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ABSTRACT 
 
Variants in the transcription factor gene HNF1A have been identified in subjects 

with maturity-onset diabetes of the young (MODY) type 3, type 2 diabetes, as well 

as in children with apparent type 1 diabetes. One of the challenges in a clinical 

setting is distinguishing MODY patients from those with type 2 diabetes, as there is 

considerable overlap in terms of clinical features. Mapping HNF1A variants to the 

correct clinical phenotype requires functional characterization of variants effects on 

hepatocyte nuclear factor – 1A (HNF-1A) function. 
 

Large whole-exome sequencing of an Mexican and American Latino population, 

reported in Paper I, identified a low frequency rare variant p.(E508K) in HNF1A 

that confers increased risk for type 2 diabetes up to 5 fold (odds ratio (OR)=5.48; 

P=4.4 x 10-7). Functional investigation of this p.(E508K) HNF-1A protein variant 

demonstrated reduced transactivation activity <50%, low protein level expression 

and slightly impaired nuclear localization. These findings suggest that the 

p.(E508K) HNF1A variant  mediates a mild-loss of function of HNF-1A and 

represents a risk variant for type 2 diabetes in the Mexican and American Latino 

population. 
 

Exome sequencing of HNF1A in 4,115 well-phenotyped individuals from the 

general population (Framingham Heart Study cohort, the Jackson Heart Study 

cohort, and type 2 diabetes case and control patients from the extreme type 2 

diabetes cohort) have previously shown that 1/50 individuals with diabetes harbors 

a missense variant in the HNF1A gene. 27 rare HNF1A missense variants were 

identified. In Paper II we show that after using bioinformatics prediction tools to 

determine predicted pathogenic effect, none of the 27 HNF1A variants that were 

classified as pathogenic were associated with risk for type 2 diabetes in the 

population cohorts (OR=2.02; 95% CI 0.73-5.60; P=0.18). We further evaluated the 

functional consequences of individual variants by their effect on HNF-1A 
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transcriptional activation, DNA binding, and subcellular (cytoplasmic/nuclear) 

localization. Furthermore, association between type 2 diabetes and different 

functional assay models was assessed. A transcriptional activity with a threshold of 

<60% compared to wild-type HNF-1A activity was able to best predict type 2 

diabetes association with carrier type 2 diabetes phenotype (OR=5.04; 95% ; 

P=0.0007), and indicate that 0.44% of the population carry HNF1A variants that 

results in substantially increased risk for developing the disease.  
 

To improve the diagnostic interpretation of the increasing number of HNF1A 

variants identified by next-generation sequencing, there is a future demand for 

robust and reliable high-throughput functional investigations of variant effects on 

normal HNF-1A protein function. In Paper III, we searched systematically for 

endogenous regulated HNF-1A transcripts as possible markers for investigating 

diabetes associated HNF1A variants effects. For this purpose we generated HNF1A- 

free liver specific cell lines (HuH7 and HepB3) by knocking out endogenous 

HNF1A using CRISPR/Cas9, prior to the controlled re-expression (doxycycline 

induced) of wild-type HNF-1A versus HNF-1A variants (MODY3, type 2 diabetes). 

The gene expression profile analyzed by RNA sequencing identified significantly 

differentially expressed genes upon overexpressing HNF-1A, of which the top 20 

upregulated genes were further investigated and many found down-regulated by 

MODY3-causing HNF1A variants. Of these, ABCC2, FABP1 and HABP2 genes in 

HuH7, and HKDC1, HRG and KL genes in Hep3B cell lines, were considered as 

potential targets for future large-scale and high-throughput investigations of 

numerous HNF1A variants.  
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1. INTRODUCTION 
 
1.1  Glucose homeostasis 
 
Glucose is the source of immediate energy for cells within the body. The brain and 

red blood cells are solely dependent upon glucose. The physiological process that 

maintains blood glucose levels in a steady-state is called glucose homeostasis. An 

important contribution to the maintenance of glucose homeostasis is achieved 

through hormone regulation of peripheral glucose uptake, which occurs through 

carbohydrate ingestion and breakdown of endogenous glycogen stores within the 

liver [1]. High levels of glucose trigger insulin secretion from the pancreatic beta-

cells. The major function of insulin is to accelerate glucose transport and uptake in 

muscle and adipose tissues by reducing hepatic glucose output through decreased 

gluconeogenesis and glycogenesis, as well as by reducing glucagon secretion to 

inhibit hyperglycemia. 

 
Between meals, or during sleep, blood glucose levels are normally low. This 

triggers secretion of glucagon from the alpha-cells in the pancreas. Glucagon is the 

main hormone that increases and maintains glucose levels during periods of high 

demand, by increasing glucose output from the liver. It therefore has an opposite 

function compared to insulin function (Figure 1). Thus, to avoid hyperglycemia or 

hypoglycemia, the body maintains blood glucose levels by secretion of the two 

primary hormones; insulin and glucagon, that work in balanced opposition of each 

other [1, 2]. In addition to these hormones, several other hormones are secreted 

from the gastrointestinal tract during digestion and absorption of food. These 

gastrointestinal hormones, which are called incretin hormones, are secreted from 

endocrine cells located within the stomach, small intestine, and large intestine. 

Ingestion of food results in higher levels of insulin secretion, as compared to 

glucose infused intravenously, due to the effect of these incretin hormones. 
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Therefore, incretin hormones also have a role in the regulation of glucose 

homeostasis [3]. 
 

 
 
Figure 1. Regulation and maintenance of blood glucose levels by the hormones 
glucagon and insulin. After a meal, the pancreas secretes insulin as blood glucose levels 
tend increase, and as response, insulin increases glucose uptake in muscle and adipose 
tissues, accelerating glycogenesis. During night, as blood levels tend to decrease, the 
pancreas secretes glucagon, which then increase blood glucose levels triggering 
glycogenolysis from the liver. Figure is adapted and modified from [3]. 
 
1.2  Function of the pancreas 
 
The pancreas is part of the gastrointestinal system and plays a dual role in metabolic 
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homeostasis as well as in the digestion of macronutrients. The human pancreas is a 

hormone gland consisting of exocrine and endocrine tissue. The exocrine tissue 

accounts for >80% of the pancreatic volume with acinar cells and duct cells that 

secrete pancreatic juice, which contains digestive enzymes such as amylase, 

pancreatic lipase, and trypsinogen, into the pancreatic duct. The endocrine tissue, 

represented by less than <2% of total pancreatic volume, releases pancreatic 

hormones in an endocrine manner into the bloodstream. The endocrine cells are 

clustered together and form the Islets of Langerhans. Within these islets, there exist 

five different cell types producing different endocrine hormones: alpha cells [4] 

producing glucagon accounting for ∼15-20% of the total islet cells, beta-cells [4] 

secreting insulin representing ∼ 65-80% of the islet cells, gamma-cells [5] 

producing pancreatic polypeptide (PP) being ∼ 3-5% of the islet cells, delta-cells [4] 

secreting somatostatin, ∼ 3-10% of total islet cells, and finally the epsilon-cells [6] 

producing ghrelin and accounting for <1% of total islet cells. Each of the pancreatic 

hormones has distinct signaling functions and altogether regulates glucose 

homeostasis [4, 7] 
 

1.3  Βeta-cell and glucose-stimulated insulin secretion 

 
Pancreatic endocrine cells secrete hormones in response to external signals such as 

nutrient intake, stress, neural, and/or hormonal release. These signals are transferred 

through intracellular molecular networks and result in the release of hormones, 

known as stimulus-secretion coupling. Glucose is the primary stimulus for insulin 

release from the beta-cells through glucose-stimulated insulin secretion (GSIS). 

Upon blood glucose levels increase, glucose is taken up by the beta-cells, mediated 

by the glucose transporter located on the beta cell plasma membrane, known as the 

GLUT2 (SLC2A2) transporter. Glucose entry is sensed by the metabolic enzyme 

glucokinase (GCK) and is converted to glucose-6-phosphate (G6P) by 
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phosphorylation. G6P then enters the glycolysis cycle, which results in adenosine 

triphosphate (ATP) production and causing an ATP/ADP ratio alteration in the 

beta-cells, and further blockage of the K+-ATP channel in the beta-cell membrane. 

Normally this channel is open in order to ensure maintenance of the membrane 

hyper-polarization by transporting of K+-ions. When the K+-ATP channel is closed, 

there is a subsequent decrease in K+ permeability, which elicits the depolarization of 

the beta-cell membrane and mediate opening of the voltage-dependent-Ca2+-

channel. A subsequent increase in intracellular calcium levels eventually triggers 

exocytosis of insulin-containing beta-cell granules (Figure 2). The insulin secretion 

process is biphasic; starting with an initial rapid phase of insulin secretion, where 

the majority of total insulin is being released, and followed by a slower “second 

phase”, where a less intense and more sustained insulin secretion occurs [3, 8]. 

 

In addition to GSIS, glucose also increases metabolic-cAMP (cyclic adenosine 

monophosphate) levels via metabolic activation of protein kinase A (PKA) within 

the beta-cells, also stimulating insulin secretion. In general, with the exception of 

glucose, there are several other mediators for insulin secretion. Incretins, such as 

glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide (GIP), and 

vasoactive intestinal peptide (VIP), have shown to play significant roles in the 

second phase of insulin secretion. The effect of non-nutrient modulators on insulin 

secretion is through neural stimuli, adrenergic pathways, peptide hormones and 

cationic acids [3, 9]. 
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Figure 2. Glucose stimulated insulin secretion (GSIS) from the beta-cells. A rise in 
blood glucose level drives oxidative phosphorylation and the production of ATP, resulting 
in the closure of K+-ATP channels, plasma membrane depolarization, calcium influx and 
secretion of insulin vesicle by exocytosis. Figure is adapted and modified from [10]. 
 
 
1.4  Impaired glucose homeostasis and diabetes diagnosis  
 
Hyperglycemia is the term for high blood glucose levels and can be the outcome of 

high glucose uptake from food, intravenous infusion, enhanced hepatic and renal 

glucose production, hepatic or peripheral insulin resistance, or due to reduced beta-

cell insulin secretion. Chronic hyperglycemia is a hallmark of diabetes and can lead 

to severe symptoms including polyuria, polydipsia, weight loss, polyphagia and 
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blurred vision. Long-term complications of diabetes can also cause dysfunction of 

kidneys, heart, eyes, nerves, and blood vessels [11].   
 
The world prevalence of diabetes was estimated to 6.4% among those >20 years of 

age (285 million people) in 2010 (Global estimates of the prevalence), and 

predicted to increase to 7.7% (592 million) by 2030 [12, 13]. Diagnosis of diabetes 

is based on plasma glucose criteria, the fasting plasma glucose (FPG) or 2-h plasma 

glucose level, or glycated hemoglobin (HbA1c). According to the world Health 

Organization (WHO) the cutoff for these levels is shown in Table 1 [14, 15]. 

 
Table 1. Criteria for diagnosis of diabetes 
 

 
1. HbA1C ≥6.5% (48 mmol/mol). The test should be performed in a laboratory 

using a method that is National Glycohemoglobin Standardization Program 
certified and standardized to the Diabetes Control and Complications Trial 
Assay*. 

OR 
2. FPG ≥126mg/dL (7.0 mmol/L). Fasting is defined as no caloric intake for at least 

8h*. 
                                                         OR 

3. 2-h plasma glucose ≥200mg/dL (11.1 mmol/L) during an Oral Glucose Tolerance 
Test (OGTT). The test should be performed as described by the World Health 
Organization, using a glucose load containing the equivalent of 75g anhydrous 
glucose dissolved in water*. 
                                                        OR 

4. In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a 
random plasma glucose  ≥200mg/dL (11.1 mmol/L). 

 
* In the absence of unequivocal hyperglycemia, the result should be confirmed by repeat 
testing. 
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1.5  Classification of diabetes  
 

1.5.1  Type 1 diabetes mellitus 

 
Type 1 diabetes (T1D) accounts for 10% of all diabetes cases and was previously 

termed juvenile or insulin-dependent diabetes. T1D is most often diagnosed in 

children and young adults (<35 years old), and is caused by complete absence of 

insulin secretion secondary to autoimmune destruction of pancreatic beta-cells. An 

auto-reactivation of CD4+ and CD8+ T cells, and autoantibody-producing B-

lymphocytes, activates the innate immune system and destroys the insulin 

producing beta-cells. Impaired insulin secretion in T1D patients have shown to be 

detected years before hyperglycemia, while patients with new onset T1D display 

80-90% deficit in beta-cell mass. Long-standing T1D patients have lost close to 

99% of their beta-cells [16, 17]. In addition to loss of beta-cells, beta-cell 

dysfunction also seems to play role in the pathogenesis of T1D since the degree of 

impaired beta-cells exceeds the amount of beta-cell lost.   
 

Most T1D cases are positive for one or more autoimmune markers such as insulin 

autoantibody (IAAs), islet cell antibody (ICAs), glutamic acid decarboxylase 

(GAD), and the zinc transport (ZnT8). These markers are commonly present in 85-

90% of T1D cases and classified as type 1A. The remaining 5% of suspected cases 

that lack these autoimmune markers are classified as type 1B or idiopathic [1]. 

Insulin is the required treatment for T1D, which has dramatically increased the 

quality of life of patients, and has been in clinical practice since the discovery of 

insulin in the early 1920s [18].  
 

1.5.2  T1D and risk genes 
 
T1D is a complex disease and assumed developed by the interaction of both genetic 
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and environmental triggers. The inheritance pattern of T1D is important and several 

lines of evidence indicate the presence of a strong genetic component that causes 

susceptibility to the disease. Although more than 85% of cases do not have a family 

history of the disease, there is a high familial clustering with a prevalence of 6% in 

siblings, compared to lifetime risk of 0.4% in the general population [19]. 

Furthermore, if the child’s mother has diabetes the risk is 1-2%, compared to 3-7% 

if the child’s father has diabetes. Moreover, risk in dizygotic twins is estimated to 6-

10% while 30-50% in monozygotic twins [1].  
 

