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Abstract 

Decomposition of plant litter is an important process in the terrestrial carbon cycle and makes 

up ~70% of the global carbon flux from soils to the atmosphere. Climate change is expected 

to have significant direct and indirect effects on litter decomposition processes at various 

time-scales. Using tea bag index (TBI), we investigated the impact on decomposition of short-

term direct effects of temperature and precipitation by comparing temporal variability over 

years, versus long-term climate impacts that incorporate indirect effects mediated through 

environmental changes by comparing sites along climatic gradients. We measured the initial 

decomposition rate (k) and stabilization factor (S; amount of labile litter stabilizing) across a 

climate grid combining three levels of summer temperature (6.5-10.5°C) with four levels of 

annual precipitation (600-2700mm) in three summers with varying temperature and 

precipitation. Several (a)biotic factors were measured to characterize environmental 

differences between sites. Increased temperatures enhanced k, whereas increased precipitation 

decreased k across years and climatic regimes. In contrast, S showed diverse responses to 

annual changes in temperature and precipitation between climate regimes. Stabilization of 

labile litter fractions increased with temperature only in boreal and sub-alpine sites, while it 
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decreased with increasing precipitation only in sub-alpine and alpine sites. Environmental 

factors such as soil pH, soil C:N, litter C:N and plant diversity that are associated with long-

term climate variation modulate the response of k and S. This highlights the importance of 

long-term climate in shaping the environmental conditions that influences the response of 

decomposition processes to climate change.  
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Introduction 

Litter decomposition contributes about 70% to the global CO2 flux from soils and is estimated 

to be in the range of 68 – 77 x 1015 gC yr-1 (Raich and Schlesinger, 1992; Raich and Potter, 

1995). On a global scale, litter decomposition is regulated by a combination of geographic, 

climatic and litter quality variables (Zhang and others, 2008). Climate affects decomposition 

processes directly and at short time-scales through temperature and water availability as 

biological processes are highly sensitive to these factors. On longer time scales climate also 

affects decomposition indirectly, for example, by affecting the litter quality via plant 

community composition and structure, or by affecting decomposer and detritivore community 

composition (Aerts, 2006). Climate change is expected to have substantial effects on both 

direct and indirect controls of decomposition processes, and the associated CO2 release could 

have a positive feedback on global warming (Davidson and Janssens, 2006; Crowther and 

others, 2016). It is therefore important to determine both direct and indirect effects of climate 

change on soil carbon dynamics to quantify more accurately the role of soil under future 

projections of climate change (Classen and others, 2015).  In this study, we investigate the 

direct effects of climate change by studying the response of decomposition processes to short-

term inter annual climate variation (hereafter: short-term climate), while indirect effects are 

studied through the use of spatial climate gradients that represent long-term climate 

(hereafter: long-term climate) which is an important state factor shaping ecosystem structure 

and functioning (Chapin and others, 2011). We use a climate grid in southern Norway, that 

combines three levels of summer temperature, i.e. the mean of the four warmest months June-

September, representing different biogeographic zones (alpine ≈ 6.5°C, sub-alpine ≈ 8.5°C, 

boreal ≈ 10.5°C) with four levels of mean annual precipitation (1 ≈ 600 mm, 2 ≈1200 mm, 3 ≈ 

2000 mm, 4 ≈ 2700 mm) while avoiding correlation between climatic factors (Meineri and 

others, 2013; Klanderud and others, 2015). This study design allows us to disentangle the 
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short-term (direct) and long-term (indirect) impacts of climate on litter decomposition in 

alpine grasslands in three consecutive growing seasons with contrasting climates. 

Climate change scenarios predict greater increases in surface temperature and 

enhanced precipitation for northern high-latitudes (IPCC, 2013). Because biological processes 

in these regions are generally temperature limited, litter decomposition is expected to increase 

(Hobbie and others, 2002; Robinson, 2002). The effect of global warming on decomposition 

in these regions is often studied by artificial warming experiments. This type of intra-site 

experiment studies the short-term direct effects of warming on decomposition but disregards 

the long-term indirect effects of climate that shape the local environment through edaphic 

factors and plant and decomposer communities. In addition, these experiments can be 

troubled by artifacts such as soil drying, and they often ignore the role of and projected 

changes in precipitation (Aerts, 2006). Field approaches that make use of extant climatic 

gradients ‒ space-for-time approaches ‒ can be performed at broad spatial scales, spanning 

entire or multiple continents (Berg and others, 1993; Cornelissen and others, 2007; Portillo-

Estrada and others, 2016), or at a local scale, spanning a single gradient (e.g. Murphy and 

others, 1998; Salinas and others, 2011). Such gradient studies have the advantage of being 

able to incorporate indirect, long-term effects of climate. However, in most cases, covariation 

occurs between temperature and precipitation across the gradient, making it difficult to 

separate the effect of these climatic factors on decomposition. Temporal variability in climate 

between years is another way to study the direct effects of climate on decomposition 

(McCulley and others, 2005). The combination of climatic gradients together with annual 

climate variability is an opportunity to study both the short-term direct and the long-term 

indirect effects of climate on decomposition.  

The majority of litter decomposition studies use native leaf material, which makes 

them very realistic, but this approach also has a drawback. Litter can decompose faster when 
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it is placed under the plants from which the litter originated (“home”) than at locations with 

different plant species (“foreign”) (Ayres and others, 2009; Veen and others, 2015). This 

phenomenon is called “home-field advantage” (Gholz and others, 2000), and can bias results 

in studies using one local litter across sites with different species. Recently, Keuskamp and 

others (2013) developed the TeaBag Index (TBI) as a standardized method to negate litter 

quality and litter trait effects from environmental drivers of decomposition processes by 

removing this litter bias. This method uses two types of tea with contrasting decomposability 

as standard litter substrate in order to characterize two parameters of the decomposition 

process. The decomposition rate constant (k) is a measure of the speed of initial litter 

decomposition and the stabilization factor (S) is a measure of the proportion of the labile 

fraction of litter that will finally stabilize and become recalcitrant and transform into soil 

organic matter (SOM). Decomposition of native litter and the standard tea litter shows similar 

responses to changes in temperature and precipitation, indicating that the TBI is a suitable 

approach for assessing the role of environmental variables on litter decomposition (Didion 

and others, 2016).  

