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1 Abstract 
The nervous system is a complex and highly specialized network, where rapid conduction of nerve 

impulses over large distances is required for correct functioning of vertebrate nervous system. 

Saltatory conduction of electrical signals from one neuron to another is enabled by the myelin sheath, 

which is a multi-layered proteolipid membrane with unique myelin proteins. Myelin in rich in lipids 

and proteins that are not common in normal cell membranes, and the proteins specific to the myelin 

structure is quite unique and differ between the CNS and PNS. Abnormalities in myelin-specific 

proteins are involved in neurological diseases, leading to demyelination and chronic disability, such as 

multiple sclerosis (MS) and Charcot-Marie-Tooth disease (CMT). Nanotechnology can be used to 

investigate protein-membrane interactions, introducing nano-sized model membranes that mimic the 

native lipid bilayers found in myelin, and also in approaching new treatments for neurological 

diseases. In this study, the interactions between three specific myelin proteins and lipid membranes 

were studied with the used of two model membranes; liposomes and bicelles, and at the same time 

comparing the model systems to see if one could be preferred over the other in future research. The 

myelin proteins myelin basic protein (MBP) and peripheral myelin protein 2 (P2) and cytoplasmic tail 

of myelin protein 0 (P0) were expressed and purified and used in this thesis together with a mutant 

form of the P2 protein. Turbidimetry and small-angle X-ray diffraction (SAXD) were used to 

investigate proteolipid aggregate stability and structural effects induced by the myelin proteins. Lipid 

ratio dependencies were examined with co-sedimentation assay while synchrotron radiation circular 

dichroism (SCRD) measurements of P2wt with the different model membranes were conducted to 

explore the structural changes of P2 induced by binding to lipids. Transmission electron microscopy 

(TEM) was used to visually look at how the different protein induced lipid aggregated. Finally, a pilot 

study with nanoparticles were conducted to gain knowledge about how they can be functionalized and 

used in studying protein-membrane interactions, and how they in the future can be used in applications 

targeting the nervous system. Co-sedimentation assays were carried out to analyze protein binding, 

while ultraviolet-visible spectrophotometry (UV-vis spectrophotometry) assessed together with TEM 

to get any confirmation of the lipid coating of the gold nanoparticles.  

 

In this thesis, several interactions properties of the three myelin proteins MBP, P2 and P0 were found 

to differ between the model membranes, and highly ordered structures of bicelle aggregates induced 

by P2wt and P2 F57A were investigated. Examination of lipid coated gold nanoparticles revealed 

partial coating and that optimization of the protocols are highly needed. 
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2 Introduction 
Correct functioning of the nervous system is required to cope in everyday life. Malfunction of this 

system can occur because of genetic defects, physical damage or simply by aging. The most common 

problem is failure of nerve conduction where one cause is neurological disorders like multiple 

sclerosis (MS) and Charcot-Marie-Tooth disease (CMT). Both disorders do not affect the nerve cell 

directly, but damage the insulating layer around them resulting in reduced or blocked signalling. MS is 

the most common autoimmune disorder of the central nervous (CNS) system with global prevalence 

of 30 per 100 000, while CMT is one of the most common inherited human neuropathies in the 

peripheral nervous system (PNS), affecting 40 per 100 000 (1-3). Epidemiology studies of MS show 

higher prevalence of MS in North America and Europe in difference to low levels in Eastern Asia and 

Africa, with more prevalence in Caucasians from Scandinavia and Scotland (4-6). The disease 

mechanisms it not fully understood and deeper knowledge about disease mechanisms is required to 

fully understand neurological diseases mentioned above. Basic understanding of these principles can 

in the future be used to develop a potential medicine to improve function of affected people.   

 
2.1 Nervous system in general  
The nervous system is made up of all nerve cells, called neurons, in our body and it is because of this 

system that we can communicate with the outside world and at the same time control many 

mechanisms in our body. When we sense a specific smell, touch or sound, the nervous system will 

process this information and trigger reactions like pain or muscle contractions. Each neuron has a cell 

body which receives signals from dendrites, which are branched projections of the neuron that 

propagate electrochemical stimulation. Signals are then passed on via the axon, the main conducting 

unit of the neuron, and through transmitters (7). A network of these cells makes up our nervous 

system, which can be divided into two main parts. The first part is the CNS and it includes the nerves 

in the brain and the spinal cord. It integrates all information received from the different parts of the 

body and then gives feedback to influence further activity. The second is the peripheral nervous 

system (PNS), which includes all other neurons in the body, and serves as a bridge between the CNS 

and the rest of the body like organs and limbs (8).   
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Figure 1: Nerve cell. The cell body (soma) receives signals from the dendrites and passes it along the axons and through the 
neurotransmitters. The myelin sheath works as an electric insulator and the axonal potential jumps from one node of Ranvier 
to the next, increasing the speed of the nerve impulse. Schwann cells are responsible for myelination in the PNS, whereas 
oligodendrocytes do it in the CNS.  

 

The nervous system comprises of two main types of cells; neurons and glial cells. Neurons, as seen in 

Figure 1, transmit signals via the axon and communicate with other cell through synapses. The 

synapses convey the transmission of the electrical signal between one nerve cell to another nerve cell, 

muscle cell or a gland cell. Hundreds of different types of neurons exist in the human body, like 

sensory neurons and motor neurons, but they all have in common to give and receive information from 

the distant parts of the body. Glial cell are not neuronal cells and do not function in the signal 

transduction between cells. Instead, they keep the conditions surrounding the nerve cells at an optimal 

level. They maintain homeostasis, supply nutrients and oxygen, hold neurons in place, remove dead 

neurons and insulate axons (9).  

 

2.2 Myelin sheath and its insulating properties  
Rapid conduction of nerve impulses over large distances is required for correct functioning of the 

nervous system. This is enabled by a tightly packed multi-layered proteolipid membrane wrapped 

around selected axons, named the myelin sheath, and works as an electrical insulator (Figure 2). 

Myelination, also called myelinogenesis, is the production of the myelin sheath. Myelination in the 

CNS starts under the development by oligodendrocyte precursor cells that are generated from glial 

precursor cells, which can differentiate into astrocytes, neurons and oligodendrocytes (10). Myelin 

stems from and are a part of the Schwann cells in the PNS and the oligodendrocytes in the CNS (11). 

Myelination of axons differs between the CNS and PNS glial cells. Since the brain and spinal cord are 

encased in the skull and vertebrae, thus having limited space, oligodendrocytes can myelinate several 

axon segments at once, up to 50 segments, thereby reducing the number of glial cells needed (12). In 

the PNS, neurons have to pass organs, muscles and joints, and are therefore more exposed to trauma 

and damage. Thus, the PNS favours durability over space which causes one Schwann cell to myelinate 

a single axonal segment (13). Small axons (≤1 μm) will remain unmyelinated, but larger axons (≥1 
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μm) are enclosed with one cell per axon per internode (7). When myelination occurs, Schwann cells 

will organize into distinct membrane domains with a unique group of proteins and cytoplasmic 

compartments. The innermost membrane mediate interactions with the axonal ligands through 

adhesion molecules and receptors (14). 

 

Axons can be either unmyelinated or myelinated, where small axons in vertebrates are often 

unmyelinated while large axons are insulated by myelin, like the sensory axons of the PNS. When 

unmyelinated axons are transmitting a signal, the generation of action potential is distributed along the 

entire axon because the ion channels (Na+ and K+), taking part in the generation, are distributed 

through the whole axon, involving the entire membrane (13). Local circuits of ion flow depolarize the 

adjacent piece of membrane in a continuous, sequential fashion. In myelinated axons, however, the ion 

channels are concentrated in periodic gaps between the myelinated regions of the axon, called nodes of 

Ranvier, and myelin is critical for their function. The excitable membrane surrounding the axon is 

exposed to the extracellular space only at these nodes where the sodium (Na+) channels are localized. 

This means that the local circuits, which in unmyelinated axon depolarize the whole membrane, 

cannot flow through the myelin sheath and can only, depolarize the axon at the next node. The 

insulating function of the myelin sheath means that little energy is required to depolarize the 

membrane between the nodes which results in an increased speed and jumping of the action potential 

from node to node, called saltatory conduction (7, 15). Unmyelinated axons have conduction 

velocities from 0.5 to 10 m/s, while myelinated ones can have conduction velocities up to 150 m/s (9). 

The acceleration of nerve conduction is 20-100 fold in myelinated axons compared to unmyelinated 

ones. Myelin protects neurons and play a key role in signal transduction (16). 

 
 

 

 

 

 

 

 

 

 

 

Figure 2: Transmission electron micrograph of myelinated axons. The multi-layered membrane encircles the axon of a 
neuron and gives an insulating effect. Reprinted from CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/), from 
Wikimedia Commons 
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The end result of myelination is two substructures called compact myelin and non-compact myelin. 

Compact myelin consists of tightly packed membrane sheets without much cytoplasm. No molecular 

entrance is possible keeping the insulative nature of the myelin sheath. In the CNS this tight 

compaction requires expression of structural proteins, such as proteolipid protein (PLP) and myelin 

basic protein (MBP) (17). The myelin sheath is periodically structured in compact myelin, with 

alternating electron-dense and electron-light layers, called the major dense line (MDL) and the 

intraperiod line (IPL) respectively. MDL, which is rich in electrons, is the condensed cytoplasmic face 

of the membrane (cytoplasmic compartment), while the IPL is the apposed extracellular surfaces of 

the corresponding multilayers (extracellular compartment). The tight compactions of these membranes 

results in cycle with length of 12 nm (18).  

 

 Non-compact myelin contains cytosol and consists of several compartments. On each end of a myelin 

sheath segment are so-called paranodal loops which are membrane loops containing cytoplasm and are 

adjacent to the nodes of Ranvier (19).  Other segments are longitudal incisures in the CNS and 

Schmidt-Lantermann incisures (SLIs) in the PNS. These regions cross the compacted myelin like 

tunnels that contains cytoplasm, and connect the peripheral cytoplasm to the periaxonal cytoplasma, 

referred to as abaxonal and adaxonal cytoplasm. It is theorized that these regions are important for 

transport of metabolic substances that is required for myelination and for maintaining the myelin 

sheath (17, 20).  

 

Paranodal junctions are a part of the myelin ultrastructure. They are localized adjacent to the nodes of 

Ranvier and form a special axon-glia contact zone, which links the paranodal loops in the non-

compacted myelin to the axonal plasma membrane, called axolemma. Juxtaparanode is the adaxonal 

layer that comes right after the paranodal junctions, immediately followed by the internode which is 

the inner membrane of myelin and is separated from the axolemma by the periaxonal space. The inner 

leaflet of the myelin is in contact with the adaxonal layer while the outer leaflet is in contact with the 

abaxonal layer. These are collectively referred to as mesaxons marking the point of edge-to-edge 

contact (17, 21) 

 

How does the myelin sheath organize itself into a highly stable structure? Myelin is composed of 

amphipathic lipids, with apparent hydrophobic heads, and highly hydrophobic proteins, where both 

exert repulsive forces towards the aqueous solution in between the myelin bilayers.  There are also 

intramolecular attractive forces among the lipid molecules like hydrogen bonds formed close to the 

lipid-water interface and van der Waals dispersion forces between methylene groups on adjacent lipids 

(18). Electrostatic forces operating between the negatively charge lipid surfaces and the basic residues 

in myelin MBP and P0 cytoplasmic tail in MDL contribute to the tight packing of the myelin bilayers 

(22).  
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2.2.1 The main difference between the CNS and PNS lies in the protein composition 
Myelin consist of dozens of layers of lipid bilayers that contain high concentrations of specific integral 

and peripheral membrane proteins that function in stacking of the membrane bilayers, forming so 

called multilayers. The compacted myelin sheath consists of specialized components of lipids and 

proteins that are not found in normal cell membranes, while the lipid composition in both CNS and 

PNS is quite similar; the protein content is quite different.  

 

There are no lipids that are completely specific to myelin, but cerebroside (galactosylceramide) is the 

most typical. Other major lipids in myelin are cholesterol, ethanolamine-containing plasmalogens, 

phosphatidylcholine (PC) and glycosphingolipids (23, 24). 65% of the total lipid dry weight is 

comprised of cerebroside, cholesterol and ethanolamine plasmalogens. Both cholesterol and 

cerebroside provide stability to the myelin sheath, where cholesterol regulates fluidity and 

permeability of the membrane while cerebroside, with its long chain fatty acid parts, stabilizes with 

multiple interactions. Ethanolamine plasmalogens have been studied for increasing packing density 

and are shown to provide mediators for inflammatory reactions (25, 26). Membrane asymmetry is a 

distinct feature of the myelin sheath, which means that the lipid composition of the cytoplasmic leaflet 

is different to the extracellular sheet, thought to contribute to achieve the ordered structure. The 

cytoplasmic leaflet is concentrated with charged phospholipids whereas the extracellular leaflet has a 

lot of glycosylated lipids (27). One example of this is that cholesterol is on the extracellular surface 

together with cerebroside, while ethanolamine plasmalogens is on the cytoplasmic side of the lipid 

bilayer (18). Lipid bilayers have different phases depending on temperature and structural properties, 

such as length of the hydrocarbon tails, if the tails are saturated or unsaturated, tail conformation and 

the composition of the headgroup. There is a phase transition temperature where a lipid goes from a 

gel phase to disordered fluid phase, with some lipids having a rippled phase in between these. In the 

gel phase the lipid tails are highly ordered and are so to speak locked in place. Over a certain 

temperature the bilayer undergoes a transition to a fluid phase where the tails become more disordered 

(28). A study on native CNS myelin revealed that the bilayers show a structure typical of the fluid 

phase with coexistence of lipids in both gel and fluid phase, called mesophase coexistence (29). 

Cholesterol  and galactosphingolipids decrease the fluidity and permeability of the membrane, 

whereas plasmalogens increase the fluidity by lowering the transition temperature from gel to fluid 

phase (30). Even though the lipid composition is similar, the greatest difference between CNS and 

PNS myelin composition lies in the protein components.  

 

 In CNS myelin, proteolipid protein (PLP) and myelin basic protein (MBP) make up 60-80% of the 

total protein mass, with other proteins and glycoproteins being present to lesser extents. PLPs contain 

several membrane-spanning domains which are conserved during evolution. MBP is located on the 

cytoplasmic face of the myelin membranes and PLP and MBP have major roles in myelin formation 
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and stabilization, by which MBP interacts with the lipids in the myelin membrane (31). MBP is found 

in the MDL, whilst PLP is in the IPL which is less electron dense (32). Other well-known proteins in 

the CNS are 2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP), myelin-associated glycoprotein 

(MAG), myelin/oligodendrocyte glycoprotein (MOG) and myelin/oligodendrocyte-specific protein 

(MOSP). CNP is in short localized in the cytoplasm of non-compacted myelin in the CNS and 

harbours a C-terminal isoprenylation motif that allows it to interact with the lipid bilayer, while MAG, 

a protein with a large (72 kDa) and a small (67 kDa) isoform, is present during myelination (L-MAG) 

and in mature myelin (S-MAG) (33). MAG is expressed on the outermost surface of the myelin 

sheath, is a member for the immunoglobulin superfamily and is an important marker for maturation of 

oligodendrocytes, while the 48-kDa MOSP protein is associated with cytoplasmic cytoskeleton and 

plays an important role in interaction between membrane and cytoskeleton during CNS myelination 

(34, 35).  

 

 

P0 is the major protein in PNS myelin and accounts for more than half of the PNS myelin protein. 

This protein in necessary for normal myelination and mediates adhesion between adjacent lipid 

bilayers and drives myelin compaction (see Figure 3) (36).  In addition to P0, PNS myelin contains a 

glycoprotein called peripheral myelin protein 22 (PMP22), which is frequently mutated in inherited 

Figure 3: Illustration of CNS and PNS myelin sheath. Myelin basic protein (MBP) is found in the major dense line and 
drives compaction by binding to lipids in the myelin membrane. Peripheral myelin protein 2 (P2) have patches of positive 
charge on its surface and hydrophobic residues that are involved in membrane binding and interactions, and also resides in 
the MDL.  Myelin protein P0 (P0) is a transmembrane protein with the immunoglobulin-like domain in the intraperiod line 
and the cytoplasmic tail in the MDL.   
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neuropathies (37), and the peripheral myelin protein 2 (P2) which is expressed by the Schwann cells 

and both are involved in stabilizing the assembly of the multilayered lipid membrane and lipid 

transport (33, 38). Connexin 32 (Cx32) is present in both PNS and CNS, contains four transmembrane 

domains those of PMP22 and has a molecular mass of 32 kDa (33).  

 

The proteins mentioned above together with hundreds more are found to be present in CNS and PNS 

myelin (39). This thesis will focus on MBP, P0 and P2 since this project focus on their interaction 

with lipids and nanoparticles 

 

Myelin Basic Protein 

MBP is found to be one of the essential factors in myelin membrane stacking in the CNS and the 

formation of major period line, which is disturbed in demyelinating conditions such as MS and 

demyelinating neuropathies (40). MBP is the second most abundant protein in the CNS after PLP, 

where 30% of total protein is MBP, while only 5%-18% of the total protein in the PNS is MBP. It has 

been called the “executive molecule of myelin” since it is the only protein so far that is shown to be 

essential for myelination in the CNS (33).  Due to proteins like P0, P2 and PMP22 in the PNS, 

presence of MBP is not vital for myelin compaction, but has been found to have an effect on the 

number of SLIs and the regulation of MAG and Cx32 proteins. Decreased expression of MBP in the 

PNS caused an upregulation of these proteins in the affected mouse (41). The high positive net charge 

of MBP allows it to interact with the phospholipid-rich cytoplasmic face of myelin membranes. This 

interaction results in a charge neutralization, folding and partial membrane insertion (22, 40). MBP is 

known for its autoantigenic properties (capable of inducing an immune response) in MS, and this 

feature may arise from the susceptibility of MBP to break down depending on lipid composition (22, 

29). The structure and function of MBP is altered as well, promoting decreased compact myelin 

stability (42). A large gene complex, called Genes of Oligodendrocyte Lineage (Golli), have 10 exons 

in humans and 7 of these give rise to the classical MBP found in myelin. This large gene complex 

does not only express MBP found in myelin but also several other Golli proteins and Golli-MBP, 

which are found in neurons, oligodendrocytes and T-cells (43, 44).  Several different isoforms of the 

classical MBP are formed, and the 18.5 kDa isoform is the most abundant in myelin. This isoform 

occurs, through post-transitional modifications, in several different charged forms, called C1, C2, C3, 

C4, C5, C6 and C8, with decreasing net positive charge reducing its interaction with lipid membranes. 

Post-transitional modifications like phosphorylation, deamination and methylation are responsible for 

producing these isoforms, with the C1 isoform being the least modified one and with highest positive 

charge (45). Almost every isoform of the 18.5 kDa MBP is phosphorylated at Arg9 and Arg54 which 

have been suggested to inhibit nuclear targeting and play a role in myelin structure and function under 

increased neuronal activity (46).  Not only does MBP bind to negatively charged lipids, it also binds to 

actin filaments, Ca2+-Calmodulin, clathrin and tropomyosin (47-49). MBP has not yet been 
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crystallized in its lipid-bound state, but circular dichroism has shown that it gains a secondary 

structure content upon binding to negatively charged lipids showing an increased amount of α-helical 

structure (40). It has been suggested that MBP forms an ordered, self-assembled protein meshwork 

that stabilizes compact myelin, while other factors, such as P2 may be involved in the process (40, 50).  

 

 

Peripheral myelin protein P2 

In the PNS, peripheral myelin protein P2 is one of the most abundant proteins, making up to 15% of 

the total protein content, but it is also found in the CNS being in both spinal cord and brain stem (51, 

52). In the major dense line, P2 is thought to stabilize the assembly of the multilayered lipid 

membrane thus stabilizing membrane stacking. It is a small protein consisting of 131 amino acids 

resulting the size of 15 kDa with a β-barrel structure covered by an α-helical lid as seen in Figure 4 A 

(52, 53).  P2 belongs to a conserved family of fatty acid binding proteins (FABPs) and can transfer 

fatty acids from and to lipid membranes using a collision transfer mechanism, which indicates a 

functional role to maintain a stable environment for the lipids in myelin (54).  The ligand binding 

pocket is inside the β-barrel, containing two arginine residues Arg106 and Arg126 that are essential in 

interacting with negatively charged lipid groups (55, 56).  Studies have found a cholesterol recognition 

amino acid consensus sequence (CRAC) binding motif at its C-terminus which indicate that P2 might 

bind cholesterol – a fundamental lipid component in the myelin sheath (52).On the P2 surface there 

are patches of positive charge that are thought to be involved in binding and stacking of membranes. It 

also has hydrophobic residues in the helical lid that could help the binding with insertion deeper into 

the membrane. Studies further revealed that the main site for membrane-binding is the helical lid 

which could lead to lipid transfer in the cavity like a transfer mechanism seen with FABPs, while on 

the other side of the protein the binding is mostly based on electrostatic interactions (53). P2 has been 

detected with increased expression in thicker myelin sheaths compared to thinner sheaths, and is 

downregulated, but present after development (54).  Three point mutations in the pmp2 gene have 

been linked to the neuropathy autosomal dominant Charcot-Marie-Tooth type 1 and a study of mutant 

P2 proteins have shown that their stability is remarkably reduced (38, 57). There is also a possibility 

that the P2 is one of the autoantigens in the Guillain-Barré syndrome together with P0 (58, 59). 
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Figure 4: A) Crystal structure of peripheral myelin protein P2 and B) position of Phe57 in the structure. A) The 15 
kDa protein contains 10 antiparallel β-strands where the first two strands are linked together by two α-helices forming an α-
helical lid. B) Phe57 lies at the tip of the β3-β4 loop and forms a weak π-interaction between C-H groups in neighboring 
Lys58 and Leu32 residues. Adapted with permission from (60). 

 
Phe57 is a conserved residue in the FABP family, which in human myelin protein P2 is located at the 

mouth of the ligand-binding cavity, having a role in opening the helical lid for ligand binding (Figure 

4 B) (61). Phe57 lies at the tip of the β3-β4 loop forming a weak π-interaction between the C-H groups 

of Leu32 and Lys58. Previous study of the Phe57 mutation to alanine (F57A) has revealed that 

stability and membrane binding of P2 are affected by this point mutation (60). These effects are 

similar to the point mutation linkeds to CMT (38).  

 

Myelin protein zero 

The major protein in the peripheral nervous system is the P0 (also called MPZ), signifying 50% of 

total protein content, and is primarily expressed in Schwann cells (62). It is a 30-kDa transmembrane 

protein with its immunoglobulin (Ig)-like domain in the extracelluar IPL and its short cytoplasmic tail 

(P0ct) in the cytoplasmic MDL (56). Several point mutations in P0 have been found in neurological 

diseases like Charcot-Marie-Tooth disease type 1 B, Dejerine-Sottas syndrome (DDS), hereditary 

neuropathy with liability to pressure palsies (HNPP) and congential hypomyelination (CH) (63). P0 is 

a member of the immunoglobulin superfamily (IgSF), which is known for their ability to recognize 

specific molecules and stick to them. All proteins that consist of at least one Ig domain are in this 

family and the Ig domain is highly conserved through evolution (64). The structure of the domain 

complies with a broad range of amino acid sequences without changing the structure, making it perfect 

for ligand binding with high specificity, with the Ig domain of P0 having shown to be involved in 

homophilic adhesion stabilized by a intramolecular Cys21-Cys98 disulfide bond  (65, 66). The Ig 

domain most likely forms apposing dimers in the IPL, where one monomer links another monomer on 

the second membrane together and therefore has the ability to hold together adjacent membrane layers 
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in the PNS (67). It is also shown that the 5 last residues on the C-terminus end of the Ig-domain is 

disordered which is thought to provide a flexible link to the membrane (68). The cytoplasmic domain 

of P0 (P0ct) consists of 69 amino residues and have the molecular mass of 7.9 kDa, where cytoplasmic 

tail has a basic charge and aggregates negatively charged lipids. Point mutations in P0ct are linked to 

CMT and it is shown that P0 must have an intact cytoplasmic tail to behave as an adhesive molecule 

(69, 70).  P0ct folds only when it interacts with negatively charged lipids and gains a helical secondary 

structure with lipid interaction, and the association is mainly electrostatic, similarly to MBP (69).  

 

Proteins outlined here and many others take part in the myelination of the axons in both CNS and 

PNS. They are under intense study to understand the etiology of myelinogenesis and the causes for 

neurological damage or diseases caused by abnormal myelin sheath. The next part explains briefly 

how the three proteins elucidated above are connected to MS and CMT.  

 

2.2.2 Demyelinating diseases 
Demyelination is the loss of the myelin sheath, and happens if the myelin gets worn or damaged. It 

disrupts the conduction of electric impulses in the nerves, and is often secondary to an infectious, 

ischemic, metabolic, toxic or hereditary disorder. Remyelination with regeneration, repair and 

complete recovery of neural function can occur, but extensive demyelination often leads to axonal 

degeneration and potentially nerve death (71).  

