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Abstract

Equinor has plans to develop a whale monitoring station using acoustic animal
destiny estimation at their cabled ocean observatory, the LoVe Observatory, in
Lofoten-Vesterålen basin. The fauna of this area is of remarkable importance
to the Norwegian economy due to its unique fishing banks and its newly dis-
covered petroleum reserves. This makes it important to monitor the Fin whale
population in the area, especially if human interference in the region is to be
increased due to new petroleum related interventions. Moreover, the obser-
vatory will hopefully bring about new knowledge of the habitat and migratory
routes of the Fin whale, which are currently poorly understood. In order to
implement an animal density estimation algorithm at the LoVe Observatory it
is necessary to know how the transmission loss experienced by sounds reach-
ing the observatory varies as a function of position around the receiver. This
study has developed a set of model tools fit to simulate the transmission loss
at any position in the Lofoten-Vesterålen basin, by using environmental data
available at various databases as input parameters to the parabolic equation
model Range-dependent Acoustic Model (RAM). The study has utilized these
tools to produce simulations of the transmission loss at a number of example
transects, in order to present some conclusions about how the transmission loss
is affected by the environmental parameters bathymetry, sound speed profiles
and sedimentary geoacoustic properties. Furthermore, the simulations have
been repeated for each of the four seasons, to look at how the transmission
loss varies across the year. Generally, the study will show that the variation
of transmission loss with position is complex and that the inclusion of envir-
onmental parameters in the simulations is necessary. It will be shown that the
observatory is capable of detecting Fin whales at 190 km in low noise condi-
tions, but that this range is limited by the angular direction of the propagation
path and by increases in the noise level. Seasonal variability in the transmis-
sion loss will be shown, but it has not been possible connect this variation to
the observed yearly variation in Fin whale detections.
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List of Symbols

A Fractional amount of sediment composition

B Bulk modulus

I Sound intensity

N Number of simulated planes

O Area

P The radial derivative operator

Ph Hydrostatic pressure

Q The square-root operator

R Pressure reflection coefficient

S Salinity

T Temperature

VR Velocity ratio

W Bandwidth

∆PSSP The pressure resolution of the constructed SSP
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∆rSSP The radial step between each sound speed profile interpol-
ation.

∆z Depth resolution

Φ
′ Estimated mean grain size for sediment type (mm)

Φ Mean grain diameter in millimeters

Θ Longitude

αm Attenuation coefficient in dB m−1
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αλ Attenuation coefficient in dB/λ

αcm Attenuation coefficient in dB cm−1

αkm Attenuation coefficient in dB km−1

η Fractional porosity

1
Q(α) Specific attenuation factor

γ Mean vertical gradient of gravity

D̂ Estimated population density

P̂ Probability of detection

m̂ Multiplication factor

λ Wavelength

R Rayleigh parameter

µ, ε Operators used to abbreviate q

Φ Average grain size of sediment texture

φ′ Estimated mean grain size for sediment type (units of phi)

φ Mean grain size in phi units

ψ Envelope function

ρ Density

ρB Bulk density of the sediment

ρb Density of the sea bottom material

ρg Density of the sediment grains

ρw Density of the water

DI Directivity index

DT Detection threshold

NL Noise level

NSL Noise spectrum level

SL Source level

SNR Signal-to-noise-ratio

TL Transmission loss
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TLmax, high noise The maximum threshold for transmission loss at high noise
conditions

TLmax, low noise The maximum threshold for transmission loss at low noise
conditions

θ The angular position variable

θi Incident angle

θt Transmitted angle

θ̃ Propagation angle, with respect to the horizontal

p̃ Modified pressure variable used in RAM

q̃ Modified depth operator used in RAM

ϕ Latitude

a0, a1, b0, b1 Coefficients in rational-function approximations

aj,m, bj,m Padé approximation coefficients

c Speed of sound

c Speed of sound

c0 Normalization sound speed

cb Compressional sound velocity in the sea floor

cw Speed of sound in sea water

df (r, θ) Detection function

dp(r, θ) Probability density function of whale calling locations

ea Number of detected acoustic events

f Frequency

g Acceleration due to gravity at sea level

ge Acceleration due to gravity at sea-level at the equator

h Material specific constant

k Wavenumber

k0 Reference wave number

l Frequency exponent of sediment attenuation

m Number of terms in the Padé approximation
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n Index of refraction

ns Stability parameter

ndz and ndr Decimation factors

p Acoustic pressure

q Depth operator used by Tappert

q∗ Depth operator used by Collins

r Radial distance from the origin

rb Ranges of the specified bathymetry

rp Range position of a new block

rs Stability restriction range

t Time

w Maximum radial distance of detection

x Cartesian position coordinate

y Cartesian position coordinate

z Depth below sea-level

zb Depth of the bathymetry

zsource Depth of the sound source

H0
(1) Hankel function of the first kind and zeroth order

CTD Conductivity, temperature and depth

PSC Product specification code

RAM Range-dependent Acoustic Model

SOFAR Sound Fixing and Ranging

SOSI Samordnet Opplegg for Stedfestet Informasjon. Translates
to Co-ordinated Scheme for Location Based Information

SSP Sound speed profile
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Chapter 1

Introduction

The Norwegian continental shelf off the coast of Lofoten and Vesterålen is a hot-spot for
several important sectors of the Norwegian economy. The shelf is narrow, compared with
the rest of the country, and this fosters unique oceanographic conditions because of the
strong and dynamic northern drift of Atlantic water. The area hosts large oceanic fish
stocks, feeding grounds for many fish predators, as well as both spawning and feeding
grounds for larvae of many species (Godø and Torkelsen, 2014). The internationally
renowned fishing banks in the area are therefore considered the most important areas for
commercial fishing in Norway (Buhl-Mortensen et al., 2015). It is therefore controversial
that investigations by the Norwegian Petroleum Directorate have indicated that the area
also holds large gas and petroleum reserves (Buhl-Mortensen et al., 2015). These reserves
have been subject to much political debate, and have not yet been opened for exploration.
A successful potential co-existence between the fishery and the petroleum industries, as
well as a sustainable continued utilization of the biological resources in the area, will
require extensive knowledge of the biodynamics of the area.

Equinor (former Statoil ASA) and the Institute of Marine Research have therefore
initiated a collaborative research project which has set out to monitor some of the most
vulnerable habitats on and around the northern Norwegian continental shelf. The pro-
ject is mainly focused on rare cold-water coral reef habitats, but also explores different
biological and oceanographic phenomenon in the region. In 2013 the project launched
the LoVe Ocean Observatory in a sub-sea valley about 20 km from the coast of Lofoten,
Norway (Godø and Torkelsen, 2014). The observatory lies in the Norwegian Sea, in
the vicinity of the Lofoten archipelago, where the continental shelf is relatively shallow
(Maystrenko et al., 2017). The shelf consists of large and flat banks, separated by deeper
troughs. The first of seven planned data collecting nodes have been installed in one of
these troughs called the Hola valley (Buhl-Mortensen et al., 2015). This part of the
observatory lies at 258 m below sea level, and has collected data on biomass distributions
and densities since the launch in 2013. The observatory uses technology provided by
Metas AS and includes both active and passive acoustic sensors, cameras, and several
oceanographic and environmental sensors (Godø and Torkelsen, 2014). Figure 1.1, which
is made by Pedersen (2018), shows an illustration of the bathymetry around the obser-
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vatory. The hydrophone discussed in this thesis lies on the node marked 1 in the figure,
and henceforth this is here referred to as the LoVe Observatory.

Figure 1.1: An illustration of the bathymetry in the area surrounding the LoVe Obser-
vatory. The hydrophone discussed in this thesis is located at the node marked 1 on the
figure. The figure is made by Pedersen (2018), using a shadow relief of the bathymetry
by Kartverket (2018c).

To the west of the flat banks and the Hola valley, there is a dramatic drop in the
bathymetry, down to the deep-sea domain of the Norwegian sea, known as the Lofoten
basin (Maystrenko et al., 2017). Together with Hola valley, the Egga bank, to the south
of the valley, and the Vesterålen bank, to the north, these areas make up the Lofoten-
Vesterålen basin. The border between the shallow banks and the deep plains is known
as the Egga Ridge. The steep slope of the ridge causes up-well of nutrient rich water,
making it an ideal habitat for many species. In particular, the Lofoten-Vesterålen basin
houses the habitat of a many cetaceans, who prey on the rich fauna of fish, crustaceans
and plankton (Institute of Marine Research, 2018).
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1.1 Cetaceans in the Lofoten-Vesterålen basin

There are about 20 species of cetaceans, also known as whales, in the Norwegian seas
(Institute of Marine Research, 2018). This family of marine mammals can be divided into
two subfamilies; baleen whales (Mysticetes) and toothed whales (Odontocetes). Toothed
whales feed by hunting prey such as fish, squid and small mammals. In lack of good
light penetration in the ocean, toothed whales use acoustic echolocation to localize its
prey (Bjørge et al., 2010). This sound is highly directive and its frequency content is
typically in the ultrasonic range, or at least in the range of a few kilo Hertz, depending
on the species (Wahlberg et al., 2011; Herzing and Johnson, 2015; Samarra et al., 2010;
Møhl et al., 2003). Baleen whales feed by sieving water through a comblike structure
in their mouths, called baleens, thus catching small animals and plankton. They use
vocalisation to navigate and to communicate, for social reasons like mating and to mark
their territories. They have a wide repertoire of sounds, like whistles, creaks, moans and
grunts, and their vocalisation is often thought of as songs. (White, 2015a). The baleen
whale species found in the Norwegian sea include Fin whale (Balaenoptera physalus), Blue
whale (Balaenoptera musculus), Sei whale (Balaenoptera borealis), Common minke whale
(Balaenoptera acutorostrata), and Humpback whale (Megaptera novaeangliae) (Haug,
1998).

The two latter of these are the smaller of the baleen whales. They exhibit complex
vocalization repertoires. Both species’ repertoires consist of multiple different call types,
including low frequency whops and snorts, cries, complex songs, and high frequency
shrieks and horn blasts (Oswald and Duennebier, 2011; Dunlop et al., 2008; Institute of
Marine Research, 2018; Thompson et al., 1986). On the other hand, the three larger
baleen whales have quite characteristic, high-intensity, low frequency calls. The lowest
frequency content belongs to the Blue whale, which vocalizes between 8 to 36 Hz (Parks
and Clark, 2012). The Fin whale calls in a similar range, from 15 to 30 Hz (Halkias
et al., 2013), while the Sei whale repertoire is slightly higher, from 34 to 87 Hz (Calderan
et al., 2014). These large baleen whales inhabit deep, open waters (Haug, 1998) and
their calls have been known to travel great distances (Hiyoshi et al., 2004; Parks and
Clark, 2012), because the low frequency cause little attenuation of the signal. Whereas
calls from mysticetes and the smaller baleen whales are only detectable at close ranges,
the high-intensity combined with the low frequency of the large baleen whale calls makes
it possible to detect them at great ranges. These species are thus ideal for long-range,
passive acoustic detection and monitoring.

According to Pedersen (2018), Blue whale calls have not been detected at the LoVe
Observatory. It is not known whether this is because the species are not located in the
proximity of the observatory, or if it is due to the propagation paths of their sounds not
reaching the hydrophone. On the other hand, the calls from Fin whales, the species with
the second most low frequent calls, have been readily detected at the LoVe Observatory
(Pedersen, 2018). Figure 1.2 shows the long-term spectral average of recordings made by
the LoVe Observatory in the period October 2014 - November 2015. The spectogram is
made by Pedersen (2018), averaging over 5 minutes and using a 1 s Hann window with 50
% overlap. The recordings are not continuous, because the observatory has been out of
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service in some periods. The figure clearly shows the presence of a low frequency sound,
at approximately 20 Hz, shown as a horizontal yellow and red line in the plot. According
to Pedersen (2018), this has been identified as Fin whale calls. Notably, the calls are
not detected from March - August. It is not known if this is because the Fin whales
are not present in the surrounding ocean at this time, or if the effect of the seasons on
the transmission loss experienced by the calls cause the signals to be attenuated beyond
detectability during these months.

Figure 1.2: Long-term spectral average from 10 Hz to 3 kHz of recordings made by the
LoVe Observatory. The plots show the spectral content of the recordings as a function
of time on the horizontal axis and the logarithm of frequency on the vertical axis. The
plots are made by Pedersen (2018).

The Fin whale calls recorded by the LoVe Observatory are typical in frequency content
compared with published recordings. Fin whale calls are often referred to as ‘20 Hz-
bouts’, even though a downward sweeping frequency from about 23 Hz to 18 Hz is usually
present (Watkins et al., 1987). Charif et al. (2002) have estimated the source level of
the call by recording 34 individuals using a towed array of calibrated hydrophones. They
corrected the recorded levels for effects of surface reflections, and found that the median
source level was 180 dB re 1 µPa at 1 m, with a range of 159 dB - 184 dB re 1 µPa at
1 m. Watkins et al. (1987) have analysed more than 4000 hours of recordings of Fin
whales at various geographical locations and found that when the Fin whale produces
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the 20 Hz-bout, its behaviour is quite stereotyped. The animal moves slowly and appears
to be vocalizing at 50 m depth. The 20 Hz-bouts are heard all year round and are not
connected to feeding behaviour. The bouts are believed to be produced to communicate
with other individuals (Watkins, 1981).

The habitat of Fin whales in the North Atlantic reaches from the ice-edge all the
way south to 30° latitude. Figure 1.3 shows the habitat of the Fin whale, as it has been
classified by the Institute of Marine Research (Øien, 2018). Visual surveying of the Fin
whale population, on behalf of the International Whaling Commission, started in 1987.
They estimated the population of Fin whales in the Norwegian Sea in the summer to
some thousands (Christensen et al., 1992), and the population has since been slowly
increasing (Røttingen, 2015). Most of the sightings reported by the visual surveying
occurred in the Norwegian Sea and outside Lofoten (Christensen et al., 1992), curiously
not coinciding with the summer feeding areas in figure 1.3. The whereabouts of the
Fin whale during the winter season are even more unclear. They are more abundant
in the northern latitudes during the summer season, suggesting that some north-south
migration occurs (Christensen et al., 1992). Ingebrigtsen (1929) proposed that part of
the population stays in the Atlantic Barents Sea during the winter season. And Haug
(1998) suggest that some of the individuals are stationary outside the coast of Norway.
Even so, the general consensus is that some form of migration occurs (Millais, 1906; Øien,
2018; Christensen et al., 1992; Haug, 1998). Unlike other baleen whales, the movement

Figure 1.3: The habitat of the Fin whale in the Atlantic Ocean, as classified by the
Institute of Marine Research. The figure has been copied from Øien (2018). The total
distribution area is shown in light blue and the feeding area (assuming the mammals pull
south gradually) is shown in dark blue.
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of the Fin whale does not appear to be determined by the climate in the waters, or
connected to their breeding (Kellogg, 1928). Rather, Fin whales appear to migrate
according to the changes in the availability of nutrients in the water (Hjort, 1902). For
example, Christensen et al. (1992) reported a connection between the migration of Fin
whales and the abundance of herring and capelin in the waters. In general, little is known
of these migration routes (Christensen et al., 1992; Øien, 2018).

1.2 Motivation

There remains large uncertainty about the specific locations of both the habitats and the
migratory routes of Fin whales. The fact that Fin whale calls are present in the recordings
made by the LoVe Observatory, and that these vary in intensity across the seasons,
seem to suggest that the Lofoten basin is either a temporary habitat for Fin whales
or that their migratory routes pass by the observatory. Therefore, an acoustic animal
density estimation algorithm is to be implemented at the LoVe Observatory (Pedersen,
2018). This will contribute to a better understanding of the Fin whale territories. The
density estimates can potentially aid understanding of both the migratory routes and
any patterns in the Fin whale’s whereabouts. Also, much of the current knowledge of
Fin whale behaviour is based on outdated publications, such as Ingebrigtsen (1929),
Millais (1906) and Kellogg (1928). And as pointed out by Christensen et al. (1992),
the migratory behaviour of the Fin whale are most likely not constant with time, due
to changes in the environment and in the stock of its prey. It is therefore desirable to
update the current knowledge on Fin whale migration. The installation of an animal
density estimation system at the LoVe Observatory allows for continued updates of this
knowledge in the future.

Moreover, monitoring of the whale populations in the Lofoten-Vesterålen basin, which
is utilized for commercial industries, is of paramount importance in order to assess the
impacts of human interference on whale habitats. There are several reported instances of
human activities adversely affecting cetaceans. Most often, these activities involve over-
fishing, pollution, ship-strikes, or disturbance or trauma due to acoustic events (White,
2015a). The latter is of particular concern if the Lofoten-Vesterålen area is to be opened
up for petroleum exploration. Such activities will involve a heightened overall noise level
in the basin, due to shipping, drilling, and other industrial activities. According to the
Norwegian Petroleum Directorate, the effect of this noise is not fully known, but there is
a concern that the noise will mask the acoustic signals used by the cetaceans for hunting
and communication (Jarandsen, 2011). Another concerning aspect of petroleum explor-
ation is the high-intensity noise produced by seismic surveying. Similar high-energy
acoustic sources such as sonars have been attributed as the cause for several beachings
of whales. For example, in 1996 a NATO sonar test caused a mass stranding of Beaked
whales in Greece (Frantzis, 2003), and in 2000 a sonar exercise by the United States
Navy is believed to have caused 17 cetaceans to have beached in the Bahamas (Evans
and England, 2001). Other, less severe consequences, such as behavioural changes and
hearing loss, are also feared as a result of human made high-intensity noises. A review of



CHAPTER 1. INTRODUCTION Sigrid Husebø Øygard 15

the studies that have investigated the effect of seismic air-gun noise have been composed
by Gordon et al. (2004). They remark that although the full extent to which seismic
surveying affects marine mammals is fairly poorly known, regulatory restrictions and a
precautionary approach is recommended.

Therefore, if the Lofoten-Vesterålen basin is to be opened up for petroleum explor-
ation, surveying and monitoring of the local whale population should be performed.
Visual monitoring of whales is common, but in rough seas, poor weather, at night, and
in particular with deep-diving whales such as the baleen whales found in the Norwe-
gian sea, this is not very effective (White, 2015a). An alternative to visual detection
is acoustic monitoring using subsea hydrophones which detect the sounds made by the
animals. In a comparison between visual detection of baleen whales outside the British
Isles and detection using acoustic recordings of the whale calls, Charif and Clark (2009)
found high acoustic detection in periods where the visual detection was low. Passive
acoustic monitoring of the whales is therefore believed to be more accurate than visual
monitoring.

1.3 Literature on acoustic density estimation of mammals

Acoustic monitoring of the population can be done by estimating population densities
from the number of detected whale call events. This method has already been imple-
mented at several sites across the globe, and according to Helble et al. (2013) significant
progress has been made in recent years in developing reliable algorithms for such estim-
ation. Generally, an estimate of the density of animals in the area O, is given by

D̂ =
ea
O
m̂, (1.1)

where D̂ is an estimate of the number of animals per unit area, ea is the number of
detected acoustic events, and m̂ is some multiplication factor which converts the number
of acoustic events to the number of animals in the area (Thomas and Marques, 2012).

In most cases, one cannot be sure that the hydrophone or hydrophones used will be
able to capture all sounds produced by whales in the surveyed area. In these cases, a
detection probability, P̂ , must be estimated and included in m̂. This is a measure of
the probability of detecting the whale call as a function of distance from the receiver.
The multiplication factor can be comprised of a number of different variables, in order
to include effects such as false positives, false negatives, group foraging behaviour of the
mammals, amongst others. These factors are all multiplied together to give m̂, so that

m̂ = P̂ · other factors. (1.2)

The factors can be determined using a number of different methods, depending on for
instance the number of hydrophones used and the frequency range of the mammal. Many
of the methods that have been applied at current ocean observatories are summarized by
Thomas and Marques (2012).
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One of the preferred ways of determining P̂ is a localization method where several
hydrophones are used to identify the distances to calling whales, and P̂ is estimated
based on a probability density function of the determined distances. This method has
for instance been employed by Martin et al. (2013), who estimated the density of Minke
whales off Hawaii, using 12 bottom-mounted hydrophones. Another approach was used
by Marques et al. (2009), who estimated P̂ by connecting tracking data from Blainville’s
beaked whales with the detected acoustic events at the 82 hydrophones outside the
Bahamas. The advantages of these methods are that neither the source level of the
whales, nor the transmission loss experienced by the sound need to be known.

However, neither of these methods are viable at the LoVe Observatory. Tracking data
of Fin whales in the Lofoten basin have, to the author’s knowlegde, not been collected,
and doing so would most likely be very costly. Moreover, although expansion of the LoVe
Observatory is planned, at the present time, only one hydrophone has been employed at
the observatory. McDonald and Fox (1999a) used a single hydrophone to estimate the
density of Fin whales north of Oahu, Hawaii. They suggested that P̂ can be estimated
using a multipath method, where the distance to the calling whale is determined based on
the time difference between the received signal reflections from the ocean surface and the
bottom. However, as McDonald and Fox (1999a) pointed out, this method is very time-
consuming. In addition, the use of surface and bottom reflections is not necessarily viable
in the shallow and complex bathymetric environment surrounding the LoVe Observatory.
And as pointed out by Helble et al. (2013), a common mistake in analysing recordings of
whales is that the effect of environmental properties, such as bathymetry, sound speed
profiles, and sediment properties, on the received signal, are overlooked.

Therefore, another method, where P̂ is estimated from a model of how sound propag-
ates in the area must be used instead. Unfortunately, this method is both more demand-
ing and less accurate than methods involving multiple hydrophones (Helble et al., 2013).
Yet, several studies, such as McDonald and Fox (1999a), Küsel et al. (2011) and Marques
et al. (2011), have estimated P̂ using this method. According to Helble et al. (2013),
when depth dependence is ignored, detection probability can be estimated as

P̂ =

∫ w

0

∫ 2π

0
df (r, θ)dp(r, θ)r∂r∂θ, (1.3)

where r is the radial position coordinate, θ is the angular position coordinate, df (r, θ)
is the detection function, w is the maximum radial distance of detection, and dp(r, θ) is
the probability density function of whale calling locations in the horizontal plane. The
position coordinates r and θ will be formally defined in the coordinate system shown
in figure 2.2 in section 2.3. The environmental variables specific to the geographical
location of the receiver are here inherent in the detection function, df (r, θ). In the
area surrounding the LoVe Observatory, these parameters can be obtained from various
databases. The depth of the bathymetry has been mapped by Kartverket (2018a), and
the composition of the sediment has been characterised by Geological Survey of Norway
(2016). Lastly, International Council for the Exploration of the Sea (2018) provides
measurements of the conductivity, temperature and depth in the water, which can be
used to calculate the sound speed.
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Estimating P̂ using a model of the acoustic propagation has also been done by Küsel
et al. (2011), who estimated the population density of Blainville’s beaked whales. In
their paper, Küsel et al. (2011) lay out a complex account of how the detection function,
df (r, θ), and the detection probability, dp(r, θ), are estimated using Monte Carlo simu-
lation, in order to calculate P̂ . This involves combining the performance of the chosen
detection and classification algorithm with the detection threshold (DT) of the whale
call, calculating a large number of simulated whale calls, and determining if these would
or would not have been detected by the hydrophone in question. According to Urick
(1983), the detection threshold can in turn be calculated using the sonar equation

DT = SL− TL− (NL−DI). (1.4)

Here, SL is the source level of the mammal, NL is the noise level at the receiver, DI is the
directivity index of the receiver, and TL is the transmission loss experienced by the sound
before reaching the receiver (Urick, 1983). Both the source level of the whale, the noise
level and the directivity index can be estimated based on values from literature. However,
the transmission loss is unique to the specific site of the hydrophone performing the
mammal density estimation, and for the LoVe Observatory it has never been calculated
or otherwise characterised. It is a function of position in all three dimensions, and is
dependent on both environmental parameters, and time. In order to start using the
LoVe Observatory to do passive acoustic density estimation of mammals, it is necessary
to first model how the site-specific transmission loss varies as a function of position and
time.

Several models can be used to simulate transmission loss. These include wave number
integration techniques, normal mode teqniques, finite element modelling, finite difference
modelling, ray tracing, and parabolic equation modelling (Jensen et al., 2011). Generally,
the two latter are most commonly used when simulating transmission loss for use in
mammal density estimation. Ray tracing is based on a high-frequency approximation
(Jensen et al., 2011) and is therefore often used when estimating the density of high-
frequent toothed whales. For instance, Küsel et al. (2011) simulated transmission loss
using the beam tracing model Bellhop (Porter and Bucker, 1987). However, when working
with low frequency calls from Fin whales, the parabolic equation model is preferable. It
has been used by both Helble et al. (2013) and McDonald and Fox (1999a). The parabolic
equation is based on the pioneering work by Leontovich and Fock (1946), who introduced
an approximation to the classical elliptic wave equation to describe propagation of radio
waves in the atmosphere. The main advantage of the parabolic equation is that the
acoustic field caused by an outwards propagating wave at an arbitrary range can be
described by establishing an initial boundary condition and then marching the solution
outwards in range. This is done instead of solving the entire acoustic field at all ranges
and depths simultaneously (Coppens, 1982). The model also allows for the environmental
parameters, such as the speed of sound in the water and in the seabed, as well as and the
density and attenuation coefficient of the seabed to be dependent on position (Jensen
et al., 2011).

The maximum detection distance, w, used in the calculation of the detection prob-
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ability is often simply assumed. In Marques et al. (2009), w is set to 8 km simply based
on the fact that this was the furthest away one of the tracked whales swam while it was
singing. This assumption was copied in Küsel et al. (2011). Both studies also assume
that the detection area, O, is circular. These are, of course, crude assumptions that limit
the applicability and the accuracy of the density estimations. Given the large variability
of transmission loss with position, it is unlikely that w will be constant at all directions
from the receiving hydrophone. Helble et al. (2013), on the other hand, uses calculations
of the position and frequency depended transmission loss to calculate w. This is done by
simulating a synthetic whale call signal, and using the transmission loss together with
the chosen detection and classification algorithm to determine if a signal from a given
distance can be detected. Thus, to make the density estimation as accurate as possible,
the transmission loss must be determined both as a function of position and as a function
of frequency within the bandwidth of the whale call.

1.4 Objectives

This thesis will investigate the transmission loss experienced by Fin whale calls that
reach the LoVe Ocean Observatory, so that the observatory can potentially be used for
passive acoustic mammal density estimations. The study will seek to identify how the
transmission loss varies with position around the observatory, and how the transmission
loss varies with season, using the parabolic equation model Range-dependent Acoustic
Model (RAM) by Collins (2001). The results of this model will then be compared with
the commonly used ‘simplistic semi-spherical transmission loss model’, introduced in
equation 2.10, in order to determine if inclusion of the complex environmental parameters
is necessary. Moreover, the investigation aims to determine if any areas in the Lofoten-
Vesterålen basin cannot be registered by the LoVe Observatory. Of particular interest is
the transmission loss experienced by sounds originating on top of the Egga and Vesterålen
banks, as well as sounds originating in the Lofoten-basin at locations without direct and
straight propagation paths from the source to the receiver. To limit the scope of this
thesis, the resulting transmission loss maps in this study will only be shown for 20 Hz.
This frequency is chosen because it is the fundamental frequency of the Fin whale call,
and as shown in figure 1.2 it is commonly detected at the LoVe Observatory. To verify
the validity of the simulated transmission loss models, a convergence test of the results
from RAM will be performed. The test will aim to determine the appropriate size of the
resolution step-sizes used by RAM.

The study also aims to develop model tools that can be used to characterise the
environmental parameters at user specified positions in the area surrounding the LoVe
Observatory. The environmental parameters include the depth of the bathymetry, the
sound speed in the water as a function of depth, the sound velocity of the sediment,
the attenuation coefficient of the sediment, and the density of the sediment. All of
these parameters are position dependent. This study will calculate the environmental
parameters as a function of position in the Lofoten-Vesterålen basin. The calculations
will be made based on available measurements of relevant parameters made in the region,
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together with supplementary information from literature.
Moreover, the study will aim to develop a tool that will write the environmental

parameters on the specific format needed to run RAM. These tools will be designed so
that a user can model the transmission loss at any position in the Lofoten-Vesterålen
basin, and at any frequency, within the low-frequency limit of the parabolic equation
model. The intention is that these tools can be used in the further development of
the LoVe Observatory’s density estimation algorithms. They can be used to calculate
the transmission loss at positions not shown in this thesis, and at varying frequencies.
This will enable calculation of the detection probability, P̂ , and the determination of the
maximum detection range, w, using the previously described method by Helble et al.
(2013). It will also be possible to investigate the transmission loss experienced by the
calls from other species or other types of sound sources.

1.5 Outline of thesis

Chapter 2 will introduce the theoretic principles used in the transmission loss simula-
tions. This includes the theory of sound propagation, an introduction to models of the
geoacoustic properties of ocean sediments, and a presentation of the parabolic equation
model. The assumptions inherent in the parabolic equations method will be described,
and the model will be derived up to the implementation that is used in RAM. Chapter
3 describes how the environmental input data used in the transmission loss simulations
are sourced. This includes bathymetry data, conductivity, temperature and depth meas-
urements used to calculate the variation of sound speed with depth, and data on the
composition of the seabed. Chapter 3 then moves on to describe the alterations and
processing of the sourced data that had to be performed before the environmental para-
meters could be used in RAM. The set of environmental parameters resulting from these
processes are an important part of the model tools described in section 1.4. The second
part of the model tools are the codes which have been written to allow the user to
compute the environmental parameters at any position, and the development of these
codes are detailed in Chapter 4. This chapter also describes the method used to find
the simulation step-sizes by running convergence tests, and the value of the maximum
range of the simulations is discussed. Finally, the methods used in the simulations that
are run to produce the transmission loss maps shown in this thesis are described. The
results of these simulations are shown in Chapter 5. This chapter also contains the calcu-
lated sound speed profiles, and the calculated geoacoustic properties of the seabed. The
chapter also presents calculations of the average of the sound speed profiles, the results
of the convergence tests, as well as a comparison of the transmission loss values produced
by RAM with values produced by the ‘semi-spherical spreading’ model. The presented
results are then discussed in Chapter 6. This chapter also contains a review of the chosen
modelling methods and a discussion of the validity of the produced results. Finally, the
work is summed up and concluded in Chapter 7, and a review of recommendations for
future work will be presented.
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Chapter 2

Theory

2.1 Propagation of sound in the ocean

Propagation of sound in the ocean is remarkably different from the familiar way sound
travels in air. There are several properties of the water which affect how the sound
is propagated, such as temperature, salinity, bathymetry, the composition of the ocean
floor, hydrostatic pressure, and often these effects also vary significantly with location.

2.1.1 Speed of sound in the ocean

One of the most important of factors determining how sound propagates in the ocean
is how the sound speed varies in the water column. The speed of sound, c, in a fluid is
given by

c =

√
B

ρ
, (2.1)

where B is the fluid bulk modulus, and ρ is the density (Jensen et al., 2011). Both of
these parameters are affected by the state and material properties of the fluid, and in sea
water the most important contributors are density, temperature and salinity. Density
is of course itself a function of temperature, but is primarily given by the hydrostatic
pressure caused by the depth of the water column. The speed of sound in the ocean, cw,
can be calculated from the empirical function of these variables

cw = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.01T )(S − 35) + 0.016z, (2.2)

where T is the temperature in degrees centigrade, S is the salinity in parts per thousand,
and z is the depth in meters below sea level (Jensen et al., 2011). The dependence on z
causes the speed of sound to vary through the water column. However, in typical oceanic
waters cw does not vary linearly with depth, as equation 2.2 might indicate. Rather, it
has a more complex variation because both T and S are also dependent on depth. The
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variation of the speed of sound with depth is known as the sound speed profile (SSP),
and these profiles will vary with both position and time.

The fact that the speed of sound is not constant with depth gives rise to another im-
portant propagation effect, namely refraction. This alters the direction of sound propaga-
tion, and will cause complex propagation patterns. The direction in which the sound is
travelling is altered by the variation in physical properties of the water. The direction in
which the sound is travelling is at all times given by Snell’s law

cos θ̃

cw
= const. (2.3)

Here, θ̃ is the propagation angle with respect to the horizontal (also known as the grazing
angle). This causes the propagation direction to always bend in the direction of lower
sound speed (Jensen et al., 2011).

The sound speed profile has been characterised by many researchers across the globe,
and some commonly featured layers have been identified (Jensen et al., 2011). Generally,
variation in the SSP is most complicated near the surface of the ocean. In the uppermost
layer of the ocean, known as the surface layer, the water is heated by the sun and
mixed by wind and waves. This typically causes the layer to have significant diurnal
variation, dependent on the local weather. In some cases, the temperature in the surface
layer becomes independent of depth. The processes causing this are not completely
understood, but it is believed that both thermal convection and mixing by wind and
waves take part (DeSanto, 1979). Isothermal surface layers are therefore often referred to
as the mixed layer (DeSanto, 1979). The speed of sound in the mixed layer will increase
with depth because of the dependence of cw on hydrostatic pressure. This positive
gradient in cw causes sound rays to be continuously refracted towards the surface, giving
rise to a surface duct where sound can be propagated over large distances with minimal
attenuation (Caruther, 1977).

Below the surface layer, there are typically two thermoclines. A thermocline is a layer
in which the temperature changes with depth. First, there is the seasonal thermocline,
in which, as the name indicates, the speed of sound is dependent on the season. In this
layer, the variation of cw with depth typically has a negative gradient. The layer is most
prominent in the summer and the autumn, when the shallow parts of the ocean are warm
(Urick, 1983). Below this follows the main thermocline. In this layer, the temperature
decreases with depth, independent of the season, and the speed of sound decreases to
a minimum. Finally, below the main thermocline is the deep isothermal layer. Here,
the temperature reaches a constant minimum value, determined by the thermodynamic
properties of seawater at great pressure. Therefore, the sound speed will again increase
with depth because of the dependence on hydrostatic pressure (Urick, 1983).

The combination of the main thermocline and the deep isothermal layer creates a duct
where sound is constantly refracted towards the minimum in the SSP. The refraction can
cause the sound rays to return to this axis without suffering from reflection losses at the
air-water interface nor the sea bottom, thus becoming trapped as if it was travelling in a
wave guide. This is known as the Sound Fixing and Ranging (SOFAR) channel (Leighton,
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1994). When sound propagates in the SOFAR channel, the refraction causes sound to
be concentrated at certain ranges. These areas are known as convergence zones and
are typically repeated every 40 km to 60 km along the SOFAR channel (White, 2015b).
For low frequency sound, which is subject to little absorption in the oceanic water, the
SOFAR channel can propagate sound through remarkable distances. Loud sounds placed
on the axis of the SOFAR channel have been shown to travel distances of thousands of
kilometers (Jensen et al., 2011). Scientists have hypothesised that certain mammals
utilize this phenomenon to communicate over great distances (Lerner, 2018).

2.1.2 Transmission loss in the ocean

Another important aspect of sound propagation in the ocean is how sound strength
changes with range. This can be quantified by transmission loss, TL, which is a measure
of sound intensity loss over a propagation distance, r, and is given by

TL = 10 log
[I(1)

I(r)

]
, (2.4)

where I(1) is the sound intensity at r = 1 m and I(r) is the sound intensity at some
distance r (Kinsler et al., 2000). Generally, transmission loss can be divided into three
parts; losses due to geometric spreading, losses due to volume scattering, and losses due
to absorption (Jensen et al., 2011).

