# **MASTER THESIS**

Virtual Reality training for patients with non-specific persistent low back pain and pain-related fear of movement: A single-subject experimental study





Student: Maja Sigerseth (249347) Master in Health Sciences (Physiotherapy) Institute of Global Health and Primary Care University of Bergen October 2018

# Preface

As a physical therapist, I am particularly fascinated by the complexity of the nervous system and the role of the brain in persistent pain. This led me to enrol in a master's program at the University in Bergen, where I have had the pleasure of diving into contemporary pain- and neuroscience theories. For the past two years, I have been so lucky to collaborate with two of the most outstanding researchers I know of, namely, Dr. Tasha Stanton, senior research fellow at University of South Australia, Adelaide, Australia, and Dr. Kjartan Vibe Fersum, manual therapist and assistant professor at the University of Bergen, Norway. I am truly grateful for their guidance, professional support, patience, enthusiasm and friendship, and very humbled that they have taken the time to be my supervisors throughout this process.

I would also like to thank the the physiotherapy-department at the University in Bergen and key persons at Western College of Applied Sciences in Bergen. In particular, Bård Erik Bogen; thanks for great input along the way, and for putting me in contact with the people who made this project possible. Lars Peder Vatshelle Bovim; thanks for incredibly valuable discussions and for access to SimArena for the past year. Harald Soleim and Atle Geitung; thanks for exquisite domain knowledge in software development. Professor Jan Sture Skouen and the Outpatient Spine Clinic at Haukeland University Hospital; thank you for the open-mindedness towards this innovative master's project and help with patient recruitment. I would also like to thank my dear friend Thomas Fiskeseth Larsen, master student in Software Development at Western College of Applied Sciences and University of Bergen, for interest in this novel idea from the get-go, and great work in the software engineering domain. I am very humbled and grateful for the opportunity to collaborate with such great people; I could not have done this without any of you. Last, but not least, I would like to thank friends and family for their support and encouragement through the past two years.

Maja Sigerseth

October 2018

# Abstract

**Introduction:** Non-specific persistent low back pain is one of the most prevalent musculoskeletal conditions in modern society. A growing body of evidence shows graded exposure therapy is the most preferable treatment to target pain-related fear of movement. However, graded exposure therapy has some limitations, e.g. low patient preference and high drop-out rates. Therefore, the emerging nature of Virtual Reality (VR) provides an interesting medium to investigate whether pain and pain-related fear can be targeted through graded exposure using immersive virtual environments.

**Method:** In a sequential replicated and randomized single-subject experimental design with multiple measurements, 10 patients with non-specific persistent low back pain had a 35-day intervention with 6 to 9 VR training sessions. Primary outcome measures (measured daily) were pain intensity, pain-related fear of movement, pain catastrophization and pain anxiety symptoms, while secondary outcome measures (measured pre- and post-intervention) were related to disability and activities of daily life.

**Results:** VR training resulted in a statistically significant reduction of pain intensity, painrelated fear of movement, pain catastrophizing, and pain anxiety. Clinically relevant improvements were observed for disability.

**Conclusion/Future implications:** There is a need to reduce the costs and suffering caused by persistent low back pain. VR may provide opportunities to exercise in specifically tailored virtual environments, with the goal of achieving meaningful and valued life-activities in an engaging fashion. However, the technology is only in its infancy, and thus, opportunities and challenges with implementation must be further investigated. Finally, given the nature of the present study design, the results cannot be generalized to a larger population, and therefore, further research involving rigorous trial designs (randomised controlled trial) is also warranted.

**Key words:** Virtual Reality – Virtual Rehabilitation – Physical therapy – Non-specific persistent low back pain – Pain intensity – Pain-related fear – Single-subject experimental design

# Sammendrag

**Introduksjon:** Langvarige korsryggsmerter er blant de mest prevalente muskel- og skjelettplagene i det moderne samfunnet. Stadig mer forskning viser at smerte-relatert frykt for bevegelse kan opprettholde funksjonstap hos mange ryggpasienter, og at gradvis eksponeringsterapi er blant de mest effektive behandlingsmetodene. Men gradvis eksponeringsterapi har begrensninger som bl.a. lav pasient-preferanse og høy drop-out rate. På bakgrunn av den nylige teknologiske utviklingen av Virtual Reality (VR), åpnes det utforskning av effekten av gradvis eksponeringstrening for ryggpasienter i ulike virtuelle miljø.

**Metode:** I et sekvensielt replisert, randomisert singel-subjekt eksperimentelt design med gjentatte målinger, gjennomgikk 10 ryggpasienter en 35-dagers intervensjon som bestod av et minimum av 6 VR-treninger og maksimum av 9 VR-treninger. Primære utfallsmål bestod av smerteintensitet, smerte-relatert frykt, katastrofetanker og angst for smerte, mens sekundære utfallsmål målte endringer i funksjonsnivå og aktiviteter i dagliglivet.

**Resultater:** Studien viste at VR-trening hadde en statistisk signifikant effekt på smerteintensitet, smerte-relatert frykt, katastrofetanker og angst for smerte. Klinisk relevante endringer ble observert for endringer i funksjonsnivå.

**Konklusjon/Fremtidige implikasjoner**: Det er et stort behov for å redusere kostnader og lidelse forbundet med ryggsmerter. Tilpasset trening i ulike virtuelle miljø i VR bør undersøkes nærmere ettersom det fremstår som et motiverende og kostnadseffektivt hjelpemiddel for bruk i fysioterapipraksis. Men teknologien er fortsatt i utviklingsstadiet, og det trengs fortsatt oversikt over muligheter og utfordringer ved implementering. Forskerne i denne studien anerkjenner at resultatene av studien ikke kan generaliseres til en større populasjon grunnet studiedesign, og at det er behov for studier randomiserte kontrollerte studier på dette feltet.

**Nøkkelord:** Virtuell Realitet – Virtuell rehabilitering – Fysioterapi – Uspesifikke korsryggsmerter – Smerte intensitet – Frykt for bevegelse – Singel-subjekt design

# **Abbreviation list**

- MS = Maja Sigerseth
- TFL = Thomas Fiskeseth Larsen
- KVF = Kjartan Vibe Fersum
- TS = Tasha Stanton
- JSS = Jan Sture Skouen
- ADL = Activities of Daily Life
- LBP = Low Back Pain
- VE = Virtual Environment
- VR = Virtual Reality

# **Table of contents**

| Abstract                                                                             | 3  |
|--------------------------------------------------------------------------------------|----|
| Sammendrag                                                                           | 4  |
| Abbreviation list                                                                    | 5  |
| 1.0. Theoretical Background                                                          | 9  |
| 1.1. The Global Burden of Low Back Pain                                              | 9  |
| 1.2. Multidimensional framework for non-specific Low Back Pain                       | 10 |
| 1.3. Current consensus on Low Back Pain treatment                                    | 11 |
| 1.4. The Fear-Avoidance Model                                                        | 13 |
| 1.5. Graded exposure for pain-related fear of movement in Virtual Reality            | 15 |
| 1.6. Virtual Reality training                                                        | 16 |
| 1.7. From acute to persistent pain management with Virtual Reality                   | 19 |
| 1.8. Research on Virtual Reality and persistent Low Back Pain                        | 19 |
| 1.9. Opportunities and challenges with Virtual Reality                               | 21 |
| 1.9.1. Opportunities with Virtual Reality for Low Back Pain rehabilitation           | 21 |
| 1.9.2. Challenges with Virtual Reality in Low Back Pain rehabilitation               | 23 |
| 2.0. Method                                                                          | 25 |
| 2.1. Purpose of the study and research hypothesis                                    | 25 |
| 2.2. Single-Subject Experimental Design                                              | 26 |
| 2.3. Strengths and limitations with the design                                       | 28 |
| 2.4. Participants                                                                    | 29 |
| 2.4.1. Key inclusion criterion 1: TSK-11 Norwegian Version                           | 30 |
| 2.4.2. Key inclusion criterion 2: pain NRS-ratings $\geq 4/10$ over the past 14 days | 30 |
| 2.5. The intervention – Tailored VR-training                                         | 31 |
| 2.5.1. The VR games                                                                  | 31 |
| 2.6. Equipment                                                                       | 37 |

| 2.7. Data collection                                                                                                      | 8      |
|---------------------------------------------------------------------------------------------------------------------------|--------|
| 2.7.1. Primary outcomes measures                                                                                          | 8      |
| 2.7.2. Secondary outcome measures                                                                                         | 9      |
| 2.8. Statistical analysis                                                                                                 | 4      |
| 2.8.1. Primary outcome measures (Daily measures)                                                                          | 4      |
| 2.8.2. Secondary outcome measures (Non-daily measures)                                                                    | 6      |
| 3.0. Results                                                                                                              | 7      |
| 3.1. Participants                                                                                                         | 7      |
| 3.2. Primary outcome measures                                                                                             | 2      |
| 3.2.1. Pain intensity changes                                                                                             | 2      |
| 3.2.2. Changes in pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS) scores | 6      |
| 3.3. Secondary outcomes measures                                                                                          | 0      |
| 3.3.1. Oswestry Disability Index                                                                                          | 0      |
| 3.3.2. Örebro Musculoskeletal Pain Screening Questionnaire - short form6                                                  | 1      |
| 3.3.3. Fremantle Back Awareness Questionnare                                                                              | 1      |
| 3.3.4. Recognise <sup>™</sup>                                                                                             | 1      |
| 3.4. Compliance with baseline, intervention and follow-up phases                                                          | 1      |
| 4.0. Discussion                                                                                                           | 3      |
| 4.1. Methodological features: influence on the study findings and their interpretation 6                                  | 3      |
| 4.1.1. Influence of study design6                                                                                         | 3      |
| 4.1.2. Considerations relevant to participants recruited                                                                  | 4      |
| 4.1.3 Inclusion and exclusion criteria                                                                                    | 5      |
| 4.1.4. Considerations relevant to the procedure for data collection and outcome measures (and their assessment)           | 5<br>6 |
| 4.1.5. Considerations related to responsiveness of outcome measures                                                       | 8      |
| 4.1.6 Considerations relevant to the statistical analysis                                                                 | 8      |

| 4.1.7 Ethical considerations69                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|
| 4.2. Discussion and implications of the study results70                                                                           |
| 4.2.1. Primary outcome measure: Pain intensity (Numerical Rating Scale)                                                           |
| 4.2.2. Primary outcome measures: Pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS) |
| 4.2.3. Secondary outcome measures                                                                                                 |
| 4.2.4. Results related to patient satisfaction76                                                                                  |
| 4.2.5. Strengths and limitations with the study77                                                                                 |
| 4.2.6. Comparison to previous studies in this area                                                                                |
| 4.2.7. Perspective and future directions                                                                                          |
| 5.0. Conclusion                                                                                                                   |
| 6.0. Acknowledgements                                                                                                             |
| 7.0. References                                                                                                                   |
| 8.0. Appendix                                                                                                                     |

# **1.0. Theoretical Background**

# 1.1. The Global Burden of Low Back Pain

Low back pain (LBP) is a very common diagnosis, and the leading cause of disability worldwide (Buchbinder et al, 2018). Globally, the number of years lived with disability caused by LBP increased by 54% between 1990 and 2015 (Buchbinder et al, 2018). The lifetime prevalence is reported to be as high as 84% (Airaksinen et al, 2006), and although most episodes of LBP improve substantially within six weeks, 67% of people with LBP still report pain at three months. Further, approximately 33% of people are reported to have a recurrent episode of LBP within one year (da Silva et al, 2017). Three to 10% of people with LBP go on to develop persistent LBP (Koes et al, 2010), and a study from 2015 estimated that at any given time, 540 million people are suffering from LBP (Buchbinder et al, 2015).

LBP is also the leading persistent health problem that forces people out of the workplace and forces older workers to retire prematurely – more than heart disease, diabetes, hypertension, neoplasm, respiratory disease, and asthma combined (Schofield et al, 2008). People with physically demanding jobs, physical and mental co-morbidities, smokers and obese individuals are at greatest risk of reporting LBP (Hartvigsen et al, 2018). For the individual, LBP can have profound economic consequences as they accumulate less wealth than those without the problem, and the negative effect on wealth increases with the presence of comorbidities (Schofield et al, 2012; 2015). In 2003, almost 43.000 Norwegian citizens received disability benefits due to LBP, and every year, approximately 4000-5000 Norwegian citizens start receiving disability pension because of LBP (Rikstrygdeverket, 2004). LBP is estimated to cost Norway 13-15 Billion Norwegian Kroners (NOK) every year, and most costs are related to sick leave, disability fees, loss of production and utilization of health care services (Brage & Lærum, 1999). Studies from Hashemi et al. (1998) and Williams et al. (1998) suggest that replacement wages accounts for 80-90% of the total costs related to LBP, and consistently, only a small percentage of LBP cases account for these costs.

Most LBP is characterized as non-specific, meaning that for most people (an estimated 90%) the pain cannot be attributed to a specific cause (Koes et al, 2006). Deyo & Weinstein (2001) estimated that of patients with LBP in primary care, in only 10% could LBP be attributed to a specific cause. In their study, of those patients with a specific cause for their LBP, approximately 4% had a compression fracture, 3% had spinal stenosis, 2% had visceral disease,

0,7% a tumour or metastasis, and 0,01% an infection. A vast majority of LBP patients have traditionally been screened with x-ray or Magnetic Resonance Imaging (MRI), as the "gold standard" to discover disc- or spinal pathology. While imaging can play an important role in revealing "red flags" in a small number of LBP patients, recent evidence suggests that both symptomatic and asymptomatic adults have a high prevalence of common degenerative features in the imaging reports (Brinjikji et al, 2014), limiting the diagnostic value of these findings. Pressingly, the communication of perceived abnormal spinal imaging findings (i.e. bulging discs or disc degeneration) has been suggested to increase patients' fear of re-injury and reduce the likelihood of a good outcome (Roland & Van Tulder, 1998). Moreover, adverse effects of early imaging of the lumbar spine have also been reported, including worse disability and increased medical and surgical costs, unrelated to LBP severity (Graves et al, 2012; Webster & Cifuentes, 2010). In the recently published Lancet series viewpoint by Buchbinder et al. (2018), one of the key messages is to promote "positive health", i.e. "the ability to adapt and to selfmanage, and address widespread misconceptions in the population an among health professionals about the causes, prognosis, and effectiveness of different treatments" (Buchbinder et al, 2018, p. 2384). As persistent LBP continues to burden our society, it is crucial that stakeholders, researchers and clinicians understand the multidimensional aspects of non-specific LBP, and that looking to the future, we focus on health-promoting factors such as lifestyle, behaviours, thoughts and beliefs related to LBP, rather than continuing to look for a solely peripheral cause for a multidimensional health problem.

# 1.2. Multidimensional framework for non-specific Low Back Pain

The lack of diagnostic value in screening for biomedical causes of non-specific LBP has led to a conceptual shift in underlying theories of LBP and in its treatment. Contemporary scientific theories propose that non-specific LBP can be considered a neuro-biological and behavioural response to an individual's actual and/or perceived threat to their body, lifestyle, social circumstances and/or disruption to their homeostasis (Marchand et al, 2005; Moseley & Butler, 2015; Wand et al, 2011). As described by O'Sullivan et al. (2012; 2016; 2018a), our biological system constantly interacts and is influenced by physical, psychological, social, and lifestyle factors as well as by other comorbidities and non-modifiable factors (i.e. genetics, gender, life stage). Recent findings have therefore shifted both researcher's and clinician's awareness and understanding of LBP towards modifiable and non-modifiable factors in non-specific persistent LBP (Figure 1).



Figure 1: Modifiable and non-modifiable factors in an individual's LBP experience (O'Sullivan et al, 2018a)

As depicted in Figure 1, both co-morbid health factors and neuro-immune-endocrine factors, and an array of modifiable and non-modifiable factors contribute to a person's LBP experience. Therefore, non-specific LBP must be considered as a multidimensional disorder (O'Sullivan, 2016, 2018a), without any "quick fixes" or "magic bullets". Due to the complexity and heterogeneity of the condition, the challenge of getting the patient, the treatment, and the timing "right", is a formidable one.

# 1.3. Current consensus on Low Back Pain treatment

There is almost an endless list of treatment options currently available to patients with LBP, but according to Foster (2011), "no conservative treatment has large, significant and consistent benefits for patients with NSCLBP". Recommendations from a recent systematic review in the Lancet state that "a bio-psycho-social framework to guide management with initial non-pharmacological treatment, including education that supports self-management and resumption of normal activities and exercise, and psychological programmes for those with persistent symptoms" is needed (Foster et al, 2018, p. 2368). Systematic reviews of passive therapeutic interventions (so-called "hands-on" treatments) such as muscle energy techniques (Franke et

al, 2015), chiropractic treatment (Walker et al, 2010), spinal manipulation (Assendelft et al, 2013), massage (Furlan et al, 2015), ultrasound (Ebadi et al, 2014) and traction (Wegner et al, 2013) show small or non-significant clinical effects. Other systematic reviews investigating active treatments (so-called "hands-off" treatments) such as Pilates (Yamato et al, 2015), behavioural therapy (Henschke et al, 2010), back schools (Poquet et al, 2016), motor control exercises (Saragiotto et al, 2016), stabilization exercises (Smith et al, 2014), patient education (Louw et al 2011; 2013; Moseley & Butler, 2003; 2017) and multidisciplinary rehabilitation (Kamper et al, 2015) show that active therapies have an overall better treatment effect than passive therapies. However, active therapies are also largely consistent in terms of clinical effect (i.e. one active treatment is not better than another).

The overall, current consensus is that multidimensional rehabilitation with the use of behavioural therapy and supervised exercise should be first-line treatment (Chou et al, 2007; Daffada et al, 2015; Kamper et al, 2015; Koes et al, 2010; Savigny et al, 2009; Turk, 1996). The recent development of Cognitive Functional Therapy (CFT) may be an example of this suggested approach (O'Sullivan et al, 2015; Fersum et al, 2013). CFT is defined as an integrated, flexible behavioural approach for people with disabling, non-specific LBP, based on a multidimensional "clinical reasoning framework" to identify and treat key modifiable factors from the clinical history and assessment (O'Sullivan et al, 2013). Additionally, behavioural-educational approaches like Explain Pain (Moseley & Butler, 2003; 2017) and Therapeutic Neuroscience Education (Louw et al, 2013) have gained considerable attention amongst health-care professionals over the past 10-15 years, due to their usefulness in patient education is to provide a functional pain literacy and help make sense of a patients' subjective pain experience, based on explanations of the key (neuro)-biological (and neurophysiological) concepts that underpin pain (Louw et al, 2013; Moseley & Butler, 2015).

Furthermore, a new line of research from experimental clinical neuroscience has investigated the role of the brain in persistent pain, and suggests that re-organisation in different areas and networks in the brain may contribute to persistent pain (Flor et al, 1997; Moseley & Flor, 2012). Experimental studies have shown that there is evidence for perceptual dysfunctions in people with LBP, i.e. alterations in perceived shape of the back (Moseley, 2008a); reduced tactile acuity at the back (Catley et al, 2014, Moseley, 2008b; Wand et al, 2010; 2011a); impaired motor imagery of the back (Bray & Moseley, 2011); and impaired trunk voluntary motor control

(Luomajoki & Moseley, 2011). Further, studies have shown that therapies targeting these perceptual dysfunctions improve symptoms in LBP (Kählin, 2016; Wand et al, 2011b; 2015; Louw et al, 2015; Daffada et al, 2015). Further, recent work by Stanton et al. (2017) suggests that perceptual dysfunction in people with LBP may also extend to feelings of stiffness in the back, which is one of the most common complaints for LBP patients alongside pain. Further research in this field may help provide researchers and clinicians to develop increased knowledge about pain perception, which can be then translated to the clinic for patients struggling with LBP. However, robust scientific trials (i.e. randomised controlled trials) are needed.

The current challenges facing modern physiotherapists appear to be having the skills to: 1) to navigate in the "landscape" of modifiable factors in LBP, 2) to become "strategists" that can educate and provide short- and long-term health promoting strategies for the patient, and 3) promote self-efficacy and resilience (focus on salutogenesis – focus on health – versus pathogenesis) to improve clinical outcomes. To achieve these goals, new technology may provide us with helpful tools to facilitate learning and behavioural change (see further discussion of these topics in Subsection 1.4., 1.5. and 1.6).

# 1.4. The Fear-Avoidance Model

One leading cognitive-behavioural theory underpinning why certain individuals develop persistent pain and disability following acute back injury, derives from the "Fear-Avoidance (FA) Model of Musculoskeletal Pain" (Figure 2) (Vlaeyen, 2000; Vlaeyen & Linton, 2012).



Figure 2: FA model (Vlaeyen, 2000)

In brief, the FA model postulates that fear of re-injury and catastrophization play an important role in shaping maladaptive behaviours, such as avoidance and disuse, which may then predispose to chronicity. Kori et al. (1990) defined "kinesiophobia" as an excessive, irrational and debilitating fear of movement and activity stemming from a feeling of being more fragile or vulnerable to experiencing a painful injury or re-injury. A variety of conceptual definitions have been suggested through the years, e.g., "kinesiophobia", "fear-avoidance beliefs", "fear of movement", while "pain-related fear of movement" seem to be the most currently valid definition. In a critical review, Lundberg et al. (2011) argued that the different definitions of pain-related fear of movement are merely constructs (i.e., rather than a disorder or pathological state itself), which is important for researchers and clinicians to be aware of as it creates challenges with construct validity and when attempting to create reliable assessment tools related to the construct. Therefore, pain- and behavioural researchers are currently attempting to unravel the intertwined relationship between the development of pain-related fear of movement and evelopment of peristent pain.

A challenge in LBP is that pain is often unpredictable, making it difficult limit avoidance behaviour to only one activity. Further, the experience of unpredictable pain fluctuations can trigger anticipatory pain-related fear of movement (Meulders & Bennett, 2018), and it has been shown that associative learning processes and neuroplasticity plays an important role for the acquisition of pain-related fear of movement (Meulders, Vansteenwegen & Vlaeyen, 2011). Moreover, a patient may implicitly generalise the threat value of one movement to another, negating the need to learn a new association between that new movement and fear (Meulders et al, 2017). For example, pain while lifting a heavy box may result in fear of lifting a box (and avoidance of this activity), however, over time this may lead to generalization of fear and thus avoidance of all lumbar spine flexion movements regardless of the situation (e.g., bending forward in a chair). A recent study found that people with LBP showed implicit associations between perceived danger and images of a "rounded" or "neutral" lumbar spine position in lifting (Caneiro et al, 2017). The notion of implicit association in persistent pain may warrant further investigation, because there is some evidence that assimilation of perceptual dangerrelevant cues (that we are unaware of) can influence movement and behaviour (Moseley & Vlaeyen, 2015). Pressingly, persistently avoiding valued activities of daily life (ADL) negatively affects physical performance, mood and sense of self (Meulder & Bennett, 2018), and is therefore an important aspect to target (if present). One promising approach is to address

pain-related fear of movement with graded exposure therapy, which will be further discussed in the next subsection.

# 1.5. Graded exposure for pain-related fear of movement in Virtual Reality

Evidence suggests that graded exposure, a type of cognitive-behavioural therapy, is among the most effective means of reducing pain-related fear of movement, catastrophizing, and disability (Grotle et al, 2004a; Martinez et al, 2011; Turner et al, 2002; Vlaeyen et al, 1995). Research has shown that excessive fear responses may be signs of a dysregulated anxiety (Parsons & Trost, 2014), and that changes in the emotional circuitry of the brain may contribute to stressrelated psychopathology (Parsons & Trost, 2014). Graded exposure therapy provides patients an opportunity to discover and correct misinterpretations about cues as warning signals for an impeding catastrophe (Grotle et al, 2004a; Heuts et al, 2004; Meulders et al, 2016; Somers et al, 2009; Sullivan et al, 2009; Turner et al, 2002). As a result of correcting erroneous interpretations, patients will learn which movements or stimuli are safe, which in turn, reduces fear (Hermans et al, 2006). Despite considerable promise, existing graded exposure protocols are characterized by Woods and Asmundson (2008) as having a number of limitations. First, as delivered in the clinical setting, graded exposure protocols are expensive and time consuming, relying on trained therapists over an indefinite number of sessions (Vlaeyen et al, 2012). Another challenge acknowledged by graded exposure developers is that of patient engagement; while empirically most effective, graded exposure does not appear to be a preferred manner of treatment by patients and is characterized by a high drop-out rate (ranging from 38-50%) and low patient preference rates (Vlaeyen et al, 2012, Woods & Amundson, 2008). Patient nonadherence is likely due to the anxiety-provoking nature of an intervention designed to challenge fearful pain beliefs (Hadjistavropoulos et al, 2004). Third, graded exposure is challenged by the generalizability of treatment gains from the treatment clinic to the home environment, as well across discrete physical activities (Crombez et al, 2002; Goubert et al, 2002; 2005; Trost et al, 2005). Finally, fear-avoidance models have been criticized for not taking into account a motivational perspective in which goal context factors may affect behavioural performance as well (Crombez et al, 2012, Vlaeyen et al, 2009). Together, these limitations provide a compelling motivation to enhance graded exposure interventions so that treatment appear more attractive to patients, and thereby establishing reliable therapeutic change; and to explore the

utility of new technology using principles of graded exposure aiming for development of a costeffective physiotherapeutic tool.

Parsons & Trost (2014) argued that the emergence of Virtual Reality (VR) may be beneficial to optimize graded exposure therapy for people with persistent LBP. Thus, in the present thesis, a protocol for a VR-intervention was developed with the intention of investigating whether graded exposure towards lumbar spine movements in a rewarding and non-threatening virtual environment could benefit persistent LBP patients.

## **1.6.Virtual Reality training**

Virtual Reality (VR) was originally a science fiction idea, which began to emerge in concrete form via an immersive film-viewing cabinet created in the 1950s (World Economic Forum, 2014). For a long time, VR was solely recognized for its entertainment value but over the past 10 years its application has been expanded to a variety of clinical areas, including pain management, physical rehabilitation and the treatment of psychiatric disorders (e.g. phobias, post-traumatic stress disorder and anxiety disorders) (Gershon et al, 2000; Zimand et al 2002). VR is now defined as "an approach to user-computer interface that involves real-time stimulation of an environment, scenario or activity that allows for user interaction via multiple sensory channels" (Adamovich et al, 2009). New VR approaches capitalise on recent technological advances including improved robotic design, the development of haptic interfaces and the advent of human-machine interactions in virtual reality (Burdea, 2003; Merians et al, 2006), and offers the possibility for delivering patient-specific interactions within the virtual environment via head-mounted displays (Figure 3) or with screen-technology (Rose et al, 2005) such as Microsoft or Xbox Kinect (Figure 4 and 5).



*Figure 3: Immersive Virtual Reality equipment with a head-mounted gear and two handheld controllers (Image downloaded from: <u>https://bgr.com/2016/03/20/macbook-laptops-virtual-reality/</u>, 24.09.18)* 



Figure 4 and 5: Non-immersive Virtual Training using a screen- and video-based technology developed by Welfare Denmark. Figre 4 and 5 illustrate a training session for an elderly patient in bydel Nordstrand, Oslo, Norway. Reference: Fysioterapeuten, Issue 8, 2017.

One advantage of implementing VR technology in rehabilitation is the rapid development of different virtual environments and games, which allow for interactive behaviour for patients while being monitored and recorded (Bohil et al, 2011). As a relatively new technology, immersive VR is still quite expensive. A head-mounted gear (e.g., Oculus Rift) costs approximately 500 US Dollars and needs a 1000 US Dollar computer to run the VR-software, which currently is quite expensive for rehabilitative purposes. Nevertheless, VR hardware and

software show is on the rise, with an estimated global VR industry revenue of 74.82 Billion US Dollars by 2021 (Figure 6).



Figure 6: Virtual Reality Industry Report, 2017: <u>https://www.greenlightinsights.com/industry-analysis/2017-virtual-reality-industry-report-spring/</u>

With continued development and economic interest from large technological companies, costs related to VR equipment are expected to drop as the technology matures and hits the mainstream marked (Li et al, 2011). "Serious gaming" is now a multi-billion-dollar industry (Ma et al, 2014), and while technological barriers and a lack of content have prevented mass adoption of VR, commercial forces claim that VR and Augmented Reality (AR) are forefront technological platforms that eventually will replace smart-phones and tablets. Furthermore, a recent statement by the Facebook-VR leader (i.e. one of the leading companies in development of Oculus Rift) is that approximately 10 million users are needed using the VR-platform before the technological ecosystem can flourish (https://www.cnbc.com/2018/09/26/facebook-vr-leader-talks-about-the-future-of-virtual-reality.html). Moreover, leading experts in technology refer to the "12 Gutenberg Moments" (i.e. rapidly developing fields such as AI and big data, or robotics and automation, drones and transportation, VR and AR), which is estimated to have a disrupting effect in their respective fields (Silvija Seres, Bergen Næringsråd Årskonferanse, 2017). The "fourth industrial revolution", which is currently emerging, is presumed to challenge many

aspects of our societal structure through the advancements of cyber-physical systems (Colombo et al, 2017). While certainly of interest, this goes beyond the scope of this thesis. However, given the technological landscape, the development and use of technologies such as VR and AR specific to rehabilitation may be tools for exploiting resources in the health care system in a more sustainable way and may set the scene for a new era in physical therapy rehabilitation.

#### 1.7. From acute to persistent pain management with Virtual Reality

While VR gaming has shown meaningful clinical effect in the treatment of acute pain, few studies have applied VR to persistent pain management. In terms of acute pain management, VR-based interventions have been primarily used to distract patients from pain (Hoffman et al, 2000; 2008; Wiederhold et al, 2014). While distraction is a powerful tool in the case of both acute and persistent pain, interventions that rely exclusively on distraction are insufficient to address the needs of many individuals with persistent pain, for whom pain is an ongoing (rather than temporary) experience (Eccleston & Crombez, 2007). VR-interventions for persistent pain are therefore challenged to not just distract individuals but to also incorporate activities consistent with real-life patient goals related to tasks in activities of daily living (ADL). For example, for persistent LBP patients, the hesitation towards certain movements such as lumbar spinal flexion may lead to development of maladaptive and avoidant movement patterns when getting dressed and picking up objects from the floor (Thomas et al, 2008). By introducing graded exposure training towards various movements in VR, individuals may be encouraged to practice progressively more avoided activities with the aim of breaking the association between the movement itself and the perceived pain and/or physical harm. With specifically tailored virtual environments, interventions may be matched specifically to patients' interests, goals and valued life activities.

#### 1.8. Research on Virtual Reality and persistent Low Back Pain

Research using VR in rehabilitation is only in its infancy, although publication rates in this area are increasing (See Figure 7). Regardless, to date, only one systematic review related to the use of VR in medical settings has been published. Dascal et al. (2017) reviewed 11 randomised, controlled trials for pain distraction (Carrougher et al, 2009; Hoffman et al, 2008; Kipping et al, 2012; Morris et al, 2010; Patterson et al, 2010; Schmitt et al, 2011), eating disorders/obesity

(Cesa et al, 2013, Manzoni et al, 2009), and cognitive and motor rehabilitation (Larson et al, 2011). The authors suggested that VR is a promising intervention with several potential applications in the inpatient medical setting (Dascal et al, 2017).



Annual publication rate for Virtual Reality and Rehabilitation: 1991 - 2017

Figure 7: Annual publication rate for Virtual Reality and Rehabilitation: 1991-2017.

Systematic searches for "low back pain" + "virtual reality" were completed in Pubmed, Google Scholar, EMBASE, Medscape, Cochrane, and Clinical Trial Gov., from August 2016 to October 2018. The term "virtual reality" included both immersive (head-mounted gear) and non-immersive (screen) technology, although we were most interested in the use of immersive head-mounted VR equipment. Results of the searches found that there have been no systematic reviews or meta-analysis published for the use of VR in persistent LBP to date, and only a handful of clinical trials were found across all available search engines.

More specifically related to the present thesis, only one randomised clinical study (n=52) by Thomas et al. (2016) has investigated the feasibility of a VR-dodgeball game for kinesiophobic non-specific persistent LBP patients. Thomas et al. found that although VR-dodgeball (3 sessions of 15 minutes each) did not elicit significant group differences in lumbar flexion at post-game testing, the results indicate that individuals with persistent LBP and high fear levels can be encouraged to increase lumbar spine flexion within gameplay sessions. They concluded that the proof-of-concepts study demonstrate that virtual dodgeball is safe, feasible, and capable of shaping changes in lumbar spine flexion during gameplay (Thomas et al, 2016). In addition, a published phase 2 randomised controlled trial protocol by France & Thomas (2018), aims to evaluate Virtual Immersive Gaming to Optimize Recovery (VIGOR) intervention in people with persistent LBP. However, at the time of this thesis preparation, the research is ongoing.

Results for non-immersive VR-studies such as screen technology (Kinect, Wii Fit, etc) are also interesting to consider, and in total, six articles have been published in the time period 2011 – 2016. In 2016, Zadro et al., published a protocol paper for a video-based exercise for older people (n=60) with persistent LBP, a feasibility randomised controlled trial (GAMEBACK trial). However, results are not yet available. Su et al. (2015), tested a VR-based LBP rehabilitation system utilizing wireless sensor technology in 20 participants, in a system design and user-acceptance analysis. Roosink et al. (2015), assessed the perception of trunk movements in military personnel (n=30) with persistent non-specific LBP using a virtual mirror in 30 participants. Kim et al. (2014), investigated the effects of VR-based Wii Fit Yoga-game on physical function in 30 middle-aged female LBP patients. Additionally, two trials were found on the Clinical Trial Gov website and appear ongoing (no results published): "Virtual Reality and pain perception during exercises for patients with persistent non-specific LBP" (Matheve et al, 2016), and "Analgesic effect of a prototype device of VR in a population of patients with persistent LBP (REVLOC)" (Poiraudeau et al, 2011).

In summary, the systematic search reveals that research in the field of VR rehabilitation in persistent LBP is scarce. Phase 1 and phase 2 clinical trials are needed, followed by rigorous testing in randomised controlled trial study designs. Such testing will allow for full scientific evaluation which can then inform translation to clinical practice. RC

# 1.9. Opportunities and challenges with Virtual Reality

#### 1.9.1. Opportunities with Virtual Reality for Low Back Pain rehabilitation

The ability to instantly transport the patient into a virtual world for the purposes of distraction and exposure to a feared situation makes VR a tremendously powerful tool (Trost, 2015). Through immersive multimodal stimuli (i.e., visual, auditory, tactile and/or even olfactory), VR may be used to engage the patients in immersive gaming to actively achieve valued life-goals (Li et al, 2011). With an appropriate virtual environment, immersive VR training can provide a feeling of moving freely in a virtual space, and the tasks may give the patient a sensation of achievement and empowerment. VR-technology may also be used to capture and store metrics that cannot easily be detected by an observer (e.g. with movement sensors), which can be used to facilitate motor learning. Additionally, the development of virtual environments may be used to deliver meaningful and relevant stimuli for active rehabilitation of valued life activities (Weiss, Kesher & Levin, 2014), and further, it may address maladaptive movement behaviours. Studies by Thomas et al (2007; 2008a; 2008b) has repeatedly shown that LBP patients with high fear specifically avoid flexion of the lumbar spine, and subsequently, that avoidance (or inactivity) may contribute to shortening of peri-articular connective tissues change in the surrounding musculature (Hides et al, 1995; 1996; Lieber et al, 2002). A case-controlled study (n=14) by Karayannis et al. (2013) demonstrated that although weakly related, pain-related fear of movement was associated with trunk stiffness in people with persistent LBP. Thomas et al. (2016) hypothesize this may increase the risk of injury if a person is exposed to "common, unexpected environmental challenges" (e.g., missing a step or slipping). Nevertheless, whether tailored training in VR may motivate for amelioration of avoidance behaviour and increase physical capacity, remains to be investigated. However, protocols for graded exposure training as suggested by Parsons & Trost (2014) appears to be promising for this patient group.

Further, research shows that LBP patients may fail to generalize "safety learning" across contexts or physical activities during conventional training tasks (Crombez et al, 2002). For example, a patient may learn that bending to tie a shoe is safe for the back, but may hesitate to perform a similar amount of lumbar flexion for a different task (e.g., picking up a piece of clothing on the floor). Practicing movement across different activities and contexts (with and without VR) may therefore be a key to treatment success (Trost et al, 2015). We know that transfer is a key concept of learning, and that virtual environments used to train complex skills in surgical, flight, or military situations have demonstrated that it is possible to learn skills in virtual environments and then transfer this learning into skilled performance in the real world (Bossard et al, 2008; Holden, 2005). According to Rose et al. (2000), transfer is dependent on the virtual environment and cognitive processing required for task performance being similar to the real-world tasks, and may be facilitated if the patient is required to "adapt to changing demands, problem-solve, learn from mistakes, simplify and segment tasks, and repeat various complex tasks in various contexts" (Bossard et al, 2008).