 
Dysfunction in a part of the brain or the nervous system, structural, biochemical or other 

abnormalities, can result in a neurological disorder. Specific causes for neurological problems vary, 

but one subcategory is demyelinating diseases where the myelin sheath around the neurons is damaged 

and several myelin-specific proteins are involved. Breakdown of the protein-lipid interaction at the 

membrane surface is often involved in the disease mechanisms, leading to myelin degradation and 

chronic disability. Demyelinating diseases include both autoimmune and inherited diseases, such as 

MS and CMT (72).  

 
Multiple sclerosis was first documented early in the 19th century by Robert Carswell and Jean 

Cruveilhier and is being studied until this day (73). MS is caused by autoimmune attacks on the 

myelin in the CNS, as well as the nerve fibers themselves, but the etiology of the disease is still not 

completely known. MS is not hereditary, but there is an increased risk for developing the disease if 

there is a first-degree relative (parent or sibling) with MS in the family (74). In 1994, four subtypes of 

MS were defined: relapsing-remitting, secondary-progressive, primary-progressive and progressive 

relapsing, and 85% of the diagnosed people have relapsing-remitting MS (75). MS is characterized by 

an active destruction of myelin, persistent demyelination of axons and axonal degeneration. 

Demyelinating activity is found in specific areas, called plaques, where macrophages, type of white 
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blood cell of the immune system that digest cellular debris, have digested myelin degradation 

products. Degradation products of myelin proteins like CNP , MAG and MOG were found together 

with debris from PLP and MBP (76). This is an interesting finding because macrophages is normally 

separated from the CNS by the blood-brain barrier and should not be present in the CNS. The disease 

might cause a breakdown of the barrier which allows inflammatory cells to enter the CNS (77). 

Microglias, which have similar functions like macrophages, are already present in the CNS, and place 

a role in tissue repairs, clearing debris and infection control. Both macrophages and microglia have 

been found to contribute to the disease progression of MS (78) 

 

The C8 charge isoform of the 18.5 kDa MBP isoform (MBP-C8) is the least cationic, and is shown to 

occur in increased amounts in MS patients (79). In this isomer, six arginines are replaced by citrullines 

in a process called deamidation. This results in a loss of six positive charges resulting in an alteration 

of the interaction of the proteins with lipids in the myelin membrane. Compared to the C1 isoform, 

which is least modified and has the highest positive charge, the C8 is shown to not stack bilayers as 

efficiently as C1 (80).  MBP-specific T-cells, important cells in the immune system, are found in MS 

patients, but also in healthy controls. The findings of T-cells together with the elevated levels of C8 

have made MBP the top target in multiple sclerosis research. It is shown that less compacted myelin 

had increased levels of MBP-C8 and lacked more or less the important C1 isoform, and it can be 

postulated that this leads to instability and promotes degradation through the immune system (81) 

 
CMT is one of the most common neuropathies of the PNS and both motor and sensory nerve 

conduction is affected (38). Involvement of the myelin proteins P2 and P0, have been found in 

different types of CMT together with PMP22, Cx32 and periaxin (82).  There are several types of 

CMT, but the most common form is CMT1, which influences both Schwann cells and myelin. Motor 

and sensory nerve conduction velocities are remarkably reduced, resulting in muscle weakness and 

atrophy in the feet. CMT1 is often caused by duplication of or a point mutation in the pmp22 gene and 

70-80% of all CMT1 cases are associated with pmp22 mutations, and other CMT-associated genes 

have been described such as pmp2. Three point mutations in P2 are associated with CMT1 and have 

been shown to increase aggregation and reduce stability (38).   Studies of mice lacking the PMP2 gene 

had a mild reduction in the motor nerve conduction velocity, but no differences  in myelin thickness 

(83). One study of the mutation found in CMT patient (I43N) did reveal reduced length on the myelin 

sheath segments which corresponded to reduced conduction velocity (57). The length of myelin 

segments on the axons in the PNS is crucial for rapid conduction of nerve impulses. When the lengths 

are shortened the velocity will decrease. The aggregation of P2 and the shortening of myelin segments 

might be characteristic for CMT1 in patients with P2 mutations.  

As mentioned above, mutations in P0 cause neuropathies like CMT, DSS and CH, and several 

mutation of P0 have been found across Europe (84). The cytoplasmic tail of P0 has been found to be 



 

Page 13 of 111 
 

important for the protein to function correctly (70).  Mutation in the P0ct domain related to CH 

showed hypomyelination (low amount of myelination) in affected mice and readily misdirected 

protein to other plasma membranes than myelin (62). Others have found that a mutation that alters the 

charge of the intracellular domain can interfere with the formation and compaction of the major dense 

line and that cysteine substitution that causes DSS might cause aggregates resulting in abnormal P0 

complexes (85). Analysis of clinical data from 64 patients with CMT1B neuropathy revealed that if 

the extracellular domain mutation either involved a charged amino acid or a cysteine substitution, it 

causes severe neuropathy, where early onset is caused by disruption of  the tertiary structure of P0, 

while late onset is probably due to disruption in the interaction between Schwann cells and axons (86). 

Schwann cells in mice with an insertion of an inactivated P0 gene did associate with axons and 

myelination occurred, but the myelin sheath was very thin and badly compacted. There was also an 

increased Schwann cell expression of other proteins, like MAG and PLP, that is thought to 

compensate for the loss of P0 (87). 

 

It is also important to note that there is not only variation or mutations in myelin proteins that affect 

myelination in demyelinating diseases. Lipid composition also varies with the different neuropathies. 

Plaques from MS patients were studied and compared to white matter from normal brain, which 

revealed 30% less lipid content in MS patients, with decreased amounts of cerebroside and increased 

percentage of saturated fatty acids (88). Studies involving CMT1A with duplication of PMP22 gene 

revealed that transcription of proteins involved in biosynthesis of lipid components in myelin was 

downregulated, with differences between mildly and severely affected CMT rats (89). Lipid analysis 

from patients with DDS and CMT showed major alterations in lipid composition. There was a 

decrease in free cholesterol, glycosphingolipid and phospholipids in the connective tissue surrounding 

the myelin sheath and decreasing size of the long chain fatty acids in sphingolipids (90). In the same 

study, cholesterol and cerebroside levels in the affected patients were reduced.  

 

 MS and CMT are two out of many demyelinating diseases, and of interest is what factors may affect 

the formation of multilayers in myelin. Although there are many studies revealing that mutations in 

specific myelin proteins cause different severities of neuropathies, little is still known about how 

myelination occurs. Interactions between the different myelin proteins and lipid bilayer are not yet 

fully understood. Before the diseases can be fully comprehended and targeted drug delivery can be 

developed, new knowledge is needed about the specific interactions that happen between myelin 

proteins and lipid membranes, and pilot studies on potential drug delivery systems should be done. 

Nanotechnology could be useful in achieving this.  
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2.3 Nanotechnology 
Nanotechnology deals with processes and materials in the nanometer range, which is generally 

between 1-100 nm (10-9 m). To set this into an imaginable perspective, a human red blood cell is 

around 7000 nm in diameter while proteins have the size between 5-20 nm (91, 92).  Nanoscience 

spans over a broad range of disciplines: physics, chemistry, electronic technology, biology and 

medicine, and the similarity among them are the usage and manipulation of nanoscale objects. 

Properties of a bulk material change when it reaches nanoscale. At this size the properties are caused 

by the high surface area compared to the small size and shape. Properties that changes can be 

magnetic, mechanical, electrical or optical; a strong visible UV-band is exhibited in nanoparticles of 

noble metals like silver, palladium and gold, which is not present when the same substances are in 

bulk state (93). Nanoparticles, because of their special traits, can be used in many different 

applications.  

 

2.3.1 Liposomes and bicelles used as model membranes mimics 
To get a further understanding about how myelin proteins interact with lipid membranes, the easiest 

way to do that is with model systems in vitro. A model system is frequently used in research and can 

either be an organism or a self-contained system, which we can use to study a specific biological 

activity or disease processes (94).  The proteins are readily expressed in Escherichia coli (E. coli) cells 

and can be purified and stored in desired buffers.  To investigate the interaction with lipid membranes, 

easily obtained membrane models like liposomes or bicelles are used.  

 

Liposomes are small spherical vesicles that can be made for different types of lipids. Depending on the 

lipid composition, the properties of the liposomes may differ in charge, size, permeability, and lipid 

mixing and phase homogeneity. The main characteristics of liposomes are that they are amphipathic, 

containing both hydrophilic and hydrophobic traits. When lipids are hydrated they form closed spheres 

of bilayers, with the hydrophobic tails pointing towards each other and the hydrophilic heads pointing 

out in the medium (95). The developed vesicle closely resembles cell membranes or the multi-layered 

myelin sheath. Size of the liposomes can vary from 30 nm to several micrometers (95).  Hydrated 

lipids first form multilamellar vesicles (MLV) with several layers of lipid bilayers inside each other 

separated by water. By extrusion or sonication of the MLVs they can be made into either large or 

small unilamellar vesicles, abbreviated LUV and SUV respectively(96). 
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Figure 5: Illustration of a liposome formed when lipis are  hydrated in water.  The hydrophobic tails cluster together as 
they repel water with the hydrophilic heads point outwards, forming a closed vesicle of a lipid bilayer. It resembles the native 
bilayers found in organism and is frequently used as a model system.  By SuperManu [GFDL 
(http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia 
Commons 

 

Bicelles have recently been used more and more in studying membrane proteins. They were originally 

developed for NMR studies, but have been adapted to other methods because they bridge the gap 

between liposomes and native flat bilayer found in organisms (97). When a detergent is added to a 

liposomes solution with a specific q-ratio, flat disk-like vesicles are formed, where the detergent 

enclose the exposed hydrophobic sides (98, 99). Q-ratio is the ratio between lipids and detergent. A 

higher q-ratio forms more elongated bilayers compare to lower ones that resembles the known 

liposomes.  Proteins that have not crystallized with liposomes, could be crystallized in the presence of 

bicelles, and bicelles have been shown to stabilize membrane proteins (100).  

 

The bilayers in the myelin sheath are as stated negatively charged and composed of many different 

types of lipids (18). In this project model membranes constitute of two composition of lipids, either a 

mix of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-

phosphorylglycerol (DMPG) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC). DMPC is a phosphatidylcholine containing two myristoyl tails 

and its PC head group is zwitterionic, making it net neutrally charged, with tails being fully saturated. 

DMPG have also fully saturated tails but the head group is negatively charged, making the bilayers of 

DMPC:DMPG also net negatively charged. The phase transition temperatures of DMPC and DMPG 

from the gel phase to the liquid disordered phase are 24ºC and 23ºC respectively. Both DOPS and 

DOPC have carbon-carbon double bonds in their hydrophobic tails, making them unsaturated with cis 

conformation. DOPC has a head group similar to DMPC, making it zwitterionic and DOPS has a 

negatively charged head group, which makes the vesicles of DOPC:DOPS being negatively charged at 

their surface. The phase transition temperature of DOPC and DOPS are -11ºC and -17ºC, respectively 

(101). These simple lipid mixtures behave well as liposomes and bicelles in various analytical 
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methods, are easy to prepare and stable over time at ambient temperatures, which makes them good 

model systems for studying myelin proteins.  

 

2.3.2 Nanoparticles in medicine 
In nanomedicine the research spans vaccines, imaging, implants, tissue engineering, diagnostic tools 

and drug delivery, using biological or nonbiological materials. In recent years, there has been a huge 

focus on drug delivery and how to use nanotechnology as a tool for targeted treating of diseases. To 

achieve the goal of using nanoparticles in drug delivery systems it is important to gain knowledge of 

how different nanomaterials interact with a biological environment, stability of the delivery system 

and the possibility of toxic effects (102). Nanoparticles like iron oxide, silicon dioxide and gold will 

be assessed more thoroughly here.  

 

One of the first uses of iron oxide was as compass. In ancient China it was used by navigators to find 

the direction of the North Pole. Today it is used in many different scientific disciplines; biology, 

chemistry, geology and medicine (103). In nanomedicine, iron oxide particles are used in the 

diagnostic fields, drug delivery and biomedical. The iron oxide magnetite (Fe3O4) is a stable electrical 

conductor with low toxicity and nanoparticles of magnetite are used usually because of their 

superparamagnetic properties (104). Superparamagnetism happens in particles that have single 

magnetic domains; the magnetization of the particle does not vary across the particle and the magnetic 

moment becomes zero. But when an external magnetic field is applied the nanoparticles becomes 

strongly paramagnetic as they develop a strong internal magnetization (105). Iron oxide nanoparticles 

get superparamagnetic properties when the diameter of the core is between 10 nm and 100 nm. This 

property is very important, because a superparamagnetic particle can be coated and loaded with a drug 

which can with help from a magnet drag the particle to target tissue. When the magnetic field is 

stopped the nanoparticle will stay in place (106). The magnetic properties of iron oxide are also used 

in magnetic resonance imaging (MRI) where it is used as a contrast agent; it increases the sensitivity 

of MRI for depicting normal and abnormal vasculature. After intravenous administration and 

intracellular uptake the particles become metabolized by the lysosomes and becomes a part of the 

normal iron content in the body (107). Several in vitro studies have reported none or low toxicity for 

these nanoparticles at concentration below 50 µg/mL, but others have described DNA damage, 

oxidative stress, membrane dysfunction, cell death and alteration in cell motility even at low 

concentration (108-110). The level of toxicity seems to be dependent on cell type, size of the 

nanoparticles, dose, exposure time and type of coating, where citrate coated and lipid coated iron 

oxide nanoparticle being least toxic(111, 112) 

 

Silicon dioxide (SiO2), also called silica, is well suited for biomedical applications because it is 

presumed safe to humans as it used as a food additive, excipient for drugs and vitamins and is readily 



 

Page 17 of 111 
 

absorbed in tissues, bones, liver and kidney. Silicon dioxide deficiency has shown to cause bone 

deformities and poorly formed joints (113). Silica is hydrophilic and stable in a physiological 

environment and is under research as biosensors, drug delivery and cellular uptake (114-116). 

Amorphous silica nanoparticles with varying size (10-400 nm) have shown no effect on cell 

morphology with concentration up to 19 µg/mL, but fine crystalline silica particles did reduce cell 

viability up to 80% (116). Size-dependent toxicity of silica nanoparticle might be an important factor 

in using them in nanomedicine.  Nanoparticles in the size range of 30-40 nm have induced damage to 

cell membranes, increased cell death and dysfunction of mitochondria (117). On the other hand it 

seems like adverse effects might be due to acute exposure, while chronic exposure do not cause 

significant toxicity (118). Toxicity studies of how silica affects biological system relative to size, 

concentration and exposure time is needed for safer use in biomedical applications. 

 

Gold (Au), as a bulk material, is a natural element which is used in jewelry and in coins. As a metal it 

has good electrical and thermal conductivity without corrosion. This fine element have also been used 

in medicine since the 1st century BC in treating wounds, diarrhea, leprosy, plague and even metal 

diseases and syphilis (119, 120). Since then, the use of gold, particular gold nanoparticles (AuNPs), 

have been highly studied for usage in biosensors, clinical chemistry, detection, bioimaging, therapy, 

diagnostics, drug delivery and the list goes on. Gold is seen as very biocompatible and is considered as 

chemically inert, but some studies have revealed that toxicity and accumulation of gold is dependent 

on size and surface chemistry(121). It has been argued that gold can be used in almost any medical 

application and this is based on their unique physical and chemical properties (120). The physical 

properties of AuNPs are strongly influenced by their size and shape where two interesting properties 

being surface plasmon resonance and magnetism (122). Surface plasmon resonance (SPR) is the main 

optical feature of AuNPs with size of 2-100nm.  Plasmons are oscillations of free electrons in metals 

and can be describes as a negatively charged cloud of electrons that are coherently displaced from its 

equilibrium position around positively charged ions (123). When light hits the nanoparticles the 

electron cloud gets excited and starts to oscillate resulting in a strong extinction of light. The plasmon 

extinction band can be detected using ultraviolet-visible spectroscopy and is strongly dependent on 

size and shape. When the size of the AuNP is much smaller than the light wavelength the distribution 

on the electric field in the particle is uniform; the electron cloud polarization is coherent over the 

particle. But when the size is larger (> 100nm) the electric field distribution is no longer uniform and 

both transversal and longitudinal surface plamons resonance occurs (122, 123).  The wavelength of 

absorbed light increases with increasing nanoparticle size, which means that gold nanoparticles have 

different colour depending on size. Small nanoparticles that absorb visible light with wavelength of 

430nm to 560nm, the blue-green part of the spectrum, will reflect reddish light (580-800 nm).  As the 

size increases, the wavelength absorbed shifts to longer wavelength. If red light is absorbed the color 

will appear blue, beyond that the wavelength are in the infrared portion of the spectrum giving a clear 
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color (124, 125).  Shape of the AuNPs also has an effect on the SPR, where the absorption spectra are 

different from spheres, rods, cubes, triangles and stars. Spheres provide one peak in the spectra while 

rods yields two peaks, one transverse and one longitudinal (126). 

 

Gold in bulk material is diamagnetic, it repels a magnetic field, but once the size is in the nano range it 

becomes magnetic. This odd property have been shown in small gold clusters (10-40 atoms) up to 

around 5 nm, but the results are rarely reproducible and often contradictory. But findings reveal that 

magnetism decreases with increased size and some temperature dependence, where a 2 nm wide 

particle showed stable magnetism at around 130 ºC, which is odd since traditional magnetic materials 

often become unstable at high temperatures (127)  

 

SPR has become a key parameter in many applications like nanosensing, nanolabeling, while colloidal 

gold can be used in bioimaging due to the high electron density. Proteins or cells can be tagged with 

gold and visualized in transmission electron microscopy (TEM), scanning electron microscopy (SEM) 

or fluorescence microscopy. Effective use of AuNPs or any other as nanovectors for drug delivery is 

highly due to many possible surface modifications (120, 128). 

 

The great promises of applications of nanoparticles in medicine are not just about their high surface to 

volume ratio, size, shape, optical and magnetic properties, but the use of these properties together with 

the ability to functionalize them, thus changing their surface. Surface modifications can effect 

nanoparticle stability, monodispersity and biocompatibility, and provide functional groups like -COO-, 

-NH3
+ and -CHO (129). To make nanoparticles more “cell”-like, mechanism for coating and 

functionalization of the surface have been more directed into using biomolecules like phospholipids to 

coat nanoparticle surfaces, where one of the most used approaches is self-assembled monolayers 

(SAM) by thiol functionalization (130). SAMs are assemblies of organic compounds formed by 

absorption from solution onto a solid surface, where the organic molecular constituents have a head 

group with specific affinity for the substrate. SAMs forms spontaneously, where particularly thiols on 

gold surfaces have shown to be easy to prepare and to gain a well-defined order (131). Thiol 

functionalization is often through ligand exchange, where citrate-stabilized gold nanoparticles are 

commonly used. Thiols contain a –SH group and the sulfur binds stronger to Au than citrate, so that in 

a ligand exchange process the thiol molecules will spontaneously displace the citrates resulting in a 

coating of thiols surrounding the AuNPs (132). Bilayers of lipids can then form onto the thiol coated 

AuNPs with the association between hydrophobic lipid tail and the hydrophobic thiol monolayer (1). 

The resulting lipid coated nanoparticles can be further used to study membrane-associated phenomena 

like protein-membrane interaction and investigate possibilities as therapeutic cargos (133, 134).  
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2.4 Modern research  
2.4.1 Protein-membrane model systems 
Biological membranes plays major role in regulating many different interaction such as cell-to-cell 

interaction, signalling pathways via receptors on the cell membrane or protein-membrane interactions 

in the myelin sheath, as described above. Membranes have major differences in composition 

depending if it is a cell membrane, surrounding organelles, or being the insulation around neurons. 

The complexity of biological membranes and their interaction with proteins drives the development of 

finding simpler model systems where size, composition and desired shape can be tailored with 

precision. Model systems are mainly used to simply complex systems so that the roles of individual 

components can be addressed (135). Since myelination is still not fully understood and how both the 

lipid bilayers and myelin protein contribute to demyelinating diseases, good model systems are 

necessary to obtain new information. Liposomes have for a long time been used for this purpose, 

forming lipid bilayered vesicles resembling the bilayers in the myelin sheath. Bicelles on the other 

hand forms bilayers in disk-form, which looks more like the “flat” native bilayers. Thus, bicelles 

might be more biological relevant as a model membrane for investigating protein-membrane 

interactions in the myelin sheath (136).  

 

2.4.2 Nanotechnology in treating neurological diseases 
Neurological diseases if one of the major health concerns worldwide with many disorders left 

untreated, with orthopaedic aids and training as the only means to reduce disease progression. For 

diseases involving the CNS, the main problem for drug administration is the blood-brain barrier which 

tightly regulates the movement of ions and molecules into the brain (137). Studies of getting drugs 

through the barrier have been positive with the use of nanoparticles such as liposomes loaded with a 

certain drug and gold with specific surface modifications (138).  Nanoparticles of the rare earth metal 

cerium has shown to protect against cellular damage in neurological disorders, and a study proved that 

cerium oxide nanoparticles relieved clinical symptoms and motor deficits in mice with a murine model 

of MS (139, 140). Gold nanoparticles is studied for treatment of Alzheimers disease, where research 

have found that AuNPs have the potential to slow down disease progression without harmful effects in 

the brain (141, 142). Nanoparticles can also be used for diagnostic purposes, with different 

modifications and coatings, providing reliable detection system for neurological diseases like the 

lethal disease amyotrophic lateral sclerosis (143). Targeted drug delivery for peripheral neuropathies is 

also being studied with some promising results.  One research group studied the use of nanoparticles 

in neuron targeted drug delivery in an animal model with peripheral nerve crush injury as a model for 

peripheral neuropathies. The nanoparticle carried the brain-derived neurotrophic factor (BNDF) that 

has a protective role in neural survival. Results displayed release and expression of BNDF which lead 

to enhanced recovery and higher density of myelinated axons (144). 
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Even though nanotechnology usage in neuroscience is rising and looks very promising, safety and 

toxicity concerns are yet to be determined together with increased knowledge of biocompatibility and 

biodegradability of nano-carriers.  

 

2.5 Aims 
2.5.1 Investigate protein-membrane interaction with the use of two model membranes 
Many major myelin proteins have already been isolated and characterized, but little is still known 

about their 3D structure and their molecular mechanisms in myelin formation.  The aim was to study 

the structure, function, and dynamics of the myelin proteins MBP, P2 and P0 with the employment of 

two major model systems for protein-membrane interactions: liposomes and bicelles. Gaining further 

insight into the molecular interactions of myelin proteins with lipid membranes is important for 

understanding nervous system development and demyelinating diseases. Increased knowledge about 

the differences between the model systems was also investigated to see if one could be preferred over 

the other, and maybe represent a better model for in vitro studies of the myelin membrane and myelin 

proteins associated with neurodegenerative neuropathies. The myelin protein MBP, P2 and P0ct was 

expressed and purified for the aims of this project, with the mutant P2 F57A already been purified. 

Further characterization of differences in protein-membrane interaction were carried out using a wide 

array of methods to determine concentration dependency, aggregation effects, thermal stability as well 

as uncover repeat distances within a myelin model system. Transmission electron microscopy (TEM) 

was used to get clear insight into the overall difference in how myelin proteins stack liposomes and 

bicelles.   

 
2.5.2 Pilot study: using nanoparticles to understand protein-membrane interaction and for 

drug-delivery 
Nanoparticles are currently under intense study for drug delivery approaches. Here, nanoparticles are 

used to observe protein-membrane interactions and how nanoparticles interact with myelin-like 

multilayered membranes. Several technologies have been developed for studying protein-membrane 

interactions: nanoparticle-embedded supported lipid bilayers, lipid-coated nanoparticles in solution, 

“nanoantennas”, vesicle systems for characterizing lipid domain formation upon protein binding and 

single-molecule kinetics of protein-membrane interactions (145-149).  

The aim of this project was to gain insight in how lipid-coated nanoparticles could easily be made and 

to use them to investigate interactions between proteins and lipid membranes. The iron oxide and 

silica dioxide nanoparticles with lipid coatings were received from our collaborator Chaozhan Wang, 

while the citrate stabilized gold nanoparticles were purchased from NanoComposix to be coated with 

DMPC:DMPG lipids prior to further investigation. Protein binding to the nanoparticles was tested 

with co-sedimentation assay, and coating of gold nanoparticles was studied with UV-VIS 

spectroscopy and TEM. 
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3 Methods and materials  
The following section describes the methods and materials used in this thesis. First is the protein 

expression and purification of the four different protein and vesicle preparation before it addressed 

the nanoparticles and analytical methods used to investigate the aims of this thesis. Theory behind the 

different methods is explained in Appendix 8.7. 

