
University of Bergen

Department of Informatics

Algorithms

Computing Connected Components

on Multiple GPUs

Student:

Yngve Hellås

Supervisor:

Professor Fredrik Manne

Master Thesis

November 2018

Acknowledgement

First, I would like to thank my supervisor Fredrik Manne for supervising me and
giving guidance throughout this thesis. Additionally, I would like to thank my
family and friends, especially my parents and Mathias for the constant support.
Thanks to my fellow algorithm master student for support and making the study

hall a great place to be.

Contents

1 Introduction 5

2 Background 6
2.1 Parallel programming . 6

2.1.1 Memory . 7
2.2 CUDA - GPU parallel programming 8
2.3 Connected components . 10

2.3.1 Solutions for connected components 10
2.3.2 Connect high to low . 11

2.4 Rem's algorithm . 11
2.4.1 Sequential . 11
2.4.2 Parallel . 12

2.5 Test computers . 14

3 Gunrock 16
3.1 What Gunrcok o�ers . 16
3.2 Experience with Gunrock . 16

3.2.1 Connected components . 17
3.2.2 Move to Groute . 17

4 Groute 18
4.1 What Groute o�ers . 18
4.2 Connected Components in Groute 19

4.2.1 Hook-non-atomic . 21
4.2.2 Hook-atomic . 24
4.2.3 Compress . 27
4.2.4 Merge . 29
4.2.5 Final-compress . 30

4.3 Implementation of Rem in Groute 30

3

CONTENTS CONTENTS

4.3.1 Adjusting Rem's algorithm for implementation 31
4.4 Experience with Groute . 31

5 CUDA Implementation 33
5.1 Application structure . 33

5.1.1 Changes for implementation 35
5.2 Communication - data transfer . 37

5.2.1 Distributing graph . 37
5.2.2 Merging solutions . 37

5.3 Handling multiple devices . 38
5.4 Experience from multi-GPU programming 39

6 Experiments 40
6.1 Graphs . 40
6.2 Test measurements . 43
6.3 Groute experiemnts . 44

6.3.1 Hook-non-atomic . 44
6.3.2 Rem and compress operations 46
6.3.3 Run time perfromance Hook vs Rem 46
6.3.4 Strong scaling . 53
6.3.5 Weak scaling . 54
6.3.6 Speed-up . 54
6.3.7 Expanded graphs . 55

6.4 CUDA implementation experiments 56
6.4.1 Run time performance Hook vs Rem 57
6.4.2 Compare run time between CUDA and Groute implementa-

tions . 58
6.4.3 Strong scaling . 58
6.4.4 Weak scaling . 59
6.4.5 Speedup . 60

6.5 Distribution bottleneck Google Cloud 61

7 Conclusion 63
7.1 Experience . 63
7.2 Rem and �ndings . 63
7.3 Further work . 64

Bibliography 65

4

Chapter 1

Introduction

As GPU programming is improving along with the performance of GPUs, is GPU
programming getting more interesting by the day. An expansion to parallel pro-
gramming on one GPU is parallel programming using multiple GPUs. For this
thesis we focus on connected components algorithms as we look into multiple
GPU programming.

In this thesis we give a short introduction to GPU programming through the
CUDA programming language and connected components, along with other terms
that are useful for the rest of the thesis. We look at two systems that aid in multi-
ple GPU programming, the CUDA library Gunrock and the runtime environment
Groute. We start with Gunrock and why we switched to Groute, before we describe
Groute. As a comparison we create our own implementation in CUDA for multiple
GPUs, without any supporting systems. We perform experiments on Groute to
get an idea of its performance. We present a fast connected components algo-
rithm that we believe to be faster than algorithms that currently are implemented
as standard on Gunrock and Groute, this algorithm is implemented in Groute
and we compare the performance between the already implemented connected
components and this faster algorithm.

5

Chapter 2

Background

In this chapter are we describe background information, terms and techniques used
in this thesis. We present terms and functions used in parallel programming and
terms that are speci�c with CUDA parallel programming. We describe other topics
such as Connected components and the computers used for testing.

2.1 Parallel programming

With parallel programming do we want to perform multiple task at the same time
to increase the run time performance.

Asynchronous

When using asynchronous operations processors and threads can work at their
own pace [13]. In CUDA does a synchronization operation block the computa-
tion stream, this prevents other operation from proceeding, while an asynchronous
operation allow other operation to proceed[1]. Kernel calls in CUDA are all asyn-
chronous [13]. The host and devices each have their own memory, distributed
memory, thus there is need for communication when sending information from
host to device, device to host or device to device.

Bulk-synchronous

When a program uses a bulk-synchronous approach processors are working in par-
allel until they reach a synchronization step. When a processor reaches this step
will the processor wait for all the other processors to reach the same step. Syn-
chronization can be used to prepare the processors for communication with other

6

CHAPTER 2. BACKGROUND 2.1. PARALLEL PROGRAMMING

processors or as a scheduling for a task where it is necessary for the processors to
be synchronized.

Host and device

Two terms used for parallel programming with CUDA is host and device, host
refers to the CPU (central processing unit) and its memory, device refers to the
GPU (graphical processing unit) and its memory. The CUDA compiler separate
the code for each part before the host compiles with C and the device compiles with
CUDA C [1]. Individually do host and device have shared memory, but when we
use CUDA is host and device part of a distributed memory system as the memory
for the host is not directly accessible by the device and vice versa. The host is
the general-purpose processing unit, handling more complex task and usually have
faster calculating speed. While the device is getting more general purpose is it still
better at performing many simpler tasks. Though the computing speed of a device
is slower than the host is the device faster on big workloads because of its parallel
work structure.

2.1.1 Memory

Memory is a collection of location on a computer or device. The locations are
capable of storing data and instructions[13].

Shared-memory

We are describing two memory-systems that is used in this thesis, the �rst is shared-
memory. In shared-memory programs can all threads read and write to the same
variables, these variables are called shared. There are also private variables, private
variables can usually only be accessed by one thread. By writing and reading shared
variables can threads communicate with each other and share information. There
is no need for explicit communication between the threads [13]. Shared-memory is
the normal system for CPU programming, where the memory is the RAM.

Distributed-memory

The second memory-system is distributed-memory. In distributed-memory is the
memory private for each core, notice not thread. Usually is distributed-memory
used on hardware where cores have their own memory. With private memory are
there no shared variables as there was in shared-memory, this requires explicit

7

2.2. CUDA - GPU PARALLEL PROGRAMMINGCHAPTER 2. BACKGROUND

communication between the cores to share variables and information[13]. With
GPU programs is distributed-memory used. The GPU and the CPU each have
their own memory and need to communicate to send variables from the CPU to
the GPU and back again.

Race condition

When we need to handle multiple threads or processes can a problem arise where
these threads try to change the same piece of data at the same time. This is called
a race condition. The result in this races depends on which thread or core that wins
the race[13]. Let's use an example. Take a program where thread 1 and thread 2
tires to write their ID to variable A at the same time, and then outputs value of A.
If this program would run several times could the output varied between 1 and 2.
Handling race conditions can be solved by rewriting a program where it avoids the
possibility of a race condition, or use a function as atomic operations, described
next.

Atomic operations

To solve the race condition problem can we use atomic operations. Atomic opera-
tions prevent multiple threads interfering with each other when accessing the same
data. This is done by locking the piece of data that is accessed by multiple threads
when a thread is performing an operation on it[1].

There are three di�erent types of atomic operations, arithmetic functions, bit-
wise functions and swap functions. The swap function is used in connected com-
ponents program in chapter 2.4 and 4. The swap function used is atomicCAS,
CAS stands for compare and swap. AtomicCAS conditionally swaps a value if the
stored value matches the speci�ed value [1].

2.2 CUDA - GPU parallel programming

In this section we give a brief introduction to a GPU programming language.
To gain access to the possibility of parallel programming on a GPU is CUDA
the favoured language for many. When using a GPU in parallel programming is
the CPU still an important component, as it sends the instructions and data to
the GPU, where instructions can be done on a higher number of simultaneous
executions. As the CPU and GPU each have their own memory, a distributed
memory system, is there a need for communication when sharing data. If multiple

8

CHAPTER 2. BACKGROUND2.2. CUDA - GPU PARALLEL PROGRAMMING

GPUs are used, then there is need for communication between them if they need to
share information. Communication between devices can be done directly between
GPUs if the hardware is structured in such a way that allow this. If two GPUs
in as system can't communicate directly is the communication done through the
CPU. Sending and receiving data in GPU programming is among the more time-
consuming task as the speed at which data can be transferred between CPU and
GPU is much slower than a normal memory access for each of the CPU or GPU.
For this reason, problems with a need for more computation steps compared to the
data used often gaining more from GPU programming.

Memory

There are multiple possibilities for where to store data in the memory of a GPU, in
CUDA there are six types of memory on a GPU. Each type of memory has di�erent
sets of attributes, as with memory on a host is there a trade of with speed and size.
There small and fast memory as register and local memory which are accessible
by one thread and is only active as long as the thread is active. For threads in a
block there is a shared memory among these threads, the lifetime for this memory
is as long as the block is active. Constant memory is accessible for both host and
the GPU but is read only for kernels. The global memory is the largest highest
latency and most commonly used memory. [1]

Threads in CUDA

Threads in CUDA are organized in blocks, a block can hold 1024 threads and these
threads can be stored in one, two and three dimensions. Blocks are stored in grids,
as for threads can block be stored in one, two and three dimensions. The number
of blocks in a grid dimension is limited to 65535 blocks. When threads are sent to
a streaming multiprocessor are the threads stored in warps. A warp can hold up
to 32 threads, threads in a warp compute in lock steps. All threads in a warp must
execute the same instructions, if some threads has instructions to execute that
other threads in the warp don't then these threads have to wait while the threads
with instructions execute. This is called warp diverges [1]. This can happen with
if statements, if some of the threads have to do the true condition while the other
have to do the false condition. Warps gets distributed to streaming multiprocessors,
which are groups of CUDA cores [15]. The streaming multiprocessors arrange and
prepare warps for execution such that the CUDA cores are constantly working as
long as there is work for them to do.

9

2.3. CONNECTED COMPONENTS CHAPTER 2. BACKGROUND

A

B

C

D

E

F

G

H

Figure 2.1: Two connected components

Kernel

A kernel function is a function that is executed on the device. In the kernel code
are the instruction for a single thread, which is to be performed in parallel with
other threads de�ned in the kernel call [1]. In kernel calls we de�ne the number of
threads being used with grids and blocks, the input for a kernel call looks like a
function call in C, but a kernel call doesn't have a return value. To return result
from a kernel call must there be a copy of data from the device to the host.

2.3 Connected components

An undirected graph is connected if there is a path between every node, for any
node can we move along the edges of the graph to all the other nodes. If there are
parts of the graph that is connected is these called connected components [9]. In
Figure 2.1 is a graph with two connected components, the left component contains
A, B, C, D the right component contains E, F, G, H. The goal for connected
component is to mark nodes with the name of the component it is connected to.
When all nodes are marked can we count the number of connected components by
counting the number of di�erent components names.

2.3.1 Solutions for connected components

There multiple ways to solve connected component, we can use searching
algorithms as Breath first search and Depth first search marking node
as the algorithm moves through them. Another solution is to connect nodes and
add them to a tree structure where the ID of the top node in the tree structure is
the name of that component. This solution is a Union-find algorithm.

10

CHAPTER 2. BACKGROUND 2.4. REM'S ALGORITHM

0

1

2

3

Figure 2.2:

0

1

2

3

Figure 2.3:

0

1 2

3

Figure 2.4:

Figure 2.5: Connecting nodes 0 and 2 using their node ID

2.3.2 Connect high to low

A technique that algorithms that connects nodes into components can use is to
use the integer values node IDs to decide which node to be set as the parent of the
other, instead of choosing this randomly. When we get two nodes connected by an
edge, we set node with the lowest value node ID as the parent of the node with the
higher valued ID. Figure 2.5 shows this technique, here there are two components,
we receive an edge(0, 2), as node 0 is the lower valued node is it set as the parent
of node 2. This technique can be use by setting low to high as well, its important
that this is consistent in the whole program.