Finally, adherence to exercise and/or therapeutic recommendations are important in physical rehabilitation as patients are often required to change behaviour over time to achieve

improvement from a multidimensional LBP management approach. Adherence to home-based exercise commonly ranges between 50 - 70% (Friedrich et al, 1996; Medina-Mirapeux et al, 2009), and as previously mentioned, adherence to graded exposure therapy ranges from only 30-58% (Linton et al, 2008; Woods & Amundson, 2008). Whether new technology may improve these numbers, this remains to be investigated. However, gaming interventions report strong retention and adherence rates, reduced perception of effort and fatigue, as well as enjoyment of exercise-related activities (Warbuton, 2013). Therefore, gaming interventions should be considered in rehabilitation as we strive for better clinical outcomes (which would be predicted by improved adherence) as well as a more cost-effective and sustainable health-care system.

# 1.9.2. Challenges with Virtual Reality in Low Back Pain rehabilitation

While VR training may have a positive impact on a variety of domains, concerns about its safety and potential danger to health are critical to consider. Beyond transient motion sickness and nausea that can be caused by disconnect in vision and movement (primarily related to current technological limitations), long-term effects such as addictive behaviour need to be carefully investigated and avoided. Current limitations with VR-gaming in rehabilitation are also related to costs, availability, technical competency, and the lack of evidence-based protocols or research investigating its effectiveness. In terms of practicality, non-immersive screen technology may require less set-up and effort to provide a patient with an opportunity to interact with the virtual environment (Weiss, Keshner & Levin, 2014). However, to date there is still no evidence published regarding whether immersive or non-immersive virtual environments provide the most cost-effective alternative, given that they may have differing clinical effectiveness. Such clinical and cost consideration are important for clinicians when exploring the wide variety of both immersive and non-immersive equipment available on the market. Further, individual differences related to acceptability (e.g. immersive tendencies, technological literacy, socioeconomic status), may modulate treatment success and thus must be explored (Trost et al, 2015). It is also unclear whether advantages of VR over real-worldtraining exist, and if so, an explanation of precisely what these advantages are lacking (Weiss, Keshner & Levin, 2014). Future research needs to investigate whether we can capitalize on something unique with VR training, or whether VR training is merely more effective because of the entertaining nature that keeps patients more engaged and motivated throughout the rehabilitation. Thus, VR training parameters associated with optimal transfer to real-world functional improvements, remain to be discovered – such research is preferably completed using a person-centred approach. While aforementioned limitations exist, the potential favourable opportunities afforded by such technology undoubtedly warrant further investigation in physical therapy rehabilitation.

# 2.0. Method

#### 2.1. Purpose of the study and research hypothesis

VR-training is a new and innovative intervention that has not yet been fully explored in persistent musculoskeletal disorders. Some forefront rehabilitation centres in Norway (e.g. Sunnaas Rehabilitation centre and Sykehuset Innlandet) have been the first to utilize VR training in musculoskeletal rehabilitation in Norway, but to date, only one feasibility study from the United States (U.S.) by Thomas et al. (2016) has investigated a VR-intervention for non-specific persistent LBP patients with pain-related fear of movement. As the initiators of the first Norwegian VR study, we hypothesize that VR-technology may play an important role in patient management and education in the future, and that we should start to explore how it may facilitate learning in person-centred persistent pain management. The purpose of the study was therefore was to evaluate whether Virtual Reality (VR) training had an effect on pain intensity and pain-related fear of movement, pain catastrophizing and pain anxiety symptoms in 10 non-specific persistent LBP patients with pain-related fear of movement. The underlying rationale for the study is based on findings from health technology, neuroscience, pain science and behavioural research.

The primary research hypothesis was that a VR gaming intervention would reduce pain intensity (H1), and the secondary research hypothesis was that VR gaming intervention would reduce pain-related fear of movement, pain catastrophizing and pain anxiety symptoms (H2). Pain intensity was measured using a Numeric Rating Scale (0-10 NRS), and pain-related fear of movement, pain catastrophizing and pain anxiety symptoms were measured using items from the Tampa Scale of Kinesiophobia (TSK), the Pain Catastrophizing Scale (PCS) and the Pain Anxiety Symptoms Scale-20 (PASS-20). The independent variable of the study was VR training, while the primary dependent variables included registrations of daily permutations of pain intensity and pain-related fear of movement, pain catastrophizing and pain-anxiety symptoms. To evaluate whether VR training resulted in a significant reduction in the above outcome measures (as hypothesized), the difference between the baseline daily outcome scores and the daily outcome scores during the intervention period (n=35 measures for each participant) would have to be large enough to reject the null hypothesis (H0), i.e. falsify the assumption that the two phases had identical distributions. The secondary dependent variables

included the secondary outcome measures (see below), which were analysed via calculating the percentage change between baseline and follow-up in each participant.

# 2.2. Single-Subject Experimental Design

In science there are two main research paradigms: quantitative and qualitative. A specialised type of quantitative study design is that of the single-subject paradigm. In the present study, a sequential, replicated, randomised single-subject experimental phase design (SSED) with multiple measurements was used. An SSED can be used as the first step in the preparation of a large-scale trial (e.g. 'randomised controlled trial' or RCT) or it may provide an empirical generalizability test in one's own clinical practice of findings known from large-scale research (Onghena, 2005a). The SSED, "single-case design", or "N-of-1 RCTs", can be broadly categorized into two main types: phase designs and alternating designs (Michiels et al, 2018). We used the former, which divides the sequence of measurement occasions into separate treatment phases, and each phase includes multiple ( $\geq$ 5) measurements (Edgington, 1975, 1980; Onghena, 1992). We aimed to measure each participant's response to the VR gaming intervention with an AB-phase design (i.e. phase A = baseline, and phase B = treatment). In the study, a 7-day follow-up phase was also used. A study with a withdrawal period may be commonly referred to as an ABA-design. However, since the treatment in question is considered "irreversible", that is, its' effects are unlikely to discontinue once treatment has ceased, the term AB-design is used.

It should be acknowledged that history, maturation bias and statistical regression to the mean are three important threats to the internal validity in a SSED. History bias refers to the confounding influence of external factors on the treatment effect during the course of the experiment (e.g., events or changes in a participant's life that prior to or during the intervention). Maturation bias refers to changes within the subject during the course of the experiment that occur as a function of the passage of time and are unrelated to the treatment effect (Carter & Lubinsky, 2017). Regression to the mean is a widespread statistical phenomenon, that may occur when an extreme group is selected from a population based on the measurement of a particular variable. When a second measure is taken from the same group, the second mean will be closer to the population mean, which may be mistakenly attributed to a treatment effect (Morton et al, 2005). Several methodological features have been proposed to increase internal validity within an SSED, including: random assignment of AB-phase duration,

replication of multiple AB-design across participants, and using adequate statistical techniques (Michiels & Onghena, 2018). In the present study, an attempt to maximize internal validity via study design was made. Firstly, the design was made more robust by being replicated across several participants. The two ways one can replicate in an SSED, is simultaneously or sequentially (Onghena & Edgington, 2005b). Considering that this was an innovative approach to LBP management, we chose a sequential replication, which allowed us to carry out and test the same design for several patients. Secondly, sequential refers to the replications being carried out one by one. In other words, the design is repeated separately for each patient (de Jong et al, 2012; Onghena et al, 2005a). Thirdly, we used random assignment of phase duration length (for baseline and intervention), while standardising the total duration of both phases between participants. Indeed, the benefits and importance of random assignment of the different phases are emphasized in the recent CONSORT extension for reporting N-of-1 trials (Shamseer et al, 2015; Vohra et al, 2015), in addition to the single-subject reporting guideline in behavioural interventions statement for making valid inferences (Tate et al, 2016). One argument is that the lack of random assignment of phase duration in a SSED makes it more difficult to rule out alternative explanations that may weaken the internal validity of the design (Dugard et al, 2012; Dugard, 2014; Edgington & Onghena, 2007; Heyvaert et al, 2017; Kratochwill & Levin, 2010). Thus by randomising the phase duration, it is more likely that any change detected is due to the start of the intervention.

In the present study, the combined duration for the baseline and intervention phase was chosen to maximise the number of baseline measures and interventions applied while minimising participant fatigue (due to daily measures). For all participants, the baseline (phase A<sub>1</sub>) and intervention phase (phase B) lasted 28 days, and the follow-up (phase A<sub>2</sub>) lasted for 7 days. To randomise baseline duration for all participants, a computer-generated random table was used (Appendix 1). The time window for randomisation of the baseline duration was pre-set based on earlier studies using a similar design (de Jong et al, 2012), with a baseline ranging from 5-14 days and a treatment duration ranging from 14-23 days (the latter allowing a minimum of 6 and a maximum of 9 VR treatments). Finally, each patient was then observed repeatedly (as with a longitudinal or time series design), and daily self-reported measures were collected throughout the study. This allowed for a statistical analysis using a linear mixed model.

# 2.3. Strengths and limitations with the design

The AB-design is the most basic and practically feasible experimental designs for evaluating treatments in single subject research (Michiels & Onghena, 2018). However, scarce attention has been paid to single-subject experiments as a useful and valid strategy for pain management. This is unfortunate because single-subject experiments may be ideally suited to "customize" treatments, or "to build, fit, or alter treatments to individual specifications" (Onghena, 2005a). SSEDs are cheap, relatively easy to execute, provide a robust design for a pilot study, and help to validate clinical practice. SSEDs can be considered to have rigorous designs due to multiple measurements that strengthen the validity of the design. Therefore, SSEDs may play a key role when evaluating novel treatments that do not yet have evidence for their effect (i.e., when performing a randomised trial would not yet be recommended). Accordingly, we would classify the present study as a phase 2 clinical trial, but with a limited number of participants compared to recently developed guidelines (UK Cancer Research, 2015; National Health and Medical Research Council, Australia, 2015).

Although widely used, the AB-design has received criticism for its low internal validity (Kratochwill et al, 2010; Shadish et al, 2002; Tate et al, 2016; Vohra et al, 2015). Several authors have rated the AB-design as "quasi-experimental" or even "non-experimental" because a lack of a treatment reversal phase and control group leaves the design vulnerable to the internal validity threats of history and maturation (Kratochwill et al, 2010; Tate et al, 2016; Vohra et al, 2015). While some criticize the design, others (e.g. Michiels & Onghena, 2018) argue that a randomized AB-phase design can be used as a basic experimental design for situations where this design is the only feasible way to collect experimental data (e.g., when evaluating treatments that cannot be reversed due to the nature of the treatment or because of ethical concerns). Such is the case in the present thesis, where the effects of treatment are unlikely to be reversed solely due to removing the intervention. Michiels & Onghena (2018) argue that in this situation the threats of history and maturation have to be taken into account and acknowledged when considering the results. While important to consider, Kratochwill et al. (2010) suggest that designs with multiple AB-phases (e.g. ABAB) offer better protection from threats to internal validity than only AB designs, the internal validity of the basic ABdesign can be strengthened via study design features and through adequate statistical analysis, strategies we have employed here (see Subsection 3.2 for full statistical analysis details).

# 2.4. Participants

Participants were included in the study based on pre-specified eligibility criteria (See Table 1). We recruited 14 patients from waiting lists in primary health care through the Outpatients Spine Clinic at Haukeland University Hospital, Bergen. To be included in the study, a minimum score of 25/52 on the Norwegian version of Tampa Scale for Kinesiophobia (TSK-11) and a minimum pain NRS score of 4/10 for the past two weeks was required. Ethical approval was attained from the University of Bergen and the Regional Ethics Committee of Western Norway (2017/1199/REK vest) (Appendix 2). Table 1 shows an overview of inclusion and exclusion criteria for the present study.

| Inclusion Criteria                           | Exclusion Criteria                               |
|----------------------------------------------|--------------------------------------------------|
| Low back pain $\geq$ 3 months                | Not fully sick listed for more than 6 months     |
| Age between 18-65 years                      | Ongoing treatment from other therapists (e.g.:   |
|                                              | physiotherapist, manual therapist, chiropractor, |
|                                              | osteopath, 'naprapat' or other).                 |
| Localized pain from T12 to gluteal folds,    | Specific LBP diagnosis (radicular pain, disc     |
| provoked with postures, movements and        | herniation, spondylolisthesis, stenosis, modic   |
| activities.                                  | changes).                                        |
| Pain intensity ≥4/10 on Numeric Rating Scale | Acute exacerbation of LBP at the time of testing |
| (NRS), lasting $\geq 14$ days                | (to avoid regression to the mean).               |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
| Minimum soors on Tampa Saala for             | Vieual disordars dizzinass and/or Panian         |
| Vinceignable (TSK 11 Nerrossien Version)     | Visual disorders, dizziness and/or beingi        |
| Kinesiophobia (ISK-11 Norwegian Version): 2  | Paroxysmai Positional Vertigo (BPPV).            |
|                                              |                                                  |
|                                              | Other:                                           |
|                                              | - Any lower limb surgery in the last 6 months    |
|                                              | Provide surgery involving the lumber spine       |
|                                              | - Frevious surgery involving the lumbar spine    |
|                                              | - Currently pregnant or less than 6 months       |
|                                              | post-partum                                      |
|                                              | - Diagnosed psychiatric disorder                 |

|                                                  | -      | Widespread     | constant    | non-specific  | pain   |
|--------------------------------------------------|--------|----------------|-------------|---------------|--------|
|                                                  |        | disorder       |             |               |        |
|                                                  | -      | Active rheuma  | toid arthri | itic disease  |        |
|                                                  | -      | Progressive ne | urological  | l disease     |        |
|                                                  | -      | Serious cardia | ac or oth   | er internal m | edical |
|                                                  |        | conditions     |             |               |        |
|                                                  | -      | Malignant dise | eases       |               |        |
|                                                  | -      | Contradictions | to genera   | l exercise.   |        |
|                                                  |        |                |             |               |        |
| Table 1: Overview over inclusion and exclusion c | riteri | а              |             |               |        |

## 2.4.1. Key inclusion criterion 1: TSK-11 Norwegian Version

One of the underlying hypotheses of the present study was that patients with maladaptive painrelated fear of movement could benefit from a VR intervention that aimed to expose participants to lumbar spine movements. TSK-11 score level recommended by Neblett et al. (2013) were used to determine cut-off levels for participation in the study: subclinical levels ( $\leq$ 23), mild levels (23-32), moderate levels (33-42) and severe levels (43-52). We first aimed to use a predetermined score of  $\geq$ 33/52 (including moderate and severe level) on TSK-11 Norwegian version. However, in conversations with the Outpatient Spine Clinic regarding their typical patient referrals, it was decided to recruit participants with at least "mild" levels of pain-related fear in order to recruit sufficient participants during the available Masters time period.

## 2.4.2. Key inclusion criterion 2: pain NRS-ratings $\geq 4/10$ over the past 14 days.

Another important inclusion criterion for the present study, was that NRS had to be  $\geq 4/10$  over the past 14 days for the patients to be included in the study. This criterion was important to reduce the chances of a "floor effect" (i.e., insufficient ability to detect any changes in pain because of low baseline levels) that would be compounded by history bias, maturation bias or statistical regression to the mean (Carter & Lubinsky, 2016).

# 2.5. The intervention – Tailored VR-training

Inspired by health technology, neuroscience, pain science and behavioural research, we conducted a SSED with 10 non-specific persistent LBP patients with a tailored VR training intervention. The aim was to gradually expose patients to movement in different VR-games, tailored to their daily measures of pain intensity, pain-related fear of movement, pain catastrophizing and pain anxiety symptoms. Three different VR games were chosen and tested by MS and TFL, and a protocol for "easy", "medium" and "hard" levels was developed (Table 2). As Thomas et al. (2016) argues, the fear-avoidance model posits a generic avoidance of all forms of movement that are perceived as threatening, and it is repeatedly shown that individuals with LBP that have high levels of fear specifically avoid flexion of the lumbar spine (Thomas et al, 2007; 2008a; 2008b). Thus, trunk flexion was a key movement targeted in the present VR intervention. All participants started at an "easy" level in all three VR games, with natural clinical progression if they showed signs of a reduction in pain intensity, pain-related fear of movement, pain catastrophizing and pain-anxiety symptoms.

| Difficulty Level       | Amount of movement required                                                  |
|------------------------|------------------------------------------------------------------------------|
| Easy Level             | Targets were approximately between head and solar plexus height, patients    |
|                        | required minimal to little lumbar flexion to play the VR games.              |
| Medium Level           | Targets were approximately between shoulder and hip height; some trunk and   |
|                        | lumbar spine flexion was required to play the VR games.                      |
| Hard Level             | Targets were approximately between solar plexus and middle thigh height,     |
|                        | patients needed to either bend their knees and/or flex their trunk and lower |
|                        | back to play the VR games.                                                   |
| Table 2: Difficulty le | vels in the VR games                                                         |

## 2.5.1. The VR games

Patients were encouraged to move as freely as possible in the virtual world, and reported pain intensity and fear-levels during and after each VR session (Appendix 3). Consistent with the aims of a phase 2 clinical trial, we were also interested in whether participants experienced some side effects from the intervention. Therefore, participants also reported any discomfort and amount of nausea during and after each intervention. The most important clinical tenet was their feeling of safety and autonomy during each VR gaming intervention, and we informed

them that we could both increase or decrease the difficulty levels during the session. All patients began exercising at "easy" level during VR training number 1. At each session, the patients played three different VR games for 10 minutes each, with a 2-3 minutes breaks in between, for a total of 30-45 minutes of VR training per session. A description and overview is provided in Table 3, and screenshots of the different VR-games are shown in Figure 8-16.

| VR game          | Description                                                                           |
|------------------|---------------------------------------------------------------------------------------|
| HoloBall         | HoloBall is a fun and entertaining squash game that can be adjusted in terms of       |
|                  | height-, width-, room size, ball size and speed, and the opponent's reaction speed.   |
|                  | The patients warmed up in the "Zen"-level, playing squash for a few minutes, and      |
|                  | subsequently started playing against a computer-generated contestant in               |
|                  | "Campaign"-level – "Easy", "Medium", or "Hard" level.                                 |
| RoBow Agent      | RoBow Agent is a software game developed specifically for this project (by another    |
|                  | masters student - TFL). In this 10-minute game the player is an agent on a space      |
|                  | station, equipped with either a bow or a gun, and must defend the space station.      |
|                  | When the player runs out of ammunition, he/she have to bend forwards and/or rotate    |
|                  | the trunk to pick up objects in a pre-defined height. The amount of forward flexion   |
|                  | and rotation can easily be adjusted in real-time to each patient by the clinician, to |
|                  | fit an "easy", "medium", or "hard" level.                                             |
| HoloDance        | HoloDance is a dragon-based VR game where the patient plays against a dragon,         |
|                  | who hides in different environments (under water, the desert, or in the jungle). In a |
|                  | rhythmic fashion, the dragon sends out lightning fireballs, which the player must     |
|                  | catch with one or two shields (the hands). The player must move the arms, trunk       |
|                  | and lower back to catch the lightning fireballs to earn points and progress to the    |
|                  | next level. There are many different levels in this game, which can be individually   |
|                  | adjusted in real-time.                                                                |
| Table 3: Descrip | ption of the VR games                                                                 |



Figure 8: Zen settings with adjustments possible (for warm-up) in Holoball



Figure 9: Difficulty levels in Holoball



Figure 10: Screenshot of animated player in Holoball



Figure 11: One of the tasks in RoBow Agent is to reach forward and pick up objects. These objects can be placed in different heights



Figure 12: A player firing an arrow to hit a moving object in RoBow Agent



Figure 13: Using two guns to hit moving targets in RoBow Agent. When running out of ammunition, one has to locate and collect new ammunition somewhere in near proximity, and must flex or rotate the upper body to pick it up



Figure 14: One of the first levels in Holodance, where one must catch lightning fireballs with two shields



Figure 15: Demonstration of possible arm, trunk and low back movement required in Holodance.


Figure 16: Underwater-level in Holodance

# 2.6. Equipment

Immersive VR technology includes powerful computers to run the software, head-mounted displays, body tracking sensors, specialized interface devices and real-time graphics to fully immerse the user in a computer-generated simulated world that updates in a natural way consistent with head and body motion (Lange et al 2009; 2012). In the present study, we used an Oculus Rift with a head-mounted gear and hand-held controllers to track movement in space (Figure 17). System requirements include an Intel Core i5-4590 or AMD FX 8350 equivalent or better processor, a NVIDIA GeForce GTX 1060 or AMD Radeon RX 480, equivalent or better graphics. In addition, 4 GB RAM, 1x HDMI 1.4 port, and operating system from Windows 7 SP1, 8,1 or 10. All hardware was borrowed from SimArena at Western College of Applied Sciences in Bergen, Norway, while software was either bought from Steam (https://store.steampowered.com/) or developed by a master's student (TFL) in Software Engineering at the University of Bergen and Western College of Applied Sciences.



Figure 17: Oculus Rift headset from: https://www.oculus.com/

# 2.7. Data collection

# 2.7.1. Primary outcomes measures

Daily measures were collected over a total period of 35 days in order to investigate how people with persistent LBP responded to the VR interventions, and whether pain intensity, pain-related fear of movement, pain catastrophizing and pain-anxiety symptoms changed over time. We asked participants to complete daily measures of pain intensity (NRS), and 10 selected items from three different questionnaires representing kinesiophobia (Tampa Scale of Kinesiophobia, TSK) (Goubert et al, 2004; Kori et al, 1990; Roelofs et al, 2007), pain catastrophizing (Pain Catastrophizing Scale, PCS) (Sullivan et al, 1995; Van Damme et al, 2002) and pain-anxiety symptoms (Pain Anxiety Symptoms Scale, PASS-20) (McCracken et al, 2007), the internal consistency of these subscales was sufficient to good (Cronbach a = .60, .72, and .73, respectively) (de Jong et al, 2012). Participants were instructed to complete the daily measures consistently at 8 P.M. throughout the total 35 days.

The specific items collected daily included TSK-item 1: "I am afraid that I might injure myself if I exercise", TSK-item 3: "My body is telling me that I have something dangerously wrong", TSK-15: "I can't do all the things normal people do because it's too easy for me to get injured". The items chosen from the TSK-17 were related to activity avoidance (TSK-item 1), somatic focus (TSK-item 3), and activity avoidance (TSK-item 15). All these items have been translated

to Norwegian by Haugen et al. (2008). Further, we investigated PCS-item 1: "I worry all the time whether the pain will end", PCS-item 2: "I feel I can't go on", and PCS-item 13: "I wonder whether something serious may happen". The items chosen from the PCS are related to helplessness (item 1 and 2) and to pain magnification (item 13). Finally, four PASS-item were selected, item 3: "When I hurt I think about pain constantly", PASS-item 4: "I find it hard to concentrate when I hurt", PASS-item 5: I worry when I am in pain", and PASS-item 10: "I try to avoid activities that cause pain". The items chosen from PASS are related to cognitive aspects of stress and anxiety (items 3, 4, and 5) and to escape or avoidance (item 10) (McCracken & Dhingra, 2002). The PCS was translated and found to have acceptable psychometric properties in terms of comprehensibility, consistency, construct validity, and reproducibility for subacute and persistent LBP patients (Fernandes et al, 2012). While PASS-items could only be found in English versions (no Norwegian translation available) we chose to include still include the PASS-items given their relevance to an intervention aiming to reduce anxiety related to movement.

# 2.7.2. Secondary outcome measures

Secondary outcome measure questionnaires included the Oswestry Disability Index (ODI) (Fairbank et al, 1980; 2000), the Örebro Musculoskeletal Pain Questionnaire Screening Questionnaire short form (ÖMPSQ short form) (Linton et al, 2011), Patient Specific Functional Scale (PSFS) (Stratford et al, 1995), and the Fremantle Back Awareness Questionnaire (FreBAQ) (Wand et al, 2014). Additionally, the Neuro Orthopaedic Institute (NOI)-app Recognise<sup>™</sup> (<u>http://www.noigroup.com/en/Product/BTRAPP</u>) was used to evaluate motor imagery performance (Bowering et al, 2014). Importantly, secondary outcome measures were only collected at baseline and follow-up. An overview over primary and secondary data collection is presented in Figure 18.



Figure 18: Example of data collection for a participant with 9 VR-interventions (VR-interventions marked as green arrows during the intervention phase). The x-axis represents days and the y-axis represents percentage of total score for the outcome measures. Procedures for data collection are marked with red and blue arrows, including red arrows showing the trajectories for the primary daily outcome measures (NRS, TSK, PCS and PASS), and the blue arrows showing when the secondary outcome measures were taken (only collected at Day 1 and Day 35).

# 2.7.2.1. Oswestry Disability Index (ODI)

ODI is a 10-item questionnaire developed by Fairbank et al (1980; 2000) to assess pain-related disability in people with LBP. The questionnaire was translated to Norwegian in 2003 (Grotle, 2003), and validated by Fernandes et al. in 2012. The suggested use is for patients with severe or persistent disabilities, but according to Grotle et al. (2004b), the form is also valid for both acute and persistent LBP patients, with and without sciatica. The first item in ODI is related to pain, while the remaining 9 items are related to function in ADL. Each item is rated on a 6-point Likert scale. A minimal detectable change is estimated to be 10-12 points (Ostelo et al, 2008). A study by Saltychev et al. (2017) showed that the ODI has good internal validity (Cronbach's  $\alpha = 0.85$ ), with an exploratory factor analysis showing that the ODI is a unidimensional test specific to measuring functional level. A confirmatory factor analysis demonstrated that the standardized regression weights of all ODI-items were relatively high, varying from 0.5 and 0.7. The item response theory analysis suggested that 8 out of 10 ODI items have a close-to-perfect ability to measure functional limitations in accordance with the actual severity of disability experienced by the respondents. Discrimination of all the items was high to perfect (1.08 – 2.01) (Saltychev et al, 2017).

# <u>2.7.2.2. Örebro Musculoskeletal Pain Screening Questionnaire – Short Form (ÖMPSQ -short</u> <u>form)</u>

The Örebro Musculoskeletal Pain Screening Questionnaire is one of the most widely used screening questionnaires for the prediction of patients developing work disability due to LBP or neck pain (Linton & Halldén, 1998). It was first developed in 1998 and has been validated for use in acute and subacute LBP, but also for neck and shoulder patients, as well as for patients with more generalized pain disorders. Grotle et al. (2006) translated the questionnaire to Norwegian. A study by Grotle et al. (2007) showed that acute LBP patients with a score higher than 112/210 were significantly more likely to develop persistent pain and disability. In 2011, Linton et al. abbreviated the original 25-item questionnaire to a 10-item questionnaire. The items in the short version are scored 0-10, where 0 refers to absence of impairment and 10 to severe impairment, with three items reversed when calculating total score (Linton et al, 2011). The reliability of the Norwegian and Swedish version of the original OMPQ has been reported to be good (Linton & Halldén, 1998; Grotle et al, 2006), and while the correlation between the original and short questionnaire was 0.91, the receiving operator characteristic curve was nearly identical for the two versions. For LBP patients screened for the risk of developing disability, using a cut-off of 50/100 on the short version identified 85% in the occupational sample and 83% in the primary care sample that developed disability; performance which is comparable to that of the full version (Linton et al, 2011).

# 2.7.2.3. Fremantle Back Awareness Questionnaire (FreBAQ)

Several lines of evidence suggest that body perception is altered in people with persistent LBP (Wand et al, 2015, Kregel et al, 2015). Maladaptive perceptual awareness of the back might contribute to the pain experiences as well as serve a target for treatment. The FreBAQ is a 10-item questionnaire developed to assess back-specific altered self-perception (Wand et al, 2016; 2014). Although the questionnaire is fairly new and only exists in English to date, it proposes some interesting aspects warranting further investigating in persistent LBP patients, and show reasonable psychometric properties. A person reliability index of 0.74 and a Cronbach a value of 0.80 indicated that the internal consistency of the FreBAQ was adequate (Wand et al, 2014). Another study by Wand et al. (2016) show that FreBAQ appears unidimensional with no redundant items, has minimal ceiling and floor effects, and that FreBAQ correlated with sensitivity, distress and beliefs and were uniquely associated with pain and disability. Pilot work

has shown that in persistent LBP, mediated reality resulted in pain relief for only the participant with altered back perception (as assessed by the FreBAQ), therefore we felt it relevant to assess here.

# 2.7.2.4. Recognise<sup>TM</sup>

Left/right discrimination tasks are used for evaluating motor imagery performance using the application Recognise<sup>TM</sup> (Figure 19), a commercially available online software program (http://recognise.noigroup.com/recognise). The app was developed in 2016 and using similar procedures to the online test. Research has shown that persistent LBP is associated with disruptions of the working body schema of the trunk (Bray & Moseley, 2011), which might be an important contributor to motor control abnormalities seen in this population. The speed and accuracy in Recognise<sup>TM</sup> are hypothesized to reveal dysfunctional motor imagery performance due to cortical reorganisation. Bowering et al. (2014) tested Recognise<sup>TM</sup> on 1008 participants and found that those with back pain at the time of testing were less accurate than healthy controls (p=0.027), as were participants who were pain-free but had a history of back pain and a history of back pain were less accurate (mean=76% [95% CI: 74-78%]) than all other groups ( $\geq$ 84% [95% CI: 83-85%]). Given that the VR intervention aims to have participants complete movements of the trunk, we were interested to see if motor imagery performance improved alongside with pain.



Figure 19: Recognise ™

Accuracy on this task in pain-free individuals is  $\geq$  80%, while reaction times of 1,6 seconds +/-0,5 seconds (Bowering et al, 2014). Accuracy and speed should be reasonably equal for left and right side.

# 2.7.2.5. Patient Specific Functional Scale (PSFS)

The PSFS was developed by Stratford et al. (1995) and is a brief interview-format questionnaire used to assess functional disability and a change in performance for activities of daily living. The PSFS has gained wide acceptance over the years, as a component of the set of patientspecific (aka patient-centred) health related quality of life instruments (HRQoL), which allows for individuals to generate their own, unique items for each questionnaire (Jolles, 2005). In the PSFS, patients nominate three functional activities that are important to them and with which they are experiencing some activity limitation (original metric: a 0-10 scale for each item, where 0 = unable to perform activity, 10 = able to perform activity at the same level as before injury or problem). Validity, reliability, responsiveness for persistent LBP has been tested for PSFS, and studies show that the PSFS was more responsive than NRS and the Roland-Morris Disability Questionnaire (RMDQ), and that PSFS is valid for group-level change comparisons and between-group discrimination (Horn, 2012). A minimum detectable change (90% Confidence Interval) for average score is 2 points, and 3 points for single activity score (Stratford et al, 1995).

In addition to these five secondary outcome measures, two undergraduate physiotherapy students from Western College of Applied Sciences, Bergen, collected pre- and post-measures of "Deyo's 7 myths" (Deyo, 1998) in the first four participants of the study. The questionnaire was developed based on the hypothesis that several myths regarding LBP were still believed in the general population in Norway, i.e., beliefs that were not concordant with current guidelines (Ihlebæk et al, 2003). "Deyo's 7 myths" will not be included in the data analysis for the master thesis, considering we already had pre-selected five other secondary measures that we wanted to look further into. All questionnaires related to primary and secondary outcome measures can be found in Appendix 4.

### 2.8. Statistical analysis

Linear mixed models are powerful and flexible tools, well suited for single-subject designs (Winter, 2013). The advantage of using a multi-level linear mixed model is that it provides flexibility when accounting for between participant differences in the number of data points and thus takes the full data into account. Traditional analysis on group data (i.e. RCTs) will perform an average-calculation and disregard daily variation in response to treatment. On the contrary, the analysis in the present study provides valuable information on a number of measures across each participant throughout the course of a new therapeutic intervention.

#### 2.8.1. Primary outcome measures (Daily measures)

In the present study we investigated whether there was a significant change between baseline and intervention for the daily primary outcome measures (pain NRS, TSK, PCS, and PASS) in the participants. In order to derive an effect size and t-value from a linear mixed model, the researcher must be willing to make the same assumption as a t-test does, i.e., that all recorded observations are independent of each other. We used a multi-level linear mixed model to analyse the primary outcome data. The multi-level model regards the replicated case series data as 'nested data'. Thus, individual measurement occasions are nested in cases (the individual) and the model takes into account that the measurement occasions are not independent of the person in which they are measured. Previous SSED work has used randomization tests; however, such an analysis is best suited when the intervention immediately results in a treatment effect. Given our intervention was not expected to immediately change pain/fear, it made more sense to evaluate overall differences between baseline and intervention scores, taking into account individual variability. The multilevel linear mixed analysis generates a t-value from which we derived a p-value from the reference distribution table (Appendix 5), indicating whether our findings were statistically significant. While the assumption of independent data of a t-test is not met, multilevel modelling is still recommended for SSED data (Baek & Ferron, 2013) given that the analysis is conservative rather than liberal (more chance of a type II error rate than type I) and the reduction in power from using a between group comparison is offset by the multiple measures at baseline and intervention (which are treated as dependent data).

For the primary outcome measures, we also evaluated whether participants achieved a clinically significant or minimally important change (MIC). We therefore used existing guidelines for Minimal Important Change (MIC) or Minimal Clinical Important Difference (MCID) to explore our data further, as the terms are used interchangeably. The current consensus states that a 30% improvement in pain and functional status from baseline may be considered a clinically meaningful improvement when comparing pre- and post-measures (Ostelo et al, 2008). The proposed MIC value for NPS-change in LBP is 2,0 points (Ostelo et al, 2008). While there is no current consensus regarding the MIC for TSK, PCS and PASS rating scales, if patients achieved a 30% reduction in score from baseline to follow-up, we reported it as a meaningful change. We based this decision on de Jong's (2012) study design, who used the same approach to determine meaningful change for TSK, PCS, and PASS when investigating graded exposure therapy for patients (n=8) with work-related upper extremity pain.

All statistical analyses were performed with lme4 and R package in SPSS. Bates et al. (2012; 2014) developed the lm4 package for R (R Core Team, 2012) in SPSS, as it provides functions to fit and analyse linear mixed models for single-subject experimental designs. Some of the proposed statistical modeling techniques for single-subject experimental designs include: interrupted time series analysis, generalized mixed models, multilevel modelling, Bayesian modelling techniques and structural equation modelling (Michiels & Onghena, 2018). In the present study, a multilevel modeling, or linear mixed model, was used. Further, techniques for statistical analysis of randomised AB phase designs can be divided into three subgroups: effect size calculation, statistical modeling, and statistical inference. In this study, we chose a

statistical modelling technique, which means constructing adequate description of the data by fitting the data to a statistical model (Michiels & Onghena, 2018). Additionally, a random slope was fitted with the linear mixed model, which means that the size of the treatment effect is allowed to vary across participants. Researchers in ecology (Schielzeth & Forstmeier, 2009), psycholinguistics (Barr, Levy, Scheepers, & Tilly, 2013) and other fields have shown that designs without random slopes are prone to a high Type I error rate (i.e. they tend to find a lot of significant results which are actually due to chance) (Winter, 2013), therefore we wanted to maximize the random effects structure for primary outcomes measurements in the study.

Different techniques have been proposed for carrying out the analyses in a linear mixed model, i.e., visual inspection of graphs, or statistical modelling. In order to evaluate internal and external validity in SSEDs, visual analysis tended to be the "gold standard" for single-subject data because of a presumed low Type 1 error rate and consistency across raters (Nelson et al, 2012). Thus, in the past, many researchers therefore saw little need for statistical aids (as described by Nelson et al, 2010, p. 3). However, recent research found that visual analysis of SSED data was less accurate and reliable than typically assumed (Nelson et al, 2012). In the present study, we have depicted all the primary outcome measurements in graphs to visualize change across all participants, but have not included a visual-based analysis. Statistical inference is not suggested as a replacement for visual analysis but is rather an aid for enhancing reliability and consistency, and for giving researchers and clinicians a means to corroborate visual analysis decisions, especially when considering important treatment decisions (Nelson et al, 2012). Statistical inference may also provide an empirical "check" for researchers and clinicians, either by forcing them to examine data more closely when contrasting decisions arise or by reducing the likelihood of overestimating treatment effects (Nelson et al, 2012). Finally, it may provide a common metric for discussing effects across participants, studies, and treatments (Nelson et al, 2012).

# 2.8.2. Secondary outcome measures (Non-daily measures)

Secondary outcome measure changes were analysed by calculating the percentage changes scores. The difference between pre-treatment and post-treatment scores was expressed as a proportion of the baseline score to get percentage change. No formal statistical analysis was performed.