 
Special reagents 
 Gold nanoparticles 80nm (± 9 nm) (AuNPs 80 nm, Bare – citrate, NanoComposix, product nr: 

AUCB80-1M, Lot nr: BAM0117)  

 Iron(II,III)oxide coated nanoparticles (10 nm and 150 nm, via collaborator  Professor 

Chaozhan Wang (Ph.D. professor of chemistry, Collage of Chemistry and Materials Science) 

 Silicon dioxide coated nanoparticles via collaborator Chaozhan Wang (Ph.D. professor of 

chemistry, Collage of Chemistry and Materials Science) 

 1-Octanethiol (≥ 98.5%, Sigma-Aldrich, Lot nr: 06017031) 

 Nickel-nitrilotriacetic acid (Ni-NTA)-agarose resin (Thermo Scientific and Qiagen, Lot nr: 

160028556) 

 Amylose resin (BioLabs, Lot nr: 0191607) 

 Lyzosyme from chicken egg white (Sigma-Aldrich, Lot nr: SLBJ4107V) 

 cOmplete ethylenediaminetetraacetic acid (EDTA)-free protease inhibitor tablets (Roche, Lot 

nr: 31880700)  

 2% uranyl acetate (provided by the Molecular Imaging Center (MIC), Department of 

Biomedicine, University of Bergen) 

 Phenylmethylsulphonyl fluoride (PMSF)  (≥99.0% ,MBV International Corporation, Lot nr: 

51148) 

 LB broth (Sigma-Aldrich, Lot nr: BLBV6991) 

 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (≥ 99.5%, Sigma-Aldrich, Lot 

nr: SLBS2995V) 

 Imidazole ( ≥99.5%, Sigma-Aldrich, Lot nr:S2BF3550V) 

 Urea (≥ 99.5%, Roth, article nr: 3941.2) 

 Sodium Chloride (≥ 99.5%, Sigma-Aldrich, Lot nr: SLB2340V) 

 isopropyl-β-D-thiogalactopyranoside (IPTG) (≥ 99%, Apollo Scientific, Lot nr: AS469178) 

 Chloramphenicol (Sigma-Aldrich, Batch nr: 123K0588) 

 Ampicillin (Apollo Scientific, Lot nr: AS454596) 

 Methanol (99%, Sigma-Aldrich) 

 Chlorofom (99%, Sigma-Aldrich) 

 1,2-dimyristoyl-sn-glycero-3- phosphoglycerol (DMPG) (Larodan AB, Lot nr: E056:2) 

 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) (Larodan AB, Lot nr: M032:1) 
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 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) (Avanti polar lipids, Lot 

nr: 181PS-345) 

 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (Avanti Polar lipids, Lot nr: 850375-01-

321) 

 

3.1 Protein expression and purification 
The purification process of MBP, P2wt and P0ct is based on optimized protocols (40, 60, 69).  
 
3.1.1 Myelin basic protein (MBP) 
MBP starting culture was made by mixing LB medium with 100 µg/mL ampicillin and 35 µg/mL 

chloramphenicol. The strain of E. coli (BL21(DE3)pLysS RARE pTH27 MBP) was added from a 

frozen stock. The E. coli strain is transformed with a pTH27 vector including an N-terminally 

hexahistidine (His6) tag, Tobacco Etch Virus (TEV) protease cleavage site (ENLYFQG) and finally 

the protein (His-rMBP). The MBP start cultures were then incubated over night at 37 °C and 180 rpm 

constantly shaking.  

 

After growth of the start culture, start culture was added to autoclaved LB medium  (10 g/L tryptone, 5 

g/L yeast extract, 5 g/L NaCl in water) to every liter of Milli-Q water) together with 100 µg/mL 

ampicillin. The batches were then cultured at 37 °C and 180 rpm. The optical density (OD) was 

checked regularly every 60-90 min to confirm growth and to verify that the cultures had an OD (at 

wavelength 600nm) near 0.3 before adding isopropyl-β-D-thiogalactopyranoside (IPTG), to induce the 

expression of MBP. IPGT were added to 0.4 mM when optical density was reached. The cells were 

then allowed to express for two hours at 37 °C and 180 rpm constant shaking. 

  
After expression, the cultures were centrifuged at 6000 G for 20 minutes at 4 °C and the supernatant 

was removed. The harvested cells were then resuspended in lysis buffer (50 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES) pH 7.5, 500 mM NaCl, 6 M urea, 20 mM imidazole) in a 

final volume of 40 mL. 400 μL of 100 mM phenylmethylsulphonyl fluoride (PMSF; solution prepared 

in isopropanol) and 1.6 mL of EDTA-free protease inhibitor (Roche, 25x) was added to the mixture 

before sonicating with 1 s. pulse and 1 s. wait for a total of 5 min, with an output power of 24 W. Cell 

debris was then removed by centrifugation using SS-34 rotor at 30 000 G, 4 °C for 40 minutes.  

 

Further purification of the protein was done using Ni-NTA affinity chromatography where Ni-NTA 

agarose matrix (Qiagen) was used to bind His6-proteins. Ni2+ cations have a high affinity for the N-

terminal polyhistidines which is used to separate wanted protein from cell debris. The Ni-NTA 

agarose matrix was washed with Milli-Q water and equilibrated with 10 matrix volumes of lysis buffer 

before the supernatant was added at 4 °C.  10 matrix volumes of lysis buffer were added after 

collecting the unbound fraction. The columns were incubated with 2.5 matrix volumes elution buffer 
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(4.8 M urea, 40 mM HEPES, 400 mM NaCl, 500 mM imidazole, pH 7.5) divided into two; first 

fraction was allowed to incubate for 10 min before adding a second volume of elution. All fractions 

were collected separately. The elution fractions were subjected to sequential dialysis to lower the urea 

content from 4.8 M to 2 M. First the fraction was dialyzed against 4 M urea, 40 mM HEPES and 400 

mM NaCl for 2.5 h before changing buffer to 2 M urea, 40 mM HEPES, 400 mM NaCl for 3.5 hours. 

To digest the N-terminal His6-tag of His-rMBP 4.5 µM recombinant TEV protease was added. 

Cleavage was done overnight at 4 °C with a dialyzing buffer containing 1 M urea, 40 mM HEPES and 

400 mM NaCl. Dialysis was performed using dialysis membrane with a molecular weight cut off 

between 12-14 kDa (Spectrum Labs Secptra/Por 4 Dialysis Tubing, 12-14 kD MWCO, 45 mm Flat-

width, part nr: 132706). 

 

After dialyzing the digested protein back into 6 M urea, 50 mM HEPES, 500 mM NaCl and 20 mM 

imidazole for 3.5 h, another Ni-NTA chromatography was performed to remove cleaved His6-tags and 

His-tagged TEV protease. The matrix was equilibrated with 10 matrix volumes before adding the 

dialyzed protein. The unbound fraction was collected before adding 3 matrix volumes of lysis buffer. 

The matrix was then incubated for 10 minutes with elution buffer before collecting the fraction. The 

unbound and washing fraction was then dialyzed against 20 mM HEPES, 400 mM NaCl with pH 7.5 

overnight to reduce urea content. 

 

Before gel filtration the dialyzed fraction was filtered through a 0.45-µm filter (Filtropur, Sarstedt, Lot 

nr: 51503103) before concentrating the sample using an Amicon Ultra-15 10K centrifugal filter device 

(Millipore). The protein was concentrated down to 2 mL before running gel filtration chromatography 

on a Superdex 75 10/300 GL column (GE Healthcare) using a 500 µL loop with a BioRad DuoFlow 

system. Before running the protein the column was washed with filtered and degassed Milli-Q and 

then equilibrated with filtered and degassed buffer containing 20 mM HEPES, 150 mM NaCl with pH 

7.5. Protein fractions around the major elution peak were collected. The fractions were then checked 

with NanoDrop 2000 spectrophotometer (Thermo scientific) and SDS-PAGE to determine 

concentration and purity of the protein. The fractions were then aliquoted and stored at -80 °C until 

usage.  

 
3.1.2 P0ct wild type 
P0ct starting culture was by mixing LB medium and 100 µg/mL ampicillin. The strain of E. coli 

(BL21(DE3) pHMGWA P0ct) was added from a frozen stock. The E. coli cells contain a pHMGWA 

vector which contains an N-terminal His6-tag, maltose binding protein (MaBP), TEV protease 

cleavage site followed by the P0ct gene (His-MaBP-P0ct). The P0ct start culture was then incubated 

over night at 37 °C, 180 rpm constant shaking.  
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100 µg/mL of ampicillin was added to autoclaved LB-medium batches before P0ct start culture was 

included. The batches were then cultured at 37 °C and 180 rpm. OD was checked to verify that the 

cultures had an OD between 0.4 and 0.8 before adding IPTG, to induce expression of P0ct. IPGT were 

added to 0.4 mM when optical density was reached. The cultures were then allowed to express for 3 h 

at 37 °C and 180 rpm constantly shaking. 

 

After expression, the cultures were centrifuged at 6000 G for 20 minutes at 4 °C and the supernatant 

was removed. The harvested cells were resuspended into lysis buffer (40 mM Tris-HCl, 400 mM 

NaCl, 20 mM Imidazole, pH 8.5) in a final volume of 20 mL. 1 mL of protease inhibitor (Roche 25x) 

was added to the mixture. P0ct was then lysed with 1 s. pulse with 1 s. wait for a total of 5 min with an 

output power of 24 W. The lysate was then centrifuge for 30 minutes at approximately 35 000 G 

before purification with Ni-NTA chromatography.  

 
The Ni-NTA agarose matrix (Qiagen) was washed with of Milli-Q water before equilibrated with 10 

matrix volumes of wash buffer (40 mM HEPES, 400 mM NaCl, 20 mM imidazole, pH 7.5). At 4 °C, 

the protein supernatant was added to the column and collected. The matrix was washed with 10 matrix 

volumes of wash  buffer before the his6-tagged protein was eluted using 2 matrix volumes elution 

buffer (40 mL wash buffer +  10 mL2.5 M imidazole) and 1 matrix volume of 1M Imidazole. The 

elution fractions was then dialyzed at 4 °C against 20 mM Tris-HCl, 400 mM NaCl and 1 mM DTT 

for 1 h before adding 4.5 µM TEV protease and continued dialyzing overnight. Dialysis was 

preformed using dialysis membrane with a molecular weight cut off between 6-8 kDa (Spectrum Labs 

Secptra/Por 4 Dialysis Tubing, 6-8 kD MWCO, 45 mm Flat-width, Lot nr: 9200204).  

 

Amylose resin chromatography was applied to remove the cleaved His-maltose binding protein (His-

MaBP). Amylose-resin was washed with of Milli-Q and equilibrated with 10 matrix volumes of wash 

buffer (20 mM Trish-HCl, 400 mM NaCl, pH 8.0). The dialyzed fraction was added and collected. 

The column was incubated for 10 minutes with elution buffer (20 mM Tris-HCl, 400 mM NaCl, 10 

mM maltose, pH 8.0) before adding elution buffer once more.  The matrix was washed with 10 matrix 

volumes of milli-Q water and re-equilibrated before the collected unbound fraction was subjected to 

another amylose resin chromatography, performed in an identical fashion.  

 

Before gel filtration, the protein fraction was filtered through 0.22-µm (Sterile syringe filter, VWR 

international, Batch nr: 13298298) and concentrated down to 2 mL using Amicon 3K MWCO 

centrifugal filter device (Millipore) at 6000 rpm, 4 °C with 2-15 min intervals. Gel filtration 

chromatography was done using a Hiload Superdex 75 16/60 (GE healthcare) column with a BioRad 

DuoFlow system. The buffer used for equilibrating the column contained 20 mM HEPES pH 7.5 and 

150 mM NaCl. Fractions were collected around the major peak in the chromatogram. The fractions 
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were pooled and concentrated, using the same type of centrifugal filter device as earlier, down to 1 

mL. The concentration was checked with NanoDrop 2000 spectrophotometer before the concentrated 

fraction was aliquoted and stored at -80°C until usage.  

 

3.1.3 P2 wild type and P2 F57A 
Start cultures was made in LB medium, 100 μg/mL ampicillin and 35 μg/mL chloramphenicol. Two 

types of strains (both based on E. coli Rosetta(DE3)) were added from a frozen stock. Both strains 

contain a pTH27 vector containing N-terminal His6-tag followed by a TEV protease cleavage site and 

the gene coding for the p2wt or the mutant F57A. The start culture mixtures were incubated over night 

at 37 °C and 180 rpm constantly shaking.  

 

To make two batches of ZYM-5052 autoinduction media (F. William Studier) for each protein, ZY-

medium (1% NZ-Amine AS, 0.5% yeast extract (Sigma & Aldrich)) was autoclaved. The ZY media 

was supplemented with 10 mL of 50xM (25 mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM 

Na2SO4), 1 mL of 2 mM MgSO4 and 100 µL 1000x Trace Metals (50 mM FeCl3, 20 mM CaCl2(x2 

H2O), 10 mM MnCl2(x4 H2O), 10 mM ZnSO4(x7 H2O), 2 mM CoCl2(x6 H2O), 2 mM CuCl2, 2 

mM NiCl2, 2 mM Na2MoO4, 2 mM Na2SeO3 and 2 mM H3BO3) before 0.5% glycerol, 0.05% 

glucose, 0,2% Alfa-D-lactose was included to each batch. 100 µg/mL ampicillin, 34 µg/mL 

chloramphenicol and starting culture were added to the ZYM-5052 medium. The batches were then 

incubated at 18 °C for 72 h at 180 rpm constant shaking.  

 

The supernatant was removed by centrifugation at 6000 G at 4°C for 30 minutes. The harvested cells 

were resuspended in lysis buffer (50mM Na-phosphate pH 8.0, 300 mM NaCl, 10 mM imidazole) to a 

total of 45 mL before adding 2 mL of dissolved protease inhibitor (Roche 25x). 10 mg/mL of 

lysozyme (Sigma-Aldrich, Lot nr: SLBJ4107V) was added to each suspension. The batches were then 

sonicated at 25 watts for 10 s with 30 s intervals (7 repetitions) before centrifuging at 20 000 G for 45 

minutes at 4 °C. The supernatant was filtered with a 0.45-µm pore size (Filtropur, Sarstedt, PFTE 

membrane, Lot nr: 51503103) filter. 

 

Ni-NTA chromatography was performed for further purification. Ni-NTA agarose matrix (Qiagen) 

was washed it with 10 matrix volumes of Milli-Q, equilibrated with 10 matrix volumes of lysis buffer 

before adding the filtered supernatant. The flow-through was collected and re-added 2 times. 10 matrix 

volumes of wash buffer (50 mM Na-phosphate pH 8.0, 300 mM NaCl, 20 mM imidazole) was added 

and collected. The matrix was eluted with 4 volumes elution buffer (50 mM Na-phosphate, 300 mM 

NaCl, 400 mM Imidazole, pH 7.5) where the first fraction was incubated for 10 minutes. Matrix was 

finally eluted with 1 M imidazole. The elution fractions were pooled and 4.5 µM TEV protease was 

added before dialyzing against 50 mM Na-phosphate pH 8.0, 300 mM NaCl and 1 mM DTT 
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overnight. Dialysis was performed using dialysis membrane with a molecular weight cut off between 

6-8 kDa (Spectrum Labs Secptra/Por 4 Dialysis Tubing, 12-14 kD MWCO, 45 mm Flat-width, part nr, 

132706)  

 

Before the overnight dialyzed solution was subjected to a second Ni-NTA chromatography the matrix 

was washed and equilibrated with 3 volumes of buffer (50 mM Na-phosphate pH 8.0, 300 mM NaCl). 

The dialyzed fraction was added and re-added 2 times. The flow-through was collected in one tube. 3 

volumes of wash buffer were added before lysis buffer. Matrix was eluted with elution buffer and 1 M 

imidazole.  

 

Before the final step, flow-through and wash fractions was pooled and concentrated down using an 

Amicon ultra-15 3 kDa molecular weight but off centrifugal filter device (Millipore) at 4°C, 4000 G 

with 2-15 minutes intervals. The concentrated protein was filtered through a 0.22 µm pore size filter 

(Sterile syringe filter, VWR international, Batch nr: 13298298). Gel filtration chromatography was 

carried out using a Hiload Superdex 75 16/60 gel filtration column using a BioRad DuoFlow system. 

The column was equilibrated with degassed and filtered buffer (20 mM HEPES pH 7.5, 150 mM 

NaCl). Fractions were collected around the major peak in the chromatogram. Fractions from the gel 

filtration were pooled and concentrated with Amicon 3K MWCO centrifugal filter device (3000 G, 

4°C, 5-10 minutes intervals). Final volume was 1 mL and the concentration was determined using 

NanoDrop 2000 spectrophotometer. The protein was aliquoted and stored at -80°C until usage.  

 

Expression and purification of P2 F57A was done during the course BMED325 Cellular biochemistry 

and nanobiochemistry and not during this master project.   

 
3.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to monitor all 

purification steps. Samples from different fractions and purifying steps were taken and mixed with 5x 

loading dye (300 mM Tris-HCl pH 6.8, 10% (w/v) SDS, 50% (v/v) glycerol, 0.05% (w/v) bromphenol 

blue, 10% (v/v) β-merceptoethanol) followed by denaturation at 95ºC over minimum 3 min (150). The 

samples were then loaded onto a 4-20% precast SDS-PAGE gels (Bio-Rad 456-1096, MiniProtean 

TGX 4-20%) together with 2 µL of pre-stained protein molecular weight standard (Thermo Fisher 

PageRuler pre-stained protein ladder, either #26616 or #26619). Electrophoresis was performed with a 

constant voltage of 200 V in room temperature with a SDS-PAGE buffer (25 mM Tris pH 8.3, 192 

mM Glycine, 0.1% (w/v) SDS) using a Bio-Rad Power Pac 300. Gels were stained with InstantBlue 

(Expedeon, Lot nr: 170823330) and distained with distilled water. Imaging of the gels was taken with 

a Bio-Rad (ChemiDoc XRS+) with Image Lab software (coomassie stained gel settings and automatic 

exposure time). 
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Same principles were used for co-sedimentation assays and checking protein binding; Identical 

loading buffer, gel, and buffer and staining solution was used each time.  

 
3.3 Preparation of vesicles and bicelles 
3.3.1 Preparation of liposomes and bicelles 
Liposomes with different ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-

dimyristoyl-sn-glycero-3- phosphoglycerol (DMPG) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine 

(sodium salt) (DOPS) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were prepared 

depending on the experiments. The lipids was dissolved in chloroform (99%, Sigma Aldrich) and 

methanol (99.9%, Sigma Aldrich) and then divided into batches with ratios of 1:0, 1:1, 1:4 and 1:9 

relative to methods used, before the batches were dried with liquid nitrogen and frozen at -20°C until 

usage. Buffer containing 20 mM HEPES, 150 mM NaCl, pH 7,5 or Milli-Q water was used as 

hydration medium depending on the experiment. A freeze-thaw cycle was done after the liposomes 

had hydrated overnight. The liposomes were flash frozen in liquid nitrogen, thawed in a warm water 

bath before heavily vortexed for 30 sec. The cycle was done seven times to decrease multilamellarity. 

Extrusion was done with a 100 nm filter to create large unimellar vesicles (LUV). Small unimellar 

vesicles (SUV) are made by sonicating (Sonics & Materials Inc. Vibra-Cell VC-130) at 4 watts with 

10 seconds intervals to a clear solution.  

 

To prepare bicelles, 10% dodecylphosphocholine (DPC) was diluted to the same concentration as the 

liposomes before adding it to a mixture of hydrated DMPC:DMPG (independent of DMPC:DMPG 

ratio) with a q-ratio of 2.85 (76% lipids and 26% DPC) by pipetting the suspension up and down until 

a clear suspension formed. The q-ratio is:  

q =  
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 

Lipids and bicelles were always prepared fresh for each experiment and used immediately after. 

 
3.4 Nanoparticles 
3.4.1 Gold nanoparticles  
Gold nanoparticles (AuNPs) with the diameter of 80 nm (± 9 nm) were purchased from 

NanoComposix. 1-octanethiol (98.5%) was ordered from Sigma-Aldrich, while DMPC and DMPG 

were acquired from Avanti Polar lipids.  

 

3.4.1.1 80 nm gold nanoparticles (bare – citrate) coated with 1-octanethiol and 
DMPC:DMPG 

Monodisperse coated Au nanoparticles were prepared by modified protocols from two different 

articles (1, 151). The modified version from “Strong resistance of citrate anions on metal nanoparticles 

to desorption under thiol functionalization” (132) is in short; 100 µL of 80 nm AuNPs was centrifuged 
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at 4000 rpm for 10 minutes and the resulting supernatant was discarded. 100 µL of 1 mM ethanolic 

thiol solution (1 mM 1-octanethiol in ethanol) was added to the AuNP pellet and quickly transferred to 

a glass vial and left at room temperature overnight. The functionalized AuNPs were then centrifuged 

and dispersed in ethanol 2 times to removed excess citrates and thiols, before adding 100 µL of 

DMPC:DMPG (1:1, 2 mg/mL, hydrated in Milli-Q) to the AuNPs. The solution was left for 48 h 

before sonicated until the AuNPs was dispersed. A dark red/magenta color appeared after sonication.  

 

The protocol from “Evidence for patchy lipid layers on gold nanoparticle” (1) was modified as 

follows; 100 µL of AuNPs was centrifuged to remove excess citrates and redispersed in 50 µL 20 mM 

HEPES buffer. 50 µL of lipid solution (2 mg/mL, 1:1 DMPC:DMPG) was added to the AuNP 

mixture. The solution was transferred to a glass vial before adding 100 µL of 1-octanethiol (5 µg/mL 

ethanol) and incubating overnight at room temperature. The next day the solution was centrifuged 

(4000 rpm, 10 min at 22 ºC) and the AuNP pellet was washed and resuspended in 20 mM HEPES 

buffer. 

 

3.4.2 Iron(II,III)oxide and silicon dioxide 
Modified Iron(II,III)oxide (Fe3O4) and silicon dioxide (SiO2) nanospheres were prepared and made via 

collaborator Ph.D Professor Chaozhan Wang at Northwest University, College of Chemistry and 

Materials Science.  

 

10 nm and 150 nm Fe3O4 NPs was coated with SiO2 and then modified with octadecyltrichlorosilane 

(ODS).  Further coating was done with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-

dimyristoyl-sn-glycero-3-phosphatidic acid (sodium salt) (DMPA). SiO2 nanospheres were modified 

with ODS before coating with DPPC or DMPA. See overview in Table 1.  

 

The procedure for coating nanospheres with DPPC/DMPA is in short: DPPC or DMPA was fully 

dissolved in methanol/trichloromethane 1:1 solution before the organic solvent was removed by a 

nitrogen (N2) stream, leaving a lipid film in the vials. The lipids were re-suspended into water via 

vortex-freeze-thaw cycles with a final concentration of 0.15 mM.  With a concentration of 0.15 mg the 

ODS modified nanospheres were dispersed into 10 mL of 0.15 mM DPPC or DMPA solution and 

shaken for 1 hour. To collect the nanoparticles, either magnetic separation or centrifuge was used. The 

finished nanoparticles were washed with water 3 times before dried in vacuum at 50 oC. The particles 

were characterized by SEM, excluded the Fe3O4@ODS-DDPC and the Fe3O4@ODS-DMPA which 

was too small to be imaged clearly with SEM. SEM images forwarded from Professor Chaozhan 

Wang can be seen in Appendix 8.2.  
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Table 1:  Overview of the different iron(II,III)oxide and silicon dioxide nanoparticles made via collaborator 
Chaozhan wang (Ph.D Professor of Chemistry). All nanoparticles are coated with octadecyltrichlorosilane (ODS) before 
further coating with either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-ditetradecanoyl-sn-glycero-3-
phosphate (DMPA). 

 
 
3.4.3  Coating of Iron(II,III)oxide with DMPC:DMPG 
To verify successful coating of Fe3O4@ODS (150 nm) with DMPC:DMPG (1:1) with the instructions 

from professor Chaozhan Wang; 5 mg of DMPC:DMPG was hydrated with Milli-Q water to reach 

0.15 mM concentration followed by 7 freeze-thaw cycles. 0.15 mg of Fe3O4@ODS were weighed and 

dispersed in 10 mL of 0.15 mM DMPC:DMPG solution and shaken for 1 h. The NPs were collected 

with magnetic separation and washed three times with Milli-Q. Same procedure was repeated with 1.5 

mM concentration of DMPC:DMPG and 1.6 mg of Fe3O4@ODS to check any differences. Coated 

nanoparticles were tested with the MBP and 5 mM 1:1 DMPC:DMPG and DOPS:DOPC used as 

positive controls. Completed mixtures were left in water instead of dried in vacuum. Co-sedimentation 

assay was done to check protein binding.  

