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Abstract

In this thesis, peer-to-peer lending is explored and analyzed with the objective of �tting
a model to accurately predict if borrowers default on their loans or not. The foundation
for the thesis is a dataset from LendingClub, a peer-to-peer lending platform based
in San Francisco, USA. Detailed information of borrowers' �nancial history, personal
characteristics and the speci�cs of each loan is used to predict the probability of default
for the various loans in the portfolio. Methods used include elastic net regularization
of logistic regression, boosting of decision trees, and bagging with random forests. The
results are compared using accuracy metrics and a pro�tability measure, before a �nal
model selection is carried out.
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Chapter 1

Introduction

The term people-to-people (P2P; person-to-person or peer-to-peer) lending describes
lending and borrowing activities that occur directly among individuals [Wang et al.,
2009]. P2P lending marketplaces are platforms that facilitate interactions between
lenders and borrowers so that borrowers place requests for loans online, and private
lenders bid to fund these in an auction-like process [Kla�t, 2008] . Since the �rst P2P
lending platform ZOPA was launched in 2005 [Bachmann et al., 2011], there has been
a large in�ux of new marketplaces in many places all over the world. Notably large
actors today are [prosper.com] and [LendingClub] in the US, [ZOPA] in the United
Kingdom and [Smava] in Germany. While it is hard to �nd accurate data on how many
di�erent platforms exist as of today, it has surely seen an explosive growth in recent
years. For instance, in China alone there were 4856 di�erent services reported as of
2017 [Fintechnews Singapore, 2017].

These P2P platforms can largely be divided into two types; commercial and non-
commercial. The main di�erence between the platforms is the lender's general intention
and their expectation regarding returns [Bachmann et al., 2011]. Some platforms have
a largely philanthropic approach, where the main goal is to provide �nancial assistance
to people through micro�nance. A Notable example of such a platform is Kiva [Kiva],
a US based non-pro�t that allows lenders to invest in people and speci�c projects in
impoverished regions of the world. Another project is Trine [Trine] that attempts to
reduce carbon emissions by crowdfunding solar panels in economically underdeveloped
regions of the world.

For the commercial platforms, the aim of the lender is to obtain pro�ts on their invest-
ment. These platforms are providing an alternative investment opportunity for lenders
by giving direct access to borrowers, and the lender is given a presumably reasonable
interest for the risk they are taking.

For this thesis we will be looking at the latter kind of lending platform, in particular
LendingClub [LendingClub]. Here the motivation for the lender is to earn pro�t and get
an adequate return on their investment. For the borrower, the most common purpose
of the loan is debt restructuring and credit card consolidations, and by applying for a
loan through the P2P system the borrower is often able to reduce their interest rate to
make it easier for themselves to pay the owed amount.

The use of a P2P lending marketplace can prove bene�cial for both lenders and borrow-
ers. The removal of the middleman - a role usually occupied by banks - will reduce the
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cost of the facilitation of the loan. While the lender on a P2P platform will be unable to
take collateral to reduce the risk of the loan, the lending platform provides information
on the borrower to help alleviate the risk taken by the lender. The lender will be able
to decide which loans �t their level of risk willingness. This increased access to informa-
tion should lead to a wider range of loans being accepted, where the more risk-willing
lenders take on loans that traditionally would not have been ful�lled by banks and other
credit institutions. In this way it can improve access to the credit market for individuals
not usually served, while also providing an acceptable rate of interest for the lenders.
Taking LendingClub as an example, they report an adjusted net annualized return over
all loan grades of 5.39 % for the period of our holdout loan data (Q4 2014 � Q1 2015).
This includes both 3-year and 5-year loans, and also counts payments obtained through
collection agencies after a loan has been charged o�. This is beyond the scope of this
paper however, but it gives some indication of what returns one might expect from a
balanced portfolio of loans.

Figure 1: Loan performance details

Loan performance details for loans issued in the period used as holdout set.

The aim of this thesis is to see if we can outperform the average return by using tra-
ditional credit scoring methods to predict defaults, and by extension, picking the most
optimal loans for a loan portfolio. We will do this by implementing several di�erent
statistical learning techniques to try to estimate the probability of default for each loan.
We use these models to classify a set of unseen data and use statistical metrics and a
pro�tability measure to compare the results.

The structure of the thesis is as follows. In Chapter 2 the data that is the basis of this
thesis is presented. Variables are explained, exploratory data analysis is performed, and
changes are made to prepare the data for statistical analysis. Chapter 3 presents the the-
oretical and technical background for the di�erent modeling techniques implemented in
the thesis. Chapter 4 presents the results from tuning the model hyperparameters, and
the accuracy statistics when prediction is made on unseen data. Chapter 5 summarizes
the thesis and presents opportunities for further research on the topic.
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1.1 Literature review

Hand and Henley [1997] provide an extensive and in-depth look at the credit scoring
methods applied in the �nancial industry. Some of the techniques they mention as
standard for the industry are discriminant analysis, linear regression, logistic regression
and decision trees. In addition, they mention neural networks and non-parametric
methods such as nearest neighbor approaches. Survival analysis is also a popular method
used to predict when in a loans lifetime a default may occur. In the recent years,
the growth of various P2P lending markets has led to an increase in research aiming
to provide credit scoring for this market. Similar to the traditional credit markets,
methods of reducing risk are vitally important here. Since the P2P markets do not
allow the lender to take any collateral on the loans, they face increased risk compared
to traditional institutions. To compensate the lender for the risk they are taking, the
loans usually carry a high interest rate. Emekter et al. [2015] �nds that the increased
interest rate given for the loans belonging to the lowest credit grade is not su�ciently
high to compensate for the increased risk of default. It is thus imperative that the
lender can successfully identify the loans that are paid back in full to be able to obtain
a pro�table portfolio of loans.

A lot of research has been carried out to try to accurately de�ne the determinants of
default, and to build credit scoring models for the P2P market to help alleviate the
additional risk present in this marketplace.

With data from LendingClub, Emekter et al. [2015] used a binary logit regression model
to �nd that the variables grade, debt-to-income ratio, FICO-score web [i], and revolving
line utilization were the most important variables for predicting defaults. They use an
older version of the LendingClub dataset from the period May 2007 to June 2012 which
includes loans that are still current, so it is not a one-to-one comparison to the dataset
used in this thesis.

Using a similar approach as Emekter et al. on LendingClub data from the period 2008
to 2011, Serrano-Cinca et al. [2015] �nds that the important variables explaining de-
faults are loan purpose, annual income, current housing situation, credit history and
indebtedness. They implement a logistic regression to predict defaults and �nd that the
grade assigned by LendingClub is the most predictive factor of defaults. They ensure
intertemporal validation by dividing the available data into a training set and holdout
set from a later period. They also �nd that loan amount and length of employment has
no signi�cant impact on the rate of defaults.

Byanjankar et al. [2015] propose a credit scoring model using a neural network to clas-
sify loan applications into defaults and non-default groups. They �nd that the neural
network fairly successfully classi�es the loans into the correct categories. They also
implement a logistic regression on the same dataset and �nd that the neural network
outperforms the logistic regression in correctly classifying defaults.

Malekipirbazari and Aksakalli [2015] presents and compares di�erent machine learning
methods, including random forests, support vector machines, logistic regression and k-
nearest neighbor classi�ers. They �nd that the random forests method outperforms the
other classi�cation methods and stands as a scalable and powerful approach for predict-
ing borrower status. They also �nd that random forests outperform both FICO scores
and LendingClub grading system in identi�cation of the best borrowers in terms of low
probability of default, given some restrictions on which loans are included in the subset.
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Li et al. [2018] designs an ensemble learner using extreme gradient boosting, logistic
regression and a deep neural network. They use data from a lending platform based
in China, and their results indicate that the model can e�ectively increase predictive
accuracy compared to other machine learning models.

Serrano-Cinca and Gutiérrez-Nieto [2016] introduce an alternative approach to credit
scoring they call pro�t scoring. This method builds models using estimated internal rate
of return to predict the expected pro�tability rather than trying to accurately predict
the loan status of the loans. They �nd that the variables that has the largest e�ect
in determining loan pro�tability di�er from the variables that has the largest e�ect on
determining the probability of default. This is an indication that the market is not fully
e�cient. They also �nd that the pro�t scoring approach outperforms standard credit
scoring methods.
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Chapter 2

Data

This chapter describes the two datasets used in this thesis, and the transformation of the
original data performed to make it suitable for my analysis. The �rst dataset contains
the loan data for all the loans issued on LendingClub in the period September 2007 to
March 2018. The second set contains the payment history for each loan contained in
the �rst dataset. The cleaning and preparation of the data is explained, along with the
reason for the choices of which variables and observations to include in the analysis.
Exploratory data analysis is performed on the remaining dataset, including plots to
visualize the data in more detail. The data preparation is done using R. The �nal
dataset is included as an electronic attachment to the thesis.

2.1 Loan data set

The dataset is available for download directly from LendingClub [Loandata]. Creating
an account and logging in to the website allows download of an extended dataset. It is
this extended set that is used in this analysis. The data is split into separate �les based
on the issue date of the loan. The �rst �le contains all loans issued between June 2007
and October 2011. The second �le contains loans from November 2011 to October 2013.
As LendingClub grew in popularity the number of loans issued increased to the point
where they now issue a �le containing new loans on a quarterly basis. Each separate
data�le is updated quarterly to include the status of each loan. The combined dataset
contains 1,870,526 loans and 128 variables. In the following subsections these variables
will be explored and evaluated for use in the modeling phase.
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Figure 2: Missing data evolvement over time

The average proportion of missing data in the loans for each month. Vertical dotted lines indicate the

two points in time where LendingClub have extended the variable set.

Figure 2 shows the average rate of NA data for loans issued in each period. It is clear that
additional variables have been added to the dataset twice. When these were added, they
were understandably not retro-actively added to the loans issued prior to the changes.
This leads to the two breakpoints seen in September 2012, and January 2016.

To get as complete a dataset as possible, the loans issued prior to September 2012 will
be excluded from the �nal set. This amounts to 68,345 loans, which is 3.65% of the total
loans. In the e�ort to gain consistent data for all the loans, we consider this tradeo�
to be worth it. Another thing to note from Figure 2 is that the there is always missing
data in the observations when the average is taken. This is due to the fact that many of
the variables are concerned with the outlying cases where there are two loan applicants,
so it is not surprising that we see a ceiling at about 80 % mean data presence.

Table 33 shows all the initial variables, the description of the variables, and how much
of the data is missing for each variable. The count of missing observations is based on
the data where loans prior to September 2012 has been removed. It is fairly simple to
pick out the variables that were added in January 2016 based on the large number of
variables that are missing a similar number of observations, as seen in Table 1. These
missing observations are all (with a few exceptions) loans issued prior to January 2016.
To keep a large dataset, and to extend the period over which the loans are issued, these
variables will be removed from the dataset. The �nal dataset is then consistent over all
the observations and variables, and should provide a good basis for analysis.

7



Table 1: New Variables January 2016

Variable name Variable description Missing

inq � Number of personal �nance inquiries 794,938 / 44.1 %
inq last 12m Number of credit inquiries in past 12 months 794,939 / 44.1 %
open acc 6m Number of open trades in last 6 months 794,939 / 44.1 %
open act il Number of installment accounts opened in past 12 months 794,938 / 44.1 %
open il 12m Number of installment accounts opened in past 24 months 794,938 / 44.1 %
open rv 12m Number of revolving trades opened in past 12 months 794,938 / 44.1 %
open rv 24m Number of revolving trades opened in past 24 months 794,938 / 44.1 %
all util Balance to credit limit on all trades 795,056 / 44.1 %
max bal bc Maximum current balance owed on all revolving accounts 794,938 / 44.1 %
open il 24m Number of currently active installment trades 794,938 / 44.1 %
total bal il Total current balance of all installment accounts 794,938 / 44.1 %
total cu tl Number of �nance trades 794,939 / 44.1 %

Number of observations and proportion of missing observations for the given variables.

2.1.1 Variable analysis

The dataset contains variables which can be divided into a few broad categories; loan
performance, loan characteristics, borrower characteristics, borrower credit history, cur-
rent �nancial characteristics, and borrower assessment. Table 33 shows the variables
within these categories and the following section will explore each category in turn. For
this Chapter and going forwards, variables will be labeled in italics.

Borrower assesment

The Borrower Assesment variables are describing what the current credit rating the
borrower has. In the US market, the FICO-score is a widely used rating for the credit
worthiness of consumers. The dataset contains a lower FICO range and higher FICO

range, which we will combine into an average FICO rating since the variables are per-
fectly correlated. The grade and subgrade are assigned by LendingClub to signify how
risky each loan is. The loan grade and subgrade are the result of a formula that con-
siders the credit score and a combination of several other indicators of credit risk from
the credit report and loan application. The formula is, similarly to the formula for the
FICO score, not made public. This is to prevent applicants from "gaming the system"
and writing the perfect application to obtain better terms for their loan. The interest
rate is also assigned by LendingClub. Interest rate is the sum of the LendingClub base
interest rate and an adjustment for risk and volatility, where the adjustment is decided
by what subgrade the loan is assigned to.

Borrower characteristics

Borrower characteristics describes information regarding the borrower. Examples are
the state and zip code of residence, annual income and home ownership status. The
zip code and state of residence of the borrower could give information relating to the
probability of defaults. Especially if we included data from outside sources to go along
with the analysis, such as median income by state or similar metrics. Since this data
is not available, zip code and state of residence is removed from the dataset. The
employment title variable contains 461,254 di�erent employment titles out of which
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121,735 are blank. Due to the huge number of job titles and the missing entries, this
variable is dropped from the dataset.

There is not a lot of missing observations here, but the few loans that contain missing
data will be excluded from the dataset. The remaining variables that will be kept are:
annual income, employment length, home ownership and veri�cation status. Description
of all the variables can be found in Table 33.

Borrower indebtedness

In this category the variable dti gives the ratio between debt and income for the bor-
rower. An additional variable is created to measure how large the impact of an additional
debt burden is on the �nances of the borrower. This variable is monthly debt rate and
it calculates how large a percentage of the reported monthly income will be consumed
by the installments on this new loan.

Borrower credit history

Borrower credit history contains information on the borrowers �nancial past. These
variables are for the most part discrete numeric variables indicating for instance how
many delinquencies the borrower has in the past two years. Other measures are how
many accounts of various types are on the borrowers record, how many credit inquiries
have been made, and whether the borrower has any bankruptcies on their public record.
Several variables are records of how many months ago certain events occurred. For
instance, how many months since the most recent installment account opened or how
many months since most recent inquiry was made. For these variables there are a lot of
missing entries. Some are missing as much as 80 % of the observations. In these cases
the missing observations are taken to mean that the event has not occurred previously in
the borrowers credit history. for instance, the variable months since last public record is
NA for 83.4 % of the observations. There are also observations where the event is given 0
as value. These entries are taken to mean that the event occurred within the last month
prior to applying for the loan. It then makes sense that the missing data indicates
that the event has not occurred. Some modi�cation of the variable will be necessary to
properly utilize the information. This will be covered in the following section regarding
variable modi�cations.

Furthermore, some of the variables contain similar information. For instance, number
of installment accounts opened past 12 months, number of installment accounts opened
past 24 months, number of installment accounts and number of currently active install-
ment trades are all represented in di�erent variables. There will be some reduction here
to remove the redundancies introduced through the additional variables.

Borrower current �nancial state

Current �nancial state of the borrower is represented through many di�erent variables.
Among them are variables for the number of installment accounts, revolving credit
accounts and number of bankcard accounts the borrower has. There are also variables
for how many of them are currently active, how many are satisfactory and the maximum
credit available for the various account types. These variables contain signi�cant overlap
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and there is strong correlation between some of the variables. Some are removed to
reduce the redundancy.

Loan characteristics

These variables contain information about the speci�c loan. For instance what the loan
amount is, when the loan was issued, how many installments will be paid, and the size
of the monthly installments.

There are also variables concerning the amount of funding already received for each
loan, whether a payment plan is in place and url for the loan application page. These,
among others, are all variables that either provide information for the bidding process
or variables that add no relevant information with regards to predicting defaults. They
will be removed from the dataset. Notable variables that are kept are installment, issue
date, loan amount and loan purpose.

Loan performance

Loan performance includes variables that give us information on how the loan is per-
forming after being issued. This includes updates on the borrowers FICO score, payment
history, total payments and whether the borrower has made any late payments. These
variables provide information that would not have been available for an investor to pe-
ruse when deciding whether to invest in a given loan or not, so they cannot be included
in a �nal model. All of these variables are removed before we start �tting models.

Secondary applicant

Secondary applicant variables are concerning the loans where there are two borrowers
applying for a loan jointly. The variables are duplicates of the variables present for the
main applicant, and some are presented as joint accounts. For instance, annual income
is presented as joint annual income. In total there is 68,053 loans with a secondary
applicant. The focus of this thesis is on loans with individual borrowers, so the loans
with secondary applicants are removed from the dataset along with all the variables in
this category.

Created variables

Some additional variables are created to extract as much signi�cant information from
the data as possible.

As previously mentioned, Average FICO range will be created as a replacement for the
upper and lower bound of FICO rating originally provided.

It is calculated as the mean of the lower and upper bounds of the FICO rating.

Average FICO range =
FICO range high + FICO range low

2
(2.1.1)
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Another new variable is the Monthly debt rate variable. This variable is created to
measure the amount of added debt burden the loan applied for will add to the borrowers
monthly expenditure. It does not consider the already present economic obligations or
savings the borrower might have from other sources, but it gives an indication on how
heavy the additional burden will be for the borrower.

It is calculated using the following formula.

Monthly debt rate =
Installment

(Annual income/12)
(2.1.2)

2.1.2 Variable modi�cation

Some of the variables are unsuitable for use in the modeling phase in their initial state.
In the following subsection the modi�cations will be explained.

Loan status

Table 2 shows the levels the variable loan status can take initially.

Table 2: Loan status categories

Loan status Observations Proportion

Charged O� 166,249 0.09
Fully Paid 674,649 0.36
Current 969,187 0.52
Default 219 0.00
In Grace Period 14,661 0.01
Late (16-30 days) 5,800 0.00
Late (31-120 days) 20,621 0.01
Issued 18,988 0.01

Loans are classi�ed as defaults when they are 120+ days overdue. After 150 days they
are charged o� and there is no longer a reasonable expectation of further payments.

In this thesis the focus is on loans that have reached maturity, either through full
repayment, or through being charged o� or defaulted. This decision is made to be
able to estimate the probability of default for the full lifetime of the loans. The levels:
Current, In Grace Period, Late (16-30 days), Late (31-120) days and issued represent
the loans that are still active. These loans will all be excluded from the dataset.

Two levels are kept. Fully paid is renamed Non-default and kept as is. Charged o� and
Default are merged into one level named Default. The variable is thus reduced to a
binary variable where all loans fall into either the Default category or the Non-default
category.
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Home ownership

This variable is a factor with 6 levels: mortgage, none, other, own, rent and any.

Table 3: Home ownership categories

Home ownership Observations Proportion

Mortgage 922,758 0.49
None 49 0.00
Other 144 0.00
Own 206,736 0.11
Rent 740,175 0.40
Any 512 0.00

Table 3 shows that the majority of borrowers fall into the categories mortgage, rent and
own. The interpretation of and di�erence between None, Other and any is di�cult.
Due to these categories containing so few observations, they are consolidated into one
category named Other.

Continuous variables to factor

Several of the variables are stating how many months ago an event occurred. For in-
stance, months since last delinquency, last record or most recent bank card account was
opened. These variables contain a lot of NA entries. For these variables, NA-entries is
taken to mean that the event has not occurred previously in the loan applicants record.
The variables are listed below.