Geometric spreading losses occur because the area over which the sound energy is
spread increases with range (Steele et al., 2009). In an open environment, such as a deep
ocean, one often assumes that the sound spreads spherically from the source. According
to White (2015a), if this was the only contributor to the attenuation, transmission loss
would be given as

TLgeometric = 20 log r. (2.5)

However, White (2015a) also points out that in shallow water, the sound spreading is
limited by reflections off the air-water surface and the bottom of the ocean. If the reflec-
tions are perfect and lossless, the spreading will be cylindrical, making the transmission
loss due to spreading

TLgeometric = 10 log10 r. (2.6)

While the model for spherical spreading will often over-estimate the transmission loss in
real oceans, the model for cylindrical spreading will, on the other hand, under-estimate
the losses. Therefore, transmission loss is often taken to be

TLgeometric = 15 log10 r, (2.7)

where the geometrical spreading is modelled in-between a spherical and cylindrical model,
which can be referred to as ‘semi-spherical geometric spreading’ (White, 2015a).

Losses due to scattering and absorption are generally described as one quantity, be-
cause it is inherently impossible to measure the two separately in the ocean. The trans-
mission loss due to scattering and absorption is given by

TLscat+ abs = αmr, (2.8)
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where αm is the total attenuation coefficient in dB m−1 (Medwin and Clay, 1998). Volume
scattering causes some of the sound energy to be spread in random directions, thus
causing the sound intensity in the direction of interest to be reduced. This occurs because
of roughness in the air - water surface and the bottom, or because of inhomogeneities
in the water, such as bubbles, particles, fish, and other biological matter (Kinsler et al.,
2000). The sound intensity is also reduced as absorption turns the energy into heat. This
dissipation occurs because of chemical relaxation and viscous losses, and the magnitude
of the absorption is dependent on frequency (Kinsler et al., 2000). An estimate of the
attenuation coefficient in sea water is given by

αkm =
[ 0.08

0.9 + f2
+

30

3000 + f2
+ 4× 10−4

]
f2, (2.9)

where f is the frequency in kHz and the dimensions of αkm are dB km−1 (Kinsler et al.,
2000). At f = 0.02 kHz, the attenuation becomes αkm = 0.002 dB km−1. In comparison
to sound propagation in air, attenuation in the ocean is remarkably low, especially at
low frequencies. Because of this, mammals are able to communicate over astonishingly
large distances, without the sound being attenuated to inaudible levels. Together, the
‘semi-spherical’ geometric spreading losses, scattering and absorption sum to the total
transmission loss

TL = 15 log10 r + αmr. (2.10)

This is henceforth referred to as the ‘semi-spherical transmission loss model’. This is
a simplistic model of transmission loss in real oceans, because it does not account for
environmental parameters such as bathymetry or reflection loss at the sea bottom. Yet,
the model is often used by scientist as a rough estimate of transmission loss (White,
2015a). It will therefore be used for comparison with the transmission loss modelled by
RAM.

The effect of transmission loss on the signal level of the mammal can be quantified
using the passive sonar equation, shown in equation 1.4. If equation 1.4 is rearranged to
give an expression for the transmission loss, it can be used to determine the maximum
transmission loss acceptable if the whale call is to be detected by the LoVe Observatory

TLmax = SL− (NL−DI)−DT. (2.11)

Together with a simulation of how transmission loss varies with range, this value can be
used to estimate the ranges from which a whale call can be detected.

The directivity of the hydrophone at the LoVe Observatory is assumed to be omni-
directional, making DI = 0 dB. This also assumes that the directivity of the whale calls
are ominidirectional, so that no array gain is added to the directivity of the receiver
(Kinsler et al., 2000). According to McDonald and Fox (1999b) when whale calls are to
be detected from passive recordings by a single hydrophone, like in the LoVe Observatory,
an appropriate choice is to require the signal-to-noise ratio (SNR) to be ≥ 1 (on a linear
scale). This will ensure that the whale call is distinguishable from the noise. This is the
same as a detection threshold of DT ≥ 0 dB, since DT = 10 log10(SNR) (Urick, 1983).
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In ocean acoustic modelling, the level of noise is often estimated from the Wenz’s curves,
which quantifies the noise level as a function of frequency at different levels of shipping
traffic and wind (Urick, 1983). However, the noise level at the LoVe Observatory has
been measured by Ødegaard (2015), who found that the noise levels at low frequencies
were significantly higher than those predicted by the Wenz’s curves. Ødegaard (2015)
plotted the noise spectrum level (NSL) of measurements made by the LoVe Observatory
at various wind states and levels of shipping noise. Noise spectrum level is related to
noise level as

NL = NSL+ 10 log10W, (2.12)

where W is the frequency bandwidth (White, 2015a). At 20 Hz, the lowest measured
NSL was recorded at an average wind speed of 3 m s−1, which gave NSL ≈ 60 Pa2 Hz−1.
The highest levels were obtained from the measurements with wind speed of 18 m s−1 and
the measurement with heavy shipping, which had similar values, at NSL ≈ 90 Pa2 Hz−1.
Taking the bandwidth to be 1 Hz, the range of potential values for the noise level at the
LoVe Observatory is thus

NLmax ≈ 90 dB re 1 µPa, (2.13)
NLmin ≈ 60 dB re 1 µPa. (2.14)

Of course, in an actual implementation of a density estimation algorithm at the LoVe
Observatory, the bandwidth of the receiver will be wider, thus making the values for
NL higher. Using the values laid out above, and equation 2.11, the maximum threshold
for the transmission loss allowable when Fin whale calls of SL = 180 dB re 1 µPa at 1 m
(Charif et al., 2002) are detectable at the LoVe Observatory was found to be

TLmax, high noise = 180 dB− (90 dB− 0 dB)− 0 dB = 90 dB, (2.15)

TLmax, low noise = 180 dB− (60 dB− 0 dB)− 0 dB = 120 dB. (2.16)

2.2 Bottom interaction

The extent to which the sound is interacting with the ocean floor is another deciding
factor in how the sound is spread. Typically, sound can propagate over large distances in
deep water without interacting with the bottom, due to upward refraction caused by the
gradient of the sound speed profile in the water. However, in some cases, and especially
in shallow water, reflection and attenuation by the sea floor is a crucial component of
the sound spreading (Jensen et al., 2011).

The ocean floor is a lossy boundary, and the amount of sound energy that is reflected
is dependent on the impedance difference between the sea water and the material of the
sea floor, as well as the incident angle of the sound (Hovem, 1978). The amount of sound
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energy that is reflected when the sound hits the ocean bottom can be quantified by the
pressure reflection coefficient, R, which is given by

R =

ρbcb
ρwcw

− cos θt
cos θi

ρbcb
ρwcw

+
cos θt
cos θi

. (2.17)

Here, cb is the compressional sound velocity in the bottom material, hereafter known as
the sound velocity, ρb is the density of the bottom material, ρw is the density of the sea
water, θi is the angle of the incident plane wave, and θt is the angle of the transmitted
plane wave (Kinsler et al., 2000). Both angles are defined with respect to the normal of
the sea bottom. In order to model reflection off of the bottom it is therefore necessary
to know the density and the sound velocity of the sea bottom. These properties are of
course dependent on the material composition of the sea floor.

2.2.1 Sediment composition classification

In most of the oceans, the top layer of the seabed is made of a loose layer of grainy
sediments. This material is often classified according to grain size, and a nomenclature
for the classification was first presented by Folk (1954). Based on the average grain
diameter Φ, in millimeters, he defines three main textures of marine sediments; gravel
(Φ > 2 mm), sand (0.0625 mm < Φ < 2 mm), and mud (Φ < 0.0625 mm). Mud is any
sediment smaller than 0.0625 mm, and includes both silt and clay. Folk then defines 15
textural groups, which are plotted in the ternary diagram in figure 2.1. As seen in the
figure, each texture group contains a specified amount of the three main textures of the
sediment; mud, sand, and gravel.

The Norwegian SOSI standard (Samordnet Opplegg for Stedfestet Informasjon. This
translates to Co-ordinated Scheme for Location Based Information) has also made a
nomenclature for the composition of common sediments (Geological Survey of Norway,
2015). This classification system is a modified version of the original definitions by Folk
(1954). Folk (1954) refers to a specific sediment, which is made up of a mix of several
textures, as a texture group. In the SOSI standard, on the other hand, this is named a
sediment type, which is the expression that will be used in this thesis. Some of the names
of sediment types bear names resembling the textures they are comprised of. Therefore,
to avoid confusion, whenever the name of a sediment type is used, it will be given the
special notation ‘Sediment type’, while names of textures are plainly notated, without
italic font and inverted commas. For example, ‘Mud ’ refers to the sediment type named
mud, which is composed of a mix of the textures mud, sand, and gravel.

The SOSI standard provides a product specification code (PSC), which is simply a
number corresponding to each sediment type, and a corresponding qualitative charac-
terisation of the sediment type, in Norwegian. Translations of these classifications are
provided by Mareano (2018). For clarity, the Norwegian nomenclature for sediment types,
the corresponding English translations, and the product specification codes are provided
in table A.1 in Appendix A. For each sediment type, Mareano (2018) also provides some
defining properties of the sediment compositions; the ratio of clay to silt, the ratio of
sand to silt and clay, percentage volume of clay and silt, percentage volume of sand, and
percentage volume of gravel.
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 relatively valueless in exact work and,
 lacking rigid definitions, they permit a
 different usage by each geologist and
 give rise to no end of disputes over the
 category in which a certain specimen
 belongs. The other extreme is a highly
 complex classification with dozens of
 pigeonholes, accompanied by pages of
 detailed instructions on the limits of the
 various classes and how they are to be
 used. Here the divisions become so small
 that they lose practical significance, and
 the burden of learning the categories and
 obeying the reams of instruction becomes
 so great that the classification passes

 into limbo.

 Notwithstanding these difficulties, if
 a classification is ever to become a preci-
 sion tool, it must have some degree of
 "complication"-i.e., a sufficient num-
 ber of subdivisions to be precise, with
 consistency in usage insured by a few
 simple rules. In the classification of an
 essentially continuous series (such as the
 grain size of sediments), all divisions are
 arbitrary; the boundaries used in the
 proposed classification unavoidably re-

 flect personal opinion, but it is hoped
 that they coincide closely with prevalent

 concepts.

 DEFINITION OF TEXTURAL GROUPS

 In brief, the basis of the proposed clas-
 sification is a triangular diagram on
 which are plotted the proportions of

 gravel (material coarser than 2 mm.),
 sand (material between 0.0625 and 2
 mm.), and mud (here defined as all ma-
 terial finer than 0.0625 mm., i.e., silt
 plus clay), as shown in figure la. De-
 pending on the relative proportions of

 these three constituents, fifteen major

 textural groups are defined--for ex-
 ample, sandy conglomerate, slightly

 conglomeratic mudstone, or sandstone

 (table 1).

 To place a specimen in one of the fif-
 teen major groups, only two properties

 need be determined: (1) how much grav-
 el (material coarser than 2 mm.) it con-
 tains-boundaries at 80, 30, 5 per cent,
 and a trace; and (2) the ratio of sand to
 mud (silt plus clay), with boundaries at
 9:1, 1:1, and 1:9.

 The proportion of gravel is in part a
 function of the highest current velocity
 at the time of deposition, together with
 the maximum grain size of the detritus
 that is available; hence even a minute

 GRAVEL

 FIG. la.-The fifteen major textural groups as
 defined by the relative percentages of gravel (ma-
 terial coarser than 2 mm.), sand (material between
 0.0625 and 2 mm.), and mud (silt plus clay material
 finer than 0.0625 mm.). Letters refer to textural
 names shown in table 1. Fields are defined by the
 percentage of gravel (shown on the left "leg" of the
 triangle) and the ratio of sand to mud (shown on
 the base). For expansion of the bottom, nongravelly
 tier into a sand-silt-clay triangle, see fig. lb.

 amount of gravel is highly significant.
 For this reason the gravel content is
 given major emphasis, and it is the first
 thing to determine in describing the
 specimen. This is best done on the out-
 crop by naked-eye examination, perhaps
 aided by a percentage comparison chart;
 thin sections and hand specimens com-
 monly give too small a sample to be rep-
 resentative of the gravel content. Using
 this scheme, a specimen containing more

 346
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A. Gravel
B. Sandy gravel
C. Muddy sandy gravel
D. Muddy gravel
E. Gravelly sand
F. Gravelly muddy sand
G. Gravelly mud
H. Slightly gravelly sand
I. Slightly gravelly

muddy sand
J. Slightly gravelly

sandy mud
K. Slightly gravelly mud
L. Sand
M. Muddy sand
N. Sandy mud
O. Mud

Figure 2.1: Ternary diagram defining the ratios of gravel, sand, and mud in the textural
groups defined by Folk (1954). The figure is taken and re-printed from Folk (1954). The
letters signify the textural group.

In addition, Mareano (2018) also specifes some limits for the grain size of the main
textural components of the sediment. These limits are reproduced in table 2.1. These
correspond well with the size definitions by Folk (1954), but notably include separate
definitions for clay and silt instead of mud. From the limits defined by Mareano (2018),
it is possible to define an average grain diameter, Φ, for each texture. The average grain
diameters are shown in table 2.1 and are calculated by simply taking the mean of the
two values of the limits of Φ. In the case of clay there is no lower limit, and the author
chose to take the diameter to be Φ = 0.0005 mm. And in the case of mud, the diameter
was taken to be the mean of the average grain size for silt and clay.

Sediment
texture

Defined grain
diameter, Φ (mm)

Average grain
diameter, Φ (mm)

Clay Φ< 0.002 0.0005
Silt 0.002< Φ < 0.063 0.0325
Mud – 0.0165
Sand 0.063< Φ < 2 1.0315
Gravel 2< Φ < 64 33.000

Table 2.1: The definitions of grain diameters for the sediment textures, given by Mareano
(2018), as well as the calculated average grain diameters.
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2.2.2 Models of the sediment

In coarse-grained sediments, the deformation experienced during the presence of a sound
wave is dominated by stiffness and friction between the particles. This means that the
sound velocity is higher than it is in water. On the other hand, in mud-sized sediments
the solid particles are suspended in the water, giving the material a high porosity and
a gel-like behaviour. In muds, the sound velocity is thus often lower than the speed
of sound in water. Of course, most naturally occurring sediments contain a mixture of
grain-sizes, making the prediction of the sound velocity from known properties of the
sediment challenging (Ballard and Lee, 2017). For example, in the mixture of clay and
sand, the concentration of clay merits different effects on the sound velocity. For low
concentrations, the clay lays in the pores between the sand grains, making the material
stiffer and the sound velocity higher. However, if the clay concentration exceeds 40 %,
the sand grains become suspended in the clay matrix, giving higher porosity and lowering
the sound velocity (Ballard and Lee, 2017). These intricate relations between sediment
composition and its geoacoustic properties have been subject to much discussion (Jackson
and Richardson, 2007; Hamilton, 1972), and prediction of the acoustic properties through
models of the material remain a complicated subject (Jensen et al., 2011).

In fact, in acoustic modelling of the ocean, the most limiting factor on the accuracy of
the model lies in the approximation of the geoacoustic properties of the seabed (Jensen
et al., 2011). This part of the model thus requires careful consideration. The sedimentary
layer is typically modelled as a fluid, even though it consist of solid grains of rock,
saturated with water (Jackson and Richardson, 2007). Although this means that the
modelled material will not have shear waves, this is most often a valid simplification
because the rigidity of the sediment is usually much lower than that of solid rock (Jensen
et al., 2011). However, due to the compound structure of the sedimentary material, which
consists of both solids and a fluid, the defining acoustic parameters must be characterized
for a volume large enough to contain many grains, yet smaller than the wavelength.
Therefore, the density of the sediment is given in terms of its bulk density, ρB, which is
the ratio of the total mass to the total volume of a small volume of the sediment. This
density takes into account the local density of the water, as

ρB = ηρw + (1− η)ρg, (2.18)

where η is the fractional porosity of the material and ρg is the density of the sediment
grains, and the density of the water inside the pores of the material is assumed to be
the same as the density of the water just above the sea floor (Jackson and Richardson,
2007).

Using a fluid approximation of the sediment, Wood and Weston (1964) proposed a
relationship between the physical properties of the compound material and the sound
velocity in the sediment. Wood’s equation has, however, been shown to underpredict the
velocity (Ballard and Lee, 2017). Gassmann (1951) tried to improve the model by taking
into account the elasticity of the sediment material. He presented a relationship between
sound velocity and measurable, physical properties of the sediment. The relationship has
been shown to be reliable, particularly when permeability is low. However, the equation
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requires many input parameters, many of which are very difficult to measure, rendering
the equation highly impractical (Jackson and Richardson, 2007).

If the top layer of the seabed does not consist of loose sediments, the underlying
rock will be exposed. In this case, the sediment must be modelled as an elastic or
poroelastic medium, and the fluid approximation described above is no longer applicable
(Jensen et al., 2011). The poroelastic sediment material consists of a poruous solid
matrix, saturated with the fluid seawater. Biot (1956) has formulated a model of the
acoustic propagation through such a porous material, which Biot describes to consist of a
porous ‘frame’ filled with the fluid. Biot theory is acclaimed for being able to model the
complexity of the composite material, with fluid motion relative to the solid frame. It
can be used to predict several geoacoustic properties, including the attenuation coefficient
and sound velocities. However, the drawback of the model is that it requires knowledge
of 13 parameters in order to fully describe the acoustic propagation in the material.
Some of these parameters, such as the pore size and bulk modulus of the frame, are
difficult to measure and often not known (Jackson and Richardson, 2007). Moreover, no
models have been found to fully describe the geoacoustic physics of the sediment, and
the inhomogeneous nature of typical sea-beds further complicates this matter (Ballard
and Lee, 2017).

Therefore, instead of using theoretical relationships to predict the sound velocity and
absorption coefficient, the preferred method is, according to Jackson and Richardson
(2007), to use empirically derived regressions. Hamilton and Bachman (1982) present a
set of regressions which can be used to predict the sound velocity in the sediment from its
fractional porosity, mean grain size, and bulk density. Porosity and grain size affect sound
velocity through altering the elasticity of the medium (Hamilton and Bachman, 1982).
The regressions are computed from both in situ and laboratory measurements made
from a total of 537 samples, all corrected to 23 ◦C and 1 atm pressure. The samples are
taken at various sites across several oceans and differing geological conditions. Bachman
(1989) later reviesed these relationships. He included more samples, originally published
in Bachman (1985), and gave regressional relationships between the measured physical
properties of the sediment and the velocity ratio, VR, where

VR =
cb

cw|z=Seafloor
. (2.19)

This is the ratio of the sediment velocity, cb, to the sound speed in the water just above the
seabed, here denoted as cw|z=Seafloor. This representation of the sediment sound velocity
is more practical than the original regressions by Hamilton and Bachman (1982), because
the sediment velocity can be calculated by simply multiplying VR by the in situ value
of cw just above the seafloor. This eliminates the need to correct the properties of the
sediment for in situ temperature and pressure conditions. According to Jackson and
Richardson (2007), these are the regressions which are most commonly used in acoustic
modelling of the ocean. The regressions by Bachman (1989) are



CHAPTER 2. THEORY Sigrid Husebø Øygard 29

VR = 1.296− 6.01× 10−2φ+ 2.83× 10−3φ2, (2.20)

VR = 1.675− 1.639× 10−2η + 9.762× 10−5η2, (2.21)

VR = 1.513− 8.224× 10−4ρB + 3.2249× 10−7ρB
2, (2.22)

where φ is the mean grain size in a unit commonly referred to as phi units. This is a
non-SI unit used specifically regarding the diameter size of sediment grains. According
to Hamilton and Bachman (1982), the unit phi is defined by the logarithm of the mean
grain diameter in millimeters, as

φ = − log2(Φ). (2.23)

Equation 2.20 to 2.22 give three separate relationships between VR and measurable prop-
erties of the sediment. The velocity ratio is of course dependent on all three of these
properties, but, unfortunately, a combined equation defining VR as a function of both
grain size, porosity, and bulk density of the sediment, has not been established. Jackson
and Richardson (2007) present a regressional relation between bulk density, in units of
g cm−3, and mean grain size

ρB = 2.17− 0.082φ. (2.24)

It should, however, be noted that the coefficient of determination of equation 2.24 is only
0.80. The coefficient is a statistic measure of the wellness of fit of the regression of the
data, and it is low due to a high degree of scatter in the data. This reflects the fact that
mean grain size is a poor indicator of the material properties, due to the effects of sorting;
how the particles are arranged with respect to one-another, known as sorting, can cause
large variability in porosity and density, and thus also the sound velocity, without being
reflected in the mean grain size (Jackson and Richardson, 2007).

It is also possible to predict the attenuation coefficient from empirical regressions. As
in water, the attenuation coefficient in sediments is dependent on frequency as well as
the material properties of the sediment. This relationship is often represented using the
material specific constant h, as

αm = hf l, (2.25)

where αm is expressed in dB m−1, l is a constant exponent, and f is expressed in kHz
(Hamilton, 1972). This assumes that the wavelength, λ, is

λ >> Φ. (2.26)

Otherwise, when λ is small in comparison with the grain diameter, attenuation becomes
proportional to the fourth power of frequency (Hamilton, 1972). Jackson and Richardson
(2007) give a regressional relationship between h and φ for all sediment types. However,
the coefficient of determination of this regression is low, indicating that attenuation
is poorly correlated with mean grain size. Secondly, Jackson and Richardson (2007)
claim that the regression might not be applicable at low frequencies, due to dispersion.
This is also supported by Biot theory, which predicts that velocity dispersion gives l =
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2 for frequencies below a material specific threshold (Jackson and Richardson, 2007).
However, according to Hamilton (1972), recent reviews of large numbers of laboratory
and field studies of attenuation in ocean sediments have indicated that velocity dispersion
is negligible. Using the reviews, Hamilton (1972) shows that the frequency exponent, l,
varies closely around 1 for a wide variety of sediment types and geological locations.

Moreover, Hamilton (1972) plots the variation in h with φ for the reviewed experi-
mental results. The plot shows several distinct regions; for coarse sediments h increases
gradually with φ, the slope of the variation then increases for medium coarse grains,
reaching a maximum around φ = 4.5. Then, h decreases with the square of φ, into
the region of fine silts and clays. This non-linear behaviour explains why the regression
by Jackson and Richardson (2007) found a low correlation between h and φ. Hamilton
(1972) then gives regressional relationships between h and φ in each distinct region;

h = 0.4556 + 0.2245φ, 0 < φ < 2.6, (2.27)
h = 0.1978 + 0.1245φ, 2.6 < φ < 4.5, (2.28)

h = 8.0399− 2.5228φ+ 0.20099φ2, 4.5 < φ < 6.0, (2.29)

h = 0.9431− 0.2041φ+ 0.0117φ2, 6.0 < φ < 9.5. (2.30)

Notably, the regressions only describe sediments with a grain size finer than or equal to
φ = 0, which is equivalent to Φ = 1 mm. In the region of coarse sands, Hamilton (1972)
points out that the plotted relationship might be obscured by the logarithmic nature of
φ, and he therefore also plots the relationship between h and Φ for coarse grain sizes.
From this plot, he extracts two more regressions;

h = 0.5374− 0.1113Φ, 0.6 mm < Φ < 0.167 mm, (2.31)
h = 0.8439− 1.9431Φ, 0.167 mm < Φ < 0.063 mm. (2.32)

In addition to the relationships between grain size and attenuation, Hamilton (1972) also
describes how attenuation is affected by porosity, grain shape, number of inter-particle
contacts, particle contact surface areas, and physiochemical forces between the particles.
He points out that because many of these properties are inter-related, the experimental
results of the variation of αm with a single parameter is bound to have a significant
amount of scatter. Moreover, the effects of temperature and pressure on attenuation
are not well documented (Jackson and Richardson, 2007). Despite these shortcomings,
the regressions shown in equations 2.27 to 2.32 might be the most applicable model of
attenuation in the sediment when more detailed quantitative information on the material
properties are lacking.
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2.3 The parabolic equation

Scanned by CamScanner

Figure 2.2: A coordinate system defining
the relation between the position coordin-
ates used in the parabolic equation.

In order to use the parabolic equation
method to simulate the transmission loss
in the ocean and in the bottom around
the LoVe Observatory, some simplifica-
tions must be made. Looking at the de-
rivation on the ‘Standard parabolic equa-
tion’ from the known 3D Helmholtz equa-
tion with time dependence exp (−2πift),
reveals some important assumptions. The
following derivation is taken from Jensen
et al. (2011), Chapter 6. The position
coordinates used in the parabolic equa-
tion are defined by the coordinate system
shown in figure 2.2. The figure is drawn
by the author, and, in general, all figures
in this thesis are made by the author un-
less another source is explicitly specified. Figure 2.2 shows that in relation to a standard
Cartesian coordinate system in terms of x, y, and z, θ is the angle around the z-axis,
given counter-clockwise from the y-axis. It gives the position of the r-axis, which is or-
thogonal to the z-axis. The r-axis gives the horizontal distance from the sound source.
The origo of the coordinate system is placed on the ocean surface, so that the position of
the sound source is (r = 0, z = zsource). The depth variable, z, is taken to be positively
increasing with depth.

Firstly, Jensen et al. (2011) assumes that the acoustic field has azimuthal symmetry,
making it independent of θ, thus reducing the constant-density Helmholtz equation to

∂2p

∂r2
+

1

r

∂p

∂r
+
∂2p

∂z2
+ k20n

2p = 0, (2.33)

where p is the acoustic pressure, n is the index of refraction, given by n =
c0
c
, and k0 is

a reference wave number. It is given by

k0 =
2πf

c0
. (2.34)

Here, c0 is a normalization sound speed (Tappert, 1977). According to Tappert (1977),
an appropriate choice of c0, to minimize the error in the described sound field, is to
let c0 equal the speed of sound in the water at the position and depth of the sound
source, and this is adhered to throughout this study. Equation 2.33 describes the 3D
sound propagation in an axisymmetric environment. The density is also assumed to be
independent of z. Its solution is assumed to take the form

p(r, z) = ψ(r, z)H0
(1)(k0r), (2.35)
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where H0
(1) is the Hankel function of the first kind and zeroth order, and ψ is an envelope

function. By assuming that
k0r >> 1 (2.36)

which means that the solution describes a wave in the far-field, the Hankel function is
replaced by its asymptotic form;

H0
(1)(k0r) ≈

√
2

πk0r
ei(k0r−

π
4
). (2.37)

This leads to the ‘Simplified elliptic wave equation’

∂2ψ

∂r2
+ 2ik0

∂ψ

∂r
+
∂2ψ

∂z2
+ k20(n2 − 1)ψ = 0. (2.38)

The parabloic equation was frist applied to underwater acoustics by Hardin and
Tappert (1973). They introduced the ‘Standard parabolic equation’

2ik0
∂ψ

∂r
+
∂2ψ

∂z2
+ k20(n2 − 1)ψ = 0, (2.39)

which can be solved using the efficient split-step Fourier technique. This solution will be
discussed further in section 2.4. In their derivation of equation 2.39, Hardin and Tappert

(1973) neglected the term
∂2ψ

∂r2
. This assumption caused the equation to become one-way,

thus neglecting any back-scattered sound. Moreover, the assumption caused a restriction
similar to applying a small-angle paraxial approximation. Because of this approximation,
the solutions were only accurate for propagation angles within ±(10° − 15°) from the
horizontal (Jensen et al., 2011).

Significant effort has been spent on making the parabolic equation more accurate at
more wide angles. This was initiated at a workshop on parabolic equations by the Naval
Ocean Research and Development Activity (Davis et al., 1982). The workshop developed
a parabolic equation based on an operator formalism. Following the presentation of the
workshop’s findings by Jensen et al. (2011) reveals some further noteworthy assumptions.
Firstly, Davis et al. (1982) defined the operators

P =
∂

∂r
, Q =

√
n2 +

1

k0
2

∂2

∂z2
, (2.40)

where Q is known as the square-root operator. Using these operators, equation 2.38 was
written on the form

[P 2 + 2ik0P + k20(Q− 1)]ψ = 0. (2.41)

This enabled factorization of equation 2.38 into an outgoing and an incoming wave;

(P + ik0 − ik0Q)(P + ik0 + ik0Q)ψ − ik0[P,Q]ψ = 0, (2.42)
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where P 2 =
∂2

∂r2
and [P,Q] is the commutator of the operators P and Q. Notably, this

is assumed to be negligible, so that

[P,Q] = 0. (2.43)

This is only accurate when n is independent of r. This simplification thus means that the
properties of the medium are assumed to vary slowly with range. Finally, by selecting
only the outgoing part of equation 2.42, shown in the first bracket, and assuming that
backscattering is negligible the ‘one-way, general parabolic wave equation’ takes the form

∂ψ

∂r
= ik0

(√
n2 +

1

k0
2

∂2

∂z2
− 1

)
ψ. (2.44)

The far-field assumption and the assumption that [P,Q] = 0 will introduce errors if
the variations in physical properties with r are too great, and equation 2.44 is therefore
said to be ‘weakly’ range dependent (Jensen et al., 2011). This equation forms the basis
for several formulations of solutions to the parabolic equation, each with its own attempt
at minimizing the errors introduced by the aforementioned assumptions, and handling
the challenges in numeric implementation and other limitations.

Many of the solutions to equation 2.44 are based on an approximation of the square-
root operator. It is commonly written on the form

Q =
√

1 + q (2.45)

where the operator q is an abbreviation for

q = n2 − 1 +
1

k20

∂2

∂z2
. (2.46)

The most basic of these approximations is a Taylor series expansion

√
1 + q ' 1 +

q

2
− q2

8
+
q4

16
+ ... (2.47)

If only the first order terms are included, this expansion results in Hardin and Tappert’s
‘Standard parabolic equation’, shown in equation 2.39 (Jensen et al., 2011). The local
error in the sound field caused by the approximation of Q was investigated by Tappert
(1977). He abbreviated q as

q = ε+ µ, (2.48)

where ε = n2 − 1 and µ = k−20

∂2

∂z2
. According to Tappert (1977), when the operator µ

is applied to Ψ, its physical meaning can be interpreted as the angle of propagation with

respect to the horizontal, since
∂Ψ

∂z
is the vertical wave number. Tappert (1977) found

that to make the local error small the norm of the operators ε and µ had to be small, or
in other words, || ε ||� 1 and || µ ||� 1. In typical seawater, making || ε || small is not a
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problem, since n2−1 =
c20
c2
−1 and cw(z) typically only varies by a few percent along the

water column. On the other hand, requiring that || µ ||� 1 can impose some restrictions
on the use of the parabolic equation. Tappert (1977) found that in order to satisfy the
condition, the angle of propagation with respect to the horizontal had to be limited.

The inclusion of more terms in the Taylor expansion will give better wide-angle ac-
curacy, but the numerical implementation of this is difficult, since the operator q is
higher-order. Therefore, several authors, including Green (1982) and Claerbout (1985),
have investigated other linear approximations of Q that can improve the aperture lim-
itations of Hardin and Tappert’s original solution. These approximations, commonly
referred to as ‘wide-angle parabolic equations’ use rational functions on the form√

1 + q ' a0 + a1q

b0 + b1q
, (2.49)

where the coefficients a0, a1, b0, and b1 are chosen to minimize the error over the desired
angle interval (Jensen et al., 2011). Although these approximations have been found to
be significantly more accurate than Hardin and Tappert’s‘Standard parabolic equation’
(Collins and Evans, 1992), the ‘wide-angle parabolic equations’ cannot handle propaga-
tion much larger than 40° from the horizontal (Collins, 1989a). According to Jensen et al.
(2011), significant effort has therefore been spent in order to formulate higher-order ap-
proximations to the square-root operator which are both numerically viable and accurate
at higher propagation angles.

One of these higher-order approximations is the Padé series approximation proposed
by Bamberger et al. (1988). They approximated the square root operator as

√
1 + q = 1 +

m∑
j=1

aj,mq

1 + bj,mq
, (2.50)

where m is the number of included terms, and aj,m and bj,m, are coefficients given by

aj,m =
2

2m+ 1
sin2

( jπ

2m+ 1

)
, (2.51)

bj,m = cos2
( jπ

2m+ 1

)
. (2.52)

The Padé series approximation was first implemented by Collins (1989a) and has been
shown to be completely accurate for range-independent media (Collins and Westwood,
1991). This means that the wide-angle local errors associated with the approximation
of Q are completely eliminated, and only the assumptions given in equations 2.36 and
2.43, as well as the assumption of azimuthal symmetry and that sound only propagates
in one direction need to be considered when the equation is applied to range-dependent
media. Moreover, for realistic ocean environments with range dependent properties, the
approximation can be accurate at all propagation angles by including enough terms in
the summation in equation 2.50 (Jensen et al., 2011). In fact, Collins (1989a) has shown
that m = 5 is sufficient for most environments. Collins (1990) has compared the solution
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of the parabolic equation using the Padé approximation with conventional normal mode
solutions for a number of different test cases. He found that the Padé approximation
agrees with the reference solution both for propagation at nearly ±90° and for problems
involving large variations in sound speed. During the comparison of the two techniques,
Collins (1990) also comments on the inefficiency of spectral decomposition methods such
as normal mode solutions. The run times required to simulate the pressure field at several
receiver depths were found to be more than 10 times more than the run time required
for one receiver. Therefore, normal mode solutions are not favourable when simulating
the transmission loss at many positions. Currently, the Padé approximation is one of
the most advanced and accurate techniques that can be used to transform the parabolic
equation into a solvable differential equation.

2.4 Solutions to the parabolic equation

After having established a solvable differential equation by approximating the square-root
operator using equations 2.50 to 2.52, the one way, general parabolic equation, shown in
equation 2.44, can be solved. Several solution methods exists, and the most commonly
used techniques are the split-step Fourier technique and finite difference or finite element
techniques. As shall be laid out here, the methods vary in efficiency and how well they
handle bottom-interaction. As the name implies, the split-step Fourier technique is based
on fast Fourier transform of the parabolic equation. It is called ‘split-step’ because the
solution is advanced in two distinct stages. Firstly, the solution is advanced through
the medium as if its density and sound speed were homogeneous, thus accounting for
diffraction effects only. Then, the second step includes the range-dependent effects of
refraction (Jensen et al., 2011). The method allows large steps in ∆r and ∆z and
is popular due to its efficiency (Collins, 1993). On the other hand, in a comparison
between algorithms for solving the parabolic equation, Collins et al. (1996) found that
the split-step Fourier technique is limited by the local errors associated with wide-angle
propagation, and is only reliable when the energy propagates close to the horizontal and
when there is little variation in c. Moreover, Collins et al. (1996) found that the technique
does not handle discontinuities in density well, for example at the water-bottom interface.
If such discontinuities are to be described accurately, the split-step technique requires an
excessively fine computational grid, which effectively eliminates its advantage in efficiency
(Jensen et al., 2011). Therefore, the technique is most commonly applied to long-range,
narrow angle problems (Jensen et al., 2011). Yet, the main disadvantage of the split-step
Fourier technique is that out of the approximations described in section 2.3, only the
linear Taylor series expansion, shown in equation 2.47, can be used together with the
split-step Fourier technique (Jensen et al., 2011). As previously explained, this is not
the most accurate approximation of Q, and the applicability of the split-step Fourier
technique is thus rather limited, despite its efficiency.