 
 
3.5 Analytical methods 
3.5.1  Co-sedimentation assays 
3.5.1.1 Protein binding to lipid coated AuNPs 
To assess binding between protein and nanoparticles, protein co-sedimentation was done. 0.5 mg/mL 

of protein (MPB, P2wt and P0ct) was mixed with 1.09 mg/mL of NPs, to a total volume resulting in a 

protein concentration of 0.2 mg/mL in final sample. The samples were left to incubate in ambient 

conditions for at least 15 min before centrifuging for 15 min, 20817 G at 22 ºC, to separate protein 

bound to NPs from soluble protein. Pellets were resuspended in 1% SDS before the protein content in 

supernatant and pellet were analysed using SDS-PAGE. Same method was used with 5.0 mM 

Nanoparticles Modification 

Fe3O4@ODS (10 nm) Fe3O4 was coated with SiO2 and then modified with octadecyltrichlorosilane 

Fe3O4@ODS-DPPC (10 
nm) 

Fe3O4@ODS (10 nm) modified with 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine. 

Fe3O4@ODS-DMPA (10 
nm) 

Fe3O4@ODS (10 nm) modified with 1,2-dimyristoyl-sn-glycero-3-phosphatidic 
acid, sodium salt. 

Fe3O4@ODS (150 nm) Fe3O4 was coated with SiO2 and then modified with octadecyltrichlorosilane. 

Fe3O4@ODS-DPPC (150 
nm) 

Fe3O4@ODS (150 nm) modified with 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine. 
 

Fe3O4@ODS-DMPA (150 
nm) 

Fe3O4@ODS (150 nm) was modified with 1,2-dimyristoyl-sn-glycero-3-
phosphatidic acid, sodium salt. 

SiO2@ODS The SiO2 was modified with octadecyltrichlorosilane. 
SiO2@ODS-DPPC SiO2@ODS modified with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. 

SiO2@ODS-DMPA SiO2@ODS modified with 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid, 
sodium salt. 



 

Page 30 of 111 
 

liposomes (DMPC:DMPG 1:1) as a control. Protocol for SDS-PAGE analysing is the same as 

described in paragraph 2.1. 

 

3.5.1.2 Protein binding to Fe3O4 and SiO2 coated nanoparticles 
Nanoparticles (NPs) of iron(II,III)oxide (Fe3O4) and silicon dioxide (SiO2) were ordered from 

collaborator Chaozhan Wang (Ph.D. Professor of Chemistry). The nanoparticles were coated with 

either DMPA or DPPC.  The NPs were received as dried powder, to be hydrated with desired buffer 

before usage. Testing of the NPs was done with co-sedimentation assay to check protein binding. All 

NPs were weighed and a buffer containing 20 mM HEPES pH 7.5, 150 mM NaCl was added to the 

powder to give a final concentration of 2 mg/mL. The NPs were sonicated in water bath for 60 

minutes before testing. Liposomes of 0.5 mg/mL 1:1 DMPC:DMPG and DOPS:DOPC were also 

prepared and used as positive controls as they are known to bind the proteins of interest. MBP, P0ct 

and P2wt were prepared with a concentration of 0.5 mg/mL in same buffer. MBP, P2wt or P0ct was 

mixed with NPs, to a total volume resulting in a protein concentration of 0.2 mg/mL.  The samples 

were incubated for approximately 15 minutes in ambient temperatures before centrifugation (15 min, 

21ºC at 20817 G). Samples were collected from supernatant before and after centrifugation and the 

pellet (dissolved in 1% SDS) and analysed with SDS-PAGE.     

 
3.5.1.3 Concentration dependency of P0ct 
To investigate the concentration dependency of P0ct to liposomes of DMPC:DMPG and 

DOPC:DOPS, 0.5 mg/mL P0ct was mixed with 0.5 mg/mL liposomes in different protein to lipid 

ratios (P/L ratios). The different ratios were 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5 and 1:6. Proteins were mixed 

with liposomes to a final concentration of 0.2 mg/mL of P0ct. The samples were incubated for 

approximately 15 min in ambient temperatures before centrifugation (15 min, 21 ºC at 20817 G). 

Samples were collected from supernatant before and after centrifugation and the pellet (dissolved in 

1% SDS) and analysed with SDS-PAGE.     

 
3.5.2 Turbidimetry 
To measure differences in turbidity between varying ratios of SUV liposomes and bicelles, different 

ratios of DMPC:DMPG (1:0, 9:1, 4:1 and 1:1) SUV liposomes, sonicated (SUV) and unsonicated 

bicelles were prepared.  5 mM bicelles and 0.5 mM SUV liposomes were mixed with 0.5 mg/mL 

protein (MBP, P2wt and P0ct) in a Greiner 96-well plate flat transparent right before measuring. The 

temperature was set to 30°C with 30 kinetic cycles with 1 min interval time measuring wavelength at 

450 nm and 660 nm. Total kinetic run time was 29 min.  

 
To check for protein concentration variation, different concentrations of protein (MBP, P2wt and P0ct) 

were mixed with unsonicated bicelles SUV bicelles or SUV liposomes (DMPC:DMPG (1:1)), 5 mM 

and 0.5 mM respectively. Total volume in each well was 100 μL, and the proteins were diluted with 
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20 mM HEPES pH 7.5, 150 mM NaCl to the following concentrations: 1.0 μM, 2.5 μM, 5 μM, 7.5 μM 

and 10 μM. The temperature was set to 30°C and the wavelength to 450 nm and 660 nm. 15 kinetic 

cycles were done every 1-min. A VersaMax microplate reader (Molecular Devices) was used to 

measure vesicle aggregation using a Greiner 96-well flat transparent plate. Data was processed using 

Microsoft Excel and a blank was subtracted from the data. The measurements were done using a 

Tecan Spark multimode microplate reader. 

 
3.5.3 Ultraviolet-visible spectrophotometry scan (UV-Vis scan) 
To see if there was a shift in the optical properties of the coated gold nanoparticles (AuNPs), a UV-

VIS scan was done with approximately 1.0 mg/mL uncoated AuNPs and coated AuNPs (modified 

protocol from (1)). Liposomes (DMPC:DMPG 1:1) were used as a control. 100 μL of each was 

pipetted onto a Grainer 96-well plate flat transparent in duplicate and the wavelength was measured 

between 300-900 nm. Wavelength step size was 2 nm, with number of flashes of 25 at room 

temperature. The lipid measurement was subtracted and the data was normalized to either peak 

maxima or 300 nm using Microsoft Excel. The measurements were done using a Tecan Spark 

multimode microplate reader.  

 

3.5.4 Small-angle X-ray diffraction (SAXD) 
To examine any repetitive structures in turbid samples, 2 µM, 10 µM and 20 µM protein (P2wt, P2 

F57A, MBP and P0ct) were mixed with different concentrations of bicelles and liposomes 

(DMPC:DMPG 1:1) with concentrations of 1 mM, 2 mM and 3 mM in a HBS buffer (20 mM 

HEPES and 150 mM NaCl). Samples were prepared at ambient temperature right before 

measurements and measured at 25°C. The synchrotron SAXD data were collected at PETRA III 

storage ring, DESY, Hamburg, Germany on beamline P12. Data were analysed using the ATSAS 

program package (152), GraphPad Prism7 and Microsoft ExCel.   

 

To calculate the mean real-space repeat distance, d, this equation was used: 

1) d =  2π
s

 

Where s is the position of the peak of momentum transfer: 

2) s = 4πsin (θ)
λ

 

 
s was found by zooming in on each individual peak from the diffraction spectra of the different 

samples. The value from each peak maxima was used as s. Repeat distance was then calculated by 

plotting the value of s into equation 1.  
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3.5.5 Transmission electron microscopy (TEM) 
3.5.5.1 TEM imaging of 80 nm gold nanoparticles 
4 µL of each sample was placed on a glow-discharged carbon coated copper grid and was left to 

incubate for 1 minutes before excess solution was removed. Samples were left to air-dry before 

imaging. No stain was needed, but the newly coated AuNPs were tested with and without 2% uranyl 

acetate staining for 2x12 seconds to check for any differences. TEM imaging was preformed using a 

Jeol JEM-1230 (MedWOW) instrument. 

 

3.5.5.2 TEM imaging of protein with bicelles and liposomes 
0.5 mg/mL protein (P2, MBP or P0ct) was mixed with 0.5 mg/mL bicelles or liposomes 

(DMPC:DMPG (1:1)) and incubated for 1 h at room temperature. 4 µL samples were then pipetted 

onto glow-discharged carbon-coated copper grids before incubating for 1 min. Excess solution was 

removed with filter paper (Whatman) before the samples were washed with 4 drops of Milli-Q 

water. Samples were stained with two drops of 2% uranyl acetate for 12 s in each drop and air-

dried. For the AuNPs 4 µL of solution were pipetted onto same type of grids and left to incubate 

for 1 min before excess solution was removed. The samples were left to air-dry. TEM imaging was 

preformed using a Jeol JEM-1230 (MedWOW) instrument. 

 

3.5.6 Synchrotron radiation circular dichroism spectroscopy (SCRD) 
P2wt were dialyzed over night to Milli-Q from buffer (20 mM HEPES pH 7.5, 150 mM NaCl) using 
Slide-A-Lyser Mini Dialysis 3.5K MWCO (Thermo Scientific), with change of Milli-Q at least twice. 
Bicelles and liposomes were prepared with the ratios of DMPC:DMPG 1:0, 9:1, 4:1 and 1:1 in Milli-
Q.  0.4 mg/mL P2wt were then mixed with different ratios of 5 mM bicelles and 1:100 protein to lipids 
ratio for the vesicles (approximately 2.65 mM vesicles) right before measurement. Spectra were 
recorded at 30°C from 170 to 280 nm with a cuvette pathlenght of 100 µm. The cuvette used was a 
closed cylindrical cell (Suprasil, Hellma Analytics). CD units were converted to ∆ɛ (M-1cm-1)) after 
baseline subtraction.  

Δε =  θ ×
(0.1 ×  MRW)

(P ×  CONC) ×  3298
 

Where MRW = Mean residue molecular weight (atomic mass units/daltons), P = cuvette path length 

and CONC = protein concentration (mg/mL).  

 

SCRD measurements of P2wt with bicelles or liposomes were measured and processes via 

collaboration at CD1 beamline, ASTRID storage ring, Institute for storage ring facilities in Aarhus 

(ISA), Aarhus, Denmark. 
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4 Results 
The results are divided into three main parts. First, all myelin proteins were expressed and purified 

for characterization and to investigate interactions between the proteins with lipids, bicelles and 

nanoparticles, using methods stated above in paragraph 3 Methods and materials. Each protein is 

purified differently so the results from each individual expression and purification are given in the 

sections below, 4.1.1, 4.1.2 and 4.1.3 respectively. Second, the protein-nanoparticle binding are 

studied in 4.2 and 4.3, before results from protein-membrane interactions is displayed in 4.4-4.8.  

 
4.1 Protein expression and purification 
4.1.1 Myelin basic protein  
With the use of the chosen E. coli expression system, MBP, was easily expressed and harvested over 

two days. Optical density (OD) was checked regularly to induce expression of MBP by adding IPTG 

when OD600 reached 0.3. After lysis the solution was subjected to two Ni-NTA purifications with 

different dialysis steps and TEV protease digestion to remove the cleaved his6-tags. From the two Ni-

NTA purifications, and the overnight TEV protease digestion, it becomes clear that the cleaved protein 

(Figure 6 sample P, indicated with an arrow) contains mainly MBP and degradation products. Only 

from these two purification steps are the protein relatively pure.  

 
 

 

 

 

 

 

 

 

 

Figure 6: SDS-PAGE analysis of the first and second Ni-NTA affinity chromatography of MBP purification. The 
figure shows SDS-PAGE samples from both Ni-NTA purification and the TEV protease digestion, to get a pure MBP protein 
without his6-tags.Sample P (indicated with an arrow) was further subjected to SEC. Sample legend: M; marker, S; soluble 
fraction (before Ni-NTA), U; unbound fraction, W; wash fraction and E; elution fraction, all from 1st Ni-NTA, T; TEV 
protease treated elution fraction, P; cleaved protein and R; remaining fraction, both from the 2nd Ni-NTA. The known 
molecular weight (kDa) of the marker is specified in the figure. 

 
To get a pure protein without degradation products, size exclusion chromatography (SEC) was 

performed. A peak in the chromatogram was expected between 10-20 mL, as seen in Figure 7 A. 250 

µL fractions were collected around this peak and were checked on SDS-PAGE for purity before 

measuring concentrations with a NanoDrop 2000 spectrophotometer. Most of the fractions, as viewed 

in Figure 7 B), were very pure and could be pooled and concentrated down to get some aliquots with 
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high concentration of MBP. The 2-3 last fractions were frozen as is because of the impurities in the 

solution and second SEC was done on these fractions before usage. The bands in Figure 7 B displays a 

pure protein that corresponds well to the 18.5 kDa isoform of mouse MBP. The yield and 

concentration of the combined fractions is listed in Table 2.   
 

 

 

 

 

 

 

 

 

 

Figure 7: A) Size exclusion chromatogram of MBP. B) SDS-PAGE analysis of the collected fractions. Typical 
chromatogram from purification of MBP, where the peak appears at 10-15 mL as expected.  Fractions collected from SEC 
appeared at the SDS-PAGE gel with only one ban indicated a pure protein. 250 µL fractions were collected by using a 
Superdex 75 10/300 GL column (GE Healthcare) with a 500 µL loop.  B) Fractions collected were checked for purity and 
concentration by using SDS-PAGE and NanoDrop 2000 spectrophotometer. The 250 µL fractions corresponding to the SEC 
peak were checked on SDS-PAGE for purity. Sample legend: M; marker, CP; concentrated protein (before running SEC), 
Fractions; the fractions corresponding to the peak around 10-15 mL.The known molecular weight (kDa) of the marker is 
specified in the figure 

 
 
4.1.2 P0ct 
P0ct was expressed and purified several times and each time the protein expressed well in the E. coli 

expression system. The protein remained soluble after lysis and could be purified with Ni-NTA 

chromatography. From the Ni-NTA purification the elution fraction (sample E in Figure 8) contained 

the protein of interest and was subjected to further purification. Overnight dialysis with added TEV 

protease was done to cleave of the His-MaBP tag before the same fraction was exposed to amylose-

resin affinity chromatography to remove the digested His-MaBP, which can be seen in Figure 8 

sample P, where three clear bands appear on the SDS-PAGE, which are the His-MaBP tag and P0ct. 

The 55 kDa band in sample P is uncleaved MaBP-P0ct, while 40 kDa is the His-MaBP tag and 10 kDa 

is the wanted P0ct (indicated by an arrow in Figure 8). Figure 8 clearly shows that the protein of 

interest becomes more and more pure with the Ni-NTA and amylose-resin affinity chromatography. 

 

 

 

 

  

0

100

200

300

400

500

600

700

800

900

10 12 14

m
AU

mLA) B) 



 

Page 35 of 111 
 

 

 

 

 

 

 

 

  

 

 
Figure 8: SDS-PAGE analysis from P0ct Ni-NTA chromatography, TEV proteolysis and amylose-resin purification. 
SDS-PAGE analysis of the first purification steps for P0ct purification. The figure show samples from before and after Ni-
NTA purification, TEV protease treatment and after amylose-resin purification to yield P0ct without His6- and MaBP tag. 
Sample legend: M; marker, S; soluble fraction (before Ni-NTA), U; unbound fraction (from Ni-NTA), W; wash fraction 
(from Ni-NTA), E; elution fraction (from Ni-NTA), T; TEV protease treated elution fraction (overnight dialysis), P; cleaved 
protein (unbound and washing fractions from amylose-resin purification) and R; remaining fraction (elution fraction from 
amylose-resin purification). The known molecular weight (kDa) of the marker is specified in the figure.  

 
1 mL fractions were collected at 80-100 mL in SEC, where the peak in the chromatogram is expected. 

As seen in Figure 9 a peak appeared at 85-95 mL. Fractions from the SEC were checked on SDS-

PAGE for purity (Figure 9 B) and the concentration was measured with NanoDrop 2000 

spectrophotometer. All fractions checked on SDS-PAGE revealed a pure protein without any 

impurities. The concentrations were determined using known extinction coefficient (ProtParam), see 

Table 2. P0ct is reasonable easy to express and purify, with good yields every time. 

 

 

Figure 9: A) Size exclusion chromatogram of P0ct. B) SDS-PAGE analysis of the collected fractions from SEC. A) 
Characteristic chromatogram from the purification of P0ct. A peak in the chromatogram is expected at around 80-120 mL so 
1 mL fractions were collected from around 85-95 mL and checked for purity on SDS-PAGE before concentration was 
measured on NanoDrop 200 spectrophotometer. SEC was completed with a Hiload Superdex 75 16/60 (GE healthcare) 
column and a 2 mL loop. B)  Fractions of p0ct collected from the size exclusion chromatography were checked on SDS-
PAGE for purity. Sample legend: M; marker, CP; concentrated protein and Fractions collected from the SEC. The known 
molecular weight (kDa) of the marker is specified in the figure. 
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4.1.3 P2wt and P2 F57A 
Expression of P2wt and the mutant F57A is done the same way using different strains of (E. coli 

Rosetta(DE3)) and was expressed in auto induction media over 72 hours, which means that there is no 

need for measuring of optical density or adding IPTG to induce expression. The purification process 

after lysis consisted of two Ni-NTA affinity chromatographs with dialysis and TEV protease digestion 

overnight. P2wt is a protein with a molecular weight of 14.9 kDa, and Figure 10 shows that a clear 

band at around 15 kDa does not appear until the overnight TEV protease digestion have happened 

(Figure 10 B samples T). Fractions P1 and P2 in same figure, was protein samples collected after the 

2nd Ni-NTA affinity chromatography (indicated with arrows), which was further concentrated before 

SEC to achieve high purity.  
 

Figure 10: SDS-PAGE analysis of A) 1st and B) 2nd Ni-NTA affinity chromatography of P2wt. The figure shows samples 
monitoring the purification of P2wt during the 1st and 2nd Ni-NTA purifications with TEV protease digestion overnight and in 
between the chromatographs. The His-tag is cleaved of the protein with overnight TEV protease digestion (sample T) and 
fraction is purified with a 2nd Ni-NTA where sample P1-P1 contains the P2wt protein. Sample legend: A) 1st Ni-NTA: M; 
marker, S; soluble fraction (before 1st Ni-NTA), U; Unbound fraction, W1-W2; wash fractions, E1-E3; elution fractions and 
I; Imidazole (1 M) fraction. B) 2nd Ni-NTA: M; Marker, E; elution fraction (from 1st Ni-NTA with added TEV protease), T; 
TEV protease treated elution fraction (overnight dialysis), P1-P2; cleaved protein (unbound and washing fractions) and R1-
R2; remaining protein (elution fractions). The known molecular weight (kDa) of the marker is specified in the figure. 
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Figure 11: A) Size exclusion chromatogram of P2wt. B) SDS-PAGE analysis of the fractions collected from SEC. A) 
Characteristic chromatogram from the purification of P2wt. A peak in the chromatogram was expected at around 60-80 mL. 
1 mL fractions were collected from around 70-85 mL and were checked for purity on SDS-PAGE before concentration was 
measured on NanoDrop 200 spectrophotometer. SEC was completed with a Hiload Superdex 75 16/60 (GE healthcare) 
column and a 1 mL loop. SEC was done with a BioRad DuoFlow system. B) The fractions collected at 70-85 mL during SEC 
were checked on SDS-PAGE for purity before measuring concentration with NanoDrop 2000 spectrophotometer. Sample 
legend: M; marker, CP; concentrated protein; Fractions; fractions collected during SEC. The known molecular weight (kDa) 
of the marker is specified in the figure. 

 

The SDS-PAGE analysis from running SEC (Figure 11 B) revealed high purity of the protein with 

right molecular weight at around 15 kDa. The concentration of 3.42 mg/mL was relatively good. 

Concentration of purified protein were measured with NanoDrop 2000 spectrophotometer and 

calculated with known extinction coefficients (ProtParam). Yield, concentration and extinction 

coefficients are listed in Table 2.  

 

The mutant P2 F57A was not purified during this master project but during the course BMED325 

cellular biochemistry and nanobiochemistry. The yield, concentration, extinction coefficients and 

analysis during the purification process are listed in Appendix 8.1. In short; the concentration of P2 

F57A mutant was 3.29 mg/mL corresponding to a 221 µM, which is a good yield for the P2 mutant. 

Both proteins are the easiest to express and purify of the proteins used in this study, and are known to 

give good yields. The purity of the proteins is high and the purification process is straightforward. 
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Table 2: Protein yields for the proteins MBP, P2wt and P0ct. All proteins were expressed in different strains of E. coli 
and purified using Ni-NTA affinity chromatography and size exclusion chromatography (SEC), with some variation in 
purification steps. Concentration and yield of every protein was calculated using NanoDrop 2000 spectrophotometer and 
extinction coefficients found on ProtParam. The yields of the proteins are shown together with their known extinction 
coefficients and molecular weights.  

 
 
 
4.2 Fe3O4 and SiO2 nanoparticles 
4.2.1 No binding of protein to Fe3O4 and SiO2 nanoparticles 
 

Fe3O4 with size of 10 nm was first tested for protein binding, which include Fe3O4@ODS, 

Fe3O4@ODS-DPPC and Fe3O4@ODS-DMPA. Samples were taken from samples containing MBP 

and P2wt after 15 minutes of incubation to confirm protein content in each sample. As seen in Figure 

12, a strong band was visible in each individual sample which indicates a protein content of either 

MBP at around 18 kDa or P2wt at around 15 kDa that corresponds to known molecular weight of each 

protein.  

 

 
Figure 12: SDS-PAGE analysis of MBP and P2wt with Fe3O4 coated nanoparticles (10 nm) and liposomes. 20 µL of 
0.5 mg/mL protein were mixed with 30 µL of either 2 mg/mL nanoparticles or 0.5 mg/mL liposomes. The liposomes 
(DMPC:DMPG and DOPS:DOPC (1:1)were used as positive controls). After 15 minutes of incubation at room temperature 
samples were taken to confirm protein content. Sample legend: M; marker, MBP + DMPA (DMPA = Fe3O4@ODS-DMPA), 
P2wt + DMPA (DMPA = Fe3O4@ODS-DMPA), MBP + DPPC (DPPC = Fe3O4@ODS-DPPC), P2wt + DPPC (DPPC = 
Fe3O4@ODS-DPPC), MBP + ODS (ODS = Fe3O4@ODS), P2wt + ODS (ODS = Fe3O4@ODS), MBP + PC:PG (PC:PG = 
DMPC:DMPG), P2wt + PC:PG (PC:PG = DMPC:DMPG), MBP + PS:PC (PS:PC = DOPS:DOPC) and P2wt + PS:PC 
(PS:PC = DOPS:DOPC). The known molecular weight (kDa) of the marker is specified in the figure. 

 
 

 Yield 
(mg) 

Concentration 
(µM) 

Abs 0.1 % 
(AU) 

ε (M-1cm-

1) 
Molecular weight (MW) 
(Da) 

P0ct 2.02 253.4 1.061 8480 7990.35 
MBP 1.01 60 0.698 12950 18544.70 
P2wt 3.42 229 0.934 13908 14966.44 
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After incubating for 15 minutes, the samples were centrifuged to separate a supernatant and pellet. The 

evolved pellets were dissolved in 1% SDS before SDS-samples were made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Co-sedimentation analysis of MBP or P2wt A) with Fe3O4 nanoparticles (10 nm) B) and liposomes (1:1 
ratio). SDS-PAGE analysis of supernatant and pellet of each sample. The weak bands in the nanoparticle pellets (A) is 
probably due to small amount of supernatant.  Sample legend: A) M; marker, S; supernatant, P; pellet, MBP + Fe3O4@ODS-
DMPA, P2wt + Fe3O4@ODS-DMPA,   MBP + Fe3O4@ODS-DPPC, P2wt + Fe3O4@ODS-DPPC, MBP + Fe3O4@ODS,  
P2wt  + Fe3O4@ODS. B) M; marker, S; supernatant, P; pellet, MBP + DMPC:DMPG, P2wt + DMPC:DMPG, MBP + 
DOPS:DOPC and P2wt DOPS:DOPC. The known molecular weight (kDa) of the marker is specified in the figure. 

 
 

 
Figure 14: Co-sedimentation analysis of P0ct with Fe3O4 nanoparticles (10 nm) and liposomes. SDS-PAGE analysis of 
supernatant and pellet of each sample. Sample legend: M; marker, S; supernatant, P; pellet, P0ct + Fe3O4@ODS-DMPA, P0ct 
Fe3O4@ODS-DPPC, P0ct + Fe3O4@ODS, P0ct + DMPC:DMPG and P0ct + DOPS:DOPC. The known molecular weight 
(kDa) of the marker is specified in the figure. 