2.4 Rem's algorithm

In this thesis we want to show that Rem is a fast parallel algorithm solving con-
nected components. In this section we introduce the sequential and parallel
version of Rem's algorithm. Rem's algorithm use the technique described in Section
2.3.2 as it connects nodes and components into connected components.

2.4.1 Sequential

Algorithm 1 show a sequential version Rem's algorithm from "Experiments on
union-�nd algorithms for the disjoint-set data structure" [14]. The algorithm takes
an edge(x, y) as input, x and y are integer value representing the node ID. In line
1 are these stored in rx and ry respectively. In line 2 a while loop starts and loops
as long as the parent of rx and ry are not the same value. In line 3 the parents are

11

2.4. REM'S ALGORITHM CHAPTER 2. BACKGROUND

Algorithm 1 Rem(x, y)
1: rx ← x, ry ← y
2: while p(rx) 6= p(ry) do
3: if p(rx) < p(ry) then
4: if rx = p(rx) then
5: p(rx)← p(ry), break
6: end if
7: z ← rx, p(rx)← p(ry), rx ← p(z)
8: else
9: if ry = p(ry) then

10: p(ry)← p(rx), break
11: end if
12: z ← ry, p(ry)← p(rx), ry ← p(z)
13: end if
14: end while

compared, if p(rx) is lower than p(ry) then rx is checked to see if it is a root node
in line 4. If it is a root node p(ry) is set to the parent of p(rx) and breaks out of
the while loop. If rx isn't a root node are the parent values updated to scale the
parent tree in line 7. If p(rx) was bigger than p(ry) we skip to line 9. Here rx is
checked if it's a root node. If it is a root node is p(rx) is set as the parent to p(ry)
and the the algorithm breaks out of the while loop to receive a new edge, if is not
a root node the parent are values updated and the algorithm goes back to line 2.

2.4.2 Parallel

Algorithm 2 show the parallel version of Rem's algorithm, we received the algorithm
from our supervisor Fredrik Manne [2]. This algorithm is made for running in
parallel on a GPU. As threads on a GPU work in lock step is the goal for optimizing
code for GPU to let threads have work on all steps and avoid steps where threads are
idle, this is called warp divergence. The important di�erence between Algorithm
Algorithm 1 and Algorithm 2 is that Algorithm 2 swaps the values when the parent
of x is bigger than the parent of y, instead of using two if conditions. The swap is
used such that the y values always represent the bigger value.

The input for the Algorithm Algorithm 2 is an edge(x, y). As there is possibility
that values are swapped between x variables and y variable are both the node and
the parent ID stored in variables, this also reduces the calls to memory. Lines 1
through 4 sets the node and parent values. In line 5 a while loop start, and loops as

12

CHAPTER 2. BACKGROUND 2.4. REM'S ALGORITHM

long as the parents of x and y are not the same. In line the parents are compared,
if prx is bigger all values for x and y swap, this happens in line 7 to 12. Both the
node value and parent value are swapped such that the parent value is correct. If
prx is smaller the swap is not necessary, as parent of y is bigger than the parent
of x. In line 14 an atomic compare and swap operation is used, this locks the
current parent value of ry. If p(ry) is equal pry, then prx is set as the parent to
ry. The result from the atomic operation is stored in result. If the compare failed
the result is set to the new parent that ry, as the compare and swap failed since
another thread changed the parent of ry. In line 15 the result from the atomic
operation is compared with the locally stored parent value, if they are di�erent the
local parent value is updated, and the algorithm goes to line 5 again. If not, the
parent values are updated, where ry is set to the local parent o ry, and we �nd this
nodes parent. This update compresses the parent trees created by the algorithm.

Algorithm 2 RemParallel(x, y)
1: rx = x
2: ry = y
3: prx = p(rx)
4: pry = p(ry)
5: while prx 6= pry do
6: if prx > pry then
7: tmp = prx
8: prx = pry
9: pry = tmp

10: tmp = rx
11: rx = ry
12: ry = tmp
13: end if
14: result = atomicCAS(p(ry), pry, prx)
15: if result 6= pry then
16: pry = result
17: continue
18: end if
19: ry = pry;
20: pry = p(ry)
21: end while

13

2.5. TEST COMPUTERS CHAPTER 2. BACKGROUND

Tesla K40 Tesla K80
Memory size 12 GB GDDR5 24 GB GDDR5
Memory Bandwidth 288 GB/s 480 GB/s
Memory clock 3.0 GHz 2.5 GHz
CUDA cores 2880 4992
Processor core clock 745 MHz 560 MHz
Processor core clock 562-875 MHz Boosted

Table 2.1: Speci�cation for K40 and K80 graphics processors

2.5 Test computers

We use two computers for test in this thesis. The �rst is Lyng, a shared compute
server at the University of Bergen. Lyng has two Xeon E5-2699 v3 CPU, 2,30 GHz
with 252 GB ram, connected with one Nvidia Tesla K40m graphic processor. The
second computer is a Google Cloud server, which is a rent server service [3]. The
Google Cloud server runs a virtual CPU with 60 GB ram, connected with eight
Nvidia Tesla K80 graphic processors. Nvidia Tesla K80 is the better than Nvidia
Tesla K40m, K80 has more memory, faster transfer of data and more CUDA cores.
Information for each graphic processor is shown in Table 2.1.

Figure 2.6 show the GPU structure for the Google Cloud computer. There are
two groups of four GPU's, where all GPU's in a group are connected to each other.
GPU's that are connected can send and receive data from each other without going
through the CPU. If a GPU from one group communicate with a GPU in the other
group, then the communication go from the GPU through the CPU and then to
the other GPU. All GPU's are connected to the CPU.

14

CHAPTER 2. BACKGROUND 2.5. TEST COMPUTERS

Host/CPU

D − 0

D − 1

D − 2

D − 3

D − 4

D − 5

D − 6

D − 7

Figure 2.6: GPU structure on Google Cloud server, two groups of devices

15

Chapter 3

Gunrock

In this chapter we look at the GPU library Gunrock. Gunrock is a high-performance
graph processing library for GPU programming using a bulk-synchronous program-
ming approach. Gunrock achieves a balance between performance and expressive-
ness with the approach to GPU programming [16].

Gunrock was the �rst library or environment considered for this thesis. Gunrcok
caught our attention with possibilities of high scalability on multiple GPU's for
graph primitives. We look at what Gunrock is and our experience using it. Code
for Gunrock can be downloaded from Github [5], there is also a website [6] where
instructions, documentation and code can be found. This includes how to install
and use the library.

3.1 What Gunrcok o�ers

Gunrock present a data-centric abstraction to allow development of graph primi-
tives at a high level of abstraction, while maintaining high performance [16]. By
using Gunrock we can use their GPU speci�c optimization strategies for memory
e�ciency, load balancing and workload management [16].

3.2 Experience with Gunrock

Our intentions with Gunrock were a two-step experience with the library. First
we wanted to look at and replace the Connected components implementation.
In the second step we wanted to implement another algorithm, without using any
pre-existing algorithm to see how easy or hard implementing in Gunrock would be.

16

CHAPTER 3. GUNROCK 3.2. EXPERIENCE WITH GUNROCK

CC(ms)
Graph Gunrock Groute
USA 335.65 (1) 15.11 (5)

OSM-euro-k - 160.96 (4)
soc-LiveJournal1 110.05 (1) 14.19 (2)

twitter - 384.13 (8)
kron21.syn - 13.86 (8)

Table 3.1: Best running time comparison between Gunrock and Groute, number
of GPU for best performance in parentheses [8].

3.2.1 Connected components

Our goal in the �rst step of implementation was to �nd the code for Connected
components and replace it with our Rem algorithm for Connected compo-

nents, presented in Section 2.4. We do this for two reasons, �rst is getting ac-
quainted with how Gunrock code is structured around a graph and achieve a better
understanding for how we would implement a new algorithm. The second reason is
to test how Rem's algorithm perform in this library, how well it scale on multiple
devices and how well do it performed compared to the original implementation.

While working on the �rst step �nding and replacing the Connected com-

ponents code, there were no website for Gunrock, only the code and install in-
struction on Github. We looked through the code following a run step for step.
At this point we could not determine where they called a function that looked
like Connected components that we could replace or modify to implement
Rem's algorithm. Gunrock was installed and tested on Lyng, see Section 2.5, the
Connected components implementation worked, but we could not �nd the
necessary part to continue.

3.2.2 Move to Groute

As we were stuck in the process of implementing Rem's algorithm we found an-
other runtime environment for multiple-GPU programming. The new runtime
environment is Groute, see Chapter 4. In their paper, Groute: An asynchronous
multi-GPU programming model for irregular computations [8], they show that
Groute and Gunrock varied between who had the better performance on di�erent
algorithms and graphs. Crucially Groute was faster on all Connected components
comparisons, which is where our interest are. Table 3.1 shows the performance
comparison between Gunrock and Groute from this paper for Connected com-

ponents.

17

Chapter 4

Groute

In this chapter we introduce the runtime environment Groute and take a closer
look at its connected components implementation. We also show an imple-
mentation of the Rem algorithm from Section 2.4 in Groute to compare these.

Groute is an asynchronous programming model and runtime environment for
multi-GPU programming created by Tal Ben-Nun, Michael Sutton, Sreepathi Pai
and Keshav Pingali. The motivation for creating Groute was to give a more optimal
runtime environment alternative for irregular algorithms which may perform better
with an asynchronous programming approach as opposed to bulk-synchronous pro-
gramming [8]. The code for the Groute runtime environment is available on Github
[4]. There is no documentation of the Groute code or environment, therefore the
algorithms mentioned below are extracted from the code on Github [4].

4.1 What Groute o�ers

The Groute runtime environment o�er us a way to handle communication and data
transfer for multi-GPU programming. Transferring data is a time consuming part
of GPU programming, having a environment that speed this up can increase per-
formance. Groute environment consist of three layers, a low-level management of
topology and inter-GPU communication, communication constructs that optimize
memory transfer paths and a distributed work list [8].

Further on are we focusing on Pending segments, which are called input_segment
and merge_segment in the connected components code we show in Section
4.2. Pending segment represent segments that are being received, the host divides
input into Segments [8]. These segments are sent to available devices. In Section
4.2 is input_segment edges from the input graph, while merge_segment are edges

18

CHAPTER 4. GROUTE 4.2. CONNECTED COMPONENTS IN GROUTE

received from other devices when a solution is collected.

4.2 Connected Components in Groute

Groute o�ers implementation of Breath first search, Page rank, Predicted-
Based Filtering, Single source shortest path and Connected compo-

nents. We are in this section describing Groute's implementation of Connected
components.

As described in Section 2.3 the goal for Connected components is to mark
nodes by which component they are in, when components are marked can they
be counted, to get the number of connected components in a graph. The way
Groute solves this is with a version of Union-�nd, slightly modi�ed compared to
the description in Section 2.3. These enables the code to handle multiple devices.
When using multiple devices the graph is �rst distributed between the devices.
Each device then calculates a local solution before all the solutions are merged
together to one �nal solution. Every device has all the nodes in the graph, while
the edges are distributed between the devices such that an edge only exists on one
device. A device then computes connected components from the edges it has
received. As the devices cannot see each others memory, the solution from each
device is only a part of the �nal solution for the whole graph. The algorithm must
therefore collect the solution from each device and merge these together to achieve
the �nal solution.

We describe the Groute's connected components implementation in Al-
gorithm 3. This algorithm is separated into two while loops. In the �rst while
loop (lines 1 to 8) each device computes components on its assigned edges. This is
done using a modi�ed Union-�nd algorithm. The second loop collects and merges
results from each device into the �nal solution. If this is not done, we would
end up with an incomplete solution on each device. The algorithm ends with the
Final-compress algorithm, which compress the parent structure which is needed
for Groute to recognize the solution.

To understand how Algorithm 3 runs we start with the �rst while loop, the
modi�ed Union �nd. The while loop runs as long as there are input segments
containing edges from the input graph. There are two main functions happening
in the while loop, hook and compress. In lines 3 and 6 the algorithm performs
Hook operations that connects nodes by setting one node as the parent f another.
Both Hook functions use the technique explained in Section 2.3.2, where the integer
values of the nodes are used to set a lower numbered node as the parent of a higher
numbered one. In this was the nodes are connected into tree structures re�ecting

19

4.2. CONNECTED COMPONENTS IN GROUTE CHAPTER 4. GROUTE

Algorithm 3 Connected components in Groute
1: while Pending input_segment do
2: for Number of Hook-non-atomic iterations do
3: Hook-non-atomic
4: Compress
5: end for
6: Hook-atomic
7: Compress
8: end while
9: while Pending merge_segment do

10: Merge
11: end while
12: Final-compress

which nodes are in the same connected component. Hook-non-atomic and Hook-
atomic are explained in Section 4.2.1 and Section 4.2.2 respectively. After each call
to a Hook function there is a compression operation (lines 4 and 7) to reduce the
height of the trees given by the parent pointers. This is described in Section 4.2.3.