Genetic studies have thus been able to explain 80% of the genetic architecture of 

T1D [20]. The predominant genetic susceptibility of T1D has been linked to the 

human leukocyte antigen (HLA) (encoding the major histocompatibility complex 

(MHC) proteins) on the short arm of chromosome 6, and accounts for up to 50% of 

genetic risk of T1D. The HLA locus is critical for distinguishing self and non-self 

peptides [1, 21, 22]. Numerous new susceptibility loci have been identified since, 

including the insulin (INS) gene, protein tyrosine phosphatase, cytotoxic T-

lymphocyte-associated protein 4 (CTLA4), non-receptor type 22 (lymphoid) 

(PTPN22), the interleukin 2 receptor, as well as others that have recently been 

discovered from genome wide association studies (GWAS), but none of them are 

associated as strongly as the HLA region [23].  
 

1.5.3  Type 2 diabetes mellitus  
 
Type 2 diabetes (T2D), previously known as insulin-independent diabetes mellitus, 

is the most common form of diabetes and accounts for ∼90% of all cases of 

diabetes. T2D is a complex heterogeneous metabolic disorder, which is 

characterized by hyperglycemia, insulin deficiency and insulin resistance. The 

chronic metabolic imbalance and hyperglycemia effects vasculature and may lead to 

nephropathy causing renal failure, retinopathy causing loss of vision, and 
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complications such as stroke and atherosclerosis. Although T2D occurs mostly in 

adults and the incidences increase with age (>40 years), this trend is currently 

changing and the prevalence of T2D is now increasing in adolescents and even 

children. According to the International Diabetes Federation, around 1 in 11 adults 

aged 20-79 years, equivalent to 415 million, had T2D diabetes globally in 2015 

[24].  
 

T2D has a multifactorial trait where individual risk is defined by a complex 

interaction between genetic and environmental factors. Environmental factors such 

as physical inactivity, obesity and sedentary lifestyle, greatly influence disease 

development. Obesity measured by high body mass index (BMI), is the strongest 

risk factor for diabetes that results in insulin resistance. Incidence varies among 

different geographical regions. Asia shows a rapidly developing T2D epidemic, 

while China and India have the highest global epidemic for T2D. In these two 

countries diabetes is associated with lower BMI and younger age compared to 

Western populations. USA has the third highest diabetes population [24, 25].  

 

1.5.4  T2D and risk genes 
 
T2D is a complex and heritable disease. A genetic component is an important 

contributing factor and estimated to explain 30-70% of T2D risk.  While lifetime 

risk in the general population is ∼7%, risk in offspring with one diabetic parent is 

∼35%, and with two diabetic parents as high as 70%. Among monozygotic twins 

risk for T2D is close to 100%, and thus illustrate the strong inheritable pattern of the 

disease [11, 26]. T2D is a polygenic and heterogeneous disease, where multiple 

genes and different combination of genes play a role in the disease development in 

different individuals. Predicting the exact cause of T2D is challenging due to the 

complexity of genetic architecture of disease, varies in age of onset, low penetrance, 
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and heterogeneity of the disease [27]. During the last decades enormous efforts 

have been made to identify the risk genes through hypothesis-free Genome-wide 

association studies (GWAS) and candidate genes approach. In total, GWAS have 

identified ∼153 variants mapped to >120 loci [28]. Most of these genes play a role 

in beta-cell functions that highlight the theory that genetic factors primarily cause 

beta-cell dysfunction, while insulin resistance mainly result from environmental 

factors [29]. In other words, T2D develops when environmental factors trigger 

insulin resistance in the context of a genetically impaired beta-cell background. 
 
1.5.5  Gestational diabetes mellitus  

 
Gestational diabetes mellitus (GDM) is known as glucose intolerance with onset or 

first occurrence during pregnancy. GDM is a major health problem because of its 

prevalence, complications during pregnancy, and its risk association with T2D later 

in life. It is one of the most common complications of pregnancy and prevalence 

varies in the range of 1-14% depending on ethnicity as well as diagnostic criteria 

[30]. This type of diabetes includes pregnancies where diabetes might exist prior to 

pregnancy, but not recognized, and insulin therapy is needed. Insulin resistance is 

the major physiological alteration during pregnancy, which if accompanied with 

beta-cell dysfunction may lead to GDM. According to the WHO, diagnostic criteria 

includes FPG >126 mg/dL and 75 g-glucose tolerance test >140 mg/dL [30]. The 

pathophysiology of GDM is, however, controversial. Some believe that 

predisposition to T2D is underline of GDM occurring during pregnancy. Others 

suggest that GDM is an outcome of the extreme manifestation of metabolic changes 

during pregnancy.  
 

GDM is a heterogeneous disorder where age, obesity, and genetic background play 

a role in the development of the disease [31]. It has further been estimated that 17-

63% of GDM women have increased risk for developing T2D within 5-16 years 
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after pregnancy [32]. Furthermore, women with GDM can have low insulin 

sensitivity, dyslipidemia, insulin resistance, and high serum level of triacylglycerol. 

In GDM condition, the fetus produces high levels of insulin in exposition to the 

mother’s hyperglycemia. Consequently, the fetus has high risk of developing 

macrosomia, neonatal hypoglycemia, hyperbilirubinemia, and has an increased risk 

of developing diabetes and obesity later in childhood and adulthood [1].  
 

GDM and T2D have similar pathogenesis and as expected they share some common 

genetic risk factors. Several GWAS and meta analysis studies have confirmed that 

multiple genes related to beta-cell function are conserved between GDM and T2D, 

including the TCF7L2, CDKAL1, KCNJ11, GCK, IGF2BP2, KCNQ1 [33], 

CDKN2A/2B, FTO, HHEX, SLC30A8, KCNJ11, PPARG [34] and MTNR1B [33, 

35] genes. 
 
1.5.6  Monogenic forms of diabetes and maturity-onset diabetes of the young   
 
Monogenic diabetes includes all subtypes of diabetes that are caused by a defect in 

single genes and include mitochondrial diabetes, neonatal diabetes and maturity-

onset diabetes. To date, about 30 genes have been identified related to monogenic 

diabetes [36]. The genetic modifications causing monogenic diabetes ultimately 

result in beta-cell dysfunction and diabetes.  
 

The most common form of monogenic diabetes is Maturity-Onset Diabetes of the 

Young (MODY). MODY is not single entity; it is a heterogeneous group of 

monogenic diabetes caused by mutations in different MODY genes, which play 

roles in normal beta-cell development and function [37, 38]. MODY is 

characterized by an autosomal dominant pattern of inheritance, a family history of 

diabetes, early onset usually before age 25, absence of beta-cell autoimmunity, 

measurable C-peptide, and absence of insulin resistance [39]. MODY accounts for 
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∼1-2% of all diabetes cases occurring in children and young adults. Accurate 

prevalence estimation of MODY is difficult due to some overlapping features of 

MODY with T1D or T2D [40]. This can result in misdiagnosis of MODY patients 

and inappropriate treatment. Similarities and differences in subtypes of MODY, 

T1D and T2D are given in Table 2.  
 
Table 2: Clinical and biochemical characteristic features associated with T1D, T2D 
and common subtypes of MODY. 
 

Features T1D T2D MODY1/MODY3 MODY2 

Age of onset 10-40 >35 < 25  < 25 

Diabetic ketoacidosis Common Rare Rare Rare 

Insulin dependent Yes No No No 

Family history <15% >50% in young 
onset 

Usually minimum 
three generations 

affected 

Usually minimum 
three generations 

affected 

Obesity Uncommon Common Uncommon Uncommon 

Insulin resistance Uncommon Common Uncommon Uncommon 

Pancreatic auto-
antibody Positive Negative Rare Rare 

C-peptide level Low Normal/high Normal Normal 

First line treatment Insulin Metformin Sulfonylurea None 

 

1.6  MODY genes and subtypes 

 
To date, Online Mendelian Inheritance in Man (OMIM) lists mutations in 13 

different genes as cause of MODY (MODY1-MODY13). These genes include the 

hepatocyte nuclear factor 4-α (HNF4A, MODY1) [41], glucokinase (GCK, 

MODY2) [42], hepatocyte nuclear factor 1-α (HNF1A, MODY3) [43], pancreatic 

and duodenal homeobox 1 (PDX1, MODY4) [44], hepatocyte nuclear factor 1-β 

(HNF1β, MODY5) [45], neurogenic differentiation 1 (NEUROD1, MODY6)[46], 

kruppel-like factor 11 (KLF11, MODY7) [47], bile salt dependent lipase (BSDL), 
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also known as carboxyl ester lipase (CEL, MODY8) [48], paired box gene 4 (PAX4, 

MODY9) [49], insulin (INS, MODY10) [50], B lymphocyte kinase (BLK, 

MODY11) [51], ATP-binding cassette, subfamily C (ABCC8, MODY12) [52] and 

the potassium channel inwardly rectifying subfamily J (KCNJ11, MODY13)[53]. 

Unknown MODY loci (MODY-X) account for 20-50% of the cases and remain to 

be discovered [54]. Some of these genes are however debated whether they indeed 

are MODY genes, mainly due to being extremely rare and found in few families. 

Mutations in the HNF1A, HNF4A and GCK genes are the most common causes of 

MODY, whereby HNF1A and GCK mutations account for ~70% of all MODY 

causes [39]. 

 

1.6.1 HNF4A-MODY (MODY1)  
 
Heterozygous mutations in HNF4A causing MODY1, is relatively rare and account 

for only 3-5% of MODY causes [55]. HNF4A is located in chromosome 20 and 

encodes for HNF-4A, which is a transcription factor expressed in the liver, 

pancreas, kidney and small intestine. It binds to the DNA of target genes as a 

homodimer and activates transcription of its target genes. HNF-4A is member of 

nuclear receptor superfamily and all members contain a ligand-binding site. HNF-

4A is a member of the orphan family and few specific ligands have been described, 

with the exception of long chain fatty acids, which are known as modulator of 

HNF-4A transcription activity binding to ligand domain of HNF-4A [54, 56] The 

HNF-4A protein consists of several functional domains; an N-terminal 

transactivation domain (AF-1), a DNA binding domain, and C-terminal complex 

that form ligand binding domain, dimerization domain, and transactivation domain. 

The HNF4A gene has two distinct promoters (P1 and P2), The P1 promoter is 

utilized in hepatocytes and P2 in pancreatic beta-cells. Expression through these 

two promoters result in nine isoforms of HNF4A where some isoforms are present 

either in the liver or in the pancreas [57, 58]. The clinical phenotype is in principle 
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indistinguishable from HNF1A-MODY (MODY3). 

 

1.6.2  GCK-MODY (MODY2) 
 
The second most common type of MODY is MODY2, which is caused by 

mutations in the GCK gene. GCK is located on chromosome 7 and encodes for the 

metabolic enzyme glucokinase (GCK), and is expressed mainly in the pancreas, 

liver and brain. Glucokinase converts glucose to G6P; a key and rate–controlling 

step in glucose metabolism. Therefore, GCK acts as a glucose sensor in pancreatic 

beta-cells and controls insulin secretion [10]. In the liver it plays an important role 

in the ability of the organ to store glucose as glycogen. Heterozygous loss-of-

function mutations in GCK result in partial deficiency of the enzyme and are 

associated with MODY2 [42]. Homozygous or compound heterozygous mutations 

of GCK result in complete deficiency of the enzyme and cause severe permanent 

neonatal diabetes [59, 60]. MODY2 is generally asymptomatic with mild 

hyperglycemia, which commonly is diagnosed during routine screening or during 

pregnancy, and typically does not lead to long-term diabetes complications. 

MODY2 cases have the same risk as the general population for developing 

polygenic T2D [39]. Distinguishing MODY2 from other causes of GDM is 

important because it will save patients from unnecessary treatment [61]. In the case 

of MODY2 associated GDM, a mother does not have an increased risk for T2D and 

will not need treatment after pregnancy, since she is not at risk of developing later 

onset diabetes complications [39].  
 

1.6.3  HNF1A-MODY (MODY3) 
 
The hepatocyte nuclear factor 1-α (HNF-1A), known also as HNF1 or TCF1, is a 

transcription factor encoded by the HNF1A gene that is expressed in the liver, 

pancreas, stomach, small intestine and kidney [62-64]. In the pancreas, both 



 28 

endocrine and exocrine cells express HNF1A during development [65]. The HNF1A 

gene is located on the long arm of chromosome 12, and consists of 10 exons, 

encoding the 631 amino acid long HNF-1A protein.  
 

Heterozygous mutations in HNF1A result in the most common cause of MODY 

(MODY3) in most populations [66]. The obvious clinical feature of MODY3 is 

impaired insulin secretion, which result in rapid deterioration of glycemia level by 

age, and requires treatment. According to the Human Gene Mutation Database 

(HGMD), around 500 different diabetes associated mutations in HNF1A have been 

reported [67]. HNF1A mutations present with high penetrance, in which 63% of 

HNF1A mutation carriers develop diabetes before age of 25, 79% before age 35, 

and as many as 96% before age 55 years [39]. Although mutations have been 

identified in all exons of the HNF1A gene, mutations in exons 1 to 6 have been 

reported to give earlier onset compared to mutations in exon 8 to 10 [68].  
 

HNF1A mutations can cause diabetes through haplo-insufficiency or dominant 

negative effect. The level of HNF-1A activity is important for beta-cell function and 

defines the severity of the disease. MODY3 patients have shown to be sensitive to 

the oral hypoglycemic medication, sulfonylurea [55], where some patients have 

demonstrated good glycemic control upon sulfonylurea treatment up to 49 years 

after diagnosis [69]. Therefore, confirming a genetic diagnosis of MODY is 

important, which provides the knowledge to classify the subtype, predict the 

prognosis of the patient, select the precise treatment, and estimate the risk in patient 

relatives [66]. 
Not surprisingly, the clinical implications of MODY3 and MODY1 are similar.  

They both demonstrate mild increase in fasting blood glucose levels in childhood, 

but develop progressive hyperglycemia and finally diabetes in adulthood. Patients 

may also develop diabetes complications such as microangiopathic and 

microvascular complications. Despite the similarities, it is possible to distinguish 
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these two types of MODY by the ability of glucose to stimulate insulin secretion 

through GSIS, since this ability is retained in MODY3 cases while lost in MODY1 

[10]. Also MODY3 patients have higher levels of high-density lipoprotein (HDL) 

concentrations while MODY1 patients present low levels of HDL and triglyceride, 

but high levels of low-density lipoprotein (LDL) [39].  
 