# **3.0. Results** 3.1. Participants

Participants were recruited from the Outpatient Spine Clinic at Haukeland University Hospital, Bergen, Norway over a 6-month period (January to June 2018). A total of 14 participants were invited to participate, with 10 participants providing written informed consent and included in the study. Data from nine participants were analysed – data from one participant was excluded because the baseline pain ratings dropped after screening at the Outpatient Spine Clinic. Specifically, the participant rated pain at 4/10 on NRS during screening (26.04.18), but when meeting with MS and TFL for enrolment in the study (11.05.18), pain levels had dropped to 1/10 (Appendix 6). The participant should therefore have been excluded before entering the study and thus will be removed from the data analysis. Of the included participants, 8 were male and the average age was  $44.1 \pm 13.2$  (range: 28-63). See Figure 20 for a flow chart of study participation, and Table 4 for demographic and baseline characteristics.



Figure 20: Flow chart of study participation

| ID#  | Demographic factors                                                                                                                                                                         | Baseline<br>NRS | Marked painful<br>areas                                                                                     | Pain in<br>other body                                            | TSK                 | ODI | ÖMPQ   | The NOI-app<br>Recognise <sup>тм</sup>                     | FreBAQ | PSFS                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|-----|--------|------------------------------------------------------------|--------|------------------------------------------------------------------------|
| ID22 | Male, 63 years, married, 2<br>children. Profession-based<br>education (plumber). On<br>full sick leave for 5<br>months. Been sick listed<br>for the same complaint 2-<br>5x before.         | 5.91            | Lumbar spine,<br>bilateral.                                                                                 | Yes (leg<br>and foot:<br>9/10)                                   | 25/52<br>(mild)     | 56% | 74/100 | Speed: 1/r:<br>0.95/2.95 sec.<br>Accuracy: 1/r:<br>25%/85% | 8/36   | Lifting heavy: 4<br>Carrying heavy: 3<br>Vacuuming: 4                  |
| ID23 | Male, 38, married, 4<br>children. Primary school<br>(runs own company).<br>Partial sick leave for 5<br>months. Been sick listed<br>for the same complaint<br>more than 10x before.          | 4.83            | Lumbar spine,<br>bilateral, but<br>most pain on the<br>left side. Pain of<br>both sides of the<br>buttocks. | Yes (leg<br>and foot:<br>8/10)                                   | 37/52<br>(moderate) | 48% | 57/100 | Speed: l/r:<br>1.2/2.0 sec.<br>Accuracy: l/r:<br>80/75%.   | 16/36  | Sitting in excavator: 3<br>Sitting in truck: 3<br>Sitting in office: 3 |
| ID24 | Male, 31, single. Primary<br>school (maintenance work<br>with tunnels). Full sick<br>leave for 3 months. Never<br>been sick listed for this<br>complaint before.                            | 3.87            | Right side lumbar<br>spine and<br>buttocks, and<br>right anterior<br>thigh and testicle.                    | Yes (leg<br>and foot:<br>8/10)                                   | 35/52<br>(mild)     | 38% | 46/100 | Speed: 1/r:<br>0.8/1.3 sec.<br>Accuracy: 1/r:<br>75%/90%.  | 7/36   | Driving far: 7<br>Certain tasks at work: 5<br>Strength training: 7     |
| ID25 | Female, 54, 1 divorced, 1<br>child. Profession-based<br>education (working in<br>health care). On full sick<br>leave for 1 year. Been sick<br>listed for the same<br>complaint 2-5x before. | 5.14            | Lumbar spine,<br>bilateral.                                                                                 | Yes (leg<br>and foot:<br>7/10, neck<br>and<br>shoulder:<br>7/10) | 28/52<br>(mild)     | 54% | 35/100 | Speed: l/r:<br>2.5/1.55 sec.<br>Accuracy: l/r:<br>35/30%.  | 24/36  | Sitting: 2<br>Walking uphill: 2<br>Shower: 4                           |

| ID26 | Male, 47, married, 2<br>children. Profession-based<br>education (off-shore). On<br>full sick leave for 5<br>months. Been sick listed<br>for the same complaint<br>more than 10x.     | 6.11 | Lumbar spine,<br>bilateral, mostly<br>right side with<br>radiating pain<br>right leg towards<br>buttocks and<br>hamstrings. | Yes (leg<br>and foot:<br>8/10) | 32/52<br>(mild)     | 70% | 66/100 | Speed: l/r:<br>0.8/1.2 sec.<br>Accuracy: l/r<br>90/90%.    | 4/36  | Walking: 4<br>Sitting: 4<br>Bending forwards: 2  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|-----|--------|------------------------------------------------------------|-------|--------------------------------------------------|
| ID27 | Male, 28, single. Primary<br>school (truck driver). Not<br>sick listed. Been sick listed<br>for the same complaint 2-<br>5x before.                                                  | 2.00 | Lumbar spine,<br>slightly more<br>pain on the right<br>side.                                                                | No                             | 34/52<br>(moderate) | 36% | 24/100 | Speed: l/r:<br>1,.5/1.1 sec.<br>Accuracy: l/r:<br>95/100%. | 10/36 | Working: 4<br>Hiking: 6<br>Lifting: 6            |
| ID28 | Male, 48, married, 3<br>children. Profession-based<br>education (car salesman<br>and mechanic). Not sick<br>listed. Have never been<br>sick listed for the same<br>complaint before. | 2.07 | Lumbar spine,<br>bilateral, but<br>slightly more<br>pain on the left<br>side.                                               | Yes (leg<br>and foot:<br>8/10) | 25/52<br>(mild)     | 30% | 21/100 | Speed: 1/r:<br>0.9/1.2 sec.<br>Accuracy:<br>90/95%.        | 0/36  | Missing                                          |
| ID29 | Male, 59, divorced, 2<br>children. Primary school<br>(technician). On full sick<br>leave for 5 months. Been<br>sick listed for the same<br>complaint 2-5x before.                    | 8.20 | Lumbar spine,<br>bilateral, both<br>buttocks, left<br>anterior thigh<br>(numb sensation).                                   | Yes (leg<br>and foot:<br>6/10) | 25/52<br>(mild)     | 62% | 58/100 | Speed: 1/r:<br>1.35/1.9 sec.<br>Accuracy:<br>100/95%.      | 8/36  | Doing the dishes: 0<br>Dressing: 4<br>Bowling: 2 |
| ID30 | Male, 29, single.<br>University education<br>(working in IT). Partly sick<br>listed for 3 months. Never<br>been sick listed for the<br>same complaint.                               | 8.07 | Lumbar spine<br>and lower<br>thoracic spine<br>bilateral.<br>Radiating to<br>buttocks each<br>side.                         | No                             | 38/52<br>(moderate) | 44% | 56/100 | Speed: 1/r:<br>0.8/1.0 sec.<br>Accuracy: 1/r:<br>85/95%.   | 0/36  | Sitting: 2<br>Lifting: 3<br>(missing activity)   |

Mean ± SD or count, %: Female: 1 (11.1%) Age mean ± SD (range): 44.1 ± 13.2 (28-63) Pain intensity (NRS) baseline mean ± SD (range): 4.96 ± 2.33 (range:1-9) Demographic factor: Is the pain intensity present all the time, ID30: "yes", other participants: "no". Demographic factor: Shift work: ID26: "yes", other participants: "no".

Table 4: Demographic and baseline characteristics. Baseline Numerical Rating Scale (NRS) is presented as mean baseline score for all participants. Pain in other body locations was derived by analysing the marked areas of pain location on a full body figure with grids.

#### 3.2. Primary outcome measures

# **3.2.1.** Pain intensity changes

The lme4 (Bates et al, 2012) and the R package (R Core Team, 2012) in SPSS was used to perform a multi-level, linear mixed effects analysis of the relationship between baseline and follow-up for each participant. As fixed effects, we entered pain and baseline duration (without interaction term) into the model. As random effects, we had intercepts for each subject, as well as random slopes for the effect of pain. There was a statistical reduction in pain intensity levels as a result of the intervention ( $t_{9,350} = -4.613$ , p = <0.001). Specifically, the effect estimate for pain intensity (NRS) was -1.0240 (standard error = 0.22). That is, pain intensity ratings during treatment decreased by an average of 1 point on an 11-point NRS from baseline pain intensity ratings. P-values (<0.001) were conservatively derived from the t-value (-4.613) in the analysis for 8 degrees of freedom (n-1). Statistical analysis of residual plots did not reveal any obvious deviations from homoscedasticity or normality. Figure 21 shows the daily pain score ratings for each participant across the study period.





Figure 21: Participants with a MIC for pain intensity (NRS). The dashed vertical lines in blue represents the changes between experimental phases. The first period is the baseline, the second is the treatment phase, and the third is the follow-up phase. The red dashed vertical lines represents an extended baseline duration for ID25. \* = pain reduction was greater than the MIC

In participants that achieved the MIC for pain intensity (NRS) following treatment, the individual response to treatment was variable (See Figure 21, \* participants). Some participants experienced significant pain relief (ID23, ID24, ID25) while one participant had highly fluctuating pain levels throughout the study, but with a gradual reduction in pain as compared

with baseline scores (ID29). Similarly, the responses were also variable for participants (n=5) that did not achieve a reduction in pain intensity greater than the MIC for the pain NRS. Notably, all 5 participants still did experience reduced pain intensity. ID26 had large fluctuations in pain levels throughout the study, which gradually decreased by 1.71 points on NRS from baseline to follow-up. Two of the participants (ID27 and ID28) had lower mean pain intensity scores (NRS) throughout the baseline phase compared to other participants (Table 5), which may have contributed to a floor-effect in the primary analysis. In contrast, ID30 had high pain scores throughout the study and only a minimal change in NRS (1.07 points change). ID25 had total pain relief for approximately 6 days before experiencing some days of increased pain. Despite two participants (ID26 and ID27) having low NRS scores at baseline of the present study, the results for pain intensity (NRS) were still statistically significant. Further, a sensitivity analysis (indentical to above) was run excluding those two participants and there was still a significant effect of pain ( $t_{7,242} = 7.416$ , p<0.001, effect estimate -1.40, standard error 0.19). Pain intensity ratings during treatment decreased by an average of 1.4 points from baseline on a 11-point NRS.

When considering the changes in pain intensity from baseline to follow-up (7 days of pain measures post-intervention), the results suggest that the effect on pain was maintained or even increased (Table 5).

| Participant    | Mean baseline      | Mean                | Mean follow    | Change, (%), from        | Change, (%), from     |
|----------------|--------------------|---------------------|----------------|--------------------------|-----------------------|
|                | score              | intervention score  | up score       | baseline to intervention | baseline to follow-up |
| ID22           | 5.91               | 5.96                | 4.14           | -0.02 (-0.33%)           | -1.77 (-29.94%)       |
| ID23           | 4.83               | 3.23                | 2.00           | -1.52 (-31.47%)          | -2.83* (-58.59%)      |
| ID24           | 3.87               | 2.20                | 0.14           | -1.68 (-43.31%)          | -3.73* (96.38%)       |
| ID25           | 5.14               | 2.57                | 0.85           | -2.57 (-50%)             | -4.29* (83.46%)       |
| ID26           | 6.11               | 5.42                | 4.42           | -0.69 (-11.29%)          | -1.69 (27.65%)        |
| ID27           | 2.00               | 1.50                | 1.00           | -0.5 (-25%)              | -1.00 (50%)           |
| ID28           | 2.07               | 1.42                | 1.00           | -0.64 (-30.92%)          | -1.07 (51.69%)        |
| ID29           | 8.20               | 6.78                | 4.71           | -1.42 (17.31%)           | -3.49* (42.56%)       |
| ID30           | 8.07               | 7.80                | 7.00           | -0.27 (-3.34%)           | -1.07 (13.25%)        |
| Table 5: Chang | e in NRS scores. * | * = MIC for pain in | ntensity (NRS) |                          |                       |

# 3.2.1.1. MIC on the Pain NRS

The number of participants that experienced a minimal important change (MIC) in pain intensity (defined as a NRS score reduction greater than 2.0 points (Ostelo et al, 2008) with treatment was considered. In the current sample, four out of nine participants had a pain intensity reduction greater than 2.0 points on 0-10-point NRS. Table 5 shows the participant-specific percentage change scores (Participants with a MIC for pain intensity in Figure 21 are indicated with a \*).

# 3.2.2. Changes in pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS) scores

The same statistical analysis (as per pain intensity) was performed for pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS) was performed using lme4 (Bates et al, 2012) and R package (R Core Team, 2012) in SPSS. As fixed effects, we entered TSK, PCS and PASS-values and baseline duration into the model. As random effects, we had intercepts for each subject, as well as random slopes for the effect of pain-related fear of movement, pain catastrophizing and pain anxiety symptoms. There was a statistically significant reduction in pain-related fear of movement (t<sub>9,347</sub> = -8.670, p = <0.0005), pain catastrophizing (t<sub>9,347</sub> = -3.45, p = <0.005) and pain-anxiety symptoms (t<sub>9,347</sub> = -8.40, p = <0.0005) from receiving VR-based treatment (compared to baseline levels) for participants in the study (See Table 6 and Figure 22 for individual participant outcome).

|                       | Changes in TSK scores     |                                 |                            |                                           |                                        |                           | Changes in PCS scores          |                               |                                                  |                                               | Changes in PASS scores    |                                |                               |                                               |                                        |
|-----------------------|---------------------------|---------------------------------|----------------------------|-------------------------------------------|----------------------------------------|---------------------------|--------------------------------|-------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------|--------------------------------|-------------------------------|-----------------------------------------------|----------------------------------------|
|                       | Mean<br>baseline<br>score | Mean<br>intervention<br>score   | Mean<br>follow up<br>score | Change, %,<br>baseline to<br>intervention | Change, %,<br>baseline to<br>follow-up | Mean<br>baseline<br>score | Mean<br>interventio<br>n score | Mean<br>follow<br>up<br>score | Change,<br>%,<br>baseline to<br>interventio<br>n | Change,<br>%,<br>baseline<br>to follow-<br>up | Mean<br>baseline<br>score | Mean<br>interventi<br>on score | Mean<br>follow<br>up<br>score | Change, %,<br>baseline to<br>interventio<br>n | Change, %,<br>baseline to<br>follow-up |
| ID22                  | 44.0                      | 40.7                            | 14.14                      | -7.5%                                     | -67.86%                                | 16.67                     | 13.02                          | 9.52                          | -21.89%                                          | -42.9%                                        | 35                        | 35                             | 35                            | 0%                                            | 0                                      |
| ID23                  | 75.44                     | 76.8                            | 77.33                      | +1.8%                                     | +2.5%                                  | 75.00                     | 78.78                          | 75.00                         | +5.04%                                           | 0%                                            | 88.33                     | 85.00                          | 85.83                         | -3.76%                                        | +2.83%                                 |
| ID24                  | 55.00                     | 52.25                           | 53.42                      | -5%                                       | -2.87%                                 | 32.14                     | 15.41                          | 8.33                          | -52.05%                                          | -74.08%                                       | 39.28                     | 23.50                          | 25.71                         | -40.17%                                       | -34.54%                                |
| ID25                  | 40.85                     | 39.80                           | 42.43                      | -2.57%                                    | +3.84%                                 | 41.67                     | 11.50                          | 0                             | -72.40%                                          | -72.40%                                       | 47.85                     | 23.80                          | 5                             | -50.26%                                       | -89.55%                                |
| ID26                  | 55.33                     | 29.75                           | 22.00                      | -46.23%                                   | -60.23%                                | 25.00                     | 32.45                          | 36.90                         | +29.8%                                           | +47.6%                                        | 77.85                     | 77.89                          | 80.00                         | 0%                                            | +2.76%                                 |
| ID27                  | 33.00                     | 33.00                           | 33.00                      | 0%                                        | 0%                                     | 8.33                      | 8.33                           | 8.33                          | 0%                                               | 0%                                            | 25.71                     | 3.33                           | 0.71                          | -87.04%                                       | -97.2%                                 |
| ID28                  | 33.00                     | 11.00                           | 11.00                      | -66.67%                                   | -66.67%                                | 0                         | 0                              | 0                             | 0%                                               | 0%                                            | 12.85                     | 0                              | 0                             | -12.85%                                       | -12.85%                                |
| ID29                  | 0                         | 0                               | 0                          | 0%                                        | 0%                                     | 8.33                      | 2.17                           | 0                             | -73.94%                                          | -73.94%                                       | 35.00                     | 20.00                          | 8.00                          | -42.85%                                       | -77.1%                                 |
| ID30                  | 55.00                     | 46.93                           | 44.00                      | -14.67%                                   | -20%                                   | 0                         | 0                              | 0                             | 0%                                               | 0%                                            | 65.71                     | 67.66                          | 60.00                         | +2.96%                                        | +8.68%                                 |
| Table 6.<br>lighter g | : Changes<br>green back   | in pain-relate<br>grounds, whil | d fear of ma<br>e ≥30% rea | ovement (TSK)<br>luction from be          | , pain catastr<br>iseline is mar       | ophizing (<br>rked with a | (PCS) and pa<br>darker green   | iin anxiei<br>backgroi        | ty symptoms<br>unds.                             | (PASS). Re                                    | eductions                 | in TSK, PC                     | S or PASS                     | 5 scores are n                                | ıarked with                            |

The effect of treatment on pain-related fear of movement (TSK) was -7.9 (standard error = 0.91) for participants in the study. That is, TSK scores during the intervention decreased, on average, by 7.9 points from baseline scores. Statistical analysis of residual plots did not reveal any obvious deviations from homoscedasticity or normality. The P-value (<0.0005) was derived from the t-value (-8.670) with 9 degrees of freedom. Two participants showed more than a 30% reduction in TSK scores from baseline (See Table 6).

The effect of treatment on pain catastrophizing was -3.2 (standard error = 0.93) for participants in the study. That is, PCS scores during the intervention decreased, on average, by 3.2 points from baseline scores. Statistical analysis of residual plots did not reveal any obvious deviations from homoscedasticity or normality. The P-value (<0.005) was derived from the t-value (-3.453) with 9 degrees of freedom. Three participants showed more than a 30% reduction in PCS scores from baseline (See Table 6).

The effect of treatment on pain-anxiety symptoms scale (PASS) was -9.8 (standard error = 1.2) for participants in the study. That is, TSK scores during the intervention decreased, on average, by 9.8 points from baseline scores. Statistical analysis of residual plots did not reveal any obvious deviations from homoscedasticity or normality. The P-value (<0.0005) was derived from the t-value (-8.404) with 9 degrees of freedom. Five participants showed more than a 30% reduction in TSK scores both from baseline (See Table 6).

When considering the changes in TSK, PCS, and PASS from baseline to follow-up (7 days of pain measures post-intervention), improvement was maintained or increased. Table 6 provides a breakdown of the percentage that TSK, PCS, and PASS ratings changes between baseline and the intervention period and between baseline and the 7-day follow-up period.









TSK, PCS & PASS scores: ID27



TSK, PCS & PASS scores: ID28



TSK, PCS & PASS scores: ID29



Figure 22: Change in pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS) for all participants. The dashed black vertical lines represent the changes between experimental phases: baseline, treatment, and follow-up phase. The dashed orange vertical line represents an extended baseline duration for ID22 and ID25.

# 3.2.2.1. Clinically meaningful changes for TSK, PCS, and PASS ratings

As shown in Table 6, results for TSK, PCS and PASS scores had a large variation. While some participants had an increase in TSK, PCS or PASS scores from baseline, the overall trend was a reduction in scores between baseline, intervention and follow-up. ID25 showed the greatest overall reduction when combining all three measures. In summary, three participants had a meaningful change ( $\geq$ 30% reduction) for pain-related fear of movement (TSK), four participants had a meaningful change for PCS, and five participants had a meaningful change for PASS. As visually depicted in Figure 22, ID25 showed the most obvious connection to phase shift when the VR-based intervention was introduced. Nevertheless, all participants showed a statistically significant effect for pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS). A full overview in Figure 22.

# 3.2.2.2. Change in pain NRS related to number of VR-trainings

Since the number of VR-interventions were randomized between participants, we were also interested in investigating whether the duration of the pre-treatment phase (i.e. baseline) and the number of interventions led to a more nuanced result for pain intensity (NRS) ratings. Table 7 shows that participants who had a shorter pre-treatment phase (5-8 days) and a higher dosage of VR-trainings (8 or 9) had a MIC. The remaining participants who did not have a MIC, had longer pre-treatment phases (10-14) and a lower dosage of VR-training. Meanwhile, ID26 had an 'intermediate' pre-treatment phase (9 days) and dosage of VR-trainings (8 VR-trainings), but no MIC (although close at -1.69). A discussion on these results are provided in subsection 4.2.1.

| ID | Duration of baseline<br>(days) | Number of interventions<br>(descending number) | NRS change from<br>baseline to follow-up |
|----|--------------------------------|------------------------------------------------|------------------------------------------|
| 25 | 7                              | 9                                              | -4.29* (83.46%)                          |
| 29 | 5                              | 9                                              | -3.49* (42.56%)                          |
| 23 | 6                              | 9                                              | -2.83* (-58.59%)                         |
| 24 | 8                              | 8                                              | -3.73* (96.38%)                          |
| 26 | 9                              | 8                                              | -1.69 (27.65%)                           |
| 22 | 12                             | 7                                              | -1.77 (-29.94%)                          |
| 27 | 10                             | 7                                              | -1.00 (50%)                              |
| 30 | 13                             | 6                                              | -1.07 (13.25%)                           |
| 28 | 14                             | 6                                              | -1.07 (51.69%)                           |

Table 7: The implication of number of VR-trainings on pain intensity (NRS) reduction. The table shows that participants with 8 or 9 VR-trainings had a greater reduction in NRS score. \* = MIC for NRS.

# 3.3. Secondary outcomes measures

In the secondary outcome measure analysis, a comparison of scores from baseline to follow-up (post-intervention) was performed. The change in outcome for each participant was calculated as a percentage improvement for ODI, ÖMPSQ short form, FreBAQ and Recognize<sup>TM</sup> from baseline. Change scores are presented in Table 8, while a full overview of scores for secondary outcome measures can be found in Appendix 7 and Appendix 8. Unfortunately, one questionnaire, PSFS, had to be excluded from the analysis due to missing data at follow-up (Appendix 9). Of all participants in the present study, ID25 was the only participant with a MIC in pain intensity (NRS), and  $\geq$ 30% reduction in pain catastrophizing (PCS), pain-anxiety symptoms (PASS), and reduced scores in all secondary outcome measures.

|      | ODI       | ÖMPSQ<br>short form | FreBAQ    | Recognise TM |        |           |           |  |  |  |
|------|-----------|---------------------|-----------|--------------|--------|-----------|-----------|--|--|--|
|      | Change, % | Change, %           | Change, % | Speed,       | Speed, | Accuracy, | Accuracy, |  |  |  |
|      |           |                     |           | left         | right  | left      | right     |  |  |  |
| ID22 | -14%      | -13.5%              | -75.2%    | +47%         | -59%   | +30%      | -20%      |  |  |  |
| ID23 | -4%       | -19.3%              | -31.3%    | +60%         | -15%   | 0%        | -15%      |  |  |  |
| ID24 | -14%      | -26.1%              | +29.0%    | +20%         | -11%   | +5%       | 0%        |  |  |  |
| ID25 | -18%      | -20.0%              | -79.2%    | -34%         | -10%   | +30%      | +25%      |  |  |  |
| ID26 | -18%      | +7.6%               | +25.1%    | +11%         | -29%   | +5%       | -5%       |  |  |  |
| ID27 | -4%       | -33.3%              | -90.0%    | -19%         | -27%   | -5%       | -25%      |  |  |  |
| ID28 | -2%       | +23.8%              | 0.0%      | -11%         | -17%   | +5%       | +5%       |  |  |  |
| ID29 | +2%       | -17.2%              | -12.3%    | -22%         | -55%   | -15%      | -25%      |  |  |  |
| ID30 | +12%      | -7.1%               | +44.0%    | -25%         | -25%   | 0%        | -10%      |  |  |  |

Table 8: Secondary outcome measures: change (%) from baseline. Reduction in ODI, OMPSQ short form, FreBAQ and Recognize TM scores are marked with lighter green backgrounds, while reductions ( $\geq 10\%$  for ODI, and  $\geq 30\%$  for the remaining questionnaires) from baseline is marked with a darker green backgrounds.

# 3.3.1. Oswestry Disability Index

In total, 7 out of 9 participants had a reduction in ODI scores. Four out of 9 participants (ID22, ID24, ID25 and ID26) showed a MIC, i.e. 10% reduction in ODI score from baseline to followup (Fairbank & Pynsent, 2000). One participant (ID26) moved from the category 70% disability (crippled) at baseline to 52% (severe disability) at follow-up. A complete overview of the change scores can be found in Appendix 7.

# 3.3.2. Örebro Musculoskeletal Pain Screening Questionnaire - short form

ÖMPSQ short form ranges between 1-100, and a score ≥50 indicates higher estimated risk for future work disability (Linton, Nicholas & MacDonald, 2011). In total, 7 out of 9 participants had reduced ÖMPSQ short form scores at follow-up. Only ID27 had a ≥30% reduction for ÖMPSQ short form from baseline to follow-up. Two participants (ID23, ID29) went from above, to beneath, the original cut-off score (50/100) throughout the course of the study (See Appendix 7 for more details).

# 3.3.3. Fremantle Back Awareness Questionnare

Analysis of the FreBAQ questionnaire data showed variable outcomes when comparing baseline and follow-up. In total, 5 out of 9 participants showed a reduction in score, while 4 out of 9 showed a  $\geq$ 30% change in FreBAQ score from baseline to follow-up. However, the change scores showed high inter- and intra-case variance, with no consistent direction or trends towards a negative or positive change across all 9 participants. Full data is provided in Appendix 7.

#### 3.3.4. Recognise<sup>™</sup>

The Recognise <sup>™</sup> data showed variable outcomes, as shown in Table 8, with the exception of performance on "Speed: right side images", which showed a consistent reduction across all 9 participants. Data for "Speed left side" and "Accuracy left side" and "Accuracy right side" did not show any particular trends. Full data is provided in Appendix 8.

# 3.4. Compliance with baseline, intervention and follow-up phases

Significant effort was made to fit participants' schedules into the present research design that involved randomising participants to a variable baseline and intervention duration. With some minor adjustments, most participants' baseline and intervention phases occurred as randomised. The randomised baseline duration was implemented for all participants, except for two, who were delayed by 1 and 2 days (Table 9). All participants received their randomized number of

interventions (between 6 and 9) within the first 28 days of the study as planned. For the 7-day follow-up, all participants filled in daily measures for at least 35 days as planned. However, due to unforeseen events (work-related issues, vacations and illnesses), some participants were unable to meet again at day 35. This resulted in some additional "daily measures" and secondary measure assessment was delayed (ranging from 1-5 days) for some participants.

|      |          | Baseline | duration | Baseline + | intervention | duration | Follow-up duration |          |  |
|------|----------|----------|----------|------------|--------------|----------|--------------------|----------|--|
|      | Start    | Plan     | Actual   | Plan       | Actual       | I*       | Plan               | Actual   |  |
| ID23 | 08.01.18 | 6 days   | 6 days   | 28 days    | 28 days      | 9        | 7 days             | 12 days* |  |
| ID26 | 09.01.18 | 9 days   | 9 days   | 28 days    | 28 days      | 8        | 7 days             | 10 days* |  |
| ID24 | 23.01.18 | 8 days   | 8 days   | 28 days    | 28 days      | 8        | 7 days             | 9 days*  |  |
| ID28 | 26.02.18 | 14 days  | 14 days  | 28 days    | 28 days      | 6        | 7 days             | 7 days   |  |
| ID22 | 19.02.18 | 12 days  | 14 days* | 28 days    | 28 days      | 7        | 7 days             | 8 days*  |  |
| ID25 | 26.02.18 | 7 days   | 8 days*  | 28 days    | 28 days      | 9        | 7 days             | 7 days   |  |
| ID30 | 23.02.18 | 13 days  | 13 days  | 28 days    | 28 days      | 6        | 7 days             | 7 days   |  |
| ID29 | 09.04.18 | 5 days   | 5 days   | 28 days    | 28 days      | 9        | 7 days             | 9 days*  |  |
| ID27 | 15.04.18 | 10 days  | 10 days  | 28 days    | 28 days      | 7        | 7 days             | 7 days   |  |

*Table 9: overview over baseline, intervention and follow-up phase. Note:*\* =*discrepancy and planned and actual phase duration marked in red.* 

# 3.4.1. Side effects

Participants did not report any side effects during VR training. One participant (ID26) expressed that he did not feel that the VR training was relevant to the specific complaints that he had in ADL. This remains one of the challenges with the novel intervention provided in the present study, which must be addressed in future research.

# 4.0. Discussion

Overall, this study found that a VR-training program resulted in significant reductions in pain intensity (NRS), pain-related fear of movement (TKS), pain catastrophising (PCS), and pain anxiety symptoms (PASS) in people with persistent LBP. These improvements were maintained or improved following treatment completion (7-day follow-up). This section will discuss the influence of methodological features on the study findings and how this impacts the interpretation of the present results. Further, this section will discuss the findings, comparing the present results to previous literature in the area. Last, this section will discuss the overall study strengths/limitations, discuss the implications of this work to future research directions, and last, provide a clinical perspective based on these results.

# 4.1. Methodological features: influence on the study findings and their interpretation

# 4.1.1. Influence of study design

When deciding which study design to implement, performing an SSED or a pilot-RCT were the two primary design candidates to choose between. An SSED was eventually chosen given the need for a study design to investigate the use of new type of technology, software and protocol. The benefit of an SSED is that it allowed us to follow participants with daily measures throughout the intervention using a rigorous research method and statistical analysis, as seen in other pilot studies developing psychological treatments for pain and medicine (Morley et al, 2015). The study design also provided insight via daily pain measures on the effect of an innovative approach (VR) that eventually aims to provide highly cost-effective interventions in the field. Having detailed information about such an intervention is important, given that metaanalysis have shown that compared with no treatment or treatment as usual, psychological, physical, and pharmacological treatments for persistent pain can be effective, but the effects are small (Morley et al, 2015); thus rich information about a new intervention can help guide refinement. Additionally, the study design satisfied the practical needs for a master's project that has a limited time frame, particularly given the challenges that accompany development of a new treatment using innovative technology. For example, as part of the Masters, we needed to borrow VR-equipment for the study, find appropriate software and IT-competence, develop a protocol for the study, find a test location that matched the technical demands, and recruit and test participants. However, limitations relevant to the design exist: we do have measures of effect size relevant to a control group (and thus external generalizability) that occur with RCT's (the "gold standard" design).

The present phase 2a clinical trial (i.e. proof of concept study), evaluated the efficacy (and side effects) of VR training in people with persistent LBP. Use of this study design, thus allowed us to provide proof of concept evidence that VR training results in a statistically significant reduction in pain intensity (NRS), pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain-anxiety stress symptoms (PASS), and that we therefore could reject the null hypothesis (H0). If this intervention was to be further investigated, the next step would be to perform a phase 2b clinical trial whose aim is to determine the correct therapeutic dosage of interventions. As will be discussed further in subsection 4.2.5., the present study demonstrated that a higher dosage ( $\geq 8$ ) of VR-sessions compared to Thomas et al.'s feasibility study (2016) may be beneficial to achieve a statistically significant effect. Further, a phase 3 clinical trial, would be relevant to compare the VR-intervention with another treatment alternative using a between-subjects design (Cancer Research UK, 2015, National Health and Medical Research Council, Australia, 2015). We found it reasonable and ethically sound to skip the first testing phase for clinical trials (i.e., testing the protocol on healthy participants,) since the protocol we developed could be easily adjusted to provide different levels of exposure to movement to ensure that participants were not placed in situations that could be harmful.

# 4.1.2. Considerations relevant to participants recruited

Participants were screened by a rehabilitation team consisting of general practitioners, physiotherapists, occupational therapists and nurses at the Outpatient Spine Clinic from Haukeland University Hospital, Bergen. Participants are therefore representative of the type of LBP patients commonly seen in primary health care. This provides us with confidence that our results are relevant to patients that are seeking care for their LBP. The sample was heterogenous with varying age, education level, duration of LBP ( $\geq$ 3 months) and duration of sick-listing due to LBP. Most participants were men (89.9%), which is merely an unintended result of consecutive sampling of patients entering the Outpatient Spine Clinic in the time period January to June 2018, since we did not randomise participants for enrolment in the study. As we continue to rely more on games for education and training in health care, software developers need to ensure that future health technology games are attractive and motivating for both men and women of all ages (Veltri et al, 2014).

# 4.1.3 Inclusion and exclusion criteria

All inclusion and exclusion criteria were upheld according to the protocol (Subsection 2.4, Table 1), with two exceptions, 1) one of the included participants' NRS score was too low (did not meet formal eligibility criteria), and 2) minor adjustments in the eligibility cut-off score on TSK-11 were made to ensure sufficient participant recruitment.

Ten participants were recruited for the study, nine were considered eligible for data analysis. One participant (ID21) was excluded from data analysis due to low pain intensity (NRS) score (1/10) at baseline (Appendix 6). Further, all remaining nine participants had 4/10 on NRS at screening at the Outpatient Spine Clinic. However, for two participants, the pain intensity had continued to drop from screening and throughout enrolment in the study, which means that ID27 had a mean baseline score of 2.0 points, and ID28 had 2.07 points (Table 5, Subsection 3.2.1.). This may have led to less variable scores throughout the study, and a potential "floor effect" compared to other participants. In Figure 21, these two participants account for two of the five participants who did not show any MIC for pain intensity. Although we discussed excluding the participants from the analysis, we chose to include them in the analysis since they had 4/10 at screening at the Outpatient Spine Clinic. We did, however, perform a sensitivity analysis without these two participants, and showed that pain intensity is still significantly reduced with VR training.

Additionally, the original aim was to include highly kinesiophobic LBP patients ( $\geq$ 42/52). However, upon discussions with the recruiting clinic, it became evident that the Outpatient Spine Clinic have had very few participants who scored severe on TSK-11 ( $\geq$ 42/52) over the past years, an adjustment of the inclusion criterion was considered necessary. As suggested by the Outpatient Spine Clinic (and based on clinical experience), we altered the minimum score to  $\geq$ 25 on TSK-11 (25/52) – thus including participants with mild, moderate and severe levels of kinesiophobia. Subsequently, five participants had a mild level of kinesiophobia, and four had moderate levels of kinesiophobia. None of the participants had subclinical levels ( $\leq$ 22/52). (Appendix 10).

# 4.1.4. Considerations relevant to the procedure for data collection and outcome measures (and their assessment)

The purpose of any experiment is to rule out plausible rival hypothesis or threats to internal validity (Cook & Campbell, 1979), such as history and maturation bias or statistical regression to the mean, familiarity with testing, and/or error with instrumentation. In an SSED, the use of standardized outcomes with known psychometric characteristics allows for determination of whether a person has made a reliable change and whether the change is significant (Jacobson et al, 1999). However, the SSED cannot rule out other threats to the validity (Morley et al, 2015). The essence of a single-subject design is the repeated assessment over time of a target outcome and the manipulation of treatment condition (Morley et al, 2015). Specifically, an ABphase design requires a minimum of three measurement occasions per phase (Kratochwill et al, 2010) which was successfully carried out across all participants. In addition, we selected specific outcomes that are functionally related to the treatment (Morley et al, 2015). In the present study, a representation of "highly salient items from standard questionnaires" (Morley et al, 2015) was chosen to track viable variables of fear and catastrophizing (similar to methodology used by Vlaeyen et al, 2012 and de Jong et al, 2012). A large database of patients with persistent musculoskeletal pain showed that the internal consistency of primary outcome measure subscales was sufficient to good (Chronbach a = 0.60, 0.72, and 0.73) for TSK, PCS and PASS, respectively (Roelofs et al, 2004).

Participants were instructed to complete all daily measures (via self-report questionnaires) at the same time point each day: 8 p.m. every night. The approach has been shown sensitive to graded exposure therapy in previous studies (de Jong et al, 2005a; 2005b; 2008, Vlaeyen et al, 2001; 2002a; 2002b), and although not tested for VR-interventions yet, the approach was evaluated as the most viable alternative to date. Consequently, participants were given 2-3 daily measure forms after each VR-training session, which they had to return to MS and TFL at the next appointment. Such regular check-in with the researchers ensured low levels of missing data. Further, participants adhered to the treatment schedule and appointments as planned. Only two participants had a prolonged baseline-period, of 1 and 2 days. As depicted in Table 9, all participants adhered to the 28-day schedule, while some participants had more than 7-days follow-up. ID22 and ID25 had a 2 and 1-day prolonged baseline, respectively. Five of the participants had an extended 7-day follow-up period (1-5 days) due to a number of reasons which we could not control, including work-related issues, illness, vacation and other reasons. All secondary outcome measures were collected successfully within a satisfactory time frame.