Table 4: Months since event variables

Variable name Variable description

Mths since last delinq Months since the borrower's last delinquency
Mths since last major derog Months since most recent 90-day or worse rating
Mths since last record Months since the last public record
Mths since recent bc Months since most recent bankcard account opened
Mths since recent bc dlq Months since most recent bankcard delinquency
Mths since recent inq Months since most recent inquiry
Mths since recent revol delinq Months since most recent revolving delinquency

Since these variables contain NA-entries and also entries that are 0, the variable needs
to be changed to utilize the information. This is solved by converting the variable to
an ordered factor. The cuto� points are set at yearly intervals, so that the �rst level
contains all loans where the borrower has had the event occur within the last year.
Second level is the year prior to that, and so on. Finally all NA observations are de�ned
to be larger than the largest observation and this factor level is labeled never to indicate
the event has never occurred.
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Table 5: Levels of the converted factors

Factor levels after conversion

< 1 year 1-2 years 2-3 years 3-4 years > 4 years Never

2.2 Exploratory data analysis

The variables kept after the initial reduction is listed in Table 34 in the Appendix. In
this section exploratory data analysis is performed to see if there are any additional
steps needed to improve the data before �tting the models. Descriptive statistics are
produced for each variable, along with tests to check for signi�cant di�erences between
the defaulted loans and the non-defaulted loans. In addition, the variables are checked
for outlying observations, and appropriate actions are taken with the results found. Fi-
nally tests for correlation and multicollinearity are done and some variables are removed
due to high correlation.

2.2.1 Categorical variables

Table 35 in the Appendix shows the descriptive statistics for the categorical variables
in the dataset. This table includes absolute counts of the di�erent factor levels along
with the proportion of loans within each group. There is also counts for the number
of defaults and rate of default within each group. Furthermore, the table shows the φ
coe�cient for each subgroup, which is a measure of correlation between the variable and
loan status. In addition, the χ2 test-statistic and p-value for the χ2 contingency table
test performed on each subgroup is reported. Due to the large sample size the tests are
very likely to report signi�cant di�erences.

A contingency table is set up in the following way:

Table 6: Example contingency table

TRUE FALSE

TRUE a b e
FALSE c d f

g h n

Here e = a+ b, f = c+ d and so on. n represents the total number of observations.

φ is calculated using the following formula

φ =
ad− bc√
efgh

(2.2.1)

and the χ2-test is done by calculating the expected and observed observations for each
combination of the two binary variables. The null hypothesis for the χ2-test is that the
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status of a loan is independent of the factor level it is tested against. Under the assump-
tion that the null hypothesis is true, the estimated expected number of observations for
a given combination of factors can be calculated by

êij = n · p̂i· · p̂·j = n · ni·
n
· n·
n

=
ni· · n·j
n

=
(ith row total)(j th column total)

n

(2.2.2)

while the observed frequencies are readily found in the table. That leads to the χ2

test-statistic value found by

χ2 =
∑

all cells

(observed− estimated expected)2

estimated expected
=

I∑
i=1

J∑
j=1

(nij − êij)2

êij
(2.2.3)

Table 35 in the Appendix shows the results of the tests. Not all variables are as useful for
predicting defaults. Many of the variables contain levels where there is little dependence
between the factor level and loan status. No variable is completely independent from
loan status however, so they are all kept in the dataset. The φ correlation coe�cient
indicates that the strongest correlation is found between loans belonging to grade A.
Here the probability of default is lower than for the other grades. This, along with the
observed proportions of defaults in the various grade levels indicates that LendingClub
has a good model for evaluating the risk of lenders.

Table 7: Descriptive statistics for the levels of employment length

Emp. length N % Defaults % Phi χ2 P-value

0 18,130 5.56 3,576 19.72 0.045 671.63 0.000, ***
< 1 year 25,621 7.86 3,647 14.23 0.008 18.36 0.000, ***

1 year 21,133 6.48 2,864 13.55 0.002 0.72 0.397,
2 years 29,435 9.03 3,938 13.38 0 0.01 0.921,
3 years 26,125 8.02 3,517 13.46 0.001 0.26 0.613,
4 years 18,979 5.82 2,537 13.37 0 0 0.978,
5 years 20,684 6.35 2,731 13.2 -0.001 0.44 0.506,
6 years 17,463 5.36 2,372 13.58 0.002 0.78 0.376,
7 years 18,083 5.55 2,389 13.21 -0.001 0.34 0.558,
8 years 16,146 4.95 2,174 13.46 0.001 0.16 0.692,
9 years 12,419 3.81 1,673 13.47 0.001 0.13 0.716,

10+ years 101,723 31.21 12,122 11.92 -0.029 265.33 0.000, ***

N = Observations within group, Defaults = Number of defaults and proportion of defaults within

the group , phi = correlation coe�cient, χ = chi-square test critical value, *** = 0.001, ** =

0.01, * = 0.05 signi�cance level.

Table 7 describes the variable employment length. There are approximately 13 % de-
faults for all the levels between 1 years of employment up to and including 9 years of
employment. For the borrowers that have been employed for less than one year, or that
are currently unemployed, we see there is a higher rate of defaults. On the other end of
the scale, where borrowers have ten or more years of employment, there is a lower rate
of defaults.
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Similar trends can be seen in the data for the grade and subgrade variables. The grades
are set by lending club in an e�ort to signify the risk of each loan. This also holds
true in the data, and can be seen in Figure 3 and 4. There is indeed a higher rate of
default for loans of the higher grades, and the increase in defaults is fairly linear. For
the subgrades within the G group, there are some discrepancies, however there are only
235 loans with grade G. For the subgrades G1 to G5 there are 108, 67, 39, 14 and 7
loans respectively, so the subset of loans here is very small.

Figure 3: Loan status by grade

Figure 4: Loan status by subgrade
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Dummy encoding of categorical variables

The categorical variables will be dummy encoded to allow them to be used in the boost-
ing and random forests algorithms. One issue with this approach is that we lose the
order of some of the variables. Employment length for instance has a given order to the
observations, but this information will be lost when we dummy-code the factor levels.
For the sake of comparison of the models however, we �nd that an equal dataset is pre-
ferred rather than using separate datasets for the di�erent models. The transformation
done to the categorical variables means that each separate factor level is changed to an
individual variable.

2.2.2 Continuous variables

Table 36 shows the descriptive statistics for the continuous variables in the dataset
split between the default loans and non-default loans. The statistics calculated are the
mean, median and standard deviation for both default and non-default loans. Figure
30 and 31 shows histograms and quantile plots of the continuous variables. It is clear to
see that none of the variables follow the Normal distribution closely. While the t-test
is robust to deviations from normality when the sample size is large, we still opt for
a non-parametric test to see if there is signi�cant di�erence between the default and
non-default loans. We use the Mann-Whitney test and the results are found in Table
36.

Outliers

When inspecting the boxplots and histograms for all the continuous variables, found in
Figure 29 and 30 respectively, it is clear that some of the variables contain outliers that
might a�ect the �t of the models. In this thesis the models will be �t separately for the
dataset containing all the observations, and also on a secondary dataset where some of
the outlying observations have been removed. Both results will be reported, so that it is
easy to see whether the outliers have any e�ect on the model �t. We justify this removal
of outliers by the fact that the objective is to �nd a model that will optimize a portfolio
of investments on the lending club platform. Therefore it is not unreasonable to, for
instance remove any applications where the borrower reports an annual income of more
than 1,000,000. The number of loans e�ected is relatively small, while the accuracy of
the model might be improved by focusing on a narrower band of loans.

The histograms in Figure 30 indicates that some of the variables have values where
all but a few of the loans are 0. For example the number of accounts the borrower is
currently delinquent on, only 1474 loans are nonzero. These observations should not
be considered outliers even though the boxplot and histogram might suggest so. Other
variables that follow the above are variables concerned with collection and chargeo�
done the past 12 months, and number of accounts of various types with delinquencies
the past year.

There are however variables with outliers that warrant another look. Annual income

contains heavy outliers, as does several of the variables measuring available credit and
di�erent account type balances. In Figure 5 we see the histogram for these variables. The
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vertical line represents the 99'th quantile for each variable, while the greatest observation
is at the far right of each histogram.

Figure 5: Histogram for variables with heavy outliers

In total the number of observations outside the 99'th quantile is 14,088 for these vari-
ables. Removal of these gives the distributions found in Figure 6.

Figure 6: Histogram with heavy outliers removed

17



2.2.3 Initial variable selection

Before the dataset is separated into the training data and validation data, we do an
initial variable selection. This can be done as long as it is not done using the response
variable as a means to decide what variables to drop. The reason we should not use
the response variable for selection is that we then introduce information from the entire
dataset when we choose what variables to drop or not. Since we want the �nal validation
data to be undisturbed by the model building process we should take care as to not
introduce unnecessary bias to our model. Variable selection that we can do without
introducing bias is to use methods which does not include any knowledge of what class
the observations belong to. In this thesis the correlation between the variables will be
investigated, and any highly correlated variables will be removed.

Correlation between the predictors

If some of the explanatory variables are highly correlated with each other, it is known as
collinearity. If more than two variables are linear combinations of each other it is called
multicollinearity. This might lead to unstable coe�cient estimates and high standard
errors when models are �t. Figure 7 shows the correlation between all the continuous
variables in the dataset. There is very little negative correlation between the variables,
but some of the variables are highly positively correlated.

Figure 7: Correlation matrix for continuous variables
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Loan amount and installment size are two variables that understandably are intercon-
nected, since the installment size is a function of the loan amount. Similar correlations
are found in other variables, though not as strongly as for loan amount and installment

size. Table 8 shows the variables that have a correlation lower than -0.5 or higher than
0.7.

Table 8: Correlation table

Correlation Variable 1 Variable 2

0.994 loan amnt installment
0.977 tot cur bal tot hi cred lim
0.925 credit length mo sin old rev tl op
0.857 total bal ex mort total il high credit limit
0.854 avg cur bal tot cur bal
0.854 bc open to buy total bc limit
0.832 bc util percent bc gt 75
0.829 bc util revol util
0.817 tot hi cred lim avg cur bal
0.811 num op rev tl open acc
0.804 revol bal total rev hi lim
0.803 num rev tl bal gt 0 num op rev tl
0.788 num rev tl bal gt 0 num actv bc tl
0.760 acc now delinq num tl 30dpd
0.721 num tl op past 12m acc open past 24mths

-0.583 num accts ever 120 pd pct tl nvr dlq
-0.557 bc util bc open to buy
-0.521 num tl op past 12m mo sin rcnt tl

Only correlation below -0.5 and above 0.7 are included in the table

In addition to the correlation between variables, a test to check for multicollinearity is
done. We calculate the Variance in�ation factor (VIF), which is a measure of how much
of the variance of each explanatory variable can be explained by the other variables.

The formula to calculate the VIF for each variable is:

V IF (β̂j) =
1

1−R2
Xj |X−j

(2.2.4)

where R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other explanatory

variables.

The minimum value of VIF is 1 and that indicates that there is no multicollinearity
for the given variable. Rules of thumb state that measures of VIF larger than 5 or 10
indicate problematic levels of multicollinearity.

The VIF for the variables that are greater than 5 are presented in Table 9. The table
on the left shows the VIF before removal of any variables, while the table on the right
are the VIF after loan amount, total current balance, total balance excluding mortgage

and total bankcard limit has been removed.
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The VIF score indicates that the correlation found between variables are likely to be
what is causing most of collinearity issues, and that there is not as much multicollinearity
in the dataset.

Table 9: VIF scores > 5 before and after removal.

Variable VIF

loan amnt 312.516
installment 307.018
tot cur bal 47.191
tot hi cred lim 44.82
total bal ex mort 21.959
total il high credit limit 17.371
total bc limit 10.574
bc open to buy 9.935
revol bal 9.87
num op rev tl 7.649
mo sin old rev tl op 7.221
total rev hi lim 6.481
bc util 6.191
avg cur bal 6.012
num rev tl bal gt 0 5.929
open acc 5.533

Initial VIF scores

Variable VIF

num op rev tl 7.52
tot hi cred lim 7.29
mo sin old rev tl op 7.205
bc util 6.034
num rev tl bal gt 0 5.617
open acc 5.338
avg cur bal 5.103

VIF-score after variables have

been removed.

2.2.4 Splitting of the dataset

To accurately be able to predict the probability of default for a loan it is necessary to
have the information of how the loan performed over its lifetime. To attain this, all
loans that are still "live" are removed from the dataset. To have a larger set of loans
to work with, only the 36-month loans are considered. Given these restrictions, the
remaining time period in the dataset is loans issued in August 2012 at the earliest. For
a 36-month loan to be included in the �nal dataset, it must have been issued in March
2015 at the latest.

A further consideration is also made with regards to the issue date of the loans. To be
able to make good inference it is necessary to have a validation set that consists of loans
issued in a separate time period than the loans in the training set. An intertemporal
split is made to separate the training data from the validation data. This means I take
all loans issued prior to a given date and use for training data, while all loans issued
after this date is used as the validation set. [Joy and Tollefson, 1975].

The objective of splitting the data in this manner is to build models that are less likely
to be in�uenced by conjunctional changes and other seasonal e�ects. Ideally the time
period available to extract loans from would be larger. This would allow the validation
set to contain loans issued from a longer period. For the �nal dataset, all loans issued
in the period August 2012 to October 2014 are used as training data, while loans issued
between November 2014 and March 2015 are kept as a validation set.
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The same split is made for both the full dataset, and for the dataset where outly-
ing observations have been removed. Table 10 shows the number of observations and
percentage of observations in each of the sets.

Table 10: Intertemporal split for the datasets

Training set % Holdout set %

Full set 249,587 0.77 76,354 0.23
No Outliers 239,354 0.77 72,499 0.23
Period Aug12 - Oct14 Nov14 - Mar15

Number of loans in each dataset.

Cross-validation

Cross-validation can be used to estimate the test error associated with a certain statisti-
cal learning method in order to evaluate its performance, or select the appropriate level
of �exibility [James et al., 2013]. The test error is the average prediction error when
we use the �tted model to predict on unseen data. The idea is that since the �tting is
done without using the unseen data, the results when predicting on this subset should
be as accurate as the model would be when introduced in the real world on new data.

When we �t a model we would like to keep the training dataset as large as possible, and
cross-validation is a method that lets us reuse the training data. The way it works is by
randomly dividing the training data into k folds of roughly equal size. One of the folds
is treated as test data while the model is �t on the remaining k − 1 folds, and the test
error is calculated for the predictions made on the selected fold. This process is repeated
k times, with each fold held as test data once. Finally the k test error measures are
averaged to give us the estimated test error.

In essence, there is a bias-variance trade-o� when selecting the number of folds to use.
The more folds in the model, the lower the bias and higher the variance. When the
number of folds is high, the training set is bound to overlap between the folds. This
leads to correlated outputs from each model, which in turn will lead to high variance in
the estimated test error measure when the outputs are averaged. On the one extreme
end of this, if we set k = n we get what is called Leave-one-out cross-validation. This
involves �tting models using each observation as the hold-out data once. Since we use
almost all of the training data for each �t of the model, this setup leads to approximately
unbiased estimates of the test errors. It is however very computationally intensive, since
we will have to �t the statistical learning model n times. The variance of the resulting
test error measure will also be high, due to the highly correlated outputs from each
of the k models. On the other end of the scale, with k = 2, we get what is called
the validation set approach. This entails splitting the data into a training set and a
validation set. We �t the model using the training data, and make a prediction on the
validation data to estimate the test error. One issue with this approach is that it has
very high bias, since the e�ect of selecting a new training set can have dramatic impacts
on the estimated test error. Another issue with the validation set approach is that it
tends to overestimate the test error rate since its �t using only a subset of the dataset.

In this thesis, 5-fold cross-validation is used. It has been empirically shown that k = 5
or k = 10 leads to test error rate estimates that su�er neither from excessively high bias
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nor from very high variance [James et al., 2013]. In addition to this, the computational
strain is kept within a reasonable level when using 5 folds.

Figure 8 shows the process implemented when the di�erent models are �t.

Figure 8: The model �tting process
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2.3 Payment history dataset

The payment history dataset which can be downloaded from [LendingClub], contains
records for each individual payment made on all the loans in the database. The variables
and their description can be seen in Table 37 in the Appendix. There are several
variables that are duplicates of the information available in the loan data described in
Section 2.1. There are also some variables that are of little interest for our purposes.

In total the payment history dataset contains 40 variables and 33,416,337 entries. The
size of the dataset makes it di�cult to handle, so we will extract only the variables of
interest and the observations concerning the 325,941 loans that are used in the further
analysis. After this initial reduction we are left with a dataset containing 8,128,494
entries, concerning the 325,941 loans we will analyze further.

Figure 9 shows the lifetime of the loans in the �nal dataset. All the loans are supposed
to have 36 entries, but it is clear that many of the loans either default or are paid in full
prior to the full lifetime. However, the vast majority of loans run for the 36 intended
months.

Figure 9: Lifetime of the loans in the �nal dataset.

Months on book indicates the number of entries for a loan in the payment history dataset.

Table 11 shows the payment history of one loan for selected variables. Of interest to us
is the variable Received amount which shows the actual payments made by the borrower.
Using this information we are able to calculate the net present value and internal rate

of return for each loan. These variables are described in detail in Section 4.2.
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Table 11: Example payment history

Loan ID Balance Principal

paid

Interest

paid

Due amount Received

amount

Loan sta-

tus

361542 28,000.00 701.34 163.10 864.44 864.44 Current
- 27,298.66 705.43 159.01 864.44 864.44 Current
- 26,593.23 709.53 154.91 864.44 864.44 Current
- 25,883.70 713.67 150.77 864.44 864.44 Current
- 25,170.03 717.82 146.62 864.44 864.44 Current
- 24,452.21 722.01 142.43 864.44 864.44 Current
- 23,730.20 726.21 138.23 864.44 864.44 Current
- 23,003.99 730.44 134.00 864.44 864.44 Current
- 22,273.55 734.70 129.74 864.44 864.44 Current
- 21,538.85 738.98 125.46 864.44 864.44 Current
- 20,799.88 743.28 121.16 864.44 864.44 Current
- 20,056.60 747.61 116.83 864.44 864.44 Current
- 19,308.99 751.97 112.47 864.44 864.44 Current
- 18,557.02 756.35 108.09 864.44 864.44 Current
- 17,800.67 760.75 103.69 864.44 864.44 Current
- 17,039.92 765.18 99.26 864.44 864.44 Current
- 16,274.74 769.64 94.80 864.44 864.44 Current
- 15,505.10 15,505.10 90.32 864.44 15,595.42 Fully Paid

Example of the payment history for a single loan.
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2.4 Summary of the data preparation Section

In summary, what has been done in the data preparation and initial variable screening
steps is as follows.

For the loan data:

1. Variable selection:

• Variables containing information obtained post issuance of the loan are re-
moved from the dataset, along with variables for secondary applicants and
other variables with little explanatory power.

2. Dropping of observations:

• Observations prior to introduction of variables in September 2012 are re-
moved from the dataset.

• Observations containing missing information are removed from the dataset.

• Observations outside the chosen intertemporal periods are dropped to retain
a subset containing only loans that have run their full lifetime.

3. Variable modi�cation:

• Variables are modi�ed to be easier to use with statistical learning techniques,
and new variables are created based on some of the other variables in the
dataset.

4. Variable screening and initial variable selection based on the exploratory data
analysis.

5. Creation of a separate subset where outlying observations have been removed as
mentioned in 2.2.2

6. Splitting of the dataset into training set and holdout set.

There are now two datasets; one with outliers removed and one where the outliers are
still present in the dataset. Going forward in the thesis, the presentation will be with
regards to the dataset not excluding the outliers, but the process is completed for both
sets. Results will be presented for both datasets when comparing the models.

From the payment history dataset we extract the payments for each individual loan.
This is used to calculate the internal rate of return for each loan which will be used as
a pro�tability measure for the di�erent models.
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Chapter 3

Models

In this section the theoretical framework for the various models implemented in this
thesis is presented. First, binary regression is introduced along with the Generalized
Linear Model framework, which is extended to show the implementation of the Elastic
net model. Following that the concept of decision trees as a means for making binary
decisions is introduced. It is further extended to include bagging and boosting models,
implemented through random forests and extreme gradient boosting techniques. Finally,
the K-nearest-neighbors method is presented as an alternative technique.

The Section on binary regression and the generalized linear modeling framework is based
largely on Dobson and Barnett [2008] and Fahrmeir et al. [2013].