1.7  HNF-1A protein and function 
 

1.7.1  HNF1A transcripts and protein isoforms 
 
Alternative splicing of the HNF1A gene generates three transcripts encoding three 

different protein isoforms (A, B and C) [70]. These isoforms are identical in their 

N-terminal end while differs in their C-terminal. Here, isoform B is truncated at 

exon 6 and isoform C terminates within exon 7. The pattern of isoform expression 

differs during pancreas development. Isoform A is the dominant form in fetal 

pancreas while isoform B is the main isoform in the adult pancreas (55% total 

expression) [70]. In liver tissue, isoform A is the predominant form, comprising 

around 54% of total HNF-1A expression in adult. Transactivation studies indicate 

that all three isoforms of HNF1A are active, however isoform B and C being 5-fold 

more active than isoform A [66, 70]. 
 

The HNF-1A protein further consists of an N-terminal dimerization domain (amino 

acid 1-32), a DNA-binding domain consisting of a POU domain (100-199 amino 

acid) and homeodomain (199-286 amino acid), and a C-terminal transactivation 

domain (287-631 amino acid) [70-72]. An overview of the HNF-1A protein 

functional domains is shown in Figure 3. 
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Figure 3. HNF-1A protein functional domains. Illustration of localization of the 
dimerization, DNA binding, and transactivation domains in HNF-1A. A, B and C; 
representing the putative nuclear localization signals A, B and C identified in HNF-1A. 
ADI, ADII and ADIII; representing the reported most important transactivation regions I, 
II and III within the transactivation domain.   

 

1.7.2  Subcellular localization of HNF-1A 
 
The nucleus is a distinct compartment of the eukaryotic cell, facilitating divers 

cellular processes like gene expression, signaling pathways, and cell cycle 

regulation. It separates the DNA content and transcriptional machinery from protein 

synthesis and metabolic pathways within the cell cytoplasm. The nuclear membrane 

contains large structures known as Nuclear Pore Complexes (NPCs), which allow 

transport of small molecules, <60 kDa in size, while macromolecules are 

transported through an active transport mechanism regulated by the GTPase protein 

(Guanosine triphosphatase), Ran (Ras-related nuclear protein), which switches 

between GDP- and GTP-bound states through its regulation by regulatory proteins 

Ran guanine nucleotide exchange factor (Ran-GEF) and Ran GTPase activation 

protein (Ran-GAP). Ran-GEF is localized in the nucleus and Ran-GAP is localized 

in the cytoplasm; an arrangement which plays a role in determining the direction of 

nuclear transport by creation of a Ran-GDP/ Ran-GTP gradient in 

cytoplasm/nucleus [73].  
 

The main element regulating the nuclear localization of a protein is the Nuclear 

Localization Signal (NLS). The NLS sequence within a target protein designates 

selective transport and accumulation of the protein in the nucleus, through its 
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recognition by an adaptor protein, importin-α, which has a binding motif for the 

importin-β protein. The import mechanism occurs by the target protein (cargo) 

binding an importin-α-β heterodimer complex. The affinity of binding determines 

the efficiency of transport. Generally, the importin-α-β heterodimer complex binds 

to its cargo (target protein) in the cytoplasm, and releases it in the nucleus, through 

a Ran-GTP-induced dissociation [73, 74]. Since HNF-1A is a large protein 

(∼75kDa), it is transported through an active transport- and NLS-mediated 

mechanism. Studies have shown that there exist three regions in the HNF-1A 

protein structure that are similar to NLSs; region A (158-171 amino acid), region B 

(197-205 amino acid) and region C (271-282 amino acid) [75, 76]. Regions B and C 

are mainly involved in nuclear translocation of HNF-1A; in which region B is the 

main essential element whereas region C has significant contribution in the process 

[77]. 
 
1.7.3  DNA-binding of HNF-1A 
 
Transcription factors have specific DNA-binding domains, which has high affinity 

for binding to a specific sequence within target gene promoters. Crystal structures 

of the DNA binding domain of HNF-1A has been elucidated and showed that 

HNF1-A binds to a palindromic consensus sequence, GTTAATNATTAAC, on the 

target promoter either as a homodimer (with itself) or a heterodimer with HNF-1B 

[78-80]. This domain (residues 100-286) consists of two parts; a POU like (pseudo 

POU; (residues 100-199) and homeodomain (residues 199-286) motifs. HNF-1A 

binds to DNA through an atypical homeodomain that spans exon 3 and exon 4, and 

has a unique structure. It contains a loop of an extra 21-amino acid insertion 

between helices 2 and 3, not common in other homeodomains. The POU domain 

further consists of two sub-domains: POUs (specific POU) and POUH 

(homeodomain). The POUs is an integral element of HNF-1A that plays a role in 

the stability of the protein, while POUH initiates protein-DNA interaction. Structural 
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studies indicate that the POUs domain interacts with the 21-amino acid loop of 

POUH and form a boundary between these DNA binding domains [81]. The DNA 

binding domain of HNF-1A has the highest mutation rate (0.15 per nucleotide) 

compared with transactivation domain (0.03 per nucleotide)[81]. According to the 

Human Gene Mutation Database (HGMD), 39 diabetes-associated missense and 

five nonsense mutations have been localized to the POUH domain of HNF-1A [82], 

and functional studies have shown that those causing MODY3 severely impair the 

DNA binding and HNF-1A regulation of target genes.  

 

1.7.4  Transcriptional activation by HNF-1A 
 
The C-terminal transactivation domain of HNF-1A, located to residues 287-631, 

contains three specific regions: ADI (residue 546-628), ADII (residues 281-318), 

and ADIII (residues 440-506) (Figure 3). Studies have reported that in vivo 

transactivation is mainly achieved by the action of the two regions ADI and ADII 

[83], while in vitro transactivation activity required the combination of ADI and 

ADIII [84]. Furthermore, the interaction of HNF-1A with cofactors for 

transcriptional activation has been established. Various domains within HNF-1A 

have been found capable of interacting with certain coactivators including the 

dimerization cofactor of HNF-1A (DCoH), also known as protein-4-alpha-

carbinolamine dehydratase 1(PCBD1), which, stabilize HNF-1A homodimers, 

leading to an increased transcriptional activity of HNF-1A. DCoH is also known as 

a phenylalanine hydroxylation enzyme, however it is not clear whether dehydratase 

activity of DCoH is essential for HNF-1A activity or not [85]. The High Mobility 

Group Protein-B1 (HMGB1) has also been identified as an HNF-1A cofactor. 

HMGB1 is a non-histone chromosomal protein that stabilizes nucleosomes and 

facilitates DNA binding for transcription. These two proteins interact through HMG 

box domains of HMGB1 and the homeodomain of HNF-1A, and HMGB1 promotes 

the DNA-binding ability of HNF-1A and increases its transcriptional activity [86]. 
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Additional, studies have confirmed the binding of HNF-1A to several other 

coactivators such as the Histone Acetyl Transferases (HATs), CREB-Binding 

Protein (CBP), p300/CBP-associated factor (P/CAF), SRC-1, and RAC3 [87]. Of 

these, the co-activator p300/CBP interacts with the DNA-binding and 

transactivation domain of HNF-1A, while P/CAF, SRC-1 and RAC3 have been 

shown to interact only with the HNF-1A transactivation domain [87].  

 
1.7.5  HNF-1A and target gene regulation 
 
HNF-1A has been associated with the regulated expression of more than 222 target 

genes in liver hepatocytes central for hepatic functions including carbohydrate 

metabolism and storage, lipid metabolism (cholesterol synthesis and 

apolipoproteins), detoxification (synthesis of cytochrome P450) and synthesis of 

serum proteins (albumin, complements and coagulation) [88]. Some of these genes 

include SLC2A2 (GLUT2), ALB (albumin), FGB (β-fibrinogen), AAT (α-trypsin), 

AFP (α-fetoprotein), FGA (α-fibrinogen), A1AT (SERPINA1), TTR (transthyretin) 

and ALDOB (aldolase B) [70, 86].   
 

In pancreatic beta-cells, HNF-1A has been associated with regulating the expression 

of more than 100 genes, of which 30% of these genes are identical to those found in 

hepatocytes [85]. For instance, HNF-1A regulates the expression of the GLUT2 

gene (SLC2A2) that encodes the solute carrier family 2 member 2 that ensures 

glucose transport in beta-cells, the HNF-4A gene (HNF4A) through P2 promoter, 

the L-type pyruvate kinase gene (PKL), which encodes a rate limiting kinase of 

glycolysis, and the insulin gene (INS) [65, 89]. In addition, HNF-1A has been 

shown to regulate the expressions of several other genes associated which cell 

proliferation and apoptosis such as the IGF-1, cyclin E and BCL-XL genes. Reduced 

beta-cell proliferation rate and decreased beta-cell number has been reported in 
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HNF1A knockout mice and transgenic mice carrying dominant negative mutation in 

HNF1A [65]. 
 

1.7.6  HNF-1A and gene network regulation 
 
There is strong evidence that the five MODY genes and transcription factors (HNF-

1A, HNF-4A, HNF-1B, PDX-1 and NEUROD1) act synergistically to support 

normal pancreatic development and play an important role in normal function of 

beta-cells and insulin secretion [10]. In the pancreas, HNF-1A is a member of a 

transcription factor network that regulates the expression of various genes in 

glucose transport, metabolism and insulin secretion. For instance, it has been 

suggested that HNF-3B in the pancreas regulates the expression of HNF1A, HNF4A 

and IPF, whereas HNF-6 regulates expression of HNF3B (Figure. 4) [65, 90]. In 

the liver, HNF1A expression is regulated by transcription factors including HNF-

3A, HNF-3B and HNF-4A. While, HNF-1A is dependent on HNF-4A for normal 

transcription in the liver, HNF-1A controls HNF4A gene expression in 

differentiated pancreatic cells [54]. 
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Figure 4. HNF transcription network in the pancreatic beta-cell. HNF-1A regulates 
expression of HNF4A. HNF-1B acts as a homodimer or heterodimer with HNF-1A. Trip 
enhances HNF-4A function while SHP suppresses HNF-4A function. This figure is 
adapted and modified from [65]. 
 
 

1.8  Deciphering the genetic architecture of T2D 
 
Many common diseases are known as heterogeneous diseases, which cluster with 

families and are influenced by both genetic and environmental factors. 

Understanding the genetic architecture of complex diseases is important because the 

individual differences in susceptibility to disease are believed to have genetic 

reasons. Identifying these genetic factors could aid correct diagnosis, precise 

treatment and better risk estimation and prevention. Several approaches have been 

applied to understand the genetic basis of T2D. 
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1.8.1  The candidate gene and linkage analysis approach 
 
Early efforts for the genetic mapping of T2D began with the candidate gene and 

linkage studies. Candidate gene approach searches for the association between T2D 

and the variants in or nearby target genes, and comparing their frequencies of 

identified variants in cases and controls or parents-offspring [27]. In linkage study 

the segments of DNA are traced in families to identify a locus, which co-segregates 

with T2D. Although the candidate gene- and linkage study approaches were able to 

identify several genes such as PPARG [91], KCJN11[92] and TCF7L2 [93], it has 

failed to explain more than 95% of the genetic basis of T2D, suggesting that the 

majority of susceptibility of T2D might arise from multiple loci with small effect 

size [94]. 
 
 
1.8.2  Genome-wide association studies approach 
 
The next attempts for discovering the genetic basis of T2D was motivated by the 

“common disease, common variants” hypothesis indicating that common disease 

arise from common variants. GWAS as approach for genetic mapping compare the 

frequency of variants in large case-control cohorts [94]. GWAS has been a powerful 

tool and have identified around 150 novel loci in the predisposition of T2D and 

including three genes previously identified by a candidate genes approach (PPARG, 

KCJN11 and TCF7L2) [95]. Recent studies have also discovered loci pointing to 

monogenic diabetes-associated genes; HNF1A, HNF1B, GCK, PDX1, GLIS3, 

WFS1, PAX4 and LMNA [96]. Despite GWAS success, the identified association 

loci can explain less than 10% of the genetic background of T2D [97].  
 
The existing catalogue of human variants allows GWAS to detect only common 

variants (Minor Allele Frequency (MAF) >5%). Apparently, common variants with 
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small effect do not contribute to the majority of the heritability of T2D [94]. 

Furthermore, limitations of GWAS are that they only discover the association loci 

and do not have sufficient resolution for distinguishing the causal variants. 

Therefore in-depth sequencing may be more ideal to identify causal variants [95]. 
 

1.8.3  Rare variants and missing heritability 
 
The majority of heritability of complex disease is remaining unexplained and hence 

the term “missing heritability”. It has been hypothesized that rare variants with 

large effect may exist and could explain the missing heritability. The frequencies of 

such variants are low; therefore they could not be captured by current GWAS 

arrays. GWAS could capture common variants, which usually caused by common 

allele (MAF ≥ 5%) with small effect size. Due to small effect size of common 

variants they could not be detected in families through linkage analysis studies. In 

contrast, rare Mendelian diseases are usually caused by rare variants with larger 

effect size and can be detected by linkage analysis Figure 5. When the MAF < 

0.5%, the chance of association detection is unlikely unless there is large effect size 

like monogenic situation [98]. 

 

 



 38 

 
 
Figure 5. Feasibility of identifying genetic variants by risk allele frequency and 
strength of genetic effect. Common disease caused by common alleles with minor allele 
frequency greater than 0.05 and small effects sizes, shown in bottom right of graph. Rare 
Mendelian disease causes by rare variants with large effects sizes, shown in upper left of 
graph. Low frequency variants with modest effect could contribute to missing heritability 
of common disease, shown in center of graph. This graph is adapted and modified from 
[98]. 
 
The next-generation sequencing (NGS) technique provides the possibility of 

investigating low frequency and rare variants related to complex disease. Studies of 

rare variants are more recent and the first exome sequencing was conducted in 2012 

that identified five rare variants; two reported before SGSM2 and MADD and three 

novel variants TBC1D30, KANK1 and PAM in association with glycemic trait and 

T2D [99]. Several other sequencing studies have identified low frequency variants 

in PAM and PDX1 associated with T2D or related traits [100]. Although these 

reports demonstrate the ability of NGS in identifying low frequency variants 

associated with T2D, the major challenge in rare variants studies is however to find 
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the association of variants to the disease. There should be enough copies of each 

allele to be able to authorize statistic analysis, while the majority of variants only 

presents in a single or few individuals and makes it therefore difficult to conclude 

any association. The required sample size is increasing linearly with the ratio of 

1/MAF. In addition, the sample size for association studies increases as odds ratio 

(is the unit for defining the effect size, the probability of individuals having risk 

allele versus not having the risk allele) drop. Therefore, low frequency and rare 

variants should have higher odds ratio to be detected [98].  
 