We are open to the possibility that collecting daily measures may be exhaustive as participants had to fill in 11 questions every day. This may be a particularly concern for pain intensity scores (NRS), which may prime the participant to focus on pain intensity every day, and thus may not be beneficial from a clinical perspective. Further, a current trend that may be discussed in future studies is whether we should rather focus on improvements in disability levels (i.e. scores related to ADL), because pain levels tends to come and go, occur in "flare-ups", or sometimes be somewhat unpredictable for persistent LBP patients. However, the use of daily measures was considered ethically sound and necessary in the present study to adequately analyse how the participants responded to a new intervention. In the novel context of VR-training, it was also important to understand the daily fluctuations, as opposed to only seeing pre- and post-measures, and long-term follow-up.

Most participants filled in the forms without asking for help. However, we included one questionnaire in English (FreBAQ) in the secondary outcome measures, which led to need for translation and interpretation from some of the participants. We also included Recognise<sup>TM</sup>, which seemed to work very well amongst the younger participants, but the older participants struggled with understanding the task at hand. This should be taken into consideration when looking at the results, and for future studies. Emphasis should be put on providing a careful explanation for all participants, ensuring that the task is well understood.

Further, the two testing points for secondary measures were 5 weeks (35 days) apart, implying that there is a minimal risk of recall bias (i.e. that participants remembered which answer they gave at the different questionnaires). De Vet et al. (2015) suggests that the ability to recall a pain state accurately may be significantly reduced two weeks after the initial assessment. It should be noted that most of the data collection was completed and all the interventions were provided by MS and TFL. Participants could therefore have experienced response bias when filling out questionnaires, due to the double role MS and TFL had in the study (i.e., not wanting to let the clinician know that a treatment was not helpful). However, none of the participants had any former relationship to the researcher MS or TFL, which does reduce the chance of this response bias. For future studies, a research assistant responsible for carrying out the intervention is preferable.

#### 4.1.5. Considerations related to responsiveness of outcome measures

When selecting assessment outcomes, researchers face the challenge of choosing between a myriad of objective and subjective assessments. Responsiveness of a measure to changes in status generally involve identification of a true change in the underlying construct of interest (Carter & Lubinsky, 2017). In the present study, NRS was selected over visual analogue scale (VAS) for pain intensity due to better psychometric properties. Specifically, previous studies have shown that NRS has been found to be a reliable scale in terms of inter- or intra-rater repeatability and its ability to detect change (Bijur et al, 2001; Boonstra et al, 2008; Hawker et al, 2011). Further, Ostelo et al. (2008) and Wright (1996) argues that a statistical significance does not necessarily mean that the change is clinically important. MIC values depend not only on empirical evidence but also on clinical interpretation and judgement (Ostelo et al, 2008). Therefore, we were also interested in the clinical relevance of the intervention, using MIC as an assessment outcome. A 30% improvement from baseline is considered a useful threshold for identifying clinically meaningful improvement for NRS (Ostelo et al, 2008). Although MIC is only validated for NRS and ODI in this context, we replicated the approach to investigate whether there was a MIC for TSK, PCS, PASS and the remaining secondary outcome measures. The authors of the study acknowledge the limitation with this approach, however; the study design is well suited for looking at clinical important changes across each participant. The final tenet related to responsiveness is that the TSK, PCS and PASS-items were collected as Likert scales (with 4, 5 and 6 questions, respectively), and subsequently transformed to percentage agreement (0-100) in order to be fitted into the linear mixed model analysis. One might argue that if we collected the items as numeric rating scales instead of Likert scales, it may have influenced the responsiveness of the questionnaires. However, converting the Likert scale to 0-100 is not inconsistent with past research in this area.

#### 4.1.6 Considerations relevant to the statistical analysis

In the present study, a sequential randomized and replicated single-subject experimental phase design with multiple measurements was analysed using a fitted linear mixed model (also referred to as a multilevel model) in lme4 with the R package in SPSS. The design and the analysis have the advantage of being valid for single-subject experiments, of being easy to apply, and for being versatile for even the most complex single-subject designs (Onghena & Edgington, 2005b). Although some researchers may prefer randomisation tests over linear

mixed effect analysis, the latter was considered the best approach when analysing the data set in the present study. The multilevel model regards the replicated case series data as "nested data". So individual measurement occasions are nested in cases and the model takes into account that the measurement occasions are not independent of the person in which they are measured. The analysis computes a t-value based on the difference between baseline measures (programmed as 0 in the R-package and lme4) to intervention measures (programmed as 1) across all nine participants. The p-value is thereafter derived from a t-table (Appendix 5), depending on degrees of freedom. A randomisation test would perhaps address this limitation, as the analysis is more preferable as it makes less assumptions about the data. However, randomization tests are less flexible in terms of detecting an effect when the data show unexpected characteristics (i.e. high inter-subject variability, gradual treatment effects, trends, etc.), which makes linear mixed models better equipped to handle such complex data sets. In brief, that we used an analysis that takes into account interdependence of an individual's scores as well as one that uses all available data (all daily scores regardless of differences in numbers between participant – e.g., different baseline and treatment durations), provides confidence in the study's results.

In our statistical analysis, we have depicted all daily measures in graphs showing daily changes in NRS, TSK, PCS and PASS. While we did not use the graphs to infer statistical effects of the intervention, they are useful tools to see daily fluctuations for each participant.

# 4.1.7 Ethical considerations

This study was approved by the regional ethics committee (2017/REK Vest/1199) 13.06.2017, and has been performed in a sound ethical and professional way. It has not been possible for MS or TFL to connect the ID-numbers received from the Outpatient Spine Clinic with participants' names or other personal factors. Only JSS had the key to unlock this code at the Outpatient Spine Clinic, and all VR interventions were carried out at a different location. For future studies, a larger team with a research assistant blinded to treatment group (or, in this case, phase of the study) is preferable, but for this master's project, this was not possible.

All participants who were included in the study volunteered to participate after receiving written and oral information about the study. To ensure a thorough follow-up of all participants, the participants were offered a further follow-up in primary health care after the data collection was completed (day 35), and MS was responsible for referring them back to the Outpatient Spine Clinic. Two participants (ID29 and ID30) decided to take this offer, because they still had a high pain levels and/or disability throughout the study, and accordingly when the present study was over, they were interested in accessing further primary health care services provided by the Outpatient Spine Clinic. Considering that the intervention was only five weeks long, and that participants had been screened by a whole team and evaluated as safe to start exercising prior to entering the VR study, and that participation was voluntary, the study was considered ethically sound. Finally, the study was considered an innovative and potentially important pilot study for the Outpatient Spine Clinic, who specialized on treatment on this patient group.

#### 4.2. Discussion and implications of the study results

# 4.2.1. Primary outcome measure: Pain intensity (Numerical Rating Scale)

This study found that pain intensity decreased by 1 point across all participants on an 11-point NRS during the VR intervention. Further, when considering the percentage change in scores between baseline and follow-up, improvements were maintained or increased in all participants. We were interested in whether the changes were reliable and statistically significant, and how the nine participants responded to the intervention. With the current design, we account for the number of days where the participants did not receive any intervention, versus the time period where they did. Hence, a reduction of -1.0 points represents the reduction across participants when accounting for a randomised baseline. In this way, we have strengthened the internal validity (i.e. maximized the design) of the study as much as possible.

In the present study, four out of nine participants showed a MIC for pain. Of the remaining participants who did not have a MIC, two participants (ID27 and ID28) had decreasing pain intensity (NRS) levels during the baseline period, which may have caused a "floor effect" due to history, maturation or statistical regression to the mean. ID27 and ID28 were included in the primary data analysis, despite having low baseline scores because they did have 4/10 at screening at the Outpatient Spine Clinic. Indeed, when these participants were removed from the analysis (sensitivity analysis), pain intensity was still significantly reduced and pain intensity levels reduced by an average of 1.4 points. ID26 did have a pain intensity reduction, but not sufficient to be classified as a MIC.

On the opposite side of the scale, ID30 only showed high pain rating throughout the study, only a 1.07-point reduction in NRS, and little overall change in both primary and secondary outcome measures. Surprisingly, ID30 also experienced increased disability (+12% on ODI) at follow-up (Day 35). One may speculate whether this patient had a more acute pain characteristic compared to other patients and that the VR training triggered unfavourable responses. Also, in contrast with the other 8 participants, ID30 was sick-listed for LBP for the first time, in contrast to others who had been sick listed 10 or more times for the same complaint. If we look to Kongsted et al.'s (2016) suggested principal trajectories, ID30 may be classified as having severe intensity (between 6-10 on NRS), persistent pain (as opposed to fluctuating, episodic or a single episode) with less than 1.0-point NRS variability over the course of 4 days, and no change pattern (as opposed to rapidly improving, gradually improving or progressive pain). Other participants show trajectories associated with fluctuating variability, or rapidly or gradually improving pain (Kongsted et al, 2016). Importantly, individual factors such as pain characteristics, time aspects and loading responses are therefore important components to consider when implementing VR as a tool in clinical practice.

As shown Table 7 (See Subsection 3.2.2.2.), four participants had a MIC for pain intensity reduction. Interestingly, all four participants that achieved MIC for pain reduction were those randomised to a longer intervention phase, thus receiving the highest intervention dosage (8 or 9 VR-training sessions) possible. Participants whose pain reduction did not exceed the MIC for pain were the ones randomised to a longer baseline duration (pre-treatment phase: 9-14 days) and thus, a lower dosage (6 or 7 VR-training sessions). The only exception to this was ID26 who had 8 VR-training sessions (and a pre-treatment phase of 9 days), and pain reduction did not reach MIC (although it was close at -1.67). While not formally evaluated, such findings suggest that treatment dosage may be important. These findings may also explain why our study results showing a significant reduction in pain differed from that of Thomas et al. (2016) in which no significant effects on group change on expected pain or expected harm was observed. Thomas et al. (2016) had LBP participants perform only 3 VR-training sessions of 15 minutes each, and argue that their findings were not surprising given that graded exposure therapy for pain-related fear for persistent LBP patients usually consists of 8-12 treatments (as cited in Thomas et al (2016): Boersma et al, 2004; Leeuw et al, 2008; Linton et al, 2008; Woods & Amundson, 2008). While the Thomas' study and our study also differed in the nature of the intervention protocol (i.e. they had a semi-immersive virtual environment (i.e. 3D-TV) while we used fully immersive VR-games in Oculus Rift), the intent of the VR games was similar in both studies – to promote increased movement into trunk flexion and other trunk movements. Thus it is more likely that a higher dosage (6-9 VR-training sessions of 30 minutes in the present study vs 1-3 training sessions of 15 minutes in Thomas et al. 2016) may be behind the differing effects seen here. Therefore, this study adds value in the field by showing that a higher dosage of VR-training sessions with fully immersive VR-technology demonstrated a statistically significant effect on pain intensity (NRS), pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS). However, more research is needed to investigate how to optimize graded exposure training in VR for persistent LBP patients.

# 4.2.2. Primary outcome measures: Pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS)

The present study also suggests that pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain anxiety symptoms (PASS) are statistically significant reduced with VR training. The analysis of changes in TSK, PCS and PASS show that the reduction is small, and most participants do not have scores that are a 30% reduction from baseline scores. Only ID25 showed a clinically meaningful reduction for TSK, and only ID22 showed a meaningful reduction for PCS and PASS. Additionally, the graphs for TSK, PCS and PASS show high intra-case variability across participants (Figure 22).

With regards to the aforementioned outcome measures, two pressing questions are: 1) Do the questionnaires used in the present study reflect the construct we are trying to assess changes in (i.e. what is the construct validity and responsiveness?), and 2) If pain and fear are complex intertwined emergent properties, would objective measurements (i.e. self-reported questionnaires) be the best way to describe a subjective embodied experience? To discuss the first question, we may look to Lundberg et al. (2011), who wrote that questionnaires investigating pain-related fear of movement, kinesiophobia, fear-avoidance beliefs and so forth were all developed earlier than the emergence of the Fear-Avoidance Model by Vlaeyen in 1995. One may therefore wonder what the underlying conceptual framework for all these questionnaires are, and the authors of the critical review argue that in most cases, the conceptual framework is missing. Lundberg et al. (2011) concluded that the weak construct validity implies that no measure can currently identify who is fearful, and that the lack of evidence for responsiveness restricts current use of the instruments to identify clinically relevant change from treatment (Lundberg et al, 2011). These are important suggestions to take into account
when investigating pain-related fear of movement in LBP participants. To date, only one study (which is not yet peer-reviewed) has looked at the neural correlates that underlie the different constructs (Meier et al, 2018), and more research in this field is likely to follow.

To discuss the second question, we might touch upon the relevance of implicit evaluations of danger and safety (Moseley & Butler, 2016). Contemporary pain science theories propose that pain and fear are dependent on implicit evaluations of danger to the body, and that thoughts or beliefs such as "lifting something heavy may cause more damage to my lower back" or "the severe pain I'm experiencing must indicate that something is terribly wrong with my back" may sometimes represent implicit (unconscious) and not explicit evaluations (information that need conscious reflection, that you are aware of, and willing to disclose) (Fazio et al, 2003; Greenwald et al, 1998; Leeuw et al, 2007; Van Ryckeghem et al, 2013). Another question is whether these implicit evaluations may drive behaviour in an adaptive (e.g. health-promoting) or maladaptive (e.g. fear-avoidant) direction. This raises two points; whether there is a presence of self-protect bias, meaning that participants may be hesitant to reveal sensitive information about themselves, and whether the best way to evaluate pain-related fear of movement is via of self-report questionnaires. Thus, more research is needed to investigate whether existing selfreport questionnaires are adequate for clinical and research purposes when looking into painrelated fear of movement. One recent study by Caneiro (2017), investigated physiological responses (i.e. eye-blink reflex, startle response and skin conductance) in relation to images perceived as "dangerous" (i.e. lifting with round back) to LBP patients, but no connections were found. It may be argued that pain-related fear of movement is a very context-dependent statetype of fear, which is indeed hard to conceptualize, and equally, challenging to detect with the measurement tools currently available.

## 4.2.3. Secondary outcome measures

In the present study, four secondary outcome measures were collected at Day 1 and Day 35 for all participants. More specifically, we found that 4 out of 9 participants met the MIC for the ODI, which is interesting considering that the interventions only ranged between 6 and 9 treatments applied over 14-23 days. ODI is an important clinical measure, because changes in disability may be a more stable measure than daily fluctuations in pain. Disability levels represents changes in function in ADL, such as getting dressed, sitting or standing, but it also has to do with social aspects of life such as being able to function at work (sitting or standing),

or travelling. However, whether tailored VR-training may aid in reducing disability through the development of cost-effective therapeutic tools will have to be investigated with full scientific rigour in future studies, controlling for history and maturation bias, as well as statistical regression to the mean.

The ÖMPSQ short form was included in the present study because the questionnaire addresses some important "yellow flag" risk factors in LBP patients, namely related to pain or harm expectancies as a result of movement. Our study showed a reduction in ÖMPSQ short form score for 7 out of 9 participants. Two participants went from above the cut-off score (i.e.  $\geq$ 50/100) for risk of future disability, to beneath. In total, 1 patient had a  $\geq$ 30% reduction in ÖMSPQ short form from baseline to follow-up. Although the questionnaire is only validated as a screening tool, we wanted to include it because it addresses some points for LBP patients that are consistent with what we wanted to investigate for future studies (i.e. Item 9: "An increase in pain is an indication that I should stop what I'm doing until the pain decreases", and Item 10: "I should not do my normal work (at work or home duties) with my present pain"). Interestingly, some of these aspects changed in our participants during the course of the study (i.e. ID26 went from scoring 10 to 8 on item 9, and 10 to 7 on item 10 from baseline to follow-up). Future studies may provide researchers and clinicians with more information about whether VRtraining sessions can be used to educate the patients differentiation between "pain and harm expectancies" (Weermeijer & Meulders, 2018), i.e. that the expectancy of pain may increase in the course of introducing a new exercise regimen, but that the expectancy of harm should decrease concurrently with implementation of graded exposure therapy targeting correction of erroneous interpretations of an impeding catastrophe (Meulders et al, 2017). However, the authors of the present study acknowledge that other questionnaires may inherent improved psychometric properties to assess "yellow flag" risk factors and pain or harm expectancies than the ÖMPSQ short form. Nevertheless, the ÖMPSQ short form provided us with information about pre- and post-assessments that may be valuable for future studies in the field.

The FreBAQ scores showed high inter-case variability, and no particular trends towards a change in a positive or negative direction. Four out of nine participants had a reduction in FreBAQ scores equivalent to a MIC (30% reduction from baseline), but some participants also had increase in FreBAQ score, or no change from baseline to follow-up. The high inter-case variability may have been influenced by language barriers, because the questionnaire only exists in English to date. The results should therefore be interpreted with caution. However, similar to ÖMSPQ short form, FreBAQ also represent interesting aspects related to persistent

pain that we would like to investigate in future studies with VR-training. More specific, we were interested in the response to items such as item 1 and 6: "My back feels like it is not part of the rest of my body" and "I can't perceive the exact outlines of my back" and whether the present LBP sample showed any responsiveness to questions related to body perception. There is a growing body of evidence about the altered body perception in persistent pain (Kregel et al, 2015; Wand et al, 2014), which might contribute to the pain experience as well as serve as a target for treatment (Louw et al, 2015, Wand et al, 2016). Therefore, future research is warranted to investigate whether the use of VR may be specifically programmed to challenge and re-train perceptual dysfunctions, and whether these changes are related to reductions in pain scores and disability.

Implicit motor imagery assessment (via Recognise <sup>TM</sup>; Noigroup) was conducted to explore body perception – specifically working body schema (the cortical maps that underlie movement planning, coordination, and execution). Our results showed that all participants became significantly faster at judging images of right-side trunk rotation/lateral flexion after VR-based treatments. It is unclear why the improvement was specific to right side images, but the results may indicate familiarity with the test-method, random fluctuations, or greater ability to mentally manoeuvre their own body part to fit the pictured image (Parsons, 2001). Moreover, accurate left/right judgements depend on intact working body schemas (Parsons, 2001). Only two participants showed improvements with left-sided judgements. The present study showed improved accuracy scores with left sided judgements for five out of nine participants, while two participants had improvements in right sided accuracy judgements. However, accuracy scores show a high inter- and intra-case variability, so the results should be interpreted with caution.

Although we did not specifically tailor the VR-intervention towards improving motor imagery performance in the present study, it was still interesting to investigate LBP participants' responses to the Recognise <sup>TM</sup> app, and whether the scores changed between the two measurement points in relation to the VR-intervention. What we found in the present study was that the participants had speed responses that were overall faster at follow-up (Table 8). More specifically, speed responses were faster than expected for LBP patients (1.8 seconds +/- 0.5 seconds) (compared to Bowering et al (2014) study), but both speed and accuracy seemed to have a high inter- and intra-case variance. Interestingly, we saw that younger participants scored higher on accuracy throughout the study, which may be due to user acceptance. Only ID25 and ID28 showed improvements in both speed and accuracy from baseline to follow-up.

Emerging advances in neuroscience and brain imaging studies have shown that decreased movement in the lumbar spine leads to functional changes in the brain (Flor et al, 1997; Wand et al, 2011a), which is related to a dynamically maintained neuronal representation of body parts (Flor et al, 1997, 1998; Lotze & Moseley 2007, Maihofner et al, 2003, Moseley et al, 2005a, Moseley et al, 2008b). Whether these cortical changes play a causal role in non-specific LBP has not been established (Apkarian et al, 2009). However, treatments such as graded motor imagery (GMI) targeting the restoration of cortical function have been shown effective in phantom limb pain (Flor et al, 2001; Moseley, 2006) and complex regional pain syndrome (CRPS) (McCabe et al, 2003; Moseley, 2004; 2006; 2008a). In line with these findings, a SSED study (n=3) on graded sensorimotor retraining demonstrated effectiveness on pain intensity for persistent LBP patients (Wand et al, 2011b), and a case-study (n=16) by Louw et al. (2015) demonstrated immediate effects on pain intensity and MIC for forward flexion using sensory discrimination training in persistent LBP patients. Thus, it may appear that changes related to tactile acuity (Luomajoki & Moseley, 2010; Moseley, 2008b; Wand et al, 2010), altered body perception (Moseley, 2008) and disrupted body schema (Bray & Moseley, 2010) could be viable therapeutic targets for persistent LBP management. However, in a recent systematic review, Bowering et al. (2013) suggested that although GMI and mirror therapy alone may be effective, further rigorous studies is needed to evaluate the effectiveness of GMI for a wider population of persistent pain conditions. Future studies may also explore the utilization of VR technology in order to develop novel therapeutic interventions in this field.

## 4.2.4. Results related to patient satisfaction

In the present study, we were primarily interested in quantitative results as presented earlier, but because the study design and protocol had never been tested before, we also included a qualitative evaluation questionnaire for each participant at the end of each trial with five open questions related to participants' experiences with the VR-training (i.e. "How did you experience the VR-training?", or "In your opinion, how could a VR-intervention be tailored the individual patient during LBP rehabilitation?"). In summary, all participants expressed that they felt motivated, engaged, and would like to continue using VR-training in the future. Further, they expressed that the intervention was fun and entertaining, and some participants also expressed that they were less fearful in ADL during and after, the VR-training. One participant wrote in the evaluation form that "Continuity in the training is very important to me. Being

supervised and experiencing progress in the different VR-games was very motivating", and another participant wrote: "During this study, I got to train muscle groups that I do not use on a daily basis, which I think is very good for my lower back in the long run". Some participants expressed that they would be interested in playing VR-games that was more tailored to their own interests, and more related to their challenges in ADL. This is important feedback for future studies to address in order to achieve meaningful and clinically relevant changes, considering that is was not the primary emphasis of the present study. Importantly, the participants did not report any side effects from the VR-training and no patients dropped out of the study. A full overview over patient feedback is provided in Appendix 11.

### 4.2.5. Strengths and limitations with the study

## 4.2.5.1. Strengths

All patients were screened by the Outpatient Spine Clinic and evaluated as safe to start exercising. This was very beneficial for us as researchers, considering that all red flags, serious neurological injuries and/or neuropathic LBP pain was ruled out by a team of experts at the Outpatient Spine Clinic. Participants where thus ready to start exercising with VR-training based on safe premises. We also recruited a consecutive sample of patients attending the clinic, which may represent the type of LBP patient typically seen in this particular primary health care setting. Another strength is the concept of the study, i.e. to target underlying psychological and/or behavioural factors in treatment of persistent LBP. The intervention combined encouragement of graded exposure towards lumbar spine flexion and trunk rotation while providing distraction from pain-related fear and confrontation of feared movement (i.e. lumbar spine flexion). Additionally, the VR-training was used to explore movements in a safe virtual environment, with a tailored, person-centred approach (n = 1). The tailored approach consisting of: "easy", "medium" or "hard" levels was adjusted similar to exercise programs in the clinic, based on scores on daily questionnaires of pain intensity (NRS), pain-related fear of movement (TSK), pain catastrophizing (PCS), pain-anxiety symptoms (PASS), in addition to feedback from the patient and clinical observations. Furthermore, the daily measures allowed us to track the individual changes in each participant over time. The study design, the randomisation of baseline and intervention duration strengthened the internal validity and provided a robust and maximized SSED. There were no drop-outs in the study, and adherence between planned and actual execution of treatment schedule was satisfactory carried out, which was important for the validity of the statistical analysis.

Another strength is that the games used in the protocol were flexible and easy to adjust in realtime. We got permission to use two commercial games from the software developers of Holoball and Holodance, and TFL developed the third VR-game "RoBow Agent". The protocol for the VR-training was developed by a team of experienced physiotherapists and researchers (TS, KVF, MS), in collaboration with the master student in software engineering (TFL). Participants of all ages were able to use the equipment and understood how to navigate in the VR-platform, which makes the intervention available and scalable for use in rehabilitation centres, in the clinic or home settings. The trans-disciplinary collaboration in the present study was beneficial for the development of a viable intervention for LBP, as we could learn from each other to create a new therapeutic treatment tool. In the larger perspective, the collaboration between health care professionals and computer engineering may provide cost-effective treatment options in the future. Persistent musculoskeletal pain has been under-prioritized and under-funded for decades, mainly because it is categorized as a non-fatal disease (Hoy et al, 2010). More specifically, a report showed that persistent musculoskeletal research received only 6% of national funding budget in Norway in 2003 (Lærum et al, 2013), while at the same time, accounting for 46% of sick leave and 33% of disability pension. New technological advancements and innovative therapies may be necessary to create a sustainable primary health care system in response to the global burden of persistent LBP. Importantly, LBP management must be driven by the administration of treatments with the highest probability for success (i.e. high-value treatments versus low-value treatments) (Foster et al, 2018). The development of novel therapeutic interventions also needs to consider this.

## 4.2.5.2. Limitations

The present study had some limitations. First and foremost, the study design involves a low number of participants needed (due to the increased power conferred by within subject analyses) and does not provide us with a control group. Specifically, the lack of control group makes it more difficult to control for history and maturation bias or statistical regression to the mean (Carter & Lubinsky, 2017). More research is therefore needed to investigate whether the results shown in the study are replicable and generalizable to larger samples. However, in a replicated case series design we do have adequate participant numbers needed to perform robust

statistical analysis as suggested by several lines of research (e.g. Onghena et al, 1995; 2005a; 2005b; Michiels & Onghena, 2018).

Other methodological aspects that could have been improved include: daily measures of fear/catastrophising/pain-anxiety could have been converted to NRS continuums instead of using the original Likert scales during the data collection (i.e. replicate de Jong (2012)). This may have improved responsiveness of pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain-anxiety symptoms (PASS). However, converting the original Likert scale to 0-100 scales is not inconsistent with past research in this area. Further, the use of the English questionnaire (FreBAQ) may have showed improved responsiveness if it was translated for a Norwegian population. However, we did not do any analysis using the questionnaire, we merely calculated change scores between to assessment points. Administering PSFS at Day 35 should have been better implemented to prevent omission. Employment of a research assistant blinded to the interventions, that could carry out the outcome measurement collection could potentially reduce response bias (i.e., not wanting to let the clinician know that a treatment was not helpful) amongst the participants. Additionally, it would have been interesting to not only have a 7-day follow-up, but also have a longer followup (e.g., 3-months) to see how the participants did some time after the intervention. Unfortunately, we did not have time or resources for that in this master's project.

The protocol for the VR-training had not been tested on healthy participants, with the exception of the researchers, prior to the present study with LBP patients. The researchers MS and TFL were responsible for finding and adjusting two commercial games (Holoball and Holodance) with permission from the developers, and TFL developed the third game (RoboBow). Through significant clinical testing and software programming, we managed to create a protocol that we thought would fit our participants. The intervention could have been improved by administering pilot testing with LBP patients before we initiated the present study, but we were limited by time constraints of the master's program. Importantly, two of the games were already commercially available, they would have been tested by healthy people, and the third game was tailored specifically for this target population (i.e. LBP-patients with fear of movement). However, this pilot study may serve that purpose for other, larger studies, and we were satisfied with the VR-games that we chose as they were considered safe, fun, engaging and easily adjustable in real-time (while participants played the game). Further, as seen in Table 7 (See Subsection 3.2.2.2.), some participants received only 6 VR-interventions, while others were randomized to receive 7, 8 or 9 training. It would have been interesting to investigate whether

the results would have been different if all participants received the same dosage (i.e.,  $\geq 8$ ) or whether it is possible to develop a flexible protocol that accentuates a MIC for pain and disability with a minimal amount of interventions per patient (i.e. provides high costseffectiveness).

Some researchers argue that pain is likely to fluctuate in persistent LBP patients, and that disability changes is a much more interesting variable to investigate. Others argue that having an intense focus on pain as a measure may "prime" the patient towards a negative focus. That our results showed a reduction in pain following VR-based treatment suggest that daily pain measures did not prime patients towards a negative focus. Further, any changes in pain medication were not assessed. Instead, we asked participants to qualitatively describe and report whether their pain medication intake had changed throughout the study. This was therefore not included as an outcome measure in the present study but will remain important for future studies. Finally, the notion of non-specific LBP may include a variety of pain characteristics, which may have become evident in primary and secondary outcome measures for ID30. Namely, ID30 may have had a more severe and persistent pain characteristic (according to characteristics described by Kongsted et al, 2016), experienced constant pain, and severe exacerbations with minimal activity (i.e. 5 minutes of standing). Therefore, a screening procedure that differentiated between different pain characteristics may be helpful for future studies to determine which patients could benefit the most from VR-based interventions for LBP. In summary, all these limitations are acknowledged by the authors of the present study and must be addressed in future studies to improve methodological and scientific rigour.

## 4.2.6. Comparison to previous studies in this area

There is a current lack of evidence for the effectiveness of VR training for non-specific persistent LBP, so it would be relevant to discuss existing literature VR in health care to create perspective. Finally, suggestions for future directions are presented in the next subsection.

While VR gaming shows considerable success in the area of acute pain, few studies have applied VR to persistent pain management. To date, only one systematic review related to the use of VR in inpatient medical settings has been published. Dascal et al. (2017) reviewed 11 randomised, controlled trials and found that VR is a promising intervention for pain distraction (Carrougher et al, 2009; Hoffman et al, 2008; Kipping et al, 2012; Morris et al, 2010; Patterson

et al, 2010; Schmitt et al, 2011), eating disorders/obesity (Cesa et al, 2013, Manzoni et al, 2009), and cognitive and motor rehabilitation (Larson et al, 2011). However, no systematic review for the use of VR in physical rehabilitation of persistent pain has been published to date. A number of recent studies have demonstrated that virtual feedback interventions can provide pain relief for a variety of persistent pain conditions (e.g., for hand osteoarthritis (Gilpin et al, 2015; Preston & Newport, 2011); hand dystonia (Llobera et al, 2013); upper extremity neuropathic pain (Mouraux et al, 2016); knee osteoarthritis (Stanton et al, 2018)). More specifically related to persistent LBP and pain-related fear of movement, Parsons & Trost (2014) have developed VRGET (Virtual Reality Graded Exposure Therapy), defined as a therapeutic approach that aim to address several major limitations characterizing traditional graded exposure therapy. This includes "mitigating costs associated with traditional graded exposure therapy, enhance participant engagement, provide real-time assessment of important metrics such as affective response and kinematic adaptation, and provide generalizability of rehabilitation gains across clinic and home environments" (Parsons & Trost, 2014, p: 523). A protocol for a pilot study was published in 2015, but no studies have been published to date.

Therefore, Thomas et al. (2016) published the first feasibility study (n=52) on VR-dodgeball for kinesiophobic LBP patients, and a phase 2 clinical trial for Virtual Rehabilitation to Optimize Recovery (VIGOR) is expected to follow based on a protocol published in 2018. Importantly, as mentioned previously, Thomas et al. provided patients with 3 VR-interventions of 15 minutes each, and the study did not demonstrate any statistically significant effect on expected pain or expected harm across participants. In contrast, the present study with 6 to 9 VR-intervention of 30 minutes per intervention, 2-3x per week, over 14-23 days, did demonstrate a statistically significant reduction in pain intensity (NRS), pain-related fear of movement (TKS), pain catastrophizing (PCS) and pain-anxiety symptoms (PASS). Additionally, the present study showed that participants who had 8 or 9 VR-sessions had a larger reduction in pain intensity scores (NRS) compared to participants who only received 6 or 7 VR-sessions. Further research seems necessary to explore the importance of dosage of VR-trainings to achieve treatment effects related to pain and disability in persistent LBP patients.

## 4.2.7. Perspective and future directions

Considering the rising epidemic of persistent musculoskeletal pain, it is important to investigate innovative solutions that may improve persistent LBP management. Researchers and clinicians

have come a long way implementing the biopsychosocial, cognitive, functional, behavioural, person-centred approach, but there is still a way to go in order to assimilate contemporary painand neuroscience theories and LBP research into clinical practice and public knowledge. Leading researchers in the field rightfully suggests a cultural shift (i.e. paradigm shift) is needed to translate updated knowledge to the general population through mass media campaigns (Foster et al, 2018; Hartvigsen et al, 2018; O'Sullivan et al, 2018b). The authors' impression is that a cultural shift will take time and sustainable efforts over many decades. On the contrary, VR and AR are emerging forefront technological platforms which may benefit health care providers and patients alike. VR and AR may be useful to motivate and engage in physical activity during rehabilitation, and for educating patients about how thoughts and feelings (e.g. catastrophic thinking or pain-related fear of movement) are connected to movement strategies, and even so, how it may drive pain-related fear or avoidance behaviour. The possibility and opportunity to create "optimal learning environments" with VR is an exciting new field for physical therapists and patients. However, the effectiveness of VR-interventions is likely to depend on immersiveness, content, quality and relevance of the tasks and the virtual environments provided. Further, more research is needed with regards to dosage in relation to individual characteristics. Subsequently, investigating whether VR may be effective merely due to its entertainment value, or whether there are unique qualities that we can capitalize on in the clinical setting, seems necessary. Considering that VR-training is a novel therapeutic intervention, it is equally important to investigate possible side-effects, limitations, barriers and challenges with implementing new technology in physical rehabilitation. In summary, VRtraining as proposed to date may seem like a promising treatment persistent LBP patients, but larger studies with robust scientific designs in this field is warranted.

# 5.0. Conclusion

VR training is an exciting tool for non-specific persistent LBP patients in primary health care. In the present study, we have shown that there was a statistically significant reduction in pain intensity (NRS), pain-related fear of movement (TSK), pain catastrophizing (PCS) and pain-anxiety symptoms (PASS). The authors of the study acknowledge the threats to internal validity provided by the design of the study and suggests that larger studies with robust designs and a control group investigate VR for non-specific persistent LBP further in the future. However, to our knowledge, this study is the first study in Norway to investigate VR-training for persistent LBP-patients. This can be an important pilot study for future work in the field that combines physical therapy rehabilitation and the use of immersive virtual tools. Virtual tools may aid in creating a more sustainable health care system by providing patients with viable alternatives to improve health-promoting behaviour.

# 6.0. Acknowledgements

Dr. Tasha Stanton, University of South Australia, Adelaide, Australia

Dr. Kjartan Vibe Fersum, University of Bergen, Bergen

Professor Jan Sture Skouen, University of Bergen and Haukeland University Hospital
MD Elin Cathrine Thorsen, Outpatient Spine Clinic, Haukeland University Hospital
Outpatient Spine Clinic: all employees involved in the screening of patients
Master student and Software Engineer Thomas Fiskeseth Larsen
Assistant professor Bård Erik Bogen, Western College of Applied Sciences, Bergen
Physiotherapist Lars Peder Vatshelle Bovim, Western College of Applied Sciences, Bergen
Assistant professor Harald Soleim, Western College of Applied Sciences, Bergen
Assistant professor Atle Birger Geitung, Western College of Applied Sciences, Bergen
Assistant professor Remy Monsen, Western College of Applied Sciences, Bergen
Dr. Ann Meulders, KU Leuven, Belgium
Dr. Bart Michiels, KU Leuven, Belgium
Holoball developer Shawn Blais
Holodance creator Jashan Chittesh

# 7.0. References

- Adamovich S.V., Fluet G.G., Tunik E. & Merians A.S. (2009). Sensorimotor training in virtual reality: a review. *NeuroRehabilitation*, 25, 29-44.
- Airaksinen O., Brox J.I., Cedraschi C. et al. (2006). European guidelines for the management of chronic nonspecific low back pain (Chapter 4). *Eur Spine J*, *15*(2), S192-S300
- Assendelft W.J.J., Morton S.C., Yu E.I., Suttorp M.J., Shekelle P.G. (2004). Spinal manipulative therapy for low-back pain. *Cochrane Database of Syst Rev*, 1:CD000447.
- Apkarian A.V., Baliki M.N., Geha P.Y. (2009). Towards a theory of chronic pain. *Prog Neurobiol*.2009;87:81–97.
- Baek, E.K. & Ferron, J.M. (2013). Multilevel models for multiple-baseline date: modeling acrossparticipant variation in autocorrelation and residual variance. Beh Res Met, 45 (1), 65-74. https://doi.org/10.3758/s13428-012-0231-z
- Bates et al (2014). Fitting linear mixed-effects models using lme4. Submitted to Journal of Statistical Software. <u>https://arxiv.org/pdf/1406.5823.pdf</u>
- Bates, D. M., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0.
- Barr, D. J., Levy, R., Scheepers, C., Tilly, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68, 255–278.
- Bossard C., Kermarrec G., Buche C., Tisseau J. (2008). Transfer of learning in virtual environments: a new challenge? *Virtual Reality*, *12*, 151-161.
- Bowering et al. (2013). The effects of graded motor imagery and its components on chronic pain: a systematic review and meta-analysis. J Pain, 14(1), 3-13.
- Bowering et al (2014). Motor imagery in people with a history of back pain, current back pain, both, or neither. *Clin J Pain*, *30*(*12*), 1070-5.
- Bray, H., Moseley, G. L. (2011). Disrupted working body schema of the trunk in people with back pain. *Br J Sport Med*, *45*, 168–173.
- Brinjikji W., Luetmer P. H., Comstock B., et al. (2014). Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. *AJNR Am J Neuroradiol*, 36, 811-816.
- Buchbinder R., Blyth F. M., March L. M., Brooks P., Woolf A. D., Hoy D. G. (2013). Placing the global burden of low back pain in context. *Best Pract Res Clin Rheumatol*, *27*, 575–89.

