the protein contribution to total 

nitrogen. A specific nitrogen conversion factor of 14.5 was calculated for chitin, assuming a 

fully acetylated glucosamine (Caligiania, et al., 2018). 

 

 A previous study has reported an acid hydrolysis-based extraction procedure for glucosamine 

from BSF larvae meal to determine chitin using liquid chromatography-tandem mass 

spectrometry (LC-MS) (Tefera, 2017). This method was based on the hydrolysis of a 

commercial purified standard from shrimp shells (~100% purity) by using a concentrated 

hydrochloric acid. The shrimp shell commercial standard was used for constructing the 

calibration curve and for quantifying chitin in purified from BSF larvae (~ 80-90%). 

Unfortunately, there was a remarkable disagreement between the declared (~ 80-90% chitin) 

and predicted (12%) levels of chitin which could be the result of an incomplete hydrolysis of 

chitin in the purified sample for BSF larvae.  

Accurate detection and quantification of chitin is of paramount. The implementation of acid 

hydrolysis and LCMS for analysis of chitin (Tefera, 2017) has demonstrated that many 
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challenges lie ahead in the field of sample treatment and selection of reliable instrumental 

techniques. In the context of the aquaculture industry and its search for alternative source of 

proteins (e.g. insects), it is crucial the implementation of fast analytical techniques, able to 

overcome the limitations of LC-MS. Vibrational spectroscopic techniques (e.g. Fourier 

transform infrared (FTIR)) in combinations with chemometrical tools might constitute reliable 

quantitative approaches. To the best of my knowledge, the present thesis is the first scientific 

report describing the use of FTIR spectroscopy combined with chemometrics for quantification 

of chitin in an insect-based fish diet. Therefore, the aim of this study is to evaluate the potential 

of FTIR spectroscopy combined with standard addition and net analytical signal based 

multivariate calibrations to quantify chitin from the insect-based fish diet.  

 

1.1. Objective of the project 

 To characterize chitin from a commercial standard (shrimp) and a purified BSF insect 

chitin by using FTIR spectroscopy operated in Attenuated Total Reflectance (ATR) 

mode in order to verify whether the structures are similar or not. 

 To optimize the parameters affecting the determination of chitin by FTIR 

 To evaluate under optimal conditions the potential of FTIR operated in Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) as a quantitative 

technique for determining chitin in insect-based fish feed by means of the standard 

addition method and multivariate calibration models. 
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1.2. Significance of the project 

Black soldier fly (BSF) is one of the insects on an authorized list amended in January 2018 for 

the European Commission (EC) Regulation No 999/2001, which had been prohibiting the 

production of proteins derived from farmed insects. Insect-based fish diets are recently 

attracting the aquaculture industry in many countries as a potential fish feed alternative. Since 

the cost of cultivation of BSF insect larvae is possible at a lower price, the proteins are chiefly 

available in it and the cost of fish feed is increasing year to year due to the increasing human 

consumption of fish, the regulatory bodies for aquaculture in Norway and the European 

Commission are striving to replace fish feed with BSF insect-based meals to improve the 

nutritional values of fish. However, the quality requirements regarding the non-nutrient 

materials composition, for example percentage of chitin tolerated in the feed, have not yet been 

addressed. The regulatory bodies are seeking fast methods that can easily quantify the 

percentage of chitin in insect-based fish diets. Hence, this project has contributed a tremendous 

effort to develop multivariate calibration models that can be easily applied for quantification 

of chitin by the use of DRIFTS-FTIR spectroscopy.     
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2. Theoretical background 

2.1. Chitin  

Chitin, the second most abundant biopolymer after cellulose, is usually present in a mixture 

with other polysaccharides, lipids and proteins in exoskeletons of arthropods (insects, 

crustaceans, arachnids and myriapods), cuticles of nematodes, algae and cell walls of fungi 

(Majtan, et al., 2007; Kaya, et al., 2015).  

Chitin is a linear biopolymer of -(1→4)-N-acetyl-D-glucosamine repeating unit. The structure 

of chitin is similar to cellulose except for the hydroxy group at C-2 position in cellulose is 

substituted by acetamido group in chitin ( 

Figure 1).  

 

 

                                                                                                           

Figure 1. Chemical structure of chitin (left) and cellulose (right). 

 

Chitin exists in three crystalline polymorphic forms designated as ,  and  (Kaya, et al., 

2017). The -chitin present in anti-parallel arrangement is the most abundant and stable 

polymorphic form found in shells of crustaceans, the skeletons of insects and cell walls of 

fungi. Chitin in β-form has a parallel arrangement and is packed with weak intramolecular 

hydrogen bonds. It is found in squid pens, in the extracellular spines of the euryhaline diatom, 

and in pogonophore tubes. The γ-crystalline form has a mixture of antiparallel and parallel 

chains and is found in the cocoons of insects (Gonil & Sajomsang, 2012; Sajomsang & Gonil, 

2010) such as moth (Orgyia dubia), threads of larvae of the spider beetle, Ptinus tectus, larval 

and adult peritrophic membranes (PM) of adult locust, cockroach, mantis and dragon fly 

silkworm larva (Antheraea pernyi) and in a sawfly larva (Phymatocera aterrima) (Kaya, et al., 

2017). 

Presence of amine functional groups in chitin and its partially deacetylated derivative chitosan 

represents a great advantage for modification reactions. Despite of its insolubility in common 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjhmZDe2OXbAhXGzKQKHWuHDeAQjRx6BAgBEAU&url=https://www.quora.com/What-is-the-structure-of-chitin-and-how-does-that-help-its-function&psig=AOvVaw1hlItXv1SYsOa8Cimueh1f&ust=1529702681475757


                                                                                   

7 
                                                                                                       

organic and inorganic solvents, chitin has excellent properties: biocompatibility, 

biodegradability, bioactivity, non-toxicity and good adsorption properties means that this 

biomaterial has drawn a great deal of industrial attention (Islam, et al., 2016). Because of these 

properties, chitin and its derivatives have plenty of applications in wastewater treatment, 

pharmaceuticals, biomedical engineering, biotechnology and food science. The surface 

morphology, acetylation degree and molecular weight are the three main criteria determining 

the industrial use of chitin and its derivatives (Kaya & Baran, 2015; Nitschke, et al., 2011). 

 

2.2. Structural characterization and quantification techniques for chitin 

Several analytical techniques have been developed for detection and quantification of chitin 

and its derivatives. Gas chromatography-mass spectrometry in selected ion monitoring mode 

has been used to detect and quantify acid-extracted hydrolysated monomer, D-glucosamine 

after using epimer-specific derivatization to confirm the presence of chitin in fossils of 

arthropods (Flannery, et al., 2001). Furthermore, high performance liquid chromatography 

(HPLC) analysis have been used to separate D-glucosamine after pre-column derivatization 

with 9-fluorenylmethoxycarbonyl chloride for quantifying and determining the purity of chitin 

in biological materials and evaluating the quality of chitin products. The sample preparation 

step used for chromatographic analysis, in general, is acid hydrolysis to cleave the  (1→ 4) 

glucosidic bonds and removal of the acetyl amide group to produce glucosamine for subsequent 

quantitation. This HPLC analysis has been developed to overcome the time-consuming pre-

column derivatization methods with several stages of vacuum drying and less reproducible 

methods of spectrophotometry. However, the hydrolysis of chitin with concentrated HCl (8 M) 

into glucosamine is not ideal as it can possibly breakdown the glucosamine (Zhu, et al., 2005). 

Nitschke, et al., (2011) has determined chitin and chitosan from mushroom samples in a 

coloured polyiodide-chitosan insoluble complex obtained as result of specific reaction of 

polyiodide anions contained in Lugol’s solution with chitosan.  Lugol’s solution in microscopy 

have been used as a specific dye for chitin in cell walls. A spot assay has been developed on 

thin layer chromatographic (TLC) plates and measured their optical density with photographic 

technique. Measurement of optical densities for standards of chitosan have used to prepare 

calibration curve for determination of chitosan and in turn for chitin in mushroom samples.      

Fourier transform infrared (FTIR) and solid-state 13C cross-polarization magic angle spinning 

nuclear magnetic resonance spectroscopy is commonly used for structural characterisation and 

determination of the degree of acetylation percentage of chitin (Majtan, et al., 2007; Sajomsang 
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& Gonil, 2010; Kaya, et al., 2015). Elemental analysis has been also used to characterize chitin 

and chitosan in which the degree of acetylation and deacetylation were determined by relating 

with percentage composition of carbon and nitrogen (Soon, et al., 2018).  

Scanning electron microscopy is a powerful tool for characterizing surface morphology of 

chitin and chitosan extracted from orthoptera species (Kaya & Baran, 2015), cicada sloughs 

(Sajomsang & Gonil, 2010), shrimps, desert locusts, honey bees and beetles (Marei, et al., 

2016). Chitins characterised with nanopores surface structures have applied in metal ion 

adsorption while those with fibrillar surface morphology can be used in textiles.   
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2.3. Principles of FTIR spectroscopy 

The infrared (IR) portion of the electromagnetic spectrum is divided into three regions; the 

near-infrared (NIR), mid-infrared (MIR) and far-infrared (FIR). The mid-IR region ranges 

approximately from 4000-400 cm-1 and is used to study the fundamental vibrations (signatures) 

and associated rotational-vibrational structures (Huck, 2015). An infrared spectrum represents 

a fingerprint of a sample with absorption peaks that correspond to the frequencies of vibrations 

between the bonds of the atoms making up the material. Because each different material is a 

unique combination of atoms, no two compounds produce the exact same infrared spectrum. 