Altogether, results suggest that the low frequency variants alone may play a limited 

role in the genetic basis of T2D [97]. Consequently, it seems that GWAS will 

probably remain as an efficient approach in identifying additional loci, since rare 

variants association studies require much larger comprehensive sample size. To 

overcome limitation of rare variants studies, several factors have been suggested to 

consider in the study design like extreme phenotype sampling, studying isolatied 

populations, and proper choice of statistical methods to test rare variants association 

[101, 102].  
 

Genome/exome sequencing increasingly generates the number of DNA sequence 

variants and extensive efforts are needed to interpret their true consequence. Variant 

classification is however challenging and care must be taken in applying criteria for 

interpretation of variants. In 2015, the American College of Medical Genetics and 

Genomics (ACMG) published important guidelines for variant interpretation of 

monogenic diseases (not suitable for complex diseases) [103]. 

 The ACMG guidelines give a range of criteria in order to help classify a variant 

into five different groups i.e. benign (class 1), likely benign (class 2), variant of 

unknown significance (class 3), likely pathogenic (class 4) and pathogenic (class 5). 

The different criteria are divided into four main groups for classification of either 

pathogenic or benign variants. Those variants that could not meet the criteria for 
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pathogenic and benign are classified as variant of unknown significance (VUS). For 

instance if the variant is a null variant (e.g. nonsense, frameshift) this is a very 

strong evidence for pathogenicity, for genes where loss-of-function is already a 

known mechanism for the disease. Some examples of other criteria for evidence of 

pathogenicity are if functional studies supports a deleterious effect of the gene 

(strong evidence), the variant involves the same amino acid change that have been 

known as pathogenic previously (moderate evidence), if the variant is absent from 

control populations (e.g. 1000 Genomes Project, Exome Aggregation Consortium 

(ExAC), Genome Aggregation Database (GnomAD)) (moderate evidence) and if 

the variant cosegregates in several affected family members (supporting evidence) 

[103, 104].  
 

Several computational (in silico) tools, that are publicly or commercially available, 

have throughout the years been developed in order to support variant interpretation. 

However, the accuracy of in silico tools for prediction of missense variants in 

Mendelian disease is 65-80% and is not recommend to use as sole evidence to make 

a clinical decision [105].  
 

Despite the guidelines described above, variant interpretation is still not perfect, and 

has been shown to be inconsistent between different laboratories (and even within 

the same laboratory) [106]. Robust functional assessment is a strong evidence for 

pathogenicity for variant interpretation. In order to efficiently map variants effect as 

cause of a clinical phenotype, functional assays are needed at the same scale and 

speed as variants are being identified. Therefore, there is an essential need to 

develop high-throughput functional assays that can efficiently cope with numerous 

variants simultaneously, rather than the “one-by-one”-strategy that is the most 

commonly used approach today. 
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2.  AIM OF STUDY 
 
The overall aim of this thesis was the functional interpretation of numerous rare 

missense HNF1A variants to find causative variants or risk factors for MODY3 or 

T2D. 

 
 
 
Specific aims: 

 
1. To characterize the functional consequences of rare missense HNF1A variant 

associated with risk of T2D in a Mexican and Latino population (Paper I) 

 

2. To understand the functional consequences of rare protein coding HNF1A 

variants identified in the general population as potential risk factors for T2D 

(Paper II) 

 

3. To identify novel HNF-1A regulated transcripts as potential read-out for 

future functional interpretation of numerous HNF1A variant alleles (Paper 

III) 
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3. SUMMARY OF RESULT 
 

3.1  Paper I:  
 
Association of a low-frequency variant in HNF1A with T2D in a Latino 

population. The Mexican and Latino population have one of the highest prevalence 

of T2D worldwide. To investigate the genetic basis of T2D in this population, 

whole-exome sequencing was performed in 3756 Mexican and American Latino 

individuals (1794 with type 2 diabetes and 1962 without diabetes). The c.1522G>A 

(p.E508K) variant in the HNF1A gene was observed in 0.36 % of control subjects 

and in 2.1 % individuals with T2D. The data were replicated in a multiethnic data 

set (T2D-Genes and Go-T2D; ~15 000 individuals, T2D/controls) confirming the 

presence of HNF1A p.(E508K) variant only in Latino patients. The pathogenic 

effect of this rare HNF1A variant on normal HNF-1A function was examined by 

assessing transactivation activity, DNA binding, subcellular localization, and 

cellular protein level. The p.(E508K) variant demonstrated reduced transactivation 

activity (TA) on a target rat albumin promoter (TA<50%), however its activity was 

not as low as severe MODY3 variants (p.(P447L), p.(P379sdelCT), p.(R229Q)) 

included as controls. Reduced TA of the p.(E508K) was also confirmed by other 

target promoters (GLUT2 and HNF4AP2) in a beta-cell like mouse model (MIN6) 

(TA<60%). Furthermore, the p.(E508K) variant showed slightly impaired nuclear 

localization, but not as significant as MODY3 control variants. Although the variant 

did not affect HNF-1A DNA binding the protein expression level of p.(E508K) was 

significantly lower compared to wild-type HNF-1A, indicating that this missense 

variant might cause an unstable p.(E508K) protein.  
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3.2  Paper II: 
 
Functional investigations of HNF1A identify rare variants as risk factors for 

T2D in the general population. Exome sequencing of HNF1A in population-sized 

cohorts have shown that 1/50 individuals with diabetes harbors a missense variant 

in the HNF1A gene. As many as 27 rare HNF1A missense variants (MAF < 1%) 

were identified in well-phenotyped population (n=4,115). We used five different 

bioinformatics prediction tools including SIFT, PolyPhen-2, Combined Annotation 

Dependent Depletion, MutationTaster and Align Grantham Variation and Grantham 

Deviation for variants classification. None of the variants classified as pathogenic 

were associated with risk for T2D (OR=2.02; 95% CI 0.73-5.60; P=0.18). To better 

understand a pathogenic relevance and variant effect on normal HNF-1A function, 

we evaluated the functional consequences of individual variants experimentally. 

Effect on transcriptional activity was assessed using a rat albumin promoter driven 

of luciferase reporter assay in transfected HeLa cells and 11 of 27 variants were 

identified with reduced TA activity (<60%). The effects of the variants on the 

subcellular localization of HNF-1A demonstrated that most protein variants had 

normal nuclear versus cytoplasmic localization compared to wild-type HNF-1A, 

while three variants (p.(R131Q), p.(E508K), p.(H514R)) had slightly reduced 

nuclear localization. When assessing which functional assay could best predict T2D 

association based on carrier phenotypes, best association was shown for 

transactivation impaired variants (<60%) and T2D (OR=5.04; 95% CI 1.99-12.80; 

P=0.0007), while, variants with transactivation activity >60% conferred no 

additional risk for T2D (OR=0.77; 95% CI 0.35-1.72; P=0.53). In aggregate, these 

impaired HNF1A missense variants conferred about a 6-fold increased risk of T2D 

in carriers. This study concluded that functional assays could identify variants better 

with a true pathogenic effect, and potential risk factor for the development of T2D, 

compared to bioinformatics prediction tools. 
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3.3  Paper III: 
 
Generation of liver cell models for improved identification of novel HNF-1A 

target genes using CRISPR/Cas9 technology. To improve the diagnostic 

interpretation of numerous HNF1A variants and their pathogenic effect, a robust and 

reliable high-throughput functional assay is needed. For this purpose, we searched 

for strongly regulated HNF-1A transcripts in liver cell models for the purpose of 

massively parallel allelic screening of HNF1A variant dysfunction. To evaluate 

variants function in clean genetic background, we also generated HNF1A- free cell 

lines by knocking out endogenous HNF1A in the HuH7 and Hep3B liver cell lines 

using CRISPR/Cas9 technology. To identify HNF-1A endogenous targets, the 

HNF1A- free cell lines were transduced with doxycycline-inducible recoded WT 

HNF1A, followed by RNA sequencing and transcript analysis. A total of 62 and 367 

genes in HuH7 and Hep3B cell lines, respectively, were significantly upregulated 

(FDR (false discovery rate) < 0.01 and log2FC (fold change) ≥2) by WT HNF-1A 

induction at 5 µg/ml doxycycline. 

In order to select relevant targets that could discriminate HNF1A variants, 

expression of series of HNF1A alleles (with known clinical and functional 

evidence) was equally performed in HuH7 and Hep3B cell line, followed by RNA 

sequencing. The expression levels of top 20 upregulated genes in WT HNF-1A 

condition are nominated in allelic series analysis. We found the majority of the top 

20 upregulated genes (induced by WT HNF-1A) were significantly down-regulated 

in severe MODY3 variants (p.(P112L) and p.(P447L)), while they upregulated or 

didn’t show significant differential expression in mild-loss of function variant 

p.(E508K) condition. Among top 20 hits, by considering their ability in 

discrimination of HNF1A variants and the level of expression of genes, ABCC2, 

FABP1 and HABP2 genes in HuH7 and HKDC1, HRG and KL in Hep3B selected 

as potential targets of HNF1A.  
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This study has thus identified several potential novel HNF-1A regulated transcripts 

in HuH7 and Hep3B cell lines, which can be used as potential markers for future 

high-throughput functional characterization of HNF1A allelic variants. 
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4.  DISCUSSION 
 

4.1  Prevalence and effect of common and rare HNF1A variants in T2D 
diabetes populations 
 
Identified genes responsible for monogenic forms of diabetes along with discoveries 

of T2D-loci by GWAS provide strong evidence that monogenic diabetes genes may 

be involved in the susceptibility of the polygenic forms of diabetes as well [96]. 

These findings are a strong indication of the hypothesis that different variants in the 

same gene may cause various diabetes phenotypes, from monogenic forms to 

common forms of diabetes disease. Genome sequencing of target genes can thus 

identify individuals in the general population who carry coding variants in genes for 

Mendelian disorders and who may consequently have increased disease risk. 
 
Common variants in the HNF1A gene have been reported as risk factor for T2D. 

Studies have shown that the common SNPs p.(I27L), p.(A98V) and p.(S487N), alter 

HNF-1A transcriptional activity in vitro and insulin secretion in vivo. Furthermore, 

p.(I27L) has been associated with increased risk of diabetes (OR=1.5, p=0.002) [89, 

107, 108]. Others, however, have not been able to confirm these associations [109]. 

This may be explained by such variants only presenting a modest effect, or a role of 

other unknown genetic or environmental factors in other and different ethnic 

populations. 
 

T2D is anticipated to be a heterogeneous disease. The heterogeneity of a complex 

disease within a population raise the question how genetic risk variants can be 

translated between populations, and is a fundamental aspect to consider in common 

disease risk prediction [110]. To illustrate this, screening for rare coding variants 

associated with T2D in a Mexican and Latin American population (4000 

individuals) identified the low frequency rare p.(E508K) variant in HNF1A 

(OR=5.48; 95% CI 2.83-10.61; P=4.4x10-7) (Paper I). This variant is private to the 
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Mexican and Latin American population and has so far not been found in other 

diabetes populations. Functional investigation of this variant demonstrated a mild 

reduction in HNF-1A transactivation activity <50%, compared to MODY3 variants 

(p.(P447L), p.(P379sdelCT), p.(R229Q)), that has severely reduced transactivation 

activity <20% (Paper I). Confirmation of reduced transcriptional activity of the 

strongly T2D associated variant p.(E508K) in transfected HeLa cells was also 

shown in a mouse insulinoma (MIN6) cell line, and by testing other HNF-1A target 

promoters (GLUT2 and HNF4A P2) (Paper I). The p.(E508K) variant also showed 

slightly impaired nuclear localization compared to a MODY3 variant (p.(Q466X)) 

that highly accumulates in the cytoplasm compared to nucleus. In addition, the 

p.(E508K) variant demonstrated significantly lower protein levels (∼50%) 

compared to wild-type HNF-1A (100%). Since the DNA binding of p.(E508K) was 

normal, the low level of transactivation activity might be explained by conformation 

changes that could cause an unstable protein and reduced transactivation activity 

due to this variant’s position in the transactivation domain of the protein sequence. 

Therefore, the rare protein coding p.(E508K) variant, which demonstrates mild-loss 

of function, is considered a risk variant for T2D in the Mexican and Latin American 

population. Furthermore, the p.(E508K variant being not as functionally severe as 

classic MODY3 variant,  is thus thought to influence diabetes onset later in life.  
 

Another private missense variant in HNF1A, p.(G319S), has been reported in the 

Canadian Oji-Cree T2D Indian population (117 individuals). This variant was found 

in as many as 40% of patients with diabetes, and was found to increase the onset of 

T2D by seven years [111]. Similarly to p.(E508K), p.(G319S) is located in the 

transactivation domain of HNF-1A and reduces transactivation by nearly 50% 

[112]. Both variants have shown incomplete penetrance, suggesting that they are 

moderate diabetes alleles and different from the true MODY3 variants that 

demonstrate high disease penetrance[113]. These variants, however, demonstrate 

mild loss-of-function effect by functional assessments, which might contribute to a 
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polygenic background and predispose some individuals from specific ethnic 

populations to T2D. To investigate this further, the prevalence and effect of HNF1A 

gene variants from large multi-ethnic based T2D cohorts (around 13 000 

individuals) are currently being investigated by collaborators and us. So far, around 

80 different HNF1A variants have been identified in cohort individuals 

(case/controls). Assessing their gradient of pathogenic effect, based on in vitro 

functional assays, will be important both in terms of determining the presence of 

ethnicity-specific HNF1A variants, and for the identification of variant-specific 

phenotypic markers. 

 

4.2  Prevalence and relevance of rare HNF1A variants as risk factor for 
T2D diabetes in the general population 
 
Genome sequencing of individuals of extreme phenotypes may display 

ascertainment bias in identifying causal rare variants associated with the disease. 

Such studies, however, may report an upward bias in the estimated effect sizes in 

healthy individuals carrying such risk variants. Therefore, care must be taken in 

analysis of these variants by using proper statistical tests to avoid falsely predicting 

individuals as being at risk for Mendelian disease. Genome sequencing of the most 

common MODY genes in a well-phenotyped population (4 003 individuals) was 

recently performed by Flannick and colleagues [114], and was the basis for our 

work in Paper II. In this study, the spectrum of rare variants in the seven most 

common MODY genes was investigated in three population cohorts (the 

Framingham Heart Study, The Jackson Heart Study, and extremes of type 2 

diabetes) [114]. They reported that around 5% of individuals in this general 

population carry a low frequency non-synonymous variant in one of these seven 

MODY genes. Among these, 1.5% (in the Framingham Heart study) and 0.5% (in 

the Jackson Heart Study) carry variants previously reported as MODY, or classified 

as rare, conserved, and protein damaging by bioinformatics predictions tools. 
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Among these, 27 rare non-synonymous variants were identified in HNF1A; the most 

common MODY gene. 
 