Buchbinder et al (2018). Low back pain: a call for action. Lancet, 391, 2384-88.

- Burdea G. C. (2003). Virtual Rehabilitation benefits and challenges. Method Inf Med, 42, 519-23.
- Brage S., Lærum E. (1991). Rygglidelser i Norge en epidemiologisk beskrivelse. *Tidsskr Nor Lægeforen, 119,* 1619-23.
- Cancer Research UK, 2015. <u>https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/what-clinical-trials-are/phases-of-clinical-trials (Accessed: 12.10.2018).</u>

- Caneiro et al. (2017). Implicit evaluations and physiological threat responses in people with chronic low back pain and fear of bending. *Scan J Pain*, *17*, 355-366.
- Catley, M. J., O'Connell, N. E., Berryman, C., Ayhan, F. F. & Moseley, G. L. (2014). Is tactile acuity altered in people with chronic pain? A systematic review and meta-analysis. *J Pain, 15,* 985–1000.
- Carrougher G. J., Hoffman H. G., Nakamura D., et al. (2009). The effect of virtual reality on pain and range of motion in adults with burn injuries. *J Burn Care Res, 30*, 785–791.
- Carter R.E., Lubinsky J., Domholdt E. (2016). *Rehabilitation research Principles and Applications*. *5th edition*. Elsevier Saunders.
- Cesa G.L., Manzoni G.M., Bacchetta M., et al. (2013). Virtual reality for enhancing the cognitive behavioral treatment of obesity with binge eating disorder: randomized controlled study with oneyear follow-up. *J Med Internet Res*, 15, 139–151.
- Chou R., Qaseem A., Snow V., Casey D., Cross J.T., Shekelle P et al. (2007). Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. *Ann Intern Med*, *147*, 478-91.
- Colombo, Karnouskos, Kaynak, Shi & Yin. (2017). Industrial Cyberphysical Systems: A Backbone of the Fourth Industrial Revolution. *IEEE Industrial Electronics Magazine*, 11(1), 6-16. doi: 10.1109/MIE.2017.2648857
- Cook T.D., Campbell D. T. (1979). *Quasi-Experimentation: design and analysis issues for field settings*. Chicago: Rand McNally.
- Crombez G., Eccleston C., Vlaeyen J. W., Vansteenwegen D., Lysens R., Eelen P. (2002). Exposure to physical movements in low back pain patients: restricted effects of generalization. *Health Psychol*, *21(6)*, 573–578.
- de Jong JR, Vlaeyen JW, Onghena P, Cuypers C, den Hollander M, Ruijgrok J. (2005a). Reduction of pain-related fear in complex regional pain syndrome type I: the application of graded exposure in vivo. *PAIN*, *116*, 264–75.
- de Jong JR, Vlaeyen JW, Onghena P, Goossens ME, Geilen M, Mulder H. (2005b). Fear of movement/(re)injury in chronic low back pain: education or exposure in vivo as mediator to fear reduction? Clin J Pain, 21, 9–17.
- de Jong JR, Vangronsveld K, Peters ML, Goossens ME, Onghena P, Bulte I, Vlaeyen JW. (2008). Reduction of pain-related fear and disability in post-traumatic neck pain: a replicated singlecase experimental study of exposure in vivo. J Pain, 9, 1123–34.
- de Jong JR, et al. (2012). Reduction in pain-related fear and increased function and participation in work-related upper extremity pain (WRUEP): Effects of exposure in vivo. *J Pain, 153,* 2109-2118.

Deyo R.A. (1998). Low back pain. Sci Am, 279, 29-33.

Deyo R.A., Weinstein J.N. (2001). Low back pain. N Engl J Med, 344: 363-70.

- Daffada P.J., Walsh N., McCabe C.S., Palmer S. (2015). The impact of cortical remapping interventions on pain and disability in chronic low back pain: a systematic review. *Physiotherapy 101, (1), 25-33.*
- da Silva T., Mills K., Brown B.T., Herbert R.D., Maher C.G., Hancock M.J. (2017). Risk of recurrence of low back pain: a systematic review. *J Orthop Sports Phys Ther*, 47, 305–13.
- De Vet, H.C.W., Terwee, C., Mokkink, W & Knol, DL. (2015). *Measurement in Medicine: A Practical Guide. Cambridge:* Cambridge UP.
- Dugard, P. (2014). Randomization tests: A new gold standard? *Journal of Contextual Behavioral Science*, *3*, 65–68.
- Dugard, P., File, P., & Todman, J. (2012). *Single-case and small-n experimental designs: A practical guide to randomization tests* (2nd ed.). New York, NY: Routledge Academic.

Eccleston C., Crombez G. (2007). Worry and chronic pain: a misdirected problem solving model. *Pain.* 132(3), 233–236.

- Edgington, E. S. (1975). Randomization tests for one-subject operant experiments. *Journal of Psychology*, *90*, 57–68.
- Edgington E.S. (1980). Overcoming obstacles to single-subject experimentation. J Educ Stat, 5, 261-7.
- Edgington, E. S., & Onghena, P. (2007). *Randomization tests* (4th ed.). Boca Raton, FL: Chapman & Hall/CRC.
- Ebadi S. et al. (2014). Therapeutic ultrasound for chronic low-back pain. *Cochrane Database of Syst Rev*, 3:CD:009169.
- Fairbank JC, Couper J, Davies JB, O'brien JP (1980). The Oswestry low back pain disability questionnaire. *Physiotherapy*, 66, 271–273
- Fairbank J.C., Pynsent P.B. (2000). The Oswestry Disability Index. Spine, 25(22), 2940-52
- Fazio R.H., Olson M.A. (2003). Implicit measures in social cognition research: their meaning and use. *Annu Rev Psychol*, 54, 297–327.
- Fernandes L., et al. (2012). Cross-cultural adaptation and validation of the Norwegian pain catastrophizing scale in patients with low back pain. *BMC Musculoskeletal Disorders*, 3, 111. doi: 10.1186/1471-2474-13-111.
- Flor, H., Braun, C., Elbert, T. & Birbaumer, N. (1997). Extensive reorganization of primary somatosensory cortex in chronic back pain patients. *Neurosci Lett*, 224, 5–8.
- Flor H., Elbert T., Muhnickel W., Pantev C. (1998) Cortical reorganisation and phantom phenomena in congenital and traumatic upper-extremity amputees. *Experimental Brain Research* 119(2): 205-212.
- Flor H., Denke C., Schaefer M., Grüsser S. (2001). Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. *Lancet*, *357*, 1763–1764.
- Foster et al. (2018). Prevention and treatment of low back pain: evidence, challenges, and promising directions. *Lancet*, *319*, 2368-83.

Foster N. (2011). Barriers and progress in the treatment of low back pain. BMC Medicine, 9, 108.

- Franke H., Fryer G., Ostelo R.W.J.G., Kamper S.J. (2015). Muscle energy technique for non-specific low-back pain. *Cochrane Database of Syst Rev*, 2:CD009852.
- Friedrich et al. (1996). The effect of brochure use versus therapist teaching on patients performing therapeutic exercises and on changes in impairment status. *Phys Ther*, 76, 1082-8.
- Furlan AD, Giraldo M, Baskwill A, Irvin E, Imamura M. (2015). Massage for low-back pain. *Cochrane Database Syst Rev*, 9:CD:001929.
- Galåen TEE. (2017). "En Virtuell Utfordrer", *Fysioterapeuten*, *17*(8), 38-42. <u>http://fysioterapeuten.no/Tema/2017</u>
- Gershon J., Anderson P., Graap K., Zimand E., Hodges L, Rothbaum BO. (2000). Virtual reality exposure therapy in the treatment of anxiety disorders. *Sci Rev Ment Health Pract*, *1*, 76–81.
- Gilpin, HR, Moseley, GL, Stanton, TR, Newport, R. (2015). Evidence for distorted mental representation of the hand in osteoarthritis. Rheumatology (Oxford). 54, 678–682.
- Goubert, L, et al. (2002). Exposure to physical movement in chronic back pain patients: no evidence for generalization across different movements. *Behaviour Research and Therapy*, 40(4), 415–429.
- Goubert L, Crombez G, Van Damme S, Vlaeyen JW, Bijttebier P, Roelofs J. (2004). Confirmatory factor analysis of the Tampa Scale for Kinesiophobia: invariant two-factor model across low back pain patients and fibromyalgia patients. *Clin J Pain*, *20*, 103–10.
- Goubert, L., Crombez, G., Lysens, R. (2005). Effects of varied-stimulus exposure on overpredictions of pain and behavioural performance in low back pain patients. *Behaviour Research and Therapy*, 43(10), 1347–1361.
- Graves J.M., Fulton-Kehoe D., Jarvik J.G., Franklin G.M. (2012). Early imaging for acute low back pain: one-year health and disability outcomes among Washington State workers. *Spine, 37*, 1617-1627. DOI 10.1097/BRS.0b013e318251887b.
- Greenwald A.G., McGhee D.E., Schwartz J.L. (1998). Measuring individual differences in implicit cognition: the implicit association test. *J Personal Soc Psychol*, 74, 1464–80.
- Grotle M, Brox JI, Vollestad NK. (2003). Cross-cultural adaptation of the Norwegian versions of the Roland-Morris Disability Questionnaire and the Oswestry Disability Index. *J Rehabil Med*, 35, 241–247.
- Grotle, M, et al. (2004a). Fear-avoidance beliefs and distress in relation to disability in acute and chronic low back pain. *Pain*, 112(3), 343–352.
- Grotle M, Brox JI, Vøllestad NK. (2004b). Concurrent comparison of responsiveness in pain and functional status measurements used for patients with low back pain. *Spine*, 29(21), 492–501.
- Grotle M, Brox JI, Glomsrod B, et al. (2007). Prognostic factors in first-time care seekers due to acute low back pain. *Eur J Pain*, *11*, 290–8.

- Hadjistavropoulos, HD., Kowalyk, KM. (2004). Patient-therapist relationships among patients with pain-related fear. In: Asmundson, G.J., Vlaeyen, J., Crombez, G. (eds.) *Understanding and Treating Fear of Pain*. Oxford University Press, Oxford.
- Hashemi L, Webster BS, Clancy EA. (1998). Trends in disability duration and cost of workers' compensation low back pain claims (1988–1996). *J Occup Environ Med*, 40, 1110–19.
- Haugen et al. (2008). Cross-cultural adaptation and validation of the Norwegian version of the Tampa Scale for Kinesiophobia. *SPINE*, *33*(*17*), 594-601.
- Heuts PH, Vlaeyen JW, Roelofs J et al. (2004). Pain-related fear and daily functioning in patients with osteoarthritis. *Pain*, *110*(1–2), 228–235.
- Hartvigsen et al (2018). What low back pain is and why we need to pay attention. *Lancet*, 391, 2356-67.
- Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken). 2011; 63 Suppl 11:S240–52. doi: 10.1002/acr.20543 PMID: 22588748.
- Henschke N, Ostelo RWJG, van Tulder MW, Vlaeyen JWS, Morley S, Assendelft WJJ et al. (2010). Behavioural treatment for chronic low-back pain. *Cochrane Database of Syst Rev*, 7:CD002014.
- Hermans et al. (2006). Extinction in human fear conditioning. Biol Psychiatry, 60(4), 361-8.
- Heyvaert, M., Moeyaert, M., Verkempynck, P., Van den Noortgate, W., Vervloet, M., Ugille M., & Onghena, P. (2017). Testing the intervention effect in single-case experiments: A Monte Carlo simulation study. *Journal of Experimental Education*, 85, 175–196.
- Hides J.A., Richardson C.A., Jull G.A. (1995). Magnetic resonance imaging and ultrasonography of the lumbar multifidus muscle. Comparison of two different modalities. *Spine (Phila Pa 1976)*, 20, 54-58.
- Hides J.A., Richardson C.A., Jull G.A. (1996). Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. *Spine (Phila Pa 1976), 21, 2763-2769.*
- Holden MK. (2005). Virtual environments for motor rehabilitation: Review. *Cyberpsychology and Behaviour*, 8(3), 187-211.
- Hoffman, HG, Patterson, DR, Carrougher, G.J., (2000). Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: a controlled study. *Clin. J. Pain, 16*, 244–250.
- Hoffman HG, Patterson DR, Seibel E, et al. (2008). Virtual reality pain control during burn wound debridement in the hydrotank. *Clin J Pain*, 24, 299–304.
- Horn K.K., Jennings S. et al. (2012). The patient-specific functional scale: psychometrics, clinimetrics, and application as a clinical outcome measure. *Orthop Sports Phys Ther*, 42(1), 30-42.
- Ihlebæk C, Eriksen HR. (2003). Are the "myths" of low back pain alive in the general Norwegian population? *Scand J Public Health*, 31, 395–8.

- Jacobson NS, Roberts LJ, Berns SB, McGlinchey JB. (1997). Methods for defining and determining the clinical significance of treatment effects: description, application, and alternatives. *Journal* of Consulting and Clinical Psychology, 67(3), 300-307.
- Jolles BM, Buchbinder R, Beaton DE. (2005). A study compared nine patient-specific indices for musculoskeletal disorders. *J Clin Epidemiol*, *58*(*8*), 791-801.
- Kählin S. (2016). What is the effect of sensory discrimination training on chronic low back pain? A systematic review. *BMC Musculoskeletal Disorders*, 17, 143.
- Kamper SJ, Apeldoorn AT, Chiarotto A, Smeets R, Ostelo R, Guzman J, et al. (2015). Multidisciplinary biopsychosocial rehabilitation for chronic low back pain: Cochrane systematic review and meta-analysis. *BMJ*, 350, 444.
- Karayannis N.V., Smeets R.J.E.M., van den Hoorn W., Hodges P.W. (2013). Fear of Movement Is Related to Trunk Stiffness in Low Back Pain. *PLoS ONE*, 8(6), e67779. https://doi.org/10.1371/journal.pone.0067779
- Kersten P, White PJ, Tennant A. (2014). Is the pain visual analogue scale linear and responsive to change? An exploration using Rasch analysis. *PLoS One*, 9(6), e99485. doi: 10.1371/journal.pone.0099485 PMID: 24921952; PubMed Central PMCID: PMCPMC4055724.
- Kim et al (2014). The effects of VR-based Wii Fit Yoga on Physical Function in middle-aged female LBP participants. *J Phys Ther Sci*, 26(4), 549-52.
- Kipping B, Rodger S, Miller K, Kimble RM. (2012). Virtual reality for acute pain reduction in adolescents undergoing burn wound care: a prospective randomized controlled trial. Burns, 38, 650–657.
- Koes BW, van Tulder M, Lin CWC, Macedo LG, McAuley J, Maher C. (2010). An updated overview of clinical guidelines for the management of nonspecific low back pain in primary care. *Eur Spine J*, 19, 2075-94.
- Koes BW, van Tulder MW, Thomas S. (2001). Diagnosis and treatment of low back pain. BMJ 2006; 332: 1430–34. 30 Deyo RA, Weinstein JN. Low back pain. *N Engl J Med*, *344*, 363–70.
- Kongsted et al. (2016). What have we learned from ten years of trajectory research in low back pain? *BMC Musculoskeletal Disorders*, 17, 220.
- Kori, SH (1990). Kinesiophobia: a new view of chronic pain behaviour. Pain Management, 3, 35-43.
- Kratochwill, T. R., & Levin, J. R. (2010). Enhancing the scientific credibility of single-case intervention research: Randomization to the rescue. *Psychological Methods*, *15*, 124–144.
- Kreddig N, Hasenbring MI. (2017). Pain anxiety and fear of (re)injury in patients with chronic back pain: Sex as a moderator. *Scandinavian journal of pain, 16,* 105–111.
- Kregel, J., Meeus, M., Malfliet, A., Dolphens, M., Danneels, L., Nijs, J., Cagnie, B., (2015). Structural and functional brain abnormalities in chronic low back pain: a systematic review. Semin. Arthritis Rheum. 45, 229–237. https://doi.org/10.1016/j.semarthrit. 2015.05.002
- Lange B, Flynn S, Rizzo A. (2009). Initial usability assessment of off the-shelf video game consoles for clinical game-based motor rehabilitation. *Phys Ther Rev, 14(5), 355–363.*

- Lange B, Koenig S, Chang CY et al. (2012). Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. *Disabil Rehabil*, 34 (22), 1863–1870.
- Larson EB, Ramaiya M, Zollman FS, et al. (2011). Tolerance of a virtual reality intervention for attention remediation in persons with severe TBI. *Brain Injury*, 25, 274–281.
- Leeuw M, Peters ML, Wiers RW, Vlaeyen JW. (2007). Measuring fear of movement/(re)injury in chronic low back pain using implicit measures. *Cogn Behav Ther*, *36*, 52–64.
- Li et al (2011). Virtual Reality and pain management: current trends and future directions. *Pain Manage*, *1*(2), 147-157
- Lieber R.L. (2002). Skeletal muscle structure, function, and plasticity: The physiological basis for rehabilitation. 2nd edition, Lippincott, Williams & Wilkins, Baltimore.
- Linton SJ, Halldén K. (1998). Can we screen for problematic back pain? A screening questionnaire for predicting outcome in acute and subacute back pain. *Clin J Pain*, *14* (3), 209-215.
- Linton SJ, Boersma K, Jansson M, Overmeer T, Lindblom K, Vlaeyen JWS. (2008). A randomized controlled trial of exposure in vivo for patients with spinal pain reporting fear of work-related activities. *Eur J Pain*, *12*(6), 722–730.
- Linton, S. J., Nicholas, M., MacDonald, S. (2011). Development of a Short Form of the Örebro Musculoskeletal Pain Screening Questionnaire. *Spine*, *36*, 1891–1895. doi: 10.1097/BRS.0b013e3181f8f775
- Llobera, J, González-Franco, M, Perez-Marcos, D, Valls-Solé, J, Slater, M, Sanchez-Vives, MV, (2013). Virtual reality for assessment of patients suffering chronic pain: A case study. *Exp. Brain Res*, 225, 105–117.
- Lloyd D, Findlay G, Roberts N, Nurmikko T. (2008) Differences in low back pain behavior are reflected in the cerebral response to tactile stimulation of the lower back. *Spine 33(12)*, 1372-1377. DOI: 10.1097/BRS.0b013e3181734a8a
- Lotze M, Moseley GL. (2007). Role of distorted body image in pain. *Current Rheumatology Reports* 9(6), 488-496.
- Louw et al. (2011). The effect of Neuroscience Education on pain, disability, anxiety, and stress in chronic musculoskeletal pain. *Arch Phys Med Rehabil Vol 92*, 2041-56.
- Louw & Puentedura (2013). *Therapeutic Neuroscience Education*. Orthopedic Physical Therapy Products, 1 Edition.
- Louw, A., Farrell, K., Wettach, L., Uhl, J., Majkowski, K., and Welding, M. (2015). Immediate effects of sensory discrimination for chronic low back pain: a case series. *New Zealand J Physiother*, *43*.
- Lundberg et al. (2006). Kinesiophobia among patients with musculoskeletal pain in primary health care. *J Rehabil Med*, *38*, 37-43.
- Lundberg et al. (2011). Pain-Related Fear: A Critical Review of the Related Measures. *Pain Research and Treatment*, 2011;2011;494196. doi: 10.1155/2011/494196.
- Luomajoki, H. & Moseley, G. L. (2011). Tactile acuity and lumbopelvic motor control in patients with back pain and healthy controls. *Br J Sports Med*, *45*, 437–440.

- Lærum EB, Brage S, Ihlebæk C, et al. (2013). Et muskel- og skjelettregnskap. Forekomst og kostnader knyttet til skader, sykdommer og plager i muskel- og skjelettsystemet. [Musculoskeletal accounting. Prevalence and costs of injuries, disorders, and complaints of the musculoskeletal system]. *FORMI report nr 1 Oslo University Hospital*; 2013
- Ma et al. (eds.). 2014. Chapter 25: Parsons TD, Trost Z. Virtual Reality Graded Exposure Therapy as Treatment for Pain-Related Fear and Disability in Chronic Pain. Virtual, Augmented Reality and Serious Games for Healthcare 1, Intelligent Systems Reference Library © Springer-Verlag Berlin Heidelberg 2014.
- Maihofner C, Handwerker HO, Neundorfer B, Birklein F. (2003). Patterns of cortical reorganization in complex regional pain syndrome. *Neurology*, *61(12)*, 1707-1715.
- Manzoni GM, Pagnini F, Gorini A, et al. Can relaxation training reduce emotional eating in women with obesity? an exploratory study with 3 months of follow-up. (2009). *J Am Diet Assoc, 109,* 1427–1432.
- Matheve et al, 2016. Virtual Reality and pain perception during exercises for patients with chronic non-specific low back pain (Last update posted: February 2016). <u>https://www.clinicaltrials.gov/ct2/show/results/NCT02679300?term=Virtual+Reality&cond=L</u> ow+Back+Pain&rank=2
- Marchand F, Perretti M, McMahon SB. (2005). Role of the immune system in chronic pain. *Nat Rev Neurosci, 6*(7), 521-532.
- Martinez, M.P., et al (2011). The relationship between the fear-avoidance model of pain and personality traits in fibromyalgia patients. *Journal of Clinical Psychology in Medical Settings*, *18*(4), 380–391.
- McCabe C.S., Haigh R.C., Ring E.F.J, et al. (2003). A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1). *Rheumatology*, 42, 97–101.
- McCabe CS, Haigh RC, Halligan PW et al. (2005). Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. *Rheumatology*, 44, 509-16.
- McCracken LM, Dhingra L. (2002). A short version of the Pain Anxiety Symptoms Scale (PASS-20): a preliminary development and validity. *Pain Res Manag*, *7*, 45-50.
- Medina-Mirapeix et al. (2009). Predictive factors of adherence to frequency and duration components in home exercise programs for neck and low back pain: an observational study. *BMJ MSK Disord*, 10, 155.
- Meier et al. (2018). Pain-related fear Dissociable neural sources of different fear constructs (preprint, not yet peer-reviewed). *BioRxiv*, 251751. Doi: https://doi.org/10.1101/251751
- Merians AS, Poizner H, Boian R, Burdea G & Adamovich S. (2006). Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke. *Neurorehabilitation and neural repair*, 20(2), 252-267.
- Meulders, A., Vansteenwegen, D., & Vlaeyen, J. W. (2011). The acquisition of fear of movementrelated pain and associative learning: A novel pain-relevant human fear conditioning paradigm. *Pain*, *152(11)*, 2460–2469. <u>http://dx.doi.org/10.1016/j.pain.2011.05.015</u>

- Meulders A., Daele T., Volders S., Vlaeyen JWS. (2016). The use of safety-seeking behaviour in exposure-based treatments for fear and anxiety: benefit or burden? A meta-analytic review. *Clin Psych Rev*, *45*, 144-56. <u>https://doi.org/10.1016/j.cpr.2016.02.002</u>.
- Meulders et al. (2017). Generalization of pain-related fear based on conceptual knowledge. *Behaviour Therapy* 48, 295-210.
- Meulders & Bennett (2018). The concept of Contexts in pain: generalization of context pain-related fear within a de novo category of unique contexts. *J Pain*, *19*(1), 76-87.
- Michiels B. & Onghena P. (2018). Randomized single-case AB phase designs: prospects and pitfalls. *Behav Res Methods, e-pub head of print,* doi: 10.3758/s13428-018-1084-x.
- Morley et al. (2015). Refresher course 08: Single case research methodology in clinical pain management an introduction and practical workshop. *EFIC Congress September 2015*.
- Morton V. & Torgerson DJ. (2005). Regression to the mean: treatment effect without the intervention. *J Eval Clin Pract*, *11*(1), 59-65.
- Morris LD, Louw QA, Crous LC. Feasibility and potential effect of a low-cost virtual reality system on reducing pain and anxiety in adult burn injury patients during physiotherapy in a developing country. (2010). *Burns, 36*, 659–664.
- Moseley L. & Butler D. (2003). Explain Pain. Noigroup. Adelaide.
- Moseley G. (2004). Graded motor imagery is effective for long-standing complex regional pain syndrome: A randomised controlled trial. *Pain, 108,* 192-198.
- Moseley GL. (2005) Distorted body image in complex regional pain syndrome. *Neurology*, 65(5), 773. DOI: 10.1212/01.wnl.0000174515.07205.11
- Moseley GL. (2006). Graded motor imagery for pathologic pain: a randomized controlled trial. *Neurology*, 67, 2129–34.
- Moseley, G. L. (2008a). I can't find it! Distorted body image and tactile dysfunction in patients with chronic back pain. *Pain*, *140*, 239–243.
- Moseley G.L., Zalucki N.M., Wiech K. (2008b). Tactile discrimination, but not tactile stimulation alone, reduces chronic limb pain. *Pain*, 137, 600.
- Moseley L. & Flor H. (2012). Targeting cortical representations in the treatment of chronic pain: a review. *Neurorehabil Neural Repair*, 26(6), 646-52.
- Moseley & Butler (2012). Graded Motor Imagery Handbook. Noigroup, Adelaide
- Moseley, GL, Vlaeyen, JWS. (2015). Beyond nociception: the imprecision hypothesis of chronic pain. *Pain*, *156*, 35–38.
- Moseley L, Butler DS. (2017). *Explain pain supercharged: the clinicians manual*. Adelaide: Noigroup Publications.
- Mouraux, D, Brassinne, E, Sobczak, S, Nonclercq, A, Warzée, N, Sizer, et al. (2016). 3D augmented reality mirror visual feedback therapy applied to the treatment of persistent, unilateral upper extremity neuropathic pain: a preliminary study. *J Man Manip Ther, 0,* 1–7.

- National Health and Medical Research Council, Department of Industry, Innovation and Science, Australian Government. (2015). Phases of clinical trials. <u>https://www.australianclinicaltrials.gov.au/what-clinical-trial/phases-clinical-trials</u> (Accessed 15.10.2018).
- Nelson EG (2012). Hierarchical Linar Modeling versus visual analysis of single-subject design data. LSU Doctoral Dissertations. 1106. https://digitalcommons.lsu.edu/gradschool\_dissertations/1106
- Nicholas MK, Linton SJ, Watson PJ, Main CJ. (2011). Early identification and management of psychological risk factors ("yellow flags") in patients with low back pain: a reappraisal. *Phys Ther*, *91*, 737-753.
- Onghena, P. (1992). Randomization tests for extensions and variations of ABAB single-case experimental designs: A rejoinder. *Behavioral Assessment, 14,* 153–171.
- Onghena, P. (2005a). Single-case designs. In B. Everitt & D. Howell (Eds.), *Encyclopedia of statistics in behavioral science, vol. 4* (pp. 1850–1854). Chichester, UK: Wiley.
- Onghena P, Edgington ES. (2005b). Customization of pain treatments: single-case design and analysis. *Clin J Pain*, 21, 56-68.
- Ostelo et al. (2008). Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. *Spine (Phila Pa 1976)*, 33, 90-4.
- O'Sullivan P.B. (2012). It's time for change with the management of non-specific chronic low back pain. *Br J Sports Med*, 46, 224-227.
- O'Sullivan PB., et al. (2016). Unravelling the complexity of low back pain. J Orthop Sports Phys Ther 46(11), 923-937.
- O'Sullivan PB., et al (2018a). Cognitive functional therapy: an integrated behavioral approach for the targeted management of disabling low back pain. *Phys Ther*, *98*, 408–423.
- O'Sullivan K, Dankaerts W, O'Sullivan L, O'Sullivan PB (2015). Cognitive Functional Therapy for Disabling nonspecific low back pain: multiple case-cohort study. *Phys Ther*, *95*(*11*), 1477-88.
- O'Sullivan K, O'Sullivan KB, O'Keeffe M. (2018b). The Lancet series on low back pain: reflections and clinical implications. Br J Sp Med, 0, 1-2.
- Parsons LM. (2001). Integrating cognitive psychology, neurology, and neuroimaging. *Acta Psychol*, 107, 155-81.
- Patterson DR, Jensen MP, Wiechman SA, Sharar SR. (2010). Virtual reality hypnosis for pain associated with recovery from physical trauma. *Int J Clin Exp Hypn*, *58*, 288–300.
- Pleger B, Tegenthoff M, Ragert P et al. (2005). Sensorimotor returning in complex regional pain syndrome parallels pain reduction. *Ann Neurol*, *57*, 425.
- Pleger B, Ragert P, Schwenkreis P et al. (2006). Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. *Neuroimage*, *32*, 503-10.
- Poiraudeau et al. (2016). Analgesic effect of a prototype device of virtual reality in a population of patients with chronic low back pain (REVLOC). (Last update posted: September 2016)

 $\label{eq:https://www.clinicaltrials.gov/ct2/show/NCT01407653?term=Virtual+Reality&cond=Low+Ba \\ ck+Pain&draw=1&rank=1 \\ \end{tabular}$ 

- Poquet N, Lin CWC, Heymans MW, van Tulder MW, Esmail R, Koes BW. (2016). Back schools for acute and subacute non-specific low-back pain. *Cochrane Database of Syst Rev*, (4):CD008325.
- Preston, C, Newport, R. (2011). Analgesic effects of multisensory illusions in osteoarthritis. *Rheumatology*, 50, 2314–2315.
- R Core Team (2012). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Rikstrygdeverket Tygdestatistisk årbok. (2004), årgang 20. *Rikstrygdeverket. Utredningsavdelingen.* Oslo, Norge.
- Roelofs et al. (2004a). Fear of movement/(re)injury in chronic musculoskeletal pain: evidence for invariant two-factor model of the Tampa Scale for Kinesiophobia across pain diagnosis and Dutch, Swedish, and Canadian samples. *Pain, 131,* 181-90.
- Roelofs J, McCracken L, Peters ML, Crombez G, van Breukelen G, Vlaeyen JW. (2004b). Psychometric evaluation of the Pain Anxiety Symptoms Scale (PASS) in chronic pain patients. J Behav Med, 27, 167–83.
- Roelofs et al. (2007). Psychometric evaluation of the Pain Anxiety Symptoms Scale (PASS) in chronic pain patients. *J Behav Med*, 27, 167-83.
- Roland M, Van Tulder M. (1998). Should radiologists change the way they report plain radiography of the spine? *Lancet*, *352*, 229-230. DOI 10.1016/S0140-6736(97)11499-4.
- Roosink M, McFadyen BJ, Hébert LJ, Jackson PL, Bouyer LJ, Mercier C. (2015). Assessing the Perception of Trunk Movements in Military Personnel with Chronic Non-Specific Low Back Pain Using a Virtual Mirror. *PLoS ONE*, *10*(*3*): e0120251. doi:10.1371/journal.pone.0120251
- Rose F.D. et al. (2000). Training in virtual environments: transfer to real world tasks and equivalence to real task training. *Ergonomics*, 43(4), 494-511.
- Rose F.D. et al. (2005). Virtual reality in brain damage rehabilitation: Review. *Cyberpsychology and behaviour*, 8, 241-271.
- Saragiotto BT, Maher CG, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo RWJG et al. (2016). Motor control exercise for chronic non-specific low-back pain. *Cochrane Database of Syst Rev*, (1):CD012004.
- Saltychev M, Vastamäki H, Mattie R, McCormick Z, Vastamäki M, Laimi K. (2016). Psychometric Properties of the Pain Numeric Rating Scale When Applied to Multiple Body Regions among Professional Musicians. *PLoS ONE 11(9):* e0161874. doi:10.1371/journal.pone.0161874
- Saltychev, M., Mattie, R., McCormick, Z., Bärlund, E., & Laimi, K. (2017). Psychometric properties of the Oswestry Disability Index. *International Journal of Rehabilitation Research*, 40(3), 202–208. doi:10.1097/mrr.00000000000226
- Savigny P, Kuntze S, Watson P, Underwood M, Ritchie G, Cotterell M. et al. (2009). *Low Back Pain: Early management of chronic non-specific low back pain*. National Collaborating Centre for Primary Care and Royal College of General Practitioners. London.

- Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: overconfident estimates in mixed models. *Behavioral Ecology*, 20, 416–420.
- Schmitt YS, Hoffman HG, Blough DK, et al. (2011). A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns. Burns, 37, 61–68.
- Schofield DJ, Shrestha RN, Passey ME, Earnest A, Fletcher SL. (2008). Chronic disease and labour force participation among older Australians. *Med J Aust, 189*, 447–50.
- Schofield D, Kelly S, Shrestha R, Callander E, Passey M, Percival R. (2012). The impact of back problems on retirement wealth. *Pain*, *153*, 203–10.
- Schofield DJ, Callander EJ, Shrestha RN, Passey ME, Kelly SJ, Percival R. (2015). Back problems, comorbidities, and their association with wealth. *Spine J*, *15*, 34–41.
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). *Experimental and quasi-experimental designs* for generalized causal inference. New York, NY: Houghton Mifflin.
- Shadish, W. R. (2014). Analysis and meta-analysis of single-case designs: An introduction. *Journal of School Psychology*, *52*, 109–122.
- Shamseer, L., Sampson, M., Bukutu, C., Schmid, C. H., Nikles, J., Tate, R., ... & the CENT group (2015). CONSORT extension for reporting N-of-1 trials (CENT) 2015: Explanation and elaboration. *British Medical Journal*, *350*, h1793.
- Seres S. (2017). Lær deg å elske algoritmene. Bergen Næringsråd Årskonferanse, Bergen, 2017. <u>https://www.slideshare.net/komforeningen/lr-deg-elske-algoritmene-silvija-seres</u> (Accessed 11.10.2018).
- Smith BE, Littlewood C, May S. (2014). An update of stabilisation exercises for low back pain: a systematic review with meta-analysis, *BMC Musculoskelet Disord*, *15*, 416. http://dx.doi.org/10.1186/1471-2474-15-416
- Somers, TJ., et al. (2009). Pain catastrophizing and pain-related fear in osteoarthritis patients: relationships to pain and disability. *Journal of Pain and Symptom Management*, 37(5), 863–872.
- Stanton T.R. et al. (2013). Tactile acuity is disrupted in osteoarthritis but is unrelated to disruptions in motor imagery performance. *Rheumatol*, 52(8), 258-68.
- Stanton TR, Moseley LG, Wong AYL, Kawchuk GN. (2017). Feeling stiffness in the back: a protective perceptual inference in chronic back pain. *Scientific Reports Nature*, 7, 9681. DOI:10.1038/s41598-017-09429-1
- Stanton et al (2018). Illusory re-sizing of the painful knee is analgesic in symptomatic knee osteoarthritis. PeerJ, 6, e5206. doi: 10.7717/peerj.5206. eCollection 2018.
- Stratford, P., Gill, C., Westaway, M., & Binkley, J. (1995). Assessing disability and change on individual patients: a report of a patient specific measure. *Physiotherapy Canada*, 47, 258-263.
- Su et al. (2015). A Virtual Reality Lower-Back Pain Rehabilitation Approach: System Design and User Acceptance Analysis. In: Antona M., Stephanidis C. (eds) Universal Access in *Human-Computer Interaction. Access to Learning, Health and Well-Being*. UAHCI 2015. Lecture Notes in Computer Science, (vol 9177). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-20684-4\_37

- Sullivan MJL, Bishop SR, Pivik J. (1995). The pain catastrophization scale: development and validation. *Psychol assess*, 7, 524-32.
- Sullivan M, Tanzer M, Stanish W et al. (2009). Psychological determinants of problematic outcomes following Total Knee Arthroplasty. *Pain 143(1–2)*, 123–129.
- Tate, R. L., Perdices, M., Rosenkoetter, U., Shadish, W., Vohra, S., Barlow, D. H., ... Wilson, B. (2016). The Single-Case Reporting guideline In BEhavioural interventions (SCRIBE) 2016 statement. *Aphasiology*, 30, 862–876.
- Thomas JS, France CR (2007). Pain-related fear is associated with avoidance of spinal motion during recovery from low back pain. *Spine (Phila Pa 1976). 32*, E460-466.
- Thomas JS, France CR (2008a). The relationship between pain-related fear and lumbar flexion during natural recovery from low back pain. *Eur Spine J*, *17*, 97-103.
- Thomas JS, France CR, Lavender SA, Johnson MR (2008b). Effects of fear of movement on spine velocity and acceleration after recovery from low back pain. *Spine (Phila Pa 1976)*, *33*, 564-570.
- Thomas JS, France CR, Applegate ME, Leitkam ST, Walkowski S. (2016). Feasibility and Safety of a Virtual Reality Dodgeball Intervention for Chronic Low Back Pain: A Randomized Clinical Trial. *J Pain*, *17*(2), 1302-17.
- Thomas JS & France CR. (2018). Virtual immersive gaming to optimize recovery (VIGOR) in low back pain: a phase 2 randomized controlled trial. *Contemp Clin Trials*, 69, 83-91.
- Trost, Z, France, C, Thomas, J. (2005). Exposure to movement in chronic back pain: Evidence of successful generalization across a reaching task. *Pain*, 137(1), 26–33.
- Trost Z, France CR, Thomas JS. (2009). Examination of the photograph series of daily activities (PHODA) scale in chronic low back pain patients with high and low kinesiophobia. *Pain* 141(3), 276–282.
- Trost, Z., France, C.R., Thomas, J.S. (2011). Pain-related fear and avoidance of physical exertion following delayed-onset muscle soreness. *Pain*, 152, 1540–1547.
- Trost et al. (2015). The promise and challenge of virtual gaming technologies for chronic pain: the case of graded exposure for low back pain. *Pain Manag*, *5*(*3*), 197-206.
- Turk DC. (1996). *Biopsychosocial perspective on chronic pain. Psychological Approaches to Pain Management*. A Practitioners Handbook. New York: Guilford Press, 3-32.
- Turner, JA, et al. (2002). Catastrophizing is associated with pain intensity, psychological distress, and pain-related disability among individuals with chronic pain after spinal cord injury. *Pain* 98(1-2), 127–134.
- Van Damme et al. (2002). A confirmatory factor analysis of the Pain Catastrophization Scale: invariant factor structure across clinical and non-clinical populations. *Pain*, *96*, 319-24.
- Van den Noortgate, W., & Onghena, P. (2003). Hierarchical linear models for the quantitative integration of effect sizes in single-case research. *Behavior Research Methods, Instruments, & Computers, 35*, 1–10.