After the �rst loop is completed Algorithm 3 continues to collect the solution in
the second while loop. This is done by processing merge segments, which contains
edge lists specifying the parent trees from the �rst while loop. This is only needed
when we are using more than one device to run Algorithm 3. The merging is done
in line 10 by performing Hook-atomic and is described in Section 4.2.4. As these
operations changes the tree structure we need to compress the �nal tree. This is
done in the Final-compress algorithm, explained in Section 4.2.5.

Parallel execution

Now that we have an overall understanding of what Algorithm 3 does, we can
explain how this is done in parallel. There are two levels of parallelism that are
running at the same time when Algorithm 3 is running on more than one device.
The �rst level is the devices that runs concurrently. This level is set up before
Algorithm 3 starts using the communications tool mentioned in Section 4.1. Each
device then runs Algorithm 3 separately. There is no direct synchronization be-
tween the devices as there would be in in a bulk-synchronized program. Each
device runs the �rst loop as long as there are input segments to work on. When
a device runs out of input segments it continues to the second loop. There is no
synchronization between the devices when they move from the �rst to the second

20

CHAPTER 4. GROUTE 4.2. CONNECTED COMPONENTS IN GROUTE

loop. As the workload is distributed continuously to devices the workload is di-
vided fairly evenly. Thus, the devices are expected to �nish the �rst loop at about
the same time. Each device thus participates in the second loop until there no more
merge segments left to process. Merge segments are edge list from other devices
parent structures. Devices have a partner device that either they send their parent
structure edge list to or receive a one from. A device that have sent this edge list
is done, devices that received an edge list merge this with their parent structure.
Devices that are still active �nds a new partner device, this continuous until one
is left with the �nal solution from all devices.

The second level of parallelism is happening on each device. Each device runs
Algorithm 3 independently. Edges are received in bulk from the host during the
execution of the algorithm. On the device operations in lines 3 to 7 and 10 in
Algorithm 3 are run in parallel as kernel calls. The number of threads created for
a kernel call varies. Each call to one of the Hook functions takes a list of edges
and assigns one thread to each edge. For the compress calls each thread receive a
node, so the number of threads is the same as the number of nodes in the input
graph.

4.2.1 Hook-non-atomic

The Hook-non-atomic operation is given in Algorithm 4. This is a fast algorithm
for creating a connection between two nodes. The trade-o� for this speed is that
it may overwrite existing connections when it runs in parallel. We describe later
in this section how this might occur. Hook-non-atomic is called from inside a for
loop in Algorithm 3 (lines 2 to 5) along with a compress operation. The purpose
of this is to run Hook-non-atomic a �xed number of iterations. If the for loop
runs for as many iterations as needed for there to be no more changes done by
the Hook-non-atomic and Compress algorithms we would get a correct solution for
current edges. Groute does not. However, the purpose of this for loop is not to
complete an exact solution but rather to enhance performance. At the end of this
section we show how the number of iterations impacts performance. Hook-non-
atomic has the potential to be substantially faster than Hook-atomic but might
not return a correct solution. We can exploit this while ensuring a correct solution
by always having a �nal application of Hook-atomic that �xes any inconsistencies
left by Hook-non-atomic.

Algorithm 4 take pointers to two lists as input, the parent list and edge list,
both lists are shared between all threads on a device as they are stored in the
shared memory on the device. The parent list i accessed with write and read

21

4.2. CONNECTED COMPONENTS IN GROUTE CHAPTER 4. GROUTE

Algorithm 4 Hook-non-atomic(parents, edges)

1: Edge e = edges.getEdge(threadID)
2: e.u = parents.read(e.u)
3: e.v = parents.read(e.v)
4: high = e.u > e.v ? e.u : e.v
5: low = e.u + e.v - high
6: parents.write(high, low)

0 1

23

0 1

23

0

1

2

3

Figure 4.1: Hook-non-atomic connecting two nodes.

operations, lines 2, 3 and 6. In line 1 the thread �nds an edge using its thread ID
in the edge list, using thread ID no threads work on the same edge. Algorithm 4
uses the connecting high to low technique described Section 2.3.2. The edge from
line 1 gives two nodes connected by this edge (u, v). Parents of both nodes u and
v are set in lines 2 and 3. The parents is set such that the lower value becomes
the parent of the higher valued one. In Algorithm 4 the function parents.read(e.u)
returns the parent of u, while parents.write(high, low) sets high to point to low,
high and low are parent of either u or v. An example is shown in Figure 4.1. In the
leftmost graph there are two components, node 0 is the parent of node 3 and node
1 is the parent of node 2. Both node 0 and 1 are root nodes. Hook-non-atomic
gets an edge (2, 3). As the algorithm goes to lines 2 and 3 it fetches their parents,
node 1 and 0 respectively. Lines 5 and 6 outputs that node 1 should connect to
node 0 as 0 < 1. This is indicated by the green arrow in the middle graph. In line
6 node 0 is set as the parent of node 1, leaving us with the graph to the right in
Figure 4.1.

We stated that a problem with Hook-non-atomic is that it can overwrite existing
connections when executing in parallel. This could cause an already connected
component to become disconnected. The overwrite problem can occur in line 6
of Algorithm 4, and is due to a race condition when two or more threads tries to

22

CHAPTER 4. GROUTE 4.2. CONNECTED COMPONENTS IN GROUTE

0 1

2

0 1

2

0 1

2

Figure 4.2: Hook-non-atomic faling in conencting nodes due to a race condition.

set di�erent parent values for the same node simultaneously. Then only the value
from the last thread to write will be kept, while all other operations will be lost.
This may result in two nodes along with their current components to not become
connected, thus leading to an incorrect result. Figure 4.2 shows the steps when
a race condition occurs and gives the wrong result. To the left there are three
nodes that are roots. There are two edges, marked in green, that are input to two
di�erent threads both running Algorithm 4. The �rst thread gets the edge (2, 0)
and the second thread gets the edge (2, 1). Both threads then simultaneously �nd
which node is high and low. The �rst thread then sets the parent value for node 2
to 0, shown in the middle graph in Figure 4.2. The second thread does not see this
and thus sets the parent value of node 2 to 1. Leaving two components, shown in
the right graph in Figure 4.2, which is clearly incorrect. One way to handle this
race condition is using an atomic operation when setting the parent pointer as is
done in the Hook-atomic algorithm, see Section 4.2.2.

A second problem Hook-non-atomic can encounter is separating components if
the tree height of the parent structure gets too high. When Hook-non-atomic is
connecting nodes it only looks at the parent nodes of the nodes it tries to connect.
This yields the right solution if the parent nodes are root nodes. If they are not,
then there might occur a separation from the nodes above the parent in the tree
structure. Figure 4.3 shows an example with two components and where we try
to connect the bottom node (node 3) with a new component (node 1). In Hook-
non-atomic node 1 and node 2 are compared as they are the current parents of 1
and 3. Node 2 is then connected to node 1 since node 1 has a lower ID value than
node 2. This leaves node 0 separated from node 2 and node 3. As a result, there
are still two components.

Since Hook-non-atomic does not consider race conditions and can separate com-
ponents when the tree height is more than two, the result from this algorithm can
be incorrect when it runs in parallel. It is important to note that the connections
made by Hook-non-atomic are still correct, the problem is that we might not get
all the required connections. The main advantage of Hook-non-atomic is that an

23

4.2. CONNECTED COMPONENTS IN GROUTE CHAPTER 4. GROUTE

0 1

2

3

0 1

2

3

Figure 4.3: Hook-non-atomic separating two nodes from a component

ensuring application of Hook-atomic is likely to run faster as it improves the parent
structure before applying Hook-atomic. It is possible to perform multiple itera-
tions of Hook-non-atomic on all the edges to get even closer to a correct result or
we can run the Algorithm 3 with no iteration of Hook-non-atomic and only use
Hook-atomic.

4.2.2 Hook-atomic

Algorithm 5 shows the Hook-atomic function. This ensures that all connections
between nodes and components given by the input graph are included in the �nal
solution of Algorithm 3. Hook-non-atomic is simple and fast, but as explained in
Section 4 the solution can be incomplete. With Hook-atomic we get a complete
solution, but at the cost of a few more steps and also an atomic operation that
makes it slower. With Algorithm 5 we get two new features compared to Hook-
non-atomic. The �rst is the atomic operation in line 8, see Section 2.1.1 for more on
atomic operations. Adding an atomic operation to the step where the parent value
of a node is changed ensures that two or more threads will not overwrite each other
unintentionally. If the atomic write fails because the parent value has been changed
or the high parent node is not a root node, then a thread will continue executing.
This also handles the separation of components problem in Hook-non-atomic. The
second feature is a while loop running from lines 5 to 15. This loop goes on as
long as the parents that are compared are not equal or until the atomic write is
successful, or another thread has updated low as the parent of high. The purpose
of this loop is to ensure that a write to parents happens if the nodes in question are
not already in the same component. If the atomic write is not successful and low
is not set as the parent of high by another thread, then both parents are updated.
This update gets the new parent for both nodes, at least one of the nodes has a

24

CHAPTER 4. GROUTE 4.2. CONNECTED COMPONENTS IN GROUTE

new parent as both parents can't be the same as before the update. If they are the
same both are roots, and the atomicCAS would be successful and we would exit
the loop.

Algorithm 5 Hook-atomic(parents, edges)

1: Edge e = edges.getEdge(threadID)
2: if e.u 6= e.v then
3: pu = parents.read(e.u)
4: pv = parents.read(e.v)
5: while pu 6= pv do
6: high = pu > pv ? pu : pv
7: low = pu + pv - high
8: prev = parents.write_atomicCAS(high, high, low)
9: if prev == high || prev == low then

10: break;
11: end if
12: pu = parents.read(prev)
13: pv = parents.read(low)
14: end while
15: end if

The progress through Algorithm 5 starts by getting an edge as input from the
input segment and compare the nodes connected by this thread, if the nodes have
the same value then its a self-loop and its not necessary to connect. When this
runs in parallel on a device one thread will handle one edge and perform the steps
in the algorithm in parallel with other threads. There is no synchronization before
all threads have gone through all the steps using their edge. From the input edge
we get the two nodes we are connecting, e.u and e.v. We take the parent of both
nodes and go into the loop when these parents are not equal. If the parents are
equal, then the nodes are already in the same component and no further action is
needed. If the parents are not equal we continue to �nd which parent is high and
low, as was done in Section 2.3.2. In line 8 we have the atomic write operation,
if another thread is accessing the parent value that this thread is trying to access,
then it must wait for the parent value to be available. If the write is successful, then
the loop breaks as the nodes are now connected. When the write is unsuccessful
then the result from the atomic operation is controlled, if it is equal to either high
or low the thread is done as another thread have connected the nodes.If the result
is not equal high or low then the loop continues and the algorithm updates the

25

4.2. CONNECTED COMPONENTS IN GROUTE CHAPTER 4. GROUTE

0 1

2

0 1

2

0

1

2

Figure 4.4: Hook-atomic correctly connects node even with a race condition
present.

parent values in lines 12 and 13. In line 12 and 13 we advance up the parent tree
as we want to hook a root node to the low parent. We need to connect root nodes
to the new parent to avoid unhooking parents as happened in Figure 4.3. The loop
then continues from step 4 with the new parent values.

The atomic operation in line 8 does more than just comparing two values and
then swap. It �nds the parent value of the �rst argument. It then compares this
with the second argument, and if they are equal it sets the third argument as the
new parent value. In Algorithm 5 the �rst and second argument are the same value
high. The comparison is therefore between the parent of high and high. This gives
the atomic operation a second function, where the high value needs to be a root
node for the atomic operation to be successful. If the atomic operation succeeds
then low is set as the new parent for high. If high is not a root node the atomic
operation wont write and Algorithm 5 continues.