In Paper II, we adopted to assess the pathogenic relevance of each and every one of 

these 27 HNF1A variants using two different approaches: 1) bioinformatics analysis 

tools commonly used in medical genetics laboratories, and 2) by functional protein 

analyses. Bioinformatics evaluation of the 27 rare HNF1A variants classified 11 

variants as likely pathogenic, and these variants did not show significant association 

with T2D (OR=2.02; 95% CI 0.73-5.60; P=0.18). Using our second approach, we 

did however find that the functionally evaluated impaired variants (activity < 60%) 

showed significant association with T2D (OR=5.04; 95% CI 1.99-12.80; 

P=0.0007). Based on this, we concluded that bioinformatics tools can aid in variants 

interpretation regarding predicted pathogenic effect, however they are often 

inconclusive (resulting in a large number of variants with unknown significant; 

VUSs) and prone to erroneous results. The general accuracy of bioinformatics 

prediction tools has been estimated to 75-80% by others [115]. Such tools are 

mostly capable of predicting the two-end side of the spectrum; benign and 

pathogenic variants, but are not accurate enough to classify mild loss-of-function 

variants.  
 

Based on numerous reports on MODY3 associated HNF1A variants [77, 116-118] 

and our own experience from our studies presented in Paper I and Paper II, we 

believe that functional characterization of variants effect is the ideal method to truly 

understand the phenotypic consequences of genome sequence variants on HNF-1A 

protein function (genotype-function-phenotype). Different variants in HNF1A 

present different phenotypic profiles. This, to some extent, depends on the type of 

amino acid substitution and location in the protein sequence, affecting different 

properties and function of the HNF-1A protein. The experimental methods for 

evaluation of variants effect on HNF-1A function generally include assessing the 
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effect on HNF-1A expression/stability, subcellular localization, transcriptional 

activity, and DNA binding ability, through a “one-by-one” analysis of individual 

variants (not high-throughput) (Paper I and Paper II).  
 
 

4.3  HNF1A variant effect on nuclear localization and disease risk 
prediction 
 
Previous studies have identified variants that result in impaired (reduced) nuclear 

localization of HNF-1A [77, 116, 118]. Such loss in proper nuclear translocation 

may result in reduced activation of HNF-1A target genes in an in vivo situation. 

Most of the 27 rare HNF1A variants identified in the general population [114] 

demonstrated nuclear localization levels similar to wild-type HNF-1A. Only three 

variants (p.(R131Q), p.(E508K), p.(H514R)) showed slightly impaired nuclear 

localization, however not to the same extent as the previously described MODY3 

variant p.(Q466X) [118](Paper I and II). Regarding the p.(R131Q) variant, the 

amino acid arginine in position 131 is highly conserved and exposed, and this 

residue interacts with DNA according to a previous report [82]. This study further 

demonstrated that the p.(R131Q) substitution within HNF-1A has a destabilizing 

effect on the protein that may explain the low protein expression, low DNA 

binding, and low transcriptional activity of p.(R131Q) variant observed by us 

(Paper II). Of the four variants studied (p.(R131Q), p.(E508K), p.(H514R) and 

p.(Q466X), none are localized in the previously determined NLS in HNF-1A [77], 

indicating that prediction of variant effect on nuclear translocation cannot only be 

determined based on localization of the variant within the HNF-1A protein 

sequence. Other variant mediating factors like altering HNF-1A protein structure 

and possibly masking an NLS, or causing aggregation and cytosolic HNF-1A 

accumulation, are hypotheses for reduced nuclear localization that may be at play 

for such variants.  
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When we used the functional approach for studying the effect of 27 HNF1A 

variants on nuclear localization we assessed whether this assay (nuclear 

localization) could provide as model for predicting impaired variants as risk factors 

for T2D (Paper II). Variants were subdivided based on different thresholds of 

nuclear localization level (<80%, <70%, <60%) and associations of carriers with 

T2D were calculated. A model of subcellular localization <70% compare to WT 

HNF-1A showed significant association with diabetes (P=0.0007), however, with 

this threshold we could only detect two variants as impaired variants. Although, this 

assay and model could help to understand the mechanism behind dysfunctionality 

caused by HNF1A variants, our study concluded that this assay is not recommended 

to use alone as a functional predictor for the evaluation of HNF1A variants as T2D 

risk variants (for improved model, see end of section below). 

 

4.4  HNF1A variant effect on transcriptional activity and disease risk 
prediction 
 
In order to evaluate transcriptional activity of HNF1A variants alone without 

interfering with any contribution from endogenous HNF-1A protein, the HeLa cell 

line is commonly used as model in an HNF-1A linked luciferase reporter assay. 

Furthermore, as HNF-1A target and gene promoter the rat albumin promoter is also 

commonly used, as it shows strong regulation by HNF-1A and is frequently used 

for read-out of HNF1A variant effect, in combination with analyses of other 

relevant HNF-1A gene promoters (INS, GLUT2 and HNF4AP2). In the functional 

evaluation of the 27 rare HNF1A variants in Paper II, the variants were subdivided 

based on their effect on transcriptional activity, assessing regulation of the rat 

albumin promoter in HeLa cells, by different thresholds of their activity level 

(various levels ranging from <80% to <40%). Level of transcriptional activity 

<60% compared to wild-type HNF-1A (100%) showed the strongest association 

with T2D in the cohorts representing the general population (P=0.0007) [114]. With 
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this model, a total of 11 HNF1A variants were marked as impaired (<60% activity). 

Variants affecting HNF-1A transactivation to a lesser extent than this (<60%) were 

not equally significant (association with T2D), and most likely due to the few 

number of carriers with these variants (Paper II). Nine of the 11 functionally 

impaired variants (<60% activity) are located in transactivation domain and may 

thus explain their reducing effect on HNF-1A activity. Furthermore, four variants 

among the 11 transactivation impaired variants showed significantly lower protein 

level (p.(Y322C), p.(E508K,) p.(H514R) and p.(T515K)), indicating that loss in 

HNF-1A protein may also explain loss in total cellular measured activity. Further 

analysis of three variants located in the DNA binding domain confirmed that one 

variant p.(E275del) significantly reduced the DNA binding of HNF-1A, while two 

variants p.(R131Q) and p.(V103M) reduced DNA binding, but not to a significant 

level, which may explain their loss in transactivation potential (Paper II). These 

DNA binding defective variants may mediate their effect on HNF-1A directly (loss 

of DNA binding residue), or indirectly through conformational changes within the 

protein, which leads to some degree of loss of ability to bind to target DNA [78]. 
The variant positively driving most of the association in Paper II is p.(E508K). 

This was shown in the replication analysis in the Type2 Diabetes Knowledge Portal 

(type2diabetesgenetics.org) publicly available dataset, where the T2D associated P-

value increased to non-significant after excluding this Mexican risk variant in the 

association test. 

 

Worth noting regarding our outlined T2D disease prediction models (Paper II) is 

that by adding the best (most T2D significant) model of nuclear localization 

(threshold of NL<60%) to the most significant model by transactivation (threshold 

TA<60%), the combined model (NL<60% + TA<60%) did not increase association 

of impaired variants with T2D. Furthermore, this combined model did not change 

the list of impaired variants when comparing to the impaired variants extracted from 

the transactivation model alone. Our end conclusion was therefore that the 
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transactivation assay itself could discriminate between functionally impaired 

variants associated with T2D risk versus benign variants, and providing a robust 

single assay for a functional assessment of HNF1A variants.  

 

4.5  Genotype-phenotype correlation by HNF1A and treatment options 
 
With increasingly effective sequencing methods and the growth in the number of 

identified rare HNF1A variants with unknown significance, functional assays have 

shown too be essential to best determine the true pathogenicity of such variants. The 

ability to instantaneously interpret the function of any HNF1A missense variant 

would enable the use of genetic information and assess diabetes risk, predict disease 

biomarkers, and perhaps offer more precise treatment for risk/disease causing 

variant carriers. Certain diabetes patients (MODY3) carrying severe pathogenic 

variants in HNF1A have shown hypersensitivity to sulfonylureas treatment [119, 

120]. This response is also greater compared with T2D patients. In a study, 

MODY3 patients showed 5.2-fold greater response to sulfonylurea than to 

metformin, as well as a 3.9-fold greater response to sulfonylurea compared to T2D 

patients [113]. Hence, classification of the genetic cause of a patient’s 

hyperglycemia provides a significant implication for precise treatment. However, 

pharmacodynamic efficacy to sulfonylurea varies in T2D patients, presumably due 

to other genetic and environmental factors [121, 122]. 
 

Since 2% of the Mexican and Latin American T2D population carries the HNF1A 

p.(E508K) variant (Paper I), it is hypothesized that these individuals could benefit 

from treatment modification by sulfonylurea. To test this hypothesis a study has 

been conducted involving researchers at the Broad Institute of Harvard and MIT in 

Cambridge, USA. The result of this study, which may have been underpowered, 

was that it was negative for the hypothesized increased sensitivity to sulfonylureas 

in p.(E508K) carriers in the Mexican population (personal communication, 
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Martagón et al., unpublished data). A study with a more sizable number of this, and 

other T2D HNF1A risk variants carriers, is most likely needed to provide a higher 

resolution for determining carrier sensitivity to sulfonylureas. 

 

4.6  Systematic search for HNF-1A regulated transcripts for developing 
HNF1A high throughput assay 
 
Variants analysis is currently a big challenge and many interpreted variants do not 

have strong evidence to be classified as benign or pathogenic, and are therefore 

categorized as VUSs. These variants are not actionable and cannot be used in 

guiding diagnosis or disease management. Of the 4.6 million missense variants 

identified in ∼140,000 exomes and genomes in the GnomAD dataset 

(http://gnomad.broadinstitute.org), 99% of these variants are rare and with a MAF < 

0.5% (Figure 6). Although the majority of these variants occur in genes previously 

related to different diseases, only 2% have a clinical interpretation in the ClinVar 

database (https://www.ncbi.nlm.nih.gov/clinvar/).  

 

 

 
Figure 6. Missense variants discovery predicted clinical effect. The Genome 
Aggregation Database (gnomAD) has reported 4.6 million missense variants (left figure), 
among them only 100K have clinical interpretation in ClinVar (right figure). Data used for 
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this plot was taken from gnomeD (February 28,2017) and ClinVar (April 5, 2017) This 
figure is adapted and modified from [123].  
 
To illustrate the recent burst in variant numbers identified in HNF1A: As reported 

in one of our studies (Paper II), around 0.4% of the general population carry 

impaired variants in HNF1A that could increase the risk of T2D up to 6-fold. A 

more recent study and unpublished data based on sequencing multi-ethnic cohorts 

of 13,000 T2D cases/controls (T2D knowledge portal T2D-GENES and Go T2D 

consortia) have additionally identified around 80 missense variants in HNF1A 

[124]. Furthermore, the genome aggregation database (gnomAD) has reported ∼ 

472 missense variants in HNF1A from sequencing of 123,136 exomes and 15,496 

genomes of unrelated individuals from various disease populations [125]. This has 

thus in the last few years resulted in a large list of rare and novel HNF1A variants 

with unknown functional and clinical consequence.  
 

An ideal strategy in variant evaluation is to improve the efficiency of the functional 

assessment in well-validated assays. However, current functional assays are low-

throughput, laborious and too slow to fulfill the demand (“one-by-one” approach). 

This challenge emphasizes the essential need for developing high-throughput 

functional assays in a comprehensive and systematic fashion. Multiplexed assays 

for investigating variants effect (MAVEs) measure the function of a comprehensive 

number of variants (ideally all possible variants in a gene) in a single experiment. 

MAVEs directly link the genotype of each variant to its effect in well-validated 

assays. Common framework in MAVEs is to synthesize variants, introduce them 

into an assay system, and select for a phenotype of interest [123]. MAVEs can then 

be used to prospectively produce lookup tables of variants functional effects for 

accurate pathogenicity prediction in disease related genes. The MAVEs strategy 

was recently used to comprehensively measure the effects of all possible missense 

variants of protein coding in PPARG [126]. 
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Based on the relevance of HNF1A gene variants in HNF-1A-MODY as well as T2D 

(Paper I and II), and on the increasing number of HNF1A variants identified 

recently by NGS strategies, this gene and protein is an ideal candidate for MAVE 

analysis. Prior to this, a screening of robust and reliable targets for HNF-1A 

regulation is needed in order to distinguish levels of pathogenic effect induced by 

different HNF1A variants. This strategy encouraged us to pursuit the search for 

other HNF-1A regulated genes and presented in paper III (manuscript). Here, we 

systematically searched for novel and strongly regulated HNF-1A transcripts that 

could represent more ideal and precise read-outs of HNF-1A dysfunction, and 

furthermore, to be compatible for a pooled HNF1A allelic screening in a high 

throughput (MAVE) assay, in the future.  

 

In this study, we assessed the full complexity of the HNF-1A transcriptional 

response, in liver cell models, to find multiple endogenous target genes with altered 

expression. Ideally, such investigations should have been performed in a beta-cell 

model, but due to the lack of a robust human beta-cell line, the physiologically 

relevant human liver cell lines; HuH7 and Hep3B cell lines were selected. In order 

to be able to study HNF1A variants effects in these cell lines, without the 

interference of endogenous HNF-1A, we firstly generated HNF1A- free cell lines by 

knocking out endogenous HNF-1A using CRISPR/Cas9 (Paper III).  To boost the 

HNF-1A regulated transcripts in the HNF1A- free cell lines, recoded HNF1A 

(resistance to CRISPR/Cas9) was re-introduced into the knock out cell lines at 5 

µg/ml doxycycline doses (induce HNF-1A expression), prior to deciphering the 

landscape of differentially expressed transcripts by RNA sequencing.  