Therefore, infrared spectroscopy can result in a positive identification (qualitative analysis) of 

many different kinds of material. In addition, the size of the peaks in the spectrum is a direct 

indication of the amount of material present. With help of modern software algorithms, FTIR 

spectroscopy is an excellent tool for quantitative analysis (Stuart, 2004). 

 

FTIR spectrometers work basically based on an interferometer to generate an interferogram. 

All wavelengths are measured simultaneously which results in faster sampling with a better 

signal-to-noise ratio. An interferometer is an optical device that allows the controlled 

generation of interference patterns or interferograms. The most commonly used interferometer 

is Michelson interferometer. The Michelson interferometer consists of a source, a beam splitter, 

a fixed mirror, and a moving mirror (Figure 2) (Subramanian & Rodriguez-Saona, 2009).  

 

 

Figure 2. Schematic diagram of Michelson interferometer. 

 

The source emits light in the IR region when electricity is passed through it. The beam splitter 

serves to split the incident IR light into two. The mirrors are aligned to reflect the light waves 

in a direction that would allow recombination of the waves at the beam splitter. The movable 
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mirror is capable of moving along the axis, away from and towards the beam splitter. One half 

of the light passes through the beam splitter and is reflected by a stationary mirror back to the 

beam splitter. The other half of the light is reflected on to the moving mirror, which in turn 

reflects the light back to the beam splitter. The two reflected beams from the mirrors recombine 

at the beam splitter. The difference in distance travelled by the two light beams is the optical 

path difference. The recombined light beam passed from the interferometer and it is then 

directed by mirrors into the sample compartment and detected by the detector (Subramanian & 

Rodriguez-Saona, 2009). FTIR uses Fourier transform modern mathematical algorithm to 

convert the raw wavelength data collected by the detector into spectra (Beasley, et al., 2014).  

 

The three conventional testing modes of FTIR techniques for bulk sample analysis are 

transmission FTIR, ATR-FTIR and DRIFT spectroscopies. The transmission mode is fast and 

cost-efficient technique applied by mixing solid powder samples with KBr and pressing with 

the hydraulic press to make pellets.  KBr is used for sample preparations as a background 

matrix because it has a wide spectral range, no significant wavelength in MIR region and 

produces smooth IR transparent disc upon mixing with powder samples. The sample pellet is 

placed in the path of the IR beam and the resulting transmitted IR signal is recorded by the 

detector (Chen, et al., 2015). The main solvent used in the preparation of the sample is water. 

Signal saturation due to -OH stretching vibrations leads to a non-linear detector response and 

makes the subtraction difficult. Even though the spacer thickness is reduced to less 1 µm to 

avoid saturation effect, it is very difficult to ensure the reproducibility of the spacer thickness. 

So, ATR-FTIR method can be an alternative solution to overcome this difficulty (Grdadolnik, 

2002). 

Attenuated total reflectance (ATR)- FTIR spectroscopy involves directing an infrared beam at 

an interface between an internal reflection element (IRE) and a sample placed in contact with 

the IRE at a certain angle of incidence as shown in Figure 3. This IRE is an optically dense 

crystal made of ZnSe, diamond, Si or Ge with a higher refractive index than the sample or the 

surrounding medium. Total internal reflection occurs when the angle of incidence of IR beam 

exceeds the critical angle. This internal reflectance causes a generation of standing waves of 

radiation called an evanescent wave that extends beyond the surface of the crystal into the 

sample held in contact with the crystal (Houa, et al., 2018). An ATR spectrum can be obtained 

by measuring the interactions of the evanescent wave with the sample. This evanescent wave 

will be absorbed by the sample and its intensity is attenuated in regions of the IR spectrum 

where the sample absorbs. 
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In general, the penetration depth is defined by the amplitude decrease of the electromagnetic 

field in the optically less dense material to the fraction 1/e of its initial level.  

dp =
λ

 n1.  2π√sin2θ − (
n1

n2
)2

                                                                                       Eq. 1 

The depth of penetration (dp), is proportional to the wavelength λ and also depends on the 

angle of incidence θ and the refractive indices of the crystal n1 and the sample n2. Upon 

decreasing the angle of incidence and refractive index of the crystal results in a shallower depth 

of penetration. The depth of penetration is limited only to a fraction of the wavelength, typically 

ranges from 0.5 – 2 µm although it should be noted that absorbance information is obtained 

from the sample beyond this range, as the evanescent wave probes deeper than the depth of 

penetration. The detection power of the ATR technique is increased by employing a trapezoidal 

crystal which allows multiple reflections (Schmitt & Flemming, 1998). 

 

Figure 3. Illustrations of the principles of ATR spectroscopy. 

 

Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is suitable for analysis of 

organic and inorganic samples ground into fine powders (˂ 10 µm size). It is a non-destructive 

FTIR technique that needs little or no sample preparations, and a fast and easy clean up. The 

principles of DRIFT-FTIR spectroscopy is demonstrated in Figure 4. This technique is 

designed for analysis of samples with rough surfaces. It operates by directing the IR beam into 

a sample cup filled with a mixture of sample and an IR transparent matrix (such as KBr and 

KCl). The IR radiation interacts with the particles and then reflected off their surfaces (specular 

reflection), causing the light to diffuse (diffuse reflection), or scatter, as it moves throughout 

the sample (Beasley, et al., 2014). The output mirror then directs this scattered light energy to 

the IR detector, where quantitative information from the chemical components is measured. 

The penetration depth into the sample is dependent on the physical and optical properties of 

the sample and diluting powder. These properties are refractive index, particle dimensions, 

packing density, homogeneity, concentration and absorption coefficients that influences the 
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quality of the DRIFT spectra. Samples are generally diluted 10-100 times to guarantee deeper 

penetration of the IR beam and less specular reflection from the sample surface, thereby 

increasing the contribution to the spectrum of components which contain data on the 

absorbance properties (Armaroli, et al., 2004).  

 

Figure 4. Simplified schematic diagram for diffuse reflectance FTIR spectroscopy (Chen, et 

al., 2015). 

Diffuse reflection spectra are very similar to transmission spectra. However, diffusely reflected 

light undergoes repeated transmission through the sample, thus the low absorption bands are 

emphasized as compared to the transmission spectrum of the same sample. Ideally, there is no 

linear relation between a band intensity and concentration which makes DRIFTS method more 

complicated for quantification. The Lambert-Beer law applied in the transmission spectrum is 

not applicable for diffuse reflection (Armaroli, et al., 2004; Soares, 2014). The spectra are 

largely influenced by several experimental parameters such as, shape and size, refractive index, 

absorption characteristics, and porosity of the powder particles. An approximation of the 

Kubelka-Munk (KM) function is widely applied for quantitative analysis though it is 

questionable of its applicability and accuracy for non-absorbing and highly absorbing samples 

(Jinda Sirita, 2007 ).  The Kubelka-Munk formula (Eq. 2) relates the absolute reflectance (R∞) 

of the scattered radiation (R∞ = intensity scattered divided by that of the incident radiation) to 

the sample absorption and scattering coefficients k and s, respectively.    

f(R) =
(1 − R∞)2

2R∞
=

k

s
                                                                    Eq. 2 

Where, k is molar absorption coefficient, k = 2.303αc, α is absorptivity, c is concentration and 

s is the diffusion (scattering) coefficient. 

  

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj_l_yG3MHcAhWDCSwKHVgmAGUQjRx6BAgBEAU&url=http://www.mdpi.com/1422-0067/16/12/26227&psig=AOvVaw3WjorYwKKSNTi_qGm9R6cp&ust=1532864668609662
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2.4. Chemometrics  

The term chemometrics was first used by Svante Wold and Bruce Kowalski back in 1972 

(Hibbert, 2016). Chemometrics is a discipline concerned with the application of statistical and 

mathematical methods as well as those methods based on mathematical logic, to chemistry 

(Brown, et al., 1992). It improves the understanding of chemical information and to correlate 

quality parameters or physical properties to analytical instrument data. When working with 

spectra data containing complex chemical composition such as in biological samples, herbal 

medicines and drug development, it is not easy to apply the commonly used univariate 

methods. Application of chemometric methods provide a good opportunity for mining more 

useful chemical information from the original complex data. With the advancement of 

computer technologies, chemometric methods have become a leading tool among the scientific 

communities towards faster analysis results and shorter product development time (Bansal, et 

al., 2014).  

Multivariate calibration is one of the frequently used chemometric tools. It refers to the process 

of relating analyte concentration or the measured value of a physical or chemical property to a 

measured response such as NIR spectra of multicomponent mixtures (Lavin, 2000). 

Multivariate calibration has been applied in many different fields, especially in food chemistry, 

pharmaceutical analysis, agriculture, environment, industrial and clinical chemistry.  

 

The reason of the large interest in multivariate calibration is that the method is fast, cheap and 

accurate for many real problems (Forina, et al., 2007).  It was an immediate success where 

selectivity and precision increased dramatically in comparison with the traditional scientific 

approach of using just one or two variables are examined at a time. The reliability of results for 

unknown samples is higher than the univariate calibration in which it can detect the presence 

of an uncontrolled interference errors in samples. Moreover, a large number of variables are 

used for the analytical signal and examining the residuals can expose whether a given sample 

is different from those used for calibration and the result that it provides is thus unreliable 

(Romía & Bernàrdez, 2009). 