3.1 Binary regression and GLM

The main objective of this thesis is to predict whether a borrower defaults on their
loan or not based on the explanatory variables available in the dataset. The dependent
variable in this case is loan status, which is a binary variable.

A binary variable is de�ned:

Y =

{
1 if the outcome is a success

0 if the outcome is a failure
(3.1.1)

The aim of a regression analysis with binary responses y ∈ {0, 1} is to model the
expected value E(y), or rather the probability P (y = 1) = P (y = 1|x1, · · · , xp) = π

In the case of a linear regression model: given p predictors, (x1, x2, . . . , xp), the response
y is predicted by

E(Yi) = µi = xTi β; Yi ∼ N(µi, σ
2) (3.1.2)

Yi represents the independent random variables, xTi represents the i'th row of the design
matrix X and β represents the parameters for each explanatory variable.

Since the dependent variable in our case is binary and not quantitative however, it is
not appropriate to use linear regression. There are several reasons for this.
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• The right hand side of the equation is not binary

• Since yi has a Bernoulli distribution with πi = β0+β1x1+· · ·+βpxk, it follows that
V ar(yi) = πi(1− πi) depends on the values of the covariates and the parameters
β0, · · · , βp and thus cannot have the same constant variance σ2 for all observations
i.

• The linear model allows values πi < 0 or πi > 1 for πi = P (yi = 1) which makes
little sense for probabilities.

We can avoid these issues by combining the probability πi with the linear predictor ηi
through a relation of the form

πi = h(ηi) = h(β0 + β1xi1 + · · ·+ βpxip) (3.1.3)

where h is a strictly monotonically increasing cumulative distribution function on the
real line. This ensures that h(η) ∈ [0, 1] and that we can always express the above
equation in the form ηi = g(πi) with the inverse function g = h−1.

We are thus able to model the relationship between variables where the response vari-
ables are not normally distributed. In the generalized linear model framework, h is
called the response function, while g = h−1 is the link-function.

3.1.1 Generalized linear model

[Nelder and Wedderburn, 1972] demonstrated generalized linear models as a way of
unifying various statistical models.

The model is de�ned in terms of a set of independent random variables Y1, · · · , Yn, each
with a distribution from the exponential family and the following properties:

1. Each Yi has the canonical form and its distribution depends on a single parameter
θi, such that

f(yi; θi = exp[yibi(θi + c(θi) + d(yi)] (3.1.4)

2. The distributions of all the Yi's are of the same form, for instance, all being Normal
distributed or all being Binomial distributed, which allows us to drop the subscript
for b, c and d.

Due to the points above, the joint probability density function of Y1, · · · , YN is

f(y1, · · · , yN ; θ1, · · · , θN ) =

N∏
i=1

exp [yib(θi) + c(θi) + d(yi)]

= exp
[ N∑
i=1

yib(θi) +

N∑
i=1

c(θi) +

N∑
i=1

d(yi)
] (3.1.5)

Supposing that E(Yi) = µi, where µi is some function of θi, then there will exist for a
generalized linear model, a transformation of µi such that g(µi) = xTi β.
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Here, g is a monotone, di�erentiable function called the link function, while xi is a p×1
vector of explanatory variables, and β is the p× 1 vector of parameters.

A generalized linear model thus consists of three components:

1. Response variables Y1, · · · , YN that share the same exponential family distribu-
tion.

2. A set of parameters β and explanatory variables X = xTi

3. A monotone link function g such that g(µi) = xTi β, where µi = E(Yi)

Following is a look at the useful properties of the exponential family, and some examples
of the transformation of the normal and binomial distribution to the canonical form used
in the generalized linear modelling framework. In addition, some of the most commonly
used link functions are discussed for the case with binary response variables, as that is
the most relevant for the work in this thesis.

The exponential family

For a response variable to be usable in the GLM setting, it has to belong to one of the
distributions in the exponential family. If we have a single random variable Y belonging
to a probability distribution depending on a single parameter θ. The distribution belongs
to the exponential family if it can be written on the form

f(y; θ) = s(y)t(θ) expa(y)b(θ) (3.1.6)

where a, b, s and t are known functions.

This can be rewritten in the form

f(y; θ) = exp[a(y)b(θ) + c(θ) + d(y)] (3.1.7)

where s(y) = exp [d(y)], t(θ) = exp [c(θ)].

The distribution is in canonical form if a(y) = y. b(θ) is sometimes referred to as the
natural parameter. Any additional parameters in the model are considered nuisance
parameters forming parts of the functions a, b, c and d, and they are treated as though
they are known. As mentioned previously, many of the well-known distributions belong
to the exponential family, including the Poisson, Normal and Binomial distributions.

Transformation of the normal distribution to canonical form

The normal distribution has the probability density function

f(y;µ) =
1

(2πσ2)
1
2

exp
[
− 1

2σ2
(y − µ)2

]
(3.1.8)

where µ is the parameter of interest and σ2 is considered a nuisance parameter. This
can be rewritten on the canonical form as
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f(y;µ) = exp
[
− y2

2σ2
+
yµ

σ2
− µ2

2σ2
− 1

2
log (2πσ2)

]
, (3.1.9)

where a(y) = y, b(µ) = µ
σ2 , c(µ) = − µ2

2σ2 − 1
2 log(2πσ2) and d(y) = − y2

2σ2

Transformation of the binomial distribution to canonical form

The binomial distribution has the probability density function

f(y;π) =

(
n

y

)
πy(1− π)n−y (3.1.10)

where y takes the values 0, 1, 2, ..., n and
(
n
y

)
= n!

y!(n−y)!
This is denoted by Y ∼ Bin(n, π)

π is the parameter of interest, and n is assumed to be known. To get the probability
function on the canonical form we rewrite it as

f(y, π) = exp

[
y logπ − y log(1− π) + n log(1− π) + log

(
n

y

)]
(3.1.11)

by taking the exponential and logarithm of each term in the equation. We can then
isolate y so that we end up with

f(y, π) = exp

[
y log

( π

1− π

)
+ n log(1− π) + log

(
n

y

)]
(3.1.12)

where a(y) = y, b(θ) = log
(

π
1−π

)
, c(θ) = nlog(1− π), d(y) =

(
n
y

)
In addition to the above distributions, several others also belong to the exponential
distribution, and many can be written on the canonical form.

Link functions

Logistic regression and the logit-function

In logistic regression we model the probability that the response belongs to a particular
category rather than modeling the response directly. To achieve this we must model
p(x) using a function that gives outputs between 0 and 1 for all values of x. Many
functions �t this criteria, but in logistic regression the logistic function is used.

The logistic response function is

π = h(η) =
exp η

1 + exp η
(3.1.13)
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which gives us the logit link function

g(π) = log
( π

1− π
)

= η = β0 + β1x1 + · · ·+ βkxk (3.1.14)

This gives us a linear model for the logarithmic odds, log
(

π
1−π
)

Transformation with the exponential function yields,

π

1− π
= exp (β0) + exp (β1x1) + · · ·+ exp (βkxk) (3.1.15)

which implies that the e�ect of the explanatory variables a�ects the odds in an exponential-
multiplicative form.

Probit function

For the probit link-function, the response function h is de�ned by the standard normal
cumulative distribution function Φ, i.e.,

π =
1

σ
√

2π

∫ ∞
−∞

exp
[
− 1

2

(s− µ
σ

)2]
ds = Φ

(x− µ
σ

)
(3.1.16)

As the link function is the inverse of the response function, the probit link-function is:

Φ−1(π) = β0 + β1x1 + · · ·+ βkxk, (3.1.17)

the inverse cumulative Normal probability function. Probit models are most useful when
there are natural interpretations of the model. In biological sciences, the model x = µ
is called the median lethal dose model, because it corresponds to the dose that can be
expected to kill half of a population.

Complementary log-log function

The complementary log-log model uses the extreme minimum-value cumulative distri-
bution function as the response,

h(η) = 1− exp (− exp (η)), (3.1.18)

giving us the link function

g(π) = log(−log(1− π)) = β0 + β1x1 + · · ·+ βkxk (3.1.19)

This model is similar to the logit and probit models when the values of π is near 0.5,
but di�ers when π approaches 1 or 0.
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3.1.2 Elastic net

Historical background

The elastic net regularization technique is �rst introduced by Zou and Hastie [2005].
They present a regularization technique that enables us to implement a combination
of ridge regression and lasso regression. Ridge regression is �rst shown in Hoerl and
Kennard [1970] and it is a regularization technique that shrinks the estimated coe�cients
of a regression model towards zero. Lasso regression, �rst proposed in Tibshirani [1996]
is another regularization technique, but it allows the variables to shrink all the way
to zero. As such the lasso regression technique also functions as a variable selection
method. Both of these regularization techniques are used to reduce the variance of a
model, at the cost of introducing some bias. The elastic net attempts to keep the best
parts of both regularization types.

Theoretical implementation

As previously mentioned, using the linear regression model and given p predictors,
(x1, x2, . . . , xp), the response y is predicted by

ŷ = β̂0 + x1β̂1 + · · ·+ xpβ̂p (3.1.20)

In the case of Ordinary least square (OLS) we obtain estimates for the vector of coe�-
cients β̂ = (β̂0, · · · , β̂p),

by minimizing the residual sum of squares.

RSS =
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(3.1.21)

To evaluate the quality of a model, we typically look at two aspects:

• Can the model produce accurate predictions?

• Is the model easily interpretable?

To improve the interpretability of a model, a parsimonious model is often preferred. The
fewer predictors there are, the more easily one can explain the relationship between the
covariates and the response. In addition, including many variables in a model increases
the amount of variability, which can lead to a less generalizable model. OLS often
does poorly in both predictions and interpretation. As a means to improve the model,
for both prediction and interpretability, di�erent regularization techniques have been
introduced. One such technique is called ridge regression, �rst introduced by Hoerl and
Kennard [1970], which minimizes the residual sum of squares subject to a bound on the
L2-norm of the coe�cients .
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β̂ridge = argmin
β

( n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij
)2

+ λ

p∑
j=1

β2j

)

= RSS + λ

p∑
j=1

β2j

(3.1.22)

It adds a penalty term to the OLS regression, so that the coe�cients are penalized if
they are large. The output is a shrunken version of the model, with coe�cients being
reduced towards zero and towards each other, without ever being completely removed
from the model.

λ acts as a complexity parameter here and controls the amount of shrinkage. Larger
λ leads to greater amounts of shrinkage. If we have many correlated variables in a
linear regression model, the coe�cients can become poorly determined and exhibit high
variance. For example, one large positive coe�cient in one variable can o�set a large
negative coe�cient in another correlated variable. Ridge regression alleviates this prob-
lem by adding a size constraint on the coe�cients. Ridge regression thus improves the
prediction performance of the model by way of a bias-variance tradeo�. Variance is
reduced, which helps improve the predictions, but we increase bias by restricting the
model.

Another shrinkage method we can use to improve the model is a technique called Lasso
regression which was �rst proposed by Tibshirani [1996]. Like ridge regression it is
a penalized least squares method, but instead of L2-regularization, it imposes a L1-
penalty on the regression coe�cients. This regularization does both shrinkage and
variable selection, and it can be expressed as

β̂lasso = argmin
β

(
1

2

∑
i=1

n
(
yi − β0 −

∑
j=1

pβjxij

)2
+ λ

p∑
j=1

|βj |
)

= RSS + λ

p∑
j=1

|βj |
(3.1.23)

Because of the nature of the lasso constraint some of the coe�cients will be shrunk to
be exactly zero, resulting in some of the variables being removed from the model. The
lasso regression technique has some limitations however, especially in the case of high-
dimensional data where there are more predictors than observations. In this case the
lasso regression can select at most n variables. Another issue is if there exists a group
of highly correlated variables, it tends to keep only one of the correlated variables, while
removing all the others. This might be an issue if the variables are all important.

As a compromise between lasso and ridge regression, the elastic net penalty is intro-
duced. The formula to calculate it is
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β̂elastic = argmin
β

(
1

2

∑
i=1

n
(
yi − β0 −

∑
j=1

pβjxij

)2
+ λ

p∑
j=1

(
α|βj |+ (1− α)β2j

))

= RSS + λ

p∑
j=1

(
α|βj |+ (1− α)β2j

)
(3.1.24)

We see from the equation above that the elastic net penalty includes an additional pa-
rameter α, which takes values between 0 and 1. This parameter controls the ratio of
L1/L2 penalization. α = 0 leads to pure ridge regression, while α = 1 leads to pure
lasso regression. Elastic net has the bene�t of being able to use a mixture of the two.
It retains the variable selection property of the lasso regression while also shrinking
together the coe�cients of the predictors like with ridge regression.

Technical implementation

In my implementation of the elastic net regularization i use a statistical learning frame-
work called caret in R. With it, we can set up a glmnet elastic net regression, that
enables us to search over a grid for the optimal values of α and λ. The hyperparameter
search space and the process of tuning the parameters is found in Section 4.1.1. The
hyperparameters we are tuning for are α and λ. α is the hyperparameter that de�nes
the elastic net mixing parameter. It ranges from 0 to 1 where 0 is pure ridge regression,
and 1 is pure lasso regression.λ is a measure of how strict the penalization factor should
be. A higher value leads to stricter penalization, which in turn leads to fewer variables
passing the lasso regularization, and stronger shrinkage towards zero for each variable
from the ridge regression. The available parameter space for each hyperparameter is
found in Table 12. Additional hyperparameters exist, including parameters to set re-
strictions on how many variables should be kept in the �nal model, but these are not
included in our implementation.

Table 12: Tunable parameters for

elastic net

Parameter name Parameter Space

Alpha 0 to 1
Lambda 0 to Inf

The hyperparameters and parameter

space

Advantages and disadvantages

Elastic net regularization works well for many datasets. It can work well on low-
dimensional data as well as high-dimensional data. If there are more predictors than
observations then lasso regression can at most select n variables to retain in the �nal
model. The elastic net regularization avoids this issue. It allows us to combine the
two favorable aspects of L1 and L2 regularization. It has the variable selection element
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of pure lasso regression, where it allows for a more parsimonious model than ordinary
least squares regression does, while also keeping the shrinkage of the coe�cients enabled
by the ridge regression. A disadvantage with the technique is the rather complicated
parameter search space that is required to �nd an optimum value. Implementing elastic
net rather than a pure ridge- or lasso-regression gives us an additional hyperparameter
to tune for, which increases the computational cost of �tting a model.

3.2 Decision tree models

3.2.1 The basic decision tree

Tree-based methods are conceptually very simple and easy to understand, and can
be a useful tool for both regression and classi�cation tasks. In this introduction a
constructed dataset is used to show how a decision tree is implemented. It contains
only 16 observations for loan status, income and installment size. It does not re�ect the
real dataset used in the actual analysis in any way, but it is useful for explaining the
process of building a decision tree. The following section is written using [James et al.,
2013] as reference. A decision tree is built using a set of splitting rules to segment the
predictor space into distinct and non-overlapping regions as shown in Figure 10.

Figure 10: How the decision boundaries split the dataset into regions

The rules can be listed in the following way:

• Income < 102 which leads to the regions R1, (R2 +R3 +R4)

• Income >= 98 which leads to the regions R1, R2, (R3 +R4)

• Installment >= 5 which leads to the regions R1, R2, R3, R4
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As shown in Figure 10 the explanatory variables are income and installment size, and
the predictor space is divided into four distinct regions, R1, R2, R3, R4. Figure 11 shows
the resulting decision tree and the order of the splits.

Figure 11: Example of a decision tree using simpli�ed data

The terminal nodes at the bottom signi�es the split between the two groups. Leftmost node holds 5

default and 0 non-defaults, and so on.

First the question "is income less than 102" is posed, and we split the data into two
subsets. R1 contains all loans that have income greater than 102, while the remaining
area containing R2, R3, R4 holds all the loans that has income less than 102. Then
another split is made on the income variable for values greater or equal to 98, before,
�nally a split on which loans have installment size greater or equal to 5 is made. In the
case of this constructed dataset we obtain perfect separation between the two classes
loan status can take; Default and Non-Default. All of the terminal nodes, meaning the
�nal levels of each branch, contain only one classi�cation for loan status. This is not
usually the case in a real-world data set however, so there needs to be additional rules
implemented to build the tree. This includes rules for how deep we should allow the
tree to be, and what criteria to use when making the decision on which variable and
where to make the split.

Splitting criteria and pruning

The objective of the segmentation of the predictor space is to obtain as homogeneous
regions as possible. In the regression case we want to �nd a region where the output
prediction will be as close to the actual outcome as possible. For classi�cation we want
to �nd a region where the training data all indicate that the outcome belongs to the
same class.

For regression trees we do this by �nding the regions R1, · · · , RJ that minimize the
Residual Sum of Squares given by
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J∑
j=1

∑
i∈Rj

(yi − ŷRj )
2 (3.2.1)

Here j represents the di�erent regions, and yRj is the mean value of all the observations
that fall in region j. If we are building a classi�cation tree on the other hand, we can't
use RSS as the criterion for making the binary splits. An alternative is to use the
classi�cation error rate. This is the fraction of erroneously classi�ed observations.

E = 1−max
k

(p̂mk),

where p̂mk represents the proportion of training observations in the m'th region that
are from class k. Other splitting criteria are the Gini index and cross-entropy.

Gini Index =
K∑
k=1

p̂mk(1− p̂mk), (3.2.2)

and

Cross-entropy = −
K∑
k=1

p̂mk log p̂mk (3.2.3)

The Gini index is a measure of the total variance across the K classes. It is considered
a measure of node purity, where a small value indicates that a node mostly contains
observations from a single class. Cross-entropy is another measure of purity and it yields
similar numerical results to the Gini index. Both of these measures are more sensitive
to node purity than classi�cation error rate, and as such they are more often used in
practice.

When we build a decision tree it is not computationally feasible to calculate each pos-
sible partition of the predictor space into J separate regions. When the number of
observations and predictors increase, there will be an exponential increase in the possi-
ble partitions. To combat this, we instead use a top-down greedy approach, known as
recursive binary splitting. The term greedy indicates that the we always go for the best
possible split at the current step of the process, so that we always choose the partition-
ing that provides the largest instant reduction in the error measure. As a consequence,
we will not consider partitions where there might be improved results further down the
line. To perform binary splitting, we have to select the predictor Xj and cut point s
such that the regions {X|Xj < s} and{X|Xj ≥} leads to the greatest possible reduction
in error.

For any j, and s we de�ne the pair of half-planes

R1(j, s) = {X1Xj < s} and R2(j, s) = {X|Xj ≥ s}, (3.2.4)

and seek the value of j and s to minimize

∑
i:xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i:xi∈R2(j,s)

(yi − ŷR2)2 (3.2.5)

or similarly for a classi�cation tree using Gini-index
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∑
i:xi∈R1(j,s)

p̂1k(1− p̂1k) +
∑

i:xi∈R2(j,s)

p̂2k(1− p̂2k) (3.2.6)

We consider all the predictors and all possible values for the cut point s for each of
the predictors, and then choose the combination that leads to the greatest reduction in
error measure. After this is found, the process is repeated for each new region, until a
stopping criterion is reached. This stopping criterion might be based on the degree of
purity in the node, or that the node contains less than a given number of observations.
Once the regions R1, · · · , RJ have been found, we predict the response for a given test
observation using the mean of the training observations for regression, or a majority
vote for the classi�cation case.

This exhaustive partitioning will often lead to a large decision tree that will produce
good predictions on the training set, but poor test set performance. This is due to the
complexity of the decision tree. It is over�tting the training data, and could be improved
if the tree was reduced in size. This technique is called pruning and involves growing
a tree to its full size before "cutting" o� branches of the tree, e�ectively reducing its
size. This process leads to a reduction in variance at the cost of some additional bias. A
problem with this approach is to decide which of the possible subtrees are worth looking
into. It would be too cumbersome to check every possibility, so a way to select a smaller
set of subtrees for consideration is a method called cost complexity pruning. Here we
consider a sequence of trees indexed by a nonnegative tuning parameter α. For each
value of α there corresponds a subtree T ⊂ T0 such that

T∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T | (3.2.7)

is as small as possible. |T | indicates the number of terminal nodes of the tree T , Rm is
the region of the prediction space corresponding to the m'th terminal node, and yRm is
the predicted response for observations in Rm.
α controls the trade-o� between complexity and its �t to the training data. It balances
the trade-o� between variance and bias. With a value of α = 0 the subtree will be the
same as the full tree, and there will be no reduction. With increasing values of α the
complexity of the tree will be reduced, along with the number of terminal nodes and
branches.