- Van Ryckeghem DM, De Houwer J, Van Bockstaele B, Van Damme S, De SchryverM, Crombez G. (2013). Implicit associations between pain and self-schema in patients with chronic pain. *Pain*, 154, 2700–6.
- Veltri, Krasnova, Baumann, & Kalayamthanam, (2014). *Gender differences in online gaming: a literature review*. Conference paper. Twentieth Americas Conference on Information systems, Savannah, Volume: 2014.
- Vibe Fersum K, O'Sullivan P, Skouen JS, Smith A, Kvåle A. (2013). Efficacy of classification based cognitive functional therapy in patients with non-specific chronic low back pain: a randomized controlled trial. *Eur J Pain*, *17*, 916-928. http://dx.doi. org/10.1002/j.1532-2149.2012.00252
- Virtual Reality Industry Report, Greenlight Insights forecast, 2017: https://www.greenlightinsights.com/industry-analysis/2017-virtual-reality-industry-reportspring/ (Last visited: 23.09.2018)
- Vlaeyen, JW, et al. (1995). The role of fear of movement/(re)injury in pain disability. *Journal of Occupational Rehabilitation*, 5(4), 235–252.
- Vlaeyen J, Linton SJ. (2000). Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. *Pain*, 85, 317-332.
- Vlaeyen JW, de Jong J, Geilen M, Heuts PH, van Breukelen G. (2001). Graded exposure in vivo in the treatment of pain-related fear: a replicated single-case experimental design in four patients with chronic low back pain. *Behav Res Ther, 39*, 151–66.
- Vlaeyen JW, de Jong J, Geilen M, Heuts PH, van Breukelen G. (2002a). The treatment of fear of movement/(re)injury in chronic low back pain: further evidence on the effectiveness of exposure in vivo. *Clin J Pain*, 18, 251–61.
- Vlaeyen JW, De Jong JR, Onghena P, Kerckhoffs-Hanssen M, Kole-Snijders AM. (2002b). Can painrelated fear be reduced? The application of cognitive- behavioural exposure in vivo. *Pain Res Manag*, 7, 144–53.
- Vlaeyen JW, Linton SJ. (2012). Fear-avoidance model of chronic musculoskeletal pain: 12 years on. *Pain, 153,* 1144-47.
- Vlaeyen JWS, Morley S, Linton S, Boersma K, de Jong J. (2012). *Pain-Related Fear: Exposure-based Treatment of Chronic Pain.* Seattle: IASP press.
- Vohra, S., Shamseer, L., Sampson, M., Bukutu, C., Schmid, C. H., Tate, R., ... & the CENT group (2015). CONSORT extension for reporting N-of-1 trials (CENT) 2015 Statement. *British Medical Journal*, 350, h1738.

Walker BF, French SD, Grand W, Green S. (2010). Cochrane Database Syst Rev, 4:CD005427.

- Wand, B. M., Di Pietro, F., George, P. & O'Connell, N. E. (2010). Tactile thresholds are preserved yet complex sensory function is impaired over the lumbar spine of chronic non-specific low back pain patients: a preliminary investigation. *Physiotherapy 96*, 317–323.
- Wand et al. (2011a). Cortical changes in chronic low back pain: Current state of the art and implications for clinical practice. *Man Ther*, *16*, 15-20.

- Wand, B. M., O'Connell, N. E., Di Pietro, F., & Bulsara, M. (2011b). Managing Chronic Nonspecific Low Back Pain With a Sensorimotor Retraining Approach: Exploratory Multiple-Baseline Study of 3 Participants. *Physical Therapy*, 91(4), 535-546.
- Wand et al (2014). Assessing self-perception in patients with chronic low back pain: development of a back-specific body-perception questionnaire. *J Back Musculoskelet Rehabil*, 27(4), 463-73.
- Wand et al (2016). Disrupted self-perception in people with chronic low back pain. Further evaluation of the Fremantle Back Awareness Questionnaire. *J Pain, 17(9),* 1001-12. doi: 10.1016/j.jpain.2016.06.003
- Wegner I, Widyahening IS, van Tulder MW, Blomberg SEI, de Vet HCW, Brønfort G, et al. (2013). Traction for low-back pain with or without sciatica. *Cochrane Database of Syst Rev*, 8:CD:003010.
- Wertli MM, Rasmussen-Barr E, Held U, Weiser S, Bachmann LM, Brunner F. (2014). Fear-avoidance beliefs-a moderator of treatment efficacy in patients with low back pain: a systematic review. *Spine J*, 14, 2658-78
- Wiederhold, B.K., Gao, K., Sulea, C., Wiederhold, M.D., (2014). Virtual reality as a distraction technique in chronic pain patients. *Cyberpsychol Behav Soc Netw*, *17*, 346–352.
- Woods MP, Asmundson GJG. (2008). Evaluating the efficacy of graded in vivo exposure for the treatment of fear in patients with chronic back pain: a randomized controlled clinical trial. *Pain*, *136*(*3*), 271–280.
- Wright JG. (1996). The minimal important difference: who's to say what is important? *J Clin Epidemiol*, 49, 1221–2.
- Yamato TP, Maher C, Saragiotto BT, Hancock MJ, Ostelo RWJG, Cabral CMN. (2015). Pilates for low back pain. *Cochrane Database of Syst Rev*, 7:CD010265.
- Zimand E, Anderson P, Gershon J, Graap K, Hodges L, Rothbaum BO. (2002). Virtual reality therapy: innovative treatment for anxiety disorders. *Prim Psychiatry*, *9*, 51–54.
- Webster BS & Cifuentes M. (2010). Relationship of early magnetic resonance imaging for workrelated acute low back pain with disability and medical utilization outcomes. *Journal of Occupational and Environmental Medicine*, 52, 900-907. DOI 10.1097/JOM.0b013e3181ef7e53.
- Weermeijer & Meulders, (2018). Clinimetrics: Tampa Scale for Kinesiophobia, J Phys, 64, 126.
- Weiss, Keshner, Levin (2014). Virtual Reality for physical and motor rehabilitation. Springer Publication Company, Incorporated © 2014.
- Williams DA, Feuerstein M, Durbin D, et al. (1998). Health care and indemnity costs across the natural history of disability in occupational low back pain. *Spine*, 23, 2329–36.
- Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. [http://arxiv.org/pdf/1308.5499.pdf] (Last downloaded: 23.09.18).
- World Economic Forum. (2014). Virtual and Augmented Reality. <u>https://toplink.weforum.org/knowledge/insight/a1Gb0000001k6I0EAI/explore/summary</u> (Accessed 13.10.2018).

Zadro et al. (2017). Video-game based exercises for older people with chronic low back pain: a protocol for a feasibility randomised controlled trial (the GAMEBACK trial). *Phys Ther*, *103*(2), 146-153.

# 8.0. Appendix

# **Appendix 1 – Random number tables**

#### Appendix B. Random Number Tables

Reproduced from <u>Million Random Divits</u>, used with permission of the Rand Corporation, Copyright, 1955, The Free Press. The publication is available for free on the Internet at http://www.rand.org/publications/classics/randomdigits.

All of the sampling plans presented in this handbook are based on the assumption that the packages constituting the sample are chosen at random from the inspection lot. Randomness in this instance means that every package in the lot has an equal chance of being selected as part of the sample. It does not matter what other packages have already been chosen, what the package net contents are, or where the package is located in the lot.

To obtain a random sample, two steps are necessary. First it is necessary to identify each package in the lot of packages with a specific number whether on the shelf, in the warehouse, or coming off the packaging line. Then it is necessary to obtain a series of random numbers. These random numbers indicate exactly which packages in the lot shall be taken for the sample.

#### The Random Number Table

The random number tables in Appendix B are composed of the digits from 0 through 9, with approximately equal frequency of occurrence. This appendix consists of 8 pages. On each page digits are printed in blocks of five columns and blocks of five rows. The printing of the table in blocks is intended only to make it easier to locate specific columns and rows.

#### **Random Starting Place**

Starting Page. The Random Digit pages numbered B-2 through B-8. You can use the day of the week to determine the starting page or use the first page for the first lot you test in a location, the second page for the second lot and so on moving to the following page for each new lot.

Starting Column and Row. You may choose a starting page in the random number table and with eyes closed, drop a pencil anywhere on the page to indicate a starting place in the table.

For example, assume that testing takes place on the 3rd day of the week. Start with Table 3 of Appendix B. Assume you dropped your pencil on the page and it has indicated a starting place at column 22, row 45. That number is 1.

If 1-digit random numbers are needed, record them, going down the column to the bottom of the page and then to the top of the next column, and so on. Ignore duplicates and record zero (0) as ten (10). Following on from the last example, these numbers are 3, 2, 9, 8, etc. If two-digit random numbers are needed, rule off the pages, and further pages if necessary, in columns of two digits each. If there is a single column left on the page ignore this column, and rule the next page in columns of two. Again, ignore duplicate numbers and record 00 as 100. For example, using the same starting place as in the last example (Table 3, column 22, row 45), the recorded two-digit recorded numbers would be 11, 34, 26, 95, etc.. When three-digit numbers are needed, rule the page in columns of three. Record 000 as 1000. Starting on Table 3, column 22, row 45, the recorded numbers would be 119, 346, 269, 959, etc..

### TABLE 1 - RANDOM DIGITS

| 11164 | 36318 | 75061 | 37674 | 26320 | 75100 | 10431 | 20418 | 19228 | 91792 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 21215 | 91791 | 76831 | 58678 | 87054 | 31687 | 93205 | 43685 | 19732 | 08468 |
| 10438 | 44482 | 66558 | 37649 | 08882 | 90870 | 12462 | 41810 | 01806 | 02977 |
| 36792 | 26236 | 33266 | 66583 | 60881 | 97395 | 20461 | 36742 | 02852 | 50564 |
| 73944 | 04773 | 12032 | 51414 | 82384 | 38370 | 00249 | 80709 | 72605 | 67497 |
| 49563 | 12872 | 14063 | 93104 | 78483 | 72717 | 68714 | 18048 | 25005 | 04151 |
| 64208 | 48237 | 41701 | 73117 | 33242 | 42314 | 83049 | 21933 | 92813 | 04763 |
| 51486 | 72875 | 38605 | 29341 | 80749 | 80151 | 33835 | 52602 | 79147 | 08868 |
| 99756 | 26360 | 64516 | 17971 | 48478 | 09610 | 04638 | 17141 | 09227 | 10606 |
| 71325 | 55217 | 13015 | 72907 | 00431 | 45117 | 33827 | 92873 | 02953 | 85474 |
| 65285 | 97198 | 12138 | 53010 | 94601 | 15838 | 16805 | 61004 | 43516 | 17020 |
| 17264 | 57327 | 38224 | 29301 | 31381 | 38109 | 34976 | 65692 | 98566 | 29550 |
| 95639 | 99754 | 31199 | 92558 | 68368 | 04985 | 51092 | 37780 | 40261 | 14479 |
| 61555 | 76404 | 86210 | 11808 | 12841 | 45147 | 97438 | 60022 | 12645 | 62000 |
| 78137 | 98768 | 04689 | 87130 | 79225 | 08153 | 84967 | 64539 | 79493 | 74917 |
| 62490 | 99215 | 84987 | 28759 | 19177 | 14733 | 24550 | 28067 | 68894 | 38490 |
| 24216 | 63444 | 21283 | 07044 | 92729 | 37284 | 13211 | 37485 | 10415 | 36457 |
| 16975 | 95428 | 33226 | 55903 | 31605 | 43817 | 22250 | 03918 | 46999 | 98501 |
| 59138 | 39542 | 71168 | 57609 | 91510 | 77904 | 74244 | 50940 | 31553 | 62562 |
| 29478 | 59652 | 50414 | 31966 | 87912 | 87154 | 12944 | 49862 | 96566 | 48825 |
| 96155 | 95009 | 27429 | 72918 | 08457 | 78134 | 48407 | 26061 | 58754 | 05326 |
| 29621 | 66583 | 62966 | 12468 | 20245 | 14015 | 04014 | 35713 | 03980 | 03024 |
| 12639 | 75291 | 71020 | 17265 | 41598 | 64074 | 64629 | 63293 | 53307 | 48766 |
| 14544 | 37134 | 54714 | 02401 | 63228 | 26831 | 19386 | 15457 | 17999 | 18306 |
| 83403 | 88827 | 09834 | 11333 | 68431 | 31706 | 26652 | 04711 | 34593 | 22561 |
| 67642 | 05204 | 30697 | 44806 | 96989 | 68403 | 85621 | 45556 | 35434 | 09532 |
| 64041 | 99011 | 14610 | 40273 | 09482 | 62864 | 01573 | 82274 | 81446 | 32477 |
| 17048 | 94523 | 97444 | 59904 | 16936 | 39384 | 97551 | 09620 | 63932 | 03091 |
| 93039 | 89416 | 52795 | 10631 | 09728 | 68202 | 20963 | 02477 | 55494 | 39563 |
| 82244 | 34392 | 96607 | 17220 | 51984 | 10753 | 76272 | 50985 | 97593 | 34320 |
| 96990 | 55244 | 70693 | 25255 | 40029 | 23289 | 48819 | 07159 | 60172 | 81697 |
| 09119 | 74803 | 97303 | 88701 | 51380 | 73143 | 98251 | 78635 | 27556 | 20712 |
| 57666 | 41204 | 47589 | 78364 | 38266 | 94393 | 70713 | 53388 | 79865 | 92069 |
| 46492 | 61594 | 26729 | 58272 | 81754 | 14648 | 77210 | 12923 | 53712 | 87771 |
| 08433 | 19172 | 08320 | 20839 | 13715 | 10597 | 17234 | 39355 | 74816 | 03363 |
| 10011 | 75004 | 86054 | 41190 | 10061 | 19660 | 03500 | 68412 | 57812 | 57929 |
| 92420 | 65431 | 16530 | 05547 | 10683 | 88102 | 30176 | 84750 | 10115 | 69220 |
| 35542 | 55865 | 07304 | 47010 | 43233 | 57022 | 52161 | 82976 | 47981 | 46588 |
| 86595 | 26247 | 18552 | 29491 | 33712 | 32285 | 64844 | 69395 | 41387 | 87195 |
| 72115 | 34985 | 58036 | 99137 | 47482 | 06204 | 24138 | 24272 | 16196 | 04393 |
| 07428 | 58863 | 96023 | 88936 | 51343 | 70958 | 96768 | 74317 | 27176 | 29600 |
| 35379 | 27922 | 28906 | 55013 | 26937 | 48174 | 04197 | 36074 | 65315 | 12537 |
| 10982 | 22807 | 10920 | 26299 | 23593 | 64629 | 57801 | 10437 | 43965 | 15344 |
| 90127 | 33341 | 77806 | 12446 | 15444 | 49244 | 47277 | 11346 | 15884 | 28131 |
| 63002 | 12990 | 23510 | 68774 | 48983 | 20481 | 59815 | 67248 | 17076 | 78910 |
| 40779 | 86382 | 48454 | 65269 | 91239 | 45989 | 45389 | 54847 | 77919 | 41105 |
| 43216 | 12608 | 18167 | 84631 | 94058 | 82458 | 15139 | 76856 | 86019 | 47928 |
| 96167 | 64375 | 74108 | 93643 | 09204 | 98855 | 59051 | 56492 | 11933 | 64958 |
| 70975 | 62693 | 35684 | 72607 | 23026 | 37004 | 32989 | 24843 | 01128 | 74658 |
| 85812 | 61875 | 23570 | 75754 | 29090 | 40264 | 80399 | 47254 | 40135 | 69916 |
|       |       |       |       |       |       |       |       |       |       |

### TABLE 2 - RANDOM DIGITS

| 40603  | 16152  | \$3735 | 37361 | 08783   | 24838  | 30703  | 20054  | 76965 | 32713  |
|--------|--------|--------|-------|---------|--------|--------|--------|-------|--------|
| 40041  | 53585  | 60058  | 60016 | 71018   | 00561  | 84505  | 53080  | 64735 | 85140  |
| 72505  | 02473  | 55052  | 17057 | 11446   | 22610  | 24271  | 35777  | 27064 | 12536  |
| 20412  | 16012  | 11442  | 1/93/ | 11202   | 40204  | 20005  | 10040  | 27004 | 00606  |
| 57004  | 26240  | 54602  | 49510 | 20646   | 49390  | 39803  | 54500  | 00205 | 56050  |
| 2/994  | /0/48  | 5402/  | 48511 | /8040   | 33287  | 30024  | 34322  | 08/93 | 20273  |
| 41024  | 50100  | 15460  | 00005 | 04164   | 01222  | 00054  | 07104  | 21600 | 25042  |
| 01854  | 22222  | 20516  | 31007 | 59104   | 91333  | 90934  | 3/180  | 31398 | 20942  |
| 91402  | /122/  | /9210  | 21007 | 38002   | 81418  | 8/858  | 18445  | /0102 | 51140  |
| 58299  | 83880  | 20125  | 10794 | 37780   | 61705  | 18276  | 99041  | 78135 | 99661  |
| 40684  | 99948  | 33880  | 76413 | 63839   | 71371  | 32392  | 51812  | 48248 | 96419  |
| 75978  | 64298  | 08074  | 62055 | 73864   | 01926  | 78374  | 15741  | 74452 | 49954  |
| 24556  | 20061  | 00367  | 76069 | 67.4.45 | 64261  | 70605  | 24246  | 27022 | 48220  |
| 45000  | 57040  | 06207  | 70008 | 02445   | 04301  | 01664  | 24240  | 27027 | 402.39 |
| 02990  | 57048  | 2500/  | 77571 | 77974   | 3/034  | 81004  | 98008  | 37224 | 49848  |
| 10381  | 12008  | 25410  | 8/8/5 | 90374   | 86203  | 29677  | 82543  | 37554 | 89179  |
| 52458  | 88880  | /8352  | 67913 | 09245   | 47773  | 51272  | 00976  | 99571 | 33303  |
| 33007  | 85607  | 92008  | 44897 | 24964   | 50559  | 79549  | 85658  | 96865 | 24186  |
| 20710  | 21512  | 00500  | 61400 | 22204   | 40960  | 07224  | 05966  | 66260 | 42150  |
| 50700  | 02670  | 10106  | 60600 | 74695   | 42802  | 56969  | 17007  | 00209 | 45136  |
| 38/22  | 03078  | 19180  | 09002 | 34023   | /3938  | 20809  | 1/90/  | 8180/ | 11000  |
| 20188  | 09497  | 21321  | 47799 | 20477   | 71780  | 52500  | 00827  | /9419 | 70880  |
| 12893  | 54048  | 0/255  | 86149 | 99090   | /0958  | 20772  | 31/68  | 52903 | 2/645  |
| 33186  | 81346  | 85095  | 37282 | 85536   | 72661  | 32180  | 40229  | 19209 | 74939  |
| 70903  | 20449  | 22307  | 54211 | 61708   | \$3452 | 61227  | \$1600 | 42265 | 20310  |
| 40440  | 15100  | 44136  | 10420 | 32203   | 14005  | 27520  | 20120  | 01442 | 11153  |
| 40449  | 04250  | 49120  | 50561 | 25562   | 14965  | 202216 | 20210  | 60726 | 50273  |
| 204203 | 09239  | 01212  | 27400 | 41124   | 53614  | 02612  | 27262  | 00730 | 36/72  |
| 38048  | 09278  | 81515  | 77400 | 41120   | 52014  | 93013  | 27203  | 99381 | 49500  |
| 04292  | 46028  | 75000  | 26954 | 34979   | 68381  | 45154  | 09314  | 81009 | 05114  |
| 17026  | 40737  | 85875  | 12130 | 50301   | 81830  | 30185  | 83095  | 78752 | 40800  |
| 48070  | 76949  | 02531  | 07737 | 10151   | 19160  | 31700  | 74947  | 85522 | 74007  |
| 30150  | 05450  | \$3778 | 46115 | 00179   | 07719  | 08440  | 15076  | 21100 | 20402  |
| 10140  | 000021 | 21261  | 60650 | 54605   | 20025  | 20745  | 01206  | 20200 | 20452  |
| 22020  | 22062  | 34962  | 01030 | 01120   | 54010  | 02050  | 45404  | 00102 | 79270  |
| 12828  | //00/  | 24803  | 97570 | 01139   | 34219  | 02939  | 43090  | 98105 | /880/  |
| 73547  | 43750  | 95632  | 30555 | 74301   | 07579  | 60401  | 02647  | 17050 | 40860  |
| 07277  | 93217  | 70421  | 21769 | 83572   | 48010  | 17327  | 00638  | 87035 | 89300  |
| 65128  | 48334  | 07493  | 28098 | 52087   | 55510  | 83718  | 60004  | 48721 | 17522  |
| 39716  | 61380  | 60212  | 05000 | 21210   | 22052  | 01780  | 36913  | 10528 | 07727  |
| 21001  | 76450  | 72720  | 00657 | 24000   | 61225  | 41600  | 41067  | 50601 | 20500  |
| 31921  | 10410  | 13120  | 08037 | 14911   | 01335  | 41090  | 41907  | 20091 | 50508  |
| 57238  | 27464  | 61487  | 52329 | 26150   | 79991  | 64398  | 91273  | 26824 | 94827  |
| 24219  | 41090  | 08531  | 61578 | 08236   | 41140  | 76335  | 91189  | 66312 | 44000  |
| 31309  | 49387  | 02330  | 02476 | 96074   | 33256  | 48554  | 95401  | 02642 | 20110  |
| 20750  | 07034  | 72610  | 66639 | 66500   | 31206  | 55203  | 24240  | 02266 | 30010  |
| 28730  | 94305  | 26654  | 37851 | 20500   | 53446  | 34385  | 26203  | 87713 | 26842  |
| 26557  | 04090  | 20034  | 57651 | 00090   | 33440  | 54565  | 00095  | 57715 | 20042  |
| 97929  | 41220  | 86431  | 94485 | 28778   | 44997  | 38802  | 56594  | 61363 | 04206  |
| 40568  | 33222  | 40486  | 91122 | 43294   | 94541  | 40988  | 02929  | 83190 | 74247  |
| 41483  | 92935  | 17061  | 78252 | 40498   | 43164  | 68646  | 33023  | 64333 | 64083  |
| 03040  | 66476  | 24000  | 41000 | 65135   | 37641  | 07613  | 87282  | 63603 | 55200  |
| 76869  | 39300  | 84978  | 07504 | 36835   | 72748  | 47644  | 48542  | 25076 | 68626  |
|        |        |        |       |         | /      |        |        |       |        |
| 02982  | 57991  | 50765  | 91930 | 21375   | 35604  | 29963  | 13738  | 03155 | 59914  |
| 94479  | 76500  | 39170  | 06629 | 10031   | 48724  | 49822  | 44021  | 44335 | 26474  |
| 52291  | 75822  | 95966  | 90947 | 65031   | 75913  | 52654  | 63377  | 70664 | 60082  |
| 03684  | 03600  | 52831  | 55381 | 97013   | 19993  | 41295  | 29118  | 18710 | 64851  |
| 58939  | 28366  | 86765  | 67465 | 45421   | 74228  | 01095  | 50987  | 83833 | 37216  |
|        |        |        |       |         |        |        |        |       |        |
|        |        |        |       |         |        |        |        |       |        |

## TABLE 3 – RANDOM DIGITS

| 37100 | 62492 | 63642 | 47638 | 13925 | 80113 | 88067 | 42575 | 44078 | 62703 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 53406 | 13855 | 38519 | 29500 | 62479 | 01036 | 87964 | 44498 | 07793 | 21599 |
| 55172 | 81556 | 18856 | 59043 | 64315 | 38270 | 25677 | 01965 | 21310 | 28115 |
| 40353 | 84807 | 47767 | 46890 | 16053 | 32415 | 60259 | 99788 | 55924 | 22077 |
| 18899 | 09612 | 77541 | 57675 | 70153 | 41179 | 97535 | 82889 | 27214 | 03482 |
| 68141 | 25340 | 92551 | 11326 | 60939 | 79355 | 41544 | 88926 | 09111 | 86431 |
| 51559 | 91159 | 81310 | 63251 | 91799 | 41215 | 87412 | 35317 | 74271 | 11603 |
| 92214 | 33386 | 73459 | 79359 | 65867 | 39269 | 57527 | 69551 | 17495 | 91456 |
| 15089 | 50557 | 33166 | 87094 | 52425 | 21211 | 41876 | 42525 | 36625 | 63964 |
| 96461 | 00604 | 11120 | 22254 | 16763 | 19206 | 67790 | 88362 | 01880 | 37911 |
| 28177 | 44111 | 15705 | 73835 | 69399 | 33602 | 13660 | 84342 | 97667 | 80847 |
| 66953 | 44737 | 81127 | 07493 | 07861 | 12666 | 85077 | 95972 | 96556 | 80108 |
| 19712 | 27263 | 84575 | 49820 | 19837 | 69985 | 34931 | 67935 | 71903 | 82560 |
| 68756 | 64757 | 19987 | 92222 | 11691 | 42502 | 00952 | 47981 | 97579 | 93408 |
| 75022 | 65332 | 98606 | 29451 | 57349 | 39219 | 08585 | 31502 | 96936 | 96356 |
| 11323 | 70069 | 90269 | 89266 | 46413 | 61615 | 66447 | 49751 | 15836 | 97343 |
| 55208 | 63470 | 18158 | 25283 | 19335 | 53893 | 87746 | 72531 | 16826 | 52605 |
| 11474 | 08786 | 05594 | 67045 | 13231 | 51186 | 71500 | 50498 | 59487 | 48677 |
| 81422 | 86842 | 60997 | 79669 | 43804 | 78690 | 58358 | 87639 | 24427 | 66799 |
| 21771 | 75963 | 23151 | 90274 | 08275 | 50677 | 99384 | 94022 | 84888 | 80139 |
| 42278 | 12160 | 32576 | 14278 | 34231 | 20724 | 27908 | 02657 | 19023 | 07190 |
| 17697 | 60114 | 63247 | 32096 | 32503 | 04923 | 17570 | 73243 | 76181 | 99343 |
| 05686 | 30243 | 34124 | 02936 | 71749 | 03031 | 72259 | 26351 | 77511 | 00850 |
| 52992 | 46650 | 89910 | 57395 | 39502 | 49738 | 87854 | 71066 | 84596 | 33115 |
| 94518 | 93984 | 81478 | 67750 | 89354 | 01080 | 25988 | 84359 | 31088 | 13655 |
| 00184 | 72186 | 78906 | 75480 | 71140 | 15199 | 69002 | 08374 | 22126 | 23555 |
| 87462 | 63165 | 79816 | 61630 | 50140 | 95319 | 79205 | 79202 | 67414 | 60805 |
| 88692 | 58716 | 12273 | 48176 | 86038 | 78474 | 76730 | 82931 | 51595 | 20747 |
| 20094 | 42962 | 41382 | 16768 | 13261 | 13510 | 04822 | 96354 | 72001 | 68642 |
| 60935 | 81504 | 50520 | 82153 | 27892 | 18029 | 79663 | 44146 | 72876 | 67843 |
| 51392 | 85936 | 43898 | 50596 | 81121 | 98122 | 69196 | 54271 | 12059 | 62539 |
| 54239 | 41918 | 79526 | 46274 | 24853 | 67165 | 12011 | 04923 | 20273 | 89405 |
| 57892 | 73394 | 07160 | 90262 | 48731 | 46648 | 70977 | 58262 | 78359 | 50436 |
| 02330 | 74736 | 53274 | 44468 | 53616 | 35794 | 54838 | 39114 | 68302 | 26855 |
| 76115 | 29247 | 55342 | 51299 | 79908 | 36613 | 68361 | 18864 | 13419 | 34950 |
| 63312 | 81886 | 29085 | 20101 | 38037 | 34742 | 78364 | 39356 | 40006 | 49800 |
| 27632 | 21570 | 34274 | 56426 | 00330 | 07117 | 86673 | 46455 | 66866 | 76374 |
| 06335 | 62111 | 44014 | 52567 | 79480 | 45886 | 92585 | 87828 | 17376 | 35254 |
| 64142 | 87676 | 21358 | 88773 | 10604 | 62834 | 63971 | 03989 | 21421 | 76086 |
| 28436 | 25468 | 75235 | 75370 | 63543 | 76266 | 27745 | 31714 | 04219 | 00699 |
| 09522 | 83855 | 85973 | 15888 | 29554 | 17995 | 37443 | 11461 | 42909 | 32634 |
| 93714 | 15414 | 93712 | 02742 | 34395 | 21929 | 38928 | 31205 | 01838 | 60000 |
| 15681 | 53599 | 58185 | 73840 | 88758 | 10618 | 98725 | 23146 | 13521 | 47905 |
| 77712 | 23914 | 08907 | 43768 | 10304 | 61405 | 53986 | 61116 | 76164 | 54958 |
| 78453 | 54844 | 61509 | 01245 | 91199 | 07482 | 02534 | 08189 | 62978 | 55516 |
| 24860 | 68284 | 19367 | 29073 | 93464 | 06714 | 45268 | 60678 | 58506 | 23700 |
| 37284 | 06844 | 78887 | 57276 | 42695 | 03682 | 83240 | 09744 | 63025 | 60997 |
| 35488 | 52473 | 37634 | 32569 | 39590 | 27379 | 23520 | 29714 | 03743 | 08444 |
| 51595 | 59909 | 35223 | 44991 | 29830 | 56614 | 59661 | 83397 | 38421 | 17503 |
| 90660 | 35171 | 30021 | 91120 | 78793 | 16827 | 89320 | 08260 | 09181 | 53616 |
|       |       |       |       |       |       |       |       |       |       |

## TABLE 4 - RANDOM DIGITS

|           | 54723          | 56527          | 53076          | 38235          | 42780          | 22716          | 36400          | 48028          | 78196          | 92985          |
|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|           | 84828          | 81248          | 25548          | 34075          | 43459          | 44628          | 21866          | 90350          | 82264          | 20478          |
|           | 65799<br>97017 | 38540          | 81303          | 05173<br>71708 | 23674          | 41774          | 25154          | 73003          | 87031          | 94308          |
|           | 26907          | 88173          | 71189          | 28377          | 13785          | 87469          | 35647          | 19695          | 33401          | 51998          |
|           | 68052          | 65422          | 88460          | 06352          | 42379          | 55499          | 60469          | 76931          | 83430          | 24560          |
|           | 42587          | 68149<br>55416 | 88147<br>67642 | 99700<br>05051 | 56124          | 53239          | 38726          | 63652<br>48077 | 36644          | 50876          |
|           | 53295          | 87133          | 38264          | 94708          | 00703          | 35991          | 76404          | 82249          | 22942          | 49659          |
|           | 23011          | 94108          | 29196          | 65187          | 69974          | 01970          | 31667          | 54307          | 40032          | 30031          |
|           | 75768          | 49549          | 24543          | 63285          | 32803          | 18301          | 80851          | 89301          | 02398          | 99891          |
|           | 86668          | 70341          | 66460          | 75648          | 78678          | 27770          | 30245          | 44775          | 56120          | 44235          |
|           | 27026          | 72030          | 20347          | 33521          | 12054          | 47248          | 64547          | 51452          | 95405          | 32217          |
|           | 31994          | 69072          | 37354          | 93025          | 38934          | 90219          | 91148          | 62757          | 51703          | 84040          |
|           | 02985          | 95303          | 15182          | 50166          | 11755          | 56256          | 89546          | 31170          | 87221          | 63267          |
|           | 45587          | 29611          | 95830          | 95400<br>47481 | 35845          | 8/388          | 56047          | 84300<br>68114 | 58583          | 16313          |
|           | 01071          | 08530          | 74305          | 77509          | 16270          | 20889          | 99753          | 88035          | 55643          | 18291          |
|           | 90209          | 68521          | 14293          | 39194          | 68803          | 32052          | 39413          | 26883          | 83119          | 69623          |
|           | 04982          | 68470<br>24637 | 27875          | 15480          | 13206          | 44784          | 83601<br>40768 | 03172<br>64141 | 07817          | 01520          |
|           | 50197          | 79869          | 86497          | 68709          | 42073          | 28498          | 82750          | 43571          | 77075          | 07123          |
|           | 46954          | 67536          | 28968          | 81936          | 95999          | 04319          | 09932          | 66223          | 45491          | 69503          |
|           | 82549          | 62676          | 31123          | 49899          | 70512          | 95288          | 15517          | 85352          | 21987          | 08669          |
|           | 61798          | 81600          | 80018          | 84742          | 06103          | 60786          | 01408          | 75967          | 29948          | 21454          |
|           | 2000/20205     | 29055          | 40018          | 62230          | 30130<br>41385 | 58066          | 06600          | 4/408          | 78311<br>85076 | 23890          |
|           | 06711          | 34939          | 19599          | 76247          | 87879          | 97114          | 74314          | 39599          | 43544          | 36255          |
|           | 13934          | 46885          | 58315          | 88366          | 06138          | 37923          | 11192          | 90757          | 10831          | 01580          |
| START:    | 28549<br>40871 | 98327<br>61803 | 99943<br>25767 | 25377<br>55484 | 17628          | 65468<br>86941 | 07875<br>64027 | 16728<br>01020 | 22602<br>39518 | 33892<br>34693 |
| Table 4,  | 47704          | 38355          | 71708          | 80117          | 11361          | 88875          | 22315          | 38048          | 42891          | 87885          |
| Column 2  | 02011          | 19098<br>93091 | 11016          | 29205          | 67316          | 08508<br>87052 | 23773          | 20242<br>62536 | 32180          | 28891          |
| Column 2: | 26460          | 50501          | 21221          | 10020          | 11005          | 10515          | 21242          | 04939          | 50050          | 07107          |
|           | 20400          | 250501         | 60203          | 20275          | 72710          | 40650          | 66632          | 25314          | 05260          | 22146          |
| 54806     | 11762          | 54806          | 02651          | 52912          | 32770          | 64507          | 59090          | 01275          | 47624          | 16124          |
|           | 31736          |                | 11523          | 64213          | 91190          | 10145          | 34231          | 36405          | 65860          | 48771          |
|           | 97155          | 48706          | 52239          | 21831          | 49043          | 18650          | 72246          | 43729          | 63368          | 53822          |
|           | 31181          | 49672          | 17237          | 04024          | 65324          | 32460          | 01566          | 67342          | 94986          | 36106          |
|           | 07068          | 82083<br>75947 | 71743          | 69285          | 30395          | S1200          | 36125          | 52055          | 20289          | 16911          |
|           | 26622          | 74184          | 75166          | 96748          | 34729          | 61289          | 36908          | 73686          | 84641          | 45130          |
|           | 02805          | 52676          | 22519          | 47848          | 68210          | 23954          | 63085          | 87729          | 14176          | 45410          |
|           | 32301          | 58701          | 04193          | 30142          | 99779          | 21697          | 05059          | 26684          | 63516          | 75925          |
|           | 20339          | 00508          | 39331          | 42101 42412    | 01031          | 01947<br>10354 | 02257          | 47236          | 19913          | 90371          |
|           | 24275          | 39632          | 09777          | 98800          | 48027          | 96908          | 08177          | 15364          | 02317          | 89548          |
|           | 36116          | 42128          | 65401          | 94199          | 51058          | 10759          | 47244          | 99830          | 64255          | 40516          |
|           |                |                |                |                |                |                |                |                |                |                |
|           |                |                |                |                | в              | -5             |                |                |                |                |