 
A total of 62 genes in HuH7 and 367 genes in Hep3B cell lines were significantly 

upregulated (FDR< 0.01 and log2 FC≥2). In order to select suitable transcript as 
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markers for HNF-1A dysfunction, we further analyzed the expression of the top 20 

significantly upregulated genes also in HuH7 and HepB3 cell lines transfected with 

carefully selected HNF1A variants known to cause HNF-1A MODY or be strongly 

associated with T2D (p.(P112L),p.(P447L) and p.(E508K), respectively). The 

expression of the majority of these 20 genes were significantly down-regulated in 

MODY3 variants conditions, whereas most were upregulated or did not show 

significant differential expression in mild-loss of function variant p.(E508K) 

condition. In order to further select relevant candidate targets by considering their 

ability in their discrimination of different diabetes-associated HNF1A variants, as 

well as sufficient level of expression,  the  genes ABCC2, FABP1 and HABP2 genes 

in HuH7, and HKDC1, HRG and KL in Hep3B cell lines, were suggested in Paper 

III as potential targets for readout of HNF1A variant effect in a future MAVE.  
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5.  CONCLUDING REMARKS AND FUTURE PERSPECTIVE  
 
Variants in HNF1A are associated with different diabetes phenotypes and can be 

identified in subjects with MODY3, T2D, and T1D. Phenotypic features range from 

severe loss-of-function in MODY3, to mild loss of function in late-onset diabetes. 

By this, there is no direct link between a specific sequence variant in HNF1A and 

causing phenotype, as variants exists in both Mendelian and complex forms of 

diabetes. Historically, T2D affects individuals in middle age or later, but this trend 

is changing as prevalence of T2D has increased in children and adolescents over the 

years. Moreover, the diversity of the clinical presentation of MODY3, and 

overlapping clinical features of T2D, makes the distinguishing of these two types 

complicated.  

 

The overall goal of our studies (Papers I, II and III) was to investigate whether 

novel, rare variants in HNF1A could present as risk factors for T2D, and search for 

novel cell-based markers that can represent as read-out for massively parallel allelic 

screening of HNF1A variants in the future high throughput assay (MAVE). Variants 

investigated in Paper I and II, based on a “one-at-a-time” analysis approach, clearly 

distinguished the severe MODY3 variants from the (impaired), mild loss-of-

function T2D variants, and the latter from the more benign variants, based on an 

activity model (threshold <60%) and loss of transcriptional activity induced by 

HNF1A variants. 

 

Generally, the functional significance of rare variants identified in large-scale 

population sequencing lack sufficient statistical power because they are mostly 

observed in one or few individuals, unless variant prevalence is as high (2%) as the 

rare variant p.(E508K) identified in the Mexican and Latin American population, 

with strong odd ratios of 5.48 (95% CI 2.83-10.61) with T2D, and with a 

functionally confirmed mild loss-of-function effect. For more rare and low 
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frequency variants the phenotypic effect cannot be achieved by association tests. 

Thus, the ability to discriminate between milder causal versus benign sequence 

variants, to increase the power of sequencing studies, is more difficult for assessing 

contribution in complex disease.  

 

Most of the speculation of a missing heritability of complex disease has focused on 

the contribution of rare and low frequency variants in complex disease. Next-

generation sequencing is a commonly used sequencing approach now and has 

revolutionized the amount of genetic information available and increased our 

knowledge of human genome variation. However, the vast majority of coding 

variants are rare, novel, and with unknown functional consequence. The key to 

interpreting these variants for clinical use depends on their functional evaluation 

and preferably by a MAVEs approach that is less time consuming than a “one-by-

one “ variant analysis approach. This need motivated us for establishing new and 

improved cell models for a future high throughput MAVE assay for functional 

characterization of every possible HNF1A variant. Based on the candidate target(s) 

identified in Paper III, an ideal functional assay system should be chosen. For this, 

factors including the cellular localization of selected target(s) and target protein 

expression detection by flow cytometry (antibody staining) or FISH-Flow (mRNA 

staining) must be taken into careful consideration. Our study (Paper III), however, 

represent a good basis for the subsequent development of such a high throughput 

disease-relevant gene function assays. The outcome of such an assay, if successful, 

is a lookup table of variant effect, which can ultimately guide clinicians in diabetes 

diagnosis of current and future patients. 
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Association of a Low-Frequency Variant inHNF1A
With Type 2 Diabetes in a Latino Population
The SIGMA Type 2 Diabetes Consortium

IMPORTANCE Latino populations have one of the highest prevalences of type 2 diabetes
worldwide.

OBJECTIVES To investigate the association between rare protein-coding genetic variants and
prevalence of type 2 diabetes in a large Latino population and to explore potential molecular
and physiological mechanisms for the observed relationships.

DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencingwas performed on DNA
samples from 3756Mexican and US Latino individuals (1794 with type 2 diabetes and 1962
without diabetes) recruited from 1993 to 2013. One variant was further tested for allele
frequency and association with type 2 diabetes in large multiethnic data sets of 14 276
participants and characterized in experimental assays.

MAIN OUTCOME ANDMEASURES Prevalence of type 2 diabetes. Secondary outcomes
included age of onset, bodymass index, and effect on protein function.

RESULTS A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2
diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10−7) in hepatocyte
nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young
type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes
and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was
seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was
associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental
assays, HNF-1A protein encoding the p.E508Kmutant demonstrated reduced transactivation
activity of its target promoter compared with a wild-type protein. In our data, carriers and
noncarriers of the p.E508Kmutation with type 2 diabetes had no significant differences in
compared clinical characteristics, including age at onset. Themean (SD) age for carriers was
45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and themean (SD) BMI for
carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19).

CONCLUSIONS AND RELEVANCE Using whole-exome sequencing, we identified a single
low-frequency variant in theMODY3-causing geneHNF1A that is associated with type 2
diabetes in Latino populations andmay affect protein function. This findingmay have
implications for screening and therapeutic modification in this population, but additional
studies are required.
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T he estimated prevalence of type 2 diabetes in Mexican
adults was 14.4% in 2006,1 making it one of the leading
causesofdeath inMexico.2Basedonstatistics from1999-

2002, the standardized prevalence of diagnosed diabetes was
10% in Mexican Americans and 5.2% in whites.3 Although en-
vironmental factors such as lifestyle and diet likely explain the
majority of this health disparity, it was recently found that ge-
netic variants in the gene SLC16A11 (NCBI NC_000017.11) were
associated with higher rates of type 2 diabetes in Latinos.4

Latinos, definedaspersonswhotrace theirorigin toCentral and
South America, and other Spanish cultures, fall on a con-
tinuum of Native American and European genetic ancestry.4

Identifying genetic factors associated with type 2 diabetes in
Latino populations could increase understanding of its patho-
physiology, improveriskprediction,andfocus treatmentchoice
based on knowledge of the underlying biology of the disease.

Type 2 diabetes is typically diagnosed after age 40 years,
is causedby the combined actionof genetic susceptibility and
environmental factors, is associatedwith obesity, and is poly-
genic.Genome-wide association studies for typical type 2dia-
betes forms have identifiedmore than 70 distinct genetic loci
carryingcommonvariants that areassociatedwithmodestdif-
ferences in prevalence of the disease.5-7 Because these com-
mon variants explain a small fraction of the estimated herita-
bility, it is hypothesized that low-frequencyor rare variants of
strongeffects, not capturedbygenome-wideassociation stud-
ies but amenable to sequencing approaches, contribute in a
meaningful proportion to the genetic architecture of the dis-

ease.Todate, low-frequencyvariantswithnear-completepen-
etrancehavenotbeen found inwhole-exomesequencingstud-
ies of type 2 diabetes,8,9 although a recent whole-genome
sequencing study found rare variants associated with type 2
diabetes prevalence in an Icelandic population.10

To explore the association of rare protein-coding genetic
variantswith type 2diabetes in theLatinopopulation,weper-
formedwhole-exome sequencing (which captures both com-
monand rare genetic variants in theprotein-coding regions of
genes) on case-control studies composed of individuals of
Mexicanor anotherLatinoancestry,with replication ina sepa-
rate multiethnic data set.

Methods
Study Design and Patients
ThisstudywasperformedaspartoftheSlimInitiativeinGenomic
MedicinefortheAmericas (SIGMA)Type2DiabetesConsortium,
whosegoal is tocharacterize thegeneticbasisof type2diabetes
in Mexican and Latin American populations drawn from 4
studies4,11-13 (Table 1, detailsof thesestudiesareprovided in the
Supplement).AllparticipantshadeitherMexicanorotherLatino
ancestrybasedonself-reportandverificationusingprincipalcom-
ponent analysis of genotypedata. Replication studies included
individualsfromamultiethnicstudy(Type2DiabetesGeneticEx-
plorationbyNext-GenerationSequencinginMulti-EthnicSamples
[T2D-GENES]andGeneticsofT2D[GoT2D])andanongoingcol-

Table 1. Characteristics of Cohorts Comprising the SIGMA Type 2 DiabetesWhole-Exome Sequence Project

Source
Sample
Location Study Design

No. of
Participants

No (%) of
Men

Mean (SD)

Age, y
Age of

Onset, y BMI

Fasting
Glucose,
mg/dL

Proportion
With Native

American
Ancestry

UNAM/INCMNSZ
Diabetes Study,4 2014

Mexico City,
Mexico

Prospective
cohort

Controls 539 206 (38.2) 55.0 (9.4) 28.4 (3.8) 86.4 (7.2) 0.75 (0.10)

Type 2 diabetes 533 216 (40.5) 55.3 (12.5) 43.8 (11.2) 28.5 (4.4) 0.78 (0.11)

Diabetes in Mexico
Study,4 2014

Mexico City,
Mexico

Prospective
cohort

Controls 459 119 (25.9) 52.4 (7.7) 28.0 (4.6) 90.1 (7.2) 0.67 (0.18)

Type 2 diabetes 509 168 (33.0) 55.5 (11.1) 47.2 (10.6) 29.0 (5.4) 0.79 (0.12)

Mexico City Diabetes
Study,11,12 2005 and
2011

Mexico City,
Mexico

Prospective
cohort

Controls 526 204 (38.8) 62.3 (7.5) 29.4 (4.8) 90.1 (9.0) 0.69 (0.14)

Type 2 diabetes 270 110 (40.7) 64.0 (7.5) 55.0 (9.7) 29.9 (5.5) 0.67 (0.15)

Multiethnic Cohort,1

2000
Los
Angeles,
California

Prospective
cohort

Controls 438 212 (48.5) 59.3 (7.2) 26.9 (4.3) 0.53 (0.09)

Type 2 diabetes 482 227 (47.0) 58.7 (7.2) NA 29.8 (5.7) NA 0.58 (0.08)

Overall SIGMA

Controls 1962 742 (37.8) 57.3 (8.9) 28.3 (4.5) 88.2 (9.0) 0.67 (0.15)

Type 2 diabetes 1794 719 (40.1) 57.6 (10.6) 47.5 (11.5) 29.1 (5.2) 0.71 (0.15)

Abbreviations: BMI, bodymass index, calculated as weight in kilograms divided
by height in meters squared; NA, not available; UNAM/INCMNSZ, Instituto
Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad
Nacional Autónoma deMéxico.

SI conversion factor: To convert fasting glucose frommg/dL tommol/L, multiply
by 0.0555.
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lectionofMexicanparticipantsfrom18indigenousgroupsforge-
netic studies (Diabetes inMexico Study 2[DMS2]) (eTable 1, de-
tails of these studies are provided in Supplement). Diagnosis of
type2diabetes followedtheAmericanDiabetesAssociationcri-
teria.Eachparticipantprovidedwritteninformedconsentforge-
neticinvestigation.Allcontributingstudieswereapprovedbytheir
respective local ethics committees.

Genetic Studies
Sample Selection andWhole-Exome Sequencing
In total, 3862sampleswereselected forwhole-exomesequenc-
ing froma largerdata setof8214samplespreviouslygenotyped
with theOMNI2.5array (Illumina).4To increase representation
of genetic variation not queried in studies of European popu-
lations,selectioncriteriaforwhole-exomesequencingwasbased
on theproportionofNativeAmericanancestry estimated from
principal component analysis of genotypedata (eMethods sec-
tionandeFigures 1 and2 in theSupplement).Whole-exomese-
quencing was performed on blood DNA from these samples
usingSure-SelectHumanAllExonv2.0(Illumina),44-Mb–baited
target. Raw reads were mapped with the Burrows-Wheeler
Aligner,reprocessedwithPicardtorecalibratebasequalityscores
and perform local realignment around known indels. Genetic
variantswere calledwith theGenomeAnalysisToolkitUnified
Genotypermodule14andwere filtered to remove likelyartifacts
usingseveralquality-controlmetricssuchasmeancoverage,con-
cordanceofnonreferencegenotypeswitharraydata, andmiss-
ing rateasspecified in theeMethodssection in theSupplement.
Independent replicationwassought inwhole-exomesequence
data fromtheT2D-GENESandGoT2Dprojects,which together
sequenced13 098 individuals from5ethnicgroups (Europeans,
East Asians, African Americans, South Asians, and Latinos).

Statistical Analyses
We used the liability threshold model, which models partici-
pants as having an unobserved continuous phenotype called
liability.15We computed the residual value of the liability after
accounting for the part that can be predicted by each partici-
pant's age and bodymass index (BMI) using LTSOFT software
(http://www.hsph.harvard.edu/alkes-price/software).16 Signifi-
cance was evaluated with the residual liabilities as outcome
usinganexpeditedmixed linearmodel,17whichadjusts for sex,
ancestry (eFigure 3 in the Supplement), and relatedness via a
variance-componentmatrixwith2-sidedtests.Oddsratios(ORs)
were estimated using logistic regressionmodels on type 2 dia-
betes status adjusting for age,BMI, andancestry as specified in
the eMethods section in the Supplement. The experiment-
wide statistical significance thresholdwas set toP < 5 × 10−8 to
adjust forthenumberofvariantsevaluated. Inadditiontosingle-
variant testing, the sequence kernel association test18 and col-
lapsing tests19 were used to test the possibility of genes and
groups of genes associated to disease susceptibility via aggre-
gation of rare variants.

Results of all functional experiments are expressed as
means (SDs), andexperimentswereperformedonat least 3 in-
dependent occasions unless otherwise specified. Statistical
analyses were performed using the 2-tailed t test, and P <.05
was considered significant for these functional studies.