In this study, we used the TBI to investigate the short-term (inter-annual variability) 

and long-term (environmental conditions shaped by differences in climate between sites) 

effects of climate on litter decomposition in mountain grasslands in southern Norway. We 

used a climate grid that consists of sites positioned along natural temperature and precipitation 

gradients explicitly selected to disentangle effects of temperature and precipitation. To 

investigate the response of decomposition processes to short-term climate variability we 

adopted the TBI approach in three consecutive summers that varied in temperature and 

precipitation. At each site, we measured a number of biotic and abiotic variables to determine 

how long-term differences in climate have shaped the local environment at the different sites. 

The combination of the climate grid and annual climate variability provided the opportunity to 
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compare the impact of short-term variation in climate compared with long-term effects of 

regional climate gradients on decomposition processes. 

Specifically we aimed to (1) determine how decomposition processes are affected by 

short-term variation in temperature and precipitation, (2) evaluate whether these responses are 

consistent across regional climate gradients and (3) assess to what degree short-term and long-

term impacts of climate affect decomposition processes.  

We expected decomposition to increase in sites and in growing seasons with higher 

temperatures and precipitation, because mountain ecosystems are known to be limited by 

temperature and productivity generally increases with precipitation. In addition, we expected 

the reaction to be strongest in sites where the other factor was not limiting, so that variation in 

precipitation (between sites and years) would cause larger differences in decomposition in the 

warmest locations than in cold locations where decomposition is limited by temperature. Vice 

versa, variation in temperature should cause larger differences in decomposition in the wettest 

location than in low-rainfall sites, where moisture limitation is more likely.  

 

Materials & Methods 

Site description 

The study was conducted in a climate grid consisting of 12 calcareous grassland sites spread 

across natural temperature and precipitation gradients, spanning almost 1000 m in elevation 

and 175 km in geographical distance. The sites of this grid were selected based on 

interpolated climate data from the normal period 1961-1990 with a resolution of 100 m 

(Tveito and others, 2005; Norwegian Meteorological Institute, 2010). It combines three levels 

of summer temperature, i.e. the mean of the four warmest months June‒September, 

representing different biogeographic zones (alpine ≈ 6.5°C, sub-alpine ≈ 8.5°C, boreal ≈ 

10.5°C) with four levels of mean annual precipitation (1 ≈ 600 mm, 2 ≈1200 mm, 3 ≈ 2000 
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mm, 4 ≈ 2700 mm; Figure 1). All sites are semi-natural grasslands on shallow slopes (5-20°) 

associated with calcareous bedrock and plant communities within the plant sociological 

association Potentillo-Festucetum ovinae (Fremstad, 1997) and other factors were kept as 

similar as possible; including aspect and land use (for more details see (Meineri and others, 

2013; Klanderud and others, 2015); and also see Table S1). The sites are fenced during the 

snow-free season to prevent ungulate grazers from damaging the experimental set-up.  

 

Climate data 

The Norwegian Meteorological Institute (NMI) provided mean daily interpolated data on air 

temperature and precipitation at a resolution of 100 m for each site for the whole study period 

2014-2016 (Norwegian Meteorological Institute, 2016). At each site, we measured soil 

temperature at 5 cm below ground with MT2-05 temperature sensors (Delta-T Devices, 

Cambridge, UK). Due to temperature sensor malfunction of climate stations at some sites, we 

do not have continuous soil temperature measurements at site level for each of the incubation 

periods. In 2014, iButton temperature loggers (DS1922L, Maxim Integrated, San Jose, CA, 

USA) were buried at five locations in each site at a depth of 8 cm. Temperature data from the 

different sources were compared to each other both visually and by pairwise Pearson 

correlation for the incubation periods of the tea bags (± 3 months in summer, see method 

section on litter decomposition measurements) at the different sites (Figure S1). Because the 

temperature data of NMI for incubation periods corresponded well with both buried iButton 

and climate stations at all the sites, R2 > 0.93 and R2 > 0.83 respectively, we decided to use air 

temperature data from NMI in the analyses. Mean temperature and total precipitation were 

calculated based on data from NMI for the incubation periods of tea bags for each site and 

year (Table S2).  
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Environmental variables representing long-term climate 

Long-term climate plays an important role in shaping ecosystem structure by influencing the  

development of soil and determining the types and diversity of plants and organisms that can 

occur (Chapin and others, 2011). This climatically-driven variability in the biotic and abiotic 

environment could affect decomposition (i.e., indirect effect of climate). To characterize these 

differences, we measured a number of biotic and abiotic characteristics at each site. 

 

Soil properties 

At each site, five composite soil samples were collected by combining three core rings (5 cm 

diameter). Soil pH of these samples was measured after mixing 30 g of sieved fresh soil with 

30 ml deionized water. Additional soil samples from the surface layer (0‒10 cm) were 

collected with a soil corer (25 mm diameter) from four locations at each site. These samples 

were oven dried at 30°C for 2‒3 days and roots were carefully removed. Dried samples were 

ground thoroughly and passed through a 1 mm sieve. Subsequently, a 25 g subsample was 

milled at a frequency of 30 s-1 for 2‒3 min with a mixer mill (MM200, Retsch Gmbh, Haan, 

Germany). Total soil C and N content was measured using a Vario MICRO cube elemental 

analyzer (Elementar Analysesystem GmbH, Germany). Soil mineral N availability was 

determined in summer 2010 with ion exchange resin bags (IERBs) (Fariñas, 2011). At each 

site, 10 IERBs were buried at 5 cm depth at the beginning of the growing season and collected 

at the end of August. The NH4
+ and NO3

- were extracted from the resin bags with NaCl and 

measured colorimetrically with a SmartChem autoanalyzer. Total availability of N was 

calculated from the sum of NH4
+ and NO3

- concentrations standardized by the number of days 

the IERBs had been deployed in the different sites (Giblin and others, 1994). Two extremely 

high values for available nitrogen (1059.67 and 487.78 mg g-1 N) at ALP3 were considered 

outliers and excluded from the analysis. 
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Vegetation characteristics 

Plant diversity was quantified for each site by recording all vascular plant species in five 

vegetation plots (25 x 25 cm) and estimating the percentage of cover by eye at peak growing 

season in 2015 and 2016. The Shannon diversity index of the individual plots was calculated 

for each individual plot in the separate years and averaged to get a mean diversity index per 

site.  