3.2.2 Boosting

One of the modeling approaches I use to predict probability of default is a gradient
boosting machine. I use xgboost, short for extreme gradient boosting, which is a widely
used algorithm for both classi�cation and regression tasks in statistical learning. It
has proven to be computationally e�cient while still being accurate. It is often used
in the winning models in machine learning competitions over a wide variety of tasks.
Of 29 winning solutions published at Kaggle's (Kaggle.com) blog during 2015, 17 used
xgboost. Eight used solely xgboost, while the others combined it with neural nets or
other algorithms in larger ensembles [Chen and Guestrin, 2016].
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Historical background

Boosting originates from the question posed by Kearns and Valiant [1994] about whether
a set of weak learners could be converted to a strong classi�er. A weak learner is a
model which can produce a hypothesis that performs only slightly better than random
guessing. [Schapire, 1990]. Building an accurate classi�er is di�cult, but it is not as
hard to create decision rules that are only moderately accurate [Schapire, 2003]. This
is the concept that is applied in boosting. We use an algorithm to �nd many of these
moderately accurate classi�ers and combine the results from these in the �nal model.

Each iteration of the weak learner takes the results from the previous iteration into ac-
count, usually by weighing the observations that were wrongly classi�ed more heavily.
In this way, each consecutive weak learner will improve its classi�cation on the obser-
vations that have proven harder to correctly classify. We don't really change the weak
learner itself between iterations, but we manipulate the underlying training data by
iteratively re-weighting the observations [Mayr et al., 2014]. When the desired number
of learners have been produced we combine the prediction results from each learner,
usually by taking a weighted majority vote, into the �nal prediction for the model.
Freund and Schapire presented Adaboost in the 1990s, and it was the �rst adaptive
boosting algorithm as it automatically adjusts its parameters to the data based on the
actual performance in the current iteration. [Mayr et al., 2014]. They went on to for-
mulate Adaboost as gradient descent with a special loss function which has later been
generalized to handle a variety of loss functions. Several alternative boosting algorithms
have later been developed, including xgboost. The main variation between the boosting
algorithms is the way in which they weigh the training data.

Theoretical implementation

Boosting algorithms �t ensemble models of the kind

f(x) =

N∑
i=0

fi(x) = f0(x) +

N∑
i=1

λfi(x) (3.2.8)

Where f0(x) is the initial model, λ is the shrinkage parameter, often referred to as the
learning rate, and fi(x) is the successive iterations of the model. The product λfi(x)
denotes the �step� at iteration i.

To show how the gradient descent is implemented we can show how it works in the
simple least-squares regression case. Given (x1, y1), (x2, y2), . . . , (xn, yn), We want to
build a model F (x) that can predict values of Y , so that F (x) = y We start with an
initial model, for instance

F (x) =

n∑
i=1

(yi)

n
(3.2.9)

Using a loss function L(y, F (x)), in this case the mean squared error function (y−F (x))2,
we calculate the negative gradients:

38



− g(xi) = −∂L(yi, F (xi))

∂F (xi)
(3.2.10)

We �t another regression tree h to the negative gradients so that we get the �nal model
F (x) = F0(x) + λh, where λ determines the learning rate.

In the case of least squares regression, this loss function and negative gradients is the
same as the residuals, but for other loss functions it will di�er. We then �t the next
regression tree by using the negative gradients instead of the original training set.

Algorithmically the procedure for a boosting regression tree is as follows:

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For i = 1, 2, ..., N , repeat:

(a) Fit a tree f̂i to the training data (X, yi)

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x) < −f̂(x) + λf̂i(x)

(c) Update the residuals:

ri < −ri + λf̂ i(xi)

3. Output the boosted model:

f̂(x) =
N∑
i=1

λf̂ i(x)

xgboost is a gradient boosting algorithm, which builds the model iteratively, similar to
other boosting algorithms, and allows optimization of an arbitrary di�erentiable loss
function. Freund and Mason [1999] described gradient boosting algorithms as iterative
functional gradient descent algorithms that optimize a cost function over a function
space by iteratively choosing a function that points in the negative gradient direction.
When the negative gradient has been found and thus the direction in which to move to
reduce the loss, the length of the step in this direction still needs to be evaluated. For
gradient boosting machines, the normal approach is to use a line search to determine
the optimal distance to move. For xgboost on the other hand, the gradient is calculated
in a way that allows us to get both the direction and the distance of the step in one
computation. This reduces the time it takes to calculate each iteration of the model, but
it adds a restriction in the sense that the loss function needs to be twice di�erentiable.

Technical implementation

For the implementation done in R, the following hyperparameters listed in Table 13
are selected and searched for. Additional choices are made, such as deciding between
a linear model �t or a tree method, but these hyperparameters are excluded from the
following section.
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Table 13: Tunable

parameters for extreme

gradient boosting

Parameter name Par space

Eta 0 to 1
Gamma 0 to Inf
Max depth 1 to Inf
Min child weight 0 to Inf
Subsample 0 to 1
Colsample bytree 0 to 1
Nrounds 1 to Inf

The parameters that can be

tuned and the possible range each

parameter can take.

The eta hyperparameter controls the learning rate of the model. Higher values of eta
lead to a model that learns slower, and takes less information from each iteration of the
tree. It is used to control against over�tting. Another measure useful for controlling
over�tting is the gamma hyperparameter. It is the minimum loss reduction required to
make an additional partition on a leaf node of the tree. Larger values of gamma lead to
more conservative and less complex models.

The max depth hyperparameter controls the number of splits that can be done in each
of the trees built. The root node is considered to be level 0, and each following split
along the same branch increases the depth of the tree. A deep tree is more complex and
susceptible to over�tting, while a short tree is more stable but less accurate.

Minimum child weight is yet another measure to constrain the complexity of the model.
If the leaf node after a partitioning is beneath this threshold, the model will not attempt
further splits along this branch. Larger values lead to more conservative models.

For every iteration of the model �tting process a random subset of the samples is picked
to build a tree. The size of the sample is controlled by the hyperparameter subsample.
Setting this value to 0.5 means only half of the datapoints in the training set will be used
for each tree. This prevents over�tting. Along a similar vein , colsample by tree controls
the number of variables available for each split. This hyperparameter will sometimes
exclude the more powerful predictors, which lets the algorithm extract information
from the weaker variables in a dataset. This will improve the overall performance of the
model.

Finally, nrounds is a hyperparameter that controls how many iterations of trees that
are built in the model.

Advantages and disadvantages

One advantage with xgboost is that it scales extraordinary well. It can be run in
parallel and on separate machines, which allows it to handle huge datasets and billions
of observations. It generalizes well and obtains good results on a variety of datasets
and optimization tasks. A negative property is the di�culty of explaining the output
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of the model. It can be hard to explain how the conclusions are drawn due to the large
number of weak learners included in the �nal model.

3.2.3 Random forests

Random forests is a tree-based ensemble learning method which performs well on binary
classi�cation tasks. Similar to the boosting algorithm shown in Section 3.2.2 it trains
several trees and aggregates the results. However, instead of changing the weighing of
the training data between trees, random forests uses bootstrap sampling to generate
new training data from the same distribution for each tree. In random forests a random
subset of the variables available is used for each tree. This randomization is used each
time a split in the tree is considered. The reason this is done is to reduce the correlation
between the di�erent trees produced by the model. If there exists one very strong
predictor in the data set, along with several other somewhat strong predictors, then it
could very easily be the case that the �rst few splits chosen for most of the trees would
be splits done on the same variables. Consequently, the trees would all look similar,
even though the trees are built using di�erent bootstrap samples. In such an event, the
predictions from the trees would be highly correlated, and we would not get the desired
reduction in variance.

A normal subset of variables to choose from for classi�cation at each split is m =
√
p

where p is the total number of variables in the training set. By using a small number
of variables for each split, we will have many splits where the strongest variable is
not available, so the other predictors will have a better chance to be chosen for the
split. This process decorrelates the trees and makes the average of the resulting trees
less variable and therefore, more reliable. This builds on the concept of weak learners
mentioned previously, since we are often building decision trees excluding the most
important variables. The predictive accuracy of these trees will likely not be very good,
but the results can be aggregated to form a stronger learner.

Historical background

Tin Kam Ho introduced the method of random decision forests in 1995 as a way to
overcome the fundamental limitation on the complexity of tree classi�ers. [Ho, 1995] If
trees are grown too complex they will over�t the training data, which will lead to low
bias and high variance. This in turn leads to poor generalization on unseen data. Ho
showed that producing several trees with random restrictions on the variable selection
for each tree could lead to improved accuracy while avoiding over�tting. An extension of
the algorithm was later proposed by Breiman where he describes random forests as it is
used today. [Breiman, 2001a]. He describes building a forest of uncorrelated trees using
randomized variables for each split, while also combining this with bootstrap sampling.
We thus get a random subset of variables and observations for each tree, which greatly
reduces the correlation between trees. This leads to models that are slightly worse
in bias, but have reduced variance compared to the original random decision forests
proposed by Ho.
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Theoretical implementation

Given a training set of size (Nxp), where N is the number of observations, and p is the
number of variables, the random forests algorithm can be implemented algorithmically
in the following way:

1. For b = 1 to B:

(a) Draw a bootstrap sample Zb of size N from the training data.

(b) Grow a random forest tree Tb to the bootstrapped data by recursively repeat-
ing the following steps for each terminal node of the tree, until the minimum
node size nmin is reached.

i. Select m variables at random from the p available variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}1−B

To make predictions at a new point x:

Regression: f̂Brf (x) = 1
B

B∑
b=1

Tb(x)

Classi�cation: Let ĈBrf (x) = majority vote {Ĉb(x)}B1

To �nd the optimal split-point and variable in step b-ii above we use a measure of node
impurity to grade the di�erent variables and split points. In a node m, representing a
region Rm with Nm observations, let p̂mk be the proportion of class k in node m.

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (3.2.11)

Three common measures of node purity are:

Classi�cation error:
1

Nm

∑
i∈Rm

I(yi 6= k(m)) = 1− p̂mk(m) (3.2.12)

Gini index: ∑
k 6=k′

p̂mkp̂
′
mk =

K∑
k=1

p̂mk(1− p̂mk) (3.2.13)
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Cross-entropy or deviance:

−
K∑
k=1

p̂mklog p̂mk (3.2.14)

Technical implementation

The implementation of the random forests algorithm in this thesis is done using the
Ranger package in R. It has been shown to be less taxing computationally and it also
has short training time when compared to other implementations.

The random forests algorithm involves several hyperparameters controlling the structure
of each tree, the structure of the forest, and the level of randomness in the trees and
forest. in Table 14 the parameters tuned for in this thesis is listed.

Table 14: Tunable parameters for

random forests

Parameter name Parameter Space

Num.trees 1 to Inf
Mtry 1 to Inf
Replace TRUE or FALSE
Sample.fraction 1 to Inf
Min.node.size 1 to Inf

Random forests hyperparameters and pa-

rameter space.

Num trees controls the number of trees that will be grown for the forest. It should be
a su�cient number of trees so that every observation is sampled at least a few times.

The mtry hyperparameter controls the number of randomly drawn candidate variables
that are available for selection at each split when growing a tree. As mentioned above,
the default setting is to use

√
p, but the optimal value depends on the underlying

dataset. In general, lower values of mtry lead to more di�erent, less correlated trees,
which can lead to better stability when aggregating. Having a low value of mtry can also
lead to better exploitation of variables with moderate e�ect on the dependent variable,
since the more powerful independent variables are more likely to be excluded when the
number of candidate variables is low. On the other hand, low values of mtry leads to
worse performing trees, since they are built on suboptimal variables. This de�nes the
trade-o� between stability and accuracy that has to be made when selecting the size of
mtry.

With the replace hyperparameter we get to decide whether observations are sampled
with replacement or not. The sample fraction hyperparameter sets the fraction of the
dataset that will be randomly sampled for each tree.

Another complexity constraint is the min node size hyperparameter. It sets the mini-
mum required size for a terminal node. If this is set to be a large number, then shorter
and smaller trees are grown. This will reduce the complexity of the trees, and can help
prevent over�tting. It will also improve the speed of growing the trees.
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Advantages and disadvantages

Random forests is a very �exible method that can handle a variety of input data. It is
able to produce fairly good results, even without tuning of the hyperparameters. Similar
to xgboost, with random forests we can calculate a variable importance measure which
lets us know what variables are best able to separate the target classes. The random
forests technique is also resistant to over�tting, granted the number of trees in the model
is su�ciently high. A disadvantage of the model is that it requires a lot of computational
power to run, and the more trees you have in the model the higher the cost.

3.3 Alternative approaches

Several alternative learning techniques exist that could be used in a binary classi�cation
setting. As mentioned in the literature review, discriminant analysis, neural networks
and support vector machines among others have been implemented with success for
credit scoring. Another alternative method is the k nearest neighbor algorithm, which
will be explored further in this following Section.

3.3.1 K-nearest neighbors

Historical background

Fix and Hodges Jr [1951] are the �rst to formulate a rule of the nearest neighbor type.
They investigated a rule which assigns to an unclassi�ed point, the class most heavily
represented among its k nearest neighbors. The basic idea is that the proportion of
the classi�ed points which falls in a stated (small) neighborhood around the unknown
observation may be used to estimate the probability that the unknown point belongs
to a given class. They discuss the problem of de�ning the optimal size of the region
around an unknown observation to use. Instead of de�ning a region of a �xed size, they
propose choosing a number k, and take in the neighborhood of the unknown point a
region containing a total of k points of known observations.

In an often-cited paper, Cover and Hart [1967] does an extensive study on the properties
of the nearest neighbor rule. They �nd that the probability of error for a nearest
neighbor rule has a lower bound in the Bayes probability of error and an upper bound
that is twice the Bayes probability of error.

Building on the previous research, Dudani [1976] introduces a weighting function to
de�ne a distance-weighted k-nearest-neighbor (KNN) rule. They give the k nearest
neighbors a weight to signify the closeness of the known observation to the unknown
observation. Among other methods for distance-weighting they use the inverse of the
distance as the weight for each of the k neighbors. The distance-weighted k-nearest-
neighbor rule then assigns the unknown observation to the class for which the weights
sum to the greatest value. They found that using distance-weighted k -nearest-neighbor
lead to reduced probability of misclassi�cation compared to the simple majority vote
traditionally implemented.
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Theoretical implementation

Given a positive integer k, and a test observation x0, the KNN classi�er �rst identi�es
the k points in the training data that are the shortest distance away from x0, represented
by N0. The distance measure usually applied is the Euclidian distance, de�ned as

di = ||xi − x0|| (3.3.1)

It then estimates the conditional probability for class j as the fraction of points in N0

whose response values equal j :

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j) (3.3.2)

Using the inverse of the distance as weights for each of the k neighbors, we get

wi =
1

di
, di 6= 0 (3.3.3)

It then follows that for a distance-weighted KNN classi�er that the probability of Y
belonging to a class j is given by

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j) · wi (3.3.4)

Finally, KNN classi�es the test observation x0 to the class with the largest probability.
Despite the fact that it is a very simple approach, KNN can often produce classi�ers
that work surprisingly well.

The hyperparameter k is very important for the KNN algorithm. A value of k that is
too low will lead to an extremely �exible model, with a decision boundary that will be
very closely �t to the training data. This gives the model high variance, and it is likely
that the model over�t the data. A k value too high on the other hand will lead to an
in�exible model that generalizes too much. The decision boundary will be too rough,
and will not follow the data close enough for it to make accurate predictions on the test
data. The hyperparameter k thus controls the bias-variance trade-o� in the knn model.

Technical implementation

To implement a KNN model we use the package fastknn in R, which provides the fastest
(to our knowledge) implementation of knn available. With this implementation there are
a few hyperparameters that can be tuned for optimal performance. Table 15 summarizes
the hyperparameters and the parameter space for each of them.

k is the number of neighboring observations that are considered for each classi�cation
of a test observation. If k is set to 1, then we will only use the observation closest to the
test observation to determine the predicted classi�cation of the test observation. The
possible values of k is 1 to n where n is the total number of observations in the training
set.

45



Table 15: Tunable parameters for k nearest

neighbor

Parameter name Par space

K 0 to n
Normalization Null, std, minmax, maxabs, robust
Method Vote or dist

The tuneable hyperparameters and parameter space.

Method determines the technique used for calculating the prediction for the test ob-
servation. The possible values this hyperparameter can take are vote and dist. Vote

implements the traditional majority vote method, where we simply count how many
of the k nearest neighbors are from each class and classify the test observation as the
same class as the majority of the neighbors. The dist method can be thought of as a
weighted-voting rule. It weights the in�uence of each of the neighbors di�erently. The
probability of the test observation belonging to a class is computed from the inverse of
the nearest neighbor distances. This lets the neighbors closer to the observation play a
more important role in predicting the classi�cation outcome.

The �nal hyperparameter we can tune is the normalization technique. This is recom-
mended when the variables are measured in di�erent units. Since we have a lot of
di�erent units in our dataset, we will likely bene�t from using a normalization tech-
nique. Table 16 shows the di�erent options for normalization, and the way they are
implemented in practice.

Table 16: KNN - normalization techniques

Normalization technique Description

Null No normalization implemented. Values are kept as they
are in the original dataset.

Std Variables are standardized by removing the mean and
scaling to the unit variance.

Minmax Variables are transformed by scaling each one between 0
and 1.

Maxabs Variables are transformed by scaling each one by its max-
imum absolute value.

Robust Variables are transformed by removing the median and
scaling each variable by its interquartile range.

Normalization techniques available in the fastknn package.

Advantages and disadvantages

An advantage with the KNN modeling approach is that it is a non-parametric method
that makes almost no assumptions about the dataset. It is highly �exible which allows
for use in a variety of cases. It is an intuitive model that is simple to implement, while
still providing good results in many cases. One disadvantage is that KNN is sensitive to
class-outliers. Observations that don't �t the general consensus can have a large impact
on the predicted outcome of classi�cations. Another potential issue is that KNN does not
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do any form of variable selection, and will not make any judgement on which variables
are more important than others. As a consequence of this it is very sensitive to irrelevant
variables. The KNN model is computationally a very expensive method. Since it is a
memorization-based technique, it needs to store all the data in the training set. It is
also expensive in the sense that it can take a long time to calculate all the distances
required to make the predictions. In addition to this the model will become slower and
slower the more data is included in the training set. These computational issues are
further exacerbated by the fact that the time spent by the model is all in the testing
phase, not the training phase. This means that unlike other modelling approaches, each
new test set we make predictions on requires the full "training" time to run.

47



Chapter 4

Results and model comparison

In this Section the results from the various modeling approaches are presented. First
the hyperparameter tuning process and results are discussed for each model. Then an
introduction to the accuracy metrics calculated is given, before the results from the
individual models is presented. After that a comparison is done between the models to
see which has the best overall performance.

4.1 Hyperparameter tuning

As mentioned in Chapter 3, each of the statistical learning techniques implemented have
a set of hyperparameters that can be tuned to optimize the performance of the model.
We make use of cross-validation to �nd the optimal settings. We make sure to use the
same partitions for the Cross-validation for each model we tune hyperparameters for.
This ensures that we get a fair comparison between the various models.

In addition to the resampling strategy, we can also set the search strategy for the
hyperparameter tuning. In this thesis the strategies random search, grid search, or a
combination of the two is implemented. The random search sets the hyperparameters
to random values within a given range, and performs tuning for a set number of random
combinations. The grid search splits the parameter space into uniformly distributed
partitions, and tunes the parameters for each combination of points.