### TABLE 5 - RANDOM DIGITS

| 47505                                     | 02008                            | 20300                            | 87188                            | 42505                            | 40294                            | 04404                            | 59286                                              | 95914                            | 07191                            |
|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------------|----------------------------------|----------------------------------|
| 13350                                     | 08414                            | 64049                            | 94377                            | 91059                            | 74531                            | 56228                            | 12307                                              | 87871                            | 97064                            |
| 33006                                     | 92690                            | 69248                            | 97443                            | 38841                            | 05051                            | 33756                            | 24736                                              | 43508                            | 53566                            |
| 55216                                     | 63886                            | 06804                            | 11861                            | 30968                            | 74515                            | 40112                            | 40432                                              | 18682                            | 02845                            |
| 21991<br>71025<br>65522<br>27975<br>07300 | 28212<br>15242<br>54923<br>09704 | 10474<br>84554<br>90650<br>36099 | 27522<br>74560<br>06170<br>61577 | 16356<br>26206<br>99006<br>34632 | 78456<br>49520<br>75651<br>55176 | 46814<br>65702<br>77622<br>87366 | 23258<br>28975<br>54193<br>20491<br>19968<br>05131 | 01014<br>25583<br>53329<br>33986 | 91458<br>54745<br>12452<br>46445 |
| 00977                                     | 04481                            | 42044                            | 08649                            | \$3107                           | 02423                            | 46919                            | 59586                                              | 58337                            | 32280                            |
| 13920                                     | 78761                            | 12311                            | 92808                            | 71581                            | 85251                            | 11417                            | 85252                                              | 61312                            | 10266                            |
| 08395                                     | 37043                            | 37880                            | 34172                            | 80411                            | 05181                            | 58091                            | 41269                                              | 22626                            | 64799                            |
| 46166                                     | 67206                            | 01619                            | 43769                            | 91727                            | 06149                            | 17924                            | 42628                                              | 57647                            | 76936                            |
| 87767                                     | 77607                            | 03742                            | 01613                            | 83528                            | 66251                            | 75822                            | 83058                                              | 97584                            | 45401                            |
| 29880                                     | 95288                            | 21644                            | 46587                            | 11576                            | 30568                            | 56687                            | 83239                                              | 76388                            | 17857                            |
| 36248                                     | 36666                            | 14894                            | 59273                            | 04518                            | 11307                            | 67655                            | 08566                                              | 51759                            | 41795                            |
| 12386                                     | 29656                            | 30474                            | 25964                            | 10006                            | 86382                            | 46680                            | 93060                                              | 52337                            | 56034                            |
| 52068                                     | 73801                            | 52188                            | 19491                            | 76221                            | 45685                            | 95189                            | 78577                                              | 36250                            | 36082                            |
| 41727                                     | 52171                            | 56719                            | 06054                            | 34898                            | 93990                            | 89263                            | 79180                                              | 39917                            | 16122                            |
| 49319                                     | 74580                            | 57470                            | 14600                            | 22224                            | 49028                            | 93024                            | 21414                                              | 90150                            | 15686                            |
| 88786                                     | 76963                            | 12127                            | 25014                            | 91593                            | 98208                            | 27991                            | 12539                                              | 14357                            | 69512                            |
| 84866                                     | 95202                            | 43983                            | 72655                            | 89684                            | 79005                            | 85932                            | 41627                                              | 87381                            | 38832                            |
| 11849                                     | 26482                            | 20461                            | 99450                            | 21636                            | 13337                            | 55407                            | 01897                                              | 75422                            | 05205                            |
| 54966                                     | 17594                            | 57393                            | 73267                            | 87106                            | 26849                            | 68667                            | 45791                                              | 87226                            | 74412                            |
| 10959                                     | 33349                            | 80719                            | 96751                            | 25752                            | 17133                            | 32786                            | 34368                                              | 77600                            | 41809                            |
| 22784                                     | 07783                            | 35903                            | 00091                            | 73954                            | 48706                            | 83423                            | 96286                                              | 90373                            | 23372                            |
| 86037                                     | 61791                            | 33815                            | 63968                            | 70437                            | 33124                            | 50025                            | 44367                                              | 98637                            | 40870                            |
| 80037                                     | 65089                            | 85919                            | 74391                            | 36170                            | 82988                            | 52311                            | 59180                                              | 37846                            | 98028                            |
| 72751                                     | 84359                            | 15769                            | 13615                            | 70866                            | 37007                            | 74565                            | 92781                                              | 37770                            | 76451                            |
| 18532                                     | 03874                            | 66220                            | 79050                            | 66814                            | 76341                            | 42452                            | 65365                                              | 07167                            | 90134                            |
| 22936                                     | 22058                            | 49171                            | 11027                            | 07066                            | 14606                            | 11759                            | 19942                                              | 21909                            | 15031                            |
| 66397                                     | 76510                            | 81150                            | 00704                            | 94990                            | 68204                            | 07242                            | 82922                                              | 65745                            | 51503                            |
| 89730                                     | 23272                            | 65420                            | 35091                            | 16227                            | 87024                            | 56662                            | 59110                                              | 11158                            | 67508                            |
| 81821                                     | 75323                            | 96068                            | 91724                            | 94679                            | 88062                            | 13729                            | 94152                                              | 59343                            | 07352                            |
| 94377                                     | 82554                            | 53586                            | 11432                            | 08788                            | 74053                            | 98312                            | 61732                                              | 91248                            | 23673                            |
| 68485                                     | 49991                            | 53165                            | 19865                            | 30288                            | 00467                            | 98105                            | 91483                                              | 89389                            | 61991                            |
| 07330                                     | 07184                            | 86788                            | 64577                            | 47692                            | 45031                            | 36325                            | 47029                                              | 27914                            | 24905                            |
| 10993                                     | 14930                            | 35072                            | 36429                            | 26176                            | 66205                            | 07758                            | 07982                                              | 33721                            | 81319                            |
| 20801                                     | 15178                            | 64453                            | 83357                            | 21589                            | 23153                            | 60375                            | 63305                                              | 37995                            | 66275                            |
| 79241                                     | 35347                            | 66851                            | 79247                            | 57462                            | 23893                            | 16542                            | 55775                                              | 06813                            | 63512                            |
| 43593                                     | 39555                            | 97345                            | 58494                            | 52892                            | 55080                            | 19056                            | 96192                                              | 61508                            | 23165                            |
| 29522                                     | 62713                            | 33701                            | 17186                            | 15721                            | 95018                            | 76571                            | 58615                                              | 35836                            | 66260                            |
| 88836                                     | 47290                            | 67274                            | 78362                            | 84457                            | 39181                            | 17295                            | 39626                                              | 82373                            | 10883                            |
| 65905                                     | 66253                            | 91482                            | 30689                            | 81313                            | 01343                            | 37188                            | 37756                                              | 04182                            | 19376                            |
| 44798                                     | 69371                            | 07865                            | 91756                            | 42318                            | 63601                            | 53872                            | 93610                                              | 44142                            | 89830                            |
| 35510                                     | 99139                            | 32031                            | 27925                            | 03560                            | 33806                            | 85092                            | 70436                                              | 94777                            | 57963                            |
| 50125                                     | 93223                            | 64209                            | 49714                            | 73379                            | 89975                            | 38567                            | 44316                                              | 60262                            | 10777                            |
| 25173                                     | 90038                            | 63871                            | 40418                            | 23818                            | 63250                            | 05118                            | 52700                                              | 92327                            | 55449                            |
| 68459                                     | 90094                            | 44995                            | 93718                            | 83654                            | 79311                            | 18107                            | 12557                                              | 09179                            | 28416                            |
|                                           |                                  |                                  |                                  |                                  |                                  |                                  |                                                    |                                  |                                  |

## TABLE 6 - RANDOM DIGITS

| 96195  | 07059 | 13266          | 31389  | 87612 | 88004 | 31843  | 83469  | 22793  | 14312 |
|--------|-------|----------------|--------|-------|-------|--------|--------|--------|-------|
| 22408  | 94958 | 19095          | 58035  | 43831 | 32354 | 83946  | 57964  | 70404  | 32017 |
| 53896  | 23508 | 16227          | 56929  | 74329 | 12264 | 26047  | 66844  | 47383  | 42202 |
| 22565  | 02475 | 00258          | 79018  | 70090 | 37914 | 27755  | 00872  | 71553  | 56684 |
| 49438  | 20772 | 60846          | 69732  | 07612 | 70474 | 46483  | 21053  | 95475  | 53448 |
|        |       |                |        |       |       |        |        |        |       |
| 65620  | 34684 | 00210          | 04863  | 01373 | 19978 | 61682  | 69315  | 46766  | 83768 |
| 20246  | 26941 | 41298          | 04763  | 19769 | 25865 | 95937  | 03545  | 93561  | 73871 |
| 09433  | 09167 | 35166          | 32731  | 73299 | 41137 | 37328  | 28301  | 61629  | 05040 |
| 95552  | 73456 | 16578          | 88140  | 80059 | 50296 | 07656  | 01396  | 83099  | 09718 |
| 76053  | 05150 | 69125          | 69442  | 16509 | 03495 | 26427  | 58780  | 27576  | 31342 |
| 24000  | 25042 | 70460          | 01200  | 53212 | 21070 | 21222  | 10769  | 96101  | 51474 |
| 07752  | 04072 | 50500          | 000000 | 20105 | 16420 | 96000  | 01247  | 10540  | 02000 |
| 04204  | 04434 | 62708          | 810022 | 20103 | 57258 | 87826  | 35003  | 46440  | 76636 |
| 96770  | 10440 | 29700          | 42093  | 64369 | 69176 | 20732  | 37389  | 34054  | 28680 |
| 65080  | 62843 | 10017          | 34459  | 21036 | 84775 | 30415  | 10622  | 36102  | 16753 |
| 03303  | 02045 | 1051/          | 21120  | 01350 | 04712 | 25415  | 10011  | 20101  | 10/00 |
| 06644  | 94784 | 66995          | 61812  | 54215 | 01336 | 75887  | 57685  | 66114  | 76984 |
| 88950  | 46077 | 34651          | 12038  | 87914 | 20785 | 39705  | 73898  | 12318  | 78334 |
| 21482  | 95422 | 02002          | 33671  | 46764 | 50527 | 46276  | 77570  | 68457  | 62199 |
| 55137  | 61039 | 02006          | 69913  | 11291 | 87215 | 89991  | 26003  | 55271  | 08153 |
| 98441  | 81529 | 59607          | 65225  | 49051 | 28328 | 85535  | 37003  | 87211  | 10204 |
| 671.60 | 20450 | 22002          | 07025  | 52442 | 62611 | 00215  | 10550  | 10105  | 67002 |
| 21004  | 50438 | 25892          | 07825  | 2344/ | 10441 | 14006  | 42002  | 43133  | 02033 |
| /1880  | 00004 | 58013          | 09379  | 83970 | 42441 | 14080  | 35197  | 82071  | 28026 |
| 40418  | 26661 | 47277          | 07232  | 62102 | 29093 | 5/008  | 20089  | 95805  | /8923 |
| 20033  | 60104 | 60100          | 40543  | 55003 | 20575 | 44626  | 00000  | 53105  | 27664 |
| 31883  | 02124 | 02199          | 49342  | 33083 | 20313 | 44030  | 91202  | 52105  | 77004 |
| 44882  | 33592 | 66234          | 13821  | 86342 | 00135 | 87938  | 57995  | 34157  | 99858 |
| 19082  | 13873 | 07184          | 21566  | 95320 | 28968 | 31911  | 06288  | 77271  | 76171 |
| 45316  | 29283 | 89318          | 55806  | 89338 | 79231 | 91545  | 55477  | 19552  | 03471 |
| 22788  | 55433 | 31188          | 74882  | 44858 | 69655 | 08096  | 70982  | 61300  | 23792 |
| 08293  | 86193 | 05026          | 21255  | 63082 | 92946 | 28748  | 25423  | 45282  | 57821 |
| 20222  | 20541 | 67116          | 04504  | 10100 | 22054 | 26166  | 27204  | 20,600 | 00202 |
| 29223  | /0341 | 21505          | 84384  | 20142 | 11150 | 42209  | 26220  | 0098   | 99393 |
| 74580  | 00254 | 42744          | 22170  | 20004 | 60027 | 93298  | 71696  | 50767  | 22274 |
| 60002  | 71264 | 00107          | 06050  | 50005 | 20207 | 07417  | 00575  | 04676  | 25616 |
| 40456  | 01234 | 58000          | 65340  | 05000 | 20297 | 21/700 | 43137  | 13746  | 25050 |
| 40450  | 51254 | 58090          | 03342  | 30002 | 2011/ | 21,00  | 45157  | 13/40  | 03939 |
| 72927  | 67349 | 83962          | 58912  | 59734 | 76323 | 02913  | 46306  | 53956  | 38936 |
| 61869  | 33093 | 81129          | 06481  | 89281 | 83629 | 81960  | 63704  | 56329  | 10357 |
| 40048  | 16520 | 07638          | 10797  | 22270 | 57350 | 72214  | 36410  | 95526  | 87614 |
| 68773  | 97669 | 28656          | 89938  | 12917 | 25630 | 08068  | 19445  | 76250  | 24727 |
| 09774  | 30751 | 49740          | 11385  | 91468 | 28900 | 76804  | 52460  | 52320  | 70493 |
| 46122  | 2.000 | 00500          | 10504  | 2000  | 24100 | 205.60 | 600.00 | 42.420 |       |
| 40139  | 30089 | 82587          | 13580  | 35061 | 70128 | 38508  | 62300  | 43439  | 53434 |
| 20300  | 57141 | 32993<br>49617 | 10000  | 12152 | 76064 | 93113  | 20102  | 15070  | 02941 |
| 26204  | 00280 | 46017          | 00202  | 22001 | 60025 | 62060  | 20010  | 53210  | 01425 |
| 40332  | 78482 | 36100          | 11355  | 26044 | 88760 | 03734  | 22010  | 01716  | 07227 |
| 19000  | /0402 | 20193          | 11333  | 30044 | 38/00 | 03724  | 1191)  | 31/10  | 97337 |
| 45595  | 14044 | 56806          | 99126  | 85584 | 87750 | 78149  | 22723  | 48245  | 78126 |
| 79819  | 15054 | 76174          | 12206  | 06886 | 06814 | 43285  | 20008  | 75345  | 19779 |
| 11971  | 62234 | 74857          | 46401  | 20817 | 57591 | 41189  | 49604  | 29604  | 30660 |
| 11452  | 89318 | 53084          | 21993  | 62471 | 74101 | 61217  | 76536  | 58393  | 63718 |
| 38746  | 81271 | 96260          | 98137  | 60275 | 22647 | 33103  | 50090  | 29395  | 10016 |
|        |       |                |        |       |       |        |        |        |       |
|        |       |                |        |       |       |        |        |        |       |

### TABLE 7 - RANDOM DIGITS

| 93369 | 13044 | 69686 | 78162 | 29132 | 51544 | 17925 | 56738 | 32683 | 83153 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 19360 | 55049 | 94951 | 76341 | 38159 | 31008 | 41476 | 05278 | 03909 | 02299 |
| 47798 | 89890 | 06893 | 65483 | 97658 | 74884 | 38611 | 27264 | 26956 | 83504 |
| 69223 | 32007 | 03513 | 61149 | 66270 | 73087 | 16795 | 76845 | 44645 | 44552 |
| 34511 | 50721 | 84850 | 34159 | 38985 | 75384 | 22965 | 55366 | 81632 | 78872 |
| 54031 | 59329 | 58963 | 52220 | 76806 | 98715 | 67452 | 78741 | 58128 | 00077 |
| 66722 | 85515 | 04723 | 92411 | 03834 | 12109 | 85185 | 37350 | 93614 | 15351 |
| 71059 | 07496 | 38404 | 18126 | 37894 | 44991 | 45777 | 02070 | 38159 | 23930 |
| 45478 | 86066 | 31135 | 33243 | 01190 | 47277 | 55146 | 56130 | 70117 | 83203 |
| 97246 | 91121 | 89437 | 20393 | 76598 | 99458 | 76665 | 83793 | 37448 | 32664 |
| 22982 | 25936 | 96417 | 34845 | 28942 | 65569 | 38253 | 77182 | 12996 | 19505 |
| 48243 | 62993 | 47132 | 85248 | 79160 | 90981 | 71696 | 79609 | 33809 | 60839 |
| 93514 | 14915 | 67960 | 82203 | 22598 | 94802 | 75332 | 95585 | 69542 | 79924 |
| 69707 | 98303 | 93069 | 16216 | 01542 | 51771 | 16833 | 20922 | 94415 | 27617 |
| 87467 | 91794 | 70814 | 12743 | 17543 | 04057 | 71231 | 11309 | 32780 | 83270 |
| 81006 | 81498 | 59375 | 30502 | 44868 | 81279 | 23585 | 49678 | 70014 | 10523 |
| 15458 | 83481 | 50187 | 43375 | 56644 | 72076 | 59403 | 65469 | 74760 | 69509 |
| 33469 | 12510 | 23095 | 48016 | 22064 | 39774 | 07373 | 10555 | 33345 | 21787 |
| 67198 | 07176 | 65996 | 18317 | 83083 | 11921 | 06254 | 68437 | 59481 | 54778 |
| 58037 | 92261 | 85504 | 55690 | 63488 | 26451 | 43223 | 38009 | 50567 | 09191 |
| 84983 | 68312 | 25519 | 56158 | 22390 | 12823 | 92390 | 28947 | 36708 | 25393 |
| 35554 | 02935 | 72889 | 68772 | 79774 | 14336 | 50716 | 63003 | 86391 | 94074 |
| 04368 | 17632 | 50962 | 71908 | 13105 | 76285 | 31819 | 16884 | 11665 | 16594 |
| 81311 | 60479 | 69985 | 30952 | 93067 | 70056 | 55229 | 83226 | 22555 | 66447 |
| 03823 | 89887 | 55828 | 74452 | 21692 | 55847 | 15960 | 47521 | 27784 | 25728 |
| 80422 | 65437 | 38797 | 56261 | 88300 | 35980 | 56656 | 45662 | 29219 | 49257 |
| 61307 | 49468 | 43344 | 43700 | 14074 | 19739 | 03275 | 99444 | 62545 | 23720 |
| 83873 | 82557 | 10002 | 80093 | 74645 | 33109 | 15281 | 38759 | 09342 | 69408 |
| 38110 | 16855 | 28922 | 93758 | 22885 | 36706 | 92542 | 60270 | 99599 | 17983 |
| 43892 | 91189 | 87226 | 56935 | 99836 | 85489 | 89693 | 49475 | 31941 | 78065 |
| 93683 | 09664 | 53927 | 49885 | 94979 | 88848 | 42642 | 93218 | 80305 | 49428 |
| 32748 | 02121 | 11972 | 96914 | 83264 | 89016 | 45140 | 20362 | 63242 | 86255 |
| 49211 | 92963 | 38625 | 65312 | 52156 | 36400 | 67050 | 64058 | 45489 | 24165 |
| 63365 | 64224 | 69475 | 57512 | 85097 | 05054 | 88673 | 96593 | 00902 | 53320 |
| 63576 | 26373 | 44610 | 43748 | 90399 | 06770 | 71609 | 90916 | 69002 | 57180 |
| 41078 | 47036 | 65524 | 68466 | 77613 | 20076 | 71969 | 47706 | 22506 | 81053 |
| 70846 | 89558 | 64173 | 15381 | 67322 | 70097 | 82363 | 90767 | 17879 | 32697 |
| 68800 | 64492 | 20162 | 32707 | 69510 | 82465 | 26821 | 79917 | 34615 | 35820 |
| 44977 | 89525 | 51269 | 63747 | 30997 | 97213 | 53016 | 65909 | 05723 | 50168 |
| 79354 | 63847 | 24395 | 53679 | 07667 | 67993 | 24634 | 78867 | 78516 | 00448 |
| 14954 | 22299 | 40156 | 52685 | 19093 | 06090 | 23800 | 06739 | 76836 | 19050 |
| 01711 | 98439 | 09446 | 33937 | 98956 | 85676 | 89493 | 05132 | 45886 | 49379 |
| 62328 | 55328 | 45738 | 93940 | 15772 | 81975 | 91017 | 21387 | 57949 | 13992 |
| 73004 | 62109 | 81907 | 71077 | 50322 | 66093 | 79921 | 61412 | 18347 | 21115 |
| 34218 | 89445 | 03609 | 52336 | 19005 | 15179 | 94958 | 99448 | 11612 | 76981 |
| 99159 | 01968 | 45886 | 86875 | 05196 | 64297 | 59339 | 39878 | 61548 | 56442 |
| 92858 | 29949 | 15817 | 93372 | 34732 | 61584 | 72007 | 58597 | 43802 | 51066 |
| 27396 | 97477 | 65554 | 71601 | 01540 | 26509 | 19487 | 39684 | 18676 | 41219 |
| 37103 | 45309 | 30129 | 43380 | 66638 | 10841 | 77292 | 40288 | 25826 | 61431 |
| 57347 | 97012 | 48428 | 20606 | 54138 | 75716 | 23741 | 50462 | 13221 | 47216 |
|       |       |       |       |       |       |       |       |       |       |

B-S
# **Appendix 2 – Ethical approval from REK Vest**

Region: REK vest Saksbehandler: Telefon: Fredrik Rongved 55978498

Vår dato: 24.10.2017 Deres dato: 19.10.2017 Vår referanse: 2017/1199/REK vest Deres referanse:

Vår referanse må oppgis ved alle henvendelser

Kjartan Vibe Fersum Kalfarveien 31

#### 2017/1199 Tilpasset Virtuell Realitetstrening for pasienter med langvarige ryggsmerter

Forskningsansvarlig: Universitetet i Bergen, University of South Australia Prosjektleder: Kjartan Vibe Fersum

Vi viser til søknad om prosjektendring datert 19.10.2017 for ovennevnte forskningsprosjekt. Søknaden er behandlet av sekretariatet for REK vest på fullmakt, med hjemmel i helseforskningsloven § 11.

#### Vurdering

#### Ønsket endring

Prosjektleder ønsker å bytte ut et spørreskjema med et annet som er validert på norsk. I tillegg ønsker prosjektleder å legge til et nytt spørreskjema om myter forbundet med ryggplager.

REK vest ved sekretariatet vurderte saken.

#### Vurdering

REK vest har ingen innvendinger til ønsket endring.

#### Vedtak

REK vest godkjenner prosjektendringen i samsvar med forelagt søknad.

#### Klageadgang

Du kan klage på komiteens vedtak, jf. helseforskningsloven § 10 og forvaltningsloven § 28 flg. Klagen sendes til REK vest. Klagefristen er tre uker fra du mottar dette brevet. Dersom vedtaket opprettholdes av REK vest, sendes klagen videre til Den nasjonale forskningsetiske komité for medisin og helsefag for endelig vurdering.

Med vennlig hilsen

Fredrik Rongved rådgiver

Kopi til: post@uib.no; tasha.stanton@unisa.edu.au

Besøksadresse: Armauer Hansens Hus (AHH), Tverrfløy Nord, 2 etasje. Rom 281. Haukelandsveien 28 Telefon: 55975000 E-post: rek-vest@uib.no Web: http://helseforskning.etikkom.no/ All post og e-post som inngår i saksbehandlingen, bes adressert til REK vest og ikke til enkelte personer Kindly address all mail and e-mails to the Regional Ethics Committee, REK vest, not to individual staff



Region: REK vest Saksbehandler: Telefon: Øyvind Straume 55978497 Vår dato: 01.09.2017 Deres dato: 13.06.2017 Vår referanse: 2017/1199/REK vest Deres referanse:

Vår referanse må oppgis ved alle henvendelser

Kjartan Vibe Fersum Kalfarveien 31

#### 2017/1199 Tilpasset Virtuell Realitetstrening for pasienter med langvarige ryggsmerter

Forskningsansvarlig: Universitetet i Bergen, University of South Australia Prosjektleder: Kjartan Vibe Fersum

Vi viser til søknad om forhåndsgodkjenning av ovennevnte forskningsprosjekt. Søknaden ble behandlet av Regional komité for medisinsk og helsefaglig forskningsetikk (REK vest) i møtet 16.08.2017. Vurderingen er gjort med hjemmel i helseforskningsloven (hfl.) § 10.

#### Prosjektomtale

I prosjektet er det tatt utgangspunkt i pasienter med frykt for bevegelse (kinesiofobi) og langvarige uspesifikke korsryggsmerter (NSCLBP). Forskergruppen vil ta i bruk Virtual Reality-eknologi (VR), for å utforske hvorvidt VR kan redusere frykt for bevegelse og smerteintensitet. Ni pasienter skal gjennom åtte

VR-treninger på Haukeland universitetssjukehus. I tillegg ønsker prosjektgruppen en oppfølging av deltakerne sju dager og tre måneder etter siste VR-trening.

#### Vurdering

Forsvarlighet og datainnsamling

Prosjektet innebærer trening med VR-briller. Det vil kreve en god del tidsbruk for deltakerne, men utover det vurderer komiteen studien til å ha minimal risiko eller ulempe.

#### Ikke oppsøk behandling

I søknaden står det: "Deltakerne vil ikke miste sin plass på ventelisten i primærhelsetjenesten dersom de samtykker til deltakelse i studien. Det krever likevel at de ikke kan få behandling hos fysioterapeut, kiropraktor e.l. parallelt med forskningsstudien. Deltakelse krever også at de ikke får noen behandling frem til oppfølgingen 3 måneder etter er fullført." I informasjonsskrivet står det: "Vi ber om at du ikke oppsøker behandling andre steder i løpet av forskningsstudien." Komiteen antar det her er snakk om behandling som går utenom ordinært helsevesen. Komiteen presiserer at studien ikke kan komme til hinder for nødvendig helsehjelp. REK vest setter derfor som vilkår at dersom deltakere får tilbud om behandling via ordinært helsevesen skal deltakerne ekskluderes fra studien.

#### Informasjonsskrivet

Informasjonsskrivet må revideres noe. Et revidert informasjonsskriv skal ettersendes til REK vest på post@helseforskning.etikkom.no. Komiteen ber om følgende revisjoner på informasjonsskrivet:

- Dato for prosjektslutt skal legges til.
- Informasjon om forsikringsordning skal legges til
- Logo for forskningsansvarlig institusjon skal legges til.

All post og e-post som inngår i saksbehandlingen, bes adressert til REK vest og ikke til enkelte personer Kindly address all mail and e-mails to the Regional Ethics Committee, REK vest, not to individual staff

#### Prosjektslutt og håndtering av data

Prosjektslutt er satt til 31.05.2018, og ifølge søknaden vil prosjektdata slettes ved prosjektslutt. REK vest har ingen innvendinger til dette, men presiserer at prosjektperioden kan forlenges ved en søknad om prosjektendring dersom prosjektgruppen trenger mer tid på å fullføre prosjektet.

#### Vilkår

- Prosjektet kan ikke komme til hinder for nødvendig helsehjelp.
- Informasjonsskrivet skal revideres og ettersendes REK vest.

#### Vedtak

REK vest godkjenner prosjektet på betingelse av at ovennevnte vilkår tas til følge.

#### Sluttmelding og søknad om prosjektendring

Prosjektleder skal sende sluttmelding til REK vest på eget skjema senest 30.11.2018, jf. hfl. § 12. Prosjektleder skal sende søknad om prosjektendring til REK vest dersom det skal gjøres vesentlige endringer i forhold til de opplysninger som er gitt i søknaden, jf. hfl. § 11.

#### Klageadgang

Du kan klage på komiteens vedtak, jf. forvaltningsloven § 28 flg. Klagen sendes til REK vest. Klagefristen er tre uker fra du mottar dette brevet. Dersom vedtaket opprettholdes av REK vest, sendes klagen videre til Den nasjonale forskningsetiske komité for medisin og helsefag for endelig vurdering.

Med vennlig hilsen

Marit Grønning prof. dr. med komiteleder

> Øyvind Straume rådgiver

Kopi til:post@uib.no; tasha.stanton@unisa.edu.au

# **Appendix 3 – Assessment during VR-training**

# Målinger underveis i VR-treningen

## Smerte

| Hvordan  | n vil d | u grad | ere de | smert  | ene du   | opplev  | er? |      |         |                        |       |
|----------|---------|--------|--------|--------|----------|---------|-----|------|---------|------------------------|-------|
| 0        | 1       | 2      | 3      | 4      | 5        | 6       | 7   | 8    | 9       | 10                     |       |
| Ingen sn | nerter  |        |        |        |          |         |     |      | Så      | vondt som det går an å | ì ha  |
| Frykt    |         |        |        |        |          |         |     |      |         |                        |       |
| Hvordar  | n vil d | u grad | ere de | frykte | en du oj | oplever | ?   |      |         |                        |       |
| 0        | 1       | 2      | 3      | 4      | 5        | 6       | 7   | 8    | 9       | 10                     |       |
| Ingen fr | ykt     |        |        |        |          |         |     |      | Så mye  | frykt som det går an å | å ha  |
| Ubeha    | g       |        |        |        |          |         |     |      |         |                        |       |
| Hvordar  | n vil d | u grad | ere ub | ehaget | t du opj | plever? |     |      |         |                        |       |
| 0        | 1       | 2      | 3      | 4      | 5        | 6       | 7   | 8    | 9       | 10                     |       |
| Ingen ub | behag   |        |        |        |          |         |     | Så u | lbehage | lig som det går an å h | a det |
| Kvalm    | e       |        |        |        |          |         |     |      |         |                        |       |
| Hvordar  | n vil d | u grad | ere kv | almen  | du opp   | olever? |     |      |         |                        |       |
| 0        | 1       | 2      | 3      | 4      | 5        | 6       | 7   | 8    | 9       | 10                     |       |
| Ingen kv | alme    |        |        |        |          |         |     |      | Så l    | kvalm som det går an a | å bli |

# **Appendix 4 – Primary and secondary measures**

# Daglige målinger

| Nume  | erisk sme | erteskala  |           |           |                                                        | <b>Dato:</b> |   |      |          |                 |  |  |
|-------|-----------|------------|-----------|-----------|--------------------------------------------------------|--------------|---|------|----------|-----------------|--|--|
| Hv    | ordan vil | l du grade | ere de sm | nertene d | t i løpet av den siste uken. Sett ring rundt ett tall. |              |   |      |          |                 |  |  |
| 0     | 1         | 2          | 3         | 4         | 5                                                      | 6            | 7 | 8    | 9        | 10              |  |  |
| Inger | n smerter |            |           |           |                                                        |              |   | Så v | ondt som | det går an å ha |  |  |

## Tampa Scale for Kinesiophobia (TSK) - Norwegian Version

|   |                                                | Svært uenig | Uenig | Enig | Svært enig |
|---|------------------------------------------------|-------------|-------|------|------------|
| 1 | Jeg er redd for at jeg kan skade meg ved et    |             |       |      |            |
|   | uhell                                          |             |       |      |            |
| 2 | Kroppen min forteller meg at noe er alvorlig   |             |       |      |            |
|   | galt                                           |             |       |      |            |
| 3 | Jeg kan ikke gjøre alle de tingene folk fleste |             |       |      |            |
|   | gjør, fordi jeg har så lett for å bli skadet.  |             |       |      |            |

## Pain Catastrophizing Scale (PCS) - Norwegian version

|   |                                                 | Ikke I   | Litt | I moderat | I stor | Hele  |
|---|-------------------------------------------------|----------|------|-----------|--------|-------|
|   | Når jeg har smerter                             | det hele |      | grad      | grad   | tiden |
|   |                                                 | tatt     |      |           |        |       |
| 1 | Det er forferdelig og jeg tror at det aldri vil |          |      |           |        |       |
|   | bli bedre                                       |          |      |           |        |       |
| 2 | Jeg føler at jeg ikke klarer å fortsette        |          |      |           |        |       |
| 3 | Jeg lurer på om noe alvorlig kan komme til      |          |      |           |        |       |
|   | å skje                                          |          |      |           |        |       |

## Pain Anxiety Symptoms Scale (PASS-20 Short form) – English version

|   |                                           | Never<br>0 | 1 | 2 | 3 | 4 | Always<br>5 |
|---|-------------------------------------------|------------|---|---|---|---|-------------|
| 1 | When I hurt I think about pain constantly |            |   |   |   |   |             |
| 2 | I find it hard to concentrate when I hurt |            |   |   |   |   |             |
| 3 | I worry when I am in pain                 |            |   |   |   |   |             |
| 4 | I try to avoid activities that cause pain |            |   |   |   |   |             |

# Secondary outcome measures

## **Oswestry Disability Index**

### <u>Section 1 – Pain Intensity</u>

I have no pain at the moment. The pain is very mild at the moment. The pain is moderate at the moment. The pain is fairly severe at the moment. The pain is very severe at the moment. The pain is the worst imaginable at the moment.

### Section 2 – Personal Care (washing, dressing, etc.)

I can look after myself normally but it is very painful. I can look after myself normally but it is very painful. It is painful to look after myself and I am slow and careful. I need some help but manage most of my personal care. I need help every day in most aspects of my personal care. I need help every day in most aspects of self-care. I do not get dressed, wash with difficulty, and stay in bed.

## Section 3 - Lifting

I can lift heavy weights without extra pain. I can lift heavy weights but it gives extra pain. Pain prevents me from lifting heavy weights off the floor, but I can manage if they are conveniently positioned (i.e. on a table).

Pain prevents me from lifting heavy weights, but I can manage light to medium weights if they are conveniently positioned.

I can lift only very light weights.

I cannot lift or carry anything at all.

### Section 4 – Walking

Pain does not prevent me walking any distance.

Pain prevents me walking more than 1mile.

Pain prevents me walking more than <sup>1</sup>/<sub>4</sub> of a mile.

Pain prevents me walking more than 100 yards.

I can only walk using a stick or crutches.

I am in bed most of the time and have to crawl to the toilet.

### Section 5 – Sitting

I can sit in any chair as long as I like.

I can sit in my favorite chair as long as I like.

Pain prevents me from sitting for more than 1 hour.

Pain prevents me from sitting for more than  $\frac{1}{2}$  hour.

Pain prevents me from sitting for more than 10 minutes.

Pain prevents me from sitting at all.

### Section 6 – Standing

I can stand as long as I want without extra pain.

I can stand as long as I want but it gives me extra pain.

Pain prevents me from standing more than 1 hour.
Pain prevents me from standing for more than ½ an hour.
Pain prevents me from standing for more than 10 minutes.
Pain prevents me from standing at all.

### Section 7 – Sleeping

My sleep is never disturbed by pain. My sleep is occasionally disturbed by pain. Because of pain, I have less than 6 hours sleep. Because of pain, I have less than 4 hours sleep. Because of pain, I have less than 2 hours sleep. Pain prevents me from sleeping at all.

#### <u>Section 8 – Sex life (if applicable)</u>

My sex life is normal and causes no extra pain. My sex life is normal but causes some extra pain. My sex life is nearly normal but is very painful. My sex life is severely restricted by pain. My sex life is nearly absent because of pain. Pain prevents any sex life at all.

### Section 9 – Social Life

My social life is normal and cause me no extra pain.

My social life is normal but increases the degree of pain.

Pain has no significant effect on my social life apart from limitingmy more energetic interests, i.e. sports.

Pain has restricted my social life and I do not go out as often.

Pain has restricted social life to my home.

I have no social life because of pain.

### Section 10 – Traveling

I can travel anywhere without pain.

I can travel anywhere but it gives extra pain.

Pain is bad but I manage journeys of over two hours.

Pain restricts me to short necessary journeys under 30 minutes.

Pain prevents me from traveling except to receive treatment.