Carbon (C) and nitrogen (N) concentrations of living aboveground vegetation were 

determined from pooled samples based on three circular plots of 5 cm diameter harvested 

from five locations within each site at peak growing season in 2011 (Fariñas, 2011). The 

samples were dried (24h at 70°C), ground in a Wiley Mill (Thomas Scientific, Swedesboro, 

U.S.A) and analyzed using a Costech ECS 4010 elemental analyzer (Costech Analytical, 

Valencia, CA).  

Litter quality for each site was determined from dead leaves that easily detached from 

live graminoids representative of the vegetation community collected along a transect within 

the fenced experimental site. The litter was collected in August/September 2013 for alpine 

sites and after snowmelt in May/June 2014 for sub-alpine and boreal sites, as litter could not 

be collected in the autumn because snowfall started earlier than the die-off of graminoids.  

As we assume that very little decomposition occurs during winter we expect the litter 

collected after snowmelt to be representative of the litter quality entering the soil in summer at 

these sites. The litter was washed in deionized water to clean it of any soil particles, air dried 

at room temperature for at least seven days and subsequently stored in a well-ventilated room 

until processing. For each site two litter samples of 10 g were ground in a cyclone mill 

(TWISTER, Retsch GmbH, Haan, Germany). For each sample, two 5 mg subsamples were 

analyzed for C and N using a Vario MICRO cube elemental analyzer.  
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Litter decomposition measurements 

Decomposition parameters were quantified for all 12 sites using the Teabag Index (TBI) 

(Keuskamp et al. 2013) for the summers of 2014, 2015 and 2016. For each site and year, air-

dried, weighed Lipton green tea and Lipton rooibos tea‒bags with a nylon mesh were buried 

directly after snowmelt and collected after an in situ incubation period of 60-98 days, 

depending on the duration of the snow‒free season (see Table S3). At each site, 10 replicates 

of each tea were buried pair-wise, 8 cm below ground and with at least 10 cm between the 

two tea types. For two sites, the number of replicate tea bag pairs was higher in 2015 (12 

replicates in ALP3 and 16 replicates at ALP2). After collection, adhering soil particles and 

roots were removed and the tea‒bags were dried (48h at 60°C) and weighed. Three additional 

tea‒bags of each type of tea were not buried but handled and dried the same way as the 

experimental tea‒bags to allow correction for weight loss during transport and drying. 

The TBI uses two types ‒green tea and rooibos tea‒ with contrasting decomposability, 

i.e. different labile and recalcitrant fractions, to determine two parameters of the 

decomposition process: decomposition rate k and stabilization factor S. Some of the labile 

compounds of litter stabilize and become recalcitrant in late stages of the decomposition 

process depending on environmental factors. The retardation of decomposition may be so 

strong that decomposition reaches a limit value where total mass loss of litter virtually stops 

and at which point it becomes soil organic matter (SOM) (Berg and Meentemeyer, 2002). 

Green tea decomposes quickly in comparison to rooibos tea and reaches its decomposition 

limit, while rooibos tea is still in its early stages of decomposition where labile material is still 

being decomposed. The difference between these litter types allows for an estimation of the 

decomposable fraction from green tea (ag) and the decomposition rate constant k from rooibos 

tea at a single point in time.  
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The TBI assumes that during short field incubations, the weight loss of the recalcitrant 

fraction is negligible. Consequently, the decomposition curve can be modeled using a 

standard decay curve: 

.�	� � /(012 � �� 3 /� eqn. 1 

where W is the fraction of labile material remaining after time interval t, a is the labile 

fraction that decreases with decomposition rate k, and 1 ‒ a is the recalcitrant fraction of the 

litter for which we assume that the decomposition rate is negligible (i.e. e-kt is close to 1).  

The TBI also assumes that incubation periods of about 90 days are long enough for 

green tea to reach the second phase of decomposition, where the remaining material will only 

decompose over very long time scales. This is represented by the deviation of the actual 

decomposed fraction a from the hydrolysable (i.e. chemically labile) fraction H and can be 

interpreted as the inhibiting effect of environmental conditions on the decomposition of the 

labile fraction, i.e. the stabilization factor (S). One can calculate the fraction of the labile 

component of green tea that did not decompose, but stabilized: 

4 � � 3
56

76
  eqn.2 

were ag is the fraction of green tea remaining and Hg = 0.842  is the hydrolysable fraction of 

green tea (Keuskamp and others, 2013). Assuming that for the labile fraction of rooibos tea, 

the same proportion will be stabilized, one can predict how much material of rooibos tea (ar) 

will remain in the second phase: 

/8 � 98�� 3 :�  eqn.3 

By substituting ar in equation 1, and using the weight loss observed in rooibos tea, one can 

obtain the initial decomposition rate of the labile fraction of tea. 

From the 736 tea‒bags buried,25 were not retrieved (12 green tea, 13 rooibos tea) and 24 

were badly damaged (10 green tea, 14 rooibos tea) and were therefore excluded from analysis. 

To reduce the number of data points lost because of damaged tea bags, we calculated the 
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mean S per site for each year and used these mean values to predict /8 for the calculation of k. 

After this, we had 21 missing values for S and 23 for k. 

 

Data analysis 

To determine the effect of short-term annual climate variability on the decomposition 

parameters k and S we constructed a mixed effects model, where we included year as a fixed 

factor and site as a random factor, using lmer in the R package lme4 (Bates and others, 2011). 