Functional Studies
Plasmids, Cell Culture, and Transfections
Details of functional studies are specified in the eMethods
section in the Supplement. The human liver hepatocyte
nuclear factor 1α (HNF1A) complementary DNA in expres-
sion vector pcDNA3.1/HisC (NCBI Entrez Gene BC104910.1)
was used for all cell studies.20 Firefly luciferase reporter vec-
tors (pGL3) included promoter sequences for the rat albumin
(pGL3-RA), human HNF4A (NCBI Entrez Gene 3172) P2
(pGL3-HNF4AP2), and mouse Glut2 (pGL3-GLUT2) genes.
Renilla luciferase reporter construct pRL-SV40 (GenBank
AF025845.2) was used as an internal control. The HNF-1A
mutants were made using the QuikChange Site-Directed XL
Mutagenesis Kit (Stratagene). HeLa cells and MIN6 β-cells
were grown as previously described,20,21 and transfected
according to manufacturers’ recommendations using the
Metafectene Pro (Biontex-USA) or Lipofectamine 2000 (Life
Technologies), respectively.

Transactivation and Protein Expression Analyses
Transcriptionalactivitywasmeasured24hoursaftertransfection
using the Dual-Luciferase Reporter Assay System (Promega
Biotech)onaChameleonluminometer(Hidex).TomeasureHNF-
1Aprotein levels, transfectedHeLacellswere lysed inpassive ly-
sis buffer (Promega Biotech) and proteinswere analyzed (from
2.5μgof total protein) bySDS-PAGEand immunoblottingusing
anHNF-1A-tag (anti-Xpress antibody, Life Technologies).

DNABinding Studies
The HNF-1A protein was produced in a coupled in vitro tran-
scription/translation System (TnT-T7, Promega Biotech). The
level of binding of HNF-1A proteins to a radiolabeled rat albu-
min oligonucleotidewas investigated by electrophoreticmo-
bility shift assays as previously described.22

Immunofluorescence
Analysis of nuclear vs cytosol localization ofHNF-1Aproteins
was performed in 500 cells using an HNF-1A-tag (anti-Xpress
antibody) andAlexaFluor 488 (Life Technologies) essentially
as reported previously.20

Results
Study Participants
Demographic and clinical characteristics of the 3756 partici-
pants in the discovery cohort are shown inTable 1. Only 2%of
type 2 diabetes cases had onset before 25 years, and 81% of
themwereoverweight or obese (BMI>25, calculated asweight
in kilograms divided by height in meters squared).

Genetic Studies
Exome-wide Search for Low-Frequency Variants Associated
With Type 2 Diabetes
Our hybrid selection libraries covered 76% of sequenced tar-
gets at 20x depth of coveragewith amean of 67.17x. The con-
cordance of nonreference genotypes between the sequence
data and the array data was 0.995. After quality control of se-
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quence data, 1 190 196 variants were observed in the whole-
exome sequencing data of 3756 samples (1794 type 2 diabetes
cases and 1962 controls; eTable 2 in theSupplement).Of these,
264 995variantswereobserved in at least 2 of our samples but
absent in the 1000GenomesProject23 and theExomeSequenc-
ing Project24 (eTable 3 in the Supplement).

Inoursingle-variantassociationanalyses,aclusterof linked
common missense variants in SLC16A11 were consistently as-
sociatedwithtype2diabetesprevalence(P = 2.08 × 10−10)ashad
beenpreviouslyreportedingenome-wideassociationstudiesby
the SIGMAT2DConsortium and others (eFigure 4A and eTable
4 in the Supplement).4,25

Among variants with minor allele frequency of less than
5%, a singlemissense variant departed from thenull distribu-
tion (eFigure 4B in the Supplement). This variant encoded an

NCBI NP_000536.5:p.E508K (p.E508K) substitution (NCBI
NC_000012.12:c.1522G>A; chr12:121437091_G>A) in exon 8 of
HNF1A, the gene responsible for the maturity onset diabetes
of the young type 3 (MODY3) subtype of MODY3 (Mendelian
Inheritance inManNo. 142410). The p.E508K variant was ob-
served in 37 type 2 diabetes cases (1 in homozygous form) and
in 7 participants without diabetes (OR, 5.48; 95% CI, 2.83-
10.61;P = 4.4 × 10−7;Figure 1 andFigure 2 andeFigure 5 in the
Supplement).

In our replication effort, the p.E508K variant was found
in the T2D-GENES Latino group26,27 but entirely absent in all
other populations, showing a nominally significant associa-
tion with increased prevalence for type 2 diabetes (7 affected
carriers and 1 nonaffected carrier; OR, 5.61; 95% CI, 1.34-
23.49; P = .0013). After de novo genotyping 1178 additional

Figure 1. Discovery and Replication of theHNF1A p.E508K Variant

1 10010 31.6
Odds Ratio (95% CI)

3.16

P Value
Source
Initial scan

Odds Ratio
(95% CI)

No. of Participants

Type 2
Diabetes Controls

Participants With p.E508K Variant

Frequency, %

Type 2
Diabetes Controls

No.

Type 2
Diabetes Controls

.0005MCDS11,12 16.04 (3.38-76.20)270 526 2.59 0.197 1

.0327MEC13 6.08 (1.16-31.87)482 438 1.45 0.237 1

.0702DMS4 6.00 (0.86-41.75)509 459 2.16 0.2211 1

.0063533 539 2.25 0.7412 4UIDS4 3.26 (1.40-7.60)
4.40 x 10–7SIGMA mega-analysis 5.48 (2.83-10.61)

.0013Replication summary 4.16 (1.75-9.92)

Replication studies
.0183T2D-GENES Latinos26,27 5.61 (1.34-23.49)1016 922 0.59 0.116 1
.0246DMS2 articlea 3.50 (1.17-10.44)427 751 2.11 0.539 4

2.39 x 10–9Overall summary 4.96 (2.93-8.38)

Forest plot showing odds ratio estimates and 95% confidence intervals at
p.E508K (squared boxes) from the 4 SIGMA studies, the SIGMA pooled
mega-analysis, the replication studies, and the overall meta-analysis. Odds
ratios for themeta-analyses are represented with a diamond. SIGMA
mega-analysis represents the combined results from the 4 SIGMA studies. DMS
indicates Diabetes in Mexico Study; MCDS, Mexico City Diabetes Study; MEC,

Multiethnic Cohort; UIDS, Universidad Nacional Autónoma deMéxico/Instituto
Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Diabetes Study;
T2D-GENES, Type 2 Diabetes Genetic Exploration by Next-Generation
Sequencing in Multi-Ethnic Samples.
a Represents data from the current article.

Figure 2. The HNF-1A ProteinWith a HeatMap of Diabetes-AssociatedMutations

Pseudo POU Homeo Transactivation 

DNA binding 

Dimerization Domains

Diabetes-associated 
mutations

1   Amino acids 32   100   199   287  631

p.E508K p.I27L p.P112L p.R229Q p.Q466X p.P447L

p.M490T

p.P379fsdelCT 

High (>60%) Low (<25%)Medium (45%-55%)

Frequency of reported mutated amino acid residues associated
with maturity onset diabetes of the young type 3 (MODY3)

The dimerization, DNA binding, and transactivation domains of the HNF-1A
protein49-51 are highlighted. The position of the p.E508Kmutation is shown as
well as a common variant (p.I27L), MODY3mutations studied (p.P112L,
p.R229Q, p.P379fsdelCT, p.P447L, p.Q466X), and a rare variant associated with
type 2 diabetes (p.M490T). The overlaid heat map illustrates howmany of the
amino acid residues of each HNF-1A domain have been reported to bemutated

and hence due to themonogenic diabetes formMODY3. Domain areas in red
have a higher concentration of reportedmutations than areas in orange and
green. Pseudo POU indicates protein domain that includes short sequence
motifs similar to regions in the POU family of transcriptional activators; Homeo,
protein homeodomain that binds DNA in a sequence-specific manner.
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Mexican self-identified indigenous individuals (DMS2, fur-
ther details are provided in the Supplement), we observed 9
affected carriers and4nonaffected carriers (OR, 3.50; 95%CI,
1.17-10.44;P = .0183).Combined, the2 replicationstudies iden-
tified 15 affected carriers and5nonaffected controls (OR, 4.16;
95% CI, 1.75-9.92; P = .0013). Combining all available data
yielded 52 affected carriers and 12 nonaffected controls (OR,
4.96; 95% CI, 2.93-8.38; an experiment-wide P = 2.39 × 10−9 ;
Figure 1).

We foundno evidence for p.E508K in the 1092 samples of
the 1000 Genomes Project,23 the 6503 samples in the Exome
Sequencing Project24 or in 11 160 non-Latino samples in the
T2D-GENESandGoT2Ddata sets. Analysis of local ancestry in
ourdata indicates that all p.E508Kcarriers inour studies carry
at least 1 segmentof inferredNativeAmericanancestry (eTable
5 in the Supplement).

In group tests that included combinations of rare (MAF
<1%)nonsynonymous, loss-of-functionvariants, or both inup
to 15 469genes (eTables 6 and 7 in the Supplement),we found
no significant associations after removing the effect of the
HNF1A p.E508K variant. The aggregated effect of these po-
tentially functional variants in 2 gene-sets of 13 MODY genes
and70previously implicated type 2diabetes geneswere simi-
larly negative after removing the effect of theHNF1Ap.E508K
variant (eTables 8 and 9 in the Supplement).

Functional Studies
Mutations in HNF1A that cause MODY diabetes alter protein
function through reduced transactivation, decreased bind-
ing to DNA, or disrupted nuclear localization.20 Because
p.E508K is located in theHNF-1A transactivation domain, we
investigated its effect on transactivationusing a reporter con-
struct assay inHeLa cells. Protein carrying p.E508Kwas com-
paredwithawild-typeHNF-1Avariantaswellas4otherHNF-1A
variants in the DNA-binding or transactivation domains:
p.M490T, which has been observed in 1 patient with type 2
diabetes,28 and 3 mutations (p.P447L, p.P379fsdelCT, and
p.R229Q)previously identified inpatientswithMODY3.29 The
p.E508Kmutant demonstrated lower transcriptional activity
on the HNF-1A-responsive rat albumin promoter than wild-
type HNF-1A (P < .0001) or p.M490T. However, the 3 MODY3
mutants showed greater reductions in transactivation
(Figure 3). Similar reductions in p.E508K transcriptional acti-
vation were found in MIN6 cells (eFigure 6A in the Supple-
ment), and using 2 different reporter constructs (GLUT2 and
HNF4A promoters; eFigure 6B in the Supplement). The
p.E508K mutant protein bound to an HNF-1A binding site-
containing oligonucleotide with equal affinity to the wild-
type protein (Figure 4 and eFigure 6C in the Supplement),
whereas 2 MODY3-associated mutants with mutations in the
DNA-bindingdomain,p.P112Landp.R229Q,demonstrated im-
paired DNA binding (Figure 4).20

Compared with wild-type HNF-1A, the p.E508K mutant
demonstrated slightly impaired nuclear targeting,with an in-
creased proportion of cells displaying both cytosolic and
nuclear staining.The shift innuclear localizationwas less than
that observed using the cytosol-retained HNF-1A mutant
p.Q466X (Figure 5andeFigure6D in theSupplement). Expres-

sionof thep.E508Kproteinwas47.5% lower than that ofwild-
type HNF-1A (P = 1.03×10−5; eFigure 6E in the Supplement).

Clinical Characteristics of p.E508K Carriers
Whencomparingp.E508Kcarrierswithnoncarriers among the
3756 participants in our study, we did not observe statisti-
cally significant differences in the mean (SD) age of diabetes
onset: 45.3 (11.2) years vs 47.5 (11.5) years, P = .49; BMI, 28.2;
(5.5)vs29.3 (5.3),P = .19;waist circumference inmen,92.9 (7.0)
cm vs 99.3 (11.0) cm, P = .14 or women, 98.0 (13.9) cm vs 99.7
(13.9) cm,P = .64;or in fastingglucose levels, 176.5 (84.6)mg/dL
vs 165.7 (75.6)mg/dL,P = .43 (To convert fasting glucose from
mg/dL to mmol/L, multiply by 0.0555; Table 2 and Figure 6).

Discussion
We performed whole-exome sequencing in 3756 individuals
ofMexicanandMexicanAmericanancestry andperformedan
exome-wide search for low-frequency and rare variants asso-
ciated with type 2 diabetes. The only rare variant with a sig-
nificant association with type 2 diabetes prevalence was the
p.E508K variant in HNF1A, the gene responsible for MODY3.
The effect size of the variant (OR, 4.96; 95%CI, 2.93-8.38)was
the largest observed todate for anydiabetes variantwith a fre-
quency more than 1 in 1000. This association was replicated
in 2 independent cohorts of Latinos andMexicanswith anOR
of similar magnitude. We also demonstrated, using tran-
siently transfected cellmodels, reduced levels of transactiva-
tionactivity forp.E508Kcomparedwithwild-typeHNF-1A.As
shown in binding assays, this reduction in activity was not

Figure 3. Transcriptional Activation of HNF-1A p.E508K asMeasured by
the Expression of the Firefly Luciferase Reporter Gene

1.0

0.1

N
or

m
al

iz
ed

 L
uc

ife
ra

se
 A

ct
iv

ity
, F

ol
d 

Ac
tiv

ity

Type 2 Diabetes Maturity Onset Diabetes
of the Young Type 3

pcDNA3.1 Wild-type p.E508K
TA

p.M490T
TA

p.P447L
TA

p.P379fsdelCT
TA

p.R229Q
DNAbind

0.2

0.5

Normal

HNF-1A Domain

Phenotype

HeLa cells were transient transfected with nonmutant or mutantHNF1A
plasmids and reporter plasmids pGL3-RA and pRL-SV40. Measurements are
given in fold activity relative to wild-type. Each point represents themean
(error bars indicate 95% CIs) of 9 readings. TA indicates variants that affect the
transactivation domain; DNAbind, the DNA binding domain; and pcDNA3.1, the
empty pcDNA3.1 vector. All values were P < .05 compared with wild-type
activity.
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driven by differences in DNA-binding affinity but may be at-
tributable to reduced protein expression and altered nuclear
localization of the mutant protein.