Finite difference and finite element techniques can also be used to solve equation
2.44, and these are generally more universally applicable. After approximating Q using
any technique, the parabolic equation can be solved using conventional finite difference
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techniques, such as the Cranck-Nicolson scheme (Jensen et al., 2011). In the algorithm
comparison by Collins et al. (1996), they found that these techniques are applicable to
wide-angled propagation, to media with large property variations, as well as problems
involving much interaction with elastic and poroelastic sediments. The problem with
finite difference and finite element methods is that they tend to require finer computa-
tional grids than split-step Fourier algorithms and are therefore significantly less efficient
(Collins, 1993).

More recently, a new solution technique has dramatically improved the capabilities
of the parabolic equations for underwater sound propagation. The new split-step Padé
technique by Collins (1993) is based on the aforementioned Padé series approximation
by Bamberger et al. (1988). It provides both the efficiency of the split-step Fourier
technique, as well as the universal applicability of the finite difference technique (Collins
et al., 1996). The split-step Padé solution is applied to an alternative formulation of the
‘one-way, general parabolic wave equation’, previously shown in equation 2.44. To derive
the equation, Collins (1993) starts with the wave equation with depth dependent density

∂2p

∂r2
+ ρ

∂

∂z

(1

ρ

∂p

∂z

)
+ k2p = 0. (2.53)

Here, k is the wave number, given by
2π

λ
and inherent in the equation lies the assump-

tion that the sound field is in the far-field. Collins (1993) then applies the same methods
that were used in the derivation of equation 2.44, laid out in section 2.3. This includes
preforming a factorization equivalent to equation 2.42, by assuming that that backscat-
tering is negligible and that n is independent of r. The latter effectively means that k
is assumed independent of r, since k = k0n. Finally, Collins (1993) also assumes that
ρ is independent of r. This results in Collins’s version of the one-way, general parabolic
equation;

∂p

∂r
= ik0

√
1 + q∗ p, (2.54)

where q∗ is a new variant of the operator q and is given by

q∗ =
1

k20

(
ρ
∂

∂z

1

ρ

∂

∂z
+ k2 − k20

)
. (2.55)

Collins (1993) then assumes that the solution to equation 2.54 has the form

p(r + ∆r) = exp
[
ik0∆r

√
1 + q∗

]
p(r), (2.56)

where ∆r is a discrete range step. Notably, ‘marching’ of the solution from one radial
position to the next, determined by ∆r, enables updating of the values of k and ρ with
range, even though they have been assumed not to depend on radial position. Collins
(1993) thereby incorporates weak range dependence in the parabolic equation. Now,
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instead of approximating only the square-root operator
√

1 + q∗, Collins applies a Padé
approximation to the entire exponential part of equation 2.56, so that

exp
[
ik0∆r

√
1 + q∗

]
' 1 +

m∑
j=1

aj,mq
∗

1 + bj,mq∗
, (2.57)

where the coefficients aj,m and bj,m are again given by equation 2.51 and 2.52. This leads
to a differential equation that can be solved efficiently by repeatedly solving a tridiagonal
system of equations, using for example a Gaussian elimination scheme (Collins, 1990).
This solution algorithm has been shown to be valid for very wide propagation angles
and for media with large variations in properties (Collins et al., 1996). In Collins et al.’s
(1996) comparison between parabolic equation solution algorithms, he found the split-
step Padé algorithm to be up to two orders of magnitude more efficient than a reference
finite difference algorithm, and at least as efficient as the split-step Fourier algorithm.
Collins et al. (1996) present some benchmark cases comparing the results of both the split-
step Fourier algorithm and the split-step Padé algorithm to the reference finite difference
algorithm. According to Collins et al. (1996), these cases showed that the split-Step
Fourier algorithm caused some numerical errors at large ranges, while the split-step Padé
algorithm was accurate. Approximating and solving the parabolic equation using the
split-step Padé algorithm is thus preferable with regards to both efficiency and accuracy.

2.5 The Range-dependent Acoustic Model (RAM)

The split-step Padé algorithm has been implemented by Collins (2001) in an open source
Fortran code called the ‘Range-dependent Acoustic Model’ (RAM). The algorithm is
available for download at The Ocean Acoustics library by U.S. Office of Naval Research
(1999), and according to Jensen et al. (2001), it is considered the most efficient parabolic
equation algorithm for solving range-dependent ocean acoustic problems. After using
the split-step Padé method to solve the parabolic equation, RAM computes the trans-
mission loss as a function of r and z from the specified source position, and returns the
transmission loss values to the user.

Since the split-step Padé technique was first proposed by Bamberger et al. (1988),
several improvements to the technique have been developed. Collins (2001) has imple-
mented three main improvements in RAM: a novel tridiagonal equation solver, energy
conservation corrections, and taken steps to make the algorithm more stable. The tri-
diagonal solver used in RAM uses the method of alternating directions (Collins, 1989a).
This means that to eliminate entries, the solver sweeps down from the main diagonal to
the matrix row describing the sea bottom, and it sweeps up to the sea bottom from the
other direction, before back substitution. The solver thus minimizes the required num-
ber of operations for range-dependent problems, making it more efficient than Gaussian
elimination, which only sweeps in one direction (Collins, 1990). By implementing this
improvement, the split-step Padé algorithm has been shown to be more than 2 orders
of magnitude faster than finite difference solutions to wide-angle parabolic equations
(Collins, 1993).
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The second improvement made in RAM concerns energy conservation, which is a
known issue in parabolic equation modelling. Most implementations of parabolic equa-
tions face the fundamental problem of energy conservation at sloping bottoms (Jensen
et al., 2011). The slopes are modelled as discrete stair steps. Equation 2.54 contains two
derivatives with respect to z, meaning that both continuity of pressure and continuity of
the normal component of particle velocity can be applied on the horizontal parts of the
stair step. On the other hand, equation 2.54 only contains one derivative with respect to
r, and only one of the boundary conditions can therefore be applied to the vertical part
of the stair step (Collins and Westwood, 1991). In result, the energy is not conserved
at all boundaries. To investigate the effects of this, Jensen and Ferla (1989) presented
a number of benchmark problems involving a penetrable sloping bottom, and compared
the results of a parabolic equation model with that of a complete two-way normal mode
solution. They found that the lack of energy conservation can lead to errors of a few
decibels for slopes of only a few degrees. For sound travelling up-slope, energy is lost,
while for sound travelling down-slope, energy is gained (Jensen et al., 2011). To combat
this issue, in RAM, Collins (2001) has opted to conserve the quantity p√

ρ
k

across the

vertical part of the stair step, instead of the more conventional conservation of pressure.
This mitigates the issue of energy conservation, since the preserved quantity incorpor-
ates the impedance difference between the two bordering media. Collins and Westwood
(1991) have validated this in a comparison between the split-step Padé algorithm with
the proposed energy-conservation correction, and a very accurate complex ray model.

To implement the energy-conservation correction in RAM, Collins (1990) makes the
substitution

p̃ = p

√
k

ρ
. (2.58)

Following the derivation of equation 2.54, but using the alternative dependent variable
p̃, Collins (1990) then finds that the resulting depth operator is

q̃ =
1

k20

[
ρ

√
k

ρ

∂

∂z

√
ρ

k
+ k2 − k20

]
. (2.59)

RAM then solves the parabolic equation

∂p̃

∂r
= ik0

√
1 + q̃ p̃ (2.60)

for the moderated dependent variable p̃ by assuming a solution of the form shown in
equation 2.56. The final solution used in RAM thus becomes

p̃(r + ∆r) = exp
[
ik0∆r

√
1 + q̃

]
p̃(r). (2.61)

The drawback to the energy conservation correction is that Collins and Westwood
(1991) have found that it causes Gibbs’ oscillations in the solutions. Gibbs’ oscilla-
tions are high-frequency ripples that are synthetically introduced to the solution to the
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split-step Padé algorithm when the discontinuities in the solution are inverse Fourier-
transformed into the time-domain (Radaelli-Sanchez and Baraniuk, 2007). To eliminate
these oscillations, it is necessary to use complex Padé coefficients, instead of the real
coefficients proposed in equation 2.51 and 2.52. This method, first described by Wetton
and Brooke (1990) and further developed by Collins (1991), introduces a small artificial
attenuation that filters out the Gibbs’ oscillations (Collins and Westwood, 1991). The
complex Padé coefficients are chosen by imposing constraints on accuracy and stability.
In RAM the constraints are that 2m − ns derivatives of the rational function shown in
equation 2.57 are correct at q̃ = 0, and that the rational function is annihilated at ns
points in the evanescent region. Here, ns is a stability parameter chosen by the user.
These constraints ensure accuracy in the propagation of the energy at the reference wave
number, k0, and it ensures that evanescent modes decay quickly with range (Collins,
1991, 1993). The Padé coefficents used in RAM are calculated by formulating nonlinear
equations imposing the constraints and using a stabilized Newton method, detailed in
Collins and Evans (1992). If the user of RAM does not want to include the artificial at-
tenuation inherent in the complex Padé coefficients, it is possible to turn off the stability
restrictions at any range, specified by the user as rs (Collins, 2001).

The split-step Padé algorithm computes the sound field at a computational grid
defined by the user of RAM. The grid is discrete, and the steps between the evaluation
points are defined by ∆r and ∆z. As seen in equation 2.61, the solution to the parabolic
equation is defined at discrete values in range by the inclusion of ∆r. However, the
derivative with respect to z, included in q̃ is continuous. It is therefore necessary to
discretize the depth operator before equation 2.61 can be applied. In RAM this is done
by employing Galerkin’s method, which is described in detail in Collins (1989a). Finally,
to apply equation 2.61, some initial conditions must be specified. In RAM, the sound
field is initiated by a self-starter modelling a point source in cylindrical geometry (Collins,
2001). The source is placed at r = 0 and some user specified depth zsource. Details on
the derivation of this self-starter from the normal mode solution of the wave equation,
as well as validation of this method by comparison with a full normal mode solution, are
described by Collins (1992).

2.6 Running RAM

Running RAM requires input of a number of parameters from the user, in a specific
format. Four main categories of input parameters are needed; model parameters, ba-
thymetry, geoacoustic properties of the seabed, and sound speed profiles. The model
parameters include user decided scalar numbers, such as frequency, source depth, the
discrete step-sizes ∆z and ∆r, the maximum range of the computed field, the number
of Padé coefficients, m, the stability parameter, ns, and the range at which the stability
restrictions are turned off, rs. The choices for these parameters are laid out in section 4.1.

The bathymetry is specified as zb, the depth beneath sea-level, at discrete positions
of range, rb. At each of the specified zb depths, RAM imposes the appropriate boundary
conditions so that sound is both reflected off the seabed and transmitted into the sedi-
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ment, depending on the impedance difference between the water and the sediment. The
seabed, which is modelled as a single layer of sediment, is described by three properties:
its sound velocity, attenuation coefficient, and density, all of which must be specified
by the user. For the seawater, on the other hand, the user only needs to specify one
property: the sound speed profile. RAM takes the density of the water to be a constant
at ρw = 1 g cm−3 and the attenuation is assumed to be negligible (Collins, 2001). How
the sound speed varies with depth is described by the user as cw at discrete intervals
of z. RAM linearly interpolates the value of cw between subsequent entries. However,
RAM does not extrapolate the value of cw beyond the deepest user specified value. This
means that if the user does not specify the value of cw all the way down to the sea floor,
cw is taken to be constant with z from its deepest specified value until z = zb (Collins,
2001). At each position in r, RAM uses the value of zb to determine at what depth to
stop treating the medium as water and start treating it as sediment. Theoretically, this
can be expressed as

c =

{
cw, z < zb,

cb, z > zb,
(2.62)

ρ =

{
ρw = 1 g cm−3, z < zb,

ρb, z > zb,
(2.63)

αλ =

{
αλ,w = 0 dB/λ, z < zb,

αλ, b, z > zb.
(2.64)

Together, the sound speed, c, the density, ρ, and the attenuation coefficient, αλ are
known as the environmental parameters of the modelled domain, and the subscripts w
and b denote that the parameters describe the water and the bottom, respectively. In
RAM, the attenuation coefficient αλ is expressed in units of dB/λ. Conversion to αλ
from the previously defined attenuation coefficient in units of dB m−1, αm, can be done
by simply multiplying αm by λ. This can also be expressed as

αλ = αm
c

f
. (2.65)

The sound speed in the water and in the sediment is included in the parabolic equation
through the wave number, k, seen in the modified depth operator q̃, in equation 2.59.
Attenuation is also incorporated in the wave number, by making it complex. Collins
(2001) thus expresses the wavenumber as

k =
2πf

c

(
1 + i

αλ
40π log10 e

)
. (2.66)

As previously mentioned, ρ and k (and thereby also c and αλ) are assumed to be
independent of r in the parabolic equation 2.60 which is implemented in RAM. However,
RAM still allows for these parameters to be changed with range, by updating their values
at some user specified ranges. The modelled domain can thus be thought of as having
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been divided into a number of discrete blocks, as illustrated in figure 2.3. Within each
block, the values of c, ρ and αλ are kept constant, while the bathymetry can vary. The
solution algorithm is ‘marched’ forward in steps of ∆r, and when it reaches the transition
from one block to the next, the values of c, ρ and αλ are updated. The length from one
block to the next is specified by the user, and should be at least ≥ ∆r. How often new
blocks are created is of course dependent on how the environmental parameters vary with
range in reality at the specific modelled location. How the range blocks are designed will
be discussed further in section 4.3. The environmental parameters of each block, and
the ranges for beginning of new blocks are all specified by the user in a text-file called
ram.in. The file is written in a specific format, so that RAM can locate each variable at
a specific row in the text file. An example of the file format can be seen in the appendix
of Collins (2001).

Figure 2.3: An illustration of how the environmental parameters c, ρ and αλ are constant
within each block, while zb changes discretely with r.

It has been shown that the parabolic equation satisfies the principle of reciprocity
(Nghiem-Phu and Tappert, 1985), and it is therefore commonly adopted by users of
RAM (Jensen et al., 2011) because it simplifies simulation of transmission loss from
several receiver positions. By placing the source at the position of the receiver when
using RAM and then applying reciprocity when interpreting the simulation results, a
single run of RAM will produce the transmission loss between sources at any position in
a r-z-plane and the receiver. If the simulations were to be preformed without utilizing
reciprocity, an individual RAM simulation would have had to be run for each investigated
source position. The principle of reciprocity will therefore be applied for all simulations
performed in this study. Because of this, the origo of the coordinate system defined in
figure 2.2 is moved from the previously defined placement above the sound source to now
lie above the receiver.

Due to the assumption of azimuthal symmetry in the Helmholtz equation, discussed in
section 2.3, RAM is a 3D axisymmetric model. This entails that while range dependence
and depth dependence of the environmental parameters are included in the model, these
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parameters are taken to be constant with θ for each simulation. Therefore, in order
to capture how the sound transmission is affected by the actual 3D variation of the
environmental parameters, the volume around the LoVe Observatory has to be divided
into a number of r-z planes and RAM is used to simulate the transmission loss between
the LoVe Observatory and all positions in each plane. These planes are henceforth
referred to as ‘transects’ and the direction of a transect is defined by θ. The transects
are placed around the observatory in a fan-like structure, originating at (r = 0, z = 0),
and each transect is separated by an angle θ. This way of dividing up the volume into
transects is commonly used in axisymmetric models of sound propagation, and is often
referred to as a Nx2D-model, where N is the number of transects (Jensen et al., 2011).
An example of a transect running from the LoVe Observatory straight out of the Hola
valley is introduced in figure 4.3. RAM is used to simulate the transmission loss in N
number of r-z planes, and together these simulated planes may be used to interpret how
transmission loss varies in the whole 3D volume. Of course, these results are limited
in that the θ-coupling term in the parabolic equation is ignored. This means that any
effects caused by horizontal variation in the environmental properties are neglected. This
includes horizontal refraction due to variation in cw with θ, horizontal diffraction effects,
as well as scattering and reflections in any other direction than those parallel to the
modelled transect.
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Chapter 3

Environmental parameters

Simulations of the transmission loss in the Lofoten-Vesterålen basin were based on known
oceanographic properties of the area, including depth of the bathymetry, the speed of
sound, and the physical properties of the sea floor. It is not within the scope of this study
to measure these data, and they have instead been gathered from or calculated from data
in known databases, or otherwise decided upon based on literature. The sources of the
data, and the way in which they are processed before they are utilized in the simulations,
will be laid out in sections 3.1 - 3.3.

3.1 Bathymetry

The bathymetry around the listening position was acquired from Kartverket (2018a;
2018b) and the General Bathymetric Chart of the Oceans by British Oceanographic
Data Centre (2018). Kartverket has mapped the bathymetry along the coast of Norway.
Within 12 nautical miles from the coast, the resolution is limited to 50 m x 50 m, due to
restrictions imposed by the Norwegian military authorities (Kartverket, 2018c). Part of
the area of interest lays within this classified region. The bathymetry in this region has
been downloaded from the database Depth data 50 m grid, accessed through Kartverket
(2018a). For areas outside the military restriction, the bathymetry has been downloaded
from the database Sea terrain models DTM 5, accessed at Kartverket (2018b), which has
a resolution of 5 m x 5 m. Beyond the region mapped by Kartverket, the bathymetry
has been downloaded from British Oceanographic Data Centre (2018). It provides a
coarse bathymetric data set covering the whole world. The data have a resolution of 30
arc seconds in degrees longitude and latitude. In the area around the listening position,
this translates to a resolution of approximately 929 meters North and 325 meters East,
calculated using the m_ll2xy function by Pawlowicz (2018). Before the TL simulations
were performed, it was not known how far from the shoreline bathymetric data would be
needed. Therefore, the whole Greenland sea and the whole Lofoten basin was downloaded
pre-emptively, as an overestimate of the needed range. The downloaded data are shown
in figure 3.1.

These two databases from Kartverket both provide the bathymetry data in ASCII
XYZ format, using Universal Transverse Mercator coordinate system (UTM) sone 33
(U.S. Geological Survey, 1997). Kartverket (2018b) provided the data in cells with di-
mensions of 0.5° latitude and 0.5° longitude. 13 such cells were downloaded, and some of



CHAPTER 3. ENVIRONMENTAL PARAMETERS Sigrid Husebø Øygard 44

these cells partly overlapped with the 50 m grid data set. The data from British Ocean-
ographic Data Centre (2018) was provided in netCDF format in longitude and latitude
coordinates.

In order to combine all the downloaded data sets into one, it was first necessary to
choose a common coordinate system. Coordinates of longitude and latitude is preferable,
because the UTM coordinate system, although it uses easily understood units of meters,
is prone to errors when the map covers a large area. Therefore, the two data sets from
Kartverket were converted to units of longitude and latitude. Then, the three data sets
were combined into one by removing overlapping areas. The borders between the data
sets were not straight lines, so care was taken to define the vertices of the overlapping
areas by hand, by graphing the coordinates of both data sets and using MatLab’s impoly
-function. Once the overlapping area had been defined, the data with lower resolution
was removed from each area. Figure 3.1 shows which areas ended up being taken from
which data set. Due to the excessive computational capacity needed to process the format
and the large number of samples in the bathymetry data from Kartverket, this has not
been used to produce any visualisation of the bathymetry in this thesis. Instead, the
bathymetry data presented in figure 3.1, and in all figures including bathymetry

(a)

Figure 3.1: Contour maps of the downloaded bathymetry data, with hatching indicating
the resolution of the area. The data downloaded from Kartverket (2018b) and Kartverket
(2018a) have 5 m x 5 m and 50 m x 50 m resolution, respectively. The unhatched areas
are downloaded from British Oceanographic Data Centre (2018). Figure (b) shows the
entire area, and figure (a) shows the insert marked by the red box in figure (b).
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(b)

Figure 3.1: (Continued) Contour maps of the downloaded bathymetry data, with hatch-
ing indicating the resolution of the area. The data downloaded from Kartverket (2018b)
and Kartverket (2018a) have 5 m x 5 m and 50 m x 50 m resolution, respectively. The
unhatched areas are downloaded from British Oceanographic Data Centre (2018). Fig-
ure (b) shows the entire area, and figure (a) shows the insert marked by the red box in
figure (b).

contours henceforth, has been acquired from British Oceanographic Data Centre (2018).
Using this data for visualization, instead of the more detailed data from Kartverket, will
not affect the reader’s understanding of the data, due to how large the visualized areas
are in comparison with the resolution. Unless otherwise specified, all maps are made by
the author in MatLab, partly using the m_map package by Pawlowicz (2018).

The combined bathymetry data sets were used to compute an interpolant structure
using MatLab’s scatteredInterpolant-function. It was calculated using linear inter-
polation between the sample points. The interpolant, F , is used by the model tools to
evaluate the interpolated bathymetry depth at any position, as

zinterp = F (Θ, ϕ), (3.1)

where (Θ, ϕ) are coordinates of longitude and latitude. A summary of the processes
performed to convert the downloaded bathymetry data to a parameter usable in the
model tools is shown in the process diagram in figure 3.2. In the diagram, objects are
defined in rectangular boxes, processes are described in diamond shaped boxes, and use
of scripts are described in rectangular boxes with round ends. This convention has also
been adopted in all process diagrams to come.
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          Model tool parameters                                              

          Downloaded                                              Kartverket (2018a) Kartverket (2018b)

British 
Oceanographic 

Data Centre 
(2018)

Combine by 
identifying verticies 

by hand

Convert to UTM
coordinates

F (? , ?)   

ScatteredInterpolant
by MatLab

Read ASCII XYZ 
format

Read netCDF 
format

Figure 3.2: A process diagram summarizing how the downloaded bathymetric data was
converted to the model tool parameter F (Θ, ϕ). The box shapes denote parameters as
2, processes as 3 and scripts as ⊂⊃.



CHAPTER 3. ENVIRONMENTAL PARAMETERS Sigrid Husebø Øygard 47

The bathymetry close to the LoVe Observatory is shown in figure 3.3. Here, one can
clearly see that the bathymetric data, as expected, includes the semi-shallow Hola valley,
the drop down from the continental shelf to the Lofoten Basin, and the Egga bank and
the Vesterålen bank to the south and to the north of the valley.

Figure 3.3: The bathymetry in the area surrounding the LoVe Observatory, with some
of the prominent geographical regions annotated on the map.

3.2 Sound speed profiles

The sound speed can be calculated from measurements of the ocean temperature, salinity
and depth, as seen in equation 2.2. These variables, which together are known as con-
ductivity, temperature, and depth (CTD) measurements, are often measured by various
research vessels and monitoring buoys and used for for example oceanographic and biolo-
gical studies. The International Council for the Exploration of the Sea (2018) (ICES) has
developed a database where such measurements are submitted from a number of different
scientific communities, and made available to other researches. The database offers data
sets containing the measurement position, the time of measurement, and measured tem-
perature, salinity, hydrostatic pressure, at 1 bar intervals. Four such data sets, containing
measurements from 31.05.1995 to 20.11.2016 in the area around the LoVe Observatory,
were downloaded. Figure 3.4 shows the measurement position of all of the downloaded
data sets. Some of the measurement positions, as indicated in figure 3.4, are deemed
redundant for the simulation of transmission loss experienced by the LoVe Observatory,
because the CTD measurements will not affect the calculated TL values. These CTD
measurements have therefore been discarded. The choice of which measurements to keep
was made graphically based purely on the measurement location in relation to the LoVe
Observatory, and an exaggerated number of measurements were kept as a precaution
against discarding useful information.
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Figure 3.4: The measurement positions of all the downloaded ocean parameter meas-
urements, showing which measurement set that will be discarded. To give a sense of
where the measurements were taken, their positions are plotted on top of a map of the
bathymetry (British Oceanographic Data Centre, 2018).

The database did not provide records of the depth at which the data was meas-
ured. Therefore, the depths of the measurements were calculated using Fofonoff and
Millard Jr.’s [1983] relation between depth and hydrostatic pressure

z =
9.72659Ph − 2.2512× 10−5Ph

2 + 2.279× 10−10Ph
3 − 1.82× 10−15Ph

4

g(ϕ) + 0.5γ Ph
. (3.2)

Here, Ph is the hydrostatic pressure in dbar, g(ϕ) is the acceleration due to gravity at sea
level as a function of latitude, γ is the mean vertical gradient of gravity, which according
to Fofonoff and Millard Jr. (1983) is γ = 2.184× 10−6 ms2dbar. Equation 3.2 is according
to Fofonoff and Millard Jr. (1983) accurate to 0.1 m in z. The acceleration due to gravity
is a function of latitude, ϕ, and Fofonoff and Millard Jr. (1983) gives a formula for this
relationship that follows the Geodetic Reference System 1967. This system has, however,
since been updated, and the acceleration due to gravity has thus instead been calculated
from the Geodetic Reference System 1980 (Moritz, 1980). This states that
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g(ϕ) = ge
1 + 1.931 851 353× 10−3 sin2 ϕ√
1− 6.694 380 022 90× 10−3 sin2 ϕ

, (3.3)

where ge is the acceleration due to gravity at sea-level at the equator, which is

9.780 326 771 5 m/s2 (Moritz, 1980). The depth of each measurement downloaded from
ICES was thus calculated using equation 3.2 and 3.3, and recorded.

The downloaded data sets were provided in comma separated value files (.csv) with
one column for each variable. In total, the files contained 2856694 rows of data, without
any indicators distinguishing one measurement time or position from the next. The data
were separated into sets, each containing the measured variables at one position at one
time by running the contents of the files through a for-loop in MatLab that identified
where in the column of numbers the pressure variable stopped increasing, or where in
the column of numbers the position changed, indicating the start of a new measurement.
The measured variation in temperature and salinity were used to calculate the sound
speed at each calculated depth, using equation 2.2. For each set, the variation in cw
with z, giving the sound speed profile (SSP), was saved, together with the measurement
position and time. These data are used by the model tools to construct the SSP at any
position, as explained further in section 3.2.

Season Months
Winter December - February
Spring March - May
Summer June - August
Autumn September - November

Table 3.1: The definitions of the seasons.

The temperature in the water will vary with season, and thus the sound speed will
also vary throughout the year. It is of interest to observe how the transmission loss varies
with season as a consequence of this, and the SSPs measurement times were therefore
categorized into seasons. The seasons were defined as shown in table 3.1.

The resulting calculated SSPs are presented and further discussed in chapter 5. The
processes that have been applied in order to convert the downloaded CTD measurements
to CTD and SSP set as a function of z is shown in the process diagram in figure 3.5.
Both these data sets are used in the model tools.
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                                                         Model tool parameters              

                                                         Described in section 5.1                  Dowloaded
CTD 

measurements 
from  ICES (2019)

Read .cvs format

Separate into sets
and seasons

Remove redundant 
measurement positions

Calculate z from Ph 
using eq. 3.2

Calculated SSPs
with instrument 

errors

Remove instrument 
errors

Calculated SSPs

Sorted CTD sets
as a function of z
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T, S, and z

using eq. 2.2

Figure 3.5: A process diagram showing how the downloaded CTD measurements were
converted to two model tool parameter sets. The box shapes denote parameters as 2,
processes as 3 and scripts as ⊂⊃.
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3.3 Sediment composition and properties

The sediment composition at the sea floor has been mapped by Geological Survey of
Norway (Norges geologiske undersøkelse). The grain type in the 0 to 50 cm top layer of
the sea floor has been determined by taking samples of the sediments, analysing acoustic
reflectivity measurements, seismic surveying, analysis of the bathymetry data, as well as
video recordings of the sea floor (Geological Survey of Norway, 2016). This has resulted
in a characterisation of the seafloor type, where each area containing a particular type
of sediment has been mapped in polygons. The polygons are defined by the Cartesian
coordinates of their vertices. The coordinates of these polygons and their corresponding
qualitative characterisations of the sediment type was downloaded from Geological Survey
of Norway (2016) as a .shp-file (shapefile). The data were read using MatLab’s shaperead
-function which outputted a struct-variable containing a list of polygon vertices and
their corresponding sea-floor characterisation. To the author’s knowledge, the data by
Geological Survey of Norway (2016) is the only available characterization of the Lofoten-
Vesterålen basin which can be used to derive quantitative descriptions of the sediment.

Each polygon identifies a distinct area, which, at least in theory, only contains one
type of sediment. The qualitative characterizations of the sediment types are specified
according to the nomenclature by SOSI, which was described in section 2.2.1. For the
sediment types found in the downloaded data, the translations of these characterisations,
as defined by Mareano (2018), are reproduced in table 3.2. The table gives the amount
of each sediment texture found in each sediment type. Not all of the downloaded mater-
ial characterizations contained information about all of the texture components of the
sediment types. Therefore, some of the missing information has been filled in by com-
paring the sediment type with Folk’s definitions of textural groups, which were described
in section 2.2.1. These additions to the table are indentified with the superscript †. In
figure 3.6, a map of the downloaded data from Geological Survey of Norway (2016) has
been plotted. The map is drawn from the coordinates of each sediment polygon, and the
colors of the polygons indicate the sediment types.

It is thus clear that the available knowledge of the seabed composition in the Lofoten-
Vesterålen basin is limited to qualitative descriptions of the sediment, some information
on the percentage mix of sediment textures, and the grain size of these textures. From
this, it is necessary to derive the sound velocity, density, and coefficient of attenuation
in each of the sediment types. The process diagram shown in figure 3.7 summarizes
how the data downloaded from Geological Survey of Norway (2016) has been utilized
to produce model tool parameters. The methods chosen to calculate these parameters
for unconsolidated sediment types are described in section 3.3.1. Following this, the
methods used for consolidated and mixed sediment types are described in sections 3.3.2
and 3.3.3, respectively. Finally, the geoacoustic properties of the areas not mapped by
Geological Survey of Norway (2016) are discussed in section 3.3.4. All of the geoacoustic
properties calculated or otherwise decided in these sections are summarized in table 5.1
in Chapter 5.



State Sediment type Ratio of clay
to silt

Ratio of sand to
silt and clay

Percentage
volume of
mud

Percentage
volume
of sand

Percentage
volume of
gravel

Comments

Unconsolidated

Mud 1:2 to 2:1 >90 % <10 % <2 %

C.f. sect. 3.3.1

Sandy mud 1:2 to 2:1 >50 % <50 % <2 %
Sand <10 % >90 % <2 %
Gravelly sandy mud From 1:9 to 1:1 2 % to 30 %
Gravelly muddy sand From 1:1 to 9:1 2 % to 30 %
Gravelly sand >9:1 2 % to 30 %
Muddy sandy gravel From 1:1 to 9:1 30 % to 80 %
Sandy gravel >9:1 30 % to 80 %

Consolidated

Gravel, cobbles
and boulders >80 % † C.f. sect. 3.3.2.1

Compact sediments
or sedimentary bedrock C.f. sect. 3.3.2.2Thin or discontinuous
sediment cover on bedrock

Mixed Mud alternating with
blocks of hard sediment C.f. sect. 3.3.3

Table 3.2: Definitions of the textural contents of each sediment type. The sediment type names and the presented data have been taken from
Mareano (2018). The superscript † indicates that the data have been taken from the texture group definitions by Folk (1954). Comments in the
last column indicate in which sections the geoacoustic properties of the different sediment types are discussed.
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Figure 3.6: Sediment types in the Lofoten-Vesterålen basin, mapped by the Geological
Survey of Norway (2016). The figure is constructed from polygon coordinates downloaded
from Geological Survey of Norway (2016). The position of the shore line, provided by
the British Oceanographic Data Centre (2018), has been added for clarity. The position
coordinates are given in UTM zone 33, referenced to the intersection between the equator
and the zone’s central meridian.
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Figure 3.7: A process diagram showing how the downloaded sediment composition data
were converted to model tool parameter sets. Figure (a) shows and overview and figure
(b) shows the details of how the geoacoustic properties of the unconsolidated sediment
types were treated. The box shapes denote parameters as 2, processes as 3 and scripts
as ⊂⊃.
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Figure 3.7: (Continued) A process diagram showing how the downloaded sediment com-
position data were converted to model tool parameter sets. Figure (a) shows and overview
and figure (b) shows the details of how the geoacoustic properties of the unconsolidated
sediment types were treated. The box shapes denote parameters as 2, processes as 3
and scripts as ⊂⊃.

3.3.1 Unconsolidated sediments

Firstly, the geoacoustic properties of the unconsolidated small grained sediments was
considered. Consolidated sediments have high rigidity and should therefore be modelled
as an elastic medium (Jensen et al., 2011). Out of the sediment types presented in
table 3.2, most are unconsolidated, apart from ‘Thin or discontinuous sediment cover on
bedrock ’, ‘Mud alternating with blocks of hard sediment ’, ‘Gravel, cobbles and boulders’,
and ‘Compact sediments or sedimentary bedrock ’, which will be dealt with separately,
in section 3.3.2.
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3.3.1.1 Average grain size and sound velocity

The sound velocity in the loose sediments were predicted using the regression between
velocity ratio and mean grain size, presented in equation 2.20, which is based on a fluid
approximation of the medium. This regression was chosen because grain size is the only
available quantitative property of the sediment types. Since the grain sizes are defined in
intervals, in order to apply the regression, it was first necessary to calculate an estimated
mean grain size, Φ

′, for each of the sediment types.
A systematic method for estimating Φ

′ based on the available information in tables 3.2
and 2.1 was constructed by the author. Here, the superscript ′ denotes that the parameter
has been estimated by the author, and the same notation will be applied to the estimated
mean grain size in units phi, φ′. The method of estimating these parameters was begun
by estimating a fractional amount of each texture for each sediment type. This was given
the symbol A. Then, for each sediment type, the fractional amount of the texture was
multiplied by the average grain size of each sediment texture, so that

Φ
′
= A gravel · Φgravel +A sand · Φsand +A silt · Φsilt +A clay · Φclay, (3.4)

where Φ is average grain size of each texture, which was defined in table 2.1. As seen
in table 3.2, for some of the sediment types, there is no information on the ratio of clay
to silt. For these sediment types the clay and silt textures are combined into one mud
texture, and the estimated mean grain size was calculated as

Φ
′
= A gravel · Φgravel +A sand · Φsand +Amud · Φmud. (3.5)

For each sediment type, the fractional amount A was determined based on the in-
formation given in table 3.2. It is a somewhat intricate calculation, so to see how A was
determined, first consider the example of the calculation of the fractional amount of the
sediment type ‘Mud ’. This calculation is laid out schematically in the flow diagram in
figure 3.8. As seen in columns 1 and 2, to begin with, the percentage volumes of sand, of
mud, and of gravel were translated to decimal form. Initially, the less than and greater
than symbols were disregarded, so that the decimal form of the percentage volumes gave
the fractional amounts for these textures directly. Then, the portion of clay and the por-
tion of silt was determined from the ratio of clay to silt. Because the ratio of clay to silt
is specified as an interval, i.e. 1:2 to 2:1, it had to first be converted to a single number
by taking the average of the two limits, as shown in column 3 of figure 3.8, before this
was also translated to decimal form. It is important to realize that mud is made up of
silt and clay and that the portion of clay thus is the amount of clay within the volume of
mud. Therefore, to find the fractional amount of clay and silt, their portions were multi-
plied by the percentage volume of mud, as seen in column 3 of figure 3.8. The fractional
amounts for all of the sediment types where calculated following the method described
for ‘Mud ’. In summary, the method consists of reading the information given in table
3.2, translating all percentage volumes and ratios to decimal form, before multiplying
the appropriate portions and percentage volumes to give the fractional amount.