 

Co-sedimentation analysis was done with the proteins MBP, P2wt and P0ct. From Figure 13 and 

Figure 14 the results showed that little or no protein binds to the coated Fe3O4 nanoparticles with the 

size of 10 nm. The positive controls revealed binding as expected as seen for MBP and P2wt in Figure 

13 and for P0ct in Figure 14, with strong bands in all pellets.   
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Fe3O4 coated nanoparticles, 150 nm in size, was also tested for protein binding with co-sedimentation 

assay. Same procedure as above was followed as seen in Figure 15. Same results as with Fe3O4 coated 

NPs with 150 nm size. Little or no binding to the nanoparticles is indicated in A), B) and C). The 

controls were positive with broad bands in pellets for both types of liposomes.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Co-sedimentation analysis of A) MBP, B) P2wt and C) P0ct with Fe3O4 nanoparticles (150 nm) and 
liposomes. Fe3O4 coated nanoparticles were mixed with protein before incubating and centrifugation. Samples were taken 
from both supernatant and pellet before checking protein binding on SDS-PAGE. Sample legend: M: marker, S; supernatant, 
P; pellet, A) MBP + Fe3O4@ODS-DMPA, MBP + Fe3O4@ODS-DPPC, MBP + Fe3O4@ODS, MBP + DMPC:DMPG and 
MBP + DOPS:DOPC. B) P2wt + Fe3O4@ODS-DMPA, P2wt + Fe3O4@ODS-DPPC, P2wt + Fe3O4@ODS, P2wt + 
DMPC:DMPG and P2wt + DOPS:DOPC. C) P0ct + Fe3O4@ODS-DMPA, P0ct Fe3O4@ODS-DPPC, P0ct + Fe3O4@ODS, 
P0ct + DMPC:DMPG and P0ct + DOPS:DOPC. The known molecular weight (kDa) of the marker is specified in the figure. 

 
 
Protein binding to silicon dioxide (SiO2) was similarly tested with same procedure as described and 

tested with the three proteins MBP, P2wt and P0ct. The results from co-sedimentation analysis are 

viewed in Figure 16 and weak band can be seen in the pellets, but does not show the strong indication 

that the positive controls do.  
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Figure 16: Co-sedimentation analysis of A) MBP and  P2wt, B) with P0ct with SiO2 coated nanoparticles and C)  MBP 
and P2wt with liposomes. Different proteins were mixed with the coated SiO2 nanoparticles, incubated and centrifuged 
before samples for SDS-PAGE were collected. 1:1 DMPC:DMPG and DOPS:DOPC were used as positive controls. A) 
Shows the supernatant and pellet from MBP and P2wt mixed with the NPs, while B) is the analysis of P0ct with same NPs 
and the controls. C) Positive control for MBP and P2wt. Sample legend: M; marker, S; supernatant, P; pellet, A) MBP + 
SiO2@ODS-DMPA, P2wt + SiO2@ODS-DMPA, MBP + SiO2@ODS-DPPC, P2wt + SiO2@ODS-DPPC, MBP + 
SiO2@ODS, P2wt + SiO2@ODS, B) P0ct + SiO2@ODS-DMPA, P0ct + SiO2@ODS-DPPC, P0ct + SiO2@ODS, P0ct + 
DMPC:DMPG and P0ct + DOPS:DOPC. C) MBP + DMPC:DMPG, P2wt + DMPC:DMPG, MBP + DOPS:DOPC and P2wt 
+ DOPS:DOPC. The known molecular weight (kDa) of the marker is specified in the figure. 

 

SEM images from collaborator Chaozhan Wang (Ph.D. Professor of Chemistry) can be viewed in 

Appendix 8.2. 
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4.2.2 Coating of Fe3O4@ODS (150 nm) 
Since the co-sedimentation analysis of the Fe3O4@ODS-DMPA, Fe3O4@ODS-DPPC, SiO2@ODS-

DMPA and SiO2@ODS-DPPC did not confirm any good binding to the proteins, coating of the 

Fe3O4@ODS (150 nm) was done with DMPC:DMPG (1:1) following the procedure explained in 

Methods and materials 2.4.3 and checked for protein binding with MBP and same principles described 

in previous paragraph. 

 

 
Figure 17: Co-sedimentation assay of Fe3O4@ODS coated with 1:1 DMPC:DMPG. MBP were mixed with samples of 
coated Fe3O4@ODS with DMPC:DMPG following the procedure described from collaborator Chaozhan Wang (Ph.D. 
Professor of Chemistry). SDS-PAGE samples were taken from both supernatant and pellet after incubating for 15 minutes 
and then centrifuged. DMPC:DMPG and DOPS:DOPC were used as positive controls. The weak band in the nanoparticles 
pellet was probably due to residues from the supernatant. Sample legend: M; arker, S: supernatant, P; pellet, MBP + 
Fe3O4@ODS-DMPC:DMPG, MBP + DMPC:DMPG and MBP + DOPS:DOPC. The known molecular weight (kDa) of the 
marker is specified in the figure. 

 
Coating of the Fe3O4@ODS with liposomes did not show any progress in protein binding, as viewed 

in Figure 17. The weak band in the nanoparticle pellet was probably supernatant residues and not 

binding. No further trials were made with these nanoparticles. 

 
 
4.3 Gold nanoparticles 
4.3.1 Coating of AuNPs indicated binding 
Since the nanoparticles from collaborator Chaozhan Wang did not seem to work, 80 nm gold 

nanoparticles (AuNPs) were ordered from NanoComposix together with 1-octanethiol to try to 

functionalize them with 1-octanethiol and further coat with DMPC:DMPG (1:1). 3 protocols were 

tested from different articles; denoted protocol 1-3, respectively (1, 132, 153). Protocol 1 did not work 

and was not further tried in this project (153).To coat the AuNPs, two protocols were modified and 

used (1, 132) as described in Methods and materials 2.4.1. Both protocols gave solution with a dark 

red/purple solution which indicated nanoparticles at around 80 nm. Aggregation and disappearing 

colour of the protocol 3 (1) coated AuNPs when MBP was added indicated protein binding (Figure 

18). Co-sedimentation assay was done to easily check protein binding with MBP with the coated 

AuNPs. Bare AuNPs and DMPC:DMPG (1:1) were used as negative and positive control, 

respectively.  
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Co-sedimentation analysis of the coated AuNPs did not show any absolute binding to either for the 

coating protocols, but a weak band can be seen in the pellet from coated AuNPs from protocol 2 (151), 

see Figure 19. The different bands in the supernatants indicated degradation products from the protein. 

No binding to the uncoated AuNPs which is expected and binding to the DMPC:DMPG signifies that 

the assay is working.  

 

 
Figure 19: Co-sedimentation assay for AuNPs coated with 1-octanethiol using two different protocols (1, 151).  0.5 
mg/mL MBP were mixed with the coated AuNPs to a final concentration of 0.2 mg/mL and incubated for 15 minutes before 
centrifuging. SDS-PAGE samples were collected from both supernatant and pellet and checked for protein binding. The co-
sedimentation assay indicated that MBP did not bind to the coated AuNPs. Sample legend: M; marker, S; supernatant, P; 
pellet, MBP + AuNP (bare-citrate, uncoated), MBP + AuNP@thiol-PC:PG (AuNPs coated with 1-octanethiol and 
DMPC:DMPG using protocol 3 (1)), MBP + AuNP@thiol-PC:PG (AuNPs coated with 1-octanethiol and DMPC:DMPG 
using protocol 2 (151)) and MBP + DMPC:DMPG (positive control) The known molecular weight (kDa) of the marker is 
specified in the figure. Lower bands in the S fractions are degradation products of MBP. 

 
 
 
 
 
 

Figure 18: Image of AuNPs coated with 1-octanethiol and DMPC:DMPG (1:1) following protocol 3 (1) without and 
with added MBP. Coated AuNPs alone have a dark red/purple color which indicates particles at around 80nm. With added 
MBP the color disappear and the solution turns murky colorless indicating an aggregated state and possible binding of MBP.  
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4.3.2 UV-Vis scan of gold nanoparticles 
Since the coated AuNPs (protocol 3, (1)) showed colour difference when MBP was added (Figure 18) 

indicating protein binding, ultraviolet-visible spectroscopy (UV-vis) was done to investigate any 

coating of the AuNPs. Duplicates of bare AuNPs, AuNP@thiol-PC:PG and DMPC:DMPG (1:1) was 

done with a wavelength ranging from 300 nm to 900 nm. No big shift in optical properties was found, 

but the spectra showed a small shift of the peak maxima for the coated AuNPs. The bare AuNPs had a 

peak a 544 nm while the coated AuNPs had a peak at 548 nm (Table 3). At the same time, a shoulder 

is seen at around 360 nm for both coated AuNPs and liposomes DMPC:DMPG (1:1), which is absent 

in the bare AuNPs (Figure 20). The same shoulder was seen in the raw data (not shown) and in the 

data normalized to 300 nm (Figure 49 in Appendix 8.3).   

 
Figure 20: UV-VIS spectra of bare AuNPs and coated AuNP (Au@thiol-PC:PG) normalized to peak maxima. To 
check a possible coating of the coated AuNPs the UV-VIS spectra were measured with a wavelength range of 300 nm to 900 
nm, with step size = 2 and number of flashes was 25. The AuNPs are coated with 1-octanethiol and DMPC:DMPG (1:1) and 
liposomes with same lipid ratio was used as a control. A shoulder at around 360 nm was seen for the coated AuNPs and 
liposomes, and a red shift of 4 nm was found between the gold nanoparticles. The data is normalized to peak maxima.  

 
 
 Table 3: Peak maxima from UV-VIS spectra of bare and coated AuNPs,and liposomes. Peak maxima of the different 
samples seen in Figure 20 given in nanometers. 

 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

300 400 500 600 700 800 900

Ab
s (

cm
-1

)

Wavelength (nm)

Au@thiol-PC:PG Au (bare - citrate) DMPC:DMPG (1:1)

 Au (bare – citrate) Au@thiol-PC:PG DMPC:DMPG (1:1) 

λmax (nm) 544 548 300 



 

Page 45 of 111 
 

4.3.3 TEM images of AuNP 
Transmission electron microscopy (TEM) was executed to further confirm any coating of the AuNPs, 

and to confirm the size ordered from NanoComposix. A new batch of coated AuNP (protocol 3 (1)) 

was made to see a possible difference between newly made and old coating.  

 

The membrane of the grid to the old coated AuNPs (2 month old) moved too much to get a good 

image of any coating, but Figure 21 revealed AuNPs on the grids that were clustered together. No 

identification of the DMPC:DMPG (1:1) coating could be made.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The newly coated AuNPs (Au@thiol-PC:PG) with thiol and DMPC:DMPG (1:1) was imaged with 

and without staining, viewed in Figure 22. Left image of the non-stained Au@thiol-PC:PG 

nanoparticles revealed no coating and they looked the same as the bare AuNPs (Figure 23). The 

stained sample of the same AuNPs, as viewed in Figure 22 (right), indicated bright rings around 

numerous particles (indicated by black arrows) which might uncover the wanted coating. The 

micrographs also implied that the coated AuNPs were more aggregated than the bare ones.   

 

 

Figure 21: Transmission electron micrograph of AuNPs coated with thiol and DMPC:DMPG (1:1). The solution with 
coated AuNPs had been in room temperature for 2 month. The thin membrane film was damaged and high resolution images 
were impossible. TEM imaging was preformed using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging 
center (MIC), Department of Biomedicine, University of Bergen. 
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Figure 22: Transmission electron micrograph of coated AuNPs without (left) and with (right) staining. Au@thiol-
PC:PG with 2x12 s. staining with 2% uranyl acetate. A few bright circles can be seen around some of the coated AuNPs 
(right images, indicated with black arrows). The circles might indicate a DMPC:DMPG (1:1) coating around the 
nanoparticles. TEM imaging was preformed using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging 
center (MIC), Department of Biomedicine, University of Bergen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23: Transmission electron micrograph of bare AuNPs without staining. Micrograph of bare AuNPs were taken to 
have control for the coated ones and also confirm size and shape that was ordered from NanoComposix. TEM imaging was 
preformed using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging center (MIC), Department of 
Biomedicine, University of Bergen. 

 
From TEM the diameter of one nanoparticle was measured to verify the size distribution given by 

NanoComposix, diameter of one of the nanoparticles was measured to 75 nm, which corresponds well 

to the size given from the company. Figure 23 reveals good distribution of the gold nanoparticles with 

the concentration of 1.09 mg/mL without aggregates.  
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4.4 Concentration dependency of P0ct 
To investigate if binding of P0ct to liposomes are dependent on lipid concentration, different protein 

to lipid ratios were tested with liposomes of DMPC:DMPG and DOPC:DOPS (1:1) and with constant 

concentration of P0ct (0.2 mg/mL). Protein to lipid ratios was in the range of 1:0.5 – 1:6. The analysis 

revealed (Figure 24) that binding of P0ct to liposomes of either DMPC:DMPG or DOPC:DOPS 

increases with increased P/L ratio to a point where saturation occurs. It also revealed less protein in 

supernatant for samples containing liposomes of DOPC:DOPS, as seen in Figure 24, comparing A to 

B. Smaller concentrations of DMPC:DMPG is needed for P0ct binding than for the DOPC:DOPS, 

which reaches as saturation level later than DMPC:DMPG.  



 
Figure 24: SDS-PAGE analysis of different protein to lipd ratios A) DMPC:DMPG (1:1) and B) DOPC:DOPS (1:1). 
20 µL of 0.5 mg/mL of P0ct was mixed with 30 µL of 0.5 mg/mL DMPC:DMPG or DOPS:DOPC in ratios ranging from 
1:0.5 to 1:6. A) SDS-PAGE analysis of different P0ct/DMPC:DMPG ratios. Sample legend: M; marker, S; supernatant, P; 
pellet, 1:0.5 P0ct/DMPC:DMPG, 1:1 P0ct/DMPC:DMPG, 1:2 P0ct/DMPC:DMPG, 1:3 P0ct/DMPC:DMPG, 1:4 
P0ct/DMPC:DMPG, 1:5 P0ct/DMPC:DMPG and 1:6 P0ct/DMPC:DMPG. B) SDS-PAGE analysis of different protein to 
lipid ratios of P0ct/DOPC:DOPS. Sample legend; M; marker, S; supernatant, P; pellet, 1.05 P0ct/DOPC:DOPS, 1:1 
P0ct/DOPC:DOPS, 1:2 P0ct/DOPC:DOPS, 1:3 P0ct/DOPC:DOPS, 1:4 P0ct/DOPC:DOPS, 1:5 P0ct/DOPC:DOPS and 1:6 
P0ct/DOPC:DOPS. The known molecular weight (kDa) of the marker is specified in the figure. 

 
 
4.5 Vesicle aggregation 
4.5.1 Lipid composition dependent vesicle aggregation 
To measure variation in vesicle aggregation between different ratios of liposomes and bicelles 

combined with varying concentration of protein (MBP, P2wt and P0ct), turbidity assays was 

conducted.  Only the 450 nm measurements are presented here, the 660 nm measurements are listed in 

Appendix 8.4. By varying the ratios between DMPC:DMPG in both liposomes and bicelles, and 

keeping protein concentration constants, differences in vesicle aggregation dependent on ratios could 

be examined. Protein to lipid ratio was 1:1 for the liposomes and 1:10 for the bicelles.  

 

MBP was measured with unsonicated bicelles and liposomes and showed some variance between the 

different ratios, as seen in Figure 25, with a similarity in flattening out at the end of the 30 min kinetic 

cycles. With ratio 9:1, Figure 25 A, there was a big jump in absorbance for the bicelles to 0.647 at 6 

A) 

B) 
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min before dropping below 0.1, reaching a steady state. MBP binding to ratio 4:1 of DMPC:DMPG 

bicelles starts with high absorbance at 1.03 before decreasing continuously to 0.2, as viewed in Figure 

25 B. For the 1:1 ratio, Figure 25 C, the bicelles kept a more stable absorbance around 0.6. For all 

ratios the liposome, samples was stable and is relatively straight as seen for the control (1:0) which do 

not bind to the protein and have a low absorbance at 0.06 (Figure 25 D). 

 
  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 25: Vesicle aggregation with different ratios of DMPC:DMPG with MBP. Measured absorbance over 30 min 
with constant concentration of P2wt and different ratios of DMPC:DMPG in liposomes and bicelles. The ratios of 
DMPC:DMPG in the liposomes and bicelles were 1:0: 1:1: 1.4 and 1:9.  A) 9:1 ratio: increased absorbance at 6 min for 
bicelles which decreased rapidly over the next 5 min. Over time the absorbance decreases more for the 4:1 ratio (B) than for 
the 1:1 ratio (C). D) 1:0 ratio as negative control. Absorbance measured at wavelength 450 nm at 30 ºC. Protein 
concentration was held constant at 0.5 mg/mL mixed with 5 mM bicelles and 0.5 mM liposomes. Protein to lipid ratio was 
1:1 and 1:10, for liposomes and bicelles respectively. 
 

 

The turbidity measurements with P2wt investigated the differences between bicelles, SUV bicelles and 

the liposomes. In ratios 9:1 and 4:1 there was no big difference between the two types of bicelles 

(Figure 26 A-B) except for a big jump in absorbance for bicelles 9:1 at 1.23 when reaching 9 min. 

Binding of P2wt to bicelles and SUV bicelles with the ratio 4:1 keeps a higher absorbance over the 30 

min than the 9:1 ratio, which might imply that the 4:1 ratio have more stability over time than the 9:1 

ratio.  1:1 ratio of bicelles and SUV bicelles is decreasing slowly from 0.49 and 0.58, (Figure 26 C), 

while the negative control gave increased absorbance to 0.29 for the bicelles mixed with P2wt, as 

viewed in Figure 26 D, likely an error not aggregates.  
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Figure 26: Vesicle aggregation with different ratios of DMPC:DMPG with P2wt. Measurement of absorbance over 30 
min with constant concentration of P2wt with bicelles, SUV bicelles and liposomes with different ratios of DMPC:DMPG. 
The ratios of DMPC:DMPG was 1:0, 1:1, 1:4 and 1:9. A) P2wt induces a delayed aggregation of the 9:1 ratio of lipids, while 
the 4:1 ratio seems to stabilize quickly (B). C) Steady decrease in absorbance for the 1:1 ratio, C) 1:0 ratio as negative 
control.  Absorbance measured at wavelength 450 nm at 30ºC. Protein concentration was held constant at 0.5 mg/mL mixed 
with 5 mM bicelles and 0.5 mM liposomes. Protein to lipid ratio was 1:1 and 1:10, for liposomes and bicelles respectively. 

 
 
The same type of measurements were done with P0ct. Protein binding with the ratio 9:1 of bicelles 

and SUV bicelles indicated a lower absorbance for both bicelles compared to the liposomes (Figure 27 

A) with a small increase for the SUV bicelles reaching stable state, Abs450 equal to 1.0 after 15 min. 

For both ratios 4:1 and 1:1of DMPC:DMPG the absorbance decreases with time and no big difference 

was seen between the bicelles, as viewed in Figure 27 B-C. With time both bicelles, bound to P0ct, 

achieved a more permanent absorbance at around 0.5 and under. The negative control, Figure 27 D, 

displayed an increase in absorbance for the SUV bicelles 1:0, but the absorbance is low and the 

increase is negligible.  
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Figure 27: Vesicle aggregation with different ratios of DMPC:DMPG with P0ct. Absorbance measured over 30 minutes 
with constant concentration of P0ct with different ratios of DMPC:DMPG in bicelles, SUV bicelles and liposomes.  
The ratio of DMPC:DMPG was 1:0, 1:1, 1:4 and 1:9. A) 9:1 ratio, B) 4:1 ratio, C) 1:1 ratio and D) 1:0 ratio as negative 
control. Absorbance measured at wavelength 450 nm at 30ºC. Protein concentration was held constant at 0.5 mg/mL mixed 
with 5 mM bicelles and 0.5 mM liposomes. Protein to lipid ratio was 1:1 and 1:10, for liposomes and bicelles respectivel 

 
4.5.2 Concentration dependent vesicle aggregation 
Vesicle aggregation was also tested by keeping concentration of DMPC:DMPG (1:1) bicelles and 

liposomes constant and by varying the concentration of the protein (MBP, P2wt and P0ct). 

Concentration of the proteins was ranging from 1.0 - 10 µM. The proteins to lipid ratio for the bicelles 

were; 1:5000, 1:2000, 1:1000, 1:666 and 1:500 and for the liposomes the protein to lipid ratio was 

1:500, 1:200, 1:100, 1:66 and 1:50, from 1.0 to 10 µM respectively. 

 

For every protein, the turbidity assays indicated over all that the 10 µM concentration gave the highest 

absorbance with 7.5 µM giving the second highest absorbance (Figure 28), except for the 

measurements with DMPC:DMPG liposomes and P0ct where 2.5 µM having absorbance at 0.11 and 

decreasing with time (Figure 28 C). Binding of MBP to bicelles gave the highest absorbance at 0.38 5 

min into the measurements, with 7.5 µM at 0.14 when reaching 9 min (Figure 28 A). Bicelle 

aggregates induced by MBP gave a more rapid decrease in absorbance than the liposome aggregates, 

which had a higher absorbance also for the 5.0 µM concentration of protein. A more steady decrease is 

visible for the same concentration of liposomes, 10 µM and 7.5 µM respectively. P2wt with bicelles 
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(Figure 28 B) indicated a more stable absorbance over time, than for any of the other protein. 10 µM 

and 7.5 µM concentration gave the highest absorbance from the beginning, starting at 0.31 and 0.22 

that stabilized around 0.25 over the 30 min. 10 µM, 7.5 µM and 5 µM P2wt mixed with liposomes all 

disclosed similar absorbance curves starting around 0.06 and decreasing with time (Figure 28 B). The 

absorbance is very low compared to the MBP samples. The highest concentration of P0ct, 10 µM, was 

the only concentration showing some vesicle aggregation for this protein with bicelles (Figure 28 C), 

whereas 2.5 µM induced aggregation of the liposome sample with absorbance around 0.1. 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28: Concentration dependent vesicle aggregation of bicelles and liposomes with A) MBP, B) P2wt and C) P0ct. 
Different concentration of protein were mixed with either bicelles or liposomes (DMPC:DMPG (1:1)) and absorbance was 
measured with a wavelength of 450 nm over 30 minutes. The samples were measured in duplicates and a blank was 
subtracted from the data. The proteins to lipid ratio for the bicelles were; 1:5000, 1:2000, 1:1000, 1:666 and 1:500 and for the 
liposomes the protein to lipid ratio was 1:500, 1:200, 1:100, 1:66 and 1:50, from 1.0 to 10 µM respectively. 
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4.6 Synchrotron radiation circular dichroism measurements 
SRCD measurements were performed to analyse the difference in folding of P2wt with bicelles 

compared to liposomes.  SCRD spectra for both bicelles and liposomes are presented in Figure 29. 

The spectra revealed a positive peak at around 195 nm and a negative peak around 218 nm, which is 

consistent with an anti-parallel β-sheet structure with some variation to the different ratios of 

DMPC:DMPG. 9:1 lipid ratio in bicelles seems to cause less change than the 9:1 ratio of liposomes. 

P2wt bound to lipids do change the secondary structure as revealed by changes of the 195 nm peaks, 

shifting more to the right with different lipid ratio. SCRD spectra of P2wt in water and with the neutral 

bicelles is almost identical revealing that the DMPC bicelles do not induce any changes to the P2wt 

structure. P2wt with the lipid ratios of 1:1 and 4:1 overlay reasonably well on one another in the 

bicelle samples, while 1:1 and 0:1 liposomes do the same, indicating that the overall secondary 

structure do not change much between these ratios. The difference was increased between the 1:1 and 

9:1 lipid ratio in bicelles, which was expected due to the increasing ratio of negatively charged lipids.  

  
 

 

 

 

 

 

 

 

 

Figure 29: synchrotron radiation circular dichroism measurements of P2wt with different ratios of bicelles and 
liposomes (DMPC:DMPG). Difference in folding dependent on variation in DMPC:DMPG ratios for bicelles (left) and 
liposomes (right).  The 9:1 ratio of bicelles causes less change to the secondary structure of P2wt than the same ratio in 
liposomes. The cuvette used was a closed cylindrical cell (Suprasil, Hellma Analytics). CD units were converted to Δɛ (M-

1cm-1) after baseline subtraction.  

 
 
4.7 Small-angle X-ray diffraction measurements 
SAXD measurements were conducted to study the repetitive structures in turbid samples of protein 

(MBP, P0ct, P2wt and P2 F57A) and to investigate any differences between bicelles and liposomes.  

 
4.7.1 MBP induce the 7.5 nm repeat distance 
10 µM and 20µM MBP mixed with 1 mM and 2 mM bicelles, and 20 µM MBP added to 3 mM 

bicelles, gave all Bragg peaks in the X-ray diffraction spectra, while the 2 µM samples and the 10 µM 

mixed with 3 mM bicelles did not (not shown). All samples that induced a Bragg peak can be viewed 

in Figure 30, and the repeat distance was calculated to around 7-8 nm, listed in Table 4.  The repeat 



 

Page 53 of 111 
 

distance seems to be independent on the P/L ratio as long as the ratio does not exceed 1:200. 

Increasing ratios of protein to bicelles did not induce any Bragg peaks (not shown).  