The strategies used and the extent of the hyperparameter tuning varies between the
di�erent model implementations due to the fact that the computational e�ort required to
train the models vary to a great extent. Some models require tuning of more parameters,
which in turn leads to an exponential increase in possible permutations. For the elastic
net model, only two parameters with reasonably small search spaces are tuned for. This
allows the use of a grid-search, giving an exhaustive look at the optimal parameter
settings. For xgboost and random forests on the other hand there are more parameters
to consider, so the initial parameter tuning is done by a random search. This tuning
is then followed by a narrow grid search for a few chosen parameters in the parameter
space near the previously found values.

As the Cross-validation is set to do �ve folds, each parameter setting is trained on
the di�erent training sets, and tested on the remaining folds. The average is taken
of the test error estimates for each parameter setting, and the best model is selected
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and trained on the complete training set. This model is then used to make predictions
on the observations in the holdout set. Following is the results of the hyperparameter
optimization for each of the learning techniques implemented in this thesis.

4.1.1 Elastic net

For the elastic net model there are only two hyperparameters that we tune to �nd the
optimal settings, namely α and λ. These control the degree of LASSO-regularization
versus ridge-regularization and the penalty term respectively. To select the optimal α
we use a cross-validation method and test �ve di�erent values to optimize the AUC
(description of the AUC and other metrics is found in Section 4.2). Table 17 lists the
results from the tuning process.

Table 17: Hyperparameter settings for elastic net

Parameter name Search space Result Var. count Test set AUC

Alpha = 0

Lambda.min 0.0060 to 58.7000 0.0060 151 0.68232
Lambda.1se 0.0060 to 58.7000 0.0870 151 0.68000
Alpha = 0.25

Lambda.min 0.0007 to 0.2351 0.0007 118 0.68289

Lambda.1se 0.0007 to 0.2351 0.0082 45 0.68024
Alpha = 0.5

Lambda.min 0.0004 to 0.1175 0.0004 118 0.68246
Lambda.1se 0.0004 to 0.1175 0.0041 40 0.68028

Alpha = 0.75

Lambda.min 0.0002 to 0.0783 0.0002 116 0.68247
Lambda.1se 0.0002 to 0.0783 0.0027 39 0.68024
Alpha = 1

Lambda.min 0.0002 to 0.0587 0.0002 116 0.68247
Lambda.1se 0.0002 to 0.0587 0.0020 39 0.68022

The hyperparameters and �nal tuning results for various levels of α

Since the model with α = 0.25 and λ = 0.0007 obtains the highest test set AUC, we
will use it to make a prediction on the holdout set. Another model of interest is the
model using α = 0.5 and λ = 0.0041. This model has a test set AUC of 68.0257, which
is slightly lower than the �rst mentioned setting. It does however also reduce the model
from the initial 151 variables to a model consisting of only 40 variables. Since we would
prefer a parsimonious model, we will see how this model performs on the holdout set.
The 40 variables that are left and their coe�cients can be seen in Table 18.
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Table 18: Elastic net model, α = 0.5

Variable name Coe�cient Variable name Coe�cient

Intercept -4.4329 grade.A -0.1023
int rate 0.0729 grade.C 0.0780
installment -0.0001 grade.D 0.0547
issue d 0.0002 sub grade.A1 -0.0599
dti 0.0119 sub grade.A3 -0.0425
delinq 2yrs 0.0106 sub grade.C3 0.0025
inq last 6mths 0.0399 sub grade.D1 0.0121
total rev hi lim -0.0000 sub grade.D2 0.0189
acc open past 24mths 0.0415 emp length.0 0.2804
bc open to buy -0.0000 emp length.10..years -0.0130
mo sin old rev tl op -0.0004 home own MORTGAGE -0.0222
mo sin rcnt tl -0.0025 home own RENT 0.1172
mort acc -0.0112 verif. status Source 0.0236
num rev tl bal gt 0 0.0058 purpose.credit card -0.0337
num tl op past 12m 0.0231 purpose.medical 0.0177
percent bc gt 75 0.0005 purpose.small business 0.3593
tot hi cred lim -0.0000 mths sin last delinq...1.12. 0.0355
total il high credit limit -0.0000 mths sin last record.3.4.years -0.0241
�co average -0.0031 mths sin recent bc...4.years -0.0905
monthly debt rate 3.9950 mths sin recent bc dlq.3.4.years -0.0351
- - mths sin rcnt revol delq.3.4.yrs -0.0104

The variables left in the model with α = 0.5, λ = 0.0041.

In Figure 12 the results from the cross-validation when setting alpha to 0.5 and using
di�erent values of λ are shown. The left dotted vertical line represents the λ value that
gives the best AUC. The second line indicates the largest λ within one standard error
from the optimal λ. The numbering along the top of the plot shows how many nonzero
values are present in the model at the given level of λ.

We see there is a signi�cant decrease in the number of variables present between the
two suggested values of λ. The reduction in the AUC is sparse, so in the interest of a
parsimonious model, the lambda value one standard error away from the minimummight
be preferred. In addition to this we see that we are able to reduce the number of variables
in the model all the way down to 1, while still retaining an AUC of approximately 0.65.
This variable is interest rate, and as expected is closely related to the probability of
default. Figure 13 shows that there is a near-linear relationship between the interest
rate and the rate of defaults in the training set. Since this single variable model performs
very well, we will include this as a baseline model for which we can compare the other
techniques implemented.
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Figure 12: test set AUC for a range of λ values, given α = 0.5

Vertical dotted lines indicates the λ-value that gives the highest AUC and the largest λ-value within one

standard error of the optimal value. Number of remaining variables at the di�erent levels of λ is noted

at the top of the plot.

Figure 13: Rate of default for given interest rates
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4.1.2 Xgboost

Table 13 in Section 3.2.2 shows the di�erent hyperparameters available for tuning when
implementing the extreme gradient boosting algorithm in MLR. Other parameters exist,
but these are the ones that are optimized for in this thesis. Table 19 summarizes the
results of the model optimizations, and the parameter space searched through for each
of the hyperparameters. The search path and results from the initial search are found
in Table 38 in the Appendix.

Table 19: Hyperparameter settings for the xgboost model

Parameter name Search Space Tune result Test set AUC

Initial search

Max depth 2 to 6 5
Nrounds 100 to 500 234
Eta 0.01 to 0.99 0.0457
Gamma 0.01 to 0.3 0.2997
Min child weight 0.5 to 10 2.7110
Subsample 0.5 to 1 0.6120
Colsample bytree 0.5 to 1 0.8111 0.68886
2-level tree

Max depth 2 to 2 2
Nrounds 200 to 700 644
Eta 0.03 to 0.6 0.1791
Gamma 0.275 to 0.35 0.3001
Min child weight 2.5 to 3.25 3.1499
Subsample 0.5 to 0.9 0.6083
Colsample bytree 0.7 to 0.9 0.7123 0.68940
5-level tree

Max depth 5 to 5 5L
Nrounds 200 to 700 513
Eta 0.01 to 0.99 0.0517
Gamma 0.01 to 0.3 0.3202
Min child weight 0.5 to 10 3.1437
Subsample 0.5 to 1 0.6291
Colsample bytree 0.5 to 1 0.7165 0.68950

The hyperparameters and �nal tuning results

The �rst random search was done for 50 combinations within the parameter space listed
for each of the parameters in Table 19. The hyperparameter settings that performed
best are listed under initial search in the table.

Figure 14 displays the distribution of the test results from the initial tuning, divided
between the di�erent levels of tree depth. It is clear that the trees with only two levels
are far more reliable in their performance. This is consistent with the theory for boosting
models, where low complexity models often yield more reliable results. High complexity
models on the other hand can provide more accurate results, but are susceptible to more
variability. We see that the settings that perform the best is a setup with max depth
being set to 5, but there is a lot of variability within the 5-level models.
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To see if we can optimize further, secondary searches for models with max depth = 2
and models with max depth = 5 are done. Random searches for 50 iterations in the
region close to the previously found hyperparameters gives the results listed in Table 19
under 2-level tree and 5-level tree.

Using random searches is admittedly not the most optimal approach, since there are
interaction e�ects between the parameters. We would ideally do a grid search for the op-
timal settings, but with so many parameters the number of combinations would quickly
lead to unreasonable computation time. The method applied does however give us an
indication of how well the boosting technique works on our dataset.

Figure 14: Test AUC for the initial random search, sorted by depth of the

trees.

Boxplots of the initial tuning settings. The numbers at the top indicate the best results within the group.

The results obtained when using these models to make predictions on the holdout set
is found in Section 4.2.2.

4.1.3 Random forests

Table 20 shows the di�erent hyperparameters we tune in our implementations of random
forests. The results of the initial search and the parameter space for each parameter is
shown along with the result for the subsequent retuning done on a smaller model and
the �nal large model.

What we attempt to achieve when tuning the hyperparameters is to obtain the optimal
compromise between low correlation and reasonable strength of the trees. This is known
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Table 20: Hyperparameter settings for the random forests

Parameter name Search Space Tune result Test set AUC

Default parameters

Mtry - 12
Num.trees - 500
Min.node.size - 1
Sample.fraction - 0.632 0.67679
Small Model

Mtry 1 to 25 4
Num.trees 250 250
Min.node.size 1 to 500 84
Sample.fraction 0.07 0.07 0.67874
Final model

Mtry 1 to 25 4
Num.trees 700 to 2000 1000
Min.node.size 1 to 500 84
Sample.fraction 0.35 to 0.35 0.35 0.68263

The hyperparameters and �nal tuning results

as the bias-variance trade-o�, and can be controlled for by adjusting the hyperparame-
ters mtry, sample fraction and minimum node size.

The default value for mtry is usually set to
√
p where p is the number of independent

variables in the model. This is usually a reasonable value, but it can sometimes be
improved depending on the dataset used. It depends on the real number of relevant
predictors in the dataset. If there are many predictors with a large in�uence on the de-
pendent variable, then mtry should be set small so that not only the strongest predictors
are chosen in the splits. On the other hand, if there are few in�uential predictors then
mtry should be set to a large number so that the trees can �nd the relevant predictors.
For the dataset used in this thesis

√
p ≈ 12, so we will do a search in the region around

12 to look for the optimal value for mtry.

The sample fraction decides how many sample observations are drawn to build each
tree. Decreasing the sample size leads to more diverse trees which in turn leads to less
correlation when aggregating the trees. Larger sample size leads to more accuracy and
higher correlation, so again there is a trade-o� here between bias-variance.

Martínez-Muñoz and Suárez [2010] claim that there is no substantial performance di�er-
ence between sampling with replacement or without replacement when the sample size
parameter is set optimally. However, Janitza et al. [2016] �nds that in cases where there
are categorical variables with varying number of categories, sampling with replacement
might induce a slight variable selection bias. Since we have categorical variables in our
dataset, we use sampling without replacement as our sampling scheme.

The minimum node size de�nes the minimum number of observations required in a
terminal node in the trees, and it is by default set to 1 for classi�cation tasks. Probst
et al. [2018b] �nds that computation time decreases approximately exponentially when
increasing minimum node size. For large samples, they �nd that it might be advanta-
geous to set this parameter to a value higher than the default as it decreases the runtime
substantially, often without loss of prediction performance.

54



The number of trees grown and consequently aggregated obviously has a large impact
on the performance of the model. Probst and Boulesteix [2017] proves theoretically that
more trees are always better. In the same paper they show that the biggest performance
gain is achieved when growing the �rst 100 trees. The computation time increases
linearly with the number of trees.

Fernández-Delgado et al. [2014] �nds that the performance increases obtainable by tun-
ing the hyperparameters of a random forests model is far less than other machine learn-
ing algorithms. Nevertheless, when testing on 38 di�erent datasets, they �nd a small
performance gain from tuning compared to using the default hyperparameters. They
�nd that tuning the parameter mtry gives the biggest average improvement, followed
by sample size.

Based on the above we don't expect to get a large improvement in performance from
tuning the various hyperparameters, but attempts are made to improve upon the default
hyperparameter settings. We start our search for the optimal settings by �rst tuning
mtry and minimum node size while keeping the number of trees and fraction of samples
used low. The idea is that we can speed up the learning process by �rst optimizing
using a smaller model, and then later on train a model on a larger number of trees
using a larger fraction of the available observations for each tree. We expect to see an
improvement in performance when increasing the size of the model.

Figure 15: Tuning results for mtry and minimum node size

Test set AUC for combinations of mtry and min node size.

First we train a model using the default values as implemented in the Ranger package in
R. Since the expected improvement from tuning is fairly low in random forests models,
this default model is used as a baseline model to compare to. The search space and
tuning results can be found in Table 20.

To search for optimal hyperparameters, we continue by performing a grid search for the
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optimal settings of mtry and minimal node size. We set the sample fraction size to be
0.07 and number of trees to be 250. This is a large reduction when compared to the
default settings, but it will greatly improve the speed of tuning the models.

The initial results can be found in Figure 15 and in Table 20 labeled small model.

Figure 15 shows that the model performs best when the available variables for each
split is set to 4. We also notice a distinct increase in performance from higher values of
minimum node size. An additional tuning is done with minimum node size set to 40,
for values of mtry in the range 1 to 8. This second search con�rms that a mtry value of
4 is the optimal value.

Following these results, subsequent tuning is done for the optimal value ofminimum node

size. We search in the range 20 to 500, since there was a trend of increased performance
when node size was increased. The results from this tuning of node size can be found
in Figure 16. From the Figure the best performance is found when minimum node size

is set to be 84.

Using the above results, we train the model using a larger sample fraction and a larger
number of trees. This �nal model has the best performance found so far, as shown in
Table 20.

Figure 16: Tuning minimum node size.

56



4.1.4 K-nearest neighbors

To �nd the optimal hyperparameter settings for our K-nearest neighbors model (KNN),
we use the fastknn package in R. This package has an integrated cross-validation func-
tion, that allows for easy tuning to �nd the optimal value for k. The other hyperparam-
eters we tune for are normalization strategy and classi�cation method, as mentioned in
Table 15.

We will tune the hyperparameters using a smaller subset of the data. This is to reduce
the computational e�ort required to �nd the best parameters. The KNN-algorithm
does not train a model in the same way that random forests or boosting techniques do.
Instead the training is based around "memorizing" the di�erent observations and the
distance between each. Since the tuning is rather fast when the sample size is reduced,
we are able to do a thorough search for the optimal parameter settings. We do the
initial tuning on a subset consisting of 15 % of the training set. When we �t the �nal
model we will increase the fraction to 40 % of the training set, and similarly make the
prediction on 40 % of the holdout data. In Table 21 and Figure 17 we see the search
space and tuning results for the di�erent normalization strategies and a range of values
for k.

Table 21: Test AUC results for the various normalization and

voting methods

Model Optimal K Test set AUC

Normalization technique = NULL

Classi�cation method = vote 1800 0.6040
Classi�cation method = dist 2000 0.6061

Normalization technique = minmax

Classi�cation method = vote 1400 0.6599
Classi�cation method = dist 1400 0.6596

Normalization technique = maxabs

Classi�cation method = vote 1400 0.6585
Classi�cation method = dist 1000 0.6597

Normalization technique = robust

Classi�cation method = vote 4000 0.6653
Classi�cation method = dist 4000 0.6658

Normalization technique = std

Classi�cation method = vote 3500 0.6740
Classi�cation method = dist 3500 0.6746
KNN �nal model 3500 0.6740

The tuning results for the di�erent normalization techniques for values of

k in the range 1 to 4000.
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Figure 17 shows that the standardize normalization technique gives the best results for
this dataset. We also see from Table 21 that the weighted models perform better for all
the models, except the minmax normalized model. Based on these �ndings, we optimize
the model using standardizing normalization further by �tting it on a larger dataset,
while also �ne-tuning the number of neighbors to include. The �nal results are shown
in Table 21 under normalization technique = std, labeled KNN �nal model.

Figure 17: Test AUC results for combinations of k and normalization

techniques

Left plot: The tuning results for k in the range 1 to 4000.

Right: Same tuning results as above, shown for values of k in the range 1 to 65.

Vertical dotted lines signify the actual k-values tuned for.
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4.2 Accuracy metrics

Several di�erent metrics exist for measuring the success of a classi�cation algorithm.
Following is a reference for some of the most used accuracy metrics, and the formulas
for calculating each. True positive is a measure of how many of the predictions that were
made for the positive class were really positive observations. In this case, we are looking
at how many of the observations that our models predict as default were really loans
that defaulted. Similar to the true positive classi�cation, the true negative measures
how many of the observations that were predicted as non-default, were actually non-
default loans. The false positives are a measure of how many of the loans the model
erroneously predicted to be default that were actually non-default. Finally, the false
negative is a measure of how many of the defaulted loans that were erroneously labeled
non-default.

Confusion matrix

The confusion matrix is a useful tool for collecting and measuring classi�cation accuracy
statistics. An example is found in Table 22. The rows are labeled with the true values,
while the columns hold the predictions made for each class of the outcome. In the table
we then get a measure of how many true positive, true negative, false positive and false
negative observations the �tted model predicted. The confusion matrix is also the �rst
step in calculating several other metrics, such as speci�city, sensitivity, precision, recall
and the AUC metric which are all presented below.

Table 22: Confusion matrix example

PREDICTED

Default Non-Default

TRUTH
Default True positive False negative

Non-Default False positive True negative

The models �t in this thesis output a probability for each observation in the range 0
to 1. The way to obtain the predicted class labels is then done by setting a threshold
for how large the probability of an observation belonging to a class needs to be to be
labeled as that class. Shifting the threshold can drastically change the predicted output
of the classes.

Essentially, the threshold selection is a trade-o� where a toleration level is set for the
number of misclassi�cations of a given class. If we set the threshold very low, then all
observations will be classi�ed as default. This will give a near-perfect accuracy on the
defaulted loans, but we would get close to zero correct non-default predictions, which
would make the model useless. Similarly, we could set the threshold too high, and end
up classifying all loans as Non-Default. Figure 18 shows how many loans are accepted
at di�erent threshold settings. In this case the probability of default needs to be lower
than the threshold for the loan to be classi�ed as non-default.
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Figure 18: Number of loans accepted at di�erent thresholds

A representation of how many loans are accepted and declined at various thresholds.

In the case of default prediction, it is far costlier to misclassify defaults than to erro-
neously classify a non-default loan as default. An incorrectly classi�ed default leads to
a loss of money, while a misclassi�ed non-default leads to a loss of potential income.
Seeing as we are looking to optimize a portfolio of loans and maximize pro�ts, we are
better o� when keeping the misclassi�ed defaults low while still accepting a fair amount
of loans for investment. This means that the threshold for classifying a loan as default
will have to be quite low.

If we are very strict and only allow 5 % of actual defaulted loans to be classi�ed as
non-default in the test set, meaning we require the true positive rate to be 0.95, we
would decline to invest in a lot of loans that would not actually default. On the other
end, if we require a lower rate of defaults to be accurately predicted we might end up
investing in too many loans that default. In Table 23 we see the classi�cation results
when setting the threshold to obtain a given rate of true positive predictions.

Table 23: Loan acceptance at di�erent threshold values

TPR Loans accepted Bad loans accepted Loans declined Good loans declined

0.95 13,224 548 59,275 49,451
0.85 26,369 1,590 46,130 37,348
0.70 39,270 3,080 33,229 25,937
0.50 52,264 5,144 20,235 15,007
0.25 64,039 7,748 8,460 5,836

Number of loans accepted and declined at various levels of true positive rate.

As Table 23 shows, adjusting the true positive rate requirement has a huge impact on
how many loans will be accepted by our models. Making use of this setting we can get
a decent basis for comparing the di�erent models if we set some restrictions on how
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many of the defaults we require to be accurately classi�ed. We decide to use a true
positive rate of approximately 0.85 for all the models, so that we get even grounds for
comparison. At this setting we should have a healthy amount of loans accepted, while
keeping the rate of default loans accepted fairly low.

Following is a brief introduction to the di�erent accuracy metrics presented in the Sec-
tions for each individual model.