2.4.1. Data pre-processing  

Data preprocessing (Zeaiter & Rutledge, 2009) is widely used for spectroscopic applications 

such as NIR, MIR, UV and NMR to correct the spectral data for baseline drift, nonlinearity, 

additive and multiplicative effects, and other variations in the spectra not related to the 
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properties being studied. These methods may be used to improve the predictive ability of the 

multivariate calibration. In vibrational spectroscopy, extended multiplicative scatter correction 

(EMSC), standard normal variate (SNV) and spectral derivatives (Afseth & Kohler, 2012; 

FitzPatrick, et al., 2012) are commonly used pre-processing methods. The first two are model-

based methods, which allow quantifying and separating the different types of physical and 

chemical variations in the spectra. Whereas, the spectral derivative methods transform spectra 

to a better-smoothed version of the same data by filtering out undesired types of variations. 

EMSC was introduced to correct problems of signal amplification and offset in spectra due to 

additive and multiplicative effects. It is done by calculating slope and offset correction 

coefficients of the regression line between each individual spectrum and the average spectrum 

of the calibration data set. However, the average spectrum is not always a representative 

spectrum unless a large number of samples is employed (Rinnan, et al., 2009). SNV and EMSC 

methods are linearly related and provide similar results (Romía & Bernàrdez, 2009). SNV is 

done by subtracting the mean from each spectrum and then dividing by the standard deviation 

of the spectrum (Zeaiter & Rutledge, 2009).   

2.4.2. Principal component analysis  

Principal component analysis (PCA) (Camacho, et al., 2010) is a method of exploratory data 

analysis that aims to find the subspace in the space of the variables where data mostly vary. 

The original variables, commonly correlated, are linearly transformed into a lower number of 

uncorrelated variables, called principal components (PCs). Thus, the original data set can be 

simplified by performing data reduction to make it more easily interpretable. Conventional 

notations have been used throughout this thesis. Boldface capital letters are used for matrices, 

a boldface lower case for a vector and lower-case italic for a scalar.  PCA is used to reduce the 

number of variables by decomposing the spectral data matrix X  into a product of two matrices, 

scores (T) and loadings (P) plus an error matrix (E), as shown in Eq. 3.  

𝐗 = 𝐓𝐏𝐓 + 𝐄                                                                                   Eq. 3 

Where 𝐗 is the 𝑖 × 𝑗 data matrix, T is the 𝑖 × 𝐴 matrix of score vectors, containing A orthogonal 

score vectors 𝐭a, 𝐏T is the 𝑗 × 𝐴 transposed matrix of loading vectors and the superscript “T” 

indicates the transposition, E is the 𝑖 × 𝑗 residual matrix, 𝑖 is the number of objects (rows), 𝑗 is 

the number of variables (columns), and A is the number of calculated principal components 

retained in the PCA model. 
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The number of principal components (PCs or A) used in the PCA model should be large enough 

to capture the systematic part of the variation in the data. This can e.g. be determined by looking 

at the percentage of the variance explained.  

2.4.2. Partial least squares regression (PLSR) 

Partial least square (PLS) (Valderrama, et al., 2007) is a well-known multivariate calibration 

method in chemometrics and its implementation might be valuable for the vibrational 

spectroscopic data to be generated in the present research for predicting percentage of chitin in 

insect-based fish diet samples. PLS regression methods can determine analytes in a situation 

where a selective signal is not possible to obtain. It is a very powerful and fast technique for 

process modelling and calibration methods where the predictor variables are collinear, 

measurement data contain noise, variables have high dimensionality and the number of samples 

is smaller than the variables (Xin Bao, 2009).  

PLS calculates latent variables (a = 1, 2, … A), which are a linear combinations of independent 

variables 𝐗 that best predict the dependent variable 𝐲. This is done by focusing on the 

covariance between the matrix of X-block and y-vector. The relationship between the data 

matrix X and y is represented as a linear algebraic relation between their scores. The data matrix 

X is formed by the multivariate matrix (e.g., MIR spectra) and the vector y contains the 

reference values (e.g., concentration) (Eq. 4 and Eq. 5). The scores are obtained by 

decomposing the data matrices into a sum of rank one-component matrices (Valderrama, et al., 

2007; Oliveira, et al., 2012). 

X = 𝐓𝐏T + 𝐄 = ∑ 𝐭a

A

a=1

𝐩a
T + 𝐄                                                                        Eq. 4 

𝐲 = 𝐓𝐪T + 𝐟 =  ∑ 𝐭a𝐪a
T

A

a=1

+ 𝐟                                                                            Eq. 5 

where 𝐄 is an error matrix for 𝐗 and 𝐟 (𝑖 × 1) is an error vector for 𝐲 (𝑖 × 1), that are not 

explained by the model. 𝐭a is the column vector that comprise the score matrix 𝐓; 𝐩a and 𝐪a 

are loadings for 𝐏 (𝑗 × 𝐴) and 𝐪 (1 × 𝐴) loading matrices of X and y respectively, with A 

equal to the number of latent variables suitable to explain the variance of the variables.  

Estimates for the parameter of interest (𝐲̂), for a set of samples, are obtained by multiplication 

of the spectra by an appropriate regression vector, 𝐛 (𝑗 ×  1) calculated as, 

𝐲̂ = 𝐓𝐐𝐓 = 𝐗𝐖(𝐏𝐓𝐖)−𝟏𝐐𝐓 = 𝐗𝐛                                                             Eq. 6 
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Where, W is the weight vector. This is calculated in way to maximize the covariance between 

X and y. It gives information about how the variables combine to form the quantitative relation 

between X and y, thus providing an interpretation of the scores. Hence, these weights, 𝒘𝑎 are 

essential for the understanding of which X-variables are important (numerically large 𝒘𝑎-

values), and which X-variables that provide the same information (similar profiles of 𝒘𝑎-

values). The desired number of latent variables are stored in a scores matrix T which is used to 

iteratively model the variables in X and y until convergence is reached. Similarly, the variables 

in y can be modelled from those in X via the matrix of regression coefficients b. The 

coefficients in b can be estimated as a function of the loadings of X and y, and P and Q, 

respectively, in addition to W. 

The PLS scores and loadings differ numerically from PCA scores and loadings are dependent 

both on experimental measurements (e.g. spectra) and the concentrations. In PCA, the scores 

and loadings depend only on the spectra. 

The multivariate calibration model is first constructed using calibration samples where the 

predictor and predictand (i.e. concentration) variables are known. The model can be validated 

by comparing the predictions against measured values for samples that were not used to build 

the model.  

The accuracy of multivariate calibration models is expressed by RMSECV (root mean square 

error of cross-validation) obtained from the calibration set by internal validation (leave‐one‐

out) and RMSEP (root mean square error of prediction), calculated from an external validation 

set of samples (Brereton, 2000). RMSECV and RMSEP are expressed by  

RMSE (CV or P) = √∑
(yi−ŷi)2

n
n
i=1                                                                     Eq. 7   

where n is the number of samples, 𝑦̂𝑖 is predicted value and 𝑦𝑖 is the nominal value for ith 

sample.  

2.4.3. Standard addition method 

When measurements are carried out in samples with complex matrices such as biological 

samples, the signal obtained is a contribution from both the analyte and the matrix of the 

sample, which in turn promotes spectral interferences. Spectral interferences occur when 

spectroscopic sensors are not completely selective for all analytes in chemical analysis. In 

composition analysis of an unknown mixtures, the effect of the matrix is a serious problem and 
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renders chemical analysis invalid (Hemmateenejad & Yousefinejad, 2009). Standard addition 

method (SAM) is most commonly applied to correct matrix effects, minimize spectral 

interferences and compensate instrumental drift in multicomponent analysis. The SAM 

generalized by Saxberg & Kowalski (1978) provides a means of detecting interference effects, 

quantifying the magnitude of the interferences, and simultaneously determining analyte 

concentrations. This generalized SAM overcomes the presence of spectral and matrix 

interference effects occurring in classical SAM. In fact, the strategies in classical univariate 

SAM is quite straightforward even in the presence of different analytes as far as their responses 

do not interfere with each other, but, the situation is somewhat different in spectroscopic 

measurements, which leads to interactions between species and signal overlap makes the 

method invalid (Martínez, et al., 2018).    

So, the application of robust and versatile multivariate calibration models, such as PLS 

regression is desired to solve the problem of signal overlapping and matrix effects.  

2.4.4. Net Analyte Signal Analysis 

The Net Analyte Signal (NAS) of a component (Lorber, 1986), is the part of its spectrum which 

is orthogonal to the spectra of the other components. Whereas, the part of the spectra that is not 

orthogonal to the data of the other component is a linear combination of the spectrum of the 

others. The digitized spectrum is referred to as a spectrum vector or simply as a vector, while 

a spectrum vector of a pure component is called a component vector. 

 

The NAS algorithm splits the data matrix 𝐗 into two matrices: one containing the spectral 

information pertaining to the analyte k, 𝐗k, and the other containing the spectral information 

pertaining to all of the other variability sources, 𝐗−k, including the contribution of the 

interferents (𝐗k + 𝐗−k). The NAS vector for a given sample is calculated by projecting the 

spectrum vector r onto the space defined by the interferents (matrix 𝐗−k), with the NAS being 

the orthogonal resultant (𝐫k
∗) (Eq. 8) (He, et al., 2017). 