 

  
Figure 30: X-ray diffraction spectra of 10 µM and 20 µM MBP with bicelles (DMPC:DMPG (1:1)). Mixing MBP with 
1-3 mM bicelles gave several major Bragg peaks in the X-ray diffraction patterns. 10 µm and 20 µM concentrations of MBP 
are added as open and filled markers with DMPC:DMPG ratio of the bicelles being 1:1 (10 µM with 3 mM bicelles gave no 
Bragg peaks). Calculated repeat distances can be viewed in Table 4. A moving average, black line, has been plotted over 
each dataset. For clarity all dataset are offset and are not scaled to each other. The synchrotron SAXD data were collected 
at PETRA III storage ring, DESY, Hamburg, Germany on beamline P12. 

 
Table 4: Calculated repeat distances for MBP with bicelles. Mean repeat distances for induced Braggs peaks of mixing 
MBP with bicelles with given P/L ratio and concentration of bicelles. The s-values corresponding to the intensity summit of 
each Bragg peak were used to calculate the repeat distances. Graphs of each P/L ratio is viewed in Figure 30. 

P/L ratio mM bicelles µM protein Repeat distance (nm) 

1:50 1 20 7.2 
1:100 1 10 7.4 
1:100 2 20 7.2 
1:150 3 20 7.7 
1:200 2 10 7.3 
 
 

Not all of the liposome samples gave Bragg peaks in the X-ray scattering spectra, and no sharp peaks 

were observed.  Presented in Figure 31 are vague peaks of 20 µM  MBP mixed with 1-3 mM 

liposomes (filled marker) and one of 10 µM sample mixed with 3 mM bicelles (red open marker).  For 

20 µM MBP mixed with 1 mM and 2 mM bicelles, 1:50 and 1:100 P/L ratio, a repeat distance at 7.3 

nm and 7.4 nm can be calculated from the s-value corresponding to the intensity summit of each 

Bragg peak. More blurred peaks are found for the 3 mM samples, set aside the errors, one can 
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calculate repeat distances at 7.8 nm and 7.5 nm, from the 10 µM and 20 µM sample, respectively. All 

repeat distances calculated from the X-ray diffraction spectra, viewed in Figure 31 are listed in Table 

5. 

 

 
Figure 31: X-ray diffraction spectra of 10 µM and 20 µM MBP with liposomes (DMPC:DMPG (1:1)). Mixing MBP 
with 1-3 mM gave several  Bragg peaks in the X-ray diffraction patterns. 10 µm and 20 µM concentrations of MBP are added 
as open and filled markers with DMPC:DMPG ratio of the bicelles being 1:1. A moving average, black line, has been plotted 
over each dataset. For clarity all dataset are offset and are not scaled to each other The synchrotron SAXD data were 
collected at PETRA III storage ring, DESY, Hamburg, Germany on beamline P12. 

 
Table 5: Calculated repeat distances for MBP with liposomes (DMPC:DMPG (1:1)). Mean repeat distances for induced 
Braggs peaks of mixing MBP with liposomes with given P/L ratio and concentration of bicelles and protein. The s-values 
corresponding to the intensity summit of each Bragg peak were used to calculate the repeat distances. Graphs of each P/L 
ratio is viewed in Figure 31. 

P/L ratio mM liposomes µM protein Repeat distance (nm) 
1:50 1 20 7.3 
1:100 2 20 7.4 
1:150 3 20 7.5 
1:300 3 10 7.8 
 
 
4.7.2 P2 wt and F57A induce highly ordered structures 
P2wt mixed with liposomes, of either concentration, did not induce any Bragg peaks. Diffraction 

spectra of P2wt with bicelles gave ordered repetitive structures with all concentration of bicelles with 

10 µM and 20 µM protein. 10 µM P2wt gave 1-4 Bragg peaks, with increasing number of peaks with 

increasing concentration of bicelles (open markers in Figure 32, Table 6). For the 20 µM samples, the 

two lowest proteins to lipid ratios (P/L ratio) gave two Bragg peaks at between 6-8 nm, in contrast to 

the 1:150 P/L ratio which induced 6 clear Braggs peaks corresponding to repeat distances from 3.5 to 
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7.3 nm, listed in Table 6. The first and second peak in each samples corresponded to the same repeat 

distances, while the last peaks for 1:300 and 1:150 P/L ratio gave a higher ordered structure. The 

highest concentration of bicelles and P3wt induced the highest order of repetitive structures (red filled 

markers in Figure 32), listed in Table 6 for 1:150 ratio.  

 
Figure 32: X-ray diffraction spectra of 10 µM and 20 µM P2wt with bicelles (DMPC:DMPG (1:1)). Mixing P2wt with 
1-3 mM gave several major Bragg peaks in the X-ray diffraction patterns. 10 µm and 20 µM concentrations of P2wt are 
added as open and filled markers with DMPC:DMPG ratio of the bicelles being 1:1. The sample with highest concentration 
of both bicelles and P2wt induced most Bragg peaks and corresponding repeat distances are listed in Table 6.A moving 
average, black line, has been plotted over each dataset. For clarity all dataset are offset and are not scaled to each other. The 
synchrotron SAXD data were collected at PETRA III storage ring, DESY, Hamburg, Germany on beamline P12. 

 
 
Table 6: Calculated repeat distances for P2wt with bicelles (DMPC:DMPG (1:1)). Mean repeat distances for induced 
Braggs peaks of mixing P2wt with bicelles with given P/L ratio and concentration of bicelles. The s-values corresponding to 
the intensity summit of each Bragg peak were used to calculate the repeat distances. Graphs of each P/L ratio is viewed in 
Figure 32. 

P/L ratio mM bicelles µM protein Repeat distance (nm) 
1:50 1 20 8.1 6.5 
1:100 1 10 8.0 
1:100 2 20 7.8 6.7 
1:150 3 20 7.3 6.5 5.2 4.6 4.1 3.5 
1:200 2 10 7.8 6.7 
1:300 3 10 7.5 6.7 5.3 4.2 
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The P2 F57A mutant induced Bragg peaks with bicelles and liposomes, except for the samples 

containing 2 µM protein with bicelles (not shown), independently of lipid concentration. All samples 

induced three Bragg peaks, listed in Table 7, except for the 1:50 ratio which only produced two Bragg 

peaks corresponding to 8.3 nm and 6.6 nm repeat distances (orange filled markers in Figure 33).  As 

seen for the Pwt, also the highest concentration of bicelles mixed with 20 µM proteins (1:150 P/L 

ratio) gave the highest count of Bragg peaks, total of 6, with the first peak corresponding to a mean 

repeat distance of 10.4 nm, which was not seen for any of the other protein-lipid composition. The 

peak is present in Figure 33 at 0.607 nm-1 for the red filled markers. Clearer and sharper peaks were 

seen for the 1:300 and 1:150 P/L ratio contrasted to 1 mM and 2 mM bicelles.  

 

 

 
Figure 33: X-ray diffraction spectra of 10 µM and 20 µM P2 F57A with bicelles (DMPC:DMPG (1:1)). Mixing P2 
F57A with 1-3 mM gave several major Bragg peaks in the X-ray diffraction patterns. 10 µm and 20 µM concentrations of the 
mutant are added as open and filled markers with DMPC:DMPG ratio of the bicelles being 1:1. 6 Bragg peaks were induced 
in the samples containing highest concentration of protein and bicelles (red filled marker). A moving average, black line, has 
been plotted over each dataset. For clarity all dataset are offset and are not scaled to each other. The synchrotron SAXD data 
were collected at PETRA III storage ring, DESY, Hamburg, Germany on beamline P12. 
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Table 7: Calculated repeat distances for P2 F57A with bicelles (DMPC:DMPG (1:1)). Mean repeat distances for induced 
Bragg peaks of mixing P2 F57a with bicelles with given P/L ratio and concentration of bicelles. The s-values corresponding 
to the intensity summit of each Bragg peak were used to calculate the repeat distances. Graphs of each P/L ratio is viewed in 
Figure 33. 

P/L ratio mM bicelles µM protein Repeat distance (nm) 

1:50 1 20 8.3 6.6 

1:100 1 10 7.9 6.3 4.9 

1:100 2 20 7.7 6.8 5.3 4.2 3.6 

1:150 3 20 10.4 7.3 6.6 5.2 4.1 3.5 

1:200 2 10 7.9 6.6 6.4 4.2 

1:300 3 10 7.6 6.8 5.3 4.3 3.6 

 

 

 

P2 F57A generated at least one Bragg peak in all liposome samples (10 µM and 20 µM shown in 

Figure 34), even those with only 2 µM protein (graph can be viewed in Appendix 8.6). All samples 

induced the first Bragg peak corresponding to a repeat distance between 7-9 nm and several with the 

second one being at 4.4-4.5 nm. The sharpest peaks were induced with the 3 mM bicelles, where the 

1:300 P/L ratio gave the most distinct peak (red open markers in Figure 34). The 1:100 P/L ratio 

(green filled makers) was the only sample that induced only one Bragg peak that corresponded to a 

mean repeat distance at 7.3 nm. The 1:150 P/L ratio containing 3 mM bicelles (red filled marker) 

induced two Bragg peaks, with the latter being of second order. 
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Figure 34: X-ray diffraction spectra of 10 µM and 20 µM P2 F57A with liposomes (DMPC:DMPG (1:1)). Mixing P2 
F57A with 1-3 mM gave two Bragg peaks in the X-ray diffraction patterns for most of the P/L ratios. 10 µm and 20 µM 
concentrations of the mutant are added as open and filled markers with DMPC:DMPG ratio of the liposomes being 1:1. 1:150 
P/L ratio (red filled marker) induced a peak of second order. The 1:100 P/L ratio with 20 µM protein (green filled marker) 
was the only sample inducing only one Bragg peak corresponding to 7.3 nm. A moving average, black line, has been plotted 
over each dataset. For clarity all dataset are offset and are not scaled to each other. The synchrotron SAXDdata were 
collected at PETRA III storage ring, DESY, Hamburg, Germany on beamline P12. 

 
Table 8: Calculated repeat distances for P2 F57A with liposomes (DMPC:DMPG (1:1)). Mean repeat distances for 
induced Bragg peaks of mixing P2 F57A with liposomes with given P/L ratio and concentration of bicelles. The s-values 
corresponding to the intensity summit of each Bragg peak were used to calculate the repeat distances. Graphs of each P/L 
ratio (except for 2 µM protein) are viewed in Figure 34. 

P/L ratio mM liposomes µM protein Repeat distance (nm) 
1:50 1 20 8.7 4.5 
1:100 1 10 8.6 4.4 
1:100 2 20 7.3 
1:150 3 20 8.8 
1:200 2 10 8.7 4.4 
1:300 3 10 8.7 4.5 
1:500 1 2 8.7 4.4 
1:1000 2 2 8.7 4.4 
1:1500 3 2 7.1 4.4 
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4.7.3 P0ct induced two Bragg peaks 
All samples containing P0ct and bicelles showed no Bragg peaks in the X-ray diffraction profile (not 

shown), only form factors.  20 µM P0ct induced two bright peaks when mixed with liposomes (Figure 

35), corresponding to a protein to lipid ratio of 1:50, 1:100 and 1:150 respectively. The mean repeat 

distances were calculated for the spectra and are listed in Table 9. All concentration of P0ct showed a 

repeat distance around 7.5 nm with a second peak around 1.6 nm-1. For the 1:150 P/L ratio the second 

peak can be of the second order of the first one.  

 
Figure 35: SAXD analysis of 20 µM P0ct mixed with different concentration of liposomes (DMPC:DMPG (1:1)). 
Mixing 20 µM P0ct with 1-3 mM gave two major Bragg peaks in the X-ray diffraction patterns. First peak corresponds to a 
repeat distance of 7.6 nm (± 1), while letter is of second order. A moving average, black line, has been plotted over each 
dataset. For clarity all dataset are offset and are not scaled to each other. The synchrotron SAXD data were collected at 
PETRA III storage ring, DESY, Hamburg, Germany on beamline P12. 
 
 

 Table 9: Calculated repeat distances for P0ct with liposomes (DMPC:DMPG (1:1)). Mean repeat distance for induced 
Braggs peaks of mixing P0ct with liposomes with given P/L ratio and concentration of bicelles. The s-values corresponding 
to the intensity summit of each Bragg peak was used to calculate the repeat distances. 
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4.8 Myelin protein shows stacking of lipids 
TEM was used to get a further understanding of binding between the proteins (MBP, P2wt and P0ct) 

to bicelles and liposomes. Proteins were mixed with an old batch (1 month old) or a new batch of 

bicelles to study the effect of storing lipids in ambient temperatures.  

 

MBP was mixed with either an old batch or a new batch of bicelles (1:22 P/L ratio). Large chunks of 

sample were seen all over the grid for the old batch, as viewed in Figure 36 (left). A closer look 

(zoomed image) revealed binding of MBP to the bicelles, making ordered strands of bicelles elongated 

throughout the lumps indicating possible fusing of the bicelles. Mixing with new bicelles, right image 

in Figure 36, did not show the same order of binding. Strands of bicelles binding together could not be 

seen.  

 
Figure 36: Transmission electron micrograph of MBP with old (left) and new (right) batch of bicelles (1:22 P/L ratio). 
Protein binding is visible when mixing with the old batch of bicelles (left). The sample was stained with 2% uranyl acetate 
before imaging.  TEM imaging was preformed using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging 
center (MIC), Department of Biomedicine, University of Bergen. 
 

TEM imaging of P2wt revealed excessive binding to the bicelles with 1:22 P/L ratio, Figure 37, with 

P2wt binding to the flat surfaces of the bicelles. Bicelles appears as white strings, which is a strong 

indication that P2wt binds to the flat surfaces of the bicelles. This was expected since the lipids resides 

on the surface while the detergent is on the sides. P2wt seemed to induce a more random binding than 

MBP. When imaging P2wt with liposomes, a 1:100 P/L ratio was used (Figure 38), and the 

micrographs  revealed no elevated binding compared to the bicelle sample. Most liposomes were not 

bound together, but some attachments were spotted between a few liposomes (Figure 38, right image). 

It might be because of the P/L ratio, which was highly increased compared to the P/L ratio in the 

bicelles. P2 sample with old bicelles was not imaged due to broken membrane.  
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Figure 37: Transmission electron micrograph of P2wt with bicelles (1:22 P/L ratio). Protein binding is evident with the 
clumps of bicelles all over the glow-discharged grids (white strings). 0.5 mg/mL P2wt was mixed with 0.5 mg/mL bicelles 
and incubated for 1 hour before imaging. The sample was stained with 2% uranyl acetate before imaging. TEM imaging was 
preformed using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging center (MIC), Department of 
Biomedicine, University of Bergen. 

 
 
 

 
Figure 38: Transmission electron micrograph of P2wt with liposomes (1:100 P/L ratio). Some binding might be seen 
with the liposomes sticking together. The sample was stained with 2% uranyl acetate before imaging. TEM imaging was 
preformed using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging center (MIC), Department of 
Biomedicine, University of Bergen 
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Binding of liposomes was seen when mixing them with P0ct (Figure 39). 1:100 P/L ratio was imaged 

and the micrographs indicates nicely binding of liposomes. Several liposomes could be seen sticking 

together confirming P0ct binding. P0ct did not induce aggregates in the same manner as MBP and 

P2wt, but rather elongated binding of the liposomes, revealing that the cytoplasmic tail of P0 have a 

lipid binding function, but do not aggregate lipid bilyers.  Samples containing bicelles had broken 

grids and no image could be taken from those samples.  

 

 

 
Figure 39: Transmission electron micrograph of P0ct with liposomes (1:100 P/L ratio).  Protein binding is evident with 
the clumps of liposomes. The sample was stained with 2% uranyl acetate before imaging. TEM imaging was preformed 
using a Jeol JEM-1230 (MedWOW) instrument at the molecular imaging center (MIC), Department of Biomedicine, 
University of Bergen. 

 
TEM images of only bicelles (1 mM sample) were taken as a control and to investigate how binding to 

protein changes bicelle appearance. The micrographs (Figure 40) displayed bicelles of varying size 

which did not stick together. Grids with and without glow-discharge was used to test the difference. 

The results showed that the glow-discharging was not needed for imaging bicelles. The micrographs 

were taken with 15k-80k magnification. 
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Figure 40: Transmission electron micrograph of only bicelles. Top images are without glow-discharge and the images 
below are with glow-discharged grids. TEM imaging was preformed using a Jeol JEM-1230 (MedWOW) instrument at 
the molecular imaging center (MIC), Department of Biomedicine, University of Bergen. 
 
 
The glow-discharged grids induced a lot of problems. Micrographs of many samples were not possible 

due to damaged membrane on the grids. It was clear that the glow-discharging step needed more 

optimization to  
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5 Discussion 
5.1 Successful purification of each protein 
Purification of each myelin protein, MBP, P2wt and the cytoplasmic tail of P0 (P0ct),  were performed  

after well-established methods (40, 60, 69). They all include at least one Ni-NTA affinity 

chromatogrphy which is a widely used method in purification of recombinant proteins with the use of 

a His-tag (154).  When monitoring each step of a purification process the important role of Ni-NTA 

chromatography and size-exclusion chromatography can be seen. Doing SDS-PAGE analysis from 

each step during and after the purification process is also a way to observe how the purification is 

going. The SDS-PAGE analysis of the collected fractions revealed fractions with pure proteins and 

some fractions with impurities. Each time, SDS-PAGE analysis was done after every affinity 

chromatography to check the present of the protein before continuing the process. By monitoring each 

step closely, purification of myelin proteins will end in pure proteins with good yields almost every 

time. The protocols used are optimized and well established, and the resulting pure proteins with high 

concentrations are a good identification of the reproducibility. If the yield varies a lot from each time 

or the protein aggregates during the purification process, then it is a sign of something not optimal.  

 

 

5.2 Co-sedimentation assay revealed no binding to lipid coated Fe3O4 and SiO2 
nanoparticles  

The Fe3O4 and SiO2 nanoparticles were coated with DMPA and DPPC through ODS. DMPA has a 

negatively charge head group while DPPC is zwitterionic with net neutral charge. The proteins MBP, 

P2wt and P0ct should therefore bind to the DMPA coated nanoparticles, while the DPPC coated ones 

was used as a negative control. The co-sedimentation analysis of either nanoparticle coated with 

DMPA with MBP, P2wt and P0ct revealed no or little binding. SDS-PAGE analysis revealed protein 

content in all samples (Figure 12) and no binding could not be due to lack of protein. In some of the 

SDS-PAGE analyses for both coated Fe3O4 and SiO2 nanoparticles, weak bands were visible in the 

pellet fractions with both DMPA and DPPC. This could indicate some binding, but it is probably due 

to supernatant still present in the pellet samples. When centrifuging protein-lipid mixtures, it is easy to 

see a pellet in the bottom of the tube hanging quite firmly to the bottom, which means that the 

supernatant can easily be removed and no band appear in the supernatant fraction. Trying to remove 

the supernatant from the centrifuged samples containing protein and lipid coated nanoparticles was not 

easy. The pellets did not stick to the plastic tubes and could simply be mixed with the supernatant 

again, which made it difficult to remove all supernatant from the pellets. The weak band seen in the 

supernatant fractions is possibly due to this problem and do not represent a binding between the 

proteins and nanoparticles. This is also confirmed with weak band appearing in the pellet samples 

from DPPC coated nanoparticles that should not bind to the proteins. Even so, if the proteins were 

bound to DMPA there should have been a strong band indicating this in the pellet fractions.  
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The reason for no protein binding must be the coated nanoparticles themselves and maybe the 

preparation methods used. Even though the protocol of how the ODS modified nanoparticles were 

coated with DMPA or DPPC were described, there are no description of how the solid Fe3O4 and SiO2 

nanoparticles were modified with ODS, so parameters influencing the modification cannot be checked. 

The SEM images provided by Professor Chaozhan Wang revealed that both Fe3O4@ODS 

nanoparticles (150 nm) coated with DMPA and DPPC were aggregated and aggregated dried 

nanoparticles can be also very hard to redisperse as individual nanoparticles. When both Fe3O4 and 

SiO2 coated nanoparticles were redispersed in buffer before co-sedimentation assay, they did not make 

a homogenous solution. Sonication by probe and water bath was tested to see if they dispersed 

homogenously, but the nanoparticles were still aggregated. The finished lipid coated nanoparticles 

were also dried in vacuum at 50 ºC, which may have damaged the lipid coating somehow. 

Aggregation of the particles might be due to rapid removal of water when drying them in vacuum, 

which have been seen before with lipid coated gold nanorods (155) and aggregation can have an effect 

on protein binding. After the co-sedimentations assays and two attempts to coat Fe3O4 with 

DMPC:DMPG with any improvement of protein binding, the decision was made to go over to gold 

nanoparticles.  

 

5.3 Color change of the gold nanoparticles indicated a lipid coating and protein binding 
There are many protocols for coating of gold nanoparticles (AuNPs) with lipids through thiol 

functionalization. Three protocols were tested with modification that matched the smaller AuNP 

volumes (1, 132, 153). Co-sedimentation assay did not indicate binding to the coated AuNPs. The 

many bands in the supernatant fractions reveal that the protein solution contains many degradation 

products, which are a result from standing on ice too long, but did not affect the assay since MBP was 

present in the solution and the controls that the co-sedimantion assay worked, with MBP binding to 

the DMPC:DMPG (1:1) liposomes and not to the bare AuNPs, which is expected. Since the AuNPs 

coated with protocol 3 had a strong colour change when MBP was added (Figure 18), further 

investigation of these nanoparticles was done with UV-vis spectroscopy and TEM.  

 
5.3.1 UV-vis spectra and TEM revealed partial coating of the AuNPs  
UV-vis spectroscopy of the lipid coated nanoparticles by protocol 3 (1) was done to investigate any 

red shift in the spectra, which would be indicative of a lipid coating of the AuNPs modified with 1-

octanethiol. A shift to a longer wavelength for the absorption peak indicates nanoparticles of increased 

size because of changes in the surface plasmon resonance, which is dependent on gold nanoparticle 

size (156).  When the raw data was normalized to peak maxima (Figure 20) a small red shift could be 

seen. The red shift of 4 nm might indicate the lipid coating of the particles but the spectra also 

revealed an increased base line at higher wavelength, which signifies aggregated nanoparticles. When 

gold nanoparticles aggregate the electrons at their surface becomes shared among neighbouring 
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particles. This result in a shift to lower energies for the SPR and absorbance peaks shift to longer 

wavelengths and the original peak will decrease in intensity (157). There was also a color change 

when the coating was applied. The bare AuNPs absorbs at 544 nm which is in the green spectrum of 

the visible light, which make the nanoparticles appear red because red is the complementary colour to 

green (125). The DMPC:DMPG coated AuNPs absorbs light at higher green wavelengths and to the 

naked eye appear more burgundy.  With increasing size of the nanoparticles the colour will shift from 

red to purple to blue before progressing to a clear solution. The magenta colour of the lipid coated 

AuNPs is also a sign of more aggregated solution. The shoulder with absorbance at 360 nm the UV-

vis spectra of the coated nanoparticles indicated that the lipids was present in the gold nanoparticle 

solution. Since the lipid coated AuNPs had an absorption spectra that had the same shoulder as the 

lipid mixture alone and a red shift with aggregates, which makes the solution more burgundy than red, 

the spectra indicated a DMPC:DMPG coating of the thiolated AuNPs, which was further confirmed 

with TEM. Old batch of coated AuNPs (Figure 21) could not be images with high resolution due to 

damage membrane on the glow-discharged grids. When the electron beam hits the sample the 

membrane might get damage due to the high temperature. When this happened the samples moved too 

much to take any high-resolution images. The micrograph of the stained coated AuNPs, revealed some 

bright rings around the nanoparticles (indicated by black arrows), which might be the DMPC:DMPG 

(1:1) coating. 20 nm gold nanoparticles have been successfully coated with other types of lipids 

confirmed with TEM. The lipid coating was determined to be 4-6 nm and caused a red shift in the UV-

vis spectra of 13 nm (158). Coating of the 80 nm AuNPs might have been partially completed only 

forming on some of the AuNPs, which could explain a partially red shift of 4 nm and the lipid coating 

only visible on some of the nanoparticles in the AuNP clusters. On the other hand, the gold 

nanoparticles coated by Kim et al. were clustered together by the lipid membranes causing the 20 nm 

nanoparticles to increase in size to 100 nm clustered aggregations of gold nanoparticles with 

surrounding lipids that also might explain the red shift of 13 nm. Whereas the coated AuNP, viewed in 

Figure 22, seems to have a lipid coating that encircles each nanoparticle individually which could 

cause a smaller red shift corresponding to smaller increased size of each single nanoparticle. When 

comparing the micrograph of the coated AuNPs to the bare ones (Figure 23) the coated AuNPs 

indicates more aggregations as they are more clustered together than the bare AuNPs. If coated 

correctly the negatively charge DMPG lipid should repel each other on adjacent lipid membranes and 

the AuNPs would not be aggregated. Diameter of the bare AuNPs were measured to be 75 nm and 

confirmed the size ordered from NanoComposix with some variation in size distribution.   