In Figure 4.2 we saw how Hook-non-atomic failed due to a race condition when
two threads were trying to change the same parent value of node 2. Figure 4.4
shows how Hook-atomic handles the situation. Thread A gets the edge (2, 0), and
thread B get the edge (2, 1), both marked in green in the left graph. Every node is
initially its own parent. Now both thread A and B tries to change the parent value
of node 2 since both node 0 and 1 have lower integer value then node 2. Thread A
writes before thread B, and node 0 is set as the parent for node 2. Since the parent
node of node 2 has changed B's atomic write operation will fail, and the parent
values are updated. Thread B will now try to connect node 0 and node 1. This is
represented in the middle graph, where the green edge now is between node 0 to
node 1. As node 0 has a lower integer value node, 0 will be set as the parent of
node 1. The result is one component with three nodes, shown to the right. This is
the desired result Hook-non-atomic failed to deliver.

The second problem for Hook-non-atomic was that it might disconnect compo-

26

CHAPTER 4. GROUTE 4.2. CONNECTED COMPONENTS IN GROUTE

0 1

2

3

0

12

3

Figure 4.5: Hook-atomic avoid separating a component, where Hook-non-atomic
would.

nent as shown in Figure 4.3. To handle this problem Hook-atomic ensurers that we
only connect a root node to another node. When a component has a higher tree
height than two Hook-atomic traverses up the parent structure to get to a root
node. In Figure 4.5 we show how Hook-atomic handles the same example that
Hook-non-atomic separated. Hook-atomic will move up the parent structure, until
node 0 and node 1 are the nodes being compared. At this point node 1 is set as a
child of node 0.

It follows that unlike Hook-non-atomic the result of Hook-atomic algorithm is
always correct. But a downside is that we have a loop that can run several times
as long as the atomic write is unsuccessful. This may happen in situations where
several edges point to the same node, and multiple threads tries to change the
parent of this node. Higher tree structures can also cause the atomic write to fail.
This can happen when components containing more than one node are connected
together.

4.2.3 Compress

The compress algorithm is an important tool in Groute's Connected compo-

nents, Algorithm 3. In some versions of union-�nd the compression is done when
connecting two components, one example is the Rem's algorithm in Section 2.4.
To get the best performance from the Hook algorithms it is optimal to keep the
parent structure at a tree height of two. When a tree height of one or two Hook-
non-atomic cannot disconnect components and Hook-atomic is faster as the atomic
write operations don't fail as often. When any of the Hook algorithms are com-
plete the parent structures might have a hight larger than two. That is why the
compress algorithm run after each use of the Hook algorithms. The steps for the

27

4.2. CONNECTED COMPONENTS IN GROUTE CHAPTER 4. GROUTE

compress algorithm are shown in Algorithm 6.
The goal of the compress algorithm is to ensure that every node has a hight

of at most two. The left graph in Figure 4.6 is a possible outcome after a Hook
algorithm. Here node 3 has height three and it follow that the parent of node 3
is not its own parent. To solve this the compress algorithm shortens the height of
this tree and moves node 3 up one level. It does this by changing a nodes parent
to its parents' parent. In Figure 4.6 this is marked with the green edge from node
3 to node 0. Node 0 is the parent of node 2, so node 0 becomes the parent of node
3. In the right graph node 0 is the parent of every node.

Algorithm 6 Compress(parents)

1: tid = parents.get_wid()
2: if parents.read(tid) == tid then
3: return
4: end if
5: p = parents.read(tid)
6: pp = parents.read(p)
7: while p 6= pp do
8: parents.write(tid, pp)
9: p = pp

10: pp = parents.read(p)
11: end while

The input to the Compress algorithm is not the same as for the Hook algorithms.
While the Hook algorithms are executed over all edges, Compress is ran over all
nodes in the graph. The distribution of the nodes is done by assigning as many
threads as there are nodes in the graph. Then the thread ID is the same as the
node ID. This is the �rst line in the algorithm. In line 2 the algorithm check to see
if this node is a root node. If this is the case the thread exits the algorithm, there
is no need to compress this type of node. If the node is not a root as the thread
continues executing and retrieves the value of its parent and its parents' parent
i.e. grandparent, in lines 5 and 6. In lines 7 to 11 a while loop that performs the
compression. The loop continues as long as the parent and the grandparent are
di�erent. In the loop the grandparent is set to be the parent of the node, this is the
compression. Then the parent of the grand parent is set as the new grandparent.
This is then repeated until the new parent and the new grandparent have the same
value.

Figure 4.6 shows one run through the compress algorithm, focusing on node 3.

28

CHAPTER 4. GROUTE 4.2. CONNECTED COMPONENTS IN GROUTE

0

1 2

3

0

1 2

3

0

1 2 3

Figure 4.6: Compress algorithm compressing a parent tree with a height of 3

Node 3 is the node set in line 1. Node 2 is the parent of node 3, so node 3 isn't its
own parent. Node 2 is then set as parent and node 0 as grandparent, lines 5 and 6.
When the loop starts it is �rst determined that node 2 and node 0 are not equal,
hence the loop runs at least once. Inside the loop node 0 is set as the parent of
node 3, and the parent value is updated to 3. The parent of node 0 is node 0, so
when the loop looks at the parent and grandparent that are now equal. The end
result is the graph to the right in Figure 4.6.

The compress algorithm following Hook-non-atomic does not necessarily com-
press the whole parent structure, as it does after Hook-atomic. When performing
this compression an upper-bound is given for which nodes to perform compress
on. Only nodes from number zero to the upper-bound on node ID are compressed.
This upper-bound is the highest valued node from the input segment and thus
decreases the number of nodes that handled. This follows as there are no edges
connecting nodes above the upper-bound to the nodes below.

The compress algorithm has two jobs. It improves the work conditions for Hook-
non-atomic such that more of the work done by Hook-non-atomic is constructive
and not destructive. The second part that it improves is the runtime of Hook-
atomic by compressing the tree structure such that the atomic write doesn't fail
as often.

4.2.4 Merge

Now that each device has a parent structure created from its assigned edges do we
merge these together into the �nal solution. The second while loop in Algorithm
3 is where this merging happens. The merge algorithm uses Hook-atomic, Section
4.2.2, to connect components from these parent structures. The input is now edges
from a parent structure created on another device. Merge only runs if more than

29

4.3. IMPLEMENTATION OF REM IN GROUTE CHAPTER 4. GROUTE

one device is used.
If device 1 is merging its solution with the one from device 2, then device 1

run Hook-atomic operations that take edges from device 2's parent structure as
input. Device 1 is connecting components, using edges from Device 2s' parent
structure and add this to its own parent structure. Thus components that were
not connected as necessary edges was distributed to di�erent graphs can now be
connected. On device 2 node 0 is the parent of node 1, this is sent to device 1
as edge(0, 1). There are sent as many edges as there are nodes. Not all devices
merge other devices parent structure, they just send their parent structure and are
�nished. The merging continues as long as there are devices receiving edges from
other devices.

4.2.5 Final-compress

The last step for a device in Algorithm 3 is to prepare its local result for communi-
cation, as the result from one device is sent to another for collection into the �nal
solution. The Final-compress algorithm shown in Algorithm 4.2.5, checks the par-
ent structure on a device. If it is compressed, then the device is done. If the parent
structure is not compressed, then the structure is compressed. The compression
is performed by the Compress algorithm, presented in Section 4.2.3. This step is
necessary in Groute as a solution with a higher parent structure than two is not
recognized.

Algorithm 7 Final-compress(parents

1: if is.compressed() then
2: return
3: end if
4: Compress

4.3 Implementation of Rem in Groute

Rem's algorithm for Connected components was presented in Section 2.4. We
now describe how this algorithm has been implemented in Groute. Our goal when
doing so is to get experience with Groute and see how hard it is to use it together
with new algorithms. We are also interested in comparing the performance of Rem's
algorithm with the existing algorithm in Groute. The result of these comparisons
is presented in Chapter 6.

30

CHAPTER 4. GROUTE 4.4. EXPERIENCE WITH GROUTE

Algorithm 8 Rem in Groute
1: while Pending input_segement do
2: Rem
3: end while
4: while Pending merge_segment do
5: Merge-Rem
6: end while
7: Final-compress

To implement Rem's algorithm in Groute we use the code structure from Algo-
rithm 3. Algorithm 8 shows the resulting algorithm in Groute. For communication
purposes we need the two while loopsthat were also used in Groute's Connected
components program for communication purposes. The �rst while loop creates
the parent structure on each devices from edges received from the input segment.
The second while loop collects solutions from all devices into the �nal solution.
The main change is that the for loop that iterates over Hook-non-atomic and com-
press has been removed. This can be done as Rem's algorithm compresses while
building the tree structure and also uses atomic operations for merging. We keep
the Final-compress algorithm that also compress since this is required to reuse
this method. However, the merge algorithm in the second while loop use Rem's
algorithm when building the �nal solution.

4.3.1 Adjusting Rem's algorithm for implementation

In Algorithm 9 we show Rem's algorithm as it is implemented in Groute. Since
Hook-atomic and Rem have similar structure and input there are not many changes
from from the version presented in Section 2.4. In line 1 how edges are retrived is
copied from the Hook operations. The important change is that in the atomicCAS
operation in line 15, the �rst argument is now ry, the node with the highest valued
parent. In the Rem code presented in Section 2.4 there is used a read parent
operation in this argument, as this is included in Groutes atomicCAS the node ry
is used.

4.4 Experience with Groute

Our experience with Groute is impacted by the fact that there were no docu-
mentation available on how to apply Groute and implement with it. Where the

31

4.4. EXPERIENCE WITH GROUTE CHAPTER 4. GROUTE

Algorithm 9 Rem(parents, edges)

1: Edge e = edges.getEdge(threadID)
2: rx = e.u
3: ry = e.v
4: prx = parents.read(rx)
5: pry = parents.read(ry)
6: while prx 6= pry do
7: if prx > pry then
8: tmp = prx
9: prx = pry

10: pry = tmp
11: tmp = rx
12: rx = ry
13: ry = tmp
14: end if
15: result = parents.write_atomicCAS(ry, pry, prx)
16: if result 6= pry then
17: pry = result
18: continue
19: end if
20: ry = pry;
21: pry = parents.read(ry);
22: end while

connected components code in Gunrock alluded us was the code surrounding
and including Groutes connected components implementation comprehensi-
ble. Swapping code to implement Rem was a straight forward procedure, as both
Hook and Rem use integer values to ID nodes and select which node to set as
parent. When we stepped up to the communication layer of the code was the lack
of documentation more noticeable. We found enough understanding of the com-
munication to get an idea on how the connected components implementation
would communicate. Looking at the possibility of implementing a new algorithm
in the Groute system was a more complicated step that we did not take.

The overall system Groute provided seem to be the necessary function that
would allow us to create fast functional multiple GPU programs without the need
to worry about optimizing communication and memory. Though the lack of doc-
umentation does make it harder to take advantage of Groute.

32

Chapter 5

CUDA Implementation

In Chapter 4 we describe a connected components implementation in a run-
time environment. The runtime environment is used to run connected compo-

nents with multiple devices and handles communication, memory and synchro-
nization. In this chapter we describe an alternative connected components

implementation that do not use a runtime environment, but is implemented in
CUDA. Our goal is to get a comparable experience between working in Groute
and CUDA. We show a way to handle multiple devices, manage communication
between host and devices, and between devices, handle memory for host and all de-
vices. We implement both Rem and Hook-atomic algorithms, and the opportunity
for an iteration of Hook-non-atomic.

5.1 Application structure

Algorithm 10 show the connected components implementation made in CUDA.
The algorithm starts by distributing parent lists and edge list to the devices in lines
1 to 4 from the input graph. The while loop in lines 5 to 16 connects components
with the edges from the edge list. This loops as long as there are edges to execute
on. The second while loop merge parent trees from devices into one �nal solution.
In line 21 all parent trees have been merged into one complete solution, which is
then sent to the host. Lines 8 and 9 is a Hook-non-atomic iteration and can be
used or excluded depending on what type of version is used. In lines 10 and 18 use
either Rem or Hook-atomic as the connective algorithm. Compress in lines 11 and
19 is only used if Hook-atomic is used.