𝐫k
∗ = (𝐈 − 𝐗−k𝐗−k

+ )𝐫k                                                                                               Eq. 8 

Where, 𝐗−𝑘 is the matrix of spectra all components other than the kth analyte, 𝐗−𝑘
+  represents 

the Moore–Penrose pseudo inverse matrix of 𝐗−𝑘, the superscript ‘‘+’’ denotes the pseudo-

inverse of a non-square matrix, 𝐈 is an identity matrix having the same dimension as 𝐗−𝑘𝐗−𝑘
+   

and the (𝐈 − 𝐗−𝑘𝐗−𝑘
+ ) is a projection matrix that projects 𝐫𝑘 onto the null space of the rows of 

𝐗−𝑘, which is the orthogonal complement of the column space of 𝐗−𝑘. 
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Since we have the same data of X and the known concentrations of the kth analyte, c𝑘 in X, it 

is possible to calculate the space of the spectra spanned by all constituents except the kth 

analyte with rank annihilation in the A-dimensional subspace (Eq. 9). Usually, the number of 

variables used to collect spectra in the MIR region exceeds the number of calibration samples. 

Due to the fact that only the significant latent variables are calculated by PLS regression or 

PCA when building the data matrix, 𝐗reb (Lorber, et al., 1997).  

𝐗−k = 𝐗reb − αĉk𝐫T                                                                            Eq. 9 

Where, 𝑐̂𝑘 is the analyte concentration vector projected onto the A-dimensional subspace, as 

expressed in Eq. 10; 

𝐜̂k = 𝐗reb𝐗reb
+ 𝐜k                                                                                   Eq. 10 

The vector “r” is a linear combination of the rows of X, which should include the 

contribution of the pure spectrum of the kth analyte component. The scalar value, 𝛼 can be 

computed as,  

α = 1 / (𝐫T𝐗reb
+ 𝐜̂k)                                                                                 Eq. 11 

 

The standard addition spectra consist of m (1, 2 ..., m) variables (wavenumbers) and n (1, 2.... 

n) number of calibration standard addition samples, giving rise to 𝐗sa (i×j) data matrix. A 

spectrum for the unknown sample but has equal amount in all the spiked series of samples is 

recorded to make up a row vector, 𝐫u. The concentration of the analyte of interest in each 

standard addition samples (𝐜k) is equal to sum of the concentration of the analyte in the 

unknown (𝐜𝑢𝑘) and the added standard (𝐜sk), Eq. 12. 

𝐜k = 𝐜sk
+ 𝐜u                                                                                          Eq. 12 

The calculation of the data matrix 𝐗−k is impractical since 𝑐𝑢𝑘  is an unknown term and 𝐬𝑘 has 

matrix effect. Yousefinejad et al. proposed the calculation of 𝐗−k based on each row vector of 

the standard addition data matrix, 𝐗sa(i) can be taken as the sum of the spectrum of the 

unknown analyte of interest and rest of standard addition mixture. 

𝐗sa(i) = 𝐫u + 𝐗sm(i)                                                                Eq. 13 

Where 𝐗sm contains spectra of the calibration set standards in the presence of the matrix effect 

coming from the unknown. That means, we can subtract the IR spectral signal of the analyte 

of interest of the unknown, 𝐫u from the standard addition mixture, 𝐗𝑠𝑎 to get only data matrix 

𝐗𝑠𝑚 of series of standards added. Therefore, the data matrix, 𝐗sm  containing known 

concentration data of the standards added with matrix effect and their corresponding pure 
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spectra which is possible to calculate 𝐗−𝑘 provided that the pre-processed dataset matrix of  

𝐗𝑠𝑚 are subjected to PCA or PLS to get the most significant principal components, yielding 

𝐗𝑟𝑒𝑏.   

Finally, the NAS vector of the kth analyte component in the standard addition samples can be 

calculated by replacing xk in Eq. 8 by Rsa,reb, 

𝐗sa,k
∗ = (𝐈 − 𝐗−k𝐗−k

+ )𝐗sa,reb                                                                  Eq. 14  

Where, 𝐗𝑠𝑎,𝑟𝑒𝑏 is a standard addition data matrix with only the significant number of principal 

components built from 𝐗sa. So, the main idea here is the row vectors of 𝐗sa,k
∗  have a direct 

relation with the concentration of the kth analyte of the added calibration standards. An 

extrapolated standard addition graph is obtained by plotting the Euclidean norm of the row 

vectors, ‖𝐗sa,k
∗ ‖ against series of added calibration standards as shown in the hypothetical 

graph in Figure 5.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. hypothetical plot of standard addition method based on NAS multivariate calibration 

method 
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3. Experimental 

3.1. Reagents and materials 

Hexane (HPLC grade, 99% purity), Methanol (HPLC grade, 99.8% purity), HCl (37% w/w), 

NaOH (powder), H2O2 (30% w/w) and KBr powder for IR spectroscopy were from Merck 

KGaA, Darmstadt, Germany. The chitin powder purified from shrimp shells (~100% purity) 

were from Sigma-Aldrich Norway. The chitin standards from cocoon of black soldier fly (BSF) 

were designated as raw (21-22%), purified (80-90%) BSF Powders and were provided by Dr. 

Thomas Hahn, from the Fraunhofer Institute for Interfacial Engineering and Biotechnology 

(IGB, Stuttgart, Germany). An insect raw material (IRM) from BSF, three insect-based fish 

feed samples containing unknown chitin content and one fish feed without added insect meal 

were received from the Institute of Marine Research, Bergen, Norway.  

3.2. Sample preparation  

Chitin from shrimp shell, raw and purified BSF powders were used as received without sample 

preparation for structure characterization since the ATR sampling mode does not require any 

form of sample cleaning, e.g. extraction; all it needs is the intimate contact between sample 

and ATR crystal. However, a minimal sample preparation like grinding samples to a lower 

particle size and clean-up of oils contained in the fish feed sample was required for DRIFT-

FTIR spectroscopy.  

The IRM material was subjected to dilute HCl acid (1 M) and NaOH (1 M) treatment to remove 

minerals and excess of proteins.  Hence, the IRM was washed with distilled water, final 

residues were oven dried (60 oC) overnight and ground with ball mill machine model MM200 

from Retsch company to get a fine powder (<10 µm size). The fine powder (1 g) was 

demineralized with 1 M HCl for 20 min in a hot oil bath (100oC) and neutralized (~ pH=7) by 

washing several times with distilled water. This demineralization step was followed by 

deproteinization, treatment with dilute NaOH (1 M) for 24 h in hot oil bath (85OC). Afterwards, 

the sample was filtered using a filter paper and neutralized with distilled water by washing for 

several times. Trace pigments responsible for the brown colour of the chitin product were 

removed by mild oxidizing treatment with H2O2/33%HCl (9/1, v/v) yielding a light brown 

product.  

The purified, raw and demineralized IRM product of BSF dried samples were finely ground 

(<10 µm particle sizes) to be used for quantification of chitin with DRIFT-FTIR spectroscopy. 

The feed samples contained fish oil, insect meal and fish feed itself in a mixture. Before 

extracting a sample, the feeds were homogenized. The oily part of the sample was also difficult 



                                                                                   

21 
                                                                                                       

to fill into the sampling cup accessory and to record its spectra. Thus, a 1.0 g from each 

homogenized sample was transferred to the extraction tube and subjected to ultrasonication 

followed by centrifugation for 10 minutes to get rid of the oils from the feed. The supernatant 

was discarded, and residues left on the extraction tube were oven dried overnight. Dried 

samples were ground to a fine powder (˂ 10 µm size).  

Sample homogeneity test: when working with powder samples in DRIFT-FTIR spectroscopy, 

sample inhomogeneity is a major source of unwanted variation. To detect whether the 

variations were random or systematic, two samples (0.5 g) with 1.5 and 1.3% of chitin (w/w) 

purified from shrimp shells each containing 3.0% purified chitin from BSF insect were 

prepared with KBr salt diluent. Samples were mixed well with the help of Specamill (Specac, 

UK) mixing machine. 

 

Calibration sets of samples used was chitin purified from shrimp shells and was prepared in six 

calibration levels (0.29, 0.50, 1.15, 1.90, 3.20 and 4.76 % chitin w/w) by mixing with the IR 

transparent matrix (i.e. KBr powder) for reflection and dilution purposes. Prediction sets of 

samples were prepared from purified BSF (0.94, 1.78, 2.8, 4.0 and 5.0 % chitin w/w), raw BSF 

(0.54 and 1.1 % chitin w/w), insect-based fish feed samples and fish feed without added 

insectmeal (3.0 % sample w/w), and demineralized IRM obtained from BSF (5.0 % sample 

w/w) by mixing with KBr powder. The % of chitin prepared as prediction sets from purified 

and raw BSF powders were based on the chitin content claimed by IGB, Germany that is 80-

90 and 21-22 %, respectively.  

 

The chitin purified from shrimp shells were also used to develop a standard addition calibration 

model for quantification of chitin in insect-based fish feed, raw and purified BSF samples. A 

standard addition calibration samples containing 3.0 % (w/w) insect-based diet samples spiked 

in each of the known concentration (0.0, 0.5, 0.8, 1.1, 1.4, 1.75 and 2.0 % w/w) of chitin 

standard powders from shrimps were prepared. KBr powder were used to dilute the samples to 

an appropriate composition. All prepared samples in the calibration were homogenized using 

Specamill mixing device prior to collection of DRIFT spectra.  
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3.3. FTIR instrumentation 

3.3.1. ATR-FTIR characterisation  

ATR spectra of BSF powder samples and chitin from purified shrimp shells were collected 

using Nicolet iS50 FTIR spectrometer (Thermo Scientific, USA) equipped with diamond 

internal reflection element (IRE), IR source, KBr beamsplitter and deuterated triglycine sulfate 

(DTGS) room temperature detector. All spectra were recorded at 4000-400 cm-1 wavelength 

range, 4 cm-1 resolution, and 32 scans.     