Information from Translation to Fractional amount Sum of
table 3.2 decimal form all A

Percentage volume

of sand: <10 % 0.1 ASand = 0.1
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3
+

2
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3
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ASand = 0.09
1

AGravel = 0.01

Second adjustment ASand = 0.099
1

AGravel = 0.001

1.02
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Figure 3.8: A flow diagram of how information from table 3.2 was used to calculate the fractional amounts in
the sediment. The diagram shows the operations performed for the sediment type ‘Mud’ as an example, but
the same methods were used for all sediment types.
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The sum of the fractional amounts in a sediment type must equal 1, since the com-
ponents in the sediment logically cannot total to more than 100 % of the sediment’s
volume. In the example shown in figure 3.8, the fractional amounts initially total to
1.02. It was therefore necessary to reduce some of the fractional amounts. The choices
of which quantities to change was based on which textures that were denoted with a less
than symbol in table 3.2. In the example shown in figure 3.8, this was true for both
the percentage volume of sand, and the percentage volume of gravel. Therefore, the
fractional amounts of sand and gravel were reduced by the same amount, until the total
sum of all A equalled 1. This is denoted as ‘First adjustment’ in figure 3.8. This same
logic was applied to all of the sediment types when their initial sum of A exceeded 1.

The sediment types ‘Sand ’ and ‘Mud ’ bear the same names as two textures. This
does not mean that the sediment type ‘Mud ’ consists only of the texture mud, since,
as seen in figure 3.8 there is a small amount of both gravel and sand in ‘Mud ’. Yet,
it is reasonable that the calculated Φ

′ for these sediment types are within the defined
limits of the grain size diameter of the texture of the same name. Therefore, the values
of A for ‘Mud ’ and ‘Sand ’ were adjusted slightly to make the resulting estimated mean
grain size reasonably within the limits of the grain size diameter of the corresponding
texture, which were defined by Mareano (2018) in table 2.1. This adjustment is denoted
as ‘Second adjustment’ in figure 3.8, and the adjustment primarily consisted of reducing
the amount of gravel in the sediments, down to A = 0.001. This is plausible, since
Folk’s definition of the sediment types ‘Sand ’ and ‘Mud ’ has only a trace of gravel. For
consistency, this reduction was also made to the ‘Sandy mud ’. The resulting fractional
amounts of each texture in each of the sediment type after all adjustment have been
made, can be seen in table 3.3.

Sediment texture
Sediment type ASand AMud AClay ASilt AGravel
Mud 0.099 - 0.450 0.450 0.001
Sandy mud 0.499 - 0.250 0.250 0.001
Sand 0.909 0.090 - - 0.001
Gravelly sandy mud 0.252 0.588 - - 0.160
Gravelly muddy sand 0.588 0.252 - - 0.160
Gravelly sand 0.756 0.084 - - 0.160
Muddy sandy gravel 0.315 0.135 - - 0.550
Sandy gravel 0.405 0.045 - - 0.550

Table 3.3: The estimated fractional amounts, A, of each of the textures which make up
each unconsolidated sediment type.

Finally, the estimated grain size Φ
′ was calculated, and equation 2.23 was used to

convert the units of the grain size to units of phi. This gave φ′. This quantity was used
to calculate the velocity ratio using equation 2.20. The resulting sediment velocity ratios
are given in table 5.1. In the model tools, the sound velocity in the sediment is calculated
using these values for VR and the position dependent value of cw at the sea floor, using
equation 2.19.
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3.3.1.2 Density

The mean grain size were also used to predict the density of the sediment, as seen in
equation 2.24. However, as shown in equation 2.18, the bulk density of loose sediments
is also dependent on the local density of the sea water. As previously mentioned, in
RAM the density of seawater is taken to be constant. However, since the position and
season dependent variation in temperature and salinity in the water is available in the
downloaded CTD measurements, it was not necessary to make the same assumption
when calculating the density of the sediments. This way, any potential effect of season
on the reflectivity of the sea floor is accounted for in the estimated geoacoustic properties.
Therefore, the bulk density used in the transmission loss simulations took the position
dependent density of sea water into account. To enable this, the density of the sediment
grains, ρg, was calculated by rearranging equation 2.18 and substituting in the bulk
density using equation 2.20, giving

ρg =
2.17− 0.08φ− ηρw

1− η
. (3.6)

The density of sea water was calculated using a MatLab function called waterprops.
This script, which can be seen in Appendix C.4, is written by White (2015b) and based
on the complex set of equations by Siedler and Peters (1986), which is too lengthy to be
shown here. When calculating the value of ρw in equation 3.6, the temperature, salinity,
and pressure conditions used were T = 23 ◦C, S = 35 and Ph = 1 atm, since this was used
by Jackson and Richardson (2007) in the calculation of equation 2.20. The porosities, η,
of each sediment type were assumed based on values from literature, and are shown in
table 3.4.

Sediment type Fractional
porosity, η Source

Mud 0.45 (Zhu, 2016)
Sandy mud 0.38 (Geotechdata.info, 2013)
Sand 0.27 (Zhu, 2016)
Gravelly sandy mud 0.27 (She et al., 2006)
Gravelly muddy sand 0.25 (She et al., 2006)
Gravelly sand 0.25 (Kamann, 2007)
Muddy sandy gravel 0.18 (Geotechdata.info, 2013)
Sandy gravel 0.15 (Kamann, 2007)
Gravel, cobbles
and boulders

0.40 (Zhu, 2016)

Table 3.4: Fractional porosities assumed for each sediment type, used in calculation of ρg.

The calculated grain density, ρg, of all the unconsolidated sediment types are shown
in table 5.1. In the model tools, these values are used to calculate the local bulk density
of the sediment, using equation 2.18. The equation is dependent on ρw which in the
model tools are calculated by feeding the position and season dependent values of T and
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S to the script waterprops. The values of ρB are therefore position dependent, and a
single value for each sediment type cannot be presented.

3.3.1.3 Attenuation coefficient

Lastly, the calculated mean grain sizes were used to predict the attenuation coefficient,
αλ, b, of the sediment. It was calculated using equation 2.25, by chosing l = 1, based on
the aforementioned reviews by Hamilton (1972). Equation 2.25 gives αm, b in units of
dB m−1, so the units of the attenuation coefficient were converted to dB/λ by applying
equation 2.65. The constant h was calculated by applying the appropriate regression from
equations 2.27 to 2.32. The choice of regression was made based on the calculated mean
grain size. For 0.063 mm < Φ

′
< 0.6 mm the detailed regressions between h and Φ (shown

in equations 2.31 and 2.32) were chosen, while for sediment types outside this range, the
regressions between h and φ (shown in equations 2.27 to 2.30) were chosen. The resulting
values of h, and the equation number for the regression chosen for each sediment type, can
be seen in table 5.1. Notably, as pointed out in section 2.2.2, the regressions only extend
to φ = 0 units phi, so the attenuation coefficient in any coarser grain types could not be
predicted using the regressions by Hamilton (1972). This issue was also encountered by
Wensveen (1995), who also modelled transmission loss due to bottom interaction using
an older version of the sediment mapping by Geological Survey of Norway (2016). For
the sediment types with φ < 0 units phi, he estimated that the attenuation coefficient
was αλ, b = 0.8 dB/λ, at frequencies around f = 2 kHz. This is of course a drastically
different frequency than the 20 Hz used in this study, but, unfortunately, no other source
of information on the attenuation in coarse sediment types was found. Using equation
2.25, this makes the constant

h =
0.8× 103

cb
. (3.7)

For unconsolidated sediments, this was taken to be the value of h. In the model tools,
this equation is applied using the position dependent value of cb, before equation 2.25 is
applied to give αλ, b.

3.3.2 Consolidated and mixed sediments

The remaining sediment types are ‘Thin or discontinuous sediment cover on bedrock ’,
‘Mud alternating with blocks of hard sediment ’, ‘Gravel, cobbles and boulders’ and ‘Com-
pact sediments or sedimentary bedrock ’. These are all either consolidated or mixes
between consolidated and unconsolidated sediment types, and thus require a different ap-
proach than the purely unconsolidated sediments. As already mentioned, rigid sediments
should ideally be modelled as elastic materials. It is possible to predict the geoacoustic
properties in the sediment types using Biot theory (Biot, 1956). However, that would
require knowledge of many parameters describing the sediment types, which were not
available. Only knowing qualitative descriptions of the sediment and some information
on the average grain size was unfortunately not enough to predict the sound velocity
in the consolidated sediments. It was therefore necessary to look to literature to try to
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identify measurements of the sound velocity, attenuation and density in similar sediment
types. This is done in sections 3.3.2.1 to 3.3.3 and all of the geoacoustic properties that
are identified for each sediment type are summarized in table 5.1.

3.3.2.1 Gravel, cobbles and boulders

In the case of ‘Gravel, cobbles and boulders’, there has to the author’s knowledge not
been published geoacoustic measurements of a directly comparable sediment type. The
closest match was found for measurements of gravel, and these were used for the sediment
type. Walker (2016) reported the density of dry gravel to be 1682 kg m−3. From this,
the grain density of the gravel was calculated by rearranging equation 2.18, giving

ρg = (ρdry − ηρair)(1− η)−1. (3.8)

The grain density of the gravel was calculated by assuming that the fractional poros-
ity was 0.4 (Zhu, 2016) and that the air saturating the dry gravel had a density of
1.229 kg m−3 (Hall, 2015). The calculated grain density was ρg = 2802 kg m−3. As with
the unconsolidated sediment types, in the model tools, this value is used in equation 2.18
together with the local position dependent density of the sea water to calculate the final
bulk density of the water saturated ‘Gravel, cobbles and boulders’.

The attenuation coeffient of water saturated gravel was reported by Jensen et al.
(2011) to be αλ, b = 0.6 dB/λ. Delleur (1998) reported that the sound velocity in water
saturated gravel is 2200 m s−1. The temperature and pressure conditions of the measure-
ment were not specified, but room-conditions of 20 ◦C and 1 atm pressure were assumed
here. The saturating water was accounted for by calculating a velocity ratio, using
equation 2.19. The sound speed in the water was calculated using equation 2.2 with
T = 20 ◦C, S = 35, and z = 0. This gave a velocity ratio of VR = 1.44. In the model
tools, the position dependent in situ sound velocities are calculated by multiplying VR
with the local speed of sound in the water, as shown in requation 2.19, following the
method proposed by Bachman (1989) for the finer grained sediments.

3.3.2.2 Solid bedrock sediment types

Next, the sediment types ‘Compact sediments or sedimentary bedrock ’ and ‘Thin or dis-
continuous sediment cover on bedrock ’ were considered. Both were treated as only solid
bedrock materials, although the latter contains some thin sediment cover. This can be
ignored because low frequency sound will penetrate the thin top layer (Jensen et al.,
2011). The bedrock in the areas off the coast of Lofoten and Vesterålen mostly consists
of sedimentary rocks (Buhl-Mortensen et al., 2015). However, the area marked as ‘Thin
or discontinuous sediment cover on bedrock ’ in figure 3.6 lies on the bank Jennegghøgda,
where older crystalline rock is exposed (Mareano, 2018; Maystrenko et al., 2017). Ac-
cording to the map Land and Sea Areas of Northern Europe by Sigmond (2002), the
bedrock in this area is made of the metamorphic mineral amphibole, which has a sound
velocity of 7.2 km s−1 (Palmstrom, 1995). This was taken to be the sound velocity for
the sediment type ‘Thin or discontinuous sediment cover on bedrock ’. Although some
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variation of cb with pressure in rocks has been shown, the effect is minor for the pres-
sure range caused by depth variation in the ocean (Siggins and Dewhurst, 2003), and
cb will therefore be taken to be independent of depth in the two solid bedrock sediment
types. The density of ‘Thin or discontinuous sediment cover on bedrock ’ was taken to be
ρB = 2700 kg m−3, which is the density of metamorphic rock, according to Zhu (2016).
To find the attenuation in the sediment type, seismic measurements by Matheney and

Nowack (1998) of the specific attenuation factor,
1

Q(α)
, were used. They reported that

for crystalline rocks, 0.0016 <
1

Q(α)
< 0.0027. The mean of this interval was used to

calculate the attenuation coefficient in crystalline rocks, as

αcm, b =
πf

cbQ(α)
(3.9)

in dB cm−1, following Attewell and Ramana (1966). The units were converted to dB/λ
using equation 2.65, so that

αλ,b =
100π

Q(α)
(3.10)

This gave αλ, b = 0.6754 dB/λ.
In the areas marked as ‘Compact sediments or sedimentary bedrock ’ in figure 3.6,

the map by Sigmond (2002) shows that the bedrock is made of softer sedimentary rocks
such as sandstone and limestone. The sound velocity in these rock types vary from
2 km s−1 to 6 km s−1 (Zhu, 2016). The sound velocity in the sediment type was taken to
be the mean of this range, giving cb = 4000 m s−1. The density in sedimentary rock is
ρB = 2600 kg m−3 (Zhu, 2016). By reviewing 122 published measurements of attenuation
in sedimentary rocks, Attewell and Ramana (1966) found that the attenuation coefficient
varied with frequency in kHz as

αcm, b = 1.012× 10−5f0.911 (3.11)

for 1× 10−3 kHz < f < 105 kHz. In the model tools, this formula is applied and the
units of the attenuation coefficient are converted to dB/λ using equation 2.65. In the
case of f = 20 Hz, this gave αλ = 0.0573 dB/λ.

3.3.3 Mixed sediment types

The only remaining sediment type is ‘Mud alternating with blocks of hard sediment ’,
which is a mix between a consolidated and an unconsolidated sediment type. Because
of the alternating nature of the description, the sediment type will vary with position.
There is no available information about when or how often the sediment varies, and it is
therefore not possible to model the different parts of the sediment as separate materials.
Instead, the geoacoustic properties of the sediment type will be taken to be the average
of the properties of its two parts. As the name implies, these two parts are ‘Mud ’ and
‘hard sediment ’. The first part is of course the same as the unconsolidated sediment type
‘Mud ’, described in section 3.3.1. And the second part will be taken to be the same as
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the consolidated sediment type ‘Compact sediments or sedimentary bedrock ’, described
in section 3.3.2.2. Thus, the geoacoustic properties of ‘Mud alternating with blocks of
hard sediment ’ will be calculated as the average of the position dependent geoacoustic
properties of ‘Mud ’ and the geoacoustic properties of ‘Compact sediments or sedimentary
bedrock ’. Because one part of this calculation is position dependent, while the other is
not, it is not possible to show representative values in table 5.1.

3.3.4 Unmapped deep sea regions

Unfortunately, Geological Survey of Norway (2016) has not mapped the seafloor sedi-
ments beyond the area shown in figure 3.6. To the author’s knowledge, other than the
data from Geological Survey of Norway (2016), there exists neither mapping nor relev-
ant point measurements of the sediment in the Lofoten-Vesterålen basin. According to
personal communication with Elvenes (2018), this is because there is much less variation
in the sediment types beyond the continental shelf. According to Elvenes (2018), the
entirety of the deep Lofoten basin can be assumed to be covered in mud. This was there-
fore taken to be the sediment type whenever the modelled transect extended beyond the
area shown in figure 3.6. Hamilton and Bachman (1982) reports geoacoustic measure-
ments specifically of mud from abyssal plains, that is, mud from deep flat regions of the
seabed, much like the Lofoten basin. These measurements reported a velocity ratio of
VR = 0.999 and bulk density of ρB = 1454 kg m−3, corrected to T = 23 ◦C, and 1 atm
pressure. The basin is relatively flat, as seen in figure 3.1, and the change in sediment
sound velocity due to varying hydrostatic pressure with position is therefore minimal.
Moreover, the temperature in the deep ocean is relatively constant with depth and sea-
son (Jensen et al., 2011). Therefore, the sound velocity and density of the sediment in
the basin were taken to be constant with both position and season. The sound velocity
was calculated from the velocity ratio by Hamilton and Bachman (1982), according to
equation 2.19. Equation 2.2 was used to calculate the speed of sound of the water just
above the sea-floor. The temperature was taken to be 2 ◦C, the constant temperature of
deep oceans (Jensen et al., 2011), and salinity is assumed to be S = 35. The depth is
taken to be z = 3000 m, as an estimated average, based on the bathymetry map in figure
3.1. The resulting sound velocity is cb = 1507 m s−1. In table 5.1, this value is denoted
as ‘Abyssal mud ’.

The density of ‘Abyssal mud ’ reported by Hamilton and Bachman (1982) had to be
corrected for temperature and pressure of the water saturating the grains. This was done
by first re-arranging equation 2.18 to calculate the grain density

ρg =
ρB − ηρw

1− η
. (3.12)

Here, ρw was calculated using the function waterprops (White, 2015b), with the afore-
mentioned measurement pressure and temperature conditions as input arguments. Then,
the calculated grain density was substituted back into equation 2.18, only this time ρw
was calculated using the in situ conditions for temperature and depth. The resulting
bulk density was ρB = 1450 kg m−3, as shown in table 5.1.

Hamilton and Bachman (1982) did not describe the sound attenuation in the meas-
ured ‘Abyssal mud ’. In lack of a more detailed source, in the unmapped region, the
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attenuation coefficient was therefore calculated using the same method as for the afore-
mentioned unconsolidated sediment types. This involved using equation 3.7 to calcu-
late h before αλ, b was calculated by equation 2.25. As shown in table 5.1, this gave
αλ b = 1.85× 10−4 dB/λ.
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Chapter 4

Simulation methods

4.1 Chosen model parameters

Here, the decided user specified model parameters in RAM are described. These choices
are implemented in all simulations in this thesis, unless otherwise specified. The source
frequency is set to f = 20 Hz, corresponding to the middle of the frequency range of the
Fin whale (Halkias et al., 2013). The simulated source is placed at the position of the
LoVe Observatory, following the principle of reciprocity. The source depth is thus given
by the depth of the observatory, at zsource = 258 m. The step-size in r and z will be
determined through a test of convergence, which is discussed in section 4.4. The number
of Padé coefficients will be set to m = 8, which according to Collins et al. (1996) is
an appropriate choice for running the algorithm in deep water and with large ∆r steps.
The stability parameter is set to ns = 1, since, according to the user guide for RAM
(Collins, 2001), ns = 1 or 2 is effective for most problems. The range at which the
stability constraints are turned off is specified by rs. But, when rs is set to 0, RAM
imposes the stability constraints at all ranges. It is desired that RAM imposes the
stability restrictions in the entire domain, so rs is set to 0 in this study. In RAM, it is
possible to reduce the resolution of the returned transmission loss results, after it has
been computed. The resolution of the results are reduced by the user specified factors,
ndz and ndr, known as the decimation factors. To avoid loosing potentially interesting
details, this will not be done in the results shown in this thesis. The decimation factors,
ndz and ndr, will therefore both be set to 1.

4.2 Reading the environmental input parameters

A number of MatLab functions, here referred to as model tool scripts, have been written
in order to extract the input parameters needed by RAM from the model tool parameters
described in Chapter 3 and Chapter 5. The functions have been constructed so that the
location specific input arguments needed to run a RAM simulation can be identified
automatically by specifying the location of the transect that will be simulated, and the
season. The process diagram shown in 4.1 summarizes the entire procedure that has been
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Data downloaded from Kartverket, British Oceanographic Data Centre, 
ICES, and Geological Survey og Norway

Data processing

    Model tools

Model tool 
parameters

Chosen transect 
position

User chosen 
model parameters

Model tool scripts

.in file

RAM

Transmission loss

Figure 4.1: A process diagram summarizing how the procedures that had to be performed
before RAM could be used to simulate the transmission loss. The box shapes denote
parameters as 2, processes as 3 and scripts as ⊂⊃.
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Figure 4.2: A process diagram summarizing how the model tools operate. The box shapes denote parameters as 2, processes as 3 and scripts as
⊂⊃. The sources of the model tool parameters are laid out in figures 3.2, 3.5, and 3.7. All of the scripts, processes, and parameters in the figure are
described in sections 4.2.1 to 4.3.
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performed in order to turn the downloaded environmental data sets into usable .in-files
that can be run by RAM. In the first step, the downloaded data sets have been processed
to produce the model tool parameters: the bathymetry interpolant F (Θ, ϕ), the sorted
CTD sets, the calculated SSPs, the geoacoustic properties of the sediment types, and
the sediment polygon coordinates. How these data sets have been constructed has been
detailed in figures 3.2, 3.5, and 3.7, for the bathymetry, the SSPs and CTD sets, and the
geoacoustic properties and coordinates, respectively. These processes have produced the
full set of model tool parameters, which are used by the model tool scripts in order to
write the .in-file. Sections 4.2.1 to 4.2.3 describe how the model tool scripts operate for
each of the main input parameters: bathymetry, sound speed profiles, and the geoacoustic
properties of the seabed. These steps are summarized in the process diagram shown in
figure 4.2. Since all of the model scripts have been written so that other users may utilize
them to write the .in-file for RAM by simply specifying the transect they wish to model,
they can be used to model any transect in the Lofoten-Vesterålen basin. Moreover, it
should be noted that the model tools can also be used to produce environmental input
parameters to other acoustic modelling software, such as Bellhop (Porter and Bucker,
1987), if some simple alterations are made to the Write_in script shown in the last step
of the model tools in figure 4.2. The usage of the model tools is thus not limited to the
results presented in this thesis.

In order to let the user of the model tools specify the location of the transect, it
was necessary to relate the coordinate system used by RAM to the actual geographic
position of the LoVe Observatory. A contour plot of the bathymetry in the immediate
area around the LoVe Observatory can be seen in figure 4.3. The coordinate system
defined in figure 2.2 has been placed on figure 4.3, so that the coordinate system is
now defined in relation to real geographical orientations. The coordinate system was
placed so that the y-axis points north, and the z-axis points towards the bottom of
the ocean, into the paper in figure 4.3. The principle of reciprocity has been applied,
and the origo is therefore placed at the ocean surface directly above the position of the
LoVe Observatory, at 476 378 meters East and 7 644 811 meters North or Θ = 14.411 67°
longitude and ϕ = 68.913 33° latitude. Any position in the surrounding area can thus be
described by the parameters (r, θ), where r is the radial distance from the origin.

Thus, transects run outwards from the LoVe Observatory in the direction defined by
θ. To take into account the curvature of the earth, the radial positions of the transects
were taken to be geodesics along an ellipsoid defined by the World Geodetic System
of 1984 (Pawlowicz, 2018). The (Θ, ϕ)-coordinates of each point on the transect was
calculated using the m_geodesic-function by Pawlowicz (2018). Whenever needed, these
coordinates were translated to the (r, θ)-coordinate system using the function m_ll2xy

by Pawlowicz (2018). The points on the transect are equidistant from each other,
separated by the range step ∆r. A transect can therefore be described by an array of
radial distances from the observatory, henceforth referred to as the transect range array.
Or, the transect can simply be defined by an angle θ, a range step ∆r and a maximum
length of the transect.
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Figure 4.3: The bathymetry around the LoVe Observatory, provided by British Oceano-
graphic Data Centre (2018), and definition of the transect coordinate system. The map’s
coordinates are given in UTM zone 33, referenced to the intersection between the equator
and the zone’s central meridian. An example transect is plotted at θ = 330°, which points
straight out of the Hola valley.

4.2.1 Bathymetry

The bathymetry along a given transect can be extracted using the MatLab function
named Ray_bath, which takes the bathymetry interpolant F as an argument. The func-
tion can be seen in Appendix C.1. In addition to the interpolated bathymetry height
data, the function also outputs the transect range array, as well as the Cartesian co-
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ordinates of each point in the array. The geodesic distance from the listening position
to each point along the transect was calculated using functions from the m_map package
(Pawlowicz, 2018). In figure 4.3, an example transect is indicated at the angle θ = 330°.
The depth along this transect, as produced by the Ray_bath-function, can be seen in
figure 4.4.
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Figure 4.4: An example of the bathymetry along a transect, at θ = 330°. The depth
data have been taken from the bathymetry data from Kartverket [2018a; 2018c].

4.2.2 Sound Speed profiles

The sound speed in the water varies both with geographical position and with depth.
The measured SSPs are made at scattered locations, and it is therefore necessary to
interpolate to find a representation of how the SSPs vary along a specific transect. When
setting up the simulations in RAM it is possible to change the SSP at any range. It is
therefore up to the user to decide when, and how often, to include changes in the SSP. If
the model includes SSPs that are measured along the same transect that is modelled, the
positions of the measurements will of course decide when the SSPs will be changed in the
model. However, since in this case the SSPs are measured at scattered locations, there
is no indication of what positions along the transect the SSPs should be interpolated.
To limit the computation time, it is desirable to change the SSP as seldom as possible.
Yet, given the large number of samples in the measured SSPs, one is forced to think
that the modelled SSPs should be interpolated at small intervals, in order to include
all the detail inherent in the SSP measurements. If the interpolations are done at a
regular interval, ∆rSSP , it would be possible to conduct a convergence test to try to
identify how small the step needs to be to make the resulting transmission loss solutions
converge. However, according to Storheim (2018), the large time span in which the SSP
measurements were conducted means that the added detail one would gain from using a
small ∆rSSP will not reflect actual detail in the in situ sound speed, but rather stem from
the fact that sound speed changes with both year, season, and time of day. Storheim
(2018) recommends interpolating the SSP at ∆rSSP = 1000 m, and his advice will be
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followed. Therefore, interpolated SSPs are constructed at each radial position along the
transect, at ∆rSSP = 1000 m intervals.

At each radial position along the transect, a single SSP was constructed. The con-
structed SSP consists of variation of cw with z, at discrete values of z. Interpolation
was used to identify the value of cw at each discrete depth position. Because the SSP
measurements’ variation with depth were reported in terms of hydrostatic pressure, and
z varies slightly with latitude for a given pressure, cw was interpolated at increments of
P , instead of z. The resolution of the constructed SSP was named ∆PSSP .

4.2.2.1 The vertical resolution of the constructed SSP

Before performing the construction of the SSP, the value of ∆PSSP had to be decided.
The measured SSPs were reported in increments of 1 bar, so this is the smallest reasonable
value of ∆PSSP . However, it is not always necessary to interpolate the SSP at such a
small interval. First of all, the RAM model will only utilize depth variation in cw at
increments of the user decided depth resolution, ∆z, which will be determined in section
4.4. So if ∆z is large, ∆PSSP can be made correspondingly large. Secondly, the plots of
the measured SSPs, shown in figure 5.1, reveal that the change in cw with depth is quite
detailed in shallow water, but that all of the measured SSPs converge towards a linear
relationship between cw and z at a certain depth. As expected, this occurs below the
minima in cw, at depths where the pressure mainly determines the value of cw.

∆PSSP does not need to be a constant value. In order to preserve detail of the
measured SSPs at shallow depths, ∆PSSP was made small at low values of z, but higher
at larger values of z. This was done because it is constructive for the computational
efficiency of the model to make the increment ∆PSSP as large as possible, without sac-
rificing detail. Due to the linear behaviour of cw(z) at large depths, and the fact that
RAM linearly interpolates with depth between the user specified values of cw (Collins,
2001), ∆PSSP can be made large when there is little variation of cw with z. Based on
the variation of cw with z in the measured SSPs, shown in figure 5.1, it was decided
that for z > 1500 m, the depth increment of the interpolation of the SSPs was set to
∆PSSP = 15 bar. For z < 1500 m, the value of ∆PSSP was set to 1 bar, which is the
resolution of the measured SSPs.

4.2.2.2 Interpolation of the SSP

After the vertical resolution of the constructed SSP has been determined, it is now
possible to construct the SSPs. At a given point along the transect, each value in the
SSP was determined by interpolation based on all of the measured values cw at each
specified pressure. All the values were included since the variation with cw at a single
pressure varies with position as a smooth plane without discontinuities. The function
Get_c_at_P was written in order to extract all measured values of cw at a specific pressure.
The function, which can be seen in Appendix C.6, takes a cell containing all of the SSPs
measured in a season as its argument. The function returns the values of cw at the
specified pressure, as well as the measurement position of each value of cw. Having
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Figure 4.5: An illustration of how a surface is fitted to all measured values of cw, here
denoted by a B symbol, before the value of cw can be interpolated at the position in
query, here denoted by a • symbol

identified all measured values of cw at a single pressure, MatLab’s interp2-function was
used to determine the value of cw at the specified position. The method of interpolation
was chosen to be cubic. The interp2-function effectively fits a surface to all of the
measured values of cw, as illustrated in figure 4.5. Then, the value of cw was read as the
value of the fitted surface at the position of the constructed SSP.

The position variables of the measured values of cw were specified as longitude and
latitude, which is not a Cartesian coordinate system. Because the LoVe Observatory is
relatively close to the North Pole, interpolating using longitude and latitude coordinates
is likely to introduce errors. This was overcome by using the function interp_spherical

from The Geometry and Image-Based Bioengineering Add-On Toolbox by Moerman
(2018). This function takes the longitude and latitude coordinates and shifts them so that
coordinates are centred around an equatorial band at the globe’s equator. It then converts
the coordinates from spherical to Cartesian, performs the interpolation using MatLab’s
standard interp2-function, before converting and shifting the coordinates back.

The value of cw at a single pressure in the constructed SSP was thus found by identi-
fying all measured values of cw at that pressure and interpolating to find the value of
cw. This method was then repeated at increasing pressures, at ∆PSSP intervals. This
was done until the pressure was so high that the corresponding value of z was equal to
the value of zb at the specific location. Then the values of Ph corresponding to each
interpolated value of cw was converted to a depth. This was done using the function
gsw_P_to_z (McDougall and Barker, 2011), which takes latitude as an argument. Thus,
the constructed SSP consisted of interpolated values of cw as a function of discrete val-
ues of z. Ultimately, this entire process was repeated at each radial position along the
transect, separated by ∆rSSP .
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4.2.3 Geoacoustic properties of the seabed

MatLab function named Seabed was written in order to use the sediment types mapped
by Geological Survey of Norway (2016), shown in figure 3.6, to determine the properties of
the seabed along a transect. The script is shown in Appendix C.2. As explained in section
2.6, the .in-file must include the distance from the source at which any environmental
properties change, marking the start of a new block. A change in the seabed type along
the transect will trigger the need for a new block. A new block will be created even if
only one of the environmental properties of the seabed changes, but generally changes
in the environmental properties are associated with changes in the sediment type, at
which point all of the environmental properties are altered at once. The Seabed-function
therefore identifies the ranges at which new blocks occur due to changes in the sediment
type. The creation of new blocks can also be triggered by updates of the SSP, and the
combination of changes in the seabed and the SSP will be further discussed in section
4.3.

The function Seabed identifies the changes in sediment type with range by firstly
identifying which polygon each of the points in the transect range array lies in. It does
this by taking the (Θ, ϕ)-coordinates of each point in the transect array, converting them
to Cartesian UTM coordinates, and checking if each of these points lie inside each of
the polygons, using MatLab’s inpolygon-function. Marching along the points in the
transect range array, the function then finds the ranges at which the identified polygon
is different from that identified at the neighbouring range point. Then, the function
returns an array of the radial distances from the observatory to each change in sediment
type, together with the numeric product specification code corresponding to each block’s
sediment type. It also outputs the Cartesian coordinates of each point in the radial
array, as plotted in figure 4.6. It shows an example of a transect at θ = 330°, where each
identified block has been marked on the figure. The map is zoomed in on a small area
around the LoVe Observatory, in order to highlight that many transitions are identified
along a short section of the transect.

After having established the coordinates and sediment type of each change in sed-
iment type, the geoac function was written to identify the appropriate sound velocity,
density and attenuation of the sediment types. The script is shown in Appendix C.3. It
takes the temperature, salinity and sound speed of the water above the sediment, as well
as the product specification code and a value for the bathymetry depth of the sediment
patch as input arguments. The function uses the product specification code to identify
the type of sediment and thus chooses which operations to perform. For the unconsolid-
ated sediment types, the geoac calls the function waterprops by White (2015b), which
calculates the density of the water just above the sediment, from the temperature, salin-
ity, and depth. The calculated density of the water is then used to calculate the density
of the sediment, using equation 2.18 and the appropriate porosity, as defined in table 3.4,
and the calculated grain density, given in table 5.1. Then, to calculate the sound velocity
in the sediment, the function takes the appropriate sound velocity ratio, given in table
5.1, and multiplies it with the inputted water sound speed. For the compact sediment
types, the function directly outputs the appropriate sound velocity and sediment density,
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as they are given in table 5.1. For the special case of ‘Mud alternating with blocks of hard
sediment ’, the function takes and average of the properties of ‘Mud ’ and ‘Compact sedi-
ments or sedimentary bedrock ’, as explained in section 3.3. Lastly, if the geoac-function
is fed only zeros as its input arguments, the function returns the geoacoustic properties
of the abyssal mud which as explained in section 3.3 is assumed to cover any area not
covered by the sediment polygonomials by Geological Survey of Norway (2016).

Figure 4.6: An example of a transect at θ = 330°, where the intersections between
each transition in seabed properties along the transect have been identified. The map’s
coordinates are given in UTM zone 33, referenced to the intersection between the equator
and the zone’s central meridian.

4.3 Writing the .in file

An individual .in file was written for each simulation that was run. To make the writing
of the file less manually demanding, a function named Write_in was written to construct
the file based on the input parameters described in Chapter 3 and the calculated input
parameters shown in Chapter 5. The function also calls for the user chosen input argu-
ments, which have been determined in section 4.1. The script can be seen in Appendix
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C.5. The .in-files of the transects modelled in this study are quite long, and are there-
fore not included in the appendix. But, since the algorithm Write_in is available in the
appendix, and all of its input arguments are specified in this text, the reader would be
able to reproduce the .in-file of any of the discussed transects.

Sound that is transmitted into the seabed will in real ocean seabeds be transmitted
into and reflected back from various layers of materials with different impedances. Ac-
cording to Buhl-Mortensen et al. (2015), on the continental shelf outside Lofoten and
Vesterålen, there is normally a 50 - 200 m thick layer of sediments. This is of course a
generalisation, because Buhl-Mortensen et al. (2015) also point out that the underlying
bedrock is exposed in some local areas. Yet, based on Buhl-Mortensen et al. (2015),
the sediment thickness in the model was estimated to be 125 m. In the modelled case,
there was no available information about any other material than the uppermost layer.
Therefore, reflections inside the seabed were not included in the model. To avoid reflec-
tions at the depth where the model domain ends, a layer of an artificial material of high
absorption was included beneath the layer of sediment, as recommended by Jensen et al.
(2011). This effectively imposed a Sommerfeld’s radiation condition on the boundary,
by absorbing close to all energy before it reaches the end of the domain. According to
Jensen et al. (2011), the artificial layer had to be greater than a few wavelengths. The
thickness was thus taken to be four times the wavelength, which was given by

λ =
cb

f = 20 Hz
. (4.1)

As previously discussed, the environmental properties in the simulated domain are
updated each time a new block is created. In the .in-file, the ranges at which new blocks
occur are described by the variable rp (Collins, 2001). These ranges are determined in the
Write_in algorithm, based on two factors: the detected changes in sediment type along
the transect and the spatial resolution of the SSPs, ∆rSSP . Write_in calls the algorithm
Seabed to identify all the positions where the sediment type changes along the transect.
Starting from the origin of the transect, and marching outwards in range, Write_in then
creates a new block each time either the SSP or the sediment type changes. Thus, the
lengths of the blocks are variable. New blocks are created until the algorithm reaches
the user specified maximum distance, Rmax, which will be determined in section 4.5.

4.4 Convergence tests

RAM solves the parabolic equation at discrete intervals in r and z, specified by the user
as ∆z and ∆r. The choice of these step-sizes influences the accuracy of the solution
in two ways: they affect the resolution of the environmental input parameters and they
influence the numeric error inherent in the split-step Padé algorithm. This error, however,
has been shown to be negligible, and Collins et al. (1996) claim that the size of ∆r in
practice is only limited by the resolution of the environmental parameters.