The for loop in lines 1 to 4 in Algorithm 10 distributes the parent list and edge
list from the host to each device by looping through all devices initiating the data

33

5.1. APPLICATION STRUCTURECHAPTER 5. CUDA IMPLEMENTATION

Algorithm 10 Connected components in CUDA
1: for Each device do
2: Send parent list
3: Send edge list
4: end for
5: while is.work do
6: for Each device do
7: if Use Hook-non-atomic then
8: Hook-non-atomic
9: Compress

10: end if
11: Rem or Hook-atomic
12: Compress
13: end for
14: end while
15: while is.merge do
16: Rem-merge or Hook-atomic-merge
17: Compress
18: end while
19: Solution retrieved from device to host

transfer with cudaMemcpyAsync. The data is transfer from the hosts memory to
each device memory, storing it in the device global memory. The distribution is
done asynchronous as the host continues to the next step after starting the data
transfer to a device. All devices receive the same parent list, where each node is
a root node. The edges are divide equally between all devices. All data transfers
from the input graph are done in this step.

In the while loop lines 5 to 14 the connecting component operations are called.
Only one of the four versions shown in Chapter 4 are called at a time. The while
loop runs as long as there is work on at least one device. Work is true if a kernel
call to a device occurred in the previous iteration, all devices have to be done before
the host can continue from this loop. Hook-non-atomic and compress in lines 8
and 9 can be excluded from running when the algorithm executes only atomic
versions. The compress operation in line 12 is only used with Hook-atomic, not
for Rem as the Rem is compressing and it is not needed. Distribution of threads
for kernel calls are calculated from the number of nodes in the graph. If there
are more available edges than nodes on a device, then the number of edges is set
to the number of nodes in the graph. If there are less edges than nodes left on

34

CHAPTER 5. CUDA IMPLEMENTATION5.1. APPLICATION STRUCTURE

the device are the number of threads set to the number of edges left to execute
on. Using the number of nodes as a basis for number of threads is chosen for two
reasons. There is a limit to how many threads that can be used in this application.
As the number of edges in some of the graphs used in test in this thesis is higher
than the maximum number of threads the application can use we divide the edge
list by using fewer threads but more kernel calls. In this while loop the edge list
is separated into smaller chunks by using the number of nodes as the number of
threads. After each iteration an o�set is increased such that together with thread
ID all edges have been added by the device. For both Hook versions there are
compress operations after each Hook operation, to allow this compress to be called
between Hook operations is it necessary to divide the problem size such that we
get more iterations of this while loop and get this Hook-compress situation.

The while loop in lines 15 to 18 loops a set number of steps based on the number
of devices in use. The loop is skipped if there is only one device in use. In this
while loop devices either send their parent list to another device, receive a parent
list from another device or wait for next iteration. A device waits if there are no
devices to either send or receive the parent list. This communication step happens
before either Rem-merge or Hook-atomic-merge merge a received parent list with
the local parent list.

5.1.1 Changes for implementation

There are made changes to algorithms mentioned in Chapter 4, the changes are
only minor variations directly in�uenced by how we chose to implement in CUDA.
As the changes are syntactic they are similar for algorithms that do the same task.
For all algorithms there are a change to how parent and edge values are accessed.
As they are stored in integer pointers on each device, we use a call to the pointer to
access the values, parents[index] is the parent value to the node with index value.

Connecting algorithms

Algorithm 11 show the new version for Hook-atomic. The input has changed from
an edge list to two list holding the node value for an edge and an o�set variable.
An edge is found by the index in the edges list, edgesV[index] and edgesU[index].
The o�set variable is used to ensure that all edges are used, when a kernel call is
made only part of the edge lists are used. The number of threads currently called
are stored in the o�set variable so that in the next kernel call threads can add this
o�set value to their ID such that new edges are used. In line 1 in Algorithm 11
the o�set is added to the threadID to obtain the correct id to access a new edge.

35

5.1. APPLICATION STRUCTURECHAPTER 5. CUDA IMPLEMENTATION

Algorithm 11 Hook-atomic(parents, edgesV, edgesU, o�set)

1: tid = threadID + o�set
2: if [edgesU[tid] 6= edgesV[tid] then
3: pu = parents[edgesV[tid]]
4: pv = parents[edgesU[tid]]
5: while pu 6= pv do
6: high = pu > pv ? pu : pv
7: low = pu + pv - high;
8: prev = atomicCAS(parents[high], high, low)
9: if prev == high || prev == low then

10: break;
11: end if
12: pu = parents[prev]
13: pv = parents[low]
14: end while
15: end if

For Hook-atomic and Rem the call to atomicCAS is di�erent from how they
were in Groute, now we use that standard atomiCAS operation, line 8. For Hook-
atomic to reach a root in this atomic operation we look at the parent of high in
the call, such that high must be equal to parent of high for a successful write. For
Rem this atomic operation is the same as in the original version, see Section 2.4.

Merge algorithms

Algorithm 12 show the �rst lines in the Rem-merge algorithm. The input also
changes for the both Hook and Rem merge algorithms, the change is the same for
both. When two devices merge their parent list one device sends their parent list
to the other device. The parent list is stored such that the index of the parent
list is the ID of a node, and the value at this index is the parent of that node,
this gives us the edge between these two nodes. This is used in lines 1 and 2,
parentsEdges is the parent list from the other device. After the nodes are collected
from parentsEdges and set to rx and ry, then the algorithm continues as do in Rem
and Hook-atomic.

36

CHAPTER 5. CUDA IMPLEMENTATION5.2. COMMUNICATION - DATA TRANSFER

Algorithm 12 Rem-merge(parents, parentsEdges)

1: rx = parentsEdges[threadID]
2: ry = threadID
3: prx = parents[rx]
4: pry = parents[ry]
5: ...

5.2 Communication - data transfer

In this section we look at the two communication steps in the CUDA implemen-
tation. The �rst step is distributing needed data to the devices, this includes a
complete parent list of all nodes for each device and list of edges which are dis-
tributed among the devices. In the second step have each device calculated a
solution based on the edges they received, these solutions must be collected and
connected together and sent back to the host.

5.2.1 Distributing graph

The �rst communication step is distributing the graph to all devices. Every device
gets a parent list where all nodes are root nodes. All edges are divided between all
devices, an edge exist only on one device. The content that is distributed is the
same for this implementation as it is in the Groute implementation, the di�erence
is how the edges are distributed. In this implementation all edges are distributed
at once to all devices. All devices have all their dedicated edges allocated to their
memory before they start connecting components. In Groute the edges are divided
into smaller segments that are distributed a segment at a time to devices, a device
connects components on their current input segment, when all edges in the segment
are handle they receive a new segment with new edges.

5.2.2 Merging solutions

The second communication step in this application is to gather partial solutions
from all devices and merge them together as one �nal solution. Devices on the
Google Cloud server are structured in two groups where devices in each groups can
send data to each other, but must go through host two send data to the other group,
this setup is described in Section 2.5. Device to device communication is faster
than device to host communication thus we want to use these groups for optimized
communication. Figure 5.1 show the merge-communication structure used for the

37

5.3. HANDLING MULTIPLE DEVICESCHAPTER 5. CUDA IMPLEMENTATION

0

0 4

42

3210 4 5 6 7

0 6

Figure 5.1: Merge communication between devices as parent lists are merged into
one on device 0, red arrows show devices that send their parent list.

second communication step with eight devices. Device 0-3 is one group of devices
with connections between them, device 4-7 is the other group. The communication
between devices are kept within the groups for as long as possible, before the host
is used for the last step.

When two devices communicate one device send its parent list to the other
device. Devices that sends their parent list are done and don't have any more
tasks to do. Devices that receives a parent list merge this list with its own parent
list before it continues with further communication. In Figure 5.1 we show the steps
in communications, red lines show devices that send their parent list to another
device. We show that devices connected in groups communicate with each other
before the last step where device 4 send its parent list to device 0, this is done
through the host.

5.3 Handling multiple devices

In this section we describe steps taken to handle more than one device when pro-
gramming in CUDA. CUDA has integrated functions to handle multiple devices,
two we focus on are setCudaDevice and streams, described in Section 2.2. Both
functions are used to determine which device that is currently active for the host to
send instructions or operations to, such as copying data or kernel calls. Therefore
we loop through each device when preparing calls to devices, in lines 1 to 4 and
6 to 13 in Algorithm 10. This is also used in the while loop in lines 15 to 18, in
this loop every device is not used each iteration as devices that sends transfer their

38

CHAPTER 5. CUDA IMPLEMENTATION5.4. EXPERIENCE FROM MULTI-GPU PROGRAMMING

parent list are done.

Memory management

Techniques used when programming on one device are transferable when we move
to more devices. But where one would create a pointer to refer to some data are
we creating lists of pointers to represent data. To allow scaling the number of
devices we create a list where the number of pointers corresponds to the number
of devices. Thus, each device have a pointer for their data set that corresponds to
their device ID. In this implementation we encountered the need for variables, as
the values of these variable varies from device to device we stored these in lists to.
The advantage of this technique is that it makes handle memory easier but might
not be very e�ective for speed or memory usage.

5.4 Experience from multi-GPU programming

In this section we discuss our experience gained from working on a multiple GPUs
program in CUDA. There are a few subjects we need to consider when we create
a CUDA program for multiple devices, how to handle devices, synchronization
between devices and how to share memory. When we think about these subjects
we encounter a point where a level of optimization is set. Creating a program
where optimization is not important make this task easier, as would be expected.
We can now use a loop to manage these subjects, by going through each device
and perform a task. When optimization is important there seems to be a need
for an overhead that demands more intricate solutions. The reason for this is that
there is much to gain by controlling and using the full memory bandwidth such
that operations on host or device must wait as little as possible. At this point a
library or runtime environment that have solved this is advantageous.

Creating a program in CUDA that works on multiple devices was surprisingly
intuitive with a CPU parallel programming background. This is surprising as
there are multiple levels of parallelism when we move to multiple devices. Though
moving from a program that works to a fast program that has highly optimized
communication and memory handling is a more complicated step.

39

Chapter 6

Experiments

In this chapter we experiment on the performance for Groute and the CUDA
implementation, comparing their run time. We look at the e�ciency in scaling
for both and at how much speedup they achieve. We describe the graphs used
for the experiments, the computers used for these experiments are described in
Section 2.5. We look at the performance of the algorithm already implemented
in Groute and compare it with the Rem's algorithm implementation to show how
Rem's algorithm perform in parallel.

6.1 Graphs

In this section we take look at the graphs used for experiments. We have se-
lected a variation of graphs to allow a better range for the results �nding general
performance indications. Graphs varies in size, average degree and how they are
generated, they are described in Table 6.1. These graphs are collected from the
10th DIMACS Implementation Challenge [7].

2D Dynamic simulation graphs

2D Dynamic Simulations graphs are meshes taken from individual frames of a
dynamic sequence which resembles adaptive 2D numerical simulations [7]. These
graphs has a low average degree, all three has an average degree of 3.

Citation network

These graphs represent real-world social networks [7]. They have a higher average
degree, 73.9 for coPapersCiteseer and 56.4 for coPapersDBLP.

40

CHAPTER 6. EXPERIMENTS 6.1. GRAPHS

Graph Vertices Edges Category Components
hugebubbles-00000 [12] 18 318 143 27 470 081 2D Dynamic sims 1
hugebubbles-00010 [12] 19 458 087 29 179 764 2D Dynamic sims 1
hugebubbles-00020 [12] 21 198 119 31 790 179 2D Dynamic sims 1
coPapersCiteseer [10] 434 102 16 036 720 Citation network 1
coPapersDBLP [10] 540 486 15 245 729 Citation network 1
delaunay_n23 [7] 8 388 608 25 165 784 Delaunay 1
delaunay_n24 [7] 16 777 216 50 331 601 Delaunay 1
rgg_n_2_22_s0 [11] 4 194 304 30 359 198 Random Geometric 5
rgg_n_2_23_s0 [11] 8 388 608 63 501 393 Random Geometric 5
rgg_n_2_24_s0 [11] 16 777 216 132 557 200 Random Geometric 2
af_shell10 [7] 1 508 065 25 375 910 Sparse matrix 1
audikw_1 [7] 943 695 38 354 076 Sparse matrix 1
nlpkkt120 [7] 3 542 400 46 651 696 Sparse matrix 1
nlpkkt160 [7] 8 345 600 110 586 256 Sparse matrix 1
nlpkkt200 [7] 16 240 000 215 992 816 Sparse matrix 1
nlpkkt240 [7] 27 993 600 373 239 376 Sparse matrix 1
asia.osm [7] 11 950 757 12 369 181 Street network 1
europe_osm [7] 50 912 018 54 054 660 Street network 1
germany.osm [7] 11 548 845 12 369 181 Street network 1
kron_g500-logn20 [7] 1 048 576 44 619 402 Synthetic 253 380

Table 6.1: Graphs used for testing, with the number of vertices, edges and compo-
nents

Delaunay Graphs

Delaunay graphs are generated as Delaunay triangulations of random points in the
plane [7]. Both Delaunay graphs have an average degree of 6.