 

 

The pilot study with the nanoparticles indicates over all the functionalization of the nanoparticles need 

optimization together with the coating protocols. Functionalization of gold nanoparticles with thiols 

should be an easy process in theory due to the high bond strength between sulphur and gold. Since the 
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functionalization is caused by self-assembly it can be hard controlling the resulting size and control 

the complete replacement of already existing ligand shell (159), confirmed by this study. The coating 

could in this case only be verified by TEM, which revealed partial coating and not a complete coating.    

Even though thiol functionalization is common other types of stabilization can also be used to make 

inorganic nanoparticles more biocompatible. One other option is a coupling reaction using 1-ethyl-3- 

3-dimethylaminopropyl carbodiimide (EDC) and N-hydroxysulfosuccinimide (Sulfo-NHS), shortened 

to EDC-NHS covalent coupling. This technique requires carboxylated surface  to which for example 

protins can be covalently coupled to. A stable intermediate, Sulfo-NHS ester reacts with primary 

amines in the protein and forms a stable amide bond (160). This can be useful if one wants to study 

with TEM where the protein resides in lipid aggregated. Coupling to gold will give highly detectable 

samples in TEM since gold have high electron density. Several other methods that could be used are 

steric stabilization by polymeric ligands that can for instance increase circulation time in the blood, 

ligand exchange with the used of nitrogen-based ligands or ligand addition by adding a ligand on to an 

existing shell to introduce desired chemical groups (161). 

 

5.4 P0ct favours DMPC:DMPG over DOPC:DOPS liposomes 
Concentration dependency of P0ct to liposomes of DMPC:DMPG or DOPC:DOPS (1:1) was studied 

to see if there was any minimum level of lipids that was needed for binding of P0ct. Co-sedimentation 

assay was deduced and the SDS-PAGE was analysed. Most of P0ct resided in the supernatant in 

lowest ratio of P/L (1:0.5), but more is bound to the DMPC:DMPG liposomes than the DOPC:DOPS 

liposomes. Further indication of stronger binding to the DMPC:DMPG liposomes can be concluded 

with the stronger bands in the pellet fraction arised for the 1:1 and 1:2 P/L ratios, whereas for the 

DOPC:DOPS liposomes stronger bands did not become visible before the highest ratios of P/L is was 

used.  

 

The main difference between the two lipid compositions are that the DMPC and DMPG lipids have 

saturated lipid tails consisting of 14 carbons, while the DOPC and DOPS lipids are unsaturated in a cis 
conformation consisting of 18 carbons. The DOPC:DOPS mixture is already in a fluid disordered gel 

phase, with phase transition temperatures of -11ºC and -17ºC, respectively, while the DMPC:DMGP 

might be in a gel phase since their phase transition temperatures are higher (24ºC and 23ºC) (101), 

right above room temperature. This can have an effect on the binding of P0ct. The cytoplasmic tail of 

P0 resides in the MDL of compact myelin where the cytoplasmic leaflet of the lipid bilayers in 

concentrated with charged phospholipids (27, 56). For the co-sedimentation assay it seemed like P0ct 

favoured saturated lipids and binds more strongly to them than the unsaturated lipids. This have been 

deduced before where P0ct had the same affinity for both lipid mixtures but according to SPR 

measurements P0ct favoured certain lipids species where DMPC:DMPG accumulated more P0ct than 

DOPC:DOPS (69). Raasakka et al. also revealed that P0ct decreased the phase transition temperature 
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of DMPC:DMPG mixtures to 22.5 °C, which would mean that the P0ct modulates fluidity of the lipids 

and this in turn might increase the binding of the cytoplasmic tail. This bias towards the 

DMPC:DMPG lipid mixture would explain that the saturation levels occurring at lower P/L ratios for 

the DMPC:DMPG than for the DOPC:DOPS. Why the cytoplasmic tail behaves this way is not fully 

understood, but further investigation of full P0 protein and its domains might reveal new properties 

and the proteins full function in the myelin sheath.  

 

 

5.5 Differences in vesicle aggregation between liposomes and bicelles 
To investigate if vesicle aggregation of DMPC:DMPG (1:1) liposomes and bicelles had some 

differences due to either lipid composition or protein concentration, two types of turbidity assay were 

conducted; one with different ratios of DMPC:DMPG and one with increasing concentrations of 

protein.  

 

5.5.1 9:1 ratio of DMPC:DMPG caused delayed vesicle aggregation of bicelles  
For MBP and P2wt the biggest difference between bicelles and liposomes was in the 9:1 lipid ratio, 

where both had a jump in absorbance after 5 min, whereas P0ct did not induce the same jump. 

Absorbance of all 4:1 lipid ratios did decrease from 0 min indicating that vesicle aggregation occurs 

rapidly, but P2wt induced an increase in absorbance again after 10 min, which can indicate some 

delayed binding to the bicelles as this happened for both LUV and SUV bicelles, but it also show that 

P2wt generates a stability for the aggregates. The delayed aggregation of bicelles with 9:1 ratio can be 

due to the limited amount of charged lipid content that is needed for MBP and P2 to bind, which 

suggest that it take some time for the proteins to aggregate bicelles containing low amounts of 

negatively charged lipids and therefore causes the bicelles to precipitate later than the 4:1 and 1:1 

ratios. The overall lower absorbance in the absorbance spectra for MBP and P2wt indicated that MBP 

have a more immediate interaction to the bicelles and causes a faster precipitation. This is also verified 

by the fact that bicelle aggregation by MBP also reaches as steady state faster than aggregation by 

P2wt when comparing the absorbance spectra. P0ct with 9:1 ratios of DMPC:DMPG induced little 

aggregation with both LUV and SUV bicelles, and highest absorbance for the liposomes indicating 

some vesicle aggregation. MPB and P0ct did not induce any vesicle aggregation of the 1:0 liposomes 

indicated by the low absorptions. For the P2 with control, increased absorption could be detected after 

10 min for the LUV bicelles. Why this happened in unknown and the measurements should be done 

again to check the reproducibility. Measurements done with wavelength 660 nm induced similar 

results for all three proteins, indicating that bicelles and SUV bicelles do not differ much in term of 

vesicle aggregation.  
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5.5.2 Stronger vesicle aggregation is seen with increased concentration of myelin proteins 
With all of the proteins, MBP, P2wt and P0ct, the highest concentration of protein had the highest 

absorption level. The delayed aggregation that happened with the 9:1 lipid ratio was further confirmed 

for MBP with varying the concentration. The delayed aggregation seems to be concentration 

dependent where only high concentrations of MBP caused this effect. Vesicle aggregation happened 

after 5 min for the highest concentrations and the vesicle aggregation was stronger for the 10 µM 

sample, which indicated a fast and strong interactions with the bicelles dependent on concentration. 

7.5 µM of MBP also caused this pattern, but with lowered tubidity. P2 did not cause this effect with 

the 1:1 lipid ratio, revealing that the same aggregation might dependent more on lipid ratios for P2wt 

than protein concentration. P2wt also seems to prompt more stable aggregation of the bicelles 

compared to the liposomes, which decreased faster signifying that the liposome aggregates precipitate 

faster than the bicelles. The 10 µM sample of P0ct indicated some aggregation of the bicelles, but the 

absorbance is really low and this might be because the protein to lipid ratio is 1:500 in the 10 µM 

sample and that there is too little protein to cause any big aggregates of bicelles. The best protein to 

lipid ratio for P0ct seems to be 1:5 or 1:6 as indicated from the co-sedimentation assay. For both MBP 

and P2wt, the three highest concentrations indicated vesicle aggregation with the liposomes, withMBP 

induced more turbidity than P2wt, with more stability over time, whereas it is the other way around for 

the bicelle samples. It might be that MBP causes more stability in liposomes aggregates and P2wt for 

bicelle aggregates. This could then mean that there are some property differences between the proteins 

that makes one favour one over the other and vice versa. With both P2wt and P0ct one can observe 

some difference between the liposomes samples, but the absorbance is pretty low for all concentration 

so no strong vesicle aggregation was measured. 5 µM of MBP with liposomes decreases more rapidly 

than the highest concentrations. This might be due to the fact that 5 µM of MBP do not cause as big 

aggregates as the two higher concentrations because there is not enough protein to do it, and therefore 

precipitates faster. The three highest concentration of P2wt is quite similar to each other in respect of 

the absorbance, which might signify that 5 µM P2wt is enough to cause aggregation of liposomes in 

this analysis. P0ct have some absorption for the liposome samples with the 2.5 µM sample causing 

highest absorption. This might indicate some vesicle aggregation of the liposomes, but probably is a 

result of faulty pipetting. The liposome content in the vesicle aggregation measurements are really 

high compared to P0ct protein concentration and one would except that the highest concentration of 

P0ct would have highest turbidity as seen for the other proteins and for the P0ct with bicelles.  

 

5.6 Orientation differences of P2wt with bicelles and liposomes 
SCRD was done to check for differences in P2wt conformation and orientation when bound to 

liposomes or bicelles. In water and with DMPC bicelles the conformation and orientation is in 

agreement with earlier SCRD measurements with a well-defined β-sheet structure (38, 52, 53). The β-

sheet structure is consistent with the positive peak at 195 nm and a negative peak at 218 nm (Figure 
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29). P2wt remains in a β-sheet structure independently of binding to bicelles or liposomes with the 

different lipid ratios, but the spectra clearly changes when P2wt is bound to lipids. Changes in the 

SCRD spectra have been seen before and it is thought to stem from a partial unfolding if the α-helical 

lid, which is known to interact with the charged lipid head groups in lipid bilayers (38, 53). The 

spectra changes with the different lipid ratios, with the 9:1 ratio in bicelles inducing least change 

indicating that there is not enough negative charge for P2wt to bind and therefore it did not change the 

overall structure. Bicelles also resembles a native bilayer more than the liposomes being flat and not 

spherical. 1:1 lipid ratio of both bicelles and liposomes seems to change the spectra almost similarly 

and no big difference can be seen between those two. 4:1 lipid ratio of the bicelles lies between the 1:1 

and 9: ratio in the SCRD spectra, which could be expected since the amount of negatively charged 

lipids is the double of the 1:9 ratio. If SCRD measurements could was done other protein-to-lipid 

ratios for example with ratios with enough 9:1 lipids like 1:500 or 1:1000, it might cause the same 

change in the structure as low amount of 1:1 lipids. It is clear the both liposomes and bicelles induce 

an effect on the secondary structure of P2wt and that the effect changes with different lipid ratio, but 

what really happens is not fully understood.  TEM could maybe be used to study the different effects 

of the model membranes in more detail. TEM samples could be prepared with the same ratios used for 

the SCRD measurements, and maybe one could get some indication of different aggregation states or 

the morphology of the aggregates. Atomic force microscopy would probably also be interesting. 

Gaining information of the surface layers to see if something changes between the lipid compositions 

and between the P2wt and the mutant could be interesting information together with the SAXD data.  

 

5.7 Bicelles induced highly ordered structures when bound to P2wt and P2 F57A 
SAXD measurements were done to investigate if the myelin proteins MBP, P0ct, P2wt and the mutant 

P2 F57A produced bicelle and liposome aggregates with distinct repeat distances, and if there were 

any difference in how ordered the structures were between liposomes and bicelles. Bragg peak 

corresponding to a repeat distance of 7-8 nm was present in the SAXD data from MBP bound to both 

bicelles and liposomes. This Bragg diffraction has been observed before for the 1:100 P/L ratio (40). 

There is a lot of error in some of the diffraction spectra, and the reason is the large aggregates MBP 

forms that do not diffract very well. For correctly confirming Bragg peaks the system needs more 

optimization and testing several P/L ratio to see if some diffract better without large deviations. Both 

P2wt and P2 F57A induced bicelle aggregates with several repeat distances, indicating that highly 

ordered structures were induced for the highest concentration of protein and bicelles, 20 µM and 3 

mM respectively (Figure 32 and Figure 33). P2wt and the mutant induced highly orders structures 

with the bicelles where the ordered increased with increasing concentration. This property might be 

due to the fact that P2 is folded and well defined, together with the cryo-EM revealing spacing 

between the proteins in lipid bilayers. MBP on the other hand, makes meshwork of protein in between 

the lipid bilayers not ordered spacing as with P2 (40), which might be physiologically relevant 
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property where MBP keeps the membrane spacing more constant increasing the stability of the myelin 

sheath, while P2wt gives fluidity to the membrane and at the same time somewhat stability and 

compaction.  

 

P0ct induced no aggregation with the bicelles, but induced Bragg peaks with liposomes when the 

protein concentration was 20 µM, corresponding to a repeat distance of around 7.6 (± 1) nm which 

have been seen before for the P/L ratios 1:50 and 1:100 (67). The increase in intensity of the peaks 

together with the shift in momentum transfer (s) is nearly linear to increase in P/L ratio, which 

indicates a concentration dependency in inducing ordered structures. The strong peaks in the 

liposomes sample indicate that there are a lot of repetitive structures and something changes with the 

structure since the peaks changes with P/L ratios. The shorter peak was first thought to be the second 

order of the first one, but unpublished data (not viewed) might reveal that this is most likely not the 

case with the second peak since both peaks changes with protein-to-lipid ratio and does not seem to be 

linked to each other. That the cytoplasmic tail of the P0 protein incudes Bragg peaks confirms that is 

having a lipid binding property, but exactly what these structures are is not known and needs to be 

studied more. The fact that P0ct did not bind bicelles might indicate that the cytoplasmic tail of P0 can 

stack them even if it can bind them. This might mean that bicelles have a curvature that fits poorly 

with P0ct. They are flat and thin while liposomes are spherical.  

 
When looking at the repeat distances found, several of them corresponds well to repeat distances 

found using Cryo-EM (Figure 53 in Appendix 8.5).  All proteins tested here induced repeat distances 

between 7-9 nm, with P2 F57A being the only one with the repeat distance up to 9 nm.  It is known 

that P2 forms tight stacking of lipid bilayers and the 7-8 nm corresponds with a repeat distance equal 

to the size of the a protein bound to a lipid bilayer, which is around 8 nm, viewed in Figure 53.  The 

repeat distance in both MBP and P0ct samples indicate that they also tightly bind lipids in the same 

fashion with no big difference in the repeat distance. This particular repeat distance of 7-8 nm seems 

to be overall a few nm shorter for the bicelle aggregates than for the liposomes independent of protein, 

which might indicate a tighter compaction of the bicelles. The most interesting findings were with 

P2wt and the mutant, where both induce highly ordered structure when binding to bicelles. The 1:150 

P/L ratio both induced 6 Bragg peaks corresponding to almost identical repeat distances. Let’s start 

with P2wt and the known repeat distances from cryo-EM. The 1:150 P/L ratio induced Bragg peaks 

corresponding to repeat distances from 7.3 nm to 3.5 nm. 7.3 nm is established as the repeat distance 

corresponding to the length of a protein bound to a bilayer. It is a little shorter than 8 nm, which might 

reveal that P2wt stacks bicelles tighter than liposomes. The repeat distances of 4.6 nm and 4.1 nm 

correspond to the distance over a single bilayer and the distance between to proteins, as viewed in 

Figure 53. The smallest repeat distance found with P2wt was 3.5 nm, which is exactly the diameter of 

the P2wt protein. The repeat distances of 7.3 nm, 4.1 nm and 3.5 nm was also seen with the mutant 
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with same P/L ratio, so one might assume that they corresponds to the same lengths as they are 

identical, which probably is the case. Then, for P2wt there were two repeat distances with unknown 

origin, 6.5 nm and 5.2 nm respectively. These are also seen with the mutant with repeat distance of 6.6 

nm and 5.2 nm. These are probably repeat distances in bicelle stacks that do not contain any protein. 

One of the repeat distances might be the distance over two bicelles aggregated together, but this is not 

known. The P2 F57A also induced a Bragg peak corresponding to the repeat distance of 10.4 nm, 

which was not seen in any other sample. This distance might be the distance over bicelles with 

proteins in between, dimeric species . From the Cryo-EM image one can see that this distance with 

liposomes is at 12.5 nm. If the 10.4 nm corresponds to this distance it would mean that the bicelle 

aggregates form tighter stacks than liposomes and decreases the repeat distance with 2.1 nm, which is 

a good indication of closer packing of bicelles than liposomes. The repeat distance of 7-8 nm was seen 

in all samples with induced Bragg peaks, but for the P2 F57A mutant this same distance was on 

average over 8 nm with the largest increase in the liposome samples. Previous studies of the difference 

between the P2wt and P2 F57A mutant have indicated some difference in vesicle aggregation kinetics 

and binding kinetics deduced with SPR and vesicle aggregation assays (60). The slight increase in the 

repeat distance for the mutant might further reveal that the Phe57 mutation causes some effect that 

affects the proteins interaction with the liposomes. Using TEM here would also be interesting, seeing 

in the Phe57 mutation maybe confirming some of the same aggregations properties to bicelles as 

P2wt. 

 

 

5.8 TEM imaging reveals the stacking of bicelles 
The get a clearer understanding of how MBP, P2wt and P0ct bind bicelles compared to liposomes, 

TEM imaging was done. Samples were made of bicelles and liposomes with and without protein. 

From the micrographs one could clearly see a difference in how MBP and P2wt binds and stacks the 

bicelles. MBP seems to induce strings of bicelles with MBP in between (Figure 36), while the 

micrograph of P2wt with bicelles revealed a more disordered stacking, as viewed in Figure 37. 

Aggregates of bicelles induced by MBP could only be seen in big lumps, and MBP clearly forms 

strings of bicelles, which might indicate that MBP fuses the bicelles together forming long strands of 

relative flat bilayers. Flatting of the curvature have been seen before when doing cryo-EM of MBP 

with liposomes (40).  Together these findings support the theory that MBP forms meshworks inside 

lipid bilayers. The fusing of bicelles was not seen with P2wt, rather more disordered aggregates 

(Figure 37). The difference seen between MBP and P2wt in how they aggregate bicelles further 

confirms that they stack bicelles differently where MBP might have a more important function in 

myelination since is seems like that the protein can change the morphology of a system. P2 could be 

more important after myelination is completed providing support to the system only after the myelin 

structure if formed. The 1:100 P/L ratio of P2wt did not show excessive aggregation of liposomes, 
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where most of the liposomes did not show any indication of protein interactions. This is very different 

from earlier TEM micrographs done of P2wt with DMPC:DMPG (1:1) liposomes, where there is clear 

aggregation and stacking of liposomes (38). In that study they used the 1:22 P/L ratio, which increases 

amount of protein compared to lipids, which might be the reason for not seeing similar aggregations 

with 1:100 P/L sample, but this ratio should be enough to cause vesicle aggregation so the poor 

binding seen in micrographs might be due to something else happening for example during sample 

preparation.  Comparing the bicelles samples to the control (Figure 40), both MBP and P2wt changes 

the bicelle curvature into somewhat ordered protein-membrane structures, with more ordered 

structures formed by MBP than P2wt.  The control also revealed that the bicelles had different sizes, 

where one bicelle had a diameter of 170 nm (not shown). This might explain the more tangled 

aggregation to P2wt, making it possible for the bicelles to bind to P2wt in a chaotic manner. P0ct 

clearly show binding to liposomes (Figure 39), but do not stack or aggregate them in the same manner 

like MBP and P2 (38, 40). Instead, P0ct seems to form elongated filaments of multiple liposomes 

without tight compaction. This P0ct behaviour is in agreement with previous studies of the 1:100 P/L 

ratio (69), causing similar filaments in the micrographs viewed here. It is important to remember that 

P0ct it only the cytoplasmic tail of the P0 protein, and that P0ct alone do not have the same properties 

as the protein itself, but the tail causes some form of structured membrane binding with similar 

properties as MBP.  Comparing micrographs of the wild type proteins to point mutation linked to 

CMT or MS would maybe indicate some disturbed balance which can be a mechanism in the diseases. 

For MBP would be interesting to compare to the C8 isoform of MBP, which is found to be in 

increased amount in MS (79). Or point mutations in the cytoplasmic tail of P0 and the P F57A mutant, 

or other point mutations in P2wt linked to CMT.  TEM is a nice tool to use to visualize the things 

observed in the other methods. T-cells could also be a constituent of the sample and see if that changes 

the morphology of the MBP induced aggregates.  

 

The grids used for TEM had several problems, which made several samples impossible to investigate 

with the TEM microscope and photographed. Samples that were damaged were MBP and P2wt with 

liposomes (1:22 P/L ratio) and P0ct with bicelles. The carbon coated copper-grids had a thin 

membrane film applied before glow-discharging. One theory for the problems is that the glow-

discharging somehow damaged or dried out the membrane, so when the electron beam hit the sample, 

the membrane was to fragile and cracked causing the grids to become useless. Therefore, the last 

samples were the control with only bicelles (Figure 40) with and without glow-discharging, to see if 

TEM microscopy could be conducted without glow-discharging the grids. The top micrographs 

viewed in Figure 40 were without glow-discharge and clearly indicated that the sample can be 

investigated. The grid with the liposome control was also damaged. And due to little time no further 

sample preparations were done.  
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5.9 Discussion summary 
None of the myelin protein studied in this thesis indicated binding to either of the lipid coated Fe3O4 

and SiO2 nanoparticles. As thiol functionalization of AuNPs is a common method to further coated 

them with lipids, three protocols for lipid coating and thiol-functionalization were modified and tested 

in this thesis. Induced colour changes by MBP together with the UV-vis spectra and TEM indicated 

partial coating of the nanoparticles, but it was clear from this pilot study that the protocol needs more 

optimization to get a complete lipid coat of each membrane without aggregation. Future research on 

this would be to continue the optimization of the thiol-functionalized gold nanoparticles and at the 

same time try the EDC-NHS protocol, to compare the results and see if one is easier to implement. 

One could also try to make the gold nanoparticles themselves. Then difference sizes of nanoparticles 

can be tested to see if a size works better with the specific myelin protein than others and one could try 

to coat with different lipid composition and ratios to check for variability. Optimization of how to 

functionalize nanoparticles in the best possible way is needed to get further with using nanoparticles in 

the study of the myelin sheath.  

 

Further investigation of protein-lipid interactions revealed that P0ct seems to favour saturated lipid 

mixtures over unsaturated ones with the need of higher lipid concentrations of DOPC:DOPS when 

testing different protein to lipid ratios. This hypothesis has been deduced before and this experiment 

was a profound conformation of this assumption (69).  

 

As expressed in the introduction, liposomes have been used for several years as a model mimicking 

the lipid bilayers in the myelin sheath. Bicelles is becoming more popular as a model and several 

methods were used to combine exploration of both protein-membrane interactions and to look at 

possible differences between the two model membranes. Turbidimetry assays provided data about the 

proteolipid aggregate stability when myelin proteins were mixed with either bicelles or liposomes. The 

delayed aggregation of bicelles seen with P2 and MBP might be a function of the flat bicelle form. 

Several turbidity measurements could be conducted to see if these patterns continued to appear. If 

these revealed similar results, one could study vesicle aggregation from begging to the end, literally. A 

problem with turbidimetry is that the samples starts to aggregates from the minute the proteins are 

applied to the lipids, which mean if one have several sample the first sample might be done with the 

aggregation before the last samples. If bicelles delays this then one could also watch the formation of 

the vesicle aggregates that might give some new information about how fast the myelin proteins forms 

aggregates. Turbidity measurements also indicated that P0ct don’t bind very well to the bicelles. This 

can be due to the bicelle form, even though they resembles very well the lipid bilayers found in 

myelin, the function of the cytoplasmic tail is not yet understood although it is known to have lipid 

binding properties, which further SAXD and TEM indicates, P0ct bound to the liposomes in SAXD 

but not to the bicelles. One could postulate that bicelles works very well as model membranes for 
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MBP and P2wt as confirmed with turbidity and TEM. SAXD revealed that bicelles work especially 

well for P2wt and the mutant when studying repeat distances in aggregates. 6 peaks were found in 

both P2wt and P2 F57A where several of the repeat distances do not correspond to any distances 

found before with cryo-EM, this indicates something special for the bicelle aggregates.  

 

SCRD measurements revealed that the secondary structure of P2wt changes in contact with both 

bicelles and liposomes. Increased change in the SCRD spectra was seen with decrease in lipid ratio, 

with 9:1 lipid ratio in bicelles induced least change. Apart from that, no big difference could be seen 

comparing bicelles to liposomes. TEM could maybe be used to study the different effect of the model 

membranes. TEM samples could be prepared with the same ratios used for the SCRD measurements, 

and maybe one could get some indication of different aggregation state or the morphology of the 

aggregates.  

 

TEM imaging was the last method used during this thesis to visualize the protein-membrane 

interactions investigated in experiments used. A lot of problems occurred due to the glow-discharging. 

Control of the bicelles indicated that glow-discharging might not be needed for biological samples. 

This have to tested with protein-lipid samples to check if the same structures can be seen without 

glow-discharging. If so, then it will not be necessary to that step and maybe the membranes on the 

grids are more stable making it easier to investigate the samples.  