Accuracy

Accuracy is the ratio of correct classi�cations over all classi�cations. The formula to
calculate it is:

Accuracy =
True positive + True negative

All observations
(4.2.1)

In the case of the lending club data set, this measure is not very useful since the dataset
is quite unbalanced. The accuracy measure doesn't discriminate between correctly clas-
si�ed defaults or non-defaults. As such, any model that predicts that all loans are
non-default will obtain an accuracy of approximately 85 %. An accuracy higher than
that is hard to obtain if we value the cost of misclassi�cations di�erently, which is the
case for default prediction.

Sensitivity

The sensitivity measure is the ratio of the number of correct positive examples to the
number classi�ed as positive. It is also called the true positive rate or recall, and it is
calculated by:

Sensitivity =
True positive

True positive + False negative
(4.2.2)

It is a useful measure for cases where there is an unbalanced dataset, since it allows us
to measure how well the model performs on the positive class in the dataset.

Speci�city

Speci�city measures the ratio of correct negative examples to the number classi�ed as
negative. Also known as the true negative rate, it is calculated by:

Speci�city =
True negative

True negative + False positive
(4.2.3)
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AUC

The Area under the receiver operator characteristics curve (AUROC, referred to as
the AUC from here on out) is a measure that can be used when we have a binary
classi�cation problem like in this thesis. The ROC-curve is a function of the sensitivity
(or true positive rate) on the y-axis, and false positive rate (1-speci�city) on the x-axis
for a range of di�erent thresholds.

In Figure 19 we see an example of how the AUC plot looks. The dashed line in the
middle represents a classi�er that splits the observations into two equal classes. If a
model performs better than random chance, it would have a ROC-curve that would
tend towards the upper left corner of the plot. A perfect classi�er would show as a
straight line from (0,0) to (0,1) to (1,1), indicating that it obtains complete separation
between the classes.

Figure 19: Example AUC plot

F1 measure

The F1 measure is the weighted average of the recall and precision measures. It is
calculated by:

F1 = 2 · precision · recall
precision + recall

(4.2.4)

This can be useful because of the relation between the precision and recall statistic.
Precision is the ratio of true positives over all predicted positives. Recall is the ratio of
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all positives over all actual positive observations. Since these measures take false pos-
itives and false negatives into account, the F1 measure can be a useful measure when
the distribution between the classes is unequal. The score one can obtain from the
f-measure ranges from 0 to 1, where 1 is the optimal score.

IRR as a pro�t measure

From the payment history dataset we extract the cash�ow for each individual loan. With
this knowledge of what payments were made, we are able to calculate the internal rate
of return (IRR) for each loan to get a tangible representation of which loans are more
pro�table. This can then be used to compare which model selects the most pro�table
loan portfolio by calculating the overall IRR given a situation where we invest the same
amount in each of the accepted loans.

IRR is a well-known �nancial formula that may be fairly easily computed for investments
that have an initial cash out�ow followed by several cash in�ows. To �nd the IRR we
�rst need to calculate the net present value (NPV) of the loans.

The NPV is found by

NPV =
T∑
t=1

Ct
(1 + r)t

− C0, (4.2.5)

where Ct is the cash�ow during the period t, C0 is the initial cash out�ow, r is the
discount rate and T is the total number of payments.

The NPV is a measure of the value of an investment when the time-cost is considered. It
builds on the idea that future money has less value than presently available funds, since
the money today can be invested to increase its value. It is a useful way to compare
di�erent investment opportunities when you know or are able to accurately estimate
the future cash�ow. In the case of the LendingClub data, we have access to the exact
cash�ow from the payment history dataset. Based on this we can calculate the NPV
and use a root function to �nd the IRR, since the IRR is the discount rate required for
the NPV to be equal to zero. Generally speaking, the higher the IRR of a loan is, the
more desirable the project is to invest in.

Figure 20 shows the distribution of the annualized internal rate of return for all the
loans in the dataset. We see that all non-default loans have a positive IRR along with
some of the defaulted loans. Almost 10 % of the defaulted loans has a positive IRR,
indicating that they are pro�table even though they eventually default.
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Figure 20: The distribution of annualized internal rate of return in the

loan portfolio.

Table 24: Summary statistics - IRR

Minimum Q1 Median Mean Q3 Maximum

-1.00 0.08 0.12 0.05 0.15 0.58

The summary statistics for the IRR variable.

From the summary statistics, we see that the highest IRR is 0.58. This is a loan that is
fully repaid with the �rst down payment. Similar themes hold true for the other loans
that return the highest IRR. They are all paid back early, leading to good returns for
the lender. On the other end of the scale, we see that there are quite a few loans that
have an IRR of -1. All of these are loans that defaulted before the �rst repayment was
made. The mean is 0.05, which is considerably skewed towards the negative due to the
large number of loans that default prior to the �rst repayment being made. In fact,
the mean is smaller than nearly 87 % of the observations. The results from using this
measure for the various models can be found in Section 4.3.2.
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4.2.1 Elastic net

Table 25 shows the accuracy metrics for the two elastic net models and the univariate
interest rate model. The di�erence in the AUC between the two elastic net models
is now lower than it was during training. Both models achieve a better AUC on the
holdout set than they did on the training data. Since the model with α = 0.5 also
implemented a stricter degree of variable selection, it is the preferred model out of the
two.

Table 25: Accuracy statistics - elastic net

Model Accuracy Sensitivity Speci�city AUC f1

Alpha = 0.25 0.46035 0.84996 0.39475 0.69500 0.31122
Alpha = 0.50 0.45879 0.84914 0.39306 0.69495 0.31141
Int rate univar 0.43550 0.85560 0.36470 0.67760 0.30400

Accuracy results on the holdout set for the chosen parameter settings.

In Figure 21 we see the ROC-curves for the two elastic net models, and the univariate
model built using interest rate as the only predictor. The two elastic net models are
very close, while the univariate model performs a bit worse.

Figure 21: AUC plot for the two elastic net models and the univariate

interest rate model.
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4.2.2 Xgboost

Similar to the other models, we set the threshold for correct classi�cation of defaults to
be 85 %, so that we get equal grounds for comparison between the models. Using the
parameter settings listed in Table 19 we get the following accuracy statistics.

Table 26: Accuracy statistics - xgboost

Model Accuracy Sensitivity Speci�city AUC f1

Initial tuning 0.46284 0.85078 0.39752 0.69965 0.31343
2-level trees 0.46276 0.85050 0.39747 0.69795 0.31333
5-level trees 0.46947 0.84978 0.40543 0.70027 0.31585

Xgboost accuracy results on the holdout set for the three chosen parameter

settings.

In Figure 22 we see that the ROC-curves for the three models are almost identical.
There is also very little di�erence between the models in the other accuracy metrics
calculated.

Figure 22: AUC for the three xgboost models

Looking at the variable importance measure for the initial tuning model, we can get a
sense of which of the variables are providing the most information for predicting the
outcome. Interest rate is clearly the variable that has the largest impact on the model.
For all three extreme gradient boosting models �t, the �ve most important variables
were the same. Other variables with large impacts are the monthly debt rate, annual
income, debt to income rate and whether the loan is grade A or not.
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Figure 23: Variable importance measure for the 5-level xgboost model.

A measure of how often each variable was chosen for a split in a tree.

4.2.3 Random forests

For the random forests algorithm we test the results for each of the three models on
the holdout set. The accuracy statistics for each model can be found in Table 27. The
output is fairly consistent with the results obtained on the test sets during the cross-
validation. We see that when comparing the default settings with the small model and
the �nal model, there is an increase of the AUC of ≈ 0.006 and 0.009, respectively. This
is in line with what was found in Probst et al. [2018a]. In the cited study they found
an average increase in AUC from tuning of 0.012 when testing on 38 di�erent datasets,
so there might still be room for improvement in our model.

Table 27: Accuracy statistics - random forests

Model Accuracy Sensitivity Speci�city AUC f1

Default model 0.44554 0.85050 0.37735 0.68659 0.30658
Small model 0.45355 0.85050 0.38671 0.69244 0.30969
Final model 0.46002 0.85050 0.39427 0.69571 0.31224

Random forests accuracy results on the holdout set for the three chosen pa-

rameter settings.
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Figure 24: Variable importance measure for the �nal random forests model

A measure of how often each variable is chosen for the split.

Figure ?? shows the ten variables that contribute most in the �nal model. The four
most important variables; interest rate, monthly debt rate, annual income and dti are
the same as the four most important variables found by the xgboost model in Section
4.2.2.

The AUC-plot for the random forests models is found in Figure 25. The models are
very close to each other, but the �nal model has the best performance.

Figure 25: AUC for the three random forests models
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4.2.4 K nearest neighbors

Table 21 shows that the hyperparameter settings for KNN that gave the best results
is the model using the standardize normalization technique. We retuned the model on
a larger subset of the data before testing the prediction accuracy on the holdout data
set. The accuracy statistics obtained when testing the model is listed in Table 28. The
results are similar to what was found on the test sets during the �tting process.

Table 28: Accuracy statistics - KNN

Model Accuracy Sensitivity Speci�city AUC f1

Final model 0.4468 0.8500 0.3782 0.6808 0.3088

KNN accuracy results on the holdout set for the parameter settings found

previously.

Figure 26: AUC for the �nal KNN model

The KNN technique is a non-parametric learning method that gives us no indication of
which variables are important for the accuracy of the model.
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4.3 Comparison of results

In this Section the di�erent models will be compared. First we look at the accuracy
statistics produced by each model. This is followed up by testing if there is signi�cant
di�erence between the better performing models using McNemar tests. Finally, using
the internal rate of return variable, we compare the pro�tability of the models for various
levels of investment.

Table 29: Combined accuracy metrics

Model Accuracy Sensitivity Speci�city AUC f1

Elastic net

Alpha = 0.25 0.46035 0.84996 0.39475 0.69500 0.31122
Alpha = 0.50 0.45879 0.84914 0.39306 0.69495 0.31141
Interest rate 0.43550 0.85560 0.36470 0.67760 0.30403
Xgboost

Initial tuning 0.46284 0.85078 0.39752 0.69965 0.31343
2-level trees 0.46276 0.85050 0.39747 0.69795 0.31333
5-level trees 0.46947 0.84978 0.40543 0.70027 0.31585
Random forests

Default model 0.44554 0.85050 0.37735 0.68659 0.30658
Small model 0.45355 0.85050 0.38671 0.69244 0.30969
Final model 0.46002 0.85050 0.39427 0.69571 0.31224
KNN

Final model 0.44680 0.85000 0.37820 0.68080 0.30880

The accuracy metrics for the di�erent models.

Table 29 shows the accuracy statistics for the di�erent models. Table 40 in the Appendix
holds the results for the models on the dataset where the outliers have been removed. We
�nd no particular improvement for any of the models. We did not perform as rigorous
tuning of hyperparameters on the dataset of the outliers, so there is a possibility that it
could be improved further. However, as the models currently performs worse than the
full dataset, we conclude that the original model settings are fairly robust to outlying
observations and will not pursue the alternative set any further.

We tuned all the models to get a sensitivity of approximately 0.85. This was done to
get even grounds for comparison of the di�erent models. Some of the models deviate
slightly from 0.85, since it is di�cult and sometimes impossible to �nd a threshold that
gives the desired split. Looking at the accuracy, we see that all the models misclassify
more than half the observations. This is expected since we de�ne the default predictions
to be more important than the non-default. As a result, there are many loans that are
erroneously classi�ed as default. This is re�ected in the speci�city in the table. The
speci�city is (in our situation) a measure of how many of the loans classi�ed as non-
default that are really non-default. We see that there is not a lot of di�erence in the
results for the various models. Most of the models produce results that lie in the range
between 0.39 and 0.40. The small discrepancies in the sensitivity between the models
will also resonate in the speci�city rating. The model that has the highest speci�city is
the xgboost model with 5 levels in the trees.

When we look at the AUC-score we see similar results as we did for the speci�city. The
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performance of the various models is fairly close, but we see that the xgboost models
are best overall. The xgboost model with max depth of 5 has the largest AUC on
the holdout set. Figure 27 gives a graphical representation of the AUC for the various
models.

Figure 27: Comparison of the AUC for all models

Looking at the F1 statistic we see similar results as we did for the AUC. The xgboost
models obtain the best results, closely followed by the random forests models and the
elastic net models. Figure 28 shows the di�erences graphically.

Figure 28: The F1 scores for the di�erent models

4.3.1 McNemar tests

Since the models get results that are fairly close to one another we would like to apply
a test to see if there is signi�cant di�erence between the better models. We can do this
by using McNemar test, �rst introduced in McNemar [1947]. The McNemar test is a
non-parametric statistical test for paired comparisons that can be used to compare the
performance of two classi�cation models.

It compares the predictions of two models, by building a 2x2 contingency table that
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shows which observations both models classi�ed correctly, which either model misclassi-
�ed and the other got correct, and which observations both models misclassi�ed. Table
30 illustrates the setup of the contingency table.

Table 30: Example McNemar

contingency table

Model 2

Correct Wrong

Model 1
Correct A B
Wrong C D

An example of how the McNemar contin-

gency table is set up.

Based on these numbers, we use a chi-squared test to see if there is signi�cant di�erence
between B and C in Table 30. From our models, the xgboost models were the best
performing. The model with max depth of 5 gave the highest AUC. Of the other
techniques, the �nal random forests model had the highest AUC followed closely by the
elastic net models. We will see if there is a signi�cant di�erence between the 5 level
xgboost model, the �nal random forests model, and the elastic net model with alpha
set to 0.5.

Table 31: McNemar contingency table

- xgboost vs random forests

Random forests

Correct Wrong

Xgboost
Correct 31,751 3,374
Wrong 4,095 37,134

Prediction overlap between xgboost 5-level

and random forests �nal models.

From Table 31 we see that there is a fairly signi�cant amount of observations that one
model predicts correct while the other misclassi�es. Testing for signi�cant di�erence
between the two values we get a p-value signi�cantly below 0.01. Similar results are
obtained for the other comparisons, which indicates that the performance of the models
is signi�cantly di�erent. The contingency table for the other comparisons can be found
in the Appendix.

4.3.2 IRR as pro�tability measure

To utilize the IRR as a pro�tability measure we need to consider what classi�cation the
model gives each loan. Based on the loans that each model predicts to be non-default,
we can calculate the total pro�tability of each model.

We consider each loan classi�ed as non-default as a loan that will be invested in. This
will give a measure of the pro�tability of a classi�er over the complete dataset. This
might not realistically re�ect an investment situation though, since the total number of
loans invested in will be very large.
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A second approach sets a maximum number of total loans each model will invest in to
re�ect a situation where the lender has limited funds to invest. Table 32 displays the
results for 500, 1,000, 5,000 and 10,000 loans accepted, so that we get an overview of
the pro�tability of the di�erent models at various settings.

The loans are selected based on their predicted probability of default given by each
model. In a real-world situation we might be better o� by setting a threshold for which
loans we will accept, but for comparison of models this approach is di�cult since the
given probability for each loan varies by a lot in the di�erent models.

Table 32: Pro�t measures

Model Pro�t Total loans 500 1,000 5,000 10,000

Elastic net, α = 0.25 5.20 27,298 5.81 5.70 5.61 5.48
Elastic net, α = 0.5 5.07 27,173 6.22 6.13 5.53 5.59
Univariate model 4.74 13,462 5.04 5.27 4.93 4.63
Rf-default 5.20 26,226 5.77 5.93 5.70 5.56
Rf-�nal 5.09 27,599 5.83 5.92 5.85 5.67
Rf-small 5.04 27,113 5.77 5.81 5.75 5.49
Xgboost-2level 5.39 27,507 5.92 5.99 5.72 5.74

Xgboost-5level 5.56 28,495 5.90 6.07 5.82 5.68
Xgboost-Initial 5.29 27,828 5.90 6.08 5.74 5.66
Flat investment 2.78 76,354 - - -

Pro�ts for each model for di�erent numbers of accepted loans.

Table 32 shows that the model that returns the largest pro�t changes based on how
many loans are accepted and invested in. We also see that the �at investment, where
all loans are accepted gives an IRR of 2.78 %. All the other models improve upon this
result. For the full holdout-set the 5 level xgboost model returns the largest IRR. For
lower volume of investment the elastic net model with reduced variable set gives good
returns, while the �nal random forests model gives the best return when we invest in
5,000 loans. Overall the 5 level xgboost model gives the largest returns.
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Chapter 5

Summary and conclusion

In this thesis peer-to-peer banking and credit-scoring has been explored. Here, the main
�ndings will be summarized and potential shortcomings and directions for future studies
are suggested.

5.1 Summary

In the �rst part of this thesis the datasets are presented. The variables are explained, and
changes are made where necessary to make the variables usable in the model building
stage. Some variables contain data gathered after the loan has been issued. These
are removed to have a dataset that re�ects the investment situation a lender would
experience when searching for loans to invest in. Missing observations are removed
from the dataset and decisions are made regarding what loans to keep. We trim the
dataset so that we only keep loans that have reached maturity. In addition, we include
only 36-month loans so that we can do an intertemporal split of the data to help protect
the model against seasonal cycles that might a�ect the stability of the models.

Exploratory data analysis is performed, and we �nd that some variables are highly
colinear. These are removed to simplify the modeling phase, even though some of
the learning techniques are capable of handling multicollinearity. The payment history
dataset is used to extract the individual loan payments for each loan. These are then
used to calculate the Internal rate of return which is later implemented as a pro�tability
measure to be used when comparing the di�erent models.

In Chapter 3 the di�erent models are implemented. First binary regression is presented
before the extension into generalized linear models and elastic net models are shown.
After that we explore the decision tree models, speci�cally boosting using extreme gra-
dient boosting and bagging with random forests models. Finally, a K nearest neighbors
model is implemented.

The models are tuned to �nd the optimal settings for the hyperparameters. For the
elastic net we use a grid search to �nd the optimal value for alpha and lambda. We
�nd that we obtain the best results with alpha set to 0.25, which reduces the variable
set to 118 variables. A secondary model is also found where the lasso regularization
is stronger. This leads to a model with slightly lower performance with regards to the
AUC, but it reduces the number of variables included in the model to 40.
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For the extreme gradient boosting models, we use a random search to �nd the best
hyperparameter settings. The �rst search indicates that models with a maximum depth
of 5 gives the best results, but they also far more varied. More consistent and nearly as
good are models with max depth of 2. This leads us to do extended searches for both
versions. We �nd the highest AUC in the 5-level model, although the 2-level model is
very close.

Continuing with decision trees we build random forests models. We �nd the optimal
parameters by doing a grid search on a smaller subset of the loans. This gives us clear
indication that using 4 variables per split in the tree gives the best results. Following
some additional tuning to �nd the optimal number of observations in the terminal nodes
we land on a �nal model that obtains a decent AUC score.

When training the K nearest neighbors algorithm we use a smaller subset of the data
to �nd the optimal number of neighboring observations to include when classifying new
data. In addition to tuning for k, we tested various settings for normalization of the
data and two di�erent voting techniques to decide what classi�cation to give the target
observation. We found that the best normalization technique is one that standardizes
the data by removing the mean and scaling each observation to the unit variance. The
best voting technique we found was using the inverse of the distance between the target
and the training data to weigh the importance of the training data. The KNN model
did not reach the same AUC as the other models, but it performed fairly well for being
such a simple technique.

Finally, in Chapter 4 a comparison is made between the di�erent models. We look at
the accuracy statistics for all the models and �nd that the extreme gradient boosting
models does the best overall. They obtain the highest AUC and also does comparably
well when comparing the F1 measure. The di�erence between the performance of the
elastic net, random forests and boosting models is fairly small, so a test to verify that
the di�erence is signi�cant is performed. The test concludes that the best performing
models from xgboost, random forests and elastic net are all signi�cantly di�erent to each
other. While the xgboost method obtains the best results, the models can be di�cult
to understand. A case can thus be made for the elastic net model. Here we get a model
that is easier to understand, with readily interpretable variables and coe�cients. The
performance is also very close to that of the other methods, so it might be preferable
to use in practice.

In addition to the accuracy statistics, we calculate the internal rate of return one would
obtain if an investment was made in the loans selected from each model. Here the results
are more varied. If one would invest in all the loans the model predicts as non-default,
the largest return would be from the 5-level boosting model. With more stringent
restrictions however, we see that the elastic net model with lasso regularization does
the best. If investing in the 5,000 loans deemed safest by each model, we see that the
random forests model gives the best results.