To assess the effect of temporal and spatial climate variability on k and S, we used variance 

decomposition to quantify how much of the total variation in k and S is explained by year and 

site, respectively. To determine the effect of temperature and precipitation on k and S, we 

used linear regression on the complete dataset and for the separate temperature and 

precipitation levels. Environmental variables (pH, available nitrogen, soil C:N, plant C:N, 

litter C:N, plant diversity) were analyzed for differences between temperature- and 

precipitation levels using two-way ANOVA, and for significant results (P < 0.05) pairwise T-

tests were performed to compare the different temperature- or precipitation levels to each 

other (P < 0.05). Collinearity between environmental variables was evaluated using Pearson’s 

correlations. We used multiple linear regression models to assess the relationship between k 

and S and the climatic and environmental predictor variables (temperature, precipitation, 

temperature level, precipitation level, pH, available nitrogen, plant C:N, soil C:N, litter C:N, 

plant diversity). Average values for k and S were calculated for each site in each year prior to 

model construction. Models selection followed a backward selection procedure using the R 

package: drop1 (Chambers J. M. and J., 1992). Based on Akaike’s information criterion (AIC) 

scores, we only selected models of greater complexity when inclusion of an additional model 

parameter reduced AIC by more than 2 (Burnham and Anderson, 2002). Variance 

decomposition was used to determine how much of the variation in k and S was explained by 
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each variable in the various models. All data analyses were performed in R version 3.4.0 (R 

Core Team, 2017).  

 

Results 

Annual climate variability  

Summer climate during the incubation period of the tea‒bags, which commenced shortly after 

snowmelt at each site, varied between the three growing seasons of this study (Figure 2a-f, 

Table S2). The year 2014 was relatively warm and dry, 2015 was a relatively cold, and 2016 

had more precipitation. In 2014, temperature was on average 3.11°C and 1.84°C warmer 

across the grid compared to 2015 and 2016, respectively. Temperature decreased across 

biogeographic zones, boreal > sub-alpine > alpine and this was consistent across the various 

years (Figure 2a-c,Table S2). Total amount of precipitation was on average 39% and 33% 

higher in 2016 compared to 2014 and 2015, respectively, although not all sites received more 

precipitation and the magnitude of the precipitation difference varied between sites (Figure 

2b, Table S2). Observed precipitation showed some inconsistencies relative to the original 

set-up of climatic levels within the climate grid (based on climate data of NMI over 30-year 

normal period).  

  

Environmental characteristics of sites 

Soil pH was higher in sites with a colder alpine climate and sites at the high end of the 

precipitation gradient (F2,48 = 61.29, P < 0.001 and F3,48 = 5.25, P < 0.01 respectively) and 

showed a positive correlation with both soil available N and soil C:N ratio (Pearson’s ρ = 

0.56, P < 0.001 and ρ = 0.64, P < 0.001 respectively). Soil C:N also increased along the 

temperature and precipitation gradients of the grid, being significantly higher in alpine sites 

and sites with high precipitation (F2,48 =6.47, P < 0.05 and F3,48 = 18.45, P < 0.001 
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respectively). Plant C:N and litter C:N were higher at sites on the high end of the precipitation 

gradient (F3,48 = 15.45, P < 0.001 and F3,24 = 137.66, P < 0.001 respectively). Plant diversity 

increased towards colder sites, with plant diversity being significantly higher in alpine sites 

than in boreal and subalpine sites (F2,48 = 21.87, P < 0.001; Table 1). 

 

Short-term and long-term climate controls on litter decomposition processes 

There was a clear difference between decomposition of the two tea types after incubation 

time, as relative mass remaining ranged from 0.19 – 0.59 (g g-1) for green tea and 0.62 – 0.88 

(g g-1) for rooibos tea. The highest values for relative mass remaining of green tea 

corresponded with the shortest incubation times (60 days, n=8). This shows that our data are 

generally within the range of Keuskamp and others (2013) and that the assumptions made by 

the TBI can be applied to our dataset, as rooibos tea remained in the first phase of 

decomposition and green tea has generally entered the second phase of decomposition.   

There was no overall relationship between k and temperature when data from all sites 

across the three incubation periods were combined into one regression model (Figure 3a). 

However, short-term annual variation in climate had a significantly so effect on k (χ2(2) = 

33.47, P < 0.001). On average, k was 12.1% and 15.6% higher for 2014, a warm and 

relatively dry year, than for 2015 and 2016, respectively (Figure S2a). This temporal pattern is 

illustrated within each of the temperature levels within the grid, where k consistently 

increased with temperature, although not significantly in the alpine (alpine: R2 = 0.003, P = 

0.07, sub-alpine: R2 = 0.05, P < 0.05, boreal: R2 = 0.08, P < 0.01; Figure 3a, Table S4). 

Furthermore, k decreased with increasing precipitation (Figure 3b, Table S4), both for the 

complete dataset (R2 = 0.07, P < 0.001) and within each temperature level of the climate grid 

(alpine: R2 = 0.12, P < 0.001, sub-alpine: R2 = 0.13, P < 0.001, boreal: R2 = 0.07, P < 0.01). 

The precipitation gradients within the grid had no distinguishable effect on decomposition 
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rate either in relation to annual temperature variability or annual precipitation variability 

(Table S4). 

 Short-term annual climate variability only explained 22% of the variance in mean k, 

while long-term climate variability (temperature- and precipitation gradients) explained 44% 

(Table 2). A model combining both long-term and short-term annual climate variability 

improved the proportion of variance explained to 72%. The variance explained by long-term 

climate variability can be mediated by a number of local environmental characteristics of the 

sites, namely: pH, soil C:N and plant diversity. While none of the environmental factors 

showed any significant relation with k across the grid or along climatic gradients except for a 

decrease in k with increasing plant diversity within the sub-alpine sites (R2 =  0.32, P < 0.05), 

the selected model contained a number of environmental variables. This model explained 66% 

of the variation in k and included the predictors temperature (1.3% explained variation), 

precipitation (20.3%), plant diversity (22.3%), pH (14.3%) and soil C:N (7.7%) and showed 

no bias towards any climatic level (Figure S3a).   