The size of ∆z and ∆r also affect the computational time needed to produce the
.in file. This process is lengthy, and it is therefore desirable to make the step-sizes as
large as possible, without adversely affecting the solution accuracy. In an attempt to
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determine the ideal step-sizes, a convergence test was performed. Using a convergence
test to determine the step-size is recommended by Collins (2001) in his user guide to
RAM. Yet, to the author’s knowledge, no publication of convergence tests of RAM exist.
Therefore, the method for the test was made by the author. Convergence tests are
often performed by comparing the produced results to a reference solution (Jensen et al.,
2011). However, a reference solution was not available for this study. Instead, the
convergence test was set up by simulating the transmission loss using one step-size,
then reducing the step-size and simulating the transmission loss again and comparing
the results from the subsequent simulations. This would be repeated until satisfactory
convergence was reached, which would be considered achieved once several subsequent
iterations produced the same transmission loss result. This was used as the convergence
criterion for all tests in this study. Once this criterion was reached, the reduction of ∆r
and ∆z would be stopped, and their values would be taken to be the current smallest
step-sizes from the tests. The consequence of choosing this as the convergence criterion,
and a discussion of whether it was reached during the tests are presented in section
5.3. The tests were performed along a test transect, which was taken to run along the
length of the Hola valley, at θ = 330°. The test was performed for the spring season,
since this has the highest number of measured SSPs, leading to the most variability in
environmental parameters.

The convergence tests started with investigating the effect of iteratively halving ∆z.
During this test, the step-size in r was kept constant, so that only the effect of the size
of ∆z was considered. According to Storheim (2018), ∆r = 250 is a ‘conservative choice’
(in the meaning that the step-size is small enough) for the range step-size. Therefore,
the constant ∆r was set to 10 % of Storheim’s recommendation, at ∆rconst = 25, in an
attempt to make ∆rconst so small that it does not influence the solution accuracy. The
largest choice of ∆z, which initialized the iterations, was taken to be

∆zmax =
λ

2
=
cw
2f
, (4.2)

which according to Jensen et al. (2011) is the largest value ∆z can take, while still
ensuring adequate spatial spectral resolution. Here, the sound speed was estimated to be
c = 1480 m s−1, based on the values shown in figure 5.1. This resulted in ∆zmax = 37 m.
The transect was simulated out to a medium range of r = 10 000 m, which is deemed
appropriate, since the accuracy in z will not depend on position in r once the sound-
field is well outside the far-field and has filled the entire water column. The resulting
simulated transmission loss values for each value of ∆z are compared in section 5.3, where
the appropriate value of ∆z is determined.

After having established a value for ∆z, a new convergence test was performed to
investigate the appropriate choice of ∆r. The test was started at value of ∆r large enough
to be deemed an inappropriate choice. As an overestimation, the initial maximum value
of ∆r was taken to be the same as ∆rSSP, so that each range step marched the solution
to a new property block. Then, the value of ∆r was iteratively reduced, down towards
an appropriate choice. First, ∆r was iteratively halved from ∆r = ∆rSSP = 1000 m to
∆r = 100 m. Then, the value was further reduced from 100 m to 40 m in steps of 10 m
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and from 40 m to 10 m in steps of 2 m. For these iterations, the value of ∆z chosen
based on the results of the first convergence test, which will be presented in section 5.3.
The transmission loss values were simulated and compared for the θ = 330° transect,
up to Rmax = 10 km, which was deemed an appropriate intermediate length covering
enough distance for potential cumulating errors to become apparent. Unfortunately, as
explained in section 5.3, the chosen convergence criterion was not reached during this
test. A second test was therefore performed, where the value of ∆r was further reduced
from 50 m to 10 m in steps of 5 m and from 10 m to 1 m in steps of 1 m. It was not possible
to run this convergence test out to r = 10 000 m, because the best available computer
ran out of memory while trying to run the simulations using the required number of
range points. Therefore, this test was limited to rmax = 1000 m. The results of all of
the convergence test are presented in section 5.3. Here, the results are discussed and the
values of ∆z and ∆r are decided.

For reference and comparison, the values of ∆z and ∆r commonly used in literature
have been studied. Step-sizes as small as ∆r = 5 m and ∆z = 0.25 m have been used
by Collins (1989a) in his simple bench-mark test calculations using a 25 Hz source in
RAM. However, Jensen et al. (2011) claim that the value produced by equation 4.2, in
this case ∆z = 37 m, is an appropriate estimation for ∆z. Further, Jensen et al. (2011)
proposes that ∆r =| 2 − 5∆z | is an appropriate choice for the range-step in bottom-
interacting sound fields . In this case this would give ∆r = 183 m. In a description
of a different RAM-algorithm, implemented by Dushaw (2015) in Fortran 95, Dushaw
claims that ∆z = 0.5 m and ∆r = 250 m are conservative choices, without specifying the
frequency. According to Storheim (2018) the step-sizes used by active users of RAM are
commonly around the order of magnitude proposed by Dushaw (2015).

4.5 Determining the maximum range

One of the aims of this study has been to create tools that determine the environmental
parameters of the area around the LoVe Observatory so that, amongst other things, the
maximum detection range, w, can be determined in further studies. Therefore, Rmax, the
maximum distance the RAM simulations run to, should be estimated to some distance
that is plausibly longer than w. As an initial estimate, the maximum detection range was
calculated using the simple model for transmission loss with ‘semi-spherical’ spreading
and attenuation, shown in equation 2.10 and the transmission loss threshold for low noise
conditions, TLmax, low noise = 120 dB. The equation

120 = 15 log10Rmax + 0.002× 10−3Rmax (4.3)

was solved graphically, giving Rmax = 8162 km. This is a gross overestimation. A
transect of this length at θ = 330° would reach further than the west-coast of the United
States. The simple ‘semi-spherical’ spreading model used here is often used by scientists
as initial estimates of the detection range of hydrophones (Pedersen, 2018). If this model
is reliable at the LoVe Observatory, this means the detection range of the observatory
would reach all positions in the entire volume of the northern Norwegian sea and the
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Greenland sea. It would, of course, not reach further than this, as it would be cut off
by land masses, shown to the very west in the map in figure 3.1b. Instead of using
the calculated value for Rmax, it will be estimated as the distance to the coastline of
Greenland. Based on figure 3.1b, the point on the coastline furthest from the LoVe
Observatory was roughly estimated to be (Θ = 80°, ϕ = −16°). The distance between
this point and the observatory was calculated using the function m_lldist by Pawlowicz
(2018), and was found to be 1263 km.

Therefore, initially, the value of Rmax was set to 1263 km, to enable simulation of the
transmission loss all the way across the Greenland sea. However, a computational issue
was encountered. Seemingly, the computer used to run RAM was not able to compute
the model over such a large domain. When the model was executed, RAM returned
the error message ‘Need to increase parameter mp to 1169209344’. The cause of this
message was suspected to be a bug. Effort was made to try to resolve this issue, both
by debugging the RAM Fortran code and by changing some of the user specified model
parameters, such as the decimation factors, the number of Padé constants, the stability
parameter, and stability range, rs. Unfortunately, none of these modifications resolved
the issue.

This particular issue has not been described in literature, nor has it been encountered
by other users of RAM that the author have communicated with. Even so, it is the
author’s belief that the problem is not due to user error, but rather that some previously
unknown limitation of RAM has been encountered. One possible explanation is that
the computer used to compute the models has experienced limitations in capacity. The
used computer has 198 GB total memory and 16 processors, each with 3.60 GHz CPU.
A reason why limitations in capacity might not have been encountered, or at least not
published, by others may be two-fold. Firstly, other researchers might have run RAM
on a computer with greater capacity than the machine used here. Secondly, the choices
for ∆z and ∆r have been set using a strict convergence test, as explained in section
4.4. Often, scientists skip the convergence test to save time. This was for example seen
in Tollefsen (2006). Therefore, the values of ∆r and ∆z used in this study might be
smaller than those conventionally chosen, resulting in a greater need for computational
capacity. As shall be seen in section 5.3, the results of the convergence test gives step-sizes
considerably smaller than those proposed by Jensen et al. (2011) and Dushaw (2015).
However, having a converged solution is of utmost importance if the simulated results are
going to be trustworthy, and the steps sizes will therefore not be increased. Unfortunately,
another computer with more computational capacity was not available at the time of this
study.

Therefore, Rmax was set to the greatest distance that the RAM model could run to
without encountering computational errors. This distance was found by trial and error,
by running several test models and increasing the maximum range each time. Eventually,
the maximum range was set to Rmax = 190 km. This will be the value of Rmax in all the
RAM simulations run in this study, unless otherwise specified.
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4.6 Simulating the transmission loss

After having established all of the input parameters needed to run RAM and developed
a set of model tool codes fit to extract these parameters at any location, it was then
possible to run RAM to investigate how the transmission loss varied with position. The
transmission loss is a function of 3D space, as well as time, and it is therefore not feasible
to visualize the transmission loss at every position in the volume surrounding the LoVe
Observatory. Instead, a number of carefully chosen example transects will be produced
and shown in Chapter 5, in order to draw some conclusions about which areas that are
detectable by the observatory.

To begin with, the transmission loss was modelled along the transect at θ = 330°.
This is deemed to be heading straight out of the middle of the Hola valley. Looking at
this transect will hopefully give an indication of the maximum range that the observatory
can detect. The resulting transmission loss, calculated at all four seasons, can be seen in
figure 5.13 in section 5.4. Then, to investigate how the transmission loss is affected by
the shallow plateaus to the north and south of the Hola valley, the transmission loss was
modelled along 8 transects at 30° intervals running across the Vesterålen and Egga banks.
These transects were chosen since they will highlight the effect on the transmission loss
of the bathymetry changing from the Hola valley to the shallow banks. Since this was
the objective, the value of Rmax was limited to 50 km, which is long enough to cover
the extent of the banks and within the region mapped by Geological Survey of Norway
(2016), shown in figure 3.6. All the results produced by varying θ are presented and
discussed in section 5.4.1. To further investigate the effect of varying θ on the simulated
transects, the transmission loss was simulated along every transect between 220° to 40°
at 1° intervals. For these transects Rmax was set to the maximum possible range, 190 km.
Given the large amount of simulated transect this produced, it is not feasible to present
each transect here. Instead, the transmission loss value at a single depth was extracted
from all of the simulated transects. This way, it was possible to construct plots of how
the transmission loss varied in a horizontal plane, as a function of range and azimuthal
angle. This method was attempted for all four seasons. However, due to time restrictions
and the fact that producing a large number of .in-files is a lengthy process, only the
winter, spring and autumn seasons were completed. The resulting plots are shown in
figures 5.21 and 5.22.
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Chapter 5

Results

The calculated input data that were used in the TL simulations are presented in sections
5.1 and 5.2. The data have been collected and processed using the methods laid out in
chapter 3. For some of the data, the results of these methods had to be reviewed before
the data could be used to compose TL simulations, in order to expose any artefacts in
the processed data or in the underlying calculations. These artefacts will be identified in
section 5.1 and the methods used to compensate for the abnormalities will be discussed.
Then, the results of the convergence test are presented in section 5.3, before the simulated
transmission loss results are finally presented in section 5.4.

5.1 Calculated sound speed profiles

The SSPs that have been calculated using CTD-measurements downloaded from Inter-
national Council for the Exploration of the Sea (2018), as explained in section 3.2, can be
seen in figure 5.1. The figure includes the calculated SSPs at all available measurement
positions, apart from those excluded in figure 3.4. Henceforth, this set of calculated SSPs
will be referred to as the full set of calculated SSPs. As expected, the profiles exhibit a
variation of cw with depth resembling a Munk-profile in medium to deep waters. How-
ever, the data also show some unexpected abrupt variations in the sound speed, which
can be seen in figure B.1 in Appendix B. Upon inspection of the downloaded raw data,
what appears to be random discontinuities in some of the temperature and salinity vari-
ations with depth were discovered. As an example, the variations of salinity with depth
for each of the SSPs which portray the unexpected variation in figure B.1b is shown in
figure B.2 in Appendix B. The figure shows a discontinuity jumping down to S = 0 in
the variation of salinity with depth, which cannot be explained by physics. The same
discontinuity is found in some of the data sets’ temperature variations, where T goes
abruptly to 0 ◦C. This is deemed to be an instrument error. Therefore, the data sets
were passed through a script in MatLab which identified any sets containing values of 0
salinity or 0 ◦C temperature. Where this was found, these measurements were removed.
The remaining variation of either T or S with depth was then used to interpolate the
value of the respective variable at the removed data points.
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It was also discovered that three of the measurement sets contained double values
for some readings, meaning that the values for T and S were listed twice for the same
hydrostatic pressure in the original data. This was also taken to be an instrument error,
and at the hydrostatic pressures where two values occur, their average was taken to be
the true value. The SSPs calculated after the instrument errors had been corrected is
shown in figure 5.1.
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Figure 5.1: The full set of sound speed profiles, cw(z), calculated from CTD measure-
ments, with instrument errors corrected. Each line in the plot represents an individual
measurement position, and both shallow and deep waters are included.

To get a sense of the general shape of the SSP for each season, the mean value of the
full set of SSPs was calculated at each measurement pressure. The measurement pressure
was then converted to depth using equation 3.2, taking ϕ to be the latitude of the LoVe
Observatory, for simplicity. The resulting average SSP for each season is shown in figure
5.2. The figure also shows the 25% and 75% percentiles of the data, to give an indication
of the spread in the values of cw.
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Figure 5.2: The calculated mean of the variation of cw with depth. The 25% and 75%
percentiles indicate the spread in the averaged data at each depth. The approximate
depth of the borders between characteristic layers of the SSPs are marked by horizontal
lines.

Both the calculated SSPs shown in figure 5.1 and the mean values shown in figure 5.2
show some of the expected traits of SSPs, as described in section 2.1.1. A characteristic
SSP can, as previously mentioned, be divided into 4 distinct layers: the surface layer, the
seasonal thermocline, the main thermocline, and the deep isothermal layer. All of these
layers can be distinguished in each season’s mean SSP. The approximate depths of the
borders between these layers have been indicated in figure 5.2. The winter and spring
SSPs have a negative gradient in the surface layer, indicating that the layer is mixed
and that the temperature is constant. The summer SSP has a sharp positive gradient
in the surface layer, typical of sun-heated water. This is also the most shallow surface
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layer of the four seasons, which is probably due to more calm wind conditions during the
summer (DeSanto, 1979). As predicted by Urick (1983), the seasonal thermocline has a
close to linear gradient during the summer and autumn seasons. Moreover, as expected,
all of the seasons have a clearly noticeable minimum in cw at the border between the
main thermocline and the isothermal layer. The minima all lie above z = 1000 m, which
is to be expected at such a northerly latitude, where the water generally is quite cold
(White, 2015b). The deepest minimum occurs in the autumn, which is also the season
when oceanic water is typically the warmest, because of the way in which water retains
heat (Urick, 1983). All of the averaged SSPs show little spread in the value of cw in the
isothermal layer. This is both because there are fewer measurements at depth, but also
because the sound speed is typically unaffected by seasonal or diurnal changes at deep
waters.

5.1.1 Control of the SSP-construction method

In order to control the method that was designed to construct the SSPs along any tran-
sect, which is described in section 4.2.2, an example use of the method was made. Figure
5.3 shows an example transect and the resulting SSPs constructed at ∆rSSP = 1 km
intervals along the transect, using the calculated SSPs of the summer season. The SSPs
are interpolated from sea level down to the depth of the bathymetry at their location.
The interpolated SSPs, shown in figure 5.3b, reveal some unexpected rapid changes in
cw with z. The changes are so rapid that they might appear to be discontinuities, but
inspection of the data show that they are not. These artefacts are most likely caused by
the variable lengths of the measured SSPs. Close inspection of figure 5.1 shows that some

(a)

Figure 5.3: An example of constructed SSPs interpolated from the calculated summer
SSPs at 1 km intervals along a transect shown in the map in (a). The SSPs, shown in
(b), reveal unexpectedly rapid changes in cw with z.
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(b)

Figure 5.3: (Continued) An example of constructed SSPs interpolated from the calculated
summer SSPs at 1 km intervals along a transect shown in the map in (a). The SSPs,
shown in (b), reveal unexpectedly rapid changes in cw with z.

of the calculated SSPs end at shallower depths than others. In some cases the CTD
has not been measured all the way down to the depth of the sea floor, but rather it
has been terminated at a much shallower depth. This was revealed when plotting each
individual SSP calculated from the measured CTD data, together with its measurement
position (not shown here). Because of this, some short SSPs exist at locations with deep
bathymetry. These short SSPs will have been included in the interpolations of SSPs
at positions with deep bathymetry, and it is plausible that their premature termination
will have caused artefacts in the interpolated SSP. Figure 5.4 illustrates an interpolation
based on one long and one short SSP. Above the depth marked z∗ on the illustration,
the two SSPs are combined to give the interpolated value of cw. And below z∗, only
the long SSP contributes to the interpolation. However, because the value of cw below
z∗ is greater in the long SSP than in the short one, in the transition between z < z∗

and z > z∗, a jump-like artefact appears. The artefacts in the interpolated SSPs are
concerning, because such rapid changes in cw with z can drastically affect the modelled
travel direction of the sound, and the drastic changes are not believed to represent the in
situ SSPs. It is therefore decided that at any given position, the interpolation of the SSP
will only utilize SSPs which are measured to a depth equal to or greater than the depth
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of the bathymetry at that location. Figure 5.5 shows the SSPs again interpolated at the
locations shown in figure 5.3a, but with the depth restriction imposed. It is clear that
the changes has been effective in removing the concerning artefacts from the interpolated
SSPs. However, whether or not these SSPs genuinely represent the in situ sound speed
should be questioned. It is possible that some measured SSPs are removed from the
interpolation at deep waters, even though they are in fact measured close to the position
in question. Some of the relevant information in the measured SSPs are thus lost, and the
resulting interpolated SSPs diverge from the actual sound speed at the specific location.
It is important to keep this in mind when interpreting the final modelled transmission
losses.

Figure 5.4: An illustration of how jump-like artefacts in the interpolated SSPs can occur
when shallow SSPs are used in the interpolation.

Figure 5.5: SSPs interpolated at the positions given in figure 5.3a, using SSPs which are
measured to a depth equal to or greater than the depth of the bathymetry at the given
location.
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5.2 Geoacoustic properties

In table 5.1, shown overleaf, all of the calculated geoacoustic properties of all of the
sediment types are summarized. This includes the sound velocity, the grain diameter
both in units of mm and units phi, the velocity ratio, the bulk density, the grain density,
the attenuation coefficient, and the constant of attenuation frequency dependence, h.
Not all of these parameters are listed for every sediment type, because they have not
been calculated and are not needed. For example, whenever a velocity ratio is provided,
this indicates that the sound velocity in the sediment is a function of position, and the
sound velocity is therefore not listed, but rather calculated for each sediment block using
equation 2.19. Similarly, whenever a grain density has been listed, it has been used to
calculate the position dependent bulk density, using equation 2.18. Lastly, the listed
values for h are used to calculate the attenuation coefficient, αλ, b, using equations 2.25
and 2.65. These values are also position dependent, because the in situ sound velocity
of the sediment is used to convert the units of αm, b to dB/λ, as seen in equation 2.65.



State Sediment
type η Φ

′ (mm) φ′ (phi) VR cb (m s−1) ρB
(kg m−3)

ρg
(kg m−3)

αλ,b (dB/λ) h (dB s m−1)

Unconsolidated

Mud 0.45 0.0596 4.07 1.10 2501 0.70 (Eq. 2.28)
Sandy mud 0.38 0.5560 0.85 1.25 2760 0.49 (Eq. 2.32)
Sand 0.27 0.9721 0.04 1.29 2589 0.47 (Eq. 2.27)

Gravelly sandy mud 0.27 5.5496 -2.47 1.46 2872
0.8× 103

cb
(Eq. 3.7)

Gravelly muddy sand 0.25 5.8907 -2.56 1.47 2832
0.8× 103

cb
(Eq. 3.7)

Gravelly sand 0.25 6.0612 -2.60 1.47 2836
0.8× 103

cb
(Eq. 3.7)

Muddy sandy gravel 0.18 18.4772 -4.21 1.60 2842
0.8× 103

cb
(Eq. 3.7)

Sandy gravel 0.15 18.5685 -4.21 1.60 2779
0.8× 103

cb
(Eq. 3.7)

Abyssal mud 1507 1450 1.85× 10−4

Consolidated

Gravel, cobbles
and boulders 0.40 1.44 2802 0.6

Compact sediments or
sedimentary bedrock 4000 2600 0.0573

Thin or discontinuous
sediment cover on bedrock 7200 2700 0.6754

Mixed Mud alternating with blocks
of hard sediment ?

Table 5.1: The calculated sediment properties: estimated mean grain size (Φ′) in units of millimeters, estimated mean grain size (φ′) in
phi units, velocity ratio, sediment bulk density ρB, sediment grain density, ρg, attenuation coefficient αλ, b, the constant of the attenuation
frequency dependence h, and the number of the equation used for the calculation of h, which is given in parentheses next to the value.
? The properties cb, ρB and αλ, b are calculated locally as the average of the value of these parameters for ‘Compact sediments or sedimentary
bedrock ’ and the local values for ‘Mud ’.
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5.3 Findings from the convergence test

The results of the convergence test described in section 4.4 will be presented in this
section. As previously explained, this involves comparing the transmission loss simulated
using iteratively decreasing values of ∆r and ∆z, in order to identify the step-sizes when
the solutions are considered covered. The criterion for convergence is taken to be that a
number of consecutive iterations produce the same transmission loss values. All of the
presented transmission loss models have been simulated for the test-transect at θ = 330°,
using all of the model parameters described in 4.1.

Figure 5.6 shows how the transmission loss varies with range using iteratively de-
creasing values of ∆z, while the range-step is kept constant at ∆r = 25 m. For large
values of ∆z, the transmission loss is markedly different from the consequent iteration,
and the solutions have thus not converged. However, at smaller values of ∆z, it is not
clear from this figure whether the solutions have converged. Looking specifically at one
point, for example at r = 10 000 m, it is easier to visualize whether the iterations produce
a similar result. This is shown in figure 5.7.
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Figure 5.6: The simulated transmission loss along the θ = 330°-transect, using varying
values of ∆z from 37 m to 0.544 m, and ∆r = 25 m. Each simulation’s ∆z step is shown
in the legend.
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Figure 5.7: The simulated transmission loss at r = 10 000 m and θ = 330°, using varying
values of ∆z, and ∆r = 25 m.

For values of ∆z > 10 m, it is clear from figure 5.7 that the resulting transmission
loss values are not stable, and the solution has thus not converged. On the other hand,
when ∆z is made smaller than 10 m, the resulting transmission loss starts to approach
a similar value of TL at every iteration of ∆z. Since ∆z has been halved for each
new simulation, the change in ∆z from one simulation to the next is very small when
∆z is small, resulting in seemingly continuous horizontal lines on the plot in figure
5.7. Looking at one such ‘line’ in isolation indicates that the solution seemingly has
converged, given the large number of points giving the same value of TL. Curiously, the
seemingly horizontal ‘lines’ in figure 5.7 appear to take two values, at TL ≈ 94 dB and
at TL ≈ 98 dB. This is not expected, and the reason for this alternating behaviour is
unfortunately not known. However, it does not appear like this behaviour will vanish
at decreasingly smaller values of ∆z, and thus the value of ∆z must, unfortunately, be
chosen based on the results presented in figure 5.7. The lack of convergence in the z-
dimension is a major drawback that needs to be considered when utilizing the results of
the RAM simulations. Nevertheless, in order to make a model of the acoustic propagation
around the LoVe station, like this thesis set out to do, it is necessary to choose a step-
size in the z-dimension. The general trend in figure 5.7 appears to be that TL starts to
stabilize at a constant value with an uncertainty band of ± 2 dB in the region around
∆z = 0.2 m. Therefore, this is chosen to be value of ∆z used in all of the rest of the
simulations in this thesis.

Having determined the value of ∆z, the convergence tests were then run for the value
of ∆r. Looking firstly at the effect of reducing ∆r from 1000 m to 100 m, as shown in
figure 5.8, it is clear that the solutions have not converged. In this range of values for ∆r,
the resulting transmission loss is not the same for different values of ∆r, both because
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the solutions have not converged and because the range resolution in some cases is too
coarse to capture the true variation of TL with r.
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Figure 5.8: The simulated transmission loss at the θ = 330°-transect, using varying values
of ∆r and ∆z = 0.2 m. Each simulation’s ∆r step is shown in the legend.

Next, the ∆r was gradually reduced from 100 m to 10 m. Looking at the resulting
transmission loss as a function of range, as shown in figure 5.9, it appears as if the radial
position of the maxima and the overall pattern of TL as a function of r is the same for all
values of ∆r, and that these solutions thus have converged and that coarse resolution is
no longer an issue. However, closer inspection of a smaller range interval, shown in figure
5.10, reveals large discrepancies in the values of TL. Here, it appears that ∆r = 100 m -
50 m might be too coarse to resolve the peaks of the maxima. Moreover, even for smaller
values of ∆r, the maximum values at the peaks are not the same.
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Figure 5.9: The simulated transmission loss for small, varying values of ∆r and ∆z =
0.2 m, along the θ = 330°-transect. Each simulation’s ∆r step is shown in the legend.
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Figure 5.10: Examples of the simulated transmission loss at two maxima along the
θ = 330°-transect, showing discrepancies in TL for varying values of ∆r and ∆z = 0.2 m.
Each simulation’s ∆r step is shown in meters in the legend.

The lack of convergence becomes even more clear when looking at the values of TL at
just a single position in r. For example, figure 5.11 shows the simulated values of TL at
r = 10 000 m. If the solutions had converged, one would expect to see that the value of
TL stabilised at a single value as ∆r decreased. This does not occur in figure 5.11, but
there does appear to be some degree of stabilisation for values smaller than ∆r = 50 m,
indicated by how the scatter in the plot is contained within TL = 79.8− 85.8 dB. In this
region, TL seems to take on a constant linear relationship with ∆r, but with significant
scatter.
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Figure 5.11: An example of the simulated transmission loss at r = 10 000 m and θ = 330°
using ∆z = 0.2 m, indicating that the solutions are not converged even for values of ∆r
down to 10 m.
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The lack of convergence might be because ∆r simply has not been tested for small
enough values. Therefore, the transmission loss was simulated along the same transect
using step-sizes of ∆r = 50 − 1 m. The resulting transmission loss is shown in figure
5.12. Figure 5.12 shows the same overall results as the previous convergence test; the
maxima occur at the same range positions, indicating that the various values of ∆r give
similar results, but there are still significant variations in the values of TL, even for
very small values of ∆r. This is especially clear in the zoomed in view of the maximum
at r = 780 m, shown in figure 5.12b. At the peak of the maximum, the values of TL
seem arbitrary and vary from 66.4 − 51.4 dB. Reducing the value of the step-size has
thus not appeared to make the solutions converge. Furthermore, at very small values
of ∆r, figure 5.12 reveal the presence of very rapid variations of TL with r. This has
been interpreted as Gibbs’ oscillations, which has also been observed by Collins (1990).
Gibbs’ oscillations are artefacts caused by lack of stability in the RAM code. These
oscillations are likely to have occurred because small values of ∆r cause rapid variations
in environmental properties with r, meaning that the domain can no longer be said to be
weakly range dependent. The occurrence of these artefacts, together with the both the
fact that ∆r = 1 m is remarkably small compared with the values of ∆r recommended
by Jensen et al. (2011) and Dushaw (2015), and the excessive computation time needed
to write the .in-file using such a small range step justifies that further convergence tests
with even smaller values of ∆r were not performed. In fact, the large discrepancies in
transmission loss values shown in both figure 5.11 and 5.12 makes the author believe that
the solutions will not converge for any values of ∆r. Although the convergence criterion
has not been reached, in figure 5.11, it appears like the transmission loss values start to
stabilize when ∆r < 50 m, indicating that the solutions, hopefully, are as converged as
they can be. Based on this, ∆r is chosen to be 38 m. Thus, the step-sizes used in the
rest of this thesis are ∆z = 0.2 m and ∆r = 38 m.
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Figure 5.12: The results of the convergence test for ∆r = 50 − 1 m using ∆z = 0.2 m.
Figure (a) shows the transmission loss along the θ = 330°-transect along the entire simu-
lated range, while figure (b) shows a zoomed in view of an example maximum exhibiting
Gibbs’ oscillations.
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Figure 5.12: (Continued) The results of the convergence test for ∆r = 50 − 1 m using
∆z = 0.2 m. Figure (a) shows the transmission loss along the θ = 330°-transect along the
entire simulated range, while figure (b) shows a zoomed in view of an example maximum
exhibiting Gibbs’ oscillations.

5.4 Transmission loss

In this section, the results of the transmission loss simulations that were described in
section 4.6 are presented. The chosen model parameters are described in section 4.1, and
following the convergence test results given in section 5.3, the step-sizes are ∆z = 0.2 m
and ∆r = 38 m. The following discussion of the results will assume that the simulated
results are accurate and credible. The validity of this assumption will be examined in
section 6.3.

The transmission loss calculated along the transect at θ = 330°, which points straight
out of the Hola valley, is shown in figure 5.13. The figure shows the calculated transmis-
sion loss at all four seasons. The colour map used in the figures has been designed so
that blue through green and yellow indicates transmission loss values between 0 dB and
90 dB. The minimum value of the color scale, given by the darkest shade of blue is set to
30 dB. This does not mean that the transmission loss is always greater than 30 dB, but
the lower limit is set to 30 dB simply to give the rest of the color scale a dynamic range
appropriate for visualizing the results. Following the color scale from blue to yellow, the
white colour indicates that the transmission loss is equal to the threshold for detection in
high noise states, TLmax, high noise = 90 dB. From there follows a transition from white to
gray, further increasing the value of the transmission loss above TLmax, high noise, before
the threshold for detection in low noise states is reached at TLmax, low noise = 120 dB.
This is indicated by a solid black colour which is used when TL ≥ TLmax, low noise. Thus,
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Figure 5.13: The modelled transmission loss for each season along the θ = 330°-transect,
running straight out of the Hola valley. The constructed SSPs used in each simulation
are shown in the left column.
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whether or not a whale can be heard by the LoVe Observatory will be ambiguous if the
whale is located in an area in figure 5.13 that is coloured by any shade of grey. In these
areas, the current state of the noise, which is of course not limited to the two states
defined here, will determine if the whale call is detectable by the observatory.

Figure 5.14 shows how the sediment type varied along the θ = 330°-transect. The
figure has been constructed from the sediment map by Geological Survey of Norway
(2016), shown in figure 3.6, and the output of the Seabed-function described in section
4.2.3 using ∆r = 38 m as the step-size. Figure 5.14 thereby shows how the sediment type
was varied with range in the simulations run to produce the transmission loss values
shown in figure 5.13. The plot does not show the entirety of the transect, because there
is no change in sediment type beyond r = 71 km.

Figure 5.14: The sediment types used in the simulation of along the θ = 330°-transect.
Notably, the plot continues across two lines of different scale. Beyond r = 71 km, the
sediment type ‘Abyssal mud ’ continues until the end of the transect.

As expected figure 5.13 shows that the variation in transmission loss with position is
complex and variable dependent on the season. In the deep Lofoten basin there appears
to be a cyclical pattern of low transmission loss alternating between shallow and deep
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water as a function of range. The regions of low transmission loss are taken to be
convergence zones, and as expected, these regions are repeated at regular intervals in
range. The presence of convergence zones suggests that sound originating at any point in
the low transmission loss region will be propagated by the SOFAR channel. As explained
in section 2.1.1, this means that the sound will experience little attenuation because it
likely never interacts with the sea floor. The regions of transmission loss greater than
TLmax, high noise are taken to be shadow zones, which are regions which are not reached
by the sound rays from the SOFAR channel (White, 2015b).

Notably, the transmission loss in the shadow zones is for the most part not greater
than TLmax, low noise, meaning that there are viable propagation paths from the shadow
zones to the observatory, albeit with more attenuation than in the convergence zones. For
the shadow zones near the ocean bottom, this likely occurs because the sounds originating
in the shadow zones will reflect off the sea bottom, thus being attenuated by reflection
loss. Yet, the sounds are still propagated up to the observatory, which is remarkable
given how deep the Lofoten basin is in comparison with the opening of the Hola valley.
On the other hand, sounds originating in the shadow zones near the sea surface are not
attenuated by reflection loss, since RAM treats the sea surface as a perfectly reflecting
boundary. It is therefore not clear what causes the attenuation of sounds originating in
the shallow convergence zones to be greater than the attenuation of sounds originating
in the convergence zones.

Another surprising aspect of the simulated transmission loss near the ocean surface is
the lack of coupling between transmission in the Hola valley and surface-duct propagation
in the deep basin. As mentioned in section 5.1, the mean of the calculated SSPs show
that in the winter and the spring, there is a mixed and isothermal surface layer with a
positive gradient in the SSP, while the thermocline layers have a negative gradient. This
typically gives rise to a surface duct (Brekhovskikh and Lysanow, 1991), where sound is
propagated with little attenuation by being continuously refracted upwards and reflected
off the surface. It is expected that this occurs in the Lofoten basin during winter and
spring. However, figure 5.13 shows that the transmission loss values along the surface
of the ocean are consistently higher than TLmax, high noise. This indicates that even if a
surface duct exists, the sound propagating in the duct does not continue to propagate
into the Hola valley. The reach of the LoVe Observatory will therefore not benefit from
low attenuation, surface-duct propagation.

Interestingly, figure 5.13 show that if a whale call is produced in a convergence zone
and is thus propagated by the SOFAR channel, the sound appears to couple with the
wave-guide produced by the shallow continental shelf and the sea surface, so that the
whale call reaches the LoVe Observatory with little attenuation. This is true if the whale
call is produced in convergence zones along the surface of the ocean, and, remarkably
also for the convergence zones present at around z = 2500 m. Although it was expected
that a SOFAR channel existed in the Lofoten basin, and that this would enable sound
to propagate far, it is not straight forward to trust that this sound will propagate from
the SOFAR channel and into the shallow Hola valley. This result shows that the LoVe
Observatory has potential for monitoring a vast domain in the Lofoten basin.

The pattern of alternating convergence zones and shadow zones is present in all the
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seasons, but is less pronounced in the winter. This results in fewer regions of transmission
loss < TLmax, high noise near the surface in the winter for ranges greater than r ≈ 100 km.
This could potentially affect the maximum range the LoVe Observatory is able to monitor
during harsh and consequently loud weather conditions. A plausible explanation of the
lack of distinguishable convergence zones is that there might be large variation in the
SSPs along the modelled transect during the winter season. Variation in the SSP will
cause the convergence zones to ‘smear’ together (Brekhovskikh and Lysanow, 1991).
However, the lack of distinguishable convergence zones is possibly not an effect of the true
conditions around the observatory, but rather a result of missing information in the RAM
simulations. As seen in figure 5.1, the winter season does not contain CTD measurements
all the way down to the sea floor. In the winter, the deepest CTD measurement was made
at z = 2484 m, whereas the other seasons have deeper measurements. And as previously
mentioned, RAM does not extrapolate the value of cw beyond the deepest specified value
(Collins, 2001). This means that the maximum value of cw below the minimum in cw is
lower in the winter measurements than in the other seasons. The width of the SOFAR
channel is determined by the two depths at which the values of cw are equal, on either
side of the minimum in cw (Urick, 1983). The fact that the winter season does not
have measurements at great enough depths might have made the SOFAR channel in the
simulations more narrow than it is in reality, and more narrow than it is in the simulations
of the other seasons. This explains why the regions of TL < TLmax, high noise appear at a
more narrow range of depths in the winter season than in the other seasons. Moreover,
in the RAM simulations, sound travelling at great depths, below z = 2484 m, will not
have been refracted upwards because the SSPs did not have a positive gradient below
z = 2484 m. It is likely that this will have caused more sound rays to interact with the
sea floor, causing more attenuation, and that a repeated pattern of convergence zones
and shadow zones was therefore not established in the transmission loss results for the
winter season.