When we compare the pro�tability of each model to the baseline �at investment in all
the loans, we see that all the suggested models return a larger pro�t. We also see that
a univariate model using only the interest rate set by LendingClub gives decent results
for both accuracy and pro�tability.
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5.2 Shortcomings

While we are able to �nd models that have decent prediction accuracy and give larger
returns on pro�t than the baseline model, the increase in performance is rather small.
Since the univariate interest rate model performs comparably well, it indicates that the
credit scoring done by LendingClub is fairly accurate. The interest rate thus constitutes
a decent indicator of the risk involved with the loan, and the improvements from using
the learning techniques are somewhat limited.

Another issue is the period for which the data is collected. Ideally we would like a larger
sample, so we could use a holdout set that covered a longer period. A longer period
would provide better protection against seasonal e�ects that might a�ect the probabilty
of default. On the other hand, we've seen that LendingClub updates the variable sets,
which might become an issue if using a larger dataset.

When we look at the performance of the models on the training data and the holdout
set, we see that all the models perform better on the holdout set than the training set.
This is odd, and we can't really explain why this would be the case. Special attention
has been made to not include any of the data from the holdout set in the training of
the models to ensure that no information is transferred. We have also made sure that
the results of any predictions are not in�uencing the selection of hyperparameters. All
selection of hyperparameters is done based on the results from the cross-validated test
results on the training set.

5.3 Further research

The analysis done in this thesis may be a good starting point for further research into
peer-to-peer lending and credit scoring in this market. A possible approach could be to
extend the dataset to cover a longer period of time. An extension to the boosting models
implemented here could be to investigate ensemble methods where several models are
combined to produce a �nal prediction. Models of this kind allows us to take advantage
of the strengths of the di�erent modeling techniques. From the result from the McNemar
test we see that there is a lot of observations that one model predicts correctly while the
other model predicts wrong. An ensemble of these learners might be able to improve
on the total performance if these models are applied at di�erent areas of the dataset.

Another approach that could be implemented is a cost-sensitive classifying system. In
this modeling method we give di�erent costs to misclassifying loans. For instance we set
the cost of erroneously classifying a defaulted loan as non-default to be higher than the
converse. Further than that we can set the cost of misclassifying loans that are from a
higher credit grade to be more expensive than loans in lower grades. Since it is known
that the loans in the higher grades are riskier we should be especially certain that they
won't default before we invest in them. This could reduce the overall risk and possibly
improve the performance of the models.
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Appendix A

Tables

A.1 Variable description

Table 33: All available variables

Variable name Variable description Missing

Borrower Assesment
�co range high The upper boundary range the borrower's FICO at loan orig-

ination belongs to
2,213 / 0.1 %

�co range low The lower boundary range the borrower's FICO at loan orig-
ination belongs to

2,213 / 0.1 %

grade LC assigned loan grade - / - %
int rate Interest Rate on the loan - / - %
sub grade LC assigned loan subgrade - / - %

Borrower Characteristics
addr state The state provided by the borrower in the loan application - / - %
annual inc The self-reported annual income provided by the borrower

during registration
- / - %

emp length Employment length in years - / - %
emp title The job title supplied by the Borrower when applying for

the loan
4 / 0 %

home ownership The home ownership status provided by the borrower during
registration or obtained from the credit report

- / - %

veri�cation status Indicates if income was veri�ed by Lending Club - / - %
zip code The �rst 3 numbers of the zip code provided by the borrower 2,214 / 0.1 %

Borrower Indebtedness
dti A ratio calculated using the borrower's total monthly debt

payments on the total debt obligations, excluding mortgage
and the requested LC loan, divided by the borrower's self-
reported monthly income

3,054 / 0.2 %

Credit History
acc open past 24mths Number of trades opened in past 24 months 2,213 / 0.1 %
chargeo� within 12
mths

Number of charge-o�s within 12 months 2,213 / 0.1 %

collections 12 mths ex
med

Number of collections in 12 months excluding medical col-
lections

2,213 / 0.1 %

delinq 2yrs The number of 30+ days past-due incidences of delinquency
in the borrower's credit �le for the past 2 years

2,213 / 0.1 %

inq � Number of personal �nance inquiries 794,938 / 44.1 %
inq last 12m Number of credit inquiries in past 12 months 794,939 / 44.1 %
inq last 6mths The number of inquiries in past 6 months (excluding auto

and mortgage inquiries)
2,214 / 0.1 %

mo sin old il acct Months since oldest bank installment account opened 56,848 / 3.2 %
mo sin old rev tl op Months since oldest revolving account opened 2,293 / 0.1 %

Continued on next page
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Variable name Variable description Missing

mo sin rcnt rev tl op Months since most recent revolving account opened 2,293 / 0.1 %
mo sin rcnt tl Months since most recent account opened 2,292 / 0.1 %
mths since last delinq The number of months since the borrower's last delinquency 897,716 / 49.8 %
mths since last major
derog

Months since most recent 90-day or worse rating 1,311,977 / 72.8
%

mths since last record The number of months since the last public record 1,495,377 / 83 %
mths since rcnt il Months since most recent installment accounts opened 824,611 / 45.8 %
mths since recent bc Months since most recent bankcard account opened 20,542 / 1.1 %
mths since recent bc
dlq

Months since most recent bankcard delinquency 1,359,878 / 75.5
%

mths since recent inq Months since most recent inquiry 196,943 / 10.9 %
mths since recent revol
delinq

Months since most recent revolving delinquency 1,179,601 / 65.5
%

num accts ever 120 pd Number of accounts ever 120 or more days past due 2,292 / 0.1 %
num tl 90g dpd 24m Number of accounts 90 or more days past due in last 24

months
2,292 / 0.1 %

num tl op past 12m Number of accounts opened in past 12 months 2,292 / 0.1 %
open acc 6m Number of open trades in last 6 months 794,939 / 44.1 %
open act il Number of installment accounts opened in past 12 months 794,938 / 44.1 %
open il 12m Number of installment accounts opened in past 24 months 794,938 / 44.1 %
open rv 12m Number of revolving trades opened in past 12 months 794,938 / 44.1 %
open rv 24m Number of revolving trades opened in past 24 months 794,938 / 44.1 %
pct tl nvr dlq Percent of trades never delinquent 2,446 / 0.1 %
pub rec Number of derogatory public records 2,213 / 0.1 %
pub rec bankruptcies Number of public record bankruptcies 2,213 / 0.1 %
tax liens Number of tax liens 2,213 / 0.1 %
tot coll amt Total collection amounts ever owed 2,292 / 0.1 %

Current �nancial characteristics
acc now delinq The number of accounts on which the borrower is now delin-

quent
2,213 / 0.1 %

all util Balance to credit limit on all trades 795,056 / 44.1 %
avg cur bal Average current balance of all accounts 2,332 / 0.1 %
bc open to buy Total open to buy on revolving bankcards 21,728 / 1.2 %
bc util Ratio of total current balance to high credit/credit limit for

all bankcard accounts
22,686 / 1.3 %

delinq amnt The past-due amount owed for the accounts on which the
borrower is now delinquent

2,213 / 0.1 %

il util Ratio of total current balance to high credit/credit limit on
all install acct

934,812 / 51.9 %

max bal bc Maximum current balance owed on all revolving accounts 794,938 / 44.1 %
mort acc Number of mortgage accounts 2,213 / 0.1 %
num actv bc tl Number of currently active bankcard accounts 2,292 / 0.1 %
num actv rev tl Number of currently active revolving trades 2,292 / 0.1 %
num bc sats Number of satisfactory bankcard accounts 2,213 / 0.1 %
num bc tl Number of bankcard accounts 2,292 / 0.1 %
num il tl Number of installment accounts 2,292 / 0.1 %
num op rev tl Number of open revolving accounts 2,292 / 0.1 %
num rev accts Number of revolving accounts 2,293 / 0.1 %
num rev tl bal gt 0 Number of revolving trades with balance >0 2,292 / 0.1 %
num sats Number of satisfactory accounts 2,213 / 0.1 %
num tl 120dpd 2m Number of accounts currently 120 days past due (updated

in past 2 months)
76,755 / 4.3 %

num tl 30dpd Number of accounts currently 30 days past due (updated in
past 2 months)

2,292 / 0.1 %

open acc The number of open credit lines in the borrower's credit �le 2,213 / 0.1 %
open il 24m Number of currently active installment trades 794,938 / 44.1 %
percent bc gt 75 Percentage of all bankcard accounts > 75% of limit 22,168 / 1.2 %
revol bal Total credit revolving balance 2,213 / 0.1 %
revol util Revolving line utilization rate, or the amount of credit the

borrower is using relative to all available revolving credit
3,450 / 0.2 %

tot cur bal Total current balance of all accounts 2,292 / 0.1 %
tot hi cred lim Total high credit/credit limit 2,292 / 0.1 %
total acc The total number of credit lines currently in the borrower's

credit �le
2,213 / 0.1 %

total bal ex mort Total credit balance excluding mortgage 2,213 / 0.1 %
total bal il Total current balance of all installment accounts 794,938 / 44.1 %
total bc limit Total bankcard high credit/credit limit 2,213 / 0.1 %

Continued on next page
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Variable name Variable description Missing

total cu tl Number of �nance trades 794,939 / 44.1 %
total il high credit limit Total installment high credit/credit limit 2,292 / 0.1 %
total rev hi lim Total revolving high credit/credit limit 2,292 / 0.1 %

Dependent variable
loan status Current status of the loan - / - %

Loan characteristics
earliest cr line The month the borrower's earliest reported credit line was

opened
2,213 / 0.1 %

application type Indicates whether the loan is an individual application or a
joint application with two co-borrowers

- / - %

desc Loan description provided by the borrower - / - %
funded amnt The total amount committed to that loan at that point in

time
- / - %

funded amnt inv The total amount committed by investors for that loan at
that point in time

- / - %

id A unique LC assigned ID for the loan listing - / - %
initial list status The initial listing status of the loan. Possible values are �

W, F
- / - %

installment The monthly payment owed by the borrower if the loan orig-
inates

- / - %

issue d The month which the loan was funded - / - %
loan amnt The listed amount of the loan applied for by the borrower.

If at some point in time, the credit department reduces the
loan amount, then it will be re�ected in this value

- / - %

member id A unique LC assigned Id for the borrower member 1,802,029 / 100
%

policy code publicly available policy code=1, new products not publicly
available policy code=2

2,213 / 0.1 %

purpose A category provided by the borrower for the loan request - / - %
pymnt plan Indicates if a payment plan has been put in place for the

loan
- / - %

term The number of payments on the loan. Values are in months
and can be either 36 or 60

- / - %

title The loan title provided by the borrower - / - %
url URL for the LC page with listing data - / - %

Loan performance
collection recovery fee post charge o� collection fee 2,213 / 0.1 %
last credit pull d The most recent month LC pulled credit for this loan 2,286 / 0.1 %
last �co range high The upper boundary range the borrower's last FICO pulled

belongs to
2,213 / 0.1 %

last �co range low The lower boundary range the borrower's last FICO pulled
belongs to

2,213 / 0.1 %

last pymnt amnt Last total payment amount received 2,213 / 0.1 %
last pymnt d Last month payment was received 29,442 / 1.6 %
next pymnt d Next scheduled payment date 839,235 / 46.6 %
out prncp Remaining outstanding principal for total amount funded 2,213 / 0.1 %
out prncp inv Remaining outstanding principal for portion of total amount

funded by investors
2,213 / 0.1 %

recoveries post charge o� gross recovery 2,213 / 0.1 %
total pymnt Payments received to date for total amount funded 2,213 / 0.1 %
total pymnt inv Payments received to date for portion of total amount funded

by investors
2,213 / 0.1 %

total rec int Interest received to date 2,213 / 0.1 %
total rec late fee Late fees received to date 2,213 / 0.1 %
total rec prncp Principal received to date 2,213 / 0.1 %

Secondary applicant
annual inc joint The combined self-reported annual income provided by the

co-borrowers during registration
1,733,976 / 96.2
%

dti joint A ratio calculated using the co-borrowers' total monthly pay-
ments on the total debt obligations, excluding mortgages and
the requested LC loan, divided by the co-borrowers' com-
bined self-reported monthly income

1,733,980 / 96.2
%

revol bal joint Sum of revolving credit balance of the co-borrowers, net of
duplicate balances

1,746,665 / 96.9
%

Continued on next page
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Variable name Variable description Missing

sec app chargeo�
within 12 mths

Number of charge-o�s within last 12 months at time of ap-
plication for the secondary applicant

1,746,664 / 96.9
%

sec app collections 12
mths ex med

Number of collections within last 12 months excluding med-
ical collections at time of application for the secondary ap-
plicant

1,746,664 / 96.9
%

sec app earliest cr line Earliest credit line at time of application for the secondary
applicant

1,746,664 / 96.9
%

sec app �co range high FICO range (low) for the secondary applicant 1,746,664 / 96.9
%

sec app �co range low FICO range (high) for the secondary applicant 1,746,664 / 96.9
%

sec app inq last 6mths Credit inquiries in the last 6 months at time of application
for the secondary applicant

1,746,664 / 96.9
%

sec app mort acc Number of mortgage accounts at time of application for the
secondary applicant

1,746,664 / 96.9
%

sec app mths since last
major derog

Months since most recent 90-day or worse rating at time of
application for the secondary applicant

1,783,037 / 98.9
%

sec app num rev accts Number of revolving accounts at time of application for the
secondary applicant

1,746,664 / 96.9
%

sec app open acc Number of open trades at time of application for the sec-
ondary applicant

1,746,664 / 96.9
%

sec app open act il Number of currently active installment trades at time of ap-
plication for the secondary applicant

1,746,664 / 96.9
%

sec app revol util Ratio of total current balance to high credit/credit limit for
all revolving accounts

1,747,614 / 97 %

Created variables
Monthly debt rate Installment amount divided by monthly income to see added

debt burden
- / - %

Average FICO Mean of the FICO lower and FICO upper limit provided by
LC

- / - %

This table contains all the variables initially in the dataset along with information on how many observations
are missing for each variable. Missing count is done prior to any reduction in the dataset.
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Table 34: Final set of variables

Variable name Variable description

Borrower assesment

grade LC assigned loan grade
int rate Interest Rate on the loan
sub grade LC assigned loan subgrade

Borrower characteristics

annual inc The self-reported annual income provided by the borrower
during registration

emp length Employment length in years
home ownership The home ownership status provided by the borrower dur-

ing registration or obtained from the credit report
veri�cation status Indicates if income was veri�ed by Lending Club

Borrower indebtedness

dti A ratio calculated using the borrower's total monthly debt
payments on the total debt obligations, excluding mortgage
and the requested LC loan, divided by the borrower's self-
reported monthly income

Credit history

acc open past 24mths Number of trades opened in past 24 months
chargeo� within 12 mths Number of charge-o�s within 12 months
collections 12 mths ex med Number of collections in 12 months excluding medical col-

lections
delinq 2yrs The number of 30+ days past-due incidences of delinquency

in the borrower's credit �le for the past 2 years
inq last 6mths The number of inquiries in past 6 months (excluding auto

and mortgage inquiries)
mo sin old rev tl op Months since oldest revolving account opened
mo sin rcnt rev tl op Months since most recent revolving account opened
mo sin rcnt tl Months since most recent account opened
mths since last delinq The number of months since the borrower's last delin-

quency
mths since last major derog Months since most recent 90-day or worse rating
mths since last record The number of months since the last public record
mths since recent bc Months since most recent bankcard account opened
mths since recent bc dlq Months since most recent bankcard delinquency
mths since recent revol delinq Months since most recent revolving delinquency
num accts ever 120 pd Number of accounts ever 120 or more days past due
num tl 90g dpd 24m Number of accounts 90 or more days past due in last 24

months
num tl op past 12m Number of accounts opened in past 12 months
pct tl nvr dlq Percent of trades never delinquent
pub rec Number of derogatory public records
pub rec bankruptcies Number of public record bankruptcies
tot coll amt Total collection amounts ever owed

Current �nancial characteristics

acc now delinq The number of accounts on which the borrower is now delin-
quent

avg cur bal Average current balance of all accounts
bc open to buy Total open to buy on revolving bankcards
bc util Ratio of total current balance to high credit/credit limit

for all bankcard accounts
delinq amnt The past-due amount owed for the accounts on which the

borrower is now delinquent
mort acc Number of mortgage accounts

Continued on next page
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Variable name Variable description

num actv bc tl Number of currently active bankcard accounts
num op rev tl Number of open revolving accounts
num rev tl bal gt 0 Number of revolving trades with balance >0
num tl 120dpd 2m Number of accounts currently 120 days past due (updated

in past 2 months)
num tl 30dpd Number of accounts currently 30 days past due (updated

in past 2 months)
open acc The number of open credit lines in the borrower's credit

�le
percent bc gt 75 Percentage of all bankcard accounts > 75% of limit
revol bal Total credit revolving balance
revol util Revolving line utilization rate, or the amount of credit the

borrower is using relative to all available revolving credit
tot cur bal Total current balance of all accounts
tot hi cred lim Total high credit/credit limit
total bal ex mort Total credit balance excluding mortgage
total bc limit Total bankcard high credit/credit limit
total il high credit limit Total installment high credit/credit limit
total rev hi lim Total revolving high credit/credit limit

Dependent variable

loan status Current status of the loan

Loan characteristics

installment The monthly payment owed by the borrower if the loan
originates

issue d The month which the loan was funded
loan amnt The listed amount of the loan applied for by the borrower.