Short-term annual variation in climate had a significant effect on S (χ2(2) = 28.62, P < 

0.001). On average, S was 8.3% and 17.1% higher for 2014, a warm and relatively dry year, 

compared to 2015 and 2016, respectively (Figure S2b). Stabilization factor S was negatively 

related to temperature for the complete dataset (R2=0.03, P < 0.001) as it decreased along the 

temperature gradient within the grid (Figure 3c). However, within the different temperature 

levels of the grid S increased in warmer years (Figure 3c and Table S4), although not 

significantly for alpine sites (alpine: R2 = 0.001, P = 0.6, sub-alpine: R2 = 0.07, P < 0.01, 

boreal: R2 = 0.15, P < 0.001). Increased precipitation had a negative effect on S for the 

complete dataset (R2 = 0.15, P < 0.001), which was consistent within the different temperature 

levels of the grid except for boreal sites (alpine: R2 = 0.44, P < 0.001, sub-alpine: R2 = 0.08, P 

< 0.01, boreal: R2 = 0.02, P = 0.13; Figure 3d). Increased temperature had a stronger effect on 
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S in sites at higher temperature levels of the grid, while the effect of increased precipitation 

weakened towards warmer sites (Figure3cd, Table S4). Within the precipitation levels of the 

grid, temperature did not have a significant effect on S, while increased summer precipitation 

significantly affected S across all precipitation levels, except for precipitation level 2 (Table 

S4). The precipitation gradients within the grid had no distinguishable effect on the 

stabilization factor in relation to annual temperature variability, but showed a consistent 

pattern with increased summer precipitation, except for precipitation level 2 (Table S4). 

Short-term annual climate variability only explained 33% of the variation in S, while 

long-term climate (temperature- and precipitation gradients) explained more than half (54%) 

of the variation (Table 2). Combining climate gradients and short-term annual climate 

variability in one model improved the percentage of variance explained to 78%. Litter C:N 

was the only significant environmental variable and improved the model by reducing 

complexity as it substituted the precipitation gradient (Table 2). Stabilization tends to increase 

with higher litter C:N across the grid, however not significantly. Although litter C:N ratio 

does not have a significant relationship with S, the selected model that incorporated litter C:N 

as a predictor explained the variation in S quite well and shows no bias towards any climatic 

levels (Figure S3b). The best model for S explained 65% of the variation and included 

temperature (7%), precipitation (20.2%) and their interaction (10.1%), temperature levels 

(19.6%) and litter C:N (8.3%). 

 

Discussion 

The selected models explained the variation in decomposition rate and stabilization factor 

relatively well ‒ 72% and 65% of the variation, respectively, and included factors 

representing short-term annual variability in climate as well as factors representing long-term 



18 
 

effects of climate. Long-term climate, represented by the climatic gradients within the grid or 

environmental factors reflecting long-term climate regimes, explained a large part of the 

variation in both litter decomposition rate and in litter stabilization: 44% and 28%, 

respectively. Short-term annual variation in summer precipitation was another major driver 

and explained about 20% of the variation for both litter decomposition and litter stabilization, 

while short-term annual variation in summer temperature only had a minor influence on 

decomposition processes.  

We observed an increase in decomposition rate of the labile fraction with increased 

summer temperature within each temperature level in the climate grid. The enhanced 

decomposition with increased temperatures is in accordance with our expectations, and is in 

line with results from experimental warming studies in cold biomes (Aerts, 2006) and a study 

using the TBI along an elevational gradient (Didion and others, 2016). However, factors 

related to long-term climate differences between sites appear to be such strong modulators 

that this temperature effect was not visible across the grid (Figure 3a, Table S4). The selected 

model for k supports the proposition that long-term climate shapes environmental conditions 

that modulate k, most likely through differences in soil pH, soil C:N and plant diversity that 

together explained almost 45% of the variation in decomposition rate. Soil pH and plant 

diversity varied significantly along the temperature gradient, and soil C:N varied significantly 

along both temperature and precipitation gradients. Soil pH, soil C:N and plant diversity have 

been shown to influence soil microbial community composition both directly and indirectly 

(Zak and others, 2003; Rousk and others, 2010; Wan and others, 2015). We speculate that 

differences in decomposition rate across the grid could be partly traced back to differences in 

microbial community composition between sites. In our study sites, soil pH is a strong 

determinant of microbial community composition between alpine and sub-alpine sites (Guittar 
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and others, unpublished results), which matches the differences observed between climatic 

regimes. 

In a year of increased precipitation, initial decomposition rates of the labile fraction 

slowed down across the whole grid and was consistent within each temperature level (Figure 

3b). Although the direction of the change is in contrast with our expectations, this shows that 

short-term variation in precipitation affects decomposition in the same way across sites in 

different climatic regimes. This implies that temperature-limited sites have the same 

sensitivity to short-term variation in precipitation as warmer sites. In other regional and global 

cross-biome studies (using a one-phase model) decomposition rate is usually positively 

correlated with mean annual precipitation (Epstein and others, 2002; Zhang and others, 2008; 

Portillo-Estrada and others, 2016), although a few studies that use a two phased TBI 

decomposition model show a decrease in decomposition with increased mean annual 

precipitation or increasing soil moisture (Didion and others, 2016; Sarneel and Veen, 2017). 

Besides differences in model assumptions, a possible explanation for the negative effect of 

precipitation on decomposition rate could be that, in our relatively moist study region, high 

amounts of precipitation induce oxygen limitation to microbial communities and therefore 

limit decomposition rates (Schuur, 2001), but not the degree to which material is broken 

down. Soil respiration, which reflects decomposition, has also been found to be very low 

under conditions with very high soil moisture content (Suh and others, 2009).  

We found that stabilization of labile material is also modulated by long-term climate, as S 

decreases along the temperature gradient within the grid (Figure 3c, Table S4). This is in 

accordance with another study that found the size of the recalcitrant fraction of standard plant 

material to increase with elevation (Coûteaux and others, 2002). However, within each 

temperature level of the grid, and in particular in the boreal and sub-alpine sites, we found 

that short-term temperature variation has the opposite effect on stabilization as S increased 
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with higher summer temperatures (Figure 3c, Table S4). This indicates that long-term climate 

is an important modulator for stabilization of labile material through shaping environmental 

conditions, but that short-term increases in temperature can have a significant and opposite 

effect on this stabilization. Increased temperatures could lead to smaller amounts of labile 

litter being stabilized and turned into SOM in the long-term, even if short-term results indicate 

the opposite.  