In the spring, summer, and autumn season it is possible to identify the rate at which
the convergence zones are repeated. The peak of a convergence zone was taken to be
where the transmission loss was equal to TLmax, high noise at the most shallow depth.
TLmax, high noise is of course not the true limit of the convergence zone, since this threshold
is defined specifically for the signal detection capability of the LoVe Observatory, but
identifying this point will still give an indication of how often the pattern observable
in figure 5.13 repeats itself. And identifying the depths at which the transmission loss
reaches the threshold for detection at each convergence zone will aid understanding of
how well the LoVe Observatory can detect mammals inhabiting shallow waters. The
radial positions of the convergence zones were named r1, r2 and r3, counting outwards
from the position of the observatory. The corresponding depth coordinates were named
z1, z2 and z3. These coordinates were identified on figure 5.13b to 5.13d, and are shown
in table 5.2. The winter season was not included due to the lack of a distinct convergence
zone pattern.
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Spring Summer Autumn
Radial position (km)

r1 67 75 78
r2 114 123 128
r2 − r1 47 48 50
r3 155 173 179
r3 − r2 41 50 51
Depth (m)

z1 41 33 43
z2 85 53 73
z3 132 73 74

Table 5.2: The position coordinates of the convergence zones identified in figures 5.13b
to 5.13d.

Table 5.2 also shows the difference between each consecutive convergence zone. These
differences are similar across all three seasons, and within the expected range of 40 km
to 60 km (White, 2015b). This validates that the simulated sound propagating in the
Lofoten basin is exhibiting classical SOFAR propagation. Table 5.2 also shows the depths
of each convergence zone peak. These depths increase as the range increases, and this
trend is present in all three seasons. It is noteworthy that only the first convergence zone
peaks lie above z = 50 m, which, as previously mentioned, was identified by Watkins
et al. (1987) as the depth at which Fin whales typically vocalize. If the trend in the
depth of the convergence zone peaks continues at ranges beyond 190 km, this means that
the LoVe Observatory will not be able to detect Fin whales vocalizing at z = 50 m at
any ranges greater than r1, when the noise level is high.

In summary, in the simulated range, there are no clearly distinguishable regions which
are not detectable at low noise conditions. This means that in low noise conditions, the
observatory can detect mammals at nearly ever position in the Lofoten-Vesterålen basin
along the θ = 330°-transect. Propagation of sound in the SOFAR channel is mainly
limited by attenuation from the sea water, which is minimal at 20 Hz (Brekhovskikh and
Lysanow, 1991). It is therefore very likely that the observed convergence zone pattern,
with transmission loss values lower than TLmax, high noise, will exist at much larger ranges
than the maximum simulated range of 190 km. To find the maximum detectable range
of the observatory, longer ranges must be investigated.

Since modelling of the transmission loss using a complex software such as RAM is
often too time consuming or costly for many researchers, the simplistic ‘semi-spherical
spreading’ model for how transmission loss varies with range only, shown in equation 2.10,
is often used instead (White, 2015b). It is therefore natural to compare the results from
the RAM-simulations with the corresponding values from the simplistic model. Figure
5.15 shows the difference between the two models for the θ = 330°-transect, calculated as

Difference = TLsemi-spherical − TLRAM. (5.1)

Here, TLsemi-spherical is the transmission loss calculated by equation 2.10 and TLRAM is
the transmission loss calculated by RAM.
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(a) Winter

(b) Spring

(c) Summer

(d) Autumn

Figure 5.15: The difference between the transmission loss calculated by the simplistic
‘semi-spherical spreading’ model shown in equation 2.10 and the transmission loss mod-
elled by RAM along the θ = 330°-transect.
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Figure 5.15 shows that TLsemi-spherical is generally smaller than TLRAM in all four
seasons. In fact, close inspection of the figures reveal that the difference between the
two models is only positive at a few positions in the shallow Hola valley, where r <
20 km. The same cyclical pattern as was seen in figure 5.13 is observable in where the
difference between the model approaches 0 in figure 5.15. This again underlines that
propagation by the SOFAR channel reduces transmission loss. It is important to note
that the simplistic transmission loss model consistently under-predicts the transmission
loss. If this model were to be used for example to calculate the maximum range at
which the LoVe Observatory could detect sounds, the range would have been severely
overestimated.

After having looked at the effects of surface duct propagation and SOFAR-propagation
in the deep basin, the attention is turned to the transmission loss experienced in the Hola
valley itself. Figure 5.16 shows the simulated transmission loss at θ = 330°, the same
results as discussed above, but zoomed in at the Hola valley where the bathymetry is
shallow. The transmission loss in the Hola valley looks strikingly similar across all sea-
sons. This is somewhat surprising, given the large seasonal variations in SSP. The full
set set of calculated SSPs shown in figure 5.1 of course does not show the SSPs meas-
ured in the Hola valley specifically, so the variation shown in figure 5.1 might not be
representative along the simulated transect. Therefore, the SSPs interpolated along the
θ = 330° transect up to r = 21 km are shown in figure 5.17. The interpolated SSPs ap-
pear to be varied across the seasons. In the winter and the spring, there is a prominent
positive gradient in the SSPs, indicating that the water is mixed and isothermal. The
gradient will cause the propagating sound to be refracted upwards, towards the surface
of the ocean. In the summer season, there is a shallow surface layer of sun-heated water,
giving a negative gradient in the top layer of the SSP. In theory, this should give rise to a
wave-guide like propagation between the positive and the negative gradient in the SSPs.
Finally, in the autumn season, the SSPs are of mixed shapes, with both positive and
negative gradients in the surface layer. But, most of the SSPs have a positive gradient
below z ≈ 150 m. This is true for all of the four seasons, and offers an explanation of
why the simulated transmission losses are so similar. In all seasons, when sound rays
approach the ocean surface, they will either be refracted back towards the bottom, or,
reflected off the surface of the ocean. Similarly, when sound rays approach the bottom,
they will either be refracted back towards the top by the positive gradient in the SSP,
or, reflected off the bottom. The sound thus propagates along the valley as if it was a
wave-guide.
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(a) Winter

(b) Spring

(c) Summer

(d) Autumn

Figure 5.16: The simulated transmission loss at θ = 330° in the shallow Hola Valley,
during all four seasons
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Figure 5.17: The SSPs interpolated along the θ = 330°-transect, up to r = 21 km.
Different colors indicate different interpolation positions.

The valley is shallow, but deep enough to support propagation of the 20 Hz-mode.
The cut-off frequency for propagation of modes in a wave-guide is

fcut =
cw
4h

√
1

1−
(
cw
cb

)2 , (5.2)
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where h is the depth of the wave-guide (Urick, 1983). As shown in figure 3.6, the seabed
in the Hola valley is mainly dominated by ‘Sand ’. The factor

cw
cb

in equation 5.2 equals

1

VR
and according to table 5.1, for ‘Sand ’, VR = 1.29. Based on figure 5.17, the speed of

sound in the water is estimated to be cw = 1480 m s−1. Finally, based on the bathymetry
in figure 5.16 the depth of the valley is estimated to be h = 225 m. From this, the cut-off
frequency is calculated to be fcut = 2.6 Hz. This is well below the modelled frequency,
showing that wave-guide like propagation of the 20 Hz-mode is viable in the Hola valley.

5.4.1 Transmission loss as a function of θ

To investigate the effect of the shallow plateaus next to the Hola valley, the transmission
loss has been modelled along 8 transects at varied angles. The locations of the transects
are shown in figure 5.18, and figure 5.19 shows the simulated transmission loss along all
of these transects for the winter season. The transmission loss has been simulated for
all four seasons, but only the winter season is shown in figure 5.19. The results for the
other seasons can be seen in figures B.3 to B.5 in appendix B. The figures reveal several
important aspects regarding the transmission loss experienced by sound reaching the
LoVe Observatory from locations on top of or beyond the two shallow banks next to the
Hola valley. First of all, there appears to be little significant variation in the transmission
loss plots across the four seasons. This is surprising, given the observed effect season had
on the transmission loss along the θ = 330°-transect in the Lofoten basin discussed above.
This difference might indicate that seasonal variation in SSP is more significant when the
sound propagates in deep water. The only plots where season does appear to significantly
affect the transmission loss are in the plots of the θ = 270°-transect. To ease comparison,
the plots of the θ = 270°-transect for each season are reproduced in figure 5.20.
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Figure 5.18: The location of the modelled transects at varying angles.
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(a)

(b)

(c)

Figure 5.19: The transmission loss at varying angles, during the winter season.
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(d)

(e)

Figure 5.19: (continued) The transmission loss at varying angles, during the winter
season.
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(f)

(g)

(h)

Figure 5.19: (continued) The transmission loss at varying angles, during the winter
season.
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The θ = 270°-transect runs south-west from the LoVe Observatory, across the shallow
Egga bank, before reaching the steep downhill slope into the Lofoten basin, starting at
r ≈ 44 km. Figure 5.20 shows that sounds originating above this slope will experience
transmission loss lower than TLmax, low noise. But, more importantly, the figure reveals
that the level of transmission loss is different for the different seasons. In the summer and
autumn, only sound sources positioned close to the seabed will experience transmission
loss lower than TLmax, high noise. Contrastingly, in the winter, the entire water column
above the slope has transmission loss lower than TLmax, high noise. Simulating the trans-
mission loss along the θ = 270°-transect has thus showed that the observatory might be
able to detect some locations beyond the Egga bank during the winter season that it
cannot detect during the summer and autumn seasons. This might contribute towards
understanding why Fin whales typically are not detected by the LoVe Observatory from
March to August. However, the same conclusion cannot be drawn when comparing the
transmission loss in each season along the other transects plotted in figure 5.18. Some
seasonal difference in the transmission loss experienced by sounds travelling to the LoVe
Observatory from the Lofoten basin and across the Egga bank are observed in the plots
of the θ = 300°-transect (as seen in figures 5.19d, B.3d, B.4d, and B.5d). But the dif-
ferences are complex and it is difficult to point to specific deviations that can support
concrete conclusions about the effect of season on transmission loss.

The θ = 240° and θ = 270° transects (shown in figures 5.19b and c) show that
sound originating in the water above the Egga bank will reach the observatory without
experiencing transmission loss above TLmax, high noise. Similarly, the θ = 30°-transect
reveals that sound originating above the Vesterålen bank will also reach the observatory
without being attenuated more than TLmax, high noise. Thus, the observatory can be used
to monitor whale activity in the shallow water on top of the banks, even though dir-
ect sound propagation paths between the whales and the observatory are blocked by the
step changes in bathymetry. The plot of the transmission loss along the θ = 60°-transect,
shown in figure 5.19h, does not necessarily support this conclusion. However, almost all
of this transect extends beyond the area in which the sediment composition has been
mapped by Geological Survey of Norway (2016), shown in figure 3.6. In such a shallow
region, the simulated transmission loss becomes quite unreliable without including in-
formation about the sediment composition. The simulated transmission loss along the
θ = 60°-transect will therefore be disregarded.

Having said this, propagation in shallow water with high-impedance sediments is not
unaffected by attenuation. The θ = 210° and the 30° transects (shown in figures 5.19a
and g, respectively) show that sounds originating in shallow water at ranges beyond the
Egga and Vesterålen banks are highly attenuated. In fact, these are the only transects
where the transmission loss at some ranges reaches TLmax, low noise in the entire water
column. This is likely caused by changes in the bathymetry, causing sound to be reflected
back towards the source, and thus never reaching the LoVe Observatory. In the θ =
210°-transect, transmission loss is greater than TLmax, low noise at all positions in z at
r > 34°. Comparing this with how far sound propagates without being significantly
attenuated along the θ = 330°-transect really highlights how much scattering by the
changing bathymetry in shallow water contributes to the transmission loss.
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(i) Winter

(j) Spring

(k) Summer

(l) Autumn

Figure 5.20: The transmission loss along the θ = 270°-transect for the four seasons.
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Several of the transmission loss plots are simulated along transects with varying
bathymetry that causes some positions in the water column to not have direct straight
propagation paths to the LoVe Observatory. This is the case for the θ = 270°, θ = 300°,
and the θ = 0° transects (shown in figures 5.19c , d, and f, respectively). The plots of the
simulated transmission loss for these transects all show that the transmission loss is rarely
above TLmax, low noise, even at positions without direct propagation paths. Remarkably,
this indicates that the LoVe Observatory is not hindered by ‘shadows’ from the Egga or
Vesterålen banks.

The transmission loss has also been simulated along every transect between 220° to
40° at 1° intervals. These simulation results were processed so that horizontal planes
giving the variation of TL with θ and r were produced. For example, figure 5.21 shows
the transmission loss at z = 50°, depth at which Fin whales vocalize, according to
Watkins et al. (1987). To compose the results presented in figure 5.21, the transmission
loss at z = 50 m at all ranges was extracted from the results of each of the modelled
transects. This was done for the winter, spring and autumn season. Little distinct
variation was observed between the seasons, and the plots for the spring and autumn
have therefore been placed in Appendix B in figure B.6, while the winter season is shown
in figure 5.21. The figures include the outline of the sediment map, which refers to the
region mapped by Geological Survey of Norway (2016), shown in figure 3.6. At ranges
beyond this region, there is little or no available information about the composition
of the seabed, and the sediment has therefore been assumed to be ‘Abyssal mud ’. As
discussed in section 3.3.4, this is an appropriate assumption in the deep regions of the
Lofoten basin. However, comparison of the outline shown in figure 5.21 with bathymetry
contour maps, shown for example in figure 4.3, reveals that not every region outside
the sediment map has deep bathymetry. The transects at θ = 220° to approximately
260° and θ = 40° to approximately 30° run across shallow banks that lie partly outside
the region mapped by Geological Survey of Norway (2016). Looking for example at the
transmission loss at θ = 240° in figure 5.21, the value of TL changes quite abruptly
at the outline of the sediment map, indicating that sediment type significantly affects
the transmission loss. The presented results for transects running across shallow banks
outside the mapped region are therefore untrustworthy. Notably, this is not to say that
all simulated transmission loss results outside the outlined sediment map are unreliable.

Figures B.6 and 5.21 all show that the transmission loss is generally lower than
TLmax, high noise at ranges r < 50 km, but greater than TLmax, high noise beyond this range.
This again highlights the fact that only the first convergence zone exists at z = 50 m. This
is an important conclusion if Fin whales only vocalise at this depth (Watkins et al., 1987).
Notably, this means that the observatory can only detect whales up to approximately
r = 50 km in severe noise conditions. Moreover, the fact that TL < TLmax, high noise in
most regions within r ≤ 50 m supports the previous conclusion that sound originating on
top of the Egga and Vesterålen banks will reach the observatory with little attenuation.
The fact that sound seemingly propagates well across the shallow banks is not unexpected,
given the sediment types present on the banks. In the shallow water above the banks,
the sound will propagate by reflecting off of the ocean surface and the bottom, and the
sediment therefore plays an important role in how much the sound is attenuated. Figure
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3.6 shows that the sediments on the bank mainly consist of ‘Gravel, cobbles and boulders’
and some ‘Sandy gravel ’. As shown by the velocity ratio and the grain density of the
sediments, shown in table 5.1, these are sediment types with relatively high impedance,
in comparison with water. This means that the boundary between the water and the
sediment will be highly reflective, and the sound will not experience much attenuation
when it is reflected. In fact, equation 2.17 has been graphed (not shown here) as a function
of incidence angle, θi, using the material properties for ‘Gravel, cobbles and boulders’.
This revealed that the pressure reflection coefficient is 1 for all incidence angles > 44°.
At steep incidence angles, the sound will thus be reflected without experiencing any
attenuation at all.

Figure 5.21: The simulated transmission loss at z = 50 m for the winter season.

Outside r = 50 km figure 5.21 shows that the transmission loss is generally distinctly
lower than TLmax, low noise, for transects between θ ≈ 290° to 345°. For angles outside this
‘beam’, the transmission loss transitions towards more areas having TL ≥ TLmax, low noise.
This demonstrates that the angular reach of the observatory is limited, an effect which
most likely occurs because the observatory is hindered by the shallow banks. But, not-
ably, the banks have not completely blocked the observatory’s detection capabilities, even
when the banks cause there to be no direct propagation path between the sound source
and the observatory. This is apparent for example along the θ = 0°-transect, which runs
across the Vesterålen bank. Although the bank is more shallow than the position of the
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observatory, there are still some regions with TL < TLmax, low noise at ranges greater than
50 km.

Its interesting to investigate if the convergence zones seen in figure 5.13 are also
present at other transects. The transmission loss variation with range was therefore
extracted from all the simulated transects at z = 235 m. This is the approximate depth
at which the middle of the convergence zones close to the surface in 5.13 are located. The
resulting transmission loss values as a function of θ and r are shown in figure 5.22 for the
winter, spring and autumn seasons. These figure include a map of where the bathymetry
is more shallow than zb = 235 m. This highlights the fact that the LoVe Observatory
is surrounded by more shallow bathymetry at all sides, even in the direction running
out of the valley. It is therefore slightly surprising that the observatory is able to detect
whales even in severe noise conditions, despite being blocked by the bathymetry. Figure
5.22 shows the presence of regularly repeating convergence zones at transects between
θ = 300° and 340°. This confirms the angular limitation of the observatory; only transects
within this ‘beam’ have transmission loss values below TLmax, high noise at ranges greater
than approximately r > 50 km. As seen also in figure 5.13, the convergence zone pattern
is most pronounced in the warmer seasons, and less distinguishable in the winter.

(a) Winter

Figure 5.22: The simulated transmission loss at z = 235 m for the winter, spring and
autumn seasons.
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(b) Spring

(c) Autumn

Figure 5.22: (Continued) The simulated transmission loss at z = 235 m for the winter,
spring and autumn seasons.
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Chapter 6

Discussion

6.1 Outcomes of the RAM-simulations

The presentation of the simulated transmission loss values in sections 5.4 and 5.4.1 have
indicated that the LoVe Observatory is suitable for monitoring of whales using acoustic
animal density estimation. Generally, the detectable ranges are as great (or potentially
greater than) the simulated ranges in low noise conditions, but more limited as the noise
level increases. The transmission loss at the depth of vocalizing Fin whales is unfortu-
nately higher than TLmax, low noise at ranges greater than approximately r = 50 km, which
might indicate that the Fin whales commonly detected by the observatory are staying
within this range. It has been shown that sounds originating on top of the Egga and
Vesterålen banks can be detected by the observatory, even though these sound sources
might not have direct straight propagation paths to the receiver. The observatory thus
does not seem to be significantly limited by ‘shadows’ from the shallow banks. Having
said this, it has also been shown that the observatory has an angular limitation in its
detectable area, which most likely stems from the banks either blocking the observatory’s
access to the deeper waters with their bathymetry, or from the added transmission loss
stemming from more bottom interaction due to the very shallow water on top of the
banks. Generally, seasonal variability has been shown to be most pronounced at deeper
waters. The observed convergence zones in the Lofoten basin are affected by season,
and are most distinguishable in the warmer seasons. Remarkably, this does not offer
any conclusions towards why Fin whales are generally not detected by the observatory
between March to August.

6.2 Discussion of the chosen methods

The transmission loss around LoVe has been simulated using RAM with environmental
input parameters gathered from various online databases. Using RAM to simulate trans-
mission loss is a well established method. The validity of the results produced by the
algorithm will be discussed in section 6.3. The bathymetric data have been interpolated,
which is considered a reliable method. It is only limited by the resolution of the original
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bathymetry maps. Likewise, the SSPs are also calculated using a reliable method. The
values are calculated from CTD measurements, which are commonly measured specific-
ally for SSP calculations (Urick, 1983). After the SSPs were calculated, interpolation was
used to identify the values of cw at any position. This method was designed by the au-
thor. One potential flaw with the method comes from the exclusion of short SSPs, which
was discussed in section 5.1.1. Although removing the short SSPs seemingly alleviated
the issue of jump-like artefacts in the constructed SSPs, it also removes viable inform-
ation from the interpolation, thus making the results less likely to reflect the real value
of cw. This raises the interesting question of whether to include all available information
when modelling real oceans, even if the information causes artefacts in the modelled
results, or to exclude some information to avoid artefacts. In this case, the latter was
chosen, even though this deliberately diminishes the veracity of the input parameters
to RAM. The chosen model was effective in removing artefacts along the test transect
used in figures 5.3 and 5.5. However, in the SSPs constructed for the θ = 330°-transect,
shown in figure 5.13, there are still some traces of the jump-like artefact at z ≈ 1480 m.
These artefacts might not stem from the issue of short SSPs after all, or it might be that
the method chosen to correct the issue has failed in this instance. In either case, if the
model tool algorithms presented in this study are to be used for further studies, it is
recommended that the exclusion of short SSPs and the treatment of jump-like artefacts
in the constructed SSPs are reviewed.

The last environmental input parameter, the geoacoustic properties of the sea floor,
were partly calculated using a method constructed by the author, and this approach
thus requires some analysis. Determining the geoacoustic properties involved determ-
ining methods for translating the qualitative sediment descriptions in the downloaded
characterisation of the seabed by Geological Survey of Norway (2016) into quantitat-
ive properties of the different sediment types. For the unconsolidated sediments, this
involved making a novel systematic method for determining an estimate of the mean
grain size φ′ based on the available information on the ratios of different sediment struc-
tures contained in each sediment type, in addition to estimated average grain sizes. The
resulting values for the estimated mean grain sizes are shown in table 5.1.

Some of the sediment type descriptions used by Geological Survey of Norway (2016)
are the same as descriptions used in the High Frequency Environmental Acoustics (HFEVA)
model by Jackson (1994), and the model can thus be used to check the validity of the
method used to estimate φ′. Chotiros (2018) has published some values of φ′ constructed
using the HFEVA model. Those sediment types that have the same qualitative descrip-
tions as those used by Geological Survey of Norway (2016) have been re-printed from
Chotiros (2018) in table 6.1. To ease comparison, the values estimated for φ′ for the
same descriptors, originally shown in table 5.1 are also shown in table 6.1. And, to aid
comprehension, each of the sets of values for φ′ have been converted to units of mm using
equation 2.23, and the results of this conversion are also shown in table 6.1.
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φ
′ (Phi units) Φ′ (mm) φ

′ (Phi units) Φ′ (mm)
Sediment type by author by author (by HFEVA) (by HFEVA
Sandy mud 0.85 0.55 6.5 0.01
Gravelly sandy
mud -2.56 5.89 1.0 0.50

Gravelly sand -2.60 6.06 0.5 0.70
Muddy sandy
gravel -4.21 18.50 0.0 1.00

Sandy gravel -4.21 18.50 -1.0 2.00

Table 6.1: Comparison between the estimated mean grain sizes calculated by the author,
and values for the same parameter produced by Chotiros (2018) using the HFEVA model
by Jackson (1994).

HFEVA is a commercially available tool for estimating sediment properties, and it
is therefore reasonable to believe that the properties estimated by the model are trust-
worthy. When comparing the values of φ′ estimated by Chotiros (2018) using HFEVA
with the values of φ′ estimated by the author, it is therefore assumed that the values by
Chotiros (2018) are correct. It is clear from the comparison that the values for φ′ cal-
culated by the author are consistently too low. Since HFEVA is commercially available
it is not open source and the author did not have access to the tool. The way the grain
size is determined by the model is therefore not known. This, combined with the fact
that not all of the sediment types present in the Lofoten-Vesterålen basin were described
by Chotiros (2018) were the reasons why the model was not used in the simulations
presented in this study. Unfortunately, this also means that it is challenging to pinpoint
the reason why the results of the constructed grain size estimation method used in this
thesis differs so much from the results by the HFEVA model.

The comparison shows that it is likely that underestimated values of φ′ have been
used in this study. This will have caused several effects on the environmental parameters
predicted from φ

′. Firstly, the linear relationship between the bulk density, ρB, and φ
′,

shown in equation 2.24 reveals that the calculated bulk density will be too high. Secondly,
the velocity ratio is also calculated from the estimated grain size. The relationship
between VR and φ

′, shown in equation 2.20, is not as clearly interpreted, since it is a
convex parabolic relationship. However, plotting of the relationship (not shown here)
shows that in the considered interval of grain sizes, too low values of φ′ will cause the
velocity ratio to be too high. Therefore, the sound velocities of the sediment will be
too high. Together, the high velocity ratio and the high bulk density causes the specific
impedance of the sediment to be large, and looking at the pressure reflection coefficient
in equation 2.17, it is clear that this will cause more energy to be reflected when the
sound hits the sea floor. Analogously, if the grain sizes predicted by HFEVA had been
used in the model tools and RAM simulations, more energy would have been transmitted
into the sea floor and therefore absorbed.

The overestimation of VR has not only caused the overall value of the pressure re-
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flection coefficient to be too great, but it has also affected how it varies as a function of
incident angle. The estimated values of VR shown in table 5.1 are all greater than 1. This
in turn means that the sound velocities calculated from the velocity ratio will always be
greater than the sound of speed in the seawater, but in reality, this is not always the
case. For example, according to Jackson and Richardson (2007), the sound velocity in
muddy sediments are as much as 3% lower than cw. Figure 6.1 shows how the pressure
reflection coefficient varies with the incident angle for two cases: when VR = 1.10, which
is the value calculated for ‘Mud ’ in this study, and when VR = 0.97, which, according
to Jackson and Richardson (2007) is the correct value for muddy sediments. The val-
ues of the pressure reflection coefficient shown in figure 6.1 are calculated by applying
equation 2.17 and Snell’s law, shown in equation 2.3. The densities of the water and
the mud are kept constant in the two cases. The density of the seawater is assumed to
be ρw = 1020 kg m−3 and the density of ‘Mud ’ was calculated from ρw and the values
of ρg and η shown in table 5.1. This resulted in ρb = 1835 kg m−3. Figure 6.1 reveals
that having overestimated the value of VR has drastically affected the value of R at large
incidence angles. In the case of VR calculated by the author, R increases to a maximum
around θi = 65°, giving the pressure reflection coefficient a critical angle. This means
that all of the incident sound energy is reflected back into the water. On the other hand,
in the case of VR predicted by Jackson and Richardson (2007), R has a minimum, known
as an angle of intromission, at θi = 80°. At this particular incident angle, all of the incid-
ent sound energy is transmitted into the seabed. Figure 6.1 also shows that at values of
θi leading up to the minimum, the value of R decreases, leading to significantly different
values of R for the two cases. In general, it is clear that VR > 1, which is the case for all
the sediment types shown in table 5.1, causes more energy to be reflected into the water,
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Figure 6.1: An example of how the pressure reflection coefficient of ‘Mud ’ varies with
incident angle for two different values of VR. In the case of VR estimated by the author,
VR = 1.10 has been used. In the case of VR estimated by Jackson and Richardson (2007),
VR = 0.97 has been used. In both cases ρw was assumed to be 1020 kg m−3 and ρb was
calculated to be 1835 kg m−3.
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while when VR < 1, more energy is transmitted into the sediment and absorbed. There-
fore, the underestimation of φ′ (which in fact is an overestimation of the grain size dia-
meter in mm) and the subsequent overestimation of VR has caused the reported values
of TL to be too low.

Moreover, the underestimation of φ′ has affected the calculated values of the attenu-
ation constant, h. Equations 2.27, 2.28, and 2.32 were used to calculate h from the grain
size, and all of these relationships give too low values of h when φ′ is underestimated. In
turn, this has caused the attenuation coefficient to be underestimated. The attenuation
coefficient was only calculated from h for the sediment types ‘Mud ’, ‘Sandy mud ’, and
‘Sand ’. Yet, as shown in the map in figure 3.6, the latter sediment type covers most of the
sea floor in the Hola valley, where most of the bottom interaction will occur, due to water
being shallow. It is thus probable that the underestimation of φ′ and the consequent un-
derestimation of αλ, b for some sediment types, have caused significant underestimation
of the modelled transmission loss.

6.3 Validity of the results

It is important to pose questions about whether the results produced by the RAM simu-
lations should be taken to be accurate and true. The factors affecting this can be divided
up into three main categories: consequences of the convergence tests, limitations of the
RAM algorithm, and limitations of the input parameters.

6.3.1 Consequences of the convergence test

The results of the convergence test presented in section 5.3 are unfortunately somewhat
inconclusive. The chosen criterion for convergence was that several consecutive iterations
with decreasing step sizes should produce the same transmission loss values. This was
not reached in either the convergence test for ∆z nor the convergence test for ∆r. In
the test for ∆z, the results of consecutive simulations produced similar transmission loss
values, and it appeared as if the solutions started to stabilize as ∆z was decreased. But,
a peculiar alternating behaviour was discovered. In the region of values of ∆z where
the convergence criterion seemingly was nearly satisfied, the transmission loss values
still seemed to waver between TL ≈ 94 dB and TL ≈ 98 dB. Even though the results
were interpreted as having stabilized, the alternating behaviour makes this conclusion
dubious. The reason for this alternating behaviour is not know. If more time had been
available, the cause of this alternating behaviour should have been pursued further. It
might, for example, have been worthwhile to repeat the convergence test of ∆z using a
smaller constant ∆r, or it might have revealed new information to look at the change
in transmission loss with ∆z at a different radial position than the arbitrary position
chosen in figure 5.7. If the transmission loss results presented in this study are to be
used in further works, the lack of a confident convergence test result should be kept in
mind, and at least a an error of ±2 dB should be assigned to the results.

Moreover, the results of the convergence test of the ∆r-variable makes the resulting
transmission loss simulations even less credible. The results of this test showed that
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the convergence criterion was not satisfied, even for values of ∆r much smaller than
those conventionally used by other RAM users. Reducing the value of ∆r resulted in
stability issues, seen as Gibbs’ oscillations in the resulting transmission loss values. It
is plausible that the instability was encountered because small ∆r values caused the
modelled environment to no longer be weakly range dependent. Figure 5.14 shows how
the sediment type varied as a function of range along the θ = 330°-transect using ∆r =
38 m. The figure reveals that the variation in environmental properties with range is
rapid, especially between r = 0 km to 5 km and r = 30 km to 45 km. And because
the function Seabed (described in section 4.2.3) identifies the changes in sediment types
with range by marching along the points in the transect range array, which are given
by ∆r, a smaller range step could potentially result in a even more rapid variation in
the geoacoustic properties used in the simulations. Most likely, convergence was not
achieved in the r-dimension because as the ∆r-step was reduced in the convergence
tests, it did cause a change in the geoacoustic properties. And because the water is
shallow in the Hola valley, these differences affect the resulting transmission loss. Had
the step-size been reduced even further, the solutions would most likely eventually have
converged, when the change in ∆r no longer caused variation in where the function
Seabed located changes in the sediment type. However, before this was achieved, the
variation in geoacoustic properties became too rapid and the assumption of a weakly
range dependent environment broke down. Running the convergence test further than
∆r = 1 m was therefore deemed futile. Effectively, this means that the variation in
sediment types in the Hola valley, shown in its entirety in figure 3.6, are too rapid for
RAM to produce stable results.

Although the convergence criterion was not satisfied, the solutions seemed to approach
convergence for values of ∆r < 50 m. A range step of ∆r = 38 m was chosen based on this,
as a trade-off between accuracy and computational calculation time. The fact that a more
convincing conclusion could not be reached is highly concerning. The lack of convergence
undermines the validity of any result produced using the algorithms presented in this
study. If the model tools and RAM are to be used in the development of an animal density
estimation algorithm implemented at the LoVe Observatory, the lack of convergence in
the r-dimension will have to be addressed first.

The conclusions from the convergence tests are remarkable, particularly given the
wide-spread use of RAM as a tool for underwater acoustic modelling in the scientific
community (White, 2015b). This begs the question, have other users neglected to perform
convergence tests before using RAM, and thus not discovered this flaw, or is it the
particular environmental conditions along the θ = 330°-transect in the Hola Valley that
makes it difficult for the model to converge? Considering the latter, it is plausible that
the rapid variation with range in the sediment types mapped by Geological Survey of
Norway (2016) combined with the shallow water in the valley makes the modelled domain
somewhat unique. This type of environment is not commonly modelled by other users of
RAM, which may explain why there does not appear to be any mention of convergence
issues in literature. Moreover, it is interesting to compare the chosen step sizes with the
step sizes used or recommended by other users of RAM, which were reviewed in section
4.4. The chosen value of ∆z is comparable with the step size used by Collins (1989a)
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and with the value recommended by Dushaw (2015). However, the chosen value of ∆r is
considerably smaller than the recommendations and usages found in literature. This is
curious, and indicates either that the results of the convergence test are untrustworthy,
or that there is something extraordinary about the modelled domain that causes the
needed value of ∆r to be small.

The convergence tests were performed along a test-transect at θ = 330°, but con-
vergence of results along other transects were not investigated. This is a flaw in the
legitimacy of the convergence test results. One cannot be sure that the results simulated
along the θ = 330°-transect are representative for results simulated along other transects.
Only one transect was included in the convergence test in this study due to time limita-
tions. Performing the convergence test is a very lengthy process, because an individual
.in-file needs to be produced for every change in the step-sizes. Although the production
of the .in-files has been automatized by the Write_in-algorithm, running this function
is slow, especially when Rmax is large. If the developed model tools are to be used in
further studies, inclusion of more transects in the convergence test should be included
in order to ensure that the results of any new convergence tests are valid for the entire
modelled domain.

6.3.2 Limitations of the RAM algorithm

The RAM algorithm is first of all limited by assumptions inherent in the parabolic equa-
tions the algorithm is based on. In the derivation of the parabolic wave equation discussed
in Chapter 2, several assumptions are revealed. However, not all of these assumptions af-
fect the validity of the results of RAM. For example, the derivation assumes that k0r � 1,
meaning that the modelled sound field is in the far-field. When c = 1480 m for instance,
this condition is satisfied when r � 0.08 m. This is clearly not an issue for the interpret-
ation of the results produced by RAM. RAM also assumes that back-scattered energy is
negligible. This is of course not strictly true, but it is deemed an appropriate assump-
tion since only sound reaching the observatory is of interest in this study. Moreover, as
already discussed in Chapter 2, since RAM uses the split-step Padé approximation to
solve the parabolic equation it is not limited by any small-angle approximation, which is
the case in other solutions to the parabolic equation.

Having said that, some of the assumptions exposed in Chapter 2 are not as easily
discounted. The first assumption that is made in the derivation of the parabolic equation
is that the sound field has azimuthal symmetry. Any dependence on the angular position
variable θ is thus ignored. This leads to two limitations: any refraction in the horizontal
direction is neglected and the sound is taken to only travel in a single vertical plane along
the transect. Horizontal refraction occurs when there is change in cw with horizontal
position, and is accounted for by a derivative with respect to θ in a full 3D-version of the
parabolic equations. If cw changes with longitude and latitude, the sound will be refracted
in some horizontal direction. The full set of calculated SSPs show that cw is dependent
on longitude and latitude, and so neglecting this effect in RAM will introduce errors.
Unfortunately, it is not possible to quantify how much this has affected the accuracy of
the results, without performing a full 3D-modelling of the sound field for comparison.
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However, according to Collins and Chin-Bing (1990), horizontal variation in the cw with
position create greater effects than the derivatives of cw with respect to θ that account
for refraction. Collins and Chin-Bing (1990) claims that no conclusive evidence exists
to support that the θ-derivative term will significantly affect the results. It is therefore
possible to speculate that a small spread in the values of cw at any one depth indicates
that there is little horizontal refraction in the Lofoten-Vesterålen basin. Figure 5.2 in
deed shows that the spread in the values of cw at any one depth is insignificant. At most
the value of cw changes by 0.95 % (which occurs during the winter season at z = 692 m)
from the 25 % percentile to the 75 % percentile. Therefore, there is reason to believe that

neglecting the
∂

∂θ
-term in the parabolic equation has not introduced significant errors.