MODY is a monogenic cause of diabetes, which usually
manifests at earlier ages (<25 years) and presents in nonobese
patients.30 Each MODY family carries a rare coding mutation
in 1 of 13 genes that has an autosomal dominant pattern of
transmission.30 Mutations in the known MODY genes are
thought to explain between 0.18% and 1.8% of all type 2 dia-
betes cases.31-34

The p.E508K variant has been reported in 2 published
articles,35,36bothreportingon individualswithMODY. In1case,
a family member had early onset diabetes (age 17 years), and
carried both HNF1A p.E508K and a mutation in HNF4A,
p.R80Q.The father fromwhomp.E508Kwas inheritedwasdi-
agnosed with type 2 diabetes at age 57 years.35,36 The finding

of these variants in patients with MODY suggested that they
might be high-penetrance alleles. Our study in large popula-
tionswithout ascertainment bias for early-onset showed that
p.E508Kwas associated with a 5-fold increase in prevalence,
but incomplete penetrance. Moreover, in our study, carriers
of p.E508K did not show early-onset of type 2 diabetes, were
indistinguishable from the wider type 2 diabetes population
inadiposityorglycemia,andthusdidnot fulfill classicalMODY3
diagnostic criteria (Table 2, Figure 6). These data are consis-
tent with the possibility that p.E508K is a weaker allele than
someotherMODY3mutationsandthatascertainmentbiasmay
have ledtooverestimationof theeffectsof thisandotherMODY
mutations, as suggested previously.28

A private mutation (G319S) in HNF1A has been found in
Oji-Cree populations associated with early-onset type 2
diabetes.37 Also, a very rare frameshift deletion in HNF1A,

Figure 4. DNA Binding of HNF-1A p.E508K to the Rat Albumin Promoter as Studied by Electrophoretic Mobility
Shift Assay
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Xpress-epitope-tagged wild-type and
p.E508Kmutant proteins incubated
with a radiolabeled DNA fragment
containing the HNF-1A-binding site in
the rat albumin promoter. A, Two
HNF-1Amutants (p.P112L and
p.R229Q) with impaired DNA-binding
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mobility of protein-DNA complex due
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was performed by adding increasing
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Figure 5. Intracellular Localization of HNF-1A p.E508K in Transiently Transfected HeLa cells andMIN6 β cells

Wild-type HNF-1A

HeLa cells

MIN6 β cells

p.Q466X mutation (control)p.E508K mutation

Cells were transfected for 48 hours
and Xpress-epitope-tagged HNF-1A
proteins detected with anti-Xpress
antibody and Alexa488 (green). DNA
staining (DAPI) is shown in blue. A
previously reported HNF-1Amutant,
p.Q466X, with impaired nuclear
localization was included as a control.
For the purpose of clarity, the nuclei
have beenmarked with a solid white
line. To illustrate cytosolic
accumulation, the cell membrane has
beenmarked with a dotted white line
for mutants p.E508K and p.Q466X.
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290fsdelC,was recently associatedwithMODYand type 2dia-
betes in the Icelandic population.10,38

Our studysurveyedvariantsacross themajorityofprotein-
coding exons in a sizable population, providing the highest-
resolution scan to date of the contribution of protein-coding
genetic variation to type 2diabetes.Our studyhad80%power
todetectvariantswith theORandcarrier frequencyofp.E508K
(5-fold and 1% in the population). For variants of higher fre-
quency,ourpowerwassufficient todetectasmallereffect (80%
power for variants with frequency >2% and OR>3.3). We per-
formedbothsingle-variant analysis andburden tests that com-
bined rarevariants in eachgene.Only 1 rare codingvariant and

1 gene showed significant association with type 2 diabetes
prevalence. Thesedata suggest that low-frequencyvariants in
coding regions explain only a small fraction of theheritability
of type 2 diabetes.

Our study has limitations. Current exome-capture meth-
ods are imperfect. Additional low-frequency variants associ-
ated with type 2 diabetes might have been missed due to in-
complete coverage of all human exons, and, by design, this
technology does not detect variants in the noncoding major-
ityof thegenome.Althougha2%frequencyofp.E508Kamong
type 2 diabetes cases could translate into more than 100 000
carriers inMexico alone, this number is still far from explain-

Table 2. Phenotypic Characteristics of 3756 Participants From the SIGMA Studies According to Type 2 Diabetes Status and p.E508K Carrier Status

Mean (SD) P Value
Carriers vs NoncarriersType 2 Diabetes Controls

p.E508K
(n = 37)

p.E508
(n = 1757)

p.E508K
(n = 7)

p.E508
(n = 1955)

Type 2
Diabetes Controls

Age, y 55.9 (9.6) 57.6 (10.7) 54.3 (9.2) 57.3 (8.9) .34 .34

Age at onset, y 45.3 (11.2) 47.5 (11.5) .49

Men 11 707 3 739

Women 26 1050 4 1216

Fasting glucose, mg/dL 176.5 (84.6) 165.7 (75.6) 86.4 (9.0) 88.2 (9.0) .43 .37

BMI 28.2 (5.5) 29.3 (5.3) 27.1 (3.5) 28.3 (4.5) .19 .55

Waist, cm

Men 92.9 (7.0) 99.3 (11.1) 90.5 (19.8) 97.6 (9.7) .14 .64

Women 98.0 (13.9) 99.7 (13.9) 95.5 (7.8) 94.9 (13.3) .64 .88

Waist to hip ratio, cm

Men 0.96 (0.05) 0.97 (0.07) 0.96 (NA)a 0.97 (0.10) .54 .88

Women 0.93 (0.07) 0.92 (0.08) 0.91 (0.05) 0.90 (0.09) .90 .85

Abbreviations: BMI, bodymass index, calculated as weight in kilograms divided
by height in meters squared; NA, not applicable.

SI conversion factor: To convert fasting glucose frommg/dL tommol/L, multiply
by 0.0555.

a Only 1 participant with this measurement.

Figure 6. Phenotypic Distribution of p.E508K Carriers
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The scatterplot shows the age of
onset and the bodymass index (BMI)
for each p.E508K carrier (filled circle)
with type 2 diabetes in the discovery
studies with data on age of onset and
BMI available (n = 29). The vertical
and horizontal lines represent
classical thresholds for the clinical
diagnosis of MODY3 (age of onset
<25 years and BMI<25). Histograms
showing distributions of BMI and age
of diabetes onset 1274 SIGMA
discovery cohort participants
(p.E508K carriers and noncarriers
with Type 2 diabetes) are shown on
the left and below the scatterplot. In
the box-and-whisker plots, the
central horizontal line indicates
median, with box extremes indicating
the first and third quartiles. The
whiskers indicate maximum and
minimum values after removal of
outliers (unfilled circles).
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ing the expected overall genetic contribution to type 2 diabe-
tes. Although our study represents the largest published
exome-based survey of type 2 diabetes to date, larger sample
sizes will be needed to perform an adequately powered sur-
vey of variants at frequencies lower than 1%.39,40

The current study and a recent publication reporting an
association of common variants in SLC16A11with type 2 dia-
betes in Latinos4 demonstrate the value of studying diverse
populations. The HNF1A p.E508K variant has not been re-
ported in other whole-exome sequencing or candidate gene
association studies for type 2 diabetes of European9,10,41 and
Asian42-45 ancestry. We surveyed a total of 25 663 exomes in
this study, both from our own study and collaborating con-
sortia. Thep.E508Kvariantwas identified only in individuals
fromMexicoor inLatinos fromthe southernUnitedStates, in-
dicating that this variant is only found at appreciable fre-
quency inatightly restrictedsubsetofhumanpopulations.Fur-
ther studies will be required to characterize the fine-scale
geographic distribution of p.E508K and its association with
type2diabetesprevalence inotherLatinopopulations.Our re-
sults emphasize that systematic discovery of the genetic de-
terminantsof complexdisease, especially for rarevariants,will
require surveys across a wide range of human populations.

Theassociationof thep.E508Kvariantwith type2diabetes
prevalence in theLatinopopulationhaspotential clinical impli-
cations. Approximately 4 in a thousandpeople in Latino popu-
lations carry p.E508K, and these individuals have a 5-fold in-
crease in prevalence for type 2 diabetes (2.1% in cases, 0.35% in
controls). Second, it isknownthatpatientswithMODY3aresen-
sitive tosulfonylureas,46experiencing improvedmetaboliccon-

trol on sulfonylurea therapy compared with insulin,47 in addi-
tion to improved quality of life due to reduced injections and
capillary glucose measurements. Also, these patients have a
5-foldhigherresponsetothesulfonylureagliclazidethantomet-
formin, which is the first-line drug of choice for the treatment
of type2diabetes.48 If thiswas shown tobe the case for carriers
ofp.E508K, it couldmotivatechoiceof sulfonylurea therapy for
theestimated2%ofall Latinopatientswith type2diabeteswho
carry this variant. Because this responsemay be dependent on
additional geneticor environmental factors, further studies are
needed to determine whether metformin or a sulfonylurea
should be the first line of treatment in these patients.

Conclusions
Using whole-exome sequencing, we identified a single low-
frequencymissense variant (p.E508K) inHNF1A, the gene re-
sponsible for a monogenic, early-onset form of diabetes
(MODY3), that was associated with type 2 diabetes preva-
lence in general populations of Latinos. This rare variant was
associated with a 5-fold increase in the prevalence of type 2
diabetes, but it was not associated with an early-onset form
of diabetes, and, in our data, affected carriers were clinically
indistinguishable from the wider type 2 diabetes population.
In vitro, p.E508K negatively affected transcriptional activa-
tion, protein expression, andnuclear localization. Further re-
search iswarranted to evaluate the clinical relevance of these
findings, including thebenefits of selectivepopulation screen-
ing and the choice of genotype-guided therapeutic regimens.
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SUPPLEMENTARY METHODS 

Study participants of the discovery stage 

Diabetes in Mexico Study (DMS): 
Participants were recruited between 2010 and 2011 from two tertiary level institutions (IMSS and ISSSTE) located in 
Mexico City.1 Phenotyping was done centrally and type 2 diabetes (T2D) was diagnosed based on American Diabetes 
Association (ADA) criteria.  811 unrelated healthy subjects older than 45 years and with fasting glucose levels below 
100 mg/dL were classifiedas controls. 569 unrelated individuals, older than 18 years, with either previous T2D 
diagnosis or fasting glucose levels above 125 mg/dL were included as T2D cases.  Individuals with fasting glucose 
levels between 100-125 mg/dL were excluded.  Informed consent was obtained from all participants.  The study was 
conducted with the approval of the Ethics and Research Committees of all institutions involved. Genomic DNA was 
purified from whole blood samples using a modified salting-out precipitation method (Gentra Puregene, Qiagen 
Systems, Inc., Valencia, CA, USA). 

Mexico City Diabetes Study (MCDS): 
The Mexico City Diabetes Study is a population based prospective investigation.2,3 All 35-64 years of age men and 
non-pregnant women residing in the study site (low income neighborhoods equivalent to 6 census tracks with a total 
population of 15,000 inhabitants) were interviewed and invited to participate in the study.  We had a response rate of 
67% for the initial exam. Participant follow-up information included in this study was collected in 2008. Diagnostic 
criteria for T2D were as recommended by the ADA: a fasting glucose of 126 mg/dL or greater, or a 2 hr post 75 gr of 
glucose load of 200 mg/dl or greater. If a participant was diagnosed with diabetes by a physician and was under 
pharmacologic therapy for diabetes s/he was considered as having diabetes regardless the blood glucose levels.  The 
study was conducted with the approval of the Ethics and Research Committees of all institutions.  Informed consent 
was obtained from all participants.  Genomic DNA was extracted from whole blood using the QIAmp 96 DNA Blood 
Ki5 (12) (Qiagen, Cat. No. 51162). 

Multiethnic Cohort (MEC): 
The MEC consists of 215,251 men and women in Hawaii and Los Angeles, and is comprised of mainly five self-
reported racial/ethnic populations: African Americans, Japanese Americans, Latinos, Native Hawaiians and European 
Americans4. Between 1993 and 1996, adults between 45 and 75 years old were enrolled by completing a 26-page, self-
administered questionnaire asking detailed information about dietary habits, demographic factors, level of education, 
personal behaviors, and history of prior medical conditions (e.g., diabetes).  Potential cohort members were identified 
through Department of Motor Vehicles drivers' license files, voter registration files and Health Care Financing 
Administration data files. In 2001, a short follow-up questionnaire was sent to update information on 
dietary habits, as well as to obtain information about new diagnoses of medical conditions since 
recruitment.  Between 2003 and 2007, we re-administered a modified version of the baseline questionnaire.  
All questionnaires inquired about history of diabetes, without specification as to type (1 vs. 2).  Between 
1995 and 2004, blood specimens were collected from ~67,000 MEC participants at which time a short 
questionnaire was administered to update certain exposures, and collect current information about 
medication use. 

Cohort members in California are linked each year to the California Office of Statewide Health 
Planning and Development (OSHPD) hospitalization discharge database which consists of mandatory 
records of all in-patient hospitalizations at most acute-care facilities in California. Records include 
information on the principal diagnosis plus up to 24 other diagnoses (coded according to ICD-9), including 
type 1 diabetes (T1D) and T2D. In Hawaii cohort members have been linked with the diabetes care 
registries for subjects with Hawaii Medical Service Association (HMSA) and Kaiser Permanente Hawaii 
(KPH) health plans (~90% of the Hawaii population has one of these two plans).  Information from these 
additional databases has been utilized to assess the percentage of T2D controls (as defined below) with 
undiagnosed T2D, as well as the percentage of identified diabetes cases with T1D rather than T2D.  Based 
on the OSHPD database <3% of T2D cases had a previous diagnosis of T1D. We did not use these sources 
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to identify T2D cases because they did not include information on diabetes medications, one of our 
inclusion criteria for cases (see below). 
        In the MEC, diabetic cases were defined using the following criteria: (a) a self-report of diabetes on 
the baseline questionnaire, 2nd questionnaire or 3rd questionnaire; and (b) self-report of taking medication 
for T2D at the time of blood draw; and (c) no diagnosis of T1D in the absence of a T2D diagnosis from the 
OSHPD (California Residents).  Controls were defined as: (a) no self-report of diabetes on any of the 
questionnaires while having completed a minimum of 2 of the 3 (~80% of controls returned all 3 
questionnaires); and (b) no use of medications for T2D at the time of blood draw; and (c) no diabetes 
diagnosis (type 1 or 2) from the OSHPD, HMSA or KPH registries.  To preserve DNA for genetic studies 
of cancer in the MEC, subjects with an incident cancer diagnosis at time of selection for this study were 
excluded.  Controls were frequency matched to cases on sex, ethnicity and age at entry into the cohort (5-
year