Higher amounts of precipitation showed varied effects on litter stabilization along the 

temperature gradient within the grid, but were relatively consistent along the precipitation 

gradient (Table S4). In contrast to our expectations, the colder sites were more sensitive to 

short-term variation in precipitation compared to the warmer (boreal) sites. In alpine and sub-

alpine sites, increased precipitation decreased stabilization and SOM production while in 

boreal sites it had no effect (Figure 3d, Table S4). This again shows that tne long-term climate 

regime played an important role in modulating stabilization. The temperature gradient 

explained about 20% of the variation in S, but this variation could not be attributed to any of 

the measured environmental characteristics. The only environmental variable that was 

included in the model that best explained S was litter C:N, but this explained only a relatively 

minor proportion of the variation (8.3%). Organic matter can be stabilized in various ways: by 

physical stabilization through micro-aggregation, chemical stabilization through intimate 

association with silt and clay particles and biochemically through formation of recalcitrant 

SOM compounds (Six and others, 2002). It is therefore possible that other environmental 

factors, such as soil structure or soil clay and silt content, could explain the difference in 

stabilization to changes in summer precipitation along the temperature gradient. 

Overall, there was a very clear difference between the effects of short-term variation in 

climate (i.e., between growing season) and long-term effects of the different climate regimes 

characterizing the different sites (i.e., climatic gradients). We expected decomposition 
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processes in cold locations to be most sensitive to temperature, and decomposition processes 

in warm locations to be more sensitive to precipitation. Instead, we see that k and S showed a 

stronger response to short-term variation in temperature in warmer sites and that short-term 

variation in precipitation had a greater effect on S in colder sites. The decomposition rate of 

the labile fraction was enhanced by increased summer temperatures within each temperature 

level, though across the grid this relationship with temperature was not found. On the other 

hand, high precipitation had a consistent inhibiting effect on decomposition as it lowered the 

decomposition rate across the grid and within each temperature level. On the other hand, more 

stabilization of labile material occurred with increased annual temperatures within most 

temperature levels, while a decrease in stabilization was found across the different long-term 

climatic regimes. Further, stabilization of labile material was more sensitive to short-term 

variation in precipitation in colder sites compared to warmer (boreal) sites. Increased 

temperatures would thus stimulate decomposition, but at the same time, would also lead to 

more stabilization and transformation to SOM, while increased precipitation limits 

decomposition but also decreases stabilization of litter and transformation to SOM. These 

results imply that, over the short-term, increases in temperature and precipitation could offset 

one another in terms of effects on decomposition processes, as climate change is expected to 

both increase temperature and precipitation in northern ecosystems. However, short-term 

effects within a particular climatic regime are not necessarily predictive of the long-term 

outcome after the ecosystem has adapted to a new climate. 

 

Conclusions 

We studied the short-term, direct (i.e., annual variation in temperature and precipitation) and 

long-term, indirect (i.e., climatic regime of different sites) effects of climate on two phases of 

the decomposition process; decomposition rate (k) and stabilization factor (S) using the 
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Teabag Index (TBI) in three consecutive growing seasons in a climate grid combining both 

temperature and precipitation gradients. We found that the response of the initial 

decomposition rate of labile litter to annual increases in temperature is rather consistent within 

climate regimes but not across different climate regimes, while annual increases in 

precipitation had a consistent negative effect both within and across climatic regimes. 

Stabilization of the labile litter fraction increased with higher annual temperatures within 

climatic regimes, while stabilization decreased from sites experiencing colder climate regimes 

to warmer climate regimes. In addition, stabilization was more sensitive to short-term 

variation in precipitation in sites with colder climatic regimes compared to warmer sites. 

Short-term effects of temperature and precipitation within a particular climatic regime showed 

discrepancy with long-term climate and will therefore not necessarily reflect changes due to 

climate change on the long-term. Environmental characteristics of the sites related to long-

term climate (e.g. soil properties and plant diversity) played a significant role in regulating 

decomposition processes. This supports the statement that multiple factors regulate litter 

decomposition but that they change in predominance as the values of regulatory factors also 

change (Bradford and others, 2016). Our findings  highlight the importance of long-term 

climate in shaping environmental conditions that influence the response of decomposition 

processes to climate change. 
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Figure 1. Location of the study sites along the temperature and precipitation gradients in southern 
Norway. The summer temperature range, alpine ≈ 6.5°C, sub-alpine ≈ 8.5°C and boreal ≈ 10.5°C, is 
indicated by the different colors. The levels of annual precipitation, 1 ≈ 600 mm, 2 ≈ 1200 mm, 3 ≈ 
2000 mm and 4 ≈ 2700 mm, are indicated with the different shapes, 1 (�), 2 (�), 3 (�) and 4 (�). 
Color-coding and symbols presented in this figure will be consistent throughout the manuscript.  
  



Table 1. Mean ± S.D. of environmental variables for the alpine, sub-alpine and boreal sites along 
precipitation gradients (low [1] to high [4]) in southern Norway. For information on the significances 
of differences in environmental variables between temperature- and precipitation levels, see text.  

             Site Soil pH Available N  

(mg g-1 m-2 day-1) 

Soil C:N Plant C:N Litter C:N Plant diversity 

(Shannon’s H) 

Bo
re

al
 

BOR1 5.2±0.1 114.5±44.4 11.6±0.5 23.9±2.2 37.7±1.4 2.39±0.16 

BOR2 5.2±0.1 108.8±23.1 11.8±0.7 27.6±1.6 30.3±1.0 2.00±0.36 

BOR3 5.2±0.1 68.1±20.0 13.0±1.4 27.6±3.7 42.4±1.1 2.17±0.30 

BOR4 5.3±0.1 58.7±19.3 13.4±0.3 28.5±4.3 41.8±2.0 1.50±0.28 

Su
b-

al
pi

ne
 

SUB1 5.5±0.1 116.3±57.0 13.1±1.6 19.4±0.8 36.7±0.8 2.01±0.1 

SUB2 5.1±0.1 77.7±15.6 11.6±0.3 28.5±3.3 34.6±1.0 2.21±0.22 

SUB3 5.6±0.3 150.1±92.8 14.6±1.1 31.2±5.4 47.9±1.4 2.20±0.38 

SUB4 5.7±0.2 162.1±95.3 14.0±0.9 27.8±2.2 53.9±2.2 2.86±0.15 

Al
pi

ne
 

ALP1 5.7±0.2 181.6±161.0 12.8±0.8 24.6±3.3 25.2±0.4 2.57±0.30 

ALP2 6.0±0.1 175.7±84.8 12.9±0.6 21.9±2.4 42.1±1.5 2.53±0.43 

ALP3 6.1±0.2 140.1±94.3 13.5±1.3 31.7±3.9 49.3±2.2 2.50±0.33 

ALP4 6.0±0.4 70.7±16.2 14.8±1.6 27.5±1.3 31.8±0.2 2.51±0.19 

 