3.3.2. DRIFT-FTIR analysis 

DRIFT spectra in MIR range (4000-400 cm-1) of samples in six replicates were recorded with 

Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific, USA) equipped with DTGS 

detector at 4 cm-1 resolution, the data points were collected at each of 0.48 cm-1 and 128 scans 

per sample using DRIFT sampling cup accessory. The 128 scans were done by manually 

rotating the DRIFT sampling cup accessory up-to 8 orientations (16 scans each) to get 

representative spectra. Spectra collection were performed using OMNIC version 9.8.286 

statistical software package (Thermo Fischer Scientific Inc.). Dried spectroscopic grade KBr 

powder was employed as a reference material to collect background spectra at every start of 

each day.  

For testing sample homogeneity, six spectra at each of the four orientations with refilling and 

packing of the sampling cup for each of the six replicates were collected.  The light beam 

coming from the IR source cannot fully hit the area of the sample crystals. Since the sample 

refilling is carried out manually, the orientation of particles in each replicate is different, which 

leads to high variations in the intensity of the spectra for the same sample.  Thus, the spectrum 

was recorded in each of the orientation of the sampling cup by manually rotating it to the 

direction of IR light as shown in Figure 6. DRIFT sampling cup accessory filled with sample 

powder mixed with KBr..      

 

 Figure 6. DRIFT sampling cup accessory filled with sample powder mixed with KBr.  
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3.4. Multivariate data analysis  

In order to construct multivariate calibration models, DRIFT spectral datasets were subjected 

to principal component analysis (PCA) and partial least square (PLS) regression by using Sirius 

v11.0 (PRS, Bergen, Norway). All spectra were baseline corrected and data pre-processing 

method was carried out via Savitzky-Golay smoothing polynomial (FitzPatrick, et al., 2012) 

(15-point window size). Outlying samples were identified and discarded by applying PCA 

score plot, residuals and leverage points. Calibration datasets (six levels with six replicates) 

and the variable wavenumbers under the peak areas of N-H stretch (3350-3050 cm-1), amide I 

and II (1700-1490 cm-1) and amide III (1347-1280 cm-1) IR vibrational bands were selected. 

Multivariate calibration method based on PLS regression was applied on mean centered data 

at 0.05 significance level and cross-validation method using four groups (i.e. default setting) 

were applied. Prediction performances of the model were tested using RMSECV and RMSEP 

to estimate chitin percentage on samples. 

Identifying outlier samples that can affect the quality of a multivariate calibration model is an 

important procedure. Outliers contained in the calibration data may occur because of many 

reasons such as instrument and sampling errors, and then, the outliers may have a significant 

effect on the quality of the model (ZhiChao, et al., 2008). Such abnormal samples show some 

type of departure from the majority of the dataset. Identification of outliers were based on 

detection of samples with extreme leverage points, large residuals in X-block (spectra data) 

and y-block (predicted concentrations) (Silva, et al., 2012). Leverage (ℎ𝑖) is a measure of a 

distance of an object from center of the data and explains that how much the individual object 

has an influence on the model. It can be defined as; 

hi = tA,i
T (TA

TT)−1tA,i                                                                        Eq. 15 

Where, T is the score matrix of calibration samples, 𝐭𝑖 is the score vector of sample 𝑖, and A is 

the number of significant principal componets. The samples with h𝑖 larger than the hlimit 

(EqEq. 24) are detected as outliers. 

hlimit =
3(A + 1)

Ical
                                                                                  Eq. 16 

Where Ical is the number of calibration samples. 

Detection of outliers based on unmodeled spectral data residuals is carried out by comparison 

between the total standard deviation of the residuals (𝑅𝑆𝐷) of the whole calibration set with 

the standard deviation of an individual sample replicates (𝑅𝑆𝐷𝑖) as defined in 17 and 18. 
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RSD = √
1

v
∑ (∑(Xi,j − X̂i,j)2

J

j=1

)

Ical

i=1

                                                              17 

RSDi =  √
1

v
∑(Xi,j − X̂i,j)2

J

j=1

                                                                         18 

where J is the number of spectral variables, 𝐗𝑖,𝑗 is the Kubelka Munk (K.M) value of sample 

𝑖 at wavenumber 𝑗 and this absorbance in K.M unit is similar to the Lambert-Beer relation 

applied in DRIFT-FTIR spectroscopy situation. 𝐗̂𝑖,𝑗 is the absorbance value in K.M unit 

estimated with A latent variables and the number of degrees of freedom 𝑣 is given by 𝐼𝑐𝑎𝑙 × 𝐽 −

𝐽 − 𝐴(max (𝐼𝑐𝑎𝑙, 𝐽). If a sample has RSDi > nRSD (n = 2 or 3 for ~95 or 99% confidence level).  

The other method of detecting outlying samples is through the comparison of the RMSEC of 

the model with the absolute residual error of individual samples. Generally, samples are 

discarded when the difference between the reference and predicted value is larger than three 

times RMSEC.   

Precision was calculated based on the calibration model (Gontijo, et al., 2014) in six 

concentration levels (0.29, 0.50, 1.15, 1.9, 3.2 and 4.76%) of chitin standards in six replicate 

measurements. The standard deviation (𝛿𝑖) of predictions at each level of sample is calculated 

as, 

δi = √
∑ (ŷi,r − y̅i)2Ri

r=1

Ri − 1
                                                                            Eq. 19 

Where, 𝑦̂𝑖,𝑟  is predicted values in each level, 𝑦̅𝑖 is the mean value of the predicted values, 𝑅𝑖 

is the number of replicate measurements per each level of sample 𝑖. The coefficient of variation 

(CV) was calculated by dividing the standard deviation of individual sample’s replicates with 

the mean predicted value and taking their averages as shown in Eq. 20   

CV =
∑

δi
y̅i

n
i=1 × 100  

p
                                                                                       Eq. 20 

 

Where, 𝑝 is the number of concentration levels in the calibration model. 

According to the recommendations of the International Union of Pure and Applied Chemistry 

(IUPAC), the limit of detection (LOD) estimation in multivariate calibration was based on the 

theory of hypothesis testing, considering the probabilities of false-positive and false-negative 
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decisions and the different sources of errors both in calibration and prediction steps which 

could affect the result. The International Standardization Organization defined LOD as “the 

lowest quantity of a substance that can be distinguished from the absence of that substance (a 

blank value) within a stated confidence limit (Allegrini & Olivieri, 2014). Thus, LOD and limit 

of quantification (LOQ) were calculated from the standard deviation of predicted values for six 

replicate spectra of blank (without added BSF insect diet into fish feed sample) shown inEq. 21 

and Eq. 22 respectively. 

LOD = 3.3 ×  δblank                                                                                    Eq. 21 

LOQ = 10 ×  δblank                                                                                    Eq. 22 

In the case of standard addition based net analyte signal analysis procedure, the spectra dataset 

contained one pure chitin standard, one from the sample without the added standard and six 

samples with added standards each containing six replicates. Each standard addition spectra 

dataset was imported to Sirius and raw spectra were visually inspected. Afterwards, pre-

processing of spectra data was performed using second-derivative Savitzky-Golay third order 

polynomial with window size 15 to remove the unwanted variations. Potential outlier samples 

were identified on PCA score plots and the determination of their leverage points. The number 

of variables selected and the IR region of higher interest (3350-3050, 1700-1490 and 1347-

1280 cm-1) were the same as used in the PLS calibration model. Since Sirius does not contains 

procedures for the standard addition method, the transformed datasets were exported to 

MATLAB R2018a, version 9.4 (The MathWorks, Inc., MA, USA) and a program were created 

to build two-dimensional SANAS plot in order to calculate the norm of NAS for unknown BSF 

insect-based fish feed samples.   

The replicate spectra of each standard addition sample are rows in the 𝐗𝐬𝐚 data matrix and from 

which the first spectra were only the unknown without added standard but exist in every row 

of  𝐗𝐬𝐚. The mean spectrum from each group of replicates was calculated. The unknown sample 

spectrum vector, 𝐫𝐮 was subtracted from every row of 𝐗𝐬𝐚 and gives 𝐗𝐬𝐦 matrix. After making 

the average of replicates of spectra, the dimensions of matrices became; 6 × 163 (𝐗sa), 

1 × 163 (𝐫𝐮) and 6 × 163 (𝐗𝐬𝐚). Six different standard addition samples were followed the 

same approach for NAS calculation of chitin in their unknowns.    

Figures of merits such as selectivity, sensitivity, limit of detection (LOD) and quantification 

(LOQ) were calculated to study the quality of the analytical method using the NAS concept 

(Hemmateenejad & Yousefinejad, 2009). The sensitivity can be computed as the norm of the 
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NAS vector of the kth component in the unknown sample, 𝐬k
∗   using the significant number of 

latent variables, (Eq. 23) (Sarraguca & Lopes, 2009).  