## Ørebro screening skjema

| 1. Hvor lenge har du hatt dine nåværende plager? Merk av ( X ) ett alternativ. |                  |                  |                   |                   |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|------------------|------------------|-------------------|-------------------|--|--|--|--|--|--|--|
| □0-1 uker [1]                                                                  | □ 1-2 uker [2]   | □3-4 uker [3]    | □4-5 uker [4]     | □6-8 uker [5]     |  |  |  |  |  |  |  |
| □9-11 uker [6]                                                                 | □3-6 måneder [7] | □6-9 måneder [8] | □9-12 måneder [9] | □Over ett år [10] |  |  |  |  |  |  |  |

Sett sirkel rundt det tallet som BEST beskriver dine opplevelser på følgende spørsmål/påstander:

| 2. | Hvor n    | iye sm    | erte   | har d | lu hat | t den | siste | e uke | n? |                        |           |
|----|-----------|-----------|--------|-------|--------|-------|-------|-------|----|------------------------|-----------|
|    | 0         | 1         | 2      | 3     | 4      | 5     | 6     | 7     | 8  | 9 10                   | []        |
|    | Ingen sn  | nerte     |        |       |        |       |       |       |    | Verst tenkelige smerte |           |
| 3. | Jeg kar   | n utføre  | e lett | ere a | rbeid  | unde  | er en | time. |    |                        |           |
|    | 0         | 1         | 2      | 3     | 4      | 5     | 6     | 7     | 8  | 9 10                   | (10-) [ ] |
|    | Kan ikke  | e gjøre   |        |       |        |       |       |       |    | Kan gjøre det uten     |           |
|    | det p.g.a | i. smerte | 2      |       |        |       |       |       |    | smerteproblem          |           |
| 4. | Jeg kar   | 1 sove    | på n   | atten |        |       |       |       |    |                        |           |
|    | 0         | 1         | 2      | 3     | 4      | 5     | 6     | 7     | 8  | 9 10                   | (10-)     |
|    | Kan ikke  | e gjøre   |        |       |        |       |       |       |    | Kan gjøre det uten     |           |
|    | det p.g.a | i. smerte | 2      |       |        |       |       |       |    | smerteproblem          |           |

| 5.1  | Hvor an        | spent          | eller  | stre  | sset h  | ar du  | ı kjer | it deg | g den    | siste  | uken?                        |                |   |
|------|----------------|----------------|--------|-------|---------|--------|--------|--------|----------|--------|------------------------------|----------------|---|
| ;    | 0<br>Fullstand | ]<br>ia rali   | 2      | 3     | 4       | 5      | 6      | 7      | 8        | 9<br>V | 10<br>India gran ant         | [              | ] |
| (    | og avslap      | ig rong<br>pet | Ś      |       |         |        |        |        |          | V      | eiaig anspeni                |                |   |
| 6. ] | hvilker        | n grad         | l har  | du k  | jent d  | leg n  | edste  | mt de  | en sis   | te uk  | <b>ken</b> ? Sett ring rundt | ett tall.      |   |
|      | 0              | 1              | 2      | 3     | 4       | 5      | 6      | 7      | 8        | 9      | 10                           | [              | ] |
| 1    | kke i det      | hele ta        | itt    |       |         |        |        |        |          | Si     | vært mye                     |                |   |
| 7.1  | Ivor sto       | or risil       | ko m   | ener  | du d    | et er  | for at | dine   | nåva     | erend  | le plager kan bli lan        | gvarige?       |   |
|      | 0              | 1              | 2      | 3     | 4       | 5      | 6      | 7      | 8        | 9      | 10                           | ]              | 1 |
| Ì    | ngen risi      | iko            |        |       |         |        |        |        |          | Sı     | vært stor risiko             | -              | - |
| 8.1  | Jt fra di      | in vur         | derir  | ıg, h | vor st  | tor er | sjans  | sen fo | or at o  | du er  | i arbeid om tre må           | neder?         |   |
|      | Sett ring      | g rund         | lt ett | tall  |         |        | 5      |        |          |        |                              |                |   |
|      | 0              | 1              | 2      | 3     | 4       | 5      | 6      | 7      | 8        | 9      | 10                           | (10-)          | 1 |
|      | Ingen sja      | inse           |        |       |         |        |        |        |          | Sv     | ært stor sjanse              |                | - |
| 9. ( | Om plag        | gene ø         | øker,  | er de | et et s | ignal  | på a   | t jeg  | bør s    | lutte  | med det jeg holder j         | oå med,        |   |
| t    | il plage       | ne mi          | nker   |       |         | U      | 1      | 50     |          |        | 50 1                         |                |   |
|      | 0              | 1              | 2      | 3     | 4       | 5      | 6      | 7      | 8        | 9      | 10                           | ]              | 1 |
|      | Ikke enig      | Ţ              |        |       |         |        |        |        |          | He     | elt enig                     | L              | 1 |
| 10.  | Jeg bør        | r ikke         | utfø   | re m  | ine no  | orma   | le akt | tivite | ter el   | ler ar | beid med den smert           | en jeg har nå. |   |
|      | õ              | 1              | 2      | 3     | 4       | 5      | 6      | 7      | 8        | 9      | 10                           | ]              | 1 |
|      |                |                |        | _     |         | ~      | · ·    |        | <u> </u> |        | 10                           |                |   |

# Fremantle Back Awareness Questionnaire (FreBAQ)

| Item                                   | Never   | Rarely | Occasionally | Often | Always |
|----------------------------------------|---------|--------|--------------|-------|--------|
| 1. My back feels as though it is not p | part of |        |              |       |        |
| the rest of my body                    |         |        |              |       |        |
| 2. I need to focus all my attention on | ı my    |        |              |       |        |
| back to make it move the way I wa      | ant it  |        |              |       |        |
| to                                     |         |        |              |       |        |

| 3. | I feel as if my back sometimes moves        |  |  |  |
|----|---------------------------------------------|--|--|--|
|    |                                             |  |  |  |
|    | involuntarily, without my control           |  |  |  |
|    |                                             |  |  |  |
|    |                                             |  |  |  |
| 4. | When performing everyday tasks, I           |  |  |  |
|    |                                             |  |  |  |
|    | don't know how my back is moving            |  |  |  |
|    |                                             |  |  |  |
|    |                                             |  |  |  |
| 5. | When performing everyday tasks, I am        |  |  |  |
|    | not always sure where my back is in         |  |  |  |
|    | not always sure where my back is m          |  |  |  |
|    | space                                       |  |  |  |
|    | -                                           |  |  |  |
| 6. | I can't perceive the exact outline of my    |  |  |  |
|    | haak                                        |  |  |  |
|    | Dack                                        |  |  |  |
| 7. | My back feels like it is enlarged           |  |  |  |
|    | ·                                           |  |  |  |
|    | (swollen)                                   |  |  |  |
| 0  | May hooly fools like it has shownly         |  |  |  |
| 8. | My back leels like it has shrunk            |  |  |  |
|    |                                             |  |  |  |
|    | May heady facts longided (commerce (signal) |  |  |  |
| 9. | My back reers lopsided (asymmetrical)       |  |  |  |
|    |                                             |  |  |  |
|    |                                             |  |  |  |

# Protocol for the Recognise TM

- 1. Patients will be informed that they will look at pictures and then quickly decide whether the person in the picture is rotating towards the left or right.
- 2. The person is told to use left index finger to press "left" and the right index finger to press "right".
- 3. The participant will be introduced to the app via "Vanilla", which is an easy introduction level with 20 images, max time of 5 seconds.
- 4. Then the participant is tested using: "test".
- 5. The participant will be going through 2 x 40 images.
- 6. The researcher will collect reaction time and accuracy for both left and right images.



# **The Patient-Specific Functional Scale**

This useful questionnaire can be used to quantify activity limitation and measure functional outcome for patients with any orthopaedic condition.

**Clinician to read and fill in below:** Complete at the end of the history and prior to physical examination.

## **Initial Assessment:**

I am going to ask you to identify up to three important activities that you are unable to do or are having difficulty with as a result of your \_\_\_\_\_\_ problem. Today, are there any activities that you are unable to do or having difficulty with because of your \_\_\_\_\_\_ problem? (Clinician: show scale to patient and have the patient rate each activity).

## **Follow-up Assessments:**

When I assessed you on (state previous assessment date), you told me that you had difficulty with (read all activities from list at a time). Today, do you still have difficulty with: (read and have patient score each item in the list)?

## **Patient-specific activity scoring scheme (Point to one number):**

| 0                          | 1              | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                                                                                 |
|----------------------------|----------------|---|---|---|---|---|---|---|---|------------------------------------------------------------------------------------|
| Unabl<br>perfor<br>activit | e to<br>m<br>y |   |   |   |   |   |   |   |   | Able to perform<br>activity at the<br>same level as<br>before injury or<br>problem |

(Date and Score)

| Activity   | Initial |  |  |  |
|------------|---------|--|--|--|
| 1.         |         |  |  |  |
| 2.         |         |  |  |  |
| 3.         |         |  |  |  |
| 4.         |         |  |  |  |
| 5.         |         |  |  |  |
| Additional |         |  |  |  |
| Additional |         |  |  |  |

Total score = sum of the activity scores/number of activities

PSFS developed by: Stratford, P., Gill, C., Westaway, M., & Binkley, J. (1995). Assessing disability and change on individual patients: a report of a patient specific measure. <u>Physiotherapy Canada, 47</u>, 258-263.

# Appendix 5 – t-table

|   | -     |
|---|-------|
| T | Ianie |

| cum. prob | t .50 | t .75 | t .80 | t .85 | t .90 | t .95    | t .975 | t .99 | t .995 | t .999 | t .9995 |
|-----------|-------|-------|-------|-------|-------|----------|--------|-------|--------|--------|---------|
| one-tail  | 0.50  | 0.25  | 0.20  | 0.15  | 0.10  | 0.05     | 0.025  | 0.01  | 0.005  | 0.001  | 0.0005  |
| two-tails | 1.00  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10     | 0.05   | 0.02  | 0.01   | 0.002  | 0.001   |
| df        |       |       |       |       |       |          |        |       |        |        |         |
| 1         | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314    | 12.71  | 31.82 | 63.66  | 318.31 | 636.62  |
| 2         | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920    | 4.303  | 6.965 | 9.925  | 22.327 | 31.599  |
| 3         | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353    | 3.182  | 4.541 | 5.841  | 10.215 | 12.924  |
| 4         | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132    | 2.776  | 3.747 | 4.604  | 7.173  | 8.610   |
| 5         | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015    | 2.571  | 3.365 | 4.032  | 5.893  | 6.869   |
| 6         | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943    | 2.447  | 3.143 | 3.707  | 5.208  | 5.959   |
| 7         | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895    | 2.365  | 2.998 | 3.499  | 4.785  | 5.408   |
| 8         | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860    | 2.306  | 2.896 | 3.355  | 4.501  | 5.041   |
| 9         | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833    | 2.262  | 2.821 | 3.250  | 4.297  | 4.781   |
| 10        | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812    | 2.228  | 2.764 | 3.169  | 4.144  | 4.587   |
| 11        | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796    | 2.201  | 2.718 | 3.106  | 4.025  | 4.437   |
| 12        | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782    | 2.179  | 2.681 | 3.055  | 3.930  | 4.318   |
| 13        | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771    | 2.160  | 2.650 | 3.012  | 3.852  | 4.221   |
| 14        | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761    | 2.145  | 2.624 | 2.977  | 3.787  | 4.140   |
| 15        | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753    | 2.131  | 2.602 | 2.947  | 3.733  | 4.073   |
| 16        | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746    | 2.120  | 2.583 | 2.921  | 3.686  | 4.015   |
| 17        | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740    | 2.110  | 2.567 | 2.898  | 3.646  | 3.965   |
| 18        | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734    | 2.101  | 2.552 | 2.878  | 3.610  | 3.922   |
| 19        | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729    | 2.093  | 2.539 | 2.861  | 3.579  | 3.883   |
| 20        | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725    | 2.086  | 2.528 | 2.845  | 3.552  | 3.850   |
| 21        | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721    | 2.080  | 2.518 | 2.831  | 3.527  | 3.819   |
| 22        | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717    | 2.074  | 2.508 | 2.819  | 3.505  | 3.792   |
| 23        | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714    | 2.069  | 2.500 | 2.807  | 3.485  | 3.768   |
| 24        | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711    | 2.064  | 2.492 | 2.797  | 3.467  | 3.745   |
| 25        | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708    | 2.060  | 2.485 | 2.787  | 3.450  | 3.725   |
| 26        | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706    | 2.056  | 2.479 | 2.779  | 3.435  | 3.707   |
| 27        | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703    | 2.052  | 2.473 | 2.771  | 3.421  | 3.690   |
| 28        | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701    | 2.048  | 2.467 | 2.763  | 3.408  | 3.674   |
| 29        | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699    | 2.045  | 2.462 | 2.756  | 3.396  | 3.659   |
| 30        | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697    | 2.042  | 2.457 | 2.750  | 3.385  | 3.646   |
| 40        | 0.000 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684    | 2.021  | 2.423 | 2.704  | 3.307  | 3.551   |
| 60        | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.6/1    | 2.000  | 2.390 | 2.660  | 3.232  | 3.460   |
| 80        | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664    | 1.990  | 2.374 | 2.639  | 3.195  | 3.416   |
| 100       | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660    | 1.984  | 2.364 | 2.626  | 3.1/4  | 3.390   |
| 1000      | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.040    | 1.962  | 2.330 | 2.581  | 3.098  | 3.300   |
| Z         | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645    | 1.960  | 2.326 | 2.576  | 3.090  | 3.291   |
| F         | 0%    | 50%   | 60%   | 70%   | 80%   | 90%      | 95%    | 98%   | 99%    | 99.8%  | 99.9%   |
|           |       |       |       |       | Confi | dence Le | evel   |       |        |        |         |

t-table.xls 7/14/2007

# Appendix 6 – Outliers in NRS score: ID21, ID27 and ID28



ID21 was removed from the data analysis due to a very low NRS-score at baseline, which should have been detected earlier. The participant registered 4/10 on NRS scale during screening at the Outpatient Spine Clinic 26.04.18, but when meeting with MS and TFL 11.05.18 for enrolment in the study, pain levels had continued to drop to 1/10. The participant should therefore have been excluded before entering the study and will be excluded from the data analysis. Additionally, two participants (ID26 and ID27) showed abnormal low NRS scores and we chose to do a sensitivity analysis on these two participants. Results are shown in subsection 3.2.1. and Table 5.



# Appendix 7 – Secondary outcome measures (full table)

|                                                                                                       |                |        |          | ÖMPS     | SQ sho | rt form |          | FreBAQ |        |
|-------------------------------------------------------------------------------------------------------|----------------|--------|----------|----------|--------|---------|----------|--------|--------|
|                                                                                                       |                | ODI    |          |          |        |         |          |        |        |
|                                                                                                       | Baseline       | FU     | Change,% | Baseline | FU     | Change  | Baseline | FU     | Change |
| ID22                                                                                                  | 56%            | 42%    | -14%     | 74       | 64     | -13,51% | 17,8%    | 4,4%   | -13,4% |
| ID23                                                                                                  | 48%            | 52%    | +4%      | 57*      | 46*    | -19,29% | 35,5%    | 24,4%  | -11,1% |
| ID24                                                                                                  | 38%            | 24%    | -14%     | 46       | 34     | -26,08% | 15,5%    | 20%    | +4,5%  |
| ID25                                                                                                  | 54%            | 36%    | -18%     | 35       | 28     | -20%    | 53,3%    | 11,1%  | -42,2% |
| ID26                                                                                                  | 70%            | 52%    | -18%     | 66       | 71     | +7,57%  | 8,88%    | 11,1%  | +2,23% |
| ID27                                                                                                  | 36%            | 32%    | -4%      | 24       | 16     | -33,33% | 22,2%    | 12,2%  | -20%   |
| ID28                                                                                                  | 30%            | 28%    | -2%      | 21       | 26     | +23,80% | 0        | 0      | 0      |
| ID29                                                                                                  | 62%            | 64%    | +2%      | 58*      | 48*    | -17,24% | 17,8%    | 15,6%  | -2,2%  |
| ID30                                                                                                  | 44%            | 56%    | +12%     | 56       | 52     | -7,14%  | 0        | 4,4%   | +4,4%  |
| Table 1: secondary outcome measures for ODI, ÖMPSQ short form and FreBAQ. Notes: Reductions in scores |                |        |          |          |        |         |          |        |        |
| are man                                                                                               | rked in ''bold | " head | ings.    |          |        |         |          |        |        |

# Appendix 8 – Recognize <sup>TM</sup> (full table)

|       |             | Time (seconds)       |             |              |        |               |                        | A       | ccuracy (  | percentage | es)      |        |
|-------|-------------|----------------------|-------------|--------------|--------|---------------|------------------------|---------|------------|------------|----------|--------|
|       |             | Left                 |             |              | Right  | ţ             |                        |         | Left       |            |          | Right  |
|       | Baseline    | FU                   | Change      | Baseline     | FU     | Change        | Baseline               | FU      | Change     | Baseline   | FU       | Change |
|       |             |                      | %           |              |        | %             |                        |         |            |            |          |        |
| ID22  | 0,95        | 1,8                  | +47,2%      | 2,95         | 1,2    | -59,3%        | 25%                    | 55%     | +30%       | 85%        | 65%      | -20%   |
| ID23  | 1,2         | 3                    | +60%        | 2,0          | 1,7    | -15%          | 80%                    | 80%     | 0          | 75%        | 60%      | -15%   |
| ID24  | 0,8         | 1                    | +20%        | 1,3          | 1,15   | -11,5%        | 75%                    | 80%     | +5%        | 90%        | 90%      | 0      |
| ID25  | 2,5         | 1,65                 | -34%        | 1,55         | 1,4    | -9,7%         | 35%                    | 65%     | +30%       | 30%        | 55%      | +25%   |
| ID26  | 0,8         | 0,9                  | +11,1%      | 1,2          | 0,85   | -29,1%        | 90%                    | 95%     | +5%        | 90%        | 85%      | -5%    |
| ID27  | 1,05        | 0,85                 | -19%        | 1,1          | 0,8    | -27,3%        | 95%                    | 90%     | -5%        | 100%       | 75%      | -25%   |
| ID28  | 0,9         | 0,8                  | -11,1%      | 1,2          | 1      | -16,7%        | 90%                    | 95%     | +5%        | 95%        | 100%     | +5%    |
| ID29  | 1,35        | 1,05                 | -22,2%      | 1,9          | 0,85   | -55,3%        | 100%                   | 85%     | -15%       | 95%        | 70%      | -25%   |
| ID30  | 0,8         | 0,6                  | -25%        | 1            | 0,75   | -25%          | 85%                    | 85%     | 0          | 95%        | 85%      | -10%   |
| Table | 1: Recogni. | se <sup>TM</sup> cha | inge scores | s. Notes: Im | proven | nents in Reco | gnise <sup>TM</sup> sc | ores ar | e marked i | n "bold" h | eadings. |        |

# **Appendix 9 - Patient Specific Functional Scale (PSFS)**

Due to an administrative error at follow-up, we decided to exclude the questionnaire from the analysis. Participants were given two different form: one at baseline and one a follow-up, which resulted in participants registering difficulties with different tasks from testing point 1 to testing point 2 (e.g. making it harder to measure change in the same task). This resulted in many missing values at follow-up. Explanation of scores: score: 0 = unable to perform activity, 10 = able to perform activity at the same level as before injury or problem. The questionnaire was excluded from the analysis.

| ID   | <b>Q</b> # | Question              | Baseline | Follow-up | Change  |   |
|------|------------|-----------------------|----------|-----------|---------|---|
| ID22 | Q1         | Lifting heavy         | 4        |           | 5       | 1 |
|      | Q2         | Carrying heavy things | 3        | 1         | 5       | 2 |
|      | Q3         | Vacuuming             | 4        |           | 4       | 0 |
| ID23 | Q1         | Sitting in excavator  | 3        |           | 5       | 2 |
|      | Q2         | Sitting in a truck    | 3        | 4         | 5       | 2 |
|      | Q3         | Sitting in the office | 3        | missing   |         | 0 |
| ID24 | Q1         | Driving far           | 4        | missing   |         |   |
|      | Q2         | Certain tasks at work | 4        | -         | 5       | 1 |
|      | Q3         | Strength training     | 2        | missing   | missing |   |
| ID25 | Q1         | Sitting               | 2        | missing   | missing |   |
|      | Q2         | Walking uphill        | 2        | missing   | missing |   |
|      | Q3         | Shower                | 2        | missing   | missing |   |
| ID26 | Q1         | Walking               | 4        |           | 5       | 1 |
|      | Q2         | Sitting               | 4        | 4         | 5       | 1 |
|      | Q3         | Bending forwards      | 2        | 5         | 8       | 6 |
| ID7  | Q1         | Working               | 4        |           | 7       | 3 |
|      | Q2         | Walking/hiking        | 6        | (         | 9       | 3 |
|      | Q3         | Lifting               | 6        | 2         | 8       | 2 |
| ID28 | Q1         | missing               | missing  | missing   | missing |   |
|      | Q2         | missing               | missing  | missing   | missing |   |
|      | Q3         | missing               | missing  | missing   | missing |   |
| ID29 | Q1         | Doing the dishes      | 0        | (         | 0       | 0 |
|      | Q2         | Dressing              | 4        | 4         | 5       | 1 |
|      | Q3         | Bowling               | 8        |           | 8       | 0 |
| ID30 | Q1         | Sitting               | 2        | ,<br>,    | 2       | 0 |
|      | Q2         | Lifting               | 3        | -         | 3       | 0 |
|      | Q3         | missing               | missing  | missing   | Missing | ļ |
|      |            |                       |          |           |         |   |

Table 1: only ID26 and ID27 show MIC for some tasks. However, there are too many missing values to interpret the data according to procedure.

# Appendix 10 – Mild and moderate TSK-11 scores

| Participant         | TSK score                         |  |  |  |  |
|---------------------|-----------------------------------|--|--|--|--|
|                     |                                   |  |  |  |  |
| ID22                | 25/52 (mild)                      |  |  |  |  |
| ID23                | 37/52 (moderate)                  |  |  |  |  |
| ID24                | 35/52 (moderate)                  |  |  |  |  |
| ID25                | 28/52 (mild)                      |  |  |  |  |
| ID26                | 32/52 (mild)                      |  |  |  |  |
| ID27                | 34/52 (moderate)                  |  |  |  |  |
| ID28                | 25/52 (mild)                      |  |  |  |  |
| ID29                | 25/52 (mild)                      |  |  |  |  |
| ID30                | 38/52 (moderate)                  |  |  |  |  |
| Table 1: TSK-11 sco | Table 1: TSK-11 score at baseline |  |  |  |  |

# Appendix 11 – Patient evaluation of the VR-study

| #10th FU - 7days                                                                                                    | 1021               |                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     |                    |                                                                                                                                               |
| Evaluering av VR-treningen                                                                                          |                    | 6. Hva var positivt/hva likte du ved VR-treningen?                                                                                            |
| <ol> <li>Har du i løpet av de 5 siste ukene fått helsehjelp fra andre<br/>kiropraktorer, eller lignende?</li> </ol> | : fysioterapeuter, | Var. gove spill og treningen varte pusse lange                                                                                                |
| a. Ja / (Ne)                                                                                                        |                    |                                                                                                                                               |
| 2. Hvis ja:                                                                                                         |                    |                                                                                                                                               |
| a. Hvilken behandling                                                                                               |                    | 7. Hva var negativt/kunne vært bedre?                                                                                                         |
| b. Hvor mange behandlinger                                                                                          |                    |                                                                                                                                               |
| c. Årsak                                                                                                            |                    | Usica                                                                                                                                         |
| 3. Har du i løpet av de siste 5 ukene tatt smertestillende?                                                         |                    |                                                                                                                                               |
| a. Ja / Nei                                                                                                         |                    |                                                                                                                                               |
| 4 16.25                                                                                                             |                    |                                                                                                                                               |
| 4. Hvillen tree we to ill a to                                                                                      |                    | 8. Tenker du at VR-trening kan brukes innen rehabilitering i fremtiden?                                                                       |
| b. Hyor mye nr dag (i spitt)?                                                                                       |                    |                                                                                                                                               |
| <ul> <li>c. Har bruk av smertestillende okt i læset av de side of</li> </ul>                                        |                    |                                                                                                                                               |
| site out i inpet av de siste o                                                                                      | ukene?             |                                                                                                                                               |
| 5. Hvordan opplevde du VR-treningen?                                                                                |                    |                                                                                                                                               |
| Synes det var veldig hight 1 de to                                                                                  | side I             | <ol><li>Hvis ja: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en<br/>rehabiliteringsfase/opptreningsperiode?</li></ol> |
| har jegnes wirt plaget med svert                                                                                    | ite smoster si     |                                                                                                                                               |
| faler denfor the tigg filk den ef                                                                                   | Hehten w breni     | Treangen no honsige Alposses of the handle                                                                                                    |
| somstegentlig shull fift.                                                                                           |                    | Vittia for mot = A H All son of                                                                                                               |
|                                                                                                                     |                    | 12 gode helperidler                                                                                                                           |
|                                                                                                                     |                    |                                                                                                                                               |
|                                                                                                                     |                    |                                                                                                                                               |
|                                                                                                                     |                    |                                                                                                                                               |
|                                                                                                                     |                    |                                                                                                                                               |

| 7.2. FU 14. mars 1222                                                            |                                                                                                                                                 |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Jul 1                                                                            |                                                                                                                                                 |
|                                                                                  |                                                                                                                                                 |
|                                                                                  | 6. Hva var positivbhva likte du ved v K-treningen?                                                                                              |
| Evaluering av VR-treningen                                                       | Vanessan i treningen, Kjetke folk                                                                                                               |
| 1. Har du i løpet av de 5 siste ukene fått helsehjelp fra andre fysioterapeuter, |                                                                                                                                                 |
| kiropraktorer, eller lignende?                                                   |                                                                                                                                                 |
| a. Ja / (Nei                                                                     |                                                                                                                                                 |
| 2. Hvis ja:                                                                      | 7. Hva var negativt/kunne vært bedre?                                                                                                           |
| a. Hvilken behandling                                                            |                                                                                                                                                 |
| b. Hvor mange behandlinger                                                       |                                                                                                                                                 |
| c. Arsak                                                                         |                                                                                                                                                 |
| 3. Har du i lønet av de siste 5 ukene tatt smertestillende?                      |                                                                                                                                                 |
| a la / Nei                                                                       |                                                                                                                                                 |
|                                                                                  | 8. Tenker du at VR-trening kan brukes innen rehabilitering i fremtiden?                                                                         |
| 4. Hvis ja:                                                                      | $10 t_{10} = 1^{-11} t_{10} = t_{10} + t_{10}$                                                                                                  |
| a. Hvilken type smertestillende? Pararel forte                                   |                                                                                                                                                 |
| b. Hvor mye pr dag (i snitt)?                                                    |                                                                                                                                                 |
| c. Har bruk av smertestillende økt i løpet av de siste 5 ukene? Ja               |                                                                                                                                                 |
| •                                                                                | <ol> <li>Hvis ja: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en<br/>rehabiliteringsfass/onntreningenerinde?</li> </ol> |
| 5. Hvordan opplevde du VR-treningen?                                             | and a supervised of but change better and a supervised of a                                                                                     |
| Valdio haviting lande have the                                                   | Kontunie Kontinuitet                                                                                                                            |
| Tranica las laident una bert mere                                                |                                                                                                                                                 |
| the feature the features                                                         |                                                                                                                                                 |
|                                                                                  |                                                                                                                                                 |
|                                                                                  |                                                                                                                                                 |
|                                                                                  |                                                                                                                                                 |

1023 Fab **Evaluering av VR-treningen**  Har du i løpet av de 5 siste ukene fått helsehjelp fra andre fysioterapeuter, kiropraktorer, eller lignende? a. Ja / Nei 2. Hvis ja: a. Hvilken behandling..... b. Hvor mange behandlinger..... c. Årsak 3. Har du i løpet av de siste 5 ukene tatt smertestillende? a. Ja / Nei 4. Hvis ja: a. Hvilken type smertestillende?..... b. Hvor mye pr dag (i snitt)?..... c. Har bruk av smertestillende økt i løpet av de siste 5 ukene?.. 5. Hvordan opplevde du VR-treningen? Bra Komme til å forkelke med det Sprink regi

6. Hva var positivt/hva likte du ved VR-treningen? andedes transity Criph muster jeg itte Under det los 7. Hva var negativt/kunne vært bedre? Squash: mothsham kunne burget sog fastre ved hargen nica. Pitatine: 8. Tenker du at VR-trening kan brukes innen rehabilitering i fremtiden? Hvis ja: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en rehabiliteringsfase/opptreningsperiode? at jag für trene de muchet genegene som som jog The fir trent forult statig dagtig Og for a "serde" veilede meg meg i villig sching

|   | Evaluering av v K-trennigen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ol> <li>Har du i løpet av de 5 siste ukene fått helschjelp fra andre fysioterapeuter,<br/>kiropraktorer, eller lignende?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | a. (Id) / (Nei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 2. Hvis ja:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | a. Hvilken behandling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • | b. Hvor mange behandlinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | c. Årsak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 3. Har du i løpet av de siste 5 ukene tatt smertestillende?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | a. (Ja) / Nei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 4. Hvisja:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | a. However and display in the second se |
| • | b. Hvor inje pr dag (* andi)ande okt i lonet av de siste 5 ukene?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | c. Har out av successione out a product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 5. Hvordan opplevde du VR-treningen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | GOD TRENING, OG MOTIVERENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

<form>



| 1 1027                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                      |  |
| Evaluering av VR-treningen                                                                                                           |  |
| <ol> <li>Har du i løpet av de 5 siste ukene fått helsehjelp fra andre fysioterapeuter,<br/>kiropraktorer, eller lignende?</li> </ol> |  |
| a. Ja / (Nei)                                                                                                                        |  |
| 2. Hvis ja:                                                                                                                          |  |
| a. Hvilken behandling                                                                                                                |  |
| b. Hvor mange behandlinger                                                                                                           |  |
| • c. Ársak                                                                                                                           |  |
| 3. Har du i løpet av de siste 5 ukene tatt smertestillende?                                                                          |  |
| a. Ja / Nej                                                                                                                          |  |
|                                                                                                                                      |  |
| 4. Hvis ja:                                                                                                                          |  |
| a. Hvilken type smertestillende?                                                                                                     |  |
| b. Hvor mye pr dag (i snitt)?                                                                                                        |  |
| <ul> <li>Har bruk av smertestillende økt i løpet av de siste 5 ukene?</li> </ul>                                                     |  |
| 5. Hvordan opplevde du VR-treningen?                                                                                                 |  |
| Dette var et morro traings alternativ                                                                                                |  |
| der man ikke tonkte over at man vor på behuilling<br>for å trene. Positiv OPPlevelse                                                 |  |
|                                                                                                                                      |  |
|                                                                                                                                      |  |
|                                                                                                                                      |  |
|                                                                                                                                      |  |

| 0. 114            | a var postuvoriva nikte uti vedi v K-trenningen /                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------|
| Det<br>Selvo      | filtes mer som lek enn trening                                                                                  |
|                   |                                                                                                                 |
|                   |                                                                                                                 |
|                   |                                                                                                                 |
| 7. Hva            | i var negativt/kunne vært bedre?                                                                                |
| Ingen             | formening.                                                                                                      |
|                   |                                                                                                                 |
|                   |                                                                                                                 |
|                   |                                                                                                                 |
|                   |                                                                                                                 |
| 8. Tenk           | er du at VR-trening kan brukes innen rehabilitering i fremtiden?                                                |
| Det V             | rinker som et rimelig bra                                                                                       |
| diter             | hativ                                                                                                           |
| ••••••            |                                                                                                                 |
|                   |                                                                                                                 |
| 9. Hvisj<br>rehab | a: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en<br>iliteringsfase/opptreningsperiode? |
| At 101            | Passa                                                                                                           |
| med he            | entrol + 1 (orals ) (1000/ behandlingsprets                                                                     |
|                   | ta utser osv.                                                                                                   |
|                   |                                                                                                                 |

| v vR-treningen                                                                                                                 | 6. Hva var positivultva likte du ved VR-treningen?<br>EN ANURLERES MENIQUES MATE, HVON DU STANS<br>ISVEN MAD EN RESTIN FORLEDE ISTURI TREAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluering av                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>Har du i løpet av de 5 siste ukene fått helsehjelp fra andre tystotetep<br/>kiropraktorer, eller lignende?</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a. Ja / Nei                                                                                                                    | <ol><li>Hva var negativt/kunne vært bedre?</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Hvisja:<br>a. Hvilken behandling                                                                                            | THE I KHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b. Hvor mange behandlinger                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| c. Arsak                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. Har du i løpet av de siste 5 ukene tatt smertestillende?                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a. Ja / Nei                                                                                                                    | 8. Tenker du at VR-trening kan brukes innen rehabilitering i fremtiden?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                | 1A, APPSOLUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. Hvisja:                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a. Hvilken type smertesunenee                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>c. Har bruk av smertestillende økt i løpet av de siste 5 ukene?</li> </ul>                                            | <ol> <li>Hvis ja: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en<br/>rehabiliteringsfase/opptreningsneriode?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5. Hvordan opplevde du VR-treningen?                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (401) PRAVING LINDA ISN "/ I ISNMID" SANDATIONIE OF ITAL                                                                       | AT EIV FAR NOK TREINING, HUDL "QUITSER" SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UT FORDER GRENSLEVE SOM (EN VAN 1641) > HAM                                                                                    | AT OTHER ALL AND M TRANCISM UTEONDALER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SOM VIL NOK GIGRE GOOT I DET LANGELOP                                                                                          | DELLAN AV PROWEN 36M TRENGER DET MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                | and the second se |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Fdays Follow-y 1029                                                                                                                  |            |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                      |            |
| Evaluering av VR-treningen                                                                                                           |            |
| <ol> <li>Har du i løpet av de 5 siste ukene fått helsehjelp fra andre fysioterapeuter,<br/>kiropraktorer, eller lignende?</li> </ol> | ···<br>··· |
| a. Ja / Not                                                                                                                          |            |
| 2. Hvis ja:                                                                                                                          |            |
| a. Hvilken behandling                                                                                                                |            |
| b. Hvor mange behandlinger                                                                                                           |            |
| c. Årsak                                                                                                                             |            |
|                                                                                                                                      |            |
| <ol> <li>Har du i løpet av de siste 5 ukene tatt smertestillende?</li> </ol>                                                         |            |
| a. Ji / Nei                                                                                                                          |            |
| 4. Hvis ja:                                                                                                                          | ٤          |
| a. Hvilken type smertestillende? NOBLIGHM                                                                                            |            |
| b. Hyor mye pr dag (i snitt)? ZPIGLER TOTALT                                                                                         | O.c        |
| Har bruk av smerestillande old i land et d. i v. a. A. A. A.                                                                         |            |
| a fille of a sinch sinch some fille of a v de siste 5 ukene?                                                                         |            |
| 5. Hvordan opplevde du VR-treningen?                                                                                                 | 9.         |
| applende den som hustietent om 11 , 1                                                                                                |            |
| det er fremaang i voog evid den ang                                                                                                  |            |
| Er blitt mer beregelig                                                                                                               |            |
|                                                                                                                                      | tre        |
|                                                                                                                                      | bes        |
|                                                                                                                                      |            |
|                                                                                                                                      |            |
|                                                                                                                                      |            |
|                                                                                                                                      |            |

| 6. Hva var positivt/hva likte du ved VR-treningen?                                                                   |
|----------------------------------------------------------------------------------------------------------------------|
| . For mg. ha. Ur. freningen. Wart = betti cla. clu. clo. az ala<br>tak dak i sut bart. fra mys plagen e. og. frykten |
| 7. Hva var negatívt/kunne vært bedre?                                                                                |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
| 8. Tenker du at VR-trening kan brukes innen rehabilitering i fremtiden?                                              |
| c. traning                                                                                                           |
|                                                                                                                      |
|                                                                                                                      |

9. Hvis ja: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en rehabiliteringsfase/opptreningsperiode?

Tatort Ingeter for at en kan Stade Sis og gi Ingeshet 2° at det og Jan i beverserer er det bere for smetere

|   | 1030                                                                                                                                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------|
|   | Evaluering av VR-treningen                                                                                                           |
|   | <ol> <li>Har du i løpet av de 5 siste ukene fått helsehjelp fra andre fysioterapeuter,<br/>kiropraktorer, eller lignende?</li> </ol> |
|   | a. Ja / <u>Nei</u>                                                                                                                   |
|   | 2. Hvís ja:                                                                                                                          |
|   | a. Hvilken behandling                                                                                                                |
| • | b. Hvor mange behandlinger                                                                                                           |
|   | c. Arsak                                                                                                                             |
|   | 3. Har du i løpet av de siste 5 ukene tatt smertestillende?                                                                          |
|   | a. Ja / <u>Nei</u>                                                                                                                   |
|   | 4. Hvis ja:                                                                                                                          |
|   | a. Hvilken type smertestillende?                                                                                                     |
|   | <ul> <li>b. Hvor mye pr dag (i snitt)?</li> </ul>                                                                                    |
| • | c. Har bruk av smertestillende økt i løpet av de siste 5 ukene?                                                                      |
|   | 5. Hvordan opplevde du VR-treningen?                                                                                                 |
|   | Velding tom Figh treat rygges when a tenter samage over at set og trening                                                            |
|   |                                                                                                                                      |
|   |                                                                                                                                      |
|   |                                                                                                                                      |
|   |                                                                                                                                      |
| - |                                                                                                                                      |

6. Hva var positivt/hva likte du ved VR-treningen? Pil y box-spillet vor veldig fra gag ned VK farhald W als 7. Hva var negativt/kunne vært bedre? Kurne on hundred gillues, Me nge onne ni darnegellet. Porysun pr Spill gjær at Jeg kantete gill hundt ut for a vin 8. Tenker du at VR-trening kan brukes innen rehabilitering i fremtiden?

 Hvis ja: hvordan kan det best tilpasses den enkelte? Hva er viktig for deg i en rehabiliteringsfase/opptreningsperiode?

Telpace types spiel og riva ette hert erhebt og deres prableme