  



Table 2. Multiple regression models relating site averaged decomposition rate k (n = 36) and 
stabilization factor S (n = 36) to climatic and environmental variables. Climatic and environmental 
variables included in the models represent: temperature level (TL), precipitation level (PL), mean air 
temperature (t), total precipitation (p), pH, soil C:N ratio (Soil C:N), Litter C:N ratio (Litter C:N) and 
plant diversity (Pdiv). Significance of models are shown, with */**/*** indicating p < 0.05, p < 0.01 
and p < 0.001 respectively.  

Decomposition proxy Model Adj R2 AIC Var. expl. (%) 

Decomposition rate k t + p   0.17* -465.82 22% 

 TL   x PL 0.18 -459.67 44% 

 t + p  + TL x PL 0.55** -480.59 72% 

 t + p  + pH + Pdiv + Soil C:N 0.60*** -489.83 66% 

     

Stabilisation factor S t + p   0.27** -209.35 33% 

 TL   x PL 0.33* -206.75 54% 

 t x p  + TL x PL 0.63*** -226.45 78% 

 t x p  + TL + Litter C:N 0.58*** -226.69 65% 

     

 

 

  



Figure 2. Mean temperature (a-c), total precipitation (d-f), mean k ± S.E. (g-h) and mean S ± S.E (j-k). 
for the different precipitation levels, 1 ≈ 600 mm (�), 2 ≈ 1200 mm (�), 3 ≈ 2000 mm (�) and 4 ≈ 
2700 mm (�), within each temperature level, alpine ≈ 6.5°C (blue), sub-alpine ≈ 8.5°C (green) and 
boreal ≈ 10.5°C (red).  



 

 

Figure 3. Decomposition rate k in relation to temperature (a) and precipitation (b), and stabilization 
factor S in relation to temperature (c) and precipitation (d). Colors correspond to temperature level; 
alpine ≈ 6.5°C (blue), sub-alpine ≈ 8.5°C (green) and boreal ≈ 10.5°C (red). Different symbols 
correspond to precipitation level 1 ≈ 600 mm (�), 2 ≈ 1200 mm (�), 3 ≈ 2000 mm (�) and 4 ≈ 2700 
mm (�). Colored lines indicate relation between k or S and the climatic variable for the particular 
temperature levels, while grey lines show the relationship between k or S and the climatic variable 
across the entire grid. Solid lines indicate significant relationships while dashed lines indicate non-
significant relationships.  

 



 

 

 



Supplementary data 

Supplementary table 1. Geographic and climatic information of the 12 field sites. The table includes 
site codes, biogeographic zones and sections, site names, longitudes and latitudes in decimal degrees, 
elevation in metres above sea level, precipitation in millimeters per year and growing season 
temperature measured as the mean air temperature of the four warmest months (June-September) for 
the period 1961-1990. 

Site Biogeogr. zones Longitude 

(°E) 

Latitude 

(°N) 

 Elevation 

(m. a. s. l) 

Precipitation 

(mm) 

   Temperature 

      (°C) 

 

ALP1 Alpine 8.12343 61.0243  1208 596 6.17 

ALP2 Alpine 7.27596 60.8231  1097 1321 6.45 

ALP3 Alpine 7.17561 60.8328  1213 1925 5.87 

ALP4 Alpine 6.41504 60.9335  1088 2725 6.58 
  

   
   

SUB1 Sub-alpine 8.70466 60.8203  815 789 9.14 

SUB2 Sub-alpine 7.17666 60.8760  700 1356 9.17 

SUB3 Sub-alpine 6.63028 61.0866  769 1848 8.77 

SUB4 Sub-alpine 6.51468 60.5445  797 3029 8.67 
  

   
   

BOR1 North-Boreal 9.07876 61.0355  589 600 10.30 

BOR2 North-Boreal 7.16982 60.8803  474 1161 10.55 

BOR3 North-Boreal 6.33738 60.6652  431 2044 10.60 

BOR4 North-Boreal 5.96487 60.6901  346 2923 10.78 

 

 

 

  



Supplementary Table 2. Mean air temperature (°C) and maximal total precipitation (mm) during 
incubation period of tea bags (± 3 months in summer season) for the various years, and average air 
temperature (°C) and total precipitation (mm) across the whole climate grid during incubation periods 
for the various years.  

Site 
2014 2015 2016 

Temperature Precipitation Temperature Precipitation Temperature Precipitation 

bo
re

al
 

BOR1 13.62 238.0 10.54 290.4 12.44 230.2 

BOR2 14.08 214.4 10.86 210.1 12.04 302.2 

BOR3 13.94 367.5 10.89 503.0 12.35 579.9 

BOR4 13.74 407.9 10.74 593.0 12.13 872.9 

su
b-

 

SUB1 11.59 351.1 8.84 440.2 10.51 320.9 

SUB2 12.72 245.6 9.61 244.1 10.65 341.4 

SUB3 12.62 220.2 9.39 251.3 10.51 356.4 

SUB4 12.05 311.8 9.02 397.9 10.04 537.2 

al
pi

ne
 

ALP1 9.45 256.3 6.47 270.8 7.51 333.0 

ALP2 10.31 270.3 7.57 220.8 8.14 547.9 

ALP3 9.66 376.4 6.73 384.3 7.54 730.7 

ALP4 10.13 410.7 7.18  360.8 8.01  970.6 

 Average 11.99 ± 1.67a 305.6 ± 71.0A 8.88 ± 1.59b 338.3 ± 120.5AB 10.15 ± 1.84b 502.6 ± 239.3B 

a,b/A,B Different letters identify difference in mean temperature (small letters) or total precipitation 
(capitol letters) between years according to Tukey's honestly significant difference (HSD) post 
hoc test, (p<0.05). 
 