Random Geometric graphs

Random Geometric Graphs are graphs that vertices are random points in the unit
square and edges connect vertices with a �xed Euclidean distance. This distance
ensure that the graphs are almost connected [7]. The average degree for these
graphs is between 14 and 15.

41

6.1. GRAPHS CHAPTER 6. EXPERIMENTS

Expanded graph Vertices Edges expanded Components
rgg_n_2_24_s0exp10 167 772 160 1 325 572 000 10 times 20
nlpkkt240exp4 111 974 400 1 492 957 504 4 times 4
rgg_n_2_22_s0exp2 8 388 608 60 718 396 2 times 10
rgg_n_2_22_s0exp3 12 582 912 91 077 594 3 times 15
rgg_n_2_22_s0exp4 16 777 216 121 436 792 4 times 20
rgg_n_2_22_s0exp5 20 971 520 151 795 990 5 times 25
rgg_n_2_22_s0exp6 25 165 824 182 155 188 6 times 30
rgg_n_2_22_s0exp7 29 360 128 212 514 386 7 times 35
rgg_n_2_22_s0exp8 33 554 432 242 873 584 8 times 40

Table 6.2: Nine expanded graph for further testing

Sparse matrix graphs

These sparse matrix graphs are taken from the Florida Sparse Matrix Collection
and converted to 10th DIMACS Implementation Challenge's graph format [7].
The average degree varied between these graphs, all nlppkt graphs have an average
degree about 26, while af_shell10 is 33.7 and audikw_1 the second highest for all
selected graphs at 81.3.

Street network graphs

The Street network graphs are undirected and strongly connected components from
The Open Street Map road networks [7]. These graphs are from real-world street
networks, thus they have planar tendencies. They also have the lowest average
degree among the selected graphs, all street network graphs have average degree
2.1.

Synthetic graph

The synthetic graphs are generated with the Kronecker generator and contains self-
loops and multiple edges [7]. This synthetic graph has the highest average degree
among the selected graphs, at a average degree of 85.1.

Expanded graphs

We have expanded nine graphs for testing, we expanded known graphs to keep
some expected characteristics but also achieve a bigger workload. Seven of them

42

CHAPTER 6. EXPERIMENTS 6.2. TEST MEASUREMENTS

T1/(Tn ∗ n)

Fixed problem size.

Figure 6.1: Strong scaling

T1/Tn

Scaled problem size.

Figure 6.2: Weak scaling

T1/Tn

Fixed problem size.

Figure 6.3: Speedup

are expanded to measure weak scaling for one to eight devices, increasing the work
load at the same rate as the number of devices. The two other graphs are expanded
to increase the work size for applications in this thesis, allow us to test on more
than one billion edges. The expansion is done by taking a graph and replicate it a
given number of times, where each replicate is a stand-alone version of the original
graph where there are no connections between the replicates. Information about
the graphs are showed in Table 6.2.

6.2 Test measurements

In this chapter we do experiments on our programs and we look to four tests to
help us determine how a program is performing in these experiments. We want to
determine how fast the program is and how it performs as we increase the number
of devices. Run time refers to the time a program spends, this shows us the speed
of a program on our test computers and is measured in milliseconds. There are
two ways to determine how e�ciently a program scale as the number of devices
increase, strong and weak scaling. Strong scaling show how well the program scale
as the number of devices increase and the problem size stays �xed. We �nd the
e�ciency for strong scaling by �nding the time it takes the program to run on each
given number of devices. We multiply the time the program spent with the number
of devices used and divide the time it took the program to run on one device. In
Figure 6.1 the equation for strong scaling, T is time and n the number of devices.
For weak scaling we look at the scaling e�ciency as the problem size increase as the
number of devices increase. To �nd weak scaling e�ciency we increase the problem
size such that the work for each device stay the same when the number of devices
is increased. Figure 6.2 show the equation for weak scaling, the time it takes for
one device is divided on the time it takes on n devices, where the problem size
is increased n times. Speedup shows how much faster a program is on n devices,
the problem size is �xed. Figure 6.2 show the equation for speedup, if the time
is halved when the program run on two devices compared to on there would be a
speedup of two.

43

6.3. GROUTE EXPERIEMNTS CHAPTER 6. EXPERIMENTS

6.3 Groute experiemnts

In this section we look at the experiments on Groute and its connected com-

ponents algorithm and with Rem. We show the run time comparison between
the best version of Hook and the best version of Rem, with regards to the number
of iterations with Hook-non-atomic. We describe the scaling e�ciency Groute has
as the number of devices increase. We also look at the speedup that Groute can
achieve.

6.3.1 Hook-non-atomic

In Section 4.2.1 we look at the performance in Groute for both Hook and Rem with
di�erent number of iterations of Hook-non-atomic. Our goal is to �nd the number
of iterations that yields the best performance for both versions. We use four graphs
as a sample of our graph collection to show the tendencies with di�erent number
of iterations. We look the run time performance and the percentage each iteration
performs compared to the best for each graph.

Hook-atomic with Hook-non-atomic iterations

Figure 6.4 shows the time each iteration take in the left plot, the right plot show
performance by percentage. For graphs that have the best performance with one
iteration we �nd that no iterations or more than one iteration is noticeable worse,
performing below 80% compared with one iteration. For graphs that has the best
performance with no iteration, the drop in performance with one iteration is not
as signi�cant, staying above 90%. For all graph the performance decrease when
more than one iteration used. Groute's Hook implementation work generally best
with one iteration of Hook-non-atomic.

Rem with Hook-non-atomic iterations

With Rem's algorithm we don't expect there to be better performance with Hook-
non-atomic as there should be little advantage to use it. Figure 6.5 shows the
results for Rem. Here the tendencies shift towards overall better performance
with no iterations of Hook-non-atomic. The performance decrease as the number
of iterations increase. This is expected as the pre-work Hook-non-atomic does for
Hook-atomic do not decrease the work for Rem as much as it does for Hook-atomic.

Street network graphs is an exception for Rem, these graphs perform much
better with one iteration of Hook-non-atomic. Figure 6.6 shows the results for

44

CHAPTER 6. EXPERIMENTS 6.3. GROUTE EXPERIEMNTS

Figure 6.4: Running time and performance by percentage on Hook-non-atomic
iterations using Hook-atomic in Groute

0 1 2 3 4

50

100

Iterations

M
il
li
se
co
n
d
s

delaunay_24
hugebubbles-00010

nlpkkt120
rgg_n_2_22_s0

0 1 2 3 4
40%

60%

80%

100%

Iterations

P
er
fr
om

an
ce

delaunay_24
hugebubbles-00010

nlpkkt120
rgg_n_2_22_s0

Figure 6.5: Running time and performance by percentage on Hook-non-atomic
iterations using Rem

0 1 2 3 4

50

100

Iterations

M
il
li
se
co
n
d
s

delaunay_24
hugebubbles-00010

nlpkkt120
rgg_n_2_22_s0

0 1 2 3 4

40%

60%

80%

100%

Iterations

P
er
fr
om

an
ce
delaunay_24

hugebubbles-00010
nlpkkt120

rgg_n_2_22_s0

street network graphs, the left plot show the run time, the right show percentage
of the performance. For these graphs the performance for no iteration of Hook-
non-atomic is below 70% at best and below 40 % at the worst. Increasing to two
iteration all graphs perform below 80% compared with one iteration. For street
network graph the performance with Groute using Rem is better with one iteration
of Hook-non-atomic.

Optimal number of iterations

From experiments we show that using either no or one iteration of Hook-non-
atomic is the range where we achieve the best performance for both Hook and
Rem versions in Groute. This range of iterations de�nes what we want to test in

45

6.3. GROUTE EXPERIEMNTS CHAPTER 6. EXPERIMENTS

Figure 6.6: Street network graphs performing better with one iteration of Hook-
non-atomic

0 1 2 3 4

20

40

60

80

Iterations

M
il
li
se
co
n
d
s

europe
asia

germany

0 1 2 3 4

40%

60%

80%

100%

Iterations

P
er
fr
om

an
ce

europe
asia

germany

further testing when we increase the number of devices.

6.3.2 Rem and compress operations

Both Hook and Rem use a version of Union-find for solving Connected com-

ponents. The Hook algorithms don't compress the parent structure when they
connect nodes and components, Rem's algorithm do compress while connecting.
Thus, compressing between handling segments don't decrease the run time for Rem
as it does for the Hook.

Figure 6.9 show results from two graphs running Rem, with and without com-
press. On the rgg_n_2_24_s0 graph there is no di�erence between using compress
and not using compress. Using compress or not is equally fast and scale the same.
This is the same with and without an iteration of Hook-non-atomic. Running on
nlpkkt160 compress slows down the run time. The di�erence is biggest on one
and two GPUs. With an iteration of Hook-non-atomic it is 20% faster without
compressing than when compressing. Not using compress is 13% faster with no
iteration of Hook-atomic on one and two GPUs. From three GPUs the di�erence
is much smaller, between 6% and 1% di�erence. In these tests we used compress
in the Hook-non-atomic iteration, as not using compress increases the run time.
Running on the nlpkkt160 graph, it is 30% slower to not use compress after Hook-
non-atomic.

6.3.3 Run time perfromance Hook vs Rem

In this section we compare the run time performance between Hook and Rem in
Groute. As we have seen there is a di�erence between no and one iteration of Hook-

46

CHAPTER 6. EXPERIMENTS 6.3. GROUTE EXPERIEMNTS

Figure 6.7: rgg_n_2_24_s0 graph

2 4 6 8
20

40

60

80

100

Num GPUs

M
il
li
se
co
n
d
s

Rem w/comp & hna
Rem w/comp

Rem
Rem w/hna

Figure 6.8: nlpkkt160 graph

2 4 6 8

40

60

Num GPUs

M
il
li
se
co
n
d
s

Rem w/comp & hna
Rem w/comp

Rem
Rem w/hna

Figure 6.9: Comparison of Rem running with and without the compress algorithm
in Groute

Figure 6.10: hugebubbles-00000

2 4 6 8

50

100

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.11: hugebubbles-00010

2 4 6 8

40

60

80

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.12: Run time on 2D Dynamic simulations graphs

non-atomic for both Hook and Rem, we use the number of iterations that gives the
best performance for each graph when we compare Hook with Rem. Our goal is to
see which algorithm perform best on Groute running on one to eight devices. We
use Google Cloud server for these test, Google Cloud server is described in Section
2.5.

2D Dynamic simulation graphs

Figure 6.12 and 6.14 shows the running time for 2D Dynamic simulation graphs.
On these graphs both Hook and Rem with no iteration of Hook-non-atomic are the
best performing versions. The hugebubbles-00000 graph has the biggest di�erence

47

6.3. GROUTE EXPERIEMNTS CHAPTER 6. EXPERIMENTS

Figure 6.13: hugebubbles-00020

2 4 6 8

40

60

80

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.14: Run time on 2D Dynamic simulations graph

Figure 6.15: coPapersCiteseer

2 4 6 8

4

6

8

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.16: coPapersDBLP

2 4 6 8

3

4

5

6

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.17: Run time on citation network graphs

in run time at one device, Hook is 269% slower than Rem on one device. At two
devices the di�erence is at 97% slower, this goes down gradually to �ve devices
where the di�erence levels out at around 60% slower. The other two graphs have
s similar characteristics, but not as big of a di�erence. Hook is 63% slower on one
GPU and levels out at 25-30% slower running hugebubbles-00010. And 50% slower
on one device , levels out at 15% to 20% slower with hugebubbles-00020.