SENk = ‖𝐬k
∗‖                                                                                   Eq. 23 

Selectivity (SELk) is a measure of degree of overlap aimed to indicate what part of the total 

signal is lost due to overlap (Lorber, et al., 1997). It was computed by dividing the norm of the 

kth component of the unknown spectrum (𝐬𝑘
∗ ) by the norm of the original spectrum of the 

unknown sample as shown in Eq. 24.  

SELk =
‖𝐬k

∗‖

‖𝐬k‖
                                                                                                Eq. 24 

The LOD and LOQ are the important figures of merit and can be estimated based on the 

following equations.  

LOD = 3 ×
‖δ‖

‖sk
∗‖

                                                                                       Eq. 25 

LOQ = 10 ×
‖δ‖

‖sk
∗‖

                                                                                     Eq. 26 

Where, 𝛿 is the standard deviation at the selected variable wavenumber. The norm of 𝛿 was 

estimated for six replicate spectra of fish feed sample without added BSF insect diet which is 

treated as the blank sample in our case and 𝑠𝑘
∗  is its corresponding net sensitivity vector. 
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4. Result and Discussion 

4.1. ATR-FTIR characterization 

The aim of this characterization was to check similarity of spectra in each band and to evaluate 

whether it was possible to use the chitin from purified shrimp shells as a calibration standard 

for quantification of chitin in BSF cocoons and BSF insect-fish feed samples. The ATR-FTIR 

spectrum of chitin from purified shrimp shells and purified BSF are shown in Figure 7. Figure 

8 represent the spectrum of raw BSF and the demineralized IRM of BSF samples. The spectrum 

of chitin purified from shrimp shells (Figure 7, red) was similar with the purified chitin from 

BSF (Figure 7, pink) and demineralized IRM (Figure 8, green) but looks different from raw 

BSF spectrum (Figure 8, red). The raw BSF spectrum was characterised with a single broad 

peak at amide I and II bands. Presence of amide II band at 1540 cm-1 was due to an excess of 

proteins (Wasko, et al., 2016). Chitin occurs in three polymorphic structures (,  and  forms). 

The spectral bands of -chitin from different sources such as cicada sloughs (Sajomsang & 

Gonil, 2010), nymphs and adults of grasshoppers (Erdogan & Kaya, 2016), Hermetia illucens 

(Wasko, et al., 2016), shrimp shells and bumblebees (Majtan, et al., 2007) are characterized by 

their double peak at amide I band.  

 

 

 

 

 

 

 

 

 

 

Figure 7. ATR-FTIR spectra of chitin purified from shrimp shells (red) and purified chitin 

from BSF (pink). 

The spectrum of purified chitin from BSF cocoons was characterized by amide I, II and III 

bands at 1653, 1620 1552 and 1307 cm-1. The amide I band was ascribed to the carbonyl 

secondary amide stretch. The -chitin is capable of forming two intermolecular and 

intramolecular hydrogen bonds. So that, a well-defined peak at 1620 cm-1 and a weaker 

intensity at 1653 cm-1 of the amide I band were ascribed to the intermolecular hydrogen bonds 
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(CO-N-H) and intramolecular hydrogen bond (CO-H-OCH2) stretches respectively (Erdogan 

& Kaya, 2016). Moreover, the amide II band was observed at 1552 cm-1 and amide III band 

was also displayed at 1307 cm-1, which were assigned to N-H bending and C-N stretching 

vibrations of amides respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 8. ATR-FTIR spectra for raw BSF (red) and demineralized IRM of BSF (green). 

 

The other vibrational bands observed were at 3430 cm-1 (O-H stretching), 3261 and 3102 cm-1 

(asymmetric and symmetric N-H stretching), 1154 cm-1 (C-O-C asymmetric stretch) and 1113, 

1067 and 1009 cm-1 (C-O-C symmetric stretching). The band at 1375 cm-1 is also attributed to 

C-H bend of the rocking methyl group (Soon, et al., 2018; Kaya & Baran, 2015; Majtan, et al., 

2007).  The assignment of significant bands of chitin from shrimp shells, purified BSF cocoons, 

raw BSF cocoons and demineralized IRM of BSF cocoons are shown in Table 1. Therefore, 

high similarity of the vibrational bands and shape of peaks of chitin among samples of BSF 

cocoons and shrimp shells were observed.  
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Table 1. Assignment of relevant bands of chitin from shrimp, and purified, raw and 

demineralized IRM of BSF cocoon samples. 

Assignments Wavenumbers, cm-1 

Shrimp Purified BSF Raw BSF  Demineralized IRM of 

BSF 

v(O-H) 3415 3430 - 3430 

v(N-H) 3264, 3100 3261, 3102 3261, 3097 3258, 3100 

v(C-H) 2933, 2877 2925, 2856 2920, 2850 2925, 2877 

v(C=O) 1652 1653 1648 1654 

v(C=O) 1622 1620 - 1619 

𝜹(N-H) 1551 1552 1540 1552 

𝜹(C-H) 1417, 1375 1429, 1375 1412, 1378 1428, 1375 

v(C-N) 1307 1307 1325 1307 

v(C-O-C) 1155, 1112, 

1065, 1023 

and 1009 

1154, 1113, 

1067, 1009 

1153, 1113, 

1068, 1010 

1154, 1113, 1067, 1008 

 

4.2. Multivariate calibration methods for quantification of chitin  

4.2.1. Spectral preprocessing 

The data matrix (107×1203) comprised of spectra of chitin from purified shrimp shells as a 

calibration set, and the spectra of purified, raw, the demineralized product of BSF, and insect-

based fishfeed samples as prediction sets. The DRIFT-FTIR raw spectra data is illustrated in 

Figure 9, that clearly shows that the presence of high variability within samples. PCA method 

using two principal components was applied to visually inspect the score plot of raw data, 

However, the variability between different classes (such as different concentration and 

samples) were not visible enough. That means a mixing up of information were observed. The 

raw spectra contain useful information related to the sample of interest and the instrumental 

variations as well. Besides, particle size, sample packing/thickness, and particle size 

distribution are basic factors which result on distortions of signals and unexpected higher 

intensities due to light scattering effects and instrumental variations (Rinnan, et al., 2009; 

Christy, et al., 1993). As a result of these noises and light scattering effects, extraction of the 

useful chemical information of interest become a problem. For example, biological samples 
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are very soft and causes light scattering effects. So that, to reduce the unwanted spectral 

contributions (i.e., random noises and systematic variations due to scattering effects) and to 

simultaneously enhance the spectral features of the analyte of interest; several data 

preprocessing methods were investigated prior to building the PLS regression model.  

 

Figure 9. Raw DRIFT-FTIR  spectra of chitin calibration standards and BSF cocoons samples. 

Extended multiplicative scatter correction (EMSC) and standard normal variate (SNV) 

transformed spectra are displayed in Figure 10 and Figure 11, one can see from the spectra 

that both methods have reduced the spectral dispersion of samples. PLS regression calibration 

method was applied on EMSC and SNV transformed data sets to see the quality of the model 

and their PCA score plot on chitin calibration set and samples of purified chitin from BSF 

insect, raw BSF insect and dilute acid-based treated BSF insect material results in better 

visualization of each group. However,  non-linear variations between calibration levels and  the 

residuals among replicates were very high. These data preprocessing methods were not fitting 

with the data characteristics and applying spectral derivatives was another good option.      

Second-degree derivative Savitzky–Golay was chosen with third order polynomial and 15-

points window size to smooth the data as displayed in Figure 12. It corrects baseline offset and 

linear baseline shift and  smoothes the data by fitting a polynomial expression to the data within 

the moving window selected for derivation and results in new values by replacing the original 

dataset with no loss of useful information.  The portions of the transformed data showing linear 
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variation upon increasing concentration of the calibration set were selected to build PCA and 

PLS regression models. 

 

Figure 10. EMSC transformed DIRFT spectra of calibration and prediction sets. 

 

Figure 11. SNV transformed DIRFT spectra of calibration and prediction sets. 
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Figure 12. Second-derivative Savitzky-Golay pre-processed DIRFT spectra for calibration and 

prediction sets. 

4.2.2. Principal component analysis (PCA) 

The data matrix contains 107 objects and 1203 variables . The chemical of interest, chitin, 

contains an acetylamide group in each of the monomer units of the biopolymer. This group is 

not present in the other constituents of the samples. Thus, the signals of higher interest were 

mainly for those peaks of the acetylamide group (N-H stretch, amide I, II & III bands) 

excluding the methyl group which has common IR band with aliphatics result from the matrix 

of samples. Direct observation of data distributions of datasets containing several hundred to 

thousands of variables is tedious and an impossible task. However, using multivariate 

calibration tools, such as PCA , is quite straightforward to visualize the distribution of data in 

the latent subspace since the number of latent variables are much lower than the number 

variables. PCA is commonly employed to reduce the dimensionality of spectral data and to 

obtain preliminary information about data distribution. After data preprocessing, variables  of 

higher interest with IR vibrational bands from 3350-3050 cm-1, 1700-1490 cm-1, and 1347-

1280 cm-1 which corrospond to N-H stretching, amide I and II, and III, respectively containing 

107×1203 spectra data matrix were subjected to PCA to estimate and visualize variations 

between-replicate as well as variations between samples. The resulting score plot (Figure 13) 

clearly visualizes the variations in the sample set. The first and second principal components 

have explained much of the total explained variance - about 83.2 and 7.9 %, respectively. 
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The score plot for the chitin standard purified from shrimp shells (blue), purified (green), raw 

(red), demineralized IRM (black) of BSF, three insect-based fishfeed samples and one fishfeed 

sample without added insect diet (orange) are shown in Figure 13.  