 

  



Supplementary table 3. Burial and collection dates of the tea bags for the different years.  

 2014 2015 2016 

Site Burial Collection Burial Collection Burial Collection 

BOR1 19.06.2014 06.09.2014 10.07.2015 09.10.2015 18.05.2016/07.06.2016 24.08.2016 

BOR2 17.06.2014 11.09.2014 11.07.2015 07.10.2015 19.05.2016/06.06.2016 24.08.2016 

BOR3 16.06.2014 08.09.2014 16.07.2015 11.10.2015 23.05.2016 25.08.2016 

BOR4 16.06.2014 08.09.2014 20.07.2015 12.10.2015 23.05.2016 25.08.2016 

SUB1 19.06.2014 12.09.2014 09.07.2015 08.10.2015 18.05.2016/06.06.2016 24.08.2016 

SUB2 17.06.2014 11.09.2014 11.07.2015 06.10.2015 19.05.2016/06.06.2016 24.08.2016 

SUB3 17.06.2014 07.09.2014 15.07.2015 10.10.2015 24.05.2016 29.08.2016 

SUB4 16.06.2014 08.09.2014 15.07.2015 11.10.2015 24.05.2016 30.08.2016 

ALP1 18.06.2014 12.09.2014 16.07.2015 08.10.2015 30.06.2016 05.10.2016 

ALP2 18.06.2014 11.09.2014 21.07.2015/07.08.2015 06.10.2016 29.06.2016 04.10.2016 

ALP3 18.06.2014 11.09.2014 13.07.2015 05.10.2015 29.06.2016 04.10.2016 

ALP4 17.06.2014 08.09.2014 06.08.2015 10.10.2015 30.06.2016 03.10.2016 

 

  



Supplementary table 4. Results of linear regression for decomposition characteristics k and S with 
annual variability in temperature and precipitation across the entire grid (ALL) and for separate 
climate levels in the grid.  

Variable Data Formula n Multiple R2 p 
k Temperature:     
 ALL 1.015x10-2 + 5.62x10-5 t 345 0.002 0.42 
 ALP 0.0084 + 0.00035 t 119 0.003 0.07 
 SUB 0.0056 + 0.00044 t 115 0.05 <0.05 
 BOR 0.0026 + 0.00065 t 111 0.08 <0.01 
      
 PL1 1.113x10-2 – 3.33x10-6 t 90 0 1 
 PL2 1.026x10-2 + 1.03x10-4 t 89 0.006 0.47 
 PL3 1. 312x10-2 – 2.57x10-4 t 86 0.04 0.06 
 PL4 0.052x10-2 + 4.67x10-4 t 88 0.13 <0.001 
      
 Precipitation:     
 ALL 1.227x10-2 – 4.0x10-6 p 345 0.07 <0.001 
 ALP 1.306x10-2 – 4.3x10-6 p 119 0.12 <0.001 
 SUB 1.370x10-2 – 1.0x10-6 p 115 0.13 <0.001 
 BOR 1.213x10-2 – 3.7x10-6 p 111 0.07 <0.01 
      
 PL1 1.133x10-2 – 5.55x10-7 p 82 0 0.9 
 PL2 1.148x10-2 – 5.99x10-7 p 89 0 0.8 
 PL3 1.451x10-2 – 9.73x10-6 p 86 0.25 <0.001 
 PL4 1.086x10-2 – 5.62x10-6 p 88 0.02 0.2 
      
S Temperature:     
 ALL 0.319 – 0.007 t 347 0.03 <0.001 
 ALP 0.256 + 0.003 t 121 0.001 =0.6 
 SUB 0.121 + 0.012 t 115 0.07 <0.01 
 BOR -0.028 + 0.019 t 111 0.15 <0.001 
      
 PL1 0.302 – 4.9x10-4 p 83 0.03 0.14 
 PL2 0.591 – 31x10-3 p 88 0.42 <0.001 
 PL3 0.239 + 1.3x10-3 p 90 0.002 0.65 
 PL4 0.145 + 6.0x10-3 p 86 0.02 0.18 
      
 Precipitation:     
 ALL 0.312 – 1.7x10-4 p 347 0.15 <0.001 
 ALP 0.404 – 2.9x10-4 p 121 0.44 <0.001 
 SUB 0.301 – 1.7x10-4 p 115 0.08 <0.01 
 BOR 0.228 – 4.6x10-5 p 111 0.02 0.013 
      
 PL1 0.356 – 3. 4x10-4 p 83 0.11 <0.01 
 PL2 0.248 + 0.8x10-4 p 88 0.007 0.42 
 PL3 0.329 – 1.8x10-4 p 90 0.21 <0.001 
 PL4 0.309 – 1.8x10-4 p 86 0.27 <0.001 

 

  



 

Supplementary figure 1. Temperature data from different sources; Temperature loggers from climate 
stations, Ibutton loggers buried with tea bags in 2014 and gridded data from NMI. 



 
  

 

 

Supplementary figure 2ab. Decomposition rates k (a) and stabilization factor S (b) for the different 
years. The different years are indicated by the different colors, 2014, 2015 and 2016. Boxes show the 
first to third quartile range with median (thick horizontal line). Whiskers indicate the minimum and 
maximum values except where there are extreme values (filled dots), in which case they show 1.5 
times the interquartile range. Significant differences between years (p < 0.05) are indicated with “*”. 
 
  
 

Supplementary figure 3ab. Relation between observed and predicted for decomposition rate k (a) and 
for stabilization factor S (b), where the solid line indicates  the 1:1 relationship. Colors correspond to 
temperature level; Alpine (blue), Sub-alpine (green) and Boreal (red). Different symbols correspond to 
precipitation level1 ≈ 600 mm (�), 2 ≈ 1200 mm (�), 3 ≈ 2000 mm (�) and 4 ≈2700 mm. 
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