Citation network

Figure 6.17 show the results for citation network graphs, for tehse graphs are both
versions better with no iteration of Hook-non-atomic. In both citation ntwork

48

CHAPTER 6. EXPERIMENTS 6.3. GROUTE EXPERIEMNTS

Figure 6.18: delaunay_n23

2 4 6 8

20

40

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.19: delaunay_n24

2 4 6 8

50

100

150

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.20: Run time on Delaunay graphs

graph is Hook consistently slower than Rem. With the coPapersCiteseer graph is
Hook between 31% and 51% slower variable di�erence when the number of devices
is increased. For coPapersDBL is Hook between 87% to 52% slower.

Delaunay Graphs

For Delaunay graphs Hook with one iteration of Hook-non-atomic and Rem with
no iteration the best versions. The results for these graphs are shown in Figure
6.20. For both graphs are Hook close to Rem in performance on one device, 17%
slower for both graphs compared with Rem. Hook increase in run time when two
devices are used, delaunay_n23 is 269% slower and delaunay_n24 is 395% slower.
The time decrease from this peak as the number of devices are increased. With
delaunay_n23 Hook is close to Rem at �ve devices, staying between 8% and 14%.
For delaunay_n24 Hook is closer at seven and eight devices, only 2% and 4%
slower. These peaks are even more extreme when Hook don't use an iteration of
Hook-non-atomic.

Random Geometric graphs

Figure 6.23 and Figure 6.25 shows the results when running random geometric
graphs on one to eight devices. The di�erence between Hook and Rem is bigger
on one device before it levels out. Hook is 26% slower on rgg_n_2_22_s0, 46%
slower on rgg_n_2_23_s0 and 57% slower on rgg_n_2_24_s0. The di�erence
levels out as the number of devices increase, then Hook is around 15% slower on
rgg_n_2_22_s0, around 23% slower on rgg_n_2_23_s0 and 16% to 30% slower

49

6.3. GROUTE EXPERIEMNTS CHAPTER 6. EXPERIMENTS

Figure 6.21: rgg_n_2_22_s0

2 4 6 8

10

15

20

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.22: rgg_n_2_23_s0

2 4 6 8

20

30

40

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.23: Run time on Random Geometric graphs

Figure 6.24: rgg_n_2_24_s0

2 4 6 8
20

40

60

80

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.25: Run time on Random Geometric graph

on rgg_n_2_23_s0.

Sparse matrix graphs

Figure 6.30 and Figure 6.33 show the results for sparse matrix graphs. The spare
matrices graphs are among the few graphs were Rem have a better performance
with one iteration of Hook-non-atomic. The di�erence is not as signi�cant as with
the street network graphs. Hook is better with one iteration of Hook-non-atomic,
except the af_shell10 graph, where no iteration is best. For nlpkkt graphs is Hook
closer to Rem on one device, Hook is 50% to 60% slower. With more devices is
Hook much slower than Rem, using more than twice the time running Hook.

The results for the smallest sparse matrix graphs are shown in Figure 6.33. For

50

CHAPTER 6. EXPERIMENTS 6.3. GROUTE EXPERIEMNTS

Figure 6.26: nlpkkt120

2 4 6 8

20

30

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Rem w/ hna

Figure 6.27: nlpkkt200

2 4 6 8

50

100

150

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Rem w/ hna

Figure 6.28: nlpkkt160

2 4 6 8

40

60

80

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Rem w/ hna

Figure 6.29: nlpkkt240

2 4 6 8

100

200

300

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.30: Run time for Sparse matrix nlpkkt graphs

af_shell is Hook 9% slower on one device. After two devices both Hook and Rem
perform worse as the number of device increase, Hook is between 18% and 33%
slower from two to six device, after this Rem's run time increase more, as Hook is
only 15% slower. With audikw_1 Rem's run time is stable, decreasing from 13 ms
to 10 ms from one to eight devices. Hook improves more from one to eight devices,
Hook is 114% slower at one device and gradually goes down to 49`5 slower as the
number of devices increase to eight devices.

Street network graphs

In Section 6.3.1 we described the exception that Rem performed much better on
street network graphs with one iteration of hook-non-atomic. We show the results
for street network graphs in Figure 6.36 and Figure 6.37. The street network

51

6.3. GROUTE EXPERIEMNTS CHAPTER 6. EXPERIMENTS

Figure 6.31: af_shell10

2 4 6 8

4

6

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.32: audikw_1

2 4 6 8

10

15

20

25

30

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.33: Run time on small sparse matrix graphs

Figure 6.34: asia.osm

2 4 6 8

10

20

30

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Rem w/ hna

Figure 6.35: euro_osm

2 4 6 8

40

60

80

100

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Rem w/ hna

Figure 6.36: Run time on street network graphs

graphs are the only graphs where Rem is not faster than Hook on all every number
of devices. There are variations whether Hook or Rem is faster, either is not more
than 10% faster, varying between 0% and 6% di�erence.

Synthetic graph

Figure 6.38 show the run time result for the synthetic graph kron_g500-kogn20.
Hook and Rem both perform best with no iteration of Hook-non-atomic. The
di�erence between Rem and Hook is bigger at one device than other number of
devices. Atone device is Hook 33% slower, after that it around 20% slower.

52

CHAPTER 6. EXPERIMENTS 6.3. GROUTE EXPERIEMNTS

Figure 6.37: germany.osm

2 4 6 8
10

15

20

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Rem w/ hna

Figure 6.38: kron_g500-kogn20

2 4 6 8
10

15

20

25

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.39: Run time on street network and synthetic graphs

2 4 6 8

20%

40%

60%

80%

Num GPUs

E
�
ci
en
cy

delaunayn24
hugebubbles-00020
krong500-logn20

2 4 6 8

20%

40%

60%

80%

Num GPUs

E
�
ci
en
cy
nlpkkt240
rggn224s0

coPapersDBLP

Figure 6.40: Strong scaling e�ciency for Groute

6.3.4 Strong scaling

In this section we show the strong scaling e�ciency for Groute running Rem on six
graphs. Strong scaling shows the e�ciency when the problem size stays the same
and the number of GPUs is increased, at 100% e�ciency the run time decrease at
the same rate as the number of GPUs increase. 100% e�ciency is unrealistic as we
know there is overhead work that increases as the number of devices do. In the left
plot we see that the e�ciency running two GPUs is acceptable around 70%, but
the e�ciency drops signi�cantly as the number of GPUs increase. In the right plot
is the variation between the graphs more signi�cant, two of the graphs perform as
in the left graph, the rgg_n_2_24_s0 is decreasing slower, but the e�ciency is
still too low when the number of devices increase. The worst e�ciency is on the

53

6.3. GROUTE EXPERIEMNTS CHAPTER 6. EXPERIMENTS

2 4 6 8
40%

60%

80%

Num GPUs

E
�
ci
en
cy

Hook /w hna
Rem

Figure 6.41: Weak scaling comparison

2 4 6 8

40%

60%

80%

Num GPUs

E
�
ci
en
cy

Hook /w hna
Rem

Figure 6.42: Weak scaling based on Rem

coPapersDBLP graph, this might be due to it being the smallest graph in these
two plots, thus there is not enough work for the GPUs added to scale e�ciently.

6.3.5 Weak scaling

In this section we look at the weak scaling e�ciency of Groute. We want to see
how e�ciently Groute scales when we increase the problem size as we increase
the number of devices. An e�ciency of 100% is unrealistic as there is an increase
in overhead work when the number of devices is increased. We expanded the
rgg_n_2_22_s0 graph to have a scalable problem size that matches the number of
devices used, expanded graphs are presented in Section 6.1. Rem with no iteration
and Hook with an iteration of Hook-non-atomic are the best performing versions.
Figure 6.41 shows how Hook and Rem scale individually where the e�ciency is
calculated based on the result on one device for each of the algorithms. We see
that the original version in Groute scales better than with Rem, though we show
that Rem is much faster. Figure 6.42 shows how well both scale with regards to
Rem. On two and three devices is the e�ciency good, not as good as the original
was. From four devices the e�ciency drops and is not as good as we would like.

6.3.6 Speed-up

We are in this section showing the speedup for Groute. With speedup we measure
the increase in speed as the number of GPUs are increased, perfect speedup the
rate of speed increase at the same rate as the number of GPUs are increased. We
don't anticipate a perfect speedup as there is an overhead when we use multiple

54

CHAPTER 6. EXPERIMENTS 6.3. GROUTE EXPERIEMNTS

2 4 6 8

1

1.2

1.4

1.6

1.8

Num GPUs

S
p
ee
d
u
p

delaunayn24
hugebubbles-00020
krong500-logn20

2 4 6 8

1

1.5

2

2.5

Num GPUs

S
p
ee
d
u
p

nlpkkt240
rggn224s0

coPapersDBLP

Figure 6.43: Speedup on Groute

Figure 6.44: nlppkt240exp4

2 4 6 8

500

1,000

1,500

2,000

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.45: rgg_n_2_24_s0exp10

2 4 6 8

200

400

600

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem

Figure 6.46: Run time for the expanded graphs

GPUs, such that there is more work when the number of devices increase. Figure
6.43 show the speedup for Groute running Rem with no iteration of Hook-non-
atomic on six graphs. The speedup for Groute is not near perfect speedup, the
best speedup achieved is with the rgg_n_2_24_s0 graph, at 2.6 on �ve GPUs.
There is an increase in speed for all graphs running two GPUs, most graphs declines
after three GPUs.

6.3.7 Expanded graphs

In this section we expand two graphs to increase the workload to a signi�cant
bigger size than previously tested graphs. The expanded graphs are described in
Section 6.1. The goal is to see if a big increase in the workload gives increased

55

6.4. CUDA IMPLEMENTATION EXPERIMENTSCHAPTER 6. EXPERIMENTS

2 4 6 8

1

1.5

2

2.5

Num GPUs

S
p
ee
d
u
p

nlpkkt240
rggn224s0

2 4 6 8

20%

40%

60%

80%

Num GPUs

E
�
ci
en
cy

nlpkkt240
rggn224s0

Figure 6.47: Speedup and strong scaling for expanded graphs

performance such as better scaling and speedup. A common trend for many of the
graphs is that the improvement �attens out when the number of devices reach a
point between three and six. We use Rem with no iteration of Hook-non-atomic
when we test strong scaling and speedup on these expanded graphs.

Figure 6.46 shows the run time result for both expanded graphs. In the original
nlpkkt240 graph Rem was 3.85 times faster than Hook running on one GPU, in
the expanded graph Rem is 16.75 times faster. Rem is performing better when the
graph size has been increased compared with Hook. Figure 6.47 show the speedup
and strong scaling for the expanded graphs. For strong scaling we see the same
tendencies as in the original graphs, the e�ciency at two devices is between 70%
and 80%, and declines as the number of GPUs increase. We do not get a signi�cant
increase in speedup when the graph size is increased signi�cantly, but the peak for
rgg_n_2_24_s0exp10 is higher at seven GPUs, the peak in the original is at �ve
GPUs.

6.4 CUDA implementation experiments

In this section we describe the experiments done with the CUDA implementation
in Chapter 5. We show how the run time compare for Hook and Rem, how the
run time on this implementation compares with the run time on Groute. We show
how this implementation scale and what speedup it achieves.

56

CHAPTER 6. EXPERIMENTS6.4. CUDA IMPLEMENTATION EXPERIMENTS

Figure 6.48: asia.osm

2 4 6 8

60

80

100

Num GPUs

M
il
li
se
co
n
d
s

Hook w/ hna
Rem w/ hna

Figure 6.49: coPapersDBLP

2 4 6 8

24

26

28

30

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.50: Run time performance on CUDA

Figure 6.51: hugebubbles-00010

2 4 6 8

150

200

Num GPUs

M
il
li
se
co
n
d
s

Hook
Rem

Figure 6.52: rgg_n_2_24_s0

2 4 6 8
220

230

240

Num GPUs

M
il
li
se
co
n
d
s
Hook
Rem

Figure 6.53: Run time performance on CUDA

6.4.1 Run time performance Hook vs Rem

Figure 6.50 and Figure 6.53 show the run time performance on four di�erent graphs.
Hook and Rem with on iteration of Hook-non-atomic was better on the asia.osm
graph, this result is like how asia.osm ran on Groute, as street network graphs
performed better with one iteration of Hook-non-atomic. Hook and Rem perform
equally fast, but the run time increase with the number of GPUs for both. For the
other three graphs are both Hook and Rem better with no iteration of Hook-non-
atomic, for these graphs there is a run time performance improvement from one
to two GPUs but perform worse from three and upwards. Hook and Rem varies
between which is the best performing algorithm. In the coPapersDBLP Rem is
consistently faster than Hook, though the di�erence is only 7% at one GPU and

57

6.4. CUDA IMPLEMENTATION EXPERIMENTSCHAPTER 6. EXPERIMENTS

Figure 6.54: europe.osm

2 4 6 8
0

200

400

600

Num GPUs

M
il
li
se
co
n
d
s

CUDA
Groute

Figure 6.55: coPapersDBLP

2 4 6 8

10

20

30

Num GPUs

M
il
li
se
co
n
d
s

CUDA
Groute

Figure 6.56: Run time for our CUDA implementation and Groute

goes down to 1% di�erence at eight GPUs.