Another effect that is neglected when assuming azimuthal symmetry is sound that
changes direction while propagating and ends up no longer propagating parallel to the
modelled transect. This is known as out-of-plane sound propagation. Neglecting this is a
much more concerning limitation to RAM, especially given the shape of the bathymetry
around the LoVe Observatory. First of all, in reality sounds travelling into the Hola valley
will in many cases be reflected off of the valley walls before reaching the observatory.
This possibly means that the observatory is better equipped to detect sounds travelling
at angles different from θ = 330° than the results presented in this study propose. Figure
6.2 shows an example where a sound ray travelling from the north west reaches the LoVe
Observatory by reflecting off of the valley wall. The figure also shows that the sound
source could reach the LoVe Observatory with a direct ray, but that this crosses the
Egga bank. As discussed in section 5.4, travelling across the shallow banks significantly
attenuates the signal, and it is therefore likely that the ray reflecting off of the valley
wall is less attenuated than the direct ray once it reaches the LoVe Observatory. Many
such propagation paths with single, or multiple reflections, exist. But, these paths are
not included when RAM calculates the transmission loss, because the reflection causes
the signal to travel out of plane.

Assuming azimuthal-symmetry also means that horizontal diffraction caused by the
bathymetry is neglected. In real sound fields, when propagating sound encounters an
obstacle, such as a sea mound, the sound will be ‘bent’ around the barrier. This effect
is not accounted for in the RAM algorithm. This is especially concerning at the opening
of the Hola valley. In reality sound will hit the downwards-sloping sides of the Egga
and Vesterålen banks and diffract into the opening of the valley, like sound diffracting
around the corner of a house. In RAM, however, this effect is disregarded, and sound
that in reality would diffract horizontally is effectively lost from the model. If sound
that is diffracted into the valley had been included in the algorithm, one might have seen
that sounds originating in the basin outside the Egga and Vesterålen banks had been less
attenuated than the levels of attenuation proposed by the presented RAM simulations.
To quantify or include the effects of assuming azimuthal-symmetry, a full 3D parabolic
equation must be used.
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Figure 6.2: An example of how a sound ray can reach the LoVe Observatory by reflecting
off of the valley wall.

The next assumption that is made in the derivation of the parabolic equation is that
n and ρ are independent of r. The variation of these parameters with range are accounted
for by ‘marching’ the solution out in range and updating the environmental parameters at
∆r intervals, but, errors are introduced if the variation of n and ρ with r are too great.
In the real ocean, n and ρ are of course continuously varying with range. Modelling
their variation at discrete intervals therefore undermines the validity of the RAM results.
To determine if the parameters are slowly varying, one must look at the values used in
the RAM simulations. The refractive index n is equal to

c0
c
. As discussed above, the

potential change in cw with r is small because of the small spread in values of cw at
any one depth in the calculated SSPs. The potential change in n is therefore also small,



CHAPTER 6. DISCUSSION Sigrid Husebø Øygard 123

which means that n in the water can be said to be slowly varying with range. In the case
of cb there is greater variation in the calculated values. The maximum potential change
of cw can be found by comparing the sediment types with the highest and the lowest
velocity ratio, namely ‘Sandy gravel ’ and ‘Mud ’, respectively. When a transect traverses
a change between these sediment types, the percentage change in cb is 45 %. This is cause
for concern. As explained in section 6.3.1, the lack of convergence in the r-dimension
is likely caused by rapid changes in the environmental properties of the seabed which
causes the modelled environment to no longer be weakly range dependent. This will likely
also have introduced errors in the modelled transmission loss, especially in the shallow
regions of the Lofoten-Vesterålen basin. Lastly, the density of sea water is taken to be a
constant by RAM (Collins, 2001). This is an appropriate assumption, since the change
of ρw with hydrostatic pressure is small (Duxbury et al., 2018). The density of sea water
does vary with temperature and salinity, and will as such vary with r. But, the small
spread in the values of cw discussed above also implies little spread in the values of T and
S, since the SSPs are calculated from CTD measurements. It is therefore likely that the
variation of ρw with r in the seawater around the LoVe Observatory is negligible, and that
the assumption of constant density does not introduce significant errors. In summary,
of the measured and calculated environmental properties only the rapid variation in
sediment types has likely introduced errors in the simulated transmission loss by due the
assumption that ρ and n are independent of r.

The validity of the presented results are also limited by shortcomings of the RAM
algorithm. Particularly three acoustic phenomena that occur in real sound fields have
been omitted from the algorithm, even though excluding them is not dictated by the
assumptions of the parabolic equation. These omissions include both scattering, layered
ocean floors, and elastic materials in the ocean floor. Firstly, RAM does not include
models of scattering. In real sound fields scattering occurs when sound incident on a
rough surface is reflected in any direction other than the specular direction, and in real
oceans, this occurs both at the air-water interface and the sea bottom (Medwin and Clay,
1998). This leads to out-of-plane reflections, that were discussed above. The intensity
of the scattered sound is proportional to the ratio of the vertical scale of the scattering
geometry to the wavelength of the incident sound (Urick, 1983). The wave length of a
20 Hz sound at cw = 1480 m s−1 is 74 m. The vertical scale of a rough surface can be
quantified by the Rayleigh parameter, R, which is given by

R = kH sin θi. (6.1)

Here, H is the root-mean-square of the height of the roughness (Urick, 1983). When
R � 1, there is considerable scattering at a wide interval of angles relative to the incident
sound, while when R � 1, the scattered sound energy is negligible (Brekhovskikh and
Lysanow, 1991). The effects of scattering are therefore most prominent when the vertical
scale of the roughness of the boundary are large in comparison with the wavelength of the
incident sound. Small geometrical variations such as roughness in the bathymetry will
therefore not cause considerable scattering of the Fin whale calls. But any roughness or
variation in the bathymetry or sea surface that is larger than the wavelength will cause
scattering.
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To accurately represent the sound field, the reflections caused by scattering must
be included in the algorithm, using a full 3D model. However, more limited Nx2D
models often incorporate the effects of scattering in the pressure reflection coefficient.
The models thus account for sound energy that is scattered out of the modelled plane
by reducing R so that the scattered sound is effectively attenuated at the reflection
(Urick, 1983). This could have been included in RAM, without having to incorporate θ
dependence. However, RAM takes the pressure reflection coefficient of the sea-surface
to be R = −1, meaning that the boundary is perfectly reflecting (Collins, 1989a). This
might seem unrealistic, since roughness is bound to be present at the sea surface due
to ocean waves. However, the low frequency of the modelled sound can be shown to
validate the assumption. Scattering at the ocean surface consists of scattering from air-
bubbles in the water and scattering due to the ocean waves. According to Rosenberg
(1999), scattering from air bubbles is insignificant when f < 1 kHz, and this effects thus
does not need to be accounted for in the present model. Moreover, the ocean waves will
have to be high (scaled to the wavelength of the sound) to cause significant scattering
(Brekhovskikh and Lysanow, 1991). The height of the ocean waves depend partly on
the wind speed, and Schulkin and Shaffer (1964) has estimated H from the wind speed,
V , as

H = 7.9248× 10−4(1.94384449V )
5
2 (6.2)

Looking for example at the highest and the lowest wind speeds at the LoVe Observat-
ory calculated by Ødegaard (2015), the same wind-states that were used to define the
thresholds for transmission loss in section 2.1.2, the rms wave heights of the ocean surface
becomes

H = 0.0651 m at V = 3 m s−1 (6.3)

H = 5.7388 m at V = 18 m s−1 (6.4)

Using equation 6.1, this makes the maximum value of R = 0.0055 at V = 3 m s−1 and
R = 0.4808 at V = 18 m s−1. Since both Rayleigh parameters are considerably smaller
than 1, these examples indicate that scattering from the sea surface can be neglected
when the frequency is f = 20 Hz. This is supported by the findings of Addlington
(1963), who found a median 0 dB reflection loss due to scattering at the ocean surface
of a 530 Hz incident sound wave. RAM’s assumption that R = −1 at the sea surface is
therefore valid. Still, if the transmission loss of more high-frequent mammals are to be
modelled in the future, scattering must be considered.

Scattering also occurs at the ocean floor, and this process is slightly more complex.
Scattering at a water-sediment interface consists of two main processes: interface scatter-
ing from roughness and volume scattering from within the sediment (Jackson and Briggs,
1992). Interface scattering is the same effect as that which occurs at the ocean surface;
the reflected sound is spread in several directions due to roughness at the border. On
the other hand, volume scattering occurs when inhomogeneities in the sediment cause
sound to be reflected (Jackson and Briggs, 1992). In RAM, the sediment is modelled as a
single, homogeneous material. However, most naturally occurring sediments consist of a
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heterogeneous mixture of differently sized particles. And, natural sediments also contain
both gas and organic content such as by-products of plants or algae (Ballard and Lee,
2017). All of these inhomogeneities contribute to volume spreading of the incident sound.
Having said this, most such inhomogeneities are small compared with the wavelength of a
20 Hz incident sound wave. As with reflection off of the ocean surface, scattering off of the
ocean floor is not significant if the wavelength of the incident sound is large compared
with the scale of the scatterer. This applies both to volume scattering and interface
scattering. This is likely why Isakson et al. (2012) found that adding scattering to a
model of low frequency reflection off of a sedimentary ocean bottom only added 1 dB to
the reflection loss. It therefore seems likely that the effects of scattering can justly be
neglected in the transmission loss simulations, if the scale of the roughness and sediment
inhomogeneities are smaller than the wavelength of the incident sound wave. This is
likely the case for most of the sediment types in the Lofoten-Vesterålen basin. However,
a few of the consolidated sediment types, such as ‘Mud alternating with blocks of hard
sediment ’ and ‘Gravel, cobbles and boulders’ will include objects that are large enough to
cause scattering even of the low frequency sound. This is especially concerning when sim-
ulating the transmission loss across the Vesterålen and Egga banks, which are to a large
extent covered with ‘Gravel, cobbles and boulders’. According to Collins and Chin-Bing
(1990), when the effects of scattering are significant, it contributes to several decibels of
transmission loss. It is therefore likely that the transmission loss values predicted in this
thesis for the propagation across the Vesterålen and Egga banks are underestimated.

Another phenomena that is neglected in the RAM model is reflections from layers
within the sediment. Ocean bottoms are typically made up of a number of distinct layers
containing materials of different properties (Urick, 1983). RAM does allow variation with
z of the geoacoustic properties in the sea floor, but it is not possible to model separate
distinguishable layers because the geoacoustic properties are interpolated between the
in-putted values so that the variation in both cb, αb, and ρb with z are smooth (Collins,
2001). This means that the model does not include any reflections within the sediment.
In reality, sound propagating into the seabed will potentially reflect off of boundaries
between different materials. Not including a layered sea bottom is especially concerning
when the modelled sound is low frequent, since attenuation in sediments are propor-
tional to the frequency (Hamilton and Bachman, 1982). This means that the sound can
propagate far into the sediment and experience a number of reflections, before being fully
attenuated. Reflections in the sediment will potentially direct the sound back towards
the water, and in some cases the sound can be transmitted back into the water. Thus,
the fact that RAM does not allow for layered materials in the sea floor might have caused
the transmission loss values simulated in this thesis to be overestimated.

Lastly, RAM also neglects elastic effects in the sea bottom materials. RAM assumes
that the sea bottom is a fluid (Collins, 1989a), which means that the material only
supports a compressional wave, and not a shear wave (Jensen et al., 2011). For most
sediment types, this is a valid assumption, because of the materials’ low rigidities (Jensen
et al., 2011). However, for the consolidated sediment types included in the RAM models
in this thesis, the fluid approximation falls short. In these sediment types, it is likely
that some of the sound energy incident on the sea floor will be converted to a shear
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wave (Jackson and Richardson, 2007). Hughes et al. (1990) modelled the transmission
loss across three types of single layered sediment materials: sand, chalk, and solid-rock,
using a full wave model which took the sediments to be fluids. They also measured the
transmission loss across patches of corresponding sediment types in shallow water at the
Scotian continental shelf. Hughes et al. (1990) found that the modelled transmission loss
matched the experimental results for both sand and chalk, but that for the solid-rock
sediment the values differed by as much as 60 dB. They attributed this difference to the
excitation of shear waves in the real sediment, which were not included in the model. If
this effect also occurs in the consolidated sediment types in the Lofoten-Vesterålen basin,
the transmission loss values simulated by RAM are highly inaccurate. This is especially
concerning for the simulated transmission loss across the Vesterålen and Egga banks,
which are covered by the consolidated sediment types ‘Gravel, cobbles and boulders’
and ‘Thin or discontinuous sediment cover on bedrock ’. Exclusion of elastic properties
in the sea floor has thus caused the simulated transmission loss experienced by sound
propagating across consolidated sediment types to be overestimated.

6.3.3 Limitations of the environmental input parameters

The validity of the presented results are also limited by the accuracy and availability of
the input parameters. The methods used to calculate these parameters have already been
discussed in section 6.2, and the limitations uncovered there will undermine the validity
of the results presented in this study. Further to this, here, the limitations introduced
by the sources of the environmental input parameters are considered. The bathymetric
data were gathered from three sources, with differing resolution. As shown in figure 3.1,
the innermost part of the continental shelf has a resolution of 50 m x 50 m, the outermost
part of the continental shelf has a resolution of 5 m x 5 m, and the rest of the Lofoten-
Vesterålen basin has a resolution of approximately 929 meters North and 325 meters East.
The latter of the three has an especially coarse resolution. This is, however, acceptable,
since the area mapped with this resolution is quite flat and deep. Since the sound in
the Lofoten-basin has been shown to be propagated by the SOFAR-channel, lack of fine
resolution of the bathymetry in this region is likely not to introduce great errors in the
simulated transmission loss. What is more concerning is the resolution on the continental
shelf. In this region, the sound will interact with the sea floor a lot, due to the shallow
water. Both the 50 m-resolution and the 5 m-resolution is smaller than the wavelength,
and it is therefore easy to jump to the conclusion that a finer resolution would not
have affected the transmission loss. However, a finer resolution would potentially have
uncovered more fine scale roughness in the ocean bottom. Isakson and Chotiros (2012)
found that the rms bottom roughness as small as 1 - 6 % of the wavelength of the incident
sound has a significant effect on the reflection loss. This is because the bottom roughness
affects the local incident angle, and as shown in equation 2.17, the pressure reflection
coefficient is dependent on the incident angle. Isakson and Chotiros (2012) found that
for large incident angles, the reflection loss off of a rough ocean bottom can be as much
as 25 dB higher than reflection loss off of a smooth ocean bottom. The accuracy of the
transmission loss presented in this thesis is therefore limited by the resolution of the
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bathymetry.
The SSPs used in the model are calculated from CTD measurements downloaded from

International Council for the Exploration of the Sea (2018). The data had been collected
by various researchers across a 21 year period. This is quite a long time frame, and as such
one can presume that the SSPs calculated for each season are representative for the sound
speed in the area during each season, also for seasons to come. But, variation of the SSP
within each season does of course exist, and this effect is not treated here. Moreover, one
must be aware that the last CTD measurement was made in 2016, already two years ago,
and that long-term climate changes can affect the sound speed in the Lofoten-Vesterålen
basin in the future. This would in turn affect the credibility of the simulated transmission
loss presented here. One should also note that sound speed is known to vary on a diurnal
basis (DeSanto, 1979). This means that the transmission loss experienced by Fin whale
calls also varies throughout the day. More detailed measurements of how SSP varies
with time, both on a monthly and a diurnal scale are therefore recommended if the LoVe
Observatory is to be used for animal density estimation.

The sediment types used to predict the geoacoustic properties of the ocean floor have
been downloaded from Geological Survey of Norway (2016). As previously explained,
these data characterize the mean sediment type in the top 50 cm of the sea floor. The
sediment data is limited by two aspects: the extent of the mapped area and the fact
that the downloaded data do not contain any information about the variation of the
geoacoustic properties with depth. As shown in figure 5.21, the area mapped by Geo-
logical Survey of Norway (2016) is considerably smaller than the area of interest when
investigating the transmission loss experienced by sound sources at positions around the
LoVe Observatory. In the areas beyond the continental shelf, this limitation can be over-
come by assuming that the sea floor consists mainly of ‘Abyssal mud ’. However, on top
of the shallow banks, this assumption is not valid. The fact that Geological Survey of
Norway (2016) (nor other sources, to the author’s knowledge) has mapped the sediment
composition beyond the area shown in figure 3.6 therefore imposes a severe restriction
on which transects it has been possible to investigate in this study. The other limita-
tion of the downloaded data is the lack of variability with depth. Compression due to
increasing pressure with depth typically cause the sound velocity in natural sediments
to increase with depth (Urick, 1983). RAM allows for the geoacoustic properties of the
sea bottom to be varied with depth, but, since a sediment type average over the top
50 cm of the material is the only available information it has not been possible to include
variation with z in the current model. The simulations run in this thesis have therefore
taken the sea floor to be a single layer of homogeneous material. Had the variation of
cb with z been included, it would have caused an upwards refraction of the sound in
the sediment (Urick, 1983). This could have led to sound being returned to the water,
and thus affected the simulated transmission loss. Thus, if more information about the
change in sediment material with depth had been available and included in the model,
the simulated transmission loss would have been lower than the values predicted in this
thesis.
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Chapter 7

Conclusion

Equinor is planning to establish Norway’s first ever whale monitoring facility using acous-
tic density estimation at their cabled ocean observatory in the Hola valley. This will give
the company more accurate and time-dependent density estimations of the whales in
the Lofoten-Vesterålen basin. This information will be crucial in assessing the impact of
human interference in the whale habitats if, for example, the Lofoten-Vesterålen basin is
to be opened up for petroleum exploration. In order to implement the density estimation
algorithm, the transmission loss of the whale calls reaching the observatory need to be
known. This has never before been calculated or otherwise characterized. Therefore,
this study has set out to develop a novel model of how the transmission loss varies with
position and season around the observatory. This was achieved by developing a set of
model tools that produce the environmental parameters needed to calculate transmission
loss using the established parabolic equation model RAM. These tools were then used
to investigate the transmission loss experienced specifically by Fin whale calls reaching
the LoVe Observatory. The investigation involved using the developed model tools to
produce the necessary input parameters, then using RAM to calculate the transmission
loss as a function of range and depth for a number of selected example transects.

The preparation of the model tools involved generating three environmental para-
meter sets: the bathymetry, sound speed profiles, and geoacoustic properties of the
seabed. Firstly, the bathymetric data were provided by Kartverket (2018a), Kartverket
(2018b) and British Oceanographic Data Centre (2018). These data sets were combined
to produce an interpolant that can be evaluated at any position in the Lofoten-Vesterålen
basin, giving the depth of the sea floor. Secondly, the sound speed profiles were calculated
from measurements of CTD data provided by International Council for the Exploration
of the Sea (2018). From this, the model tools can construct the SSPs at any position
in the Lofoten-Vesterålen basin using interpolation. Lastly, the geoacoustic properties of
the seabed were calculated from the estimated grain size, or gathered from literature. A
novel technique was constructed to estimate the grain size from the qualitative descrip-
tions of the seabed composition downloaded from Geological Survey of Norway (2016).
Reviewing the input variables used to construct the environmental parameters showed
that each parameter carries some inaccuracy which will contribute to the uncertainty of
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the simulated transmission loss. The resolution of the bathymetric data causes uncer-
tainty in the transmission loss. Moreover, the age of the CTD measurements opens for
the possibility that the current sound speed profiles might have changed or will change
with time, compared with the SSPs calculated from the CTD measurements. This means
that the validity of the transmission loss values simulated using the model tools is ques-
tionable. Lastly, lack of information on the variation of the geoacoustic properties in
the seabed with depth in the data downloaded from Geological Survey of Norway (2016)
means that this variation could not be included in the model. This will most likely have
caused overestimation of the simulated transmission loss. Furthermore, the methods
used to construct the model tools were reviewed, and comparison of the estimated grain
sizes with corresponding values produced by the HFEVA model suggested that the grain
sizes (in mm) have been overestimated. This has likely lead to errors in several of the
geoacoustic properties. Ultimately, this shortcoming of the model tools will lead to an
underestimation of the simulated transmission loss.

After the model tools were developed, they were employed to investigate the transmis-
sion loss experienced by Fin whale calls reaching the LoVe Observatory. Firstly, this was
studied by simulating the transmission loss along the θ = 330°-transect. This revealed
that the variation of transmission loss with range and depth is complex. No clearly dis-
tinguishable regions of the basin had transmission loss values higher than the estimated
maximum allowable transmission loss threshold in low noise conditions, TLmax, low noise,
meaning that the simulation results suggest that the entire investigated modelled domain
is detectable in low noise conditions. It is therefore difficult to conclude on the maximum
detection range of the LoVe Observatory without further studies of the transmission loss
at ranges greater than 190 km. Comparison with the commonly used simplistic ‘semi-
spherical’ transmission loss model revealed significant discrepancies. This suggests that
the effects of the environmental parameters on the transmission loss are considerable, and
that a complex model such as the parabolic equation used in RAM need to be employed
to simulate the transmission loss in complex environments such as the Lofoten-Vesterålen
basin.

The simulated transmission loss along the 330°-transect did reveal a few interesting
aspects of the propagation of the sound reaching the LoVe Observatory. Firstly, a pattern
of repeating convergence zones was recognized and attributed to SOFAR-propagation.
Interestingly, the simulations revealed that sound propagated by the SOFAR channel
couples with the wave guide made by the shallow bathymetry in the Hola valley. It
seems like the detection capabilities of the LoVe Observatory are therefore able to benefit
greatly from the low attenuation of SOFAR-propagation. Even so, keeping in mind that
research by Watkins et al. (1987) have suggested that Fin whales vocalize around 50 m
from the sea surface, the deep water detection capabilities of the LoVe Observatory are
not needed for Fin whale animal density estimation. Only the first convergence zone
has transmission loss lower than the transmission loss threshold in high noise conditions,
TLmax, high noise, at z = 50 m, and the depth at which the transmission loss is lower
than this limit increases for the subsequent convergence zones. Moreover, somewhat
surprisingly, the simulations suggest that sound propagated by the surface duct is not
transmitted into the Hola valley. The observatory might not be fit to detect Fin whales
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vocalizing at shallow depths and great ranges when the noise conditions are severe.
The transmission loss was also simulated for transects of varying angular direction.

In general, these simulations revealed that the observatory is capable of detecting Fin
whale calls originating on top of the Egga and Vesterålen banks in both low and high
noise conditions. This indicates that the observatory is not hindered by lack of direct
and straight propagation paths between the sound source and the receiver. However, it
has also been shown that the presence of the shallow banks causes an angular limitation
in the detectable volume in the Lofoten basin. The volume where propagation by the
SOFAR channel causes the presence of convergence zones is likely limited to transect at
approximately θ = 300° to θ = 340°.

All of the presented examples of simulated transmission loss were calculated for each
of the four seasons to investigate the effect of seasonality. In general, the effect of different
seasons seemed to be most pronounced when the water was deep. Little observable differ-
ences were observed both for transmission loss simulated across the Egga and Vesterålen
banks, as well as in the Hola valley. On the other hand, in the deep Lofoten basin,
the cyclical behaviour of the convergence zones apparent in the simulations along the
θ = 330°-transect differed between the season. The contrast was most pronounced in
the winter season, where the convergence zone pattern was not distinguishable and the
depths where the transmission loss chiefly was lower than TLmax, high noise was deeper
than in the other seasons. This suggests that the LoVe Observatory is less capable of
detecting Fin whales vocalizing at shallow depths in the winter season. Curiously, this
does not explain why Fin whales are generally not detected by the observatory between
March and August. Since the simulated transmission loss examples have not offered an
explanation of this gap, it is reasonable to hypothesise that the lack of detections in
March to August is rather caused by Fin whale migration.

To examine the validity and accuracy of the results produced by the model tools and
the RAM simulations, the study has reviewed the assumptions inherent in RAM, the
shortcomings of RAM, and the limitations caused by the input-data. RAM assumes that
the solution lies in the far-field, that back-scattered energy can be neglected, and that the
derivative with respect to θ can be neglected. All of these assumptions were deemed neg-
ligible, thus not significantly affecting the accuracy or validity of the simulation results.
RAM also neglects any sound that travels out of the modelled plane, which eliminates
both out-of-plane reflections and horizontal diffraction due to the bathymetry. This is a
harsh simplification of how sound in reality behaves in a 3D environment, and this likely
results in substantial inaccuracies in the results, particularly since the observatory lies
in a valley. Excluding sound reaching the observatory by reflecting off of the valley walls
from the model will have depreciated the observatory’s ability to detect whale calls that
do not propagate straight into the valley. Moreover, all of the identified shortcomings
in RAM contribute to inaccuracy in the results. Firstly, scattering is neglected, which
leads to significant errors when the roughness of the sea floor is great, which is likely
the case for the consolidated sediment types which are found on top of the two shal-
low banks. RAM has also not included elastic effects in the sediment material. This
is again concerning for the consolidated sediment types covering the two shallow banks.
Neglecting scattering and shear waves here can potentially lead to an overestimation of
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several dB in the simulated transmission loss. The results simulated across the Egga and
Vesterålen banks are therefore less reliable than the simulations across areas dominated
by unconsolidated sediment types. Lastly, RAM does not include reflections from within
the sediment, which again causes an overestimation of the resulting transmission loss
values. Furthermore, the accuracy of the simulated transmission loss is limited by all of
the input data. The bathymetry causes errors due to its resolution. And the seabed data
does not include variation of the geoacoustic parameters with depth, which causes the
simulated transmission loss to be too large. Lastly, the age of the CTD-measurements
used to calculate the SSPs make the resulting transmission loss unreliable if the current
SSPs have changed since the measurements. This is especially problematic if the results
are to be used in the future.

Yet, the main limitation to the validity of the simulated transmission loss is the fact
that it was not possible to show that the solutions converged sufficiently as the step-sizes
were decreased. A convergence test along the θ = 330°-transect was performed for both
∆r and ∆z. For the latter, the solutions appeared to stabilize around ∆z = 0.2 m,
but an unexplained alternating behaviour in the results introduced an uncertainty of
approximately ±2 dB to the simulation results. When testing ∆r, the solutions did not
converge even as ∆r was reduced to values much lower than those conventionally used by
other users of RAM. Lack of convergence in the r-dimension has been associated with the
assumption that n and ρ are weakly range dependent. This assumption has been shown
to be appropriate for the environmental properties of the sea water. However, the change
in environmental properties of the seabed have been shown to be rapid, thus causing the
environment to no longer be weakly range dependent. Subsequently, it was not possible
to identify an appropriate value for the range step ∆r. Without converged solutions, the
choices of ∆r and ∆z will have affected the simulation results. This makes the resulting
transmission loss values somewhat untrustworthy. If the model tools presented in this
study are going to be used for further studies, this issue will need to be resolved to make
the results more reliable.

Generally, the simulations have indicated that the LoVe Observatory is suited for
acoustic density estimation of Fin whales in the Lofoten-Vesterålen basin, given that the
presented limitations are taken into account. Seasonal variability of the transmission
loss is observed, but all seasons seem to be viable for density estimation. SOFAR-
propagation enables the observatory to monitor considerable ranges as well as depth. The
observatory does appear to be somewhat hindered by the walls of the valley obscuring the
potential angular reach of the observable area. The examples of simulated transmission
loss explored in this study have been limited to a few transects, due to the difficulty
of portraying results from a 3D domain. Therefore, not every facet of the transmission
loss variation with position has been inspected, and some potentially important aspects
might have been missed. Fortunately, the developed model tools will facilitate future
investigation of the transmission loss in the basin.
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7.1 Future work

To continue the work towards developing mammal density estimation algorithms at the
LoVe Observatory, it is recommended that some of the uncovered limitations in this thesis
are investigated and improved. First of all, the lack of converged solutions in the tests
of ∆r and ∆z need to be resolved. It is recommended that more thorough convergence
tests are performed along varied transects, in order to, hopefully, pin point the problems
in the convergence tests of the performed in this thesis. Moreover, it is necessary to
reconsider how variation in geoacoustic properties of the seabed are incorporated in the
model, in order to avoid violating the assumption of weak range dependence inherent in
the parabolic equation. It might be worthwhile to take some averages of the properties
with range, so that the variation is not as rapid. This could, hopefully, resolve the
lack of convergence in the r-dimension. Having said this, neglecting to incorporate the
true variation of sediment properties with range in the model will, of course, make the
resulting transmission loss less accurate. Furthermore, the fact that an apparent bug in
RAM prevented simulation to ranges greater than 190 km needs to be addressed. The
issue can potentially be resolved by closer inspection of the Fortran code of RAM (by a
competent computer scientist). The transmission loss along the θ = 330° transect showed
that the maximum detection range of the observatory in low noise conditions was not
reached within 190 km, and simulations to greater ranges are therefore needed.

It is also suggested that the effects of the discussed limitations in RAM are examined.
This will help determine if the assumptions and shortcomings of the model will signific-
antly affect the simulation results. It is for example recommended that a full 3D model
is used to look at the effects of neglecting horizontal diffraction from the valley opening
and horizontal reflections from the valley walls. Although full 3D models have long been
considered too computationally heavy, recent work by authors such as Ying-Tsong et al.
(2012), Collis (2011), and Strum (2001) indicate that split-step Padé solutions to the
parabolic equation can be implemented without having to assume azimuthal symmetry.
It is also possible to validate the results produced by RAM by simulating the transmis-
sion loss using a different acoustic model, such as for example ray tracing using Bellhop
(Porter and Bucker, 1987). The effect of scattering from rough sediment types should also
be treated, for example by adding a random component to the boundary as explained in
Tappert and Nghien-Phu (1986) or using the more comprehensive expansion of RAM by
Rosenberg (1999) to quantify the effect of forward scattering. Lastly, an elastic parabolic
wave equation, described for instance by Collins (1989b) should be tried, to quantify the
effects of shear waves in the consolidated sediment types.

Some improvements should also be made to the input data used in the model tools,
in order to improve the accuracy of the simulation results. This could be achieved
by collecting bathymetric data of finer resolution than 5 m by 5 m on the continental
shelf around the Hola valley. Moreover, it is recommended that information about the
sediment variation with depth is collected so that a layered sea floor can be included in
the model. Importantly, sediment composition mapping should be performed in a larger
area around the observatory so that all transects of interests are covered. Lastly, it is
suggested that more CTD data is collected at depth, especially in the winter season. This
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will hopefully mitigate the issue of jump-like artefacts in the constructed SSPs. If the
issue is not resolved by adding more deep data and removing the shallow SSPs, further
investigation of the source of the artefacts will need to be performed. Moreover, since the
sediment grain sizes calculated in this study differed from those produced by the HFEVA
model, it is recommended that method used to calculate the sediment sizes is reviewed.
It is possible to redo the simulations using sediment grain sizes produced by HFEVA in
order to quantify the effect of having overestimated the grain sizes.

Several steps can also be taken to improve the interpretation of the simulation res-
ults. The transmission loss thresholds defined in this thesis are calculated based on
assumptions about the technical equipment at the LoVe Observatory and the planned
implementation of the density estimation algorithm, such as the directivity of the hy-
drophone, the desired frequency bandwidth of the animal density estimation algorithm,
and the signal-to-noise ratio needed for detection. For a more precise analysis of the
transmission loss in the basin, these assumptions should be reviewed. The thresholds
are also based on measurements of noise at the observatory by Ødegaard (2015). Using
these measurements to define a high and a low noise state has given a crude estimation of
the limits of the capabilities of the observatory, but when the animal density estimation
is performed, the present noise state needs to be taken into account. The noise level
is dependent on a number of factors, including seasonal weather. It would therefore be
beneficial to include the variation in noise level with season in the interpretation of the
variation of transmission loss with season. When the animal density estimation algorithm
is in operation, it might also be important to consider that both noise and SSP varies on
a smaller time scale than that considered in this thesis. It might therefore be beneficial
to adjust the model tools to allow for investigation of the variation in transmission loss
as function of months, weeks, or even on a diurnal scale.

As previously mentioned, the model tools can be used to conduct further studies of
aspects of the transmission loss variation not treated here. The tools can for instance be
used to simulate transmission loss at other frequencies than 20 Hz. It might, for example,
be interesting to investigate the transmission loss experienced by calls from the four other
baleen whales native to the Norwegian sea, to review the possibility of extending the an-
imal density estimation to other species. It is also desirable to use the tools to simulate
the transmission loss variation as a function of frequency. This will enable calculation
of the probability of detection P̂ , the maximum detection range, w, and detection area
O, following the method by Helble et al. (2013). This is an essential step in develop-
ing the animal density estimation algorithm. If this is achieved, the LoVe Observatory
has the potential of becoming Norway’s first acoustic animal density estimation station.
The data collected by the observatory over time will hopefully contribute to aid further
understanding of whale habitats and migration routes, as well as the impact of human
activities on the species.



Sigrid Husebø Øygard 134

Appendix A

Tables

PSC Norwegian
characterization

English translation

1 Tynt eller usammenhengende sedi-
ment dekke over berg

Thin or discontuous sediment cover on
bedrock. Sediment with varying grain
size.

20 Slam Mud
21 Slam med blokker av

sedimenter
Mud alternating with blocks of hard
sediment

40 Sandholding slam Sandy mud
100 Sand Sand
115 Grusholding slam Gravelly sandy mud
120 Grusholdig slamholding sand Gravelly muddy sand
130 Grusholdig slam Gravelly sand
150 Slamholding sandholdig grus Muddy sandy gravel
160 Sandholdig grus Sandy gravel
175 Grus, stein og blokk Gravel, cobbles and boulders
300 Harde sedimenter eller

sedimentære bergarter
Compact sediments or
sedimentary bedrock

Table A.1: The english translation of the norwegian nomenclature used by Geological
Survey of Norway (2016), with the corresponding product specification code (PSC) in
accordance with Mareano (2018).
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Appendix B

Graphs
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Figure B.2: The salinity variation with depth of the measurement sets which appear to
have an unexpected variation of c with z in figure B.1b. Each discrete measurement
is plotted as a marker, not joint to the next marker. Each color indicates a separate
measurement set.
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Figure B.1: The sound speed profiles calculated from CTD measurements downloaded
from ICES, divided into seasons based on their date of measurement. The plots show
artefacts caused by intstrument errors reading T = 0° or S = 0.
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(a)
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Figure B.3: The transmission loss at varying angles, during the spring season.
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(d)

(e)

Figure B.3: (continued) The transmission loss at varying angles, during the spring season.
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Figure B.3: (continued) The transmission loss at varying angles, during the spring season.
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(a)
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Figure B.4: The transmission loss at varying angles, during the summer season.
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(d)

(e)

Figure B.4: (continued) The transmission loss at varying angles, during the summer
season.
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Figure B.4: (continued) The transmission loss at varying angles, during the summer
season.
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Figure B.5: The transmission loss at varying angles, during the autumn season.
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(d)
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Figure B.5: (continued) The transmission loss at varying angles, during the autumn
season.
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Figure B.5: (continued) The transmission loss at varying angles, during the autumn
season.
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(i) Spring

(j) Autumn

Figure B.6: The simulated transmission loss at z = 50 m for the spring and autumn
seasons.
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Appendix C

MatLab Codes

C.1 Ray_bath

1 function [r, z, r_long , r_lat] = Ray_bath(angle_check , pos ,
r_max , delta_r , F)

2 % r is the radial distance vector
3 % a is the value of the bathymetry at each position r
4
5 % x_r and y_r are the cartesian coordinates of the array r
6 %
7 % anlge is in degrees. Can be defined both positive (counter

clockwise) or
8 % negative (clockwise)
9
10 % pos is a vector and is an optional way of specifying

direction as a
11 % position. If pos is 0, it is unused. If pos has a value ,

this is used instead of angle
12
13 % r_max is the spesified max length of the outputed r array.