The variations of demineralized BSF insect raw material (black), purified chitin of BSF cocoon 

(green) and chitin calibration standard (blue) were not clearly visible because they are projected 

in the same direction. But samples from fish feed (orange) and raw BSF insect (red) were 

clearly distinguished from the others. Variations between levels of concentration were 

apparently differentiated and but difficult when the concentration range was very close to each 

other.  

 

Figure 13. Score plot of transformed spectra data of chitin calibration standard from shrimp 

(blue), purified chitin from BSF cocoons (green), raw BSF insect chitin (red), demineralized 

BSF insect raw material (black) and fish feed samples (orange). 

A score plot  for the calibration sets of samples were obtained after mean centering of datasets. 

Figure 14 (top)  shows RSD vs leverage plot at 95% confidence level where the horizontal line 

tells us the threshold value of residuals to reject the objects beyond it. The leverage point falls 

between 0 and 1. It is found that the objects with extreme leverage points detected have a 

sizable impact on the regression coefficients. The maximum limit of leverage value (hlimit) to 

reject outlying samples is beyond 0.25. So that, only one sample (object 55) was found furthest 
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from the rest that is detected as an outlier. In addition, calibration samples found in the higher 

concentration levels were obtained with higher residuals than the lower concentrations. That 

means increasing concentration has an impact for dispersion of results. Our suspicion was 

confirmed by using a normal plot of the scores (Figure 14, bottom) and detected the same 

object as an outlier. Similarly, the score plot was also done for each sample to estimate within-

sample variation. In this case, only one sample (object 2) was detected as an outlier. These two 

outlier objects were not included while building the model. 

 

 

Figure 14. Plots for outlier detection: RSD vs leverage (top) and normal plot of the scores 

(bottom).  

The score plot displayed in Figure 15a present the spectra of 1.5% chitin standard purified 

from shrimp which is spiked with 3% purified of BSF insect sample recorded in six replicates, 

each with six refilling and at each of the four orientations of the sampling cup, 144 spectra in 

total. The variations did not show a specific pattern between the same orientations, refills and 

replicates rather it seems randomly distributed. This can have assured us that there were no 
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systematic variations and the samples prepared were well homogenized. The random variations 

were resulted mostly from differences in packing and refilling of the sampling cup. In a similar 

way, a closely related concentration of chitin (1.3%) from shrimp shells containing 3.0% 

purified BSF were visualized in PCA score plot (Figure 15b) to compare whether they can be 

clearly distinguished among two concentrations. Since both concentrations were very close to 

each other, the variations between concentrations were unclear or less pronounced. 

 

Figure 15. (a) PCA score plot for the 1.5% chitin replicate spectra used for sample 

homogeneity test and (b) PCA score plot to show the concentration variation both for 1.5% 

(green) and 1.3% (red).          

4.2.3. Partial least square regression (PLSR) 

The calibration model based on PLS regression were developed with the selected IR band 

between 3350-3050, 1700-1490 and 1347-1280 cm-1 (total 1203 variables). Hence, the 

variables under the area of peaks of amides vibrational bands of chitin were preliminarily 

selected.  Second order Savitzky-Golay diffentiation smoothing using window size 15 was 

performed for all IR bands of the spectra prior to the regression modelling. In many cases, most 

of the variables have little or no contribution to the response to be modelled. While decreasing 

the numbers of such variables drastically, it only leads to a minor or no loss of the useful 

information. A robust variable selection method retains a small set of variables capable of 

providing better, or at least, equivalent model performance to those obtained by the original set 

of variables (Sarathjith, et al., 2016).  
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Variable selection methods such as, selectivity ratio, variable importance in prediction (VIP), 

X-weights and weighted regression coefficients were investigated to retain a smaller set of 

predicting variables which are better correlated to the response variable. The variable selection 

graph for variable selectivity ratio, VIP, weighted regression coefficient and X-weights are 

plotted in y-response axes against the variable wavenumbers (x-axes) are shown in Figure 16. 

Selectivity ratio and VIP are the most commonly used variable selection methods for FTIR 

spectroscopy data (Farrésa, et al., 2015). Selectivity ratio is estimated by using the ratio of 

explained to residual variance of a variable. The VIP score of a predictor is a summary of the 

importance for the projections to find A, latent variables. VIP values can be calculated by 

summing variable influence (VIN) over all model dimensions. For a given PLS dimension a,  

(𝑉𝐼𝑁)𝑎,𝑗
2  is equal to the squared PLS weight (wa,j)

2 of that term multiplied by the percent 

explained of residual sum of squares by that PLS dimension. The accumulated (overall PLS 

dimensions) value, 𝑉𝐼𝑃𝑎,𝑗 = ∑((𝑉𝐼𝑁)𝑎,𝑗
2 ) is then divided by the total percent explained of 

residual sum of squares by the PLS model and multiplied by the number of terms in the model. 

The VIP, weighted regression coefficients and X-weights variable selection methods were 

better to reduce most of the variables with little advantage than the selectivity ratio. Selectivity 

ratio reduce only smaller number of variables and was needed much higher ratio to get rid of 

the variables with little importance. For these four variable selection methods, the variables 

found with the values nearer to zero indicates that the variable is less important and should not 

be included during building the model. As shown in Figure 16, there are large positive and 

negative values for X-weights, weighted regression coefficient and selectivity ratio plots. These 

large positive values showed that intensity of the variable increases as the percentage of chitin 

increases. The large negative values also indicate that the variable is high when the percentage 

is getting lower.  

The PLS model finally used were based on how much the RMSECV and RMSEP get lower 

with an increasing the regression parameters (R2 and slope approaches 1) and lowest intercept 

for better prediction. In this case, high selectivity ratio (level=300) was applied to select the 

important predictor variables.    
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Figure 16. (A) Variable selection parameters (y-axes) against wavenumbers (x-axes) applied 

for reducing variables with little or no contribution to the PLS model and (B) variable 

selectivity ratio plot 

The PLS response residuals plot was used to determine the linearity of the model (Figure 17). 

The residual errors of samples were randomly distributed. The fit of the PLS calibration model 

built for DRIFT-FTIR spectra of chitin standards are shown in Figure 18. Only one component 

was used to build the model.  Validation of the fit of the model was done by comparing the true 

concentration levels of chitin to their predicted values. The number of calibration samples were 

small and was not realistic to divide it into a training and validation set. So, the validation was 
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based on deleting objects at a time and substituting the deleted one and discarding another to 

check its influence on the performance of the PLS model. The RMSECV for the calibration set 

obtained was 0.220 with a correlation coefficient of 0.982. Once the PLS regression model is 

established, prediction for a new set of samples were done. The fit of test samples to the built 

PLS subset model were done at 0.05 significance level as shown from the plot of predicted 

versus measured for the fitted test samples in Figure 19. The percent prediction error for each 

raw and purified BSF powder samples were greater than 15%. This is because of the nominal 

percentage of chitin said by the Fraunhofer IGB, Germany is maximum as compared to the 

predicted value in this method.  Since the degree of matrix effect in purified and raw BSF insect 

itself is not the same, calculations of RMSEPs were done separately for each sample and are 

presented in Table 2.  

 

Figure 17. Response residuals plot of calibration sets 

Precision is one of the important figures of merits during validation of PLS calibration model, 

which is defined as a closeness of agreement between the results of a series of measurements 

for the same homogeneous sample under specified conditions (Gontijo, et al., 2014). The 

coefficient of variation (CV) calculated for the six-level calibration model was 5.64%. LOD 

and LOQ calculated from six blank replicate spectra of fish feed sample were found to be 0.026 

and 0.084 % chitin (w/w) respectively. 
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Figure 18. Correlation plot of calibration datasets for quantification of % chitin (w/w) in 

purified chitin, raw, demineralized product of BSF cocoons and BSF insect-based fish feed 

using PLS model. 

Whereas, the RMSEP % chitin (w/w) calculated for the individual samples, purified and raw 

BSF cocoon powders were 20.66 and 11.19 respectively. The predicted percentages of chitin 

in purified chitin from BSF cocoons and raw BSF cocoons were found about 66.82 and 31.95 

% chitin (w/w) respectively. The claimed percentage of chitin by the company for the purified 

chitin and raw BSF cocoons were 80-90 and 21-22 % w/w respectively. In this case, the purified 

chitin from BSF cocoons was obtained lower than the percentages of chitin claimed by the 

company. On contrary, the percent chitin predicted for raw BSF cocoons in this study was 

overestimated. Predictions of chitin performed for three different insect-based fish feed test 

samples were 8.90, 8.60 and 10.51 % chitin (w/w).  
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Table 2. Summary of prediction % of chitin (w/w) in purified and raw BSF powder samples, 

the coefficient of variations (CV, %) and RMSEP values in % chitin (w/w). 