 

6 Conclusion and future research 
MBP, P2wt and P0 are important proteins with distinct properties to hold and compact the lipid 

bilayers in the myelin sheath giving it its insulation properties that facilitates rapid signal conduction 

in the nervous system. Disturbed myelin homeostasis or point mutation can lead to demyelinating 

diseases like MS and CMT. To understand disease etiology and how to possibly treat these disease one 

first have to understand the functions of the involved proteins and how they interaction with lipid 

bilayers by using membrane-mimics.  

 

Protein interactions with the two different lipid membrane-mimics were studied with many different 

techniques. Turbidity proved to be a simple way of obtaining information about how the protein 

induced aggregation of the different models indicating lagged aggregation of the bicelles mixed with 

MBP and P2wt. MBP induced the same pattern with higher concentration, Pwt and P0ct did not. This 

have to be further studied to confirm the findings from this thesis and to check reproducibility of the 

samples. Changes in the secondary structure of P2wt were indicated by the SCRD measurements, but 

no big difference could be seen between the bicelles and liposomes. To further study the interactions 

one could conduct thermal stability measurements of the proteins when bound to liposomes and 
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bicelles to see if the form of the membrane-mimics induce some unique effect that can be attributed to 

the difference of the curvature. Collected SAXD data revealed highly ordered structure of the P2wt 

and mutant, which is very interesting to study in the future with several methods like thermal stability 

and differential scanning calorimetry to see if the phase transition temperature differ between the 

membranes, but also if the bicelles increases or decreases the Tm compared to liposomes. Variation 

size of the bicelles could also be examined to see if there are minimal size required to induce 

aggregation. TEM confirmed a difference between bicelle aggregates induced by MBP and P2wt, 

where MBP formed fused ordered structure while P2wt induced random aggregates.  This might 

reveal an important contrast in the properties of the two myelin proteins in how they affect stacking of 

bilayers. Cryo-EM would be interesting to use in the future to study the differences caused by the two 

membrane-mimics. Cryo-EM could reveal something about how the proteins resides in the bicelle 

aggregates and take a closer look on how the aggregates themselves look like, maybe some distances 

could be deduced that fits the repeat distances found with SAXD.  P0ct does not seem to bind bicelles 

as well as liposomes. This could signify that bicelles are not a good model to use when studying P0ct, 

but it might work better with the full-length P0.  

 
The pilot study with the nanoparticles revealed that the gold nanoparticles had some form of coating, 

indicating a partial coating of the nanoparticles. The coating protocols used here needs modifications 

to work and one could also try EDC-NHS coupling of carboxyl groups instead of thiol 

functionalization to see if that works better.  Maybe different lipid mixture works better than the one 

used here. MBP protein with a His-tag will bind gold nanoparticles and this can be used in TEM to 

visualize where MBP resides in lipid aggregates. It would be interesting to examine this in relation to 

the fused bicelle strings. SPR could also be conducted with bicelles vs. liposomes and eventually with 

gold nanoparticles if lipid coating works successfully.  

 

Further research is necessary to get a deeper understanding of how these proteins interaction with lipid 

membranes. A next step could be to examine the proteins together and not separate, since they operate 

together in native myelin. Bicelles seem to work as an equally good model membrane as liposomes 

and in some experiments, like SAXD, works better resembling the native lipid bilayers. It would be 

appealing to test bicelles of other proteins mixture, like adding cholesterol or other lipids found in the 

myelin. The changes would maybe reveal something new about the protein-membrane interactions 

induced by the different myelin proteins. The lipid coated gold nanoparticles need more optimization 

before investigating them together with myelin proteins and lipid bilayers.  
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8 Appendix 
8.1 Expression and purification of P2 F57A 
 
As stated in results paragraph 3.1.3 P2wt and P2 F57A the mutant type of P2 was not purified during 

this master project but in the course BMED325 Cellular biochemistry and nanobiochemistry and Arne 

Raasakka purified the protein used in this project.  

 

 

 
Figure 41: SDS-PAGE analysis of P2 F57A Ni-NTA affinity chromatogram. 1st (right) and 2nd (left) Ni-NTA affinity 
chromatographs are shown. Sample legend: 1st Ni-NTA: M; Marker, 1; Soluble fraction, 2; Unbound fraction, 3-4; Wash 
fractions, 5-7; elution fractions. 2nd Ni-NTA: 1; elution fraction from 1st Ni-NTA with TEV protease, 2; TEV protease treated 
elution fraction (overnight dialysis), 3; pooled unbound and wash fraction and 4; elution fraction. The known molecular 
weight (kDa) of the marker is specified in the figure. (Pictures reprinted and modified with approval from Arne Raasakka).  

 
 
Purification of P2 F57A have the same steps as for P2wt and Figure 41(right image indicated with an 

arrow) shows that after overnight TEV protease digestion the protein got cleaved of from the His6-tag 

and left a quite pure protein in the collected unbound and washing fractions. These fractions were 

pooled and concentrated before running size exclusion chromatography (SEC) using a HiLoad 16/60 

Superdex 75 gel filtration column coupled to an Äkta Purifier system with a 2 mL loop. 1 mL fractions 

were collected around 68-82 mL where the peak is expected with a buffer containing 20 mM HEPES 

(pH 7.5) and 150 mM NaCl.  
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Figure 42: SDS-PAGE analysis from size exclusion chromatography of mutant P2 F57A. 1 mL fractions were collected 
at approximately 68-82 mL and samples were analysed on SDS-PAGE to check the purity before concentration were 
calculated using NanoDrop 2000 spectrophotometer and know extinction coefficients found using ProtPara. Sample legend: 
M; Marker, I; concentrated protein (before SEC), 14-24; fractions collected at expected peak in SEC. The known molecular 
weight (kDa) of the marker is specified in the figure. (Pictures reprinted and modified with approval from Arne Raasakka).  

 
 
The purity of the protein was good as viewed in Figure 42. The bands correlates with the know 

molecular weight of P2 F57A which is 14.9 kDa. Fractions were pooled and concentrated (Amicon 3k 

MWCO centrifugal filter) to reach a high yield of protein (3.29 mg/mL). Concentration of the protein 

were calculated using know extinction coefficients (ProtParam) and NanoDrop 2000 

spectrophotometer. Yield and concentration are listed in Table 1.  

 

 
Table 10: Extinction coefficients and yield for P2 F57A. P2 F57A was expressed in E. coli (Rosetta(DE3)) and purified 
using Ni-NTA affinity chromatography and size exclusion chromatography (SEC). Concentration and yield of the protein 
was calculated using NanoDrop 2000 spectrophotometer and extinction coefficients found on ProtParam. The yields of the 
P2 F57A are shown together with known extinction coefficients and molecular weight. 

 mg/mL Concentration 
(μM) 

Abs 0.1% 
(A.U) 

ε (M-1cm-

1) 
Molecular weight (MW) 
(Da) 

P2 F57A 3.29 221 0.939 13980 14890.34 

 
 
8.2 SEM images of iron(II,III)oxide and silicon dioxide nanospheres from collaborator 
Chaozhan Wang (Ph.D. Professor of Chemistry) provided scanning emission electron (SEM) images 

of the nanoparticles before they were sent to us. Below are the images from the different nanoparticles 

listed in Table 1 in Methods and materials 2.4.2 Iron(II,III)oxide and silicon dioxide. Fe3O4@SiO2-

ODS-DMPA and Fe3O4@SiO2-ODS-DPPC with 10 nm size cannot be viewed clearly with SEM as 

the particle size is too small and the transmission scanning electron facility at College of Chemistry 

and Materials Science, Northwest University, is not allowed to be used for magnetic samples, so no 

further images were taken of these particles.  
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Figure 43: Scanning electron micrograph of Fe3O4@ODS-DMPA nanoparticles with size 10 nm. The nanoparticles 
cannot be clearly viewed as the size is too small for good SEM images. Figure reprinted from Chaozhan Wang (Ph.D. 
Professor of Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, China.  

 

 
Figure 44: Scanning electron micrograph of Fe3O4@ODS-DMPA nanoparticles with size 150 nm. Figure reprinted from 
Chaozhan Wang (Ph.D. Professor of Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, 
China. 
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Figure 45: Scanning electron micrograph of Fe3O4@ODS-DPPC nanoparticles with size 10 nm. The nanoparticles 
cannot be clearly viewed as the size is too small for good SEM images. Figure reprinted from Chaozhan Wang (Ph.D. 
Professor of Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, China. 

 
 
 

 
Figure 46: Scanning electron micrograph of Fe3O4@ODS-DPPC nanoparticles with size 150 nm. Figure reprinted from 
Chaozhan Wang (Ph.D. Professor of Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, 
China. 
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Figure 47: Scanning electron micrograph of SiO2@ODS-DMPA nanoparticles. Figure reprinted from Chaozhan Wang 
(Ph.D. Professor of Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, China. 

 

 

Figure 48: Scanning electron micrograph of SiO2@ODS-DPPC nanoparticles. Figure reprinted from Chaozhan Wang 
(Ph.D. Professor of Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, China. 
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8.3 UV-VIS spectra of 80 nm gold nanoparticles normalized to 300 nm 
 

 
Figure 49 UV-VIS spectra of bare AuNPs and coated AuNP (Au@thiol-PC:PG) normalized to 300 nm. To check a 
possible coating of the coated AuNPs the UV-VIS spectra was measured with a wavelength ranging from 300 nm to 900 nm, 
with step size = 2 and number of flashes was 25. DMPC:DMPG (1:1) was used as a control. The AuNPs are coated with 1-
octanethiol and DMPC:DMPG (1:1) The data is normalized to 300 nm. A bump at 360 nm can be seen in the spectra. The 
coated gold nanoparticles have lower absorbance, red shift of 4 nm and elevated base line indicated increased size and 
aggregates in the solution. 

 
 
 
 
 
8.4 Vesicle aggregation 660 nm  
 
Vesicle aggregation between myelin proteins (MBP, P2wt and P0ct) with varying ratios of bicelles 

and liposomes were measured at both 450 nm and 660 nm. The results for the 450 nm wavelength are 

shown in Results 3.5. The data from measuring at 660 nm is shown here. In short: vesicle aggregation 

were tested with constant concentration of protein (0.5 mg/mL) mixed with different ratios of 

DMPC:DMPG, bicelles and liposomes, 9:1, 4:1, 1:1 and 1:0 respectively, where 1:0 ratios were used 

at a negative control. The assay was done over 30 min with a temperature being 30 ºC. 
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Figure 50: Vesicle aggregation with different ratios of DMPC:DMPG with MBP. Measured absorbance over 30 minutes 
with constant concentration of P2wt and different ratios of DMPC:DMPG in liposomes and bicelles. A) 9:1 ratio, B) 4:1 
ratio, C) 1:1 ratio and D) 1:0 ratio as negative control. Absorbance measured at wavelength 660 nm at 30ºC. 

 
 
 

 
  

 
 

 
 

 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
Figure 51: Vesicle aggregation with different ratios of DMPC:DMPG with P2wt. Measurement of absorbance over 30 
min with constant concentration of P2wt with bicelles, SUV bicelles and liposomes with different ratios of DMPC:DMPG. 
A) 9:1 ratio, B) 4:1 ratio, C) 1:1 ratio and D) 1:0 ratio as negative control.  Absorbance measured at wavelength 660 nm at 
30ºC. 
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Figure 52: Vesicle aggregation with different ratios of DMPC:DMPG with P0ct. Absorbance measured over 30 minutes 
with constant concentration of P0ct (0.5 mg/mL) with different ratios of DMPC:DMPG in bicelles, SUV bicelles and 
liposomes. A) 9:1 ratio, B) 4:1 ratio, C) 1:1 ratio and D) 1:0 ratio as negative control. Absorbance measured at wavelength 
660 nm at 30 ºC. 

 
 
8.5 Cryo-EM images of P2wt in bilayers 
 
 

 

 

 

 

 

 

Figure 53: Cryo-EM images of P2wt bound to lipid bilayers. Cryo-EM images of P2wt bound to lipid bilayers with 
selected repeat distances viewed. Reprinted from unpublished data from Salla Ruskamo 
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8.6 SAXD measurements 
All samples with 2 µM P2 F57A mixed with 1-3 mM liposome induced two Bragg peaks, as seen in 

Figure 55. For the samples with 1 mM and 2 mM the peaks corresponds to mean repeat distances of 

8.7 nm and 4.4 nm. The 3 mM samples (1:1500 P/L ratio) had peaks corresponding to repeat distances 

of 7.1 nm and 4.4, respectively.  

 

 
Figure 54: X-ray diffraction spectra of 2 µM P2 F57A with liposomes. Mixing P2 F57A with 1-3 mM gave several major 
Bragg peaks in the X-ray diffraction patterns. 2 µM concentrations of the mutant are viewed as filled markers with 
DMPC:DMPG ratio of the bicelles being 1:1. A moving average, black line, has been plotted over each dataset. For clarity all 
dataset is offset and is not scaled to each other. The synchrotron SAXD data were collected at PETRA III storage ring, 
DESY, Hamburg, Germany on beamline P12. 
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8.7 Basic theory behind the different techniques 
8.7.1 Protein purification 
8.7.1.1 Optical density 
When a bacteria cell culture grows, it grows by cells dividing into to daughter cells. When this 

happens over time, the growth medium goes from being clear to very turbid as a result of increasing 

cell concentration.  Bacterial growths have different phases; lag phase, log phase, stationary phase and 

a death phase. The lag phase is where the cells adapt to the medium, matures and don’t divide. Log 

phase is characterized by cell doubling. Bacteria divide into two daughter cells, and doubling of 

existing population will continue until the media runs out of nutrients. When the waste is the media is 

increasing with decreasing nutrients, cell both divide and die at the same rate. It is called the stationary 

phase and it is a small period before death phase. The last phase is characterized by bacteria death, no 

cell division happens. When bacterial cells are cultured, optical density is measured to get information 

about when the cell culture is in the log phase, they only divide and there is no cell death. By using 

optical density one can monitor the growth phases and stop bacterial expression before death phase 

(162) 

 
8.7.1.2 Ni-NTA 
When purifying proteins mentioned in this thesis, Ni-NTA affinity chromatography is used to separate 

wanted protein from all the other proteins in the lysate. It is done so by peptide affinity tags, which is 

this case is a hexahistidine tag (His6-tag). In the expression vector the polyhistine tag is added onto the 

target gene, the gene coding for the protein. After expression of the protein is done, the cell culture 

gets lysed. The cell membran is broken down by high sound waves with frequencies of 20 kHz or 

higher, called sonication (163). The lysate contain all of the insides of the cells with the wanted 

protein being among them. Ni-NTA affinity chromatography is out of several chromatographs 

collectively called immobilized metal-affinity chromatography (IMAC) that is based on the interaction 

between a metal ion (Co2+, Ni2+, Cu2+, Zn2+) immobilized on a matrix and a specific amino acid side 

chain. The Ni-NTA is coupled to a solid resin which coordinates Ni2+ through for coordination sites 

and leaves two sites exposed which can bind to the His6-tags (164). When the lysate runs through the 

matrix the hexahistidine tags binds to the free coordination site on the nickel ion while most of the 

untagged proteins runs through, some might bind weakly. The lysate fraction is re-added several times 

to get as much of the wanted protein to bind to the metal ions. The target protein is then retrieved by 

an elutant, often imidazole which also binds to the Ni2+ and therefore competes with the hexahistidine 

tags. When added as a elutant, a high concentration of imidazole will bind to the metal ions and the 

His6-tagged protein will run through the matrix (16). Ni-NTA affinity chromatography gives easily a 

high yield of pure protein.  
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8.7.1.3 Size-exclusion chromatography 
Even though Ni-NTA achieves a relative pure protein, some other proteins from the lysate might still 

be in the protein solution. To get the protein as pure as possible size-exclusion chromatography (SEC) 

is the last step in the purification process of the proteins mentioned in this thesis. As the name states, 

this method separates molecules based on their size – or hydrodynamic volume, to be excat. The SEC 

column contains spherical beads that have pores of a specific size distribution, depending on the 

protein of interest (165). When the protein solution collected from Ni-NTA affinity chromatography is 

added to the column, molecules larger than the pores in the beads will pass through the column faster 

than smaller molecules which will diffuse into the pores, thus, using longer time flowing through the 

column. Molecules are separated based on their molecular weight (MW), their size, with larger 

molecules eluting first. SEC is a good tool if one wants to separate contaminants from your protein or 

separate soluble aggregates from your protein. It can also be used to analyse and increase the 

monodispersity of your protein or do a buffer exchange if you want to remove for example NaCl from 

your protein buffer.  

 
8.7.1.4 SDS-PAGE 
SDS-PAGE is an analytical method that, like SEC, separates proteins on their molecular size by 

applying an electrical field where the molecules travels towards an electrode with opposite charge. 

The gel matrix consists of a meshwork of polyacrylamide where smaller proteins travel faster due to 

less resistance from the gel matrix. Proteins may have different charge and to get every sample to 

travel towards the same electrode, SDS is used. SDS has a negative charge and binds to, denatures and 

solubilizes all proteins. A reducing agent is used to cleave disulphide bonds in the protein that are 

important for proper folding.  With added SDS, increasing the temperature to 95 °C, proteins denature 

to linear chains with a net negative charge, because SDS has high affinity to hydrophobic patches of 

unfolded proteins (166). When running them with gel electrophoresis, all proteins will travel towards 

the anode with different speed depending on size. A molecular marker with known molecular weight 

is added as a reference. After the gel electrophoresis is done, the gel is stained so the separated protein 

bands becomes visible. A usual setup for running SDS-PAGE is shown in Figure 55. 
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Figure 55: Illustration of a setup for doing SDS-PAGE. The polyacrylamide gel is placed in a holder inside the 
electrophoresis chamber before the desired buffered is poured into the chamber. By the use of a Hamilton syringe or a pipette 
the samples can be loaded into the wells of the gel. A voltage is applied over a certain amount of time to separate the proteins 
in the gel. After staining the gel with staining one can visualize the protein bands.  Reprinted from Bensaccount at English 
Wikipedia [CC BY 3.0  (https://creativecommons.org/licenses/by/3.0)], from Wikimedia Commons] 
 

SDS-PAGE is an easy analytical tool to use when checking protein purity or protein-binding (co-

sedimentation assays).  

 

8.7.2 Selection of lipids 
As explained in the introduction, both mixtures of DMPC:DMPG and DOPC:DOPS makes the 

liposomes and bicelles having a net negatively charged surface, which are consistent with charges 

occurring in the native myelin sheath (18). The choice of using these lipids is based on several 

reasons. First of all, the lipid composition in myelin is broad. Several different lipids contribute to its 

stability: cholesterol, galactosylceramide, ethanolamine-containing plasmalogens, lechtins, 

sphingolipids and many others (23, 24). To use so many different lipids in a model system would be 

very challenging so simple lipid composition makes it easier to make and the lipid chosen are highly 

stable and can be used in several different analytical methods. Second, the phase transition 

temperature of the lipids plays a crucial part. DOPC and DOPS have phase transition temperatures, 

when they shift from solid phase to gel phase, below zero (-17°C and -11°C), which means that they 

will always be in a liquid disordered phase during our experiments. DMPC and DMPC have phase 

transition temperatures (Tm) of 24°C and 23°C (167), so when analytical methods are used from 25°C 

to 30°C, they will also be in a disordered phase. The Tm for DMPC and DMPC are quite low for 

saturated tails.  DM’s have a carbon chain length of 14 while DO’s have length of 18 you would 

imagine that the bilayers they make would have different thickness. But since both DOPC and DOPS 

have a double bond between to carbons in the tail, they are unsaturated in cis conformation, making 

the bilayers thinner than expected. Thus, the thickness of DM and DO bilayers is actually very similar, 

around 3.7 nm (168, 169). When comparing lipid compositions like DMPC:DMPG and DOPS:DOPC, 

they both have to be in the same phase.  It is effective to run methods above 25°C, which makes them 

both be in liquid disordered phase, without affecting protein stability or structure or the physical 

behaviour of the lipids due to phase-differences. 
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The reason we do not use lipids like DPPC or DSPC is because both DP and DS lipids have higher Tm 

(above 50°C) and the bilayers would be much thicker (167). The experiments would have had to be 

done at very high temperatures, which are over physiological temperature and would have affected 

protein stability.  

 

The use of DOPS instead of DOPG is because the predominant negatively charge component in 

eukaryotic membranes (also in myelin) is PS, so it more comparable to native myelin than DOPG 

(170). DMPS would in theory been a better choice than DMPG, but DMPS have a Tm at 35°C and it 

is expensive compared to DMPG.  

 
8.7.3 UV-vis spectroscopy 
UV-vis spectroscopy measures the light that passes through a sample, which can be measured using a 

single wavelength or over a range of wavelengths, and uses transition of electrons in the sample to get 

an absorption spectra. When a molecule absorbs ultraviolet or visible light the electrons in the 

molecule gets excited from a low level to a high level of energy. The energy level that is nearest the 

positively charge core have the lowest amount of energy and electrons deposited farther away from the 

core have higher energy. The molecule will absorbed some of that light and the electron gets excited to 

a higher energy level. The absorption gets recorded by measuring the difference in light transmission,  

resulting in an absorption spectra (125).  

 
8.7.4 Transmission electron microscopy 
TEM is a microscope that uses an electron beam to form an image. Because electrons have a 

wavelength that is much smaller than that light, the resolution is much higher than from light 

microscope. When the electron beam hits the sample the electrons get absorbed and the scattered 

producing an image (171). TEM consist of three main parts: first, an electron gun and a condenser 

system. The gun produces the electron beam and the beam is focused onto the sample by the 

condenser system. The second part is a system that produces an image containing an objective lens, 

movable sample stage and lenses. Third, the image-recording system makes an image that can be 

viewed and analysed (172).  The image that is produced is monochromatic, composed of one color, 

where the darker areas if the image means that fewer electrons are transmitted through and lighter 

areas denotes more transmittance of electrons (173).  

 

Before imaging, the samples have to be loaded onto grids that fit in the sample holder. Carbon-coated 

copper grids are usually used. The grids are made out of copper and a thin layer of carbon is coated 

onto the grid. The film is very thin, transparent to electron and do not interfere with the sample while 

at the same time stabilizes and has good conductivity. The grids are also often glow-discharged right 

before sample preparation. The carbon-coating layer is naturally hydrophobic (repelled from water) 
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which many biological samples contain, and with glow-discharging the grids the carbon coating turns 

hydrophilic which help samples distribute evenly over the grid (174). After samples have incubated 

for 1 minute on the grid, they get negatively stained. Negative staining stains the background and not 

really the sample itself, making the sample more visible. Commonly used negative stains heavy atom 

salts such as uranium, molybdenum and tungsten. Uranyl acetate was used in this thesis (175). 

Negatively staining a sample is relatively easy using drop method: after the sample has incubated for 

some time a drop of stain is placed onto it and left for incubating for 12 sec before a new drop is 

added. Excess liquid is removed either by air-drying or by a filter paper.  

 
8.7.5 Turbidity 
Turbidity assays measure the optical properties of a sample and is used in this project to study vesicle 

aggregation. Depending of what the samples is one can apply many different setting as temperature, 

kinetice cycles, shaking and wavelength or a range of wavelength. Light is directed onto the sample 

and the light that passes through the sample gets measured. When proteins induce aggregates the 

samples gets turbid (cloudy) and causes the light to get scattered. If the aggregates precipitate more 

light will hit the detector. In the case of vesicle aggregation one can study differences in absorbance 

due to concentrations or different ratios in the sample over time. 

 
8.7.6 Small-angle X-ray diffraction 
Small-angle x-ray diffraction is based on the same principles as for small-angle X-ray scattering and is 

used to obtain structural information about a sample. It can provide information size, shape and 

internal structure of systems. A Monochromatic X-rays beam hits a sample and a detector registers 

diffraction angles, where the scattering signal is derived from the difference between the average 

electron density of the buffer and the sample. The scattering/diffraction pattern of the sample is 

isotropic; it has the same value in all directions because the particles in your sample have random 

orientations (176).  The scattering of X-rays is recorded at very low angles (0.1 - 10º) and at this 

angular range one can get information about distances in ordered materials. For example in the case of 

lipid aggregations they can cause ordered structures that will give constructive interference similar to 

lattice structures in solid crystals, giving Bragg peaks (177). From these peaks one can calculate repeat 

distances residing in the aggregates by using momentum transfer, s, where s is:  

s =
4πsin (θ)

λ
 

S can be found by finding looking closely at each peak and then repeat distance (d) can be calculated 

by using this equation. 

d =  
2π
s
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8.7.7 Synchrotron radiation circular dichroism spectroscopy 
 
SRCD is circular dichroism (CD) with the use of synchrotron radiation as light source. CD uses left-

handed and right-handed polarized light and measures the difference in absorbance between them 

when a molecule absorbs them. CD can be measured if the polarized light interacts with chiral 

molecules (mirror-image isomers). The majority of biological molecules are chiral and one can use 

this property to study secondary structures like α-helices, β-sheets and unfolded state, or to study 

changes in structure (178). The different regular secondary structures have distinct CD spectra, and 

one can easily see what the main secondary structure content the protein has.  
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