6.4.2 Compare run time between CUDA and Groute imple-

mentations

In this section show how our implementation of Rem in CUDA compare with our
implementation of Rem in Groute. As Groute has taken steps to optimize mem-
ory handling and communication do we presume it will be faster as our CUDA
implementation is not as optimized. Figure 6.56 and Figure x:G-cVG2 show this
comparison on four graphs. In these four graphs we show that our CUDA im-
plementation is much slower than our Groute implementation. With CUDA our
run time increase as the number of devices are increase on the europ.osm and
rgg_n_2_24_s0 graphs. At one GPU these graphs are between three and four
times slower, at eight they are ten to eleven times slower. For nlpkkt240 and coPa-
persDBLP the CUDA implementation is more level and is constantly around three
to six times slower on one to eight GPUs.

6.4.3 Strong scaling

In this section we show the strong scaling e�ciency for the CUDA implementation
on six graphs. With strong scaling we look at e�ciency as the number of GPUs
increase and the problem size stay the same. For all graphs the e�ciency is better
at two GPUs and decrease as the number is of GPUs increase. Even at two GPUs
the e�ciency is lower than what we would like, the CUDA implementation don't

58

CHAPTER 6. EXPERIMENTS6.4. CUDA IMPLEMENTATION EXPERIMENTS

Figure 6.57: nlpkkt240

2 4 6 8

200

400

600

Num GPUs

M
il
li
se
co
n
d
s

CUDA
Groute

Figure 6.58: rgg_n_2_24_s0

2 4 6 8
0

100

200

Num GPUs

M
il
li
se
co
n
d
s

CUDA
Groute

Figure 6.59: Run time for our CUDA implementation and Groute

2 4 6 8

20%

40%

60%

Num GPUs

E
�
ci
en
cy

delaunayn24
hugebubbles-00020
krong500-logn20

2 4 6 8

20%

40%

60%

Num GPUs

E
�
ci
en
cy

nlpkkt240
rggn224s0

coPapersDBLP

Figure 6.60: Strong scaling e�ciency for the CUDA implementation

scale well.

6.4.4 Weak scaling

In this section we look at the weak scaling e�ciency of our CUDA implementation
of Rem. Our goal is to see how e�ciently it scales when problem size is increased,
and the number of devices increase. We use the rgg_n_2_22_s0 graph and the
expanded versions as the scalable problem size, the graphs are presented in Section
6.1. Figure 6.42 shows the weak scaling e�ciency for Rem and Hook. The goal is
a high percentage close to 100%, an e�ciency of 100% is unrealistic as we get more
overhead work as the number of devices increases. The e�ciency is not good at
60% running on two GPUs, and it drops further as the number of GPUs increase.

59

6.4. CUDA IMPLEMENTATION EXPERIMENTSCHAPTER 6. EXPERIMENTS

2 4 6 8

20%

40%

60%

Num GPUs
E
�
ci
en
cy

Hook
Rem

Figure 6.61: Weak scaling e�ciency using rgg_n_2_22_s0 on CUDA implemen-
tation

2 4 6 8
0.5

1

1.5

Num GPUs

S
p
ee
d
u
p

delaunayn24
hugebubbles-00020
krong500-logn20

2 4 6 8

1

1.1

1.2

Num GPUs

S
p
ee
d
u
p

nlpkkt240
rggn224s0

coPapersDBLP

Figure 6.62: Speedup for the CUDA implementation

The CUDA implementation is not scaling as well as we would like when the input
size and number of GPUs are.

6.4.5 Speedup

Figure 6.62 show the speedup for our CUDA implementation using Rem with no
iteration of Hook-non-atomic running on six graphs. The speedup for the CUDA
implementation is very low or none existing.

60

CHAPTER 6. EXPERIMENTS6.5. DISTRIBUTION BOTTLENECK GOOGLE CLOUD

Figure 6.63: Comparison for Groute runnign Rem algorithm on Google Cloud and
Lyng

af
sh
el
l1
0

as
ia

au
d
ik
w
1

co
P
ap
er
sC

it
es
ee
r

co
P
ap
er
sD

B
L
P

d
el
au
n
ay
n
23

d
el
au
n
ay
n
24

eu
ro
p
e

ge
rm

an
y

h
u
ge
b
u
b
b
le
s-
00
00
0

h
u
ge
b
u
b
b
le
s-
00
01
0

h
u
ge
b
u
b
b
le
s-
00
02
0

k
ro
n
g5
00
-l
og
n
20

n
lp
k
k
t1
20

n
lp
k
k
t1
60

n
lp
k
k
t2
00

n
lp
k
k
t2
40

rg
gn
22
2s
0

rg
gn
22
3s
0

rg
gn
22
4s
0

0

50

100

150

200

" "

M
il
li
ec
on
d
s

Google Cloud Lyng

6.5 Distribution bottleneck Google Cloud

In this section we show how Google Cloud server and Lyng compares when Groute
runs using one GPU. As Google Cloud has the better GPU we expect it to be
faster than Lyng, both computers are described in Section 2.5. For these tests we
use Groute running the Rem algorithm without Hook-non-atomic iterations as it
is the best performing algorithm in Groute.

Figure 6.63 show the run time for each graph for both Google Cloud and Lyng.
Lyng has the fastest run time of the two computers on all graphs. Figure 6.63 show
the percentage Google Cloud is slower on each graph. Google Cloud is on average
27% slower than Lyng, range from 20% slower to 32% slower. Running the same
test using Hook with an iteration of Hook-non-atomic yields similar results.

That Lyng is signi�cantly faster with a slower GPU than Google Cloud opens a
question if there is a bottleneck in the Google Cloud setup. Where the bottleneck
exist in the setup is not certain, but if it a�ects the memory transfer it could hinder
scaling when increasing the number of devices, as computer cant transfer data fast
enough to all devices to take advantage of the added compute power.

61

6.5. DISTRIBUTION BOTTLENECK GOOGLE CLOUDCHAPTER 6. EXPERIMENTS

Figure 6.64: Percentage Google Cloud is slower than Lyng running Groute with
Rem

af
sh
el
l1
0

as
ia

au
d
ik
w
1

co
P
ap
er
sC

it
es
ee
r

co
P
ap
er
sD

B
L
P

d
el
au
n
ay
n
23

d
el
au
n
ay
n
24

eu
ro
p
e

ge
rm

an
y

h
u
ge
b
u
b
b
le
s-
00
00
0

h
u
ge
b
u
b
b
le
s-
00
01
0

h
u
ge
b
u
b
b
le
s-
00
02
0

k
ro
n
g5
00
-l
og
n
20

n
lp
k
k
t1
20

n
lp
k
k
t1
60

n
lp
k
k
t2
00

n
lp
k
k
t2
40

rg
gn
22
2s
0

rg
gn
22
3s
0

rg
gn
22
4s
0

20%

30%

40%

50%

" "

P
er
ce
n
t

Google Cloud percent slower than Lyng

62

Chapter 7

Conclusion

We separate the conclusion into two parts. We go into our experience programming
on multiple GPUs in Section 7.1. As there are interesting �ndings regarding the
Rem algorithm [2] we used for testing we go into this in Section 7.2. We also
discuss possible further work in Section 7.3.

7.1 Experience

We learned in Chapter 5 that creating optimized multiple GPUs programs is hard.
Using environment or libraries that support in optimizing the hard task such as
communication and memory handling seems reasonable as this is a hard part to
gain improved performance. This will let us focus on the computation steps in
the program and improve these. Though there is a need for documentations or
instructions to make libraries and run time environment more accessible.

7.2 Rem and �ndings

We show in Chapter 6 that Rem's algorithm is a faster Connected components
algorithm than the original Hook algorithm in Groute. The only exception are the
street network graphs, running on these are both Hook and Rem performing equally
well. Though Rem had generally a better run time was the scale e�ciency and
speedup not as good. This lack of scale e�ciency and speedup could be because
of the computer test setup, Google Cloud, described in Section 6.5.

Regarding the CUDA implementation is it slower and scale worse than Groute
when we compare the same algorithm on the same graphs. The results from the

63

7.3. FURTHER WORK CHAPTER 7. CONCLUSION

test with our CUDA implementation are not as interesting since the performance
from this implementation is not good enough.

7.3 Further work

We show in Chapter 6 that Rem perform signi�cantly better than the original
Connected components in Groute. This performance di�erence is not as sig-
ni�cant on our CUDA implementation, but as we show is the run time performance
for our CUDA implementation much slower than the Groute implementation. The
increased performance that Rem has, shows the potential of this algorithm in par-
allel computing. Further work could be to implement Rem in similar environments
or libraries as Groute.

In Section 6.5 we open a question if there is a bottleneck on our Google Cloud
test computer. It might be interesting to see if Groute running Rem would scale
better on another setup for multiple GPUs.

We show that even Rem's algorithm see improvement using one iteration of
Hook-non-atomic on street network graphs. Finding a reason why Rem see this
improvement on these graphs and then �nd a possible improvement to Rem's al-
gorithm.

64

Bibliography

[1] (2014). Professional CUDA C Programming (1st ed.). Birmingham, UK, UK:
Wrox Press Ltd.

[2] (2018). F. Manne, personal communications.

[3] (2018, November). https://cloud.google.com/.

[4] (2018, March). https://github.com/groute/groute.

[5] (2018a, January). https://github.com/gunrock/gunrock.

[6] (2018b, October). https://gunrock.github.io.

[7] Bader, D. A., H. Meyerhenke, P. Sanders, and D. Wagner (2013). Graph parti-
tioning and graph clustering, 10th dimacs implementation challenge workshop.
Contemporary Mathematics 588.

[8] Ben-Nun, T., M. Sutton, S. Pai, and K. Pingali (2017). Groute: An asyn-
chronous multi-gpu programming model for irregular computations. In ACM
SIGPLAN Notices, Volume 52, pp. 235�248. ACM.

[9] Dasgupta, S., C. H. Papadimitriou, and U. Vazirani (2008). Algorithms (1 ed.).
New York, NY, USA: McGraw-Hill, Inc.

[10] Geisberger, R., P. Sanders, and D. Schultes (2008). Better approximation of
betweenness centrality. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pp. 90�100. Society for Industrial and Applied Mathematics.

[11] Holtgrewe, M., P. Sanders, and C. Schulz (2010). Engineering a scalable high
quality graph partitioner. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pp. 1�12. IEEE.

65

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Marquardt, O. and S. Schamberger (2005). Open benchmarks for load bal-
ancing heuristics in parallel adaptive �nite element computations. In PDPTA,
pp. 685�691.

[13] Pacheco, P. (2011). An Introduction to Parallel Programming (1st ed.). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[14] Patwary, M. M. A., J. Blair, and F. Manne (2010). Experiments on union-�nd
algorithms for the disjoint-set data structure. In International Symposium on
Experimental Algorithms, pp. 411�423. Springer.

[15] Storti, D. and M. Yurtoglu (2015). CUDA for Engineers: An Introduction to
High-Performance Parallel Computing (1st ed.). Addison-Wesley Professional.

[16] Wang, Y., A. Davidson, Y. Pan, Y. Wu, A. Ri�el, and J. D. Owens (2016).
Gunrock: A high-performance graph processing library on the gpu. In ACM
SIGPLAN Notices, Volume 51, pp. 11. ACM.

66