Samples  Number of 

samples and 

replicates 

Nominal  Predicted  RMSEP CV 

Purified chitin 

obtained from 

BSF insect 

5 samples, 6 

replicates 

 

80-90 

 

66.82 

 

19.36 

 

10.74 

Raw BSF insect  2 samples, 6 

replicates 

 

21-22 

 

31.95 

 

11.19 

 

13.54 

 

To figure out the problem for the overestimated results obtained, the prediction was made on 

demineralized raw BSF insect materials and found 16.92 % chitin with RMSEP of 1.53%. The 

spectra of this demineralized raw BSF insect raw material have a well-defined peak in the same 

position as the chitin purified from shrimp shells but the raw BSF samples spectra were strongly 

pronounced by other component mixtures, mostly proteins. In such too overlapped spectra, the 

contribution for the resulting high signal will be from all components. The presence of the other 

interfering components in test samples were noticed by comparing the magnitude of RMSEC 

and RMSEP. The error RMSEC was lower than the RMSEP because the physical properties of 

test samples were different from calibration samples. As a result, a further consideration of a 

multivariate calibration model based on the standard addition method and net analyte signal 

calculation was proposed. 
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Figure 19. Correlation plot of prediction samples for purified chitin (green), raw BSF cocoons 

(red), demineralized IRM of BSF cocoons (black), and fish feed (orange). 

  4.2.4. Standard addition net analyte signal (SANAS) 

Five different unknown samples containing chitin and one blank sample (fish feed without 

added insect diet) were examined by SANAS based multivariate calibration. Each sample 
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too small intensity which makes it difficult to visualize. Peaks for the chitin purified from 
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shrimp, which were used as the standard spectra, were sharper than the series of calibration 

standard addition spectra spiked with the sample. 

 First, it was of interest to view and inspect the spectra to find how the different pre-

processing methods affect the raw spectra. After data transformations with different degrees 

of differentiation and window sizes, the better smoothed data were found when the 15-point 

window size second-derivative Savitzky-Golay third order-polynomial expression were 

used. The outlier samples within each replicate of the calibration points were removed when 

data have high leverage points. Furthermore, variable selection tools in the PLS regression 

model were important to get rid of unwanted and noisy variable intervals. All the necessary 

data treatments and identifying outliers were with Sirius software and finally the norm of 

NAS were calculated using the MATLAB program.  

The matrices present in the unknown sample are contained in the standard addition samples 

as well. That means, the unknown spectrum vector, 𝐫𝐮  and the spectra data matrix of the 

calibration standards, 𝐗𝐬 are combined to give the standard addition data matrix, 𝐗𝐬𝐚. 

Average of replicates from each level of the standard addition data were taken to build the 

SANAS model. The same procedure was followed for the rest of the five samples. 

   

 

Figure 20. Spectra of the standard addition samples: chitin standard (A1), raw BSF cocoon 

containing unknown chitin (B1) and chitin calibration standards spiked with raw BSF cocoon 

sample (C1-H1). 
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The standard addition plot obtained by the SANAS method for the six samples are represented 

in Figure 21 (A-F). Only one significant principal component was needed to calculate the 

𝐗sa,reb from 𝐗𝐬𝐚. The Euclidean norm of row vectors of analyte component in 𝐗sa and added 

chitin calibration standards are directly related to get a plot similar to a univariate calibration 

method as shown in Figure 21 (A-F). 

Analytical figures of merit, such as sensitivity and selectivity were estimated from the 

Eucleadian norm of the NAS as described in section  A different selectivity value was acquired 

for each unknown sample determined with SANAS method since the degree of interferences 

are different. Lower value of selectivity was obtained for samples having high matrix effects 

and vice versa as shown in Table 3. In this case, the selectivity value for raw BSF sample was 

almost a third of the value for the corresponding purified chitin of BSF sample. Sensitivity 

values were measured as the norm of the net analyte signals. The estimates of LOD and LOQ 

were 1.0 and 3.34 % chitin (w/w) respectively. The estimate was done from the fish feed 

without added BSF insect diet and showed maximum value of LOD and LOQ higher than 

expected.    

Table 3. Figures of merit for quantification of chitin with SANAS method 

Samples  Selectivity  Sensitivity (𝑥10−4) 

Purified chitin 0.49 2.03 

Raw BSF 0.18 0.52 

Fish feed sample-2 0.43 0.72 

Fish feed sample-3 0.89 1.40 

Fish feed sample-4 0.88 1.80 

 

The prediction results for the % of chitin in unknown insect-based fish diets are shown in Table 

4.  The relation between spectra of chitin standards in the presence of matrix effect (𝐗sm) and 

their concentrations (𝐜𝑘) were used to set up a PLS regression model. Multiplying the 

regression coefficients with the spectra data matrix of standard additions samples (𝐗𝑠𝑎) gives 

the sum of concentrations contained in the standard and unknown sample. So, subtracting the 

concentrations of standards from the sum (c𝑠𝑎) provides the unknown concentration of analyte. 

Based on this calculation, the SANAS predictions obtained for purified chitin of BSF insect 

and its raw sample were 9.32 and 1.66 % chitin (w/w). These prediction results were lower 

than those obtained from PLS multivariate calibration, which estimated between 57.8-73.5 and 
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29.2-34.7% w/w chitin. Furthermore, the estimation of chitin content in four fish feed samples 

were 1.07, 1.65, 3.12 and 3.83 % w/w. The first sample was expected to contain no chitin.  

   

  



                                                                                   

45 
                                                                                                       

   

Figure 21. SANAS plots for unknown samples of purified chitin from BSF insect (A), raw 

BSF insect (B) fish feed sample-1 (blank) (C) and fish feed samples-2-4 (D-F).  

Table 4. Predicted percentages of chitin in unknown samples obtained by SANAS analysis 

method. 

sample Predicted % chitin 

(w/w) 

Correlation 

coefficient (R2) 

Slope 

(𝒙𝟏𝟎−𝟑) 

Purified chitin 8.91 0.9641 0.38 

Raw BSF 1.66 0.9992 0.63 

Fishfeed_1(blank) 1.07 0.9908 0.62 

Fishfeed_2 1.65 0.9969 0.49 

Fishfeed_3 3.12 0.9903 0.47 

Fishfeed_4 3.82 0.9915 0.52 

 

4.2.4. The PLS multivariate calibration method used for predictions of chitin in the 

unknown samples Partial least square regression (PLSR) 

has given significantly higher estimation than the results of SANAS method. This might be due 

to the degree of removing interferences in NAS method which was better than using the PLS 

regression method. The interferences caused by chemical components present in the sample 

mixture might not be removed with the use of spectral pre-processing. Pre-processing methods 

remove some of the variability associated with physical effects, such as baseline drifts, particle 

size differences or unwanted light scattering (Sarraguca & Lopes, 2009). However, the 

regression coefficients of the SANAS plot are so sensitive to the random errors or the presence 

of outliers (Hemmateenejad & Yousefinejad, 2009) and leads to change the unknown values.        
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In all of the standard addition methods discussed previously, the chitin purified from shrimp 

shells were used as a calibration standard to develop the multivariate calibration models. 

However, the differences in matrices of the shrimp and BSF samples may cause difficulties in 

quantification of chitin with the SANAS method. Figure 22 shows the SANAS plot using a 

series of concentrations (% w/w) from purified BSF powder as a standard spiked into an insect-

based fish feed sample. Unfortunately, the unknown concentration of chitin obtained was 

below zero. Linear SANAS plot (R2=0.9948) were obtained after rejecting one outlying sample 

containing six replicate spectra. Insect-based fish feed contains complex matrices from both 

the BSF insect and fish feed itself which may hinder the quantification of chitin.    

 

 

Figure 22. SANAS plot for quantification of chitin from insect-based fish feed using purified 

BSF as a calibration standard 
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5. Conclusion  

In this work, a rapid and non-destructive DRIFTS-FTIR method has been presented for 

predictions of chitin % (w/w) in unknown samples of BSF insect-based fish feeds using PLS 

and SANAS multivariate calibration methods. Samples were ground to smaller particles (<10 

µm size) to improve homogeneity in particle distributions and give minimum variations for 

within sample replicates. Replicate samples spectra collected at the same and one orientation 

of the sampling cup have showed high variations whereas the spectra collected by manually 

rotating the DRIFT sampling cup and scanning in the eight orientations for each replicate 

sample have given more representative spectrum of the sample. Second-derivative of the 

Savitzky-Golay polynomial data transformation method has given strongest prediction results 

as compared to EMSC and SNV methods. A PLS regression model have been built by selecting 

the peaks for amide I, II, and III bands of chitin spectrum and refined further to include only 

the significant variables with high selectivity ratio. Seemingly irrelevant variables can provide 

a significant improvement in performance of the model when used in combination with other 

important variables. So, the reduction of the important variables was done without affecting 

the model linearity, RMSECV and RMSEP values.  

The predictions of chitin (% w/w) in insect-based fish diet samples were also investigated by 

the application of NAS standard addition multivariate calibration method. The standard 

addition spectra are both from the contribution of the analyte and matrix effects which gives 

highly overlapping spectra. The NAS is calculated by projecting the analyte spectra data to a 

new subspace that is orthogonal to the interferents. The two-dimensional array of DRIFT 

spectra data is converted to the one-dimensional data similar to the simple univariate calibration 

method that makes easy for understanding and interpretation of results. The SANAS plot 

allowed us to calculate the concentration of chitin in the unknown samples in presence of 

significant matrix effects.  

The use of SANAS method has given lower prediction of chitin compared to PLS regression 

model. These predicted percentage of chitin obtained in purified and raw BSF powders were 

too low as compared to the nominal values estimated with ADF approach by Fraunhofer IGB, 

Germany. As the chitin calibration standard used in this study is from purified shrimp shells to 

quantify chitin in insect-based fish diets, the differences in matrix of both sources might be the 

problem for giving the unexpected results. It would be ideal if the chitin calibration standard 

from purified BSF powder are used to quantify chitin in insectmeal provided that the nature of 

matrix of both calibration standard and test samples are similar.  
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