If at some point in time, the credit department reduces the
loan amount, then it will be re�ected in this value

purpose A category provided by the borrower for the loan request

Created variables

Monthly debt rate Installment amount divided by monthly income to see
added debt burden

FICO average Mean of the FICO lower and FICO upper limit provided
by LC

The variables included in the �nal dataset.
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Table 35: Descriptive statistics for categorical variables

Variable N % Defaults % Phi χ2 P-value

Grade

A 69,473 21.31 3,661 5.27 -0.124 4,990.13 0.000, ***
B 115,017 35.29 12,222 10.63 -0.059 1,145.83 0.000, ***
C 83,809 25.71 14,133 16.86 0.061 1,197.16 0.000, ***
D 42,318 12.98 9,313 22.01 0.098 3,142.34 0.000, ***
E 12,271 3.76 3,299 26.88 0.079 2,014.49 0.000, ***
F 2,818 0.86 831 29.49 0.044 637.66 0.000, ***
G 235 0.07 81 34.47 0.017 88.73 0.000, ***

Sub-grade

A1 9,870 3.03 251 2.54 -0.056 1,027.68 0.000, ***
A2 10,572 3.24 412 3.9 -0.051 844.22 0.000, ***
A3 11,635 3.57 495 4.25 -0.051 863.21 0.000, ***
A4 17,191 5.27 1,002 5.83 -0.052 888.31 0.000, ***
A5 20,205 6.2 1,501 7.43 -0.045 653.78 0.000, ***
B1 20,297 6.23 1,679 8.27 -0.039 483.31 0.000, ***
B2 23,624 7.25 2,159 9.14 -0.035 391.37 0.000, ***
B3 25,518 7.83 2,712 10.63 -0.023 178.08 0.000, ***
B4 24,542 7.53 2,804 11.43 -0.016 85.5 0.000, ***
B5 21,036 6.45 2,868 13.63 0.002 1.45 0.229,
C1 20,933 6.42 3,022 14.44 0.008 22.37 0.000, ***
C2 18,717 5.74 2,995 16 0.019 119.63 0.000, ***
C3 16,913 5.19 2,989 17.67 0.03 286.52 0.000, ***
C4 14,357 4.4 2,651 18.46 0.032 337.93 0.000, ***
C5 12,889 3.95 2,476 19.21 0.035 396.54 0.000, ***
D1 11,343 3.48 2,390 21.07 0.043 603.22 0.000, ***
D2 9,996 3.07 2,213 22.14 0.046 686.17 0.000, ***
D3 8,529 2.62 1,821 21.35 0.039 482.68 0.000, ***
D4 7,028 2.16 1,601 22.78 0.041 550.12 0.000, ***
D5 5,422 1.66 1,288 23.76 0.04 514.04 0.000, ***
E1 3,684 1.13 959 26.03 0.04 515.97 0.000, ***
E2 3,184 0.98 838 26.32 0.038 465.56 0.000, ***
E3 2,244 0.69 606 27.01 0.033 362.42 0.000, ***
E4 1,664 0.51 455 27.34 0.029 281.44 0.000, ***
E5 1,495 0.46 441 29.5 0.032 336.64 0.000, ***
F1 1,040 0.32 279 26.83 0.022 162.36 0.000, ***
F2 573 0.18 164 28.62 0.019 114.22 0.000, ***
F3 671 0.21 202 30.1 0.022 161.47 0.000, ***
F4 354 0.11 121 34.18 0.02 130.96 0.000, ***
F5 180 0.06 65 36.11 0.016 78.6 0.000, ***
G1 108 0.03 39 36.11 0.012 46.38 0.000, ***
G2 67 0.02 20 29.85 0.007 14.36 0.000, ***
G3 39 0.01 13 33.33 0.006 11.78 0.001, ***
G4 14 0 7 50 0.007 13.23 0.000, ***
G5 7 0 2 28.57 0.002 0.39 0.530,

Employment length

0 18,130 5.56 3,576 19.72 0.045 671.63 0.000, ***
< 1 year 25,621 7.86 3647 14.23 0.008 18.36 0.000, ***
1 year 21,133 6.48 2,864 13.55 0.002 0.72 0.397,
2 years 29,435 9.03 3,938 13.38 0 0.01 0.921,
3 years 26,125 8.02 3,517 13.46 0.001 0.26 0.613,
4 years 18,979 5.82 2,537 13.37 0 0 0.978,
5 years 20,684 6.35 2,731 13.2 -0.001 0.44 0.506,
6 years 17,463 5.36 2,372 13.58 0.002 0.78 0.376,
7 years 18,083 5.55 2,389 13.21 -0.001 0.34 0.558,

Continued on next page
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8 years 16,146 4.95 2,174 13.46 0.001 0.16 0.692,
9 years 12,419 3.81 1,673 13.47 0.001 0.13 0.716,
10+ years 101,723 31.21 12,122 11.92 -0.029 265.33 0.000, ***

Home ownership status

Mortgage 154,686 47.46 16,942 10.95 -0.067 1471.8 0.000, ***
Other 75 0.02 13 17.33 0.002 0.71 0.400,
Own 31,693 9.72 4,426 13.97 0.006 11.12 0.001, ***
Rent 139,487 42.8 22,159 15.89 0.064 1345.84 0.000, ***

Veri�cation status

Not veri�ed 122,719 37.65 14,499 11.81 -0.035 404.91 0.000, ***
Source veri�ed 103,022 31.61 14,312 13.89 0.011 37.04 0.000, ***
Veri�ed 100,200 30.74 14,729 14.7 0.026 224.74 0.000, ***

Purpose

car 3,045 0.93 331 10.87 -0.007 16.22 0.000, ***
credit_card 81,206 24.91 9,195 11.32 -0.034 386.81 0.000, ***
debt_consolidation 190,357 58.4 26,460 13.9 0.019 116.02 0.000, ***
home_improvement 16,719 5.13 1,959 11.72 -0.011 40.86 0.000, ***
house 1,242 0.38 199 16.02 0.005 7.42 0.006, **
major_purchase 5,806 1.78 730 12.57 -0.003 3.08 0.079, .
medical 3,302 1.01 556 16.84 0.01 34.6 0.000, ***
moving 2,121 0.65 410 19.33 0.014 65.27 0.000, ***
other 15,888 4.87 2,509 15.79 0.016 85.24 0.000, ***
renewable_energy 208 0.06 32 15.38 0.002 0.57 0.449,
small_business 3,354 1.03 764 22.78 0.028 259.03 0.000, ***
vacation 1,976 0.61 296 14.98 0.004 4.38 0.036, *
wedding 717 0.22 99 13.81 0.001 0.09 0.765,

Months since last delinquency

< 1 year 27,494 8.44 3,963 14.41 0.009 28.82 0.000, ***
1-2 years 34,465 10.57 4,637 13.45 0.001 0.3 0.585,
2-3 years 29,044 8.91 3,857 13.28 -0.001 0.16 0.687,
3-4 years 25,124 7.71 3,225 12.84 -0.004 6.36 0.012, *
> 4 years 43,049 13.21 6,021 13.99 0.007 16.85 0.000, ***
Never 166,765 51.16 21,837 13.09 -0.008 20.48 0.000, ***

Months since last record

< 1 year 823 0.25 116 14.09 0.001 0.33 0.568,
1-2 years 1,609 0.49 231 14.36 0.002 1.31 0.253,
2-3 years 2,696 0.83 374 13.87 0.001 0.58 0.448,
3-4 years 4,657 1.43 637 13.68 0.001 0.39 0.532,
> 4 years 39,362 12.08 6,027 15.31 0.021 147.42 0.000, ***
Never 276,794 84.92 36,155 13.06 -0.021 138.97 0.000, ***

Months since last major derogatory

< 1 year 6,656 2.04 982 14.75 0.006 11.31 0.001, ***
1-2 years 12,474 3.83 1,755 14.07 0.004 5.6 0.018, *
2-3 years 14,302 4.39 1,957 13.68 0.002 1.34 0.248,
3-4 years 15,335 4.7 2,085 13.6 0.002 0.77 0.381,
> 4 years 32,967 10.11 5,048 15.31 0.019 120.81 0.000, ***
Never 244,207 74.92 31,713 12.99 -0.019 116.39 0.000, ***

Months since recent Bankcard

< 1 year 149,464 45.86 22,334 14.94 0.043 598.55 0.000, ***
1-2 years 75,245 23.09 10,067 13.38 0 0.03 0.854,
2-3 years 35,761 10.97 4,374 12.23 -0.012 43.98 0.000, ***
3-4 years 17,982 5.52 2,049 11.39 -0.014 63.22 0.000, ***

Continued on next page
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> 4 years 47,487 14.57 4,715 9.93 -0.042 564.42 0.000, ***
Never 2 0 1 50 0.003 0.23 0.628,

Months since recent Bankcard delinquency

< 1 year 10,375 3.18 1,485 14.31 0.005 8.36 0.004, **
1-2 years 13,936 4.28 1,973 14.16 0.005 7.96 0.005, **
2-3 years 13,826 4.24 1,872 13.54 0.001 0.39 0.530,
3-4 years 14,701 4.51 1,878 12.77 -0.004 4.48 0.034, *
> 4 years 30,136 9.25 4,354 14.45 0.01 33.96 0.000, ***
Never 242,967 74.54 31,978 13.16 -0.01 31.87 0.000, ***

Months since recent revolving delinquency

< 1 year 19,053 5.85 2,706 14.2 0.006 12.38 0.000, ***
1-2 years 22,460 6.89 3,045 13.56 0.002 0.81 0.369,
2-3 years 19,934 6.12 2,666 13.37 0 0 0.954,
3-4 years 18,655 5.72 2,371 12.71 -0.005 7.13 0.008, **
> 4 years 32,123 9.86 4,572 14.23 0.008 23.46 0.000, ***
Never 213,716 65.57 28,180 13.19 -0.007 15.92 0.000, ***

Phi is the correlation coe�cients with loan status factor, χ2 = Chi-squared critical value, P = P-value.
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Table 36: Descriptive statistics for contiunous variables

Variable
Default, N=43,540 Non-Default, N = 282,401 Wilcoxon

Mean Med StDev Mean Med StDev p Sign

Borrower assessment

int rate 14.38 14.16 3.82 12.3 12.12 3.87 0 ***
Borrower characteristics

annual inc 63,282.5 53,000 68,876.02 73,383.75 62,000 56,285.01 0 ***
Borrower indebtedness

dti 19.11 18.91 8.21 17.25 16.73 7.97 0 ***
Credit history

acc open past
24mths

4.82 4 3.05 4.11 4 2.78 0 ***

chargeo� within 12
mths

0.01 0 0.11 0.01 0 0.11 0.55525 ***

collections 12 mths
ex med

0.01 0 0.13 0.01 0 0.13 0

delinq 2yrs 0.33 0 0.88 0.3 0 0.83 0 ***
inq last 6mths 0.86 1 1.06 0.7 0 0.97 0 ***
mo sin old rev tl op 166.92 150 92.09 181.29 163 92.68 0 ***
mo sin rcnt rev tl op 10.99 7 13.68 13.56 8 16.27 0 ***
mo sin rcnt tl 7.12 5 7.85 8.6 6 9.45 0 ***
num accts ever 120
pd

0.5 0 1.24 0.46 0 1.21 0 ***

num tl 90g dpd 24m 0.09 0 0.46 0.08 0 0.44 0.0001 ***
num tl op past 12m 2.25 2 1.75 1.88 2 1.58 0 ***
pct tl nvr dlq 94.55 100 8.11 94.7 100 8.06 0.00005 ***
pub rec 0.22 0 0.61 0.19 0 0.57 0 ***
pub rec bankruptcies 0.14 0 0.38 0.12 0 0.35 0 ***
tot coll amt 209.44 0 1778.99 221.83 0 17319.42 0 ***
Current �nancial characteristics

acc now delinq 0.01 0 0.09 0 0 0.08 0.02549 *
open acc 11.43 11 5.13 11.33 10 5.06 0.00016 ***
revol bal 13,869.29 10,193 18,356.32 15,871.71 11,235 21,260.72 0 ***
revol util 58.19 59.1 22.47 55.04 55.7 23.17 0 ***
avg cur bal 9,457.02 4,578.5 12,206.75 12,993.23 6,691 16,064.46 0 ***
bc open to buy 5,909.11 2,466.5 9,899.86 9,032.35 3,859 14,282.85 0 ***
bc util 68.15 73.3 25.85 63.66 67.8 26.7 0 ***
delinq amnt 11.18 0 623.96 10.42 0 604.9 0.00457
mort acc 1.32 0 1.9 1.73 1 2.12 0 ***
num actv bc tl 3.81 3 2.18 3.68 3 2.08 0 ***
num op rev tl 8.39 8 4.25 8.15 7 4.16 0 ***
num rev tl bal gt 0 6.07 5 3.19 5.62 5 3 0 ***
num tl 120dpd 2m 0 0 0.03 0 0 0.03 0.20108
num tl 30dpd 0 0 0.07 0 0 0.06 0.00035 ***
percent bc gt 75 55.99 57.1 34.29 49.46 50 35.03 0 ***
tot hi cred lim 122,136.12 67,123 135,126.17 162,589.85 98,494 172,738.84 0 ***
total il high credit
limit

33,915.11 25,001 36,694.33 36,685.07 27,124 39,854.91 0 ***

Loan characteristics

installment 420.3 348.56 259.38 424.33 357.72 257.03 0.00002 ***
Created variables

�co average 686.93 682 23.32 697.13 692 30.56 0 ***
monthly debt rate 0.09 0.08 0.04 0.08 0.07 0.04 0 ***

*** = 0.001, ** = 0.01, * = 0.05, ' ' = > 0.1, signi�cance level, p = p-value for the Wilcoxon test.
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Table 37: Payment history variable descriptions

Variable name Variable description

Loan id A unique identi�er for the loan
Pbal beg period Remaining balance owed at beginning of the period
Prncp paid Principal paid
Int Paid Interest paid
Fee paid Fees paid
Due amt Amount due this period
Received amt Amount paid this period
Received d Date payment is receieved
Period end lstat Loan status at the end of the period
Month Month of payment
Pbal end period Principal balance at the end of the period
Mob Which entry of the loan it is
Co Is the loan charged o�?
Coamt Amount charged o�
Interest Rate Interest rate on the loan
Issued Date Issue date of the loan
Monthly contract amt Monthly installment size
Dti Debt to income ratio
State State of residence
Home ownership Home Ownership status
Monthly income Borrowers monthly income
Earliest credit line Earliest recorded credit line
Open credit lines Number of open credit lines
Total credit lines Total number of credit lines
Revolving credit balance Revolving credit balance
Revolving line utilization Revolving credit line utilization
Inquiries 6M Number of inquiries past 6 months
Dq 2yrs Number of delinquencies past 2 years
Months since Dq Months since last delinquency
Public rec Number of public records
Months since last rec Months since last public record
Employment length Borrowers employment length
Current policy Current LendingClub assigned loan policy
Grade LendingClub assigned loan grade
Term Number of terms of payment
Appl FICO band FICO range of applicant
Last FICO band Latest known FICO range of applicant
Vintage Loan vintage
Pco recovery Post charge-o� recovery
Pco collection fee Post charge-o� recovery fee

The variables contained in the payment history dataset along with their descriptions.
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Table 38: Results of random search for hyperparameters - xgboost

eta max

depth

colsample

bytree

nrounds min child

weight

gamma subsample AUC

test

mean

0.4323 4 0.7489 346 4.7149 0.0815 0.6971 0.6629
0.7360 2 0.9443 399 7.1615 0.2093 0.7664 0.6746
0.0734 2 0.5190 133 6.4457 0.2589 0.8016 0.6808
0.3263 2 0.8939 485 2.1389 0.2287 0.6425 0.6853
0.3856 4 0.6782 201 3.2506 0.0866 0.5542 0.6702
0.1746 2 0.5805 210 6.2676 0.0281 0.9529 0.6874
0.5456 3 0.5560 209 3.3118 0.0861 0.6182 0.6713
0.5142 4 0.6168 460 4.5040 0.1740 0.8953 0.6571
0.4307 2 0.8779 305 5.1802 0.1145 0.7198 0.6842
0.5593 3 0.9059 290 5.3423 0.2556 0.8982 0.6723
0.2754 2 0.5844 331 1.3957 0.1738 0.7538 0.6875
0.7590 3 0.7248 118 5.7232 0.0217 0.9008 0.6747
0.4426 2 0.8149 242 5.3176 0.0297 0.6047 0.6829
0.6198 4 0.9157 290 9.8845 0.0408 0.9378 0.6569
0.0263 2 0.9423 455 7.1248 0.0497 0.7178 0.6827
0.0365 3 0.6435 340 8.8902 0.2110 0.6573 0.6863
0.6808 2 0.7983 471 9.6934 0.2701 0.9562 0.6759
0.5629 5 0.6749 186 2.2137 0.1243 0.9150 0.6566
0.5501 3 0.5720 496 8.7268 0.2718 0.6150 0.6615
0.5961 3 0.8893 104 6.3387 0.0398 0.7041 0.6796
0.6501 3 0.6160 228 4.2771 0.2120 0.7020 0.6696
0.4631 3 0.8153 445 6.7030 0.1375 0.8413 0.6724
0.1298 2 0.9957 197 7.5478 0.0150 0.5218 0.6868
0.3904 2 0.9947 138 8.9010 0.1437 0.9928 0.6875
0.2826 4 0.5689 483 7.4612 0.0970 0.6887 0.6715
0.0659 4 0.6843 122 0.5405 0.1030 0.7902 0.6857
0.4608 2 0.7179 128 8.2269 0.1170 0.6922 0.6856
0.6742 3 0.8697 142 6.4424 0.1968 0.5095 0.6680
0.4929 3 0.9519 125 3.7907 0.1105 0.7465 0.6815
0.8605 2 0.9388 164 5.5134 0.2783 0.8956 0.6789
0.0600 5 0.7790 151 0.7174 0.1162 0.9656 0.6871
0.2623 3 0.9941 129 5.6680 0.2657 0.5102 0.6857
0.0458 5 0.8111 234 2.7111 0.2997 0.6320 0.6889

0.4703 4 0.6044 289 5.6667 0.1451 0.6811 0.6621
0.5236 2 0.6663 177 6.0673 0.2712 0.9922 0.6861
0.2423 2 0.9688 260 1.2900 0.2911 0.8865 0.6887

Results from the initial random search. Only settings with a test AUC-score greater

than 0.655 are included, and bold indicates the two best result.
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A.2 Confusion matricies

Table 39: Confusion Matricies

PREDICTED

Default Non-Default

TRUTH
Default 9364 1640

Non-Default 39692 25658

Confusion matrix for elastic net model with alpha set

to 0.25

PREDICTED

Default Non-Default

TRUTH
Default 9364 1640

Non-Default 39817 25533

Confusion matrix for elastic net model with alpha set

to 0.5.

PREDICTED

Default Non-Default

TRUTH
Default 10419 585

Non-Default 52473 12877

Confusion matrix for the univariate interest rate

model.
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PREDICTED

Default Non-Default

TRUTH
Default 9356 1648

Non-Default 39491 25859

Confusion matrix for the 2-level xgboost model.

PREDICTED

Default Non-Default

TRUTH
Default 9350 1654

Non-Default 38509 26841

Confusion matrix for the 5-level xgboost model.

PREDICTED

Default Non-Default

TRUTH
Default 9368 1636

Non-Default 40760 24590

Confusion matrix for the default random forest set-

tings.

PREDICTED

Default Non-Default

TRUTH
Default 9335 1669

Non-Default 39906 25444

Confusion matrix for the small random forest model.

PREDICTED

Default Non-Default

TRUTH
Default 9341 1663

Non-Default 39414 25936

Confusion matrix for the �nal random forest settings.
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Table 40: Combined accuracy metrics - outliers removed

Model Accuracy Sensitivity Speci�city AUC f1

Elastic net

Alpha = 0.25 0.45063 0.85066 0.38384 0.68790 0.30702
Alpha = 0.50 0.45344 0.84902 0.38740 0.68675 0.30770
Interest rate 0.41500 0.85548 0.34146 0.66233 0.29499
Xgboost

Initial tune 0.45929 0.84960 0.39413 0.69431 0.31015
5-level model 0.45533 0.85104 0.38927 0.69457 0.30895
2-level model 0.45272 0.84960 0.38647 0.69159 0.30757
Random forest

Default model 0.44276 0.85123 0.37457 0.68331 0.30415
Small model 0.44482 0.85085 0.37703 0.68607 0.30484
Final model 0.45301 0.84988 0.38676 0.69021 0.30775
KNN

Final model 0.44860 0.84990 0.38210 0.67790 0.30485

The accuracy metrics for the di�erent models on the dataset where outliers are re-

moved.

Table 41: McNemar contingency tables

Elastic net

Correct Wrong

Xgboost
Correct 31,922 3,525
Wrong 3,924 36,983

McNemar contingency table - Prediction

overlap between xgboost 5-level and elastic

net α = 0.5 models.

Elastic net

Correct Wrong

Random forest
Correct 31,943 3,504
Wrong 3,182 37,725

McNemar Contingency table - Prediction overlap

between random forest �nal and elastic net α =
0.5 models.
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Appendix B

Figure output
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Figure 29: Boxplots for continuous variables

Boxplots for variable 1-16.
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Boxplots for variable 17-32.
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Boxplots for variable 33-39.
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Figure 30: Histograms for continuous variables

Histograms for the continuous variables 1-16.
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Histograms for the continuous variables 17-32.
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Histograms for the continuous variables 33-39.
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Figure 31: Quantile plots for continuous variables

Quantile plots for the continuous variables 1-16.
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Quantile plots for the continuous variables 17-32.
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Quantile plots for the continuous variables 33-39.
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Appendix C

Use of R

The open source programming language R has been a vitally important part of the
work in this thesis. It has been used for every stage in the process, including pre-
processing, exploratory data analysis, variable modi�cation, model implementation and
data visualization.

In this section a description of the two �les complementing the thesis is presented.

loan_data.rds is an R database object that contains the prepared dataset used in this
thesis. It consists of 153 variables and 325,941 observations, which thus holds both the
training and validation set used to �t the models.

The second �le is mlr.R, which shows an example implementation of the xgboost algo-
rithm using the MLR-framework. This includes tuning of the hyperparameters, train-
ing of the model and prediction on the holdout data. In addition it shows the cross-
validation process for the elastic net models using caret, and the subsequent training
and predictions on the holdout set done with MLR.
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