If pos is specified ,
14 % r_max is unused. If specified as a single number , r_max is
15 % read as the radial distance from lp.
16
17 % x and y are the input positions for z (in long lat)
18
19 % delta_r is the radial resolution
20
21 % F is the interpolant of the bathymetry
22
23 % Listening position in eastern - norhern UTM coordinates
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24 lp_ = [14.41167 , 68.91333]; % Long , lat
25
26
27 % Check if pos is specified
28 if pos ~= 0
29 % Check if pos is outside map
30 % From map:
31 x_max = 16.0000996511561;
32 x_min = -20.2708333333333;
33 y_max = 81.8208333333333;
34 y_min = 67.3041666666667;
35
36 if pos(1) > x_max || pos(1) < x_min || pos(2) > y_max ||

pos(2) < y_min
37 fprintf('pos is outside map!')
38 end
39
40 % Find distances from pos to the listening position
41
42 [dist ,~,~] = m_idist(lp_(1),lp_(2),pos(1),pos(2),'wgs84')

;
43
44 delta_long = pos(1) - lp_(1);
45 angle = sin(deg2rad(delta_long))/(cos(deg2rad(lp_(2)))*

tan(deg2rad(pos(2))) - sin(deg2rad(pos(2)))*cos(
deg2rad(delta_long)));

46
47 % Get number of points
48 Npoints = floor(dist/delta_r) + 1;
49
50 % Get end position that is a multiple of delta r
51 r_mult = delta_r * (Npoints -1);
52 [r_mult_long ,r_mult_lat ,~] = m_fdist(lp_(1),lp_(2),angle ,

r_mult ,'wgs84');
53
54 [r,r_long ,r_lat] = m_geodesic(lp_(1),lp_(2),r_mult_long ,

r_mult_lat ,Npoints);
55
56 if max(r) < dist
57 % Add last point
58 r = [r; dist];
59 r_long = [r_long; pos(1)];
60 r_lat = [r_lat; pos(2)];
61 end
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62
63 % Check the direction of the angle
64 if angle < 0
65 angle = angle + 360;
66 end
67
68 else
69 angle = angle_check;
70 % Find the quadrant
71 % Defined: 1: pos x pos y. 2: neg x pos y. 3: neg x neg y

. 4: pos x neg y.
72
73
74 % From map:
75 x_max = 16.0000996511561;
76 x_min = -20.2708333333333;
77 y_max = 81.8208333333333;
78 y_min = 67.3041666666667;
79
80 % Check if r_max is outside map
81
82 [r_max_long ,r_max_lat ,~] = m_fdist(lp_(1),lp_(2),angle ,

r_max ,'wgs84');
83
84 if r_max_long > x_max || r_max_long < x_min
85 fprintf('r_max is outside map!')
86 elseif r_max_lat > y_max || r_max_lat < y_min
87 fprintf('r_max is outside map!')
88 end
89
90
91 % Set up the r-array
92
93 % Get number of points
94 Npoints = floor(r_max/delta_r) + 1;
95
96 % Get end position that is a multiple of delta r
97 r_mult = delta_r * (Npoints -1);
98 [r_mult_long ,r_mult_lat ,~] = m_fdist(lp_(1),lp_(2),angle ,

r_mult ,'wgs84');
99
100 [r,r_long ,r_lat] = m_geodesic(lp_(1),lp_(2),r_mult_long ,

r_mult_lat ,Npoints);
101
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102
103
104 if max(r) < r_max
105 % Add last point
106 r = [r; r_max ];
107 r_long = [r_long; r_max_long ];
108 r_lat = [r_lat; r_max_lat ];
109 end
110
111 end
112
113
114
115 if F == 0
116 z = 0;
117 else
118 z = F(r_long , r_lat);
119 end
120
121
122 end

C.2 Seabed

1 function [r, z, x_r_c , y_r_c , A_c] = Seabed(KS, r, r_long ,
r_lat , poly , z_bath)

2
3 % Extract the atribute number from KS at points along a ray
4
5 % KS is the structure containging the grain size infromation.
6
7 % r is the radial distance vector of each intersection
8
9 % x_sect and y_sect are the cartesian coordinates of the

array r
10
11 % anlge is in degrees. Can be defined both positive (counter

clockwise) or
12 % negative (clockwise)
13
14 % pos is a vector and is specifying direction and length of r
15
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16 % r_delta is the radial resolution. It needs to be small if
all changes in

17 % KS are to be detected
18
19 % poly is the bounding polygon of KS
20
21 % A is the value of the grain size atribute at each

intersected polygon
22
23
24
25 %% Get coordinates of vertices
26 xv = extractfield(KS, 'X');
27 yv = extractfield(KS, 'Y');
28
29 %%
30 % Make the attribute nummeric
31 korn_ = extractfield(KS, 'SEDKORNSTR ');
32 korn = str2double(korn_);
33 atr = num2cell(korn);
34
35
36
37
38
39 %% Get ray coordinates in UTM. Pos is specified in ll
40
41 m_proj('UTM', 'ellipsoid ', 'wgs84', 'zone', 33)
42 [x_r ,y_r]= m_ll2xy(r_long ,r_lat , 'point');
43
44 in = inpolygon(x_r , y_r , poly(:, 1), poly(:, 2));
45
46 count = 1;
47 for i = 1: length(r)
48 if in(i)
49 r_cut(count) = r(i);
50 x_r_cut(count) = x_r(i);
51 y_r_cut(count) = y_r(i);
52 count = count + 1;
53
54
55
56 end
57 end
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58
59
60 cn = length(KS);
61
62 xp_cell = cell(cn, 1);
63 yp_cell = cell(cn, 1);
64
65 for i = 1:cn
66 xp_cell{i} = KS(i).X;
67 yp_cell{i} = KS(i).Y;
68 end
69
70 %% Get polygons along ray
71
72 index = zeros(length(r_cut), 1);
73
74 for i = 1: length(r_cut)
75 x_r_ = x_r_cut(i);
76 y_r_ = y_r_cut(i);
77
78
79 for ii = 1:cn
80 clear in
81 xp = xp_cell{ii};
82 yp = yp_cell{ii};
83 [in, ~] = inpolygon(x_r_ , y_r_ , xp, yp);
84 if in
85 index(i) = ii;
86 end
87 end
88
89 end
90
91
92
93 %% Cut repeating attributes
94
95 count = 1;
96 index = [index (1); index];
97 for i = 2: length(index)
98 if index(i-1) ~= index(i)
99 indice(count) = i-1;
100 count = count +1;
101 end
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102 end
103
104 r = r_cut(indice);
105 z = z_bath(indice);
106
107 x_r_c = x_r_cut(indice);
108 y_r_c = y_r_cut(indice);
109 index_c = index(indice);
110
111
112 %% Get the attributes
113 n = length(index_c);
114
115 A_c = zeros(1, n);
116
117 for i = 1:n
118 ind = index_c(i);
119 A_c(i) = cell2mat(atr(ind));
120
121 end
122
123
124
125
126
127 end

C.3 geoac

1 function [cb, rho , atten] = geoac(A_c , T, S, c_w , z_max , f)
2 % Get the geoacoustic properties of the sediment
3
4 % cb is the sound velocity in the sediment
5 % rho is the bulk density of the sediment
6
7 % A_c is the value of the grain size atribute
8 % T is the temperature of the sea water at the max depth at

the enquiery position
9 % S is the salinity of the sea water at the max depth at the

enquiery position
10 % c_w is the speed of sound of the sea water at the max depth

at the enquiery position
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11 % z _max is the maximum depth at the enquiery position
12 % f is the frequency
13
14 if A_c == 1
15 % Thin or discontinous sediment cover on bedrock
16 rho = 2700/1000;
17 cb = 7200;
18 atten = 0.6754;
19
20 elseif A_c == 20
21 % Mud
22 rho_grain = 2501;
23 eta = 0.45;
24 rho_w = waterprops_den(T, S, z_max);
25 rho = bulk_den(rho_grain , eta , rho_w)/1000;
26
27 V_R = 1.09835570;
28 cb = V_R * c_w;
29
30 h = 0.70423278;
31 atten = h*10^ -3*cb;
32
33 elseif A_c == 21
34 % Mud alternating with blocks of hard sediment
35 rho_grain = 2501;
36 eta = 0.45;
37 rho_w = waterprops_den(T, S, z_max);
38 rho1 = bulk_den(rho_grain , eta , rho_w);
39 rho2 = 2600;
40 rho = mean([rho1 , rho2]) /1000;
41
42 V_R = 1.10;
43 cb1 = V_R * c_w;
44 cb2 = 4000;
45 cb = mean([cb1 , cb2]);
46
47 h1 = 0.70423278;
48 atten1 = h1*f*f*10^ -3/cb;
49 h2 = 0.0573;
50 l = 0.911;
51 atten2 = (h2*cb*(f*10^( -3))^l)/f;
52 atten = mean([atten1 , atten2 ]);
53
54 elseif A_c == 40
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55 % Sandy mud
56 rho_grain = 2760;
57 eta = 0.38;
58 rho_w = waterprops_den(T, S, z_max);
59 rho = bulk_den(rho_grain , eta , rho_w)/1000;
60
61 V_R = 1.24712972;
62 cb = V_R * c_w;
63
64 h = 0.485520706;
65 atten = h*10^ -3*cb;
66 elseif A_c == 100
67 % Sand
68 rho_grain = 2589;
69 eta = 0.27;
70 rho_w = waterprops_den(T, S, z_max);
71 rho = bulk_den(rho_grain , eta , rho_w)/1000;
72
73 V_R = 1.29355288;
74 cb = V_R * c_w;
75
76 h = 0.473958158;
77 atten = h*10^ -3*cb;
78
79 elseif A_c == 115
80 % Gravelly sandy mud
81 rho_grain = 2872;
82 eta = 0.27;
83 rho_w = waterprops_den(T, S, z_max);
84 rho = bulk_den(rho_grain , eta , rho_w)/1000;
85
86 V_R = 1.46188993;
87 cb = V_R * c_w;
88
89 h = 0.8*10^3/ cb;
90 atten = h*10^ -3*cb;
91
92 elseif A_c == 120
93 % Gravelly muddy sand
94 rho_grain = 2836;
95 eta = 0.25;
96 rho_w = waterprops_den(T, S, z_max);
97 rho = bulk_den(rho_grain , eta , rho_w)/1000;
98
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99 V_R = 1.46828590;
100 cb = V_R * c_w;
101
102 h = 0.8*10^3/ cb;
103 atten = h*f*f*10^ -3/cb;
104
105 elseif A_c == 130
106 % Gravelly sand
107 rho_grain = 2836;
108 eta = 0.25;
109 rho_w = waterprops_den(T, S, z_max);
110 rho = bulk_den(rho_grain , eta , rho_w)/1000;
111
112 V_R = 1.47136113;
113 cb = V_R * c_w;
114
115 h = 0.8*10^3/ cb;
116 atten = h*10^ -3*cb;
117
118 elseif A_c == 150
119 % Muddy sandy gravel
120 rho_grain = 2842;
121 eta = 0.18;
122 rho_w = waterprops_den(T, S, z_max);
123 rho = bulk_den(rho_grain , eta , rho_w)/1000;
124
125 V_R = 1.59898469;
126 cb = V_R * c_w;
127
128 h = 0.8*10^3/ cb;
129 atten = h*10^ -3*cb;
130
131
132 elseif A_c == 160
133 % Sandy gravel
134 rho_grain = 2779;
135 eta = 0.15;
136 rho_w = waterprops_den(T, S, z_max);
137 rho = bulk_den(rho_grain , eta , rho_w)/1000;
138
139 V_R = 1.59958190;
140 cb = V_R * c_w;
141
142 h = 0.8*10^3/ cb;



APPENDIX C. MATLAB CODES Sigrid Husebø Øygard 157

143 atten = h*10^ -3*cb;
144
145 elseif A_c == 175
146 % Gravel , cobbles and boulders rho_grain = 2779;
147 rho_grain = 2802;
148 eta = 0.4;
149 rho_w = waterprops_den(T, S, z_max);
150 rho = bulk_den(rho_grain , eta , rho_w)/1000;
151
152 V_R = 1.44;
153 cb = V_R * c_w;
154
155 atten = 0.6;
156
157 elseif A_c == 300
158 % Compact sediments of sedimentary bedrock
159 cb = 4000;
160 rho = 2600/1000;
161
162 h = 1.012*10^ -3;
163 l = 0.911;
164 atten = h*(f*10^ -3)^l*cb/f;
165
166 elseif A_c == 0
167 % Outside of range
168 cb = 1506.99499328387;
169 rho = 1449.93128278282/1000;
170 atten = 1.85*10^ -4;
171 end
172 end

1 function rho = bulk_den(rho_grain , eta , rho_w)
2 rho = eta*rho_w + (1 - eta)*rho_grain;
3 end

C.4 waterprops - Written by White (2015b)

1 function [den]= waterprops(T,S,d)
2
3 % Returns physical properties of water
4
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5 % calculation of bulk modulus of water (Pa) (Siedler , 1986
section 3.1.3)

6 % valid range: 0=<S=<42 (ppt); -2=<T=<40 (oC); 0=<pK=<1e4 (
dbar)

7 pK=1e -4*(1.01325 e5 +9.80665*d*1000); % pressure in dbar
required to get K

8 K_pure =1.965221 e5 +1484.206*T -23.27105*T^2+1.360477e-1*T
^3 -5.155288e-4*T^4;

9 K_surface=K_pure +(546.746 -6.03459*T+1.09987e-1*T^2 -6.167e-4*T
^3)*S+(7.944e -1+1.6483e-1*T -5.3009e-3*T^2)*S^1.5;

10 Aw =3.239908+1.43713e-3*T+1.16092e-4*T^2 -5.77905e-7*T^3;
11 A=Aw +(2.2838e-3 -1.0981e-5*T -1.6078e-6*T^2)*S+1.91075e-4*S

^1.5;
12 Bw =8.50935e-6 -6.12293e-7*T+5.2787e-9*T^2;
13 B=Bw+( -9.9348e -8+2.0816e-9*T+9.1697e-11*T^2)*S;
14 K_dbar=K_surface+A*pK+B*pK^2;
15 K=K_dbar *1e4;
16 clear pK k_pure K_surface Aw A Bw B
17
18 % calculation of density of water (kg/m3) (Siedler , 1986

section 3.1.3)
19 % valid range: 0=<S=<42 (ppt); -2=<T=<40 (oC); 0=<pK=<1e4 (

dbar)
20 pd=1e -4*(1.01325 e5 +9.80665*d*1000); % pressure in dbar

required to get den
21 den_pure =999.842594+6.793952e-2*T -9.095290e-3*T^2+1.001685e

-4*T^3 -1.120083e-6*T^4+6.536332e-9*T^5;
22 den_surface=den_pure +(8.24493e-1 -4.0899e-3*T+7.6438e-5*T

^2 -8.2467e-7*T^3+5.3875e-9*T^4)*S+( -5.72446e -3+1.0227e-4*T
-1.6546e-6*T^2)*S^1.5+4.8314e-4*S^2;

23 den=den_surface /(1+(pd/K_dbar));
24 clear pd den_pure den_surface
25
26 end

C.5 Write_in

1 function Write_in(angle , pos , r_max , delta_r , delta_z , z_max ,
freq , zs, zr, ndz , ndr , n_pade , s, rs , filename , F, KS,

KS_pol , SSP)
2 % anlge is in degrees. Can be defined both positive (counter

clockwise) or
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3 % negative (clockwise)
4
5 % pos is a vector and is an optional way of specifying

direction as a
6 % position. If pos is 0, it is unused. If pos has a value ,

this is used instead of angle
7 % pos is specified as [long , lat]
8
9 % r_max is the spesified max length of the outputed r array.

If r_max = 0,
10 % the size of A determines r_max. If specified as a single

number , r_max is
11 % read as the radial distance from lp.
12
13 % delta_r and delta_z are the radial resolution and depth

resolution
14
15 % z_max is max z of output. If z_max == 0, z_max is taken as

the max depth
16 % given by the batymethry
17
18 % zs is the source depth
19
20 % zr is the reciever depth
21
22 % freq is source frequency
23
24 % ndz and ndr are the decimation factors for the output TL

grid.
25 % 1 = no decimation
26
27 % n_pade is the number of Pade coefficients
28 % s is the number of stability constraints (1 or 2)
29
30 % rs is the maximum range of stability constraints (= 0 turns

stability
31 % constraints off
32
33 % filename is the title of the file , a string
34
35 % F is the interpolant for bathymetry
36
37 % KS is the grain map structure and KS_pol is the polygon

bounding KS
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38
39 % SSP is the cell containing SSPs and other ocean properties

in the format
40 % z, P, c, [long , lat], T, S, rho
41
42 % Listening position is at:
43 lp_ = [14.41167 , 68.91333]; % Long , lat
44
45
46 [r, z_bath , r_long , r_lat]= Ray_bath(angle , pos , r_max ,

delta_r , F);
47
48
49 % Set rmax
50 if r_max == 0
51 rmax = max(r);
52 else
53 rmax = r_max;
54 [pos_1 , pos_2 , ~] = m_fdist(lp_(1),lp_(2),angle ,rmax ,'

wgs84');
55 pos = [pos_1 , pos_2];
56 end
57
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 % Get SSPs
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 SSP_save = cell(1, 3);
62
63 % Make z_array up to the z where the delta P_SSP changes
64 if delta_z > 1
65 z_array = 0;
66 i = 2;
67 while z_array(end) <= 1500
68 z_array(i) = delta_z *(i-1);
69 i = i + 1;
70 end
71
72 % Convert z_array to P
73 P_array = floor(gsw_p_from_z(-z_array , lp_(1)));
74 else
75 P_array = 0:1:1500;
76 end
77
78
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79 % Make P_array longer with delta P_SSP = 150 until P = 2996
dBar

80 P_array = [P_array , P_array(end)+150:150:2996];
81
82
83 P_max_measured = 0;
84 count = 0;
85 for i = 1: length(P_array)
86 [c_at_p , ~, ~, lat_ssp , long_ssp , P_max] = Get_c_at_P(SSP

, P_array(i));
87 if isempty(c_at_p)
88 continue
89 else
90 count = count + 1;
91 SSP_save{count , 1} = c_at_p;
92 SSP_save{count , 2} = [long_ssp; lat_ssp ];
93 SSP_save{count , 3} = P_max;
94 % Get max P of the measured SSPs
95 if P_max_measured < max(P_max)
96 P_max_measured = max(P_max);
97 end
98 end
99 end
100
101 % Cut the P_array to the max P measured
102 i_P = find(P_array <= P_max_measured , 1, 'last');
103 P_array = P_array (1:i_P);
104
105 %% Getting positions of ssp ray. Chosing r_delta = 1000;
106 [r_ssp , z_ssp , long_ssp_r , lat_ssp_r] = Ray_bath(angle , 0,

r_max , 1000, F);
107
108 % Remove last point (Not needed)
109 r_ssp = r_ssp (1:end -1);
110 z_ssp = z_ssp (1:end -1);
111 long_ssp_r = long_ssp_r (1:end -1);
112 lat_ssp_r = lat_ssp_r (1:end -1);
113
114 % Get max Ps for SSPs from bath
115 p_max_bath = gsw_p_from_z(-z_ssp ,lat_ssp_r);
116
117
118 % Make cells to save SSP and z at each position
119 SSP_ray = cell(length(P_array), length(long_ssp_r));
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120 SSP_ray_z = cell(length(P_array), length(long_ssp_r));
121
122 % Turn off warnings produced by interp_spherical
123 warning('off', 'MATLAB:griddata:DuplicateDataPoints ')
124
125 % Interpolate
126 for i = 1: length(long_ssp_r)
127 % Get co-ordinates of one query point
128 query_long = long_ssp_r(i);
129 query_lat = lat_ssp_r(i);
130 count_ii = 1;
131 for ii = 1: length(P_array)
132 % Get all c_w at pressure P_array(ii)
133
134 % Find current pressure
135 P = P_array(ii);
136
137 % Check if P is deeper than bathymetry
138 if P <= p_max_bath(i)
139
140 % Get all c at this pressure
141 try
142 c_at_P_ = SSP_save{ii, 1};
143 catch
144 d = 1;
145 end
146
147 % Get corresponding P_max of CTDs
148 P_max = SSP_save{ii , 3};
149
150 % Get grid co-ordinates
151 ll_SSP_grid = SSP_save{ii, 2};
152 long_SSP_grid_ = ll_SSP_grid (1, :);
153 lat_SSP_grid_ = ll_SSP_grid (2, :);
154
155 % Remove NaNs from c_w and those entries that come

from CTDs
156 % that are shorther than current pressure
157 count = 1;
158
159 long_SSP_grid = [];
160 lat_SSP_grid = [];
161 c_at_P = [];
162
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163 for a = 1: length(c_at_P_)
164 if or(~isnan(c_at_P_(a)) && P_max(a) >

p_max_bath(i), ~isnan(c_at_P_(a)) &&
p_max_bath(i) > P_max_measured)

165 long_SSP_grid(count) = long_SSP_grid_(a);
166 lat_SSP_grid(count) = lat_SSP_grid_(a);
167 c_at_P(count) = c_at_P_(a);
168 count = count + 1;
169 end
170 end
171
172 % Interpolate and save if any c was found at

current pressure
173 % and position
174
175
176 if ~isempty(c_at_P)
177
178 % Interpolate
179 [c_w_at_ray_ ,~]= interp_spherical(

long_SSP_grid ',lat_SSP_grid ',c_at_P ',
query_long ,query_lat ,'cubic' ,2);

180
181
182 % Save SSP
183 SSP_ray{count_ii , i} = c_w_at_ray_;
184 SSP_ray_z{count_ii , i} = -gsw_z_from_p(P,

query_lat);
185 count_ii = count_ii + 1;
186 end
187 end
188 end
189 end
190
191
192 % Turn warning back on
193 warning('on', 'MATLAB:griddata:DuplicateDataPoints ')
194
195 % Smoot the SSPs
196 for i = 1:size(SSP_ray , 2)
197 c_ = smooth(cell2mat(SSP_ray(:, i)));
198
199 SSP_ray (1: length(c_), i) = num2cell(c_);
200 end
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201
202
203
204
205 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
206 % Get geoacoustic properties
207 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
208
209
210
211 % Chose the r_delta used to look for changes in the seabed
212
213
214 [r_A , z_A , x_r_A , y_r_A , A_c] = Seabed(KS, r, r_long , r_lat ,

KS_pol , z_bath);
215
216
217 % Convert intersection co-ordinates to ll
218 [sec_long , sec_lat] = m_xy2ll(x_r_A ,y_r_A);
219
220
221
222 % Convert z_A to pressure
223
224 P_chosen = floor(gsw_p_from_z(-z_A ', sec_lat));
225
226
227 % Get all properties at these pressures
228 for i = 1: length(P_chosen)
229 [c_at_P , T_, S_, lat_ssp , long_ssp , ~] = Get_c_at_P(SSP ,

P_chosen(i));
230
231 if isempty(c_at_P)
232 P_chosen_ = P_chosen(i);
233 while isempty(c_at_P)
234 P_chosen_ = P_chosen_ - 1;
235 [c_at_P , T_, S_, lat_ssp , long_ssp , ~] =

Get_c_at_P(SSP , P_chosen_);
236 end
237
238 end
239
240
241 % Interpolate c_w , T_ and S_
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242 try
243 [cb_at_deltar , ~]= interp_spherical(long_ssp ',lat_ssp ',

c_at_P ',sec_long(i),sec_lat(i),'cubic', 8);
244 catch
245 d = 1;
246 end
247
248 [T, ~]= interp_spherical(long_ssp ',lat_ssp ',T_ ',sec_long(i

),sec_lat(i),'cubic', 8);
249 [S, ~]= interp_spherical(long_ssp ',lat_ssp ',S_ ',sec_long(i

),sec_lat(i),'cubic', 8);
250
251 [cb_ , rho_ , atten_] = geoac(A_c(i), T, S, cb_at_deltar ,

z_A(i), freq);
252 cb(i) = cb_;
253 rho(i) = rho_;
254 atten(i) = atten_;
255 z_sediment(i) = z_A(i) + 125;
256 z_artificial(i) = z_sediment(i) + 4*cb_/freq;
257 end
258
259
260
261
262 % Get c0
263 P_lp = floor(gsw_p_from_z (-258, lp_(2)));
264 [c_at_P_lp , ~, ~, lat_ssp_c0 , long_ssp_c0 , ~] = Get_c_at_P(

SSP , P_lp);
265 [c0, ~]= interp_spherical(long_ssp_c0 ',lat_ssp_c0 ',c_at_P_lp ',

lp_(1),lp_(2),'cubic', 8);
266
267 % Find deepes z_artificial and deepest z_bath
268 zmax_arti = max(z_artificial);
269 zmax_b = max(z_bath);
270
271 % Make the sediment layer of the end block
272 z_sediment_end = zmax_b + 125;
273 z_artificial_end = z_sediment_end + 300;
274
275 % Find zmax of domain
276 zmax = max([zmax_arti , z_artificial_end ]);
277
278 % Check if z_max of output is specified
279 if z_max == 0
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280 zmplt = zmax;
281 else
282 zmplt = z_max;
283 end
284
285 % Set geoproperties outside KS
286 if max(r_A) < rmax
287 [cb_end , rho_end , atten_end] = geoac(0, 0, 0, 0, 0, 0);
288 end
289
290 % Sett up block ranges
291 r_block (1) = r_A(1);
292 cb_block (1) = cb(1);
293 rho_block (1) = rho(1);
294 atten_block (1) = atten (1);
295
296 % Get SSPs to go with each block
297
298 count_rssp = 2;
299 count_blocks = 2;
300 SSP_block(:, 1) = SSP_ray(:, 1);
301 SSP_block_z (:, 1) = SSP_ray_z(:, 1);
302 i = 2;
303
304 r_c = r_ssp(count_rssp);
305
306 % Padd to avoid problems at the end of the array
307 %r_ssp = [r_ssp; r_ssp(end) + 2000];
308 while i <= length(r_A)
309 r_b = r_A(i);
310
311
312 if r_b < r_c || r_c == r_ssp(end)
313
314
315
316 SSP_block(:, count_blocks) = SSP_ray(:, count_rssp);
317
318 SSP_block_z (:, count_blocks) = SSP_ray_z(:,

count_rssp);
319 r_block(count_blocks) = r_A(i);
320 cb_block(count_blocks) = cb(i);
321 rho_block(count_blocks) = rho(i);
322 atten_block(count_blocks) = atten(i);
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323 z_sediment_block(count_blocks) = z_sediment(i);
324 z_artificial_block(count_blocks) = z_artificial(i);
325 i = i + 1;
326 elseif r_b >= r_c && r_b < r_ssp(count_rssp + 1)
327 count_rssp = count_rssp + 1;
328
329 SSP_block (:, count_blocks) = SSP_ray(:, count_rssp);
330
331
332 SSP_block_z (:, count_blocks) = SSP_ray_z(:,

count_rssp);
333
334 r_block(count_blocks) = r_A(i);
335 cb_block(count_blocks) = cb(i);
336 rho_block(count_blocks) = rho(i);
337 atten_block(count_blocks) = atten(i);
338 z_sediment_block(count_blocks) = z_sediment(i);
339 z_artificial_block(count_blocks) = z_artificial(i);
340 r_c = r_ssp(count_rssp);
341 i = i + 1;
342 else
343
344 SSP_block (:, count_blocks) = SSP_ray(:, count_rssp);
345 SSP_block_z (:, count_blocks) = SSP_ray_z(:,

count_rssp);
346 r_block(count_blocks) = r_ssp(count_rssp);
347 cb_block(count_blocks) = cb(i);
348 rho_block(count_blocks) = rho(i);
349 atten_block(count_blocks) = atten(i);
350 z_sediment_block(count_blocks) = z_sediment(i);
351 z_artificial_block(count_blocks) = z_artificial(i);
352 count_rssp = count_rssp + 1;
353 r_c = r_ssp(count_rssp);
354 end
355 count_blocks = count_blocks + 1;
356 end
357
358
359 % Add remaining SSPs
360 if count_rssp +1 < size(SSP_ray , 2)
361 n = size(SSP_block , 2) + 1;
362 for i = count_rssp +1: size(SSP_ray , 2)
363 r_block(n) = r_ssp(i);
364 SSP_block (:, n) = SSP_ray(:, i);
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365 SSP_block_z (:, n) = SSP_ray_z(:, i);
366 n = n + 1;
367 end
368 end
369
370
371
372
373
374 %%%%%%%%%%%%%%%%%%%
375 % Write .in file
376 %%%%%%%%%%%%%%%%%%%
377
378 % Make file
379 fullfilename = strcat('/scratch/Sigrid/RAM_folders/',

filename);
380 fileID = fopen(fullfilename ,'w');
381 fprintf(fileID , filename);
382 fprintf(fileID ,'\n%.1f %.1f %.1f', [freq , zs, zr]);
383 fprintf(fileID ,'\n%.1f %.1f %d', [rmax , delta_r , ndr]);
384 fprintf(fileID , '\n%.1f %.1f %d %.1f', [zmax , delta_z , ndz ,

zmplt]);
385 fprintf(fileID , '\n%.1f %d %d %.1f', [c0, n_pade , s, rs]);
386 for i = 1: length(r)
387 fprintf(fileID , '\n%.1f %.1f', [r(i), z_bath(i)]);
388 end
389 fprintf(fileID , '\n%d %d', [-1, -1]);
390
391 % Print first block
392 z_print = cell2mat(SSP_block_z (:, 1));
393 cw_print = cell2mat(SSP_block(:, 1));
394
395
396 cb_b = [0, cb(1)];
397 rho_b = [0, rho (1)];
398
399
400 % Print block
401 for i = 1: length(z_print)
402 fprintf(fileID , '\n%.1f %.1f', [z_print(i), cw_print(i)]);
403 end
404 fprintf(fileID , '\n%d %d', [-1, -1]);
405 fprintf(fileID , '\n%.1f %.1f', cb_b);
406 fprintf(fileID , '\n%d %d', [-1, -1]);
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407 fprintf(fileID , '\n%.1f %.1f', rho_b);
408 fprintf(fileID , '\n%d %d', [-1, -1]);
409 fprintf(fileID , '\n%.1f %.2g', [0, atten (1)]);
410 fprintf(fileID , '\n%.1f %.2g', [z_sediment (1), atten (1)]);
411 fprintf(fileID , '\n%.1f %.1f', [z_artificial (1), 10]);
412 fprintf(fileID , '\n%d %d', [-1, -1]);
413
414 % Next blocks
415 for i = 2: length(cb_block)
416 z_print = cell2mat(SSP_block_z (:, i));
417 cw_print = cell2mat(SSP_block(:, i));
418
419
420 cb_b = [0, cb_block(i)];
421 rho_b = [0, rho_block(i)];
422
423
424 % Print block
425 fprintf(fileID ,'\n%.1f', r_block(i));
426 for ii = 1: length(z_print)
427 fprintf(fileID , '\n%.1f %.1f', [z_print(ii), cw_print(ii)

]);
428 end
429 fprintf(fileID , '\n%d %d', [-1, -1]);
430 fprintf(fileID , '\n%.1f %.1f', cb_b);
431 fprintf(fileID , '\n%d %d', [-1, -1]);
432 fprintf(fileID , '\n%.1f %.1f', rho_b);
433 fprintf(fileID , '\n%d %d', [-1, -1]);
434 fprintf(fileID , '\n%.1f %.2g', [0, atten_block(i)]);
435 fprintf(fileID , '\n%.1f %.2g', [z_sediment_block(i),

atten_block(i)]);
436 fprintf(fileID , '\n%.1f %.1f', [z_artificial_block(i),

10]);
437 fprintf(fileID , '\n%d %d', [-1, -1]);
438 end
439
440 % Blocks after KS
441 if length(cb_block)+1 < size(SSP_block , 2)
442 for i = length(cb)+1: size(SSP_block , 2)
443 z_print = cell2mat(SSP_block_z (:, i));
444 cw_print = cell2mat(SSP_block(:, i));
445
446
447 cb_b = [0, cb_end ];
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448 rho_b = [0, rho_end ];
449
450
451 % Print block
452 fprintf(fileID ,'\n%.1f', r_block(i));
453 for ii = 1: length(z_print)
454 fprintf(fileID , '\n%.1f %.1f', [z_print(ii), cw_print

(ii)]);
455 end
456 fprintf(fileID , '\n%d %d', [-1, -1]);
457 fprintf(fileID , '\n%.1f %.1f', cb_b);
458 fprintf(fileID , '\n%d %d', [-1, -1]);
459 fprintf(fileID , '\n%.1f %.1f', rho_b);
460 fprintf(fileID , '\n%d %d', [-1, -1]);
461 fprintf(fileID , '\n%.1f %.1f', [0, atten_end ]);
462 fprintf(fileID , '\n%.1f %.1f', [z_sediment_end ,

atten_end ]);
463 fprintf(fileID , '\n%.1f %.1f', [z_artificial_end ,

10]);
464 fprintf(fileID , '\n%d %d', [-1, -1]);
465 end
466 end
467
468 fclose(fileID);
469
470 end

C.6 Get_̧at_P

1 function [c, T, S, lat , long , P_max] = Get_c_at_P(SSP ,
P_chosen)

2 % SSP is inputed in the format as in 'All_SSP.mat ' in ICES -
folder

3 % P is the hydrostatic pressure you want to get c's at. It
has to be an

4 % integer
5
6
7 % Set up empties
8 c= [];
9 T = [];
10 S = [];
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11 lat = [];
12 long = [];
13 P_max = [];
14
15 % Get array number
16 n = size(SSP , 1);
17
18
19
20 % Set up counter
21 count = 1;
22 i_P = 1;
23
24
25
26 for i = 1:n
27 % Get P values
28
29 P_array = SSP{i, 2};
30 P_max_ = max(P_array);
31
32 % Get indecie of P_chosen
33 clear i_P
34 i_P = find(P_array == P_chosen , 1);
35
36
37 % Check if this c(P) has a value at P_chosen
38 if isempty(i_P)
39 continue
40 end
41
42 % Ge the rest of the values
43 LongLat = SSP{i, 4};
44 c_array = SSP{i, 3};
45 T_array = SSP{i, 6};
46 S_array = SSP{i, 7};
47
48
49 % Save values if found
50 if i_P > length(c_array)
51 continue
52 end
53 c_ = c_array(i_P);
54 T_ = T_array(i_P);
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55 S_ = S_array(i_P);
56 if isnan(c_) || isnan(T_) || isnan(S_)
57 continue
58 end
59 c(count) = c_;
60 T(count) = T_;
61 S(count) = S_;
62 P_max(count) = P_max_;
63
64
65
66 long(count) = LongLat (1);
67 lat(count) = LongLat (2);
68 count = count +1;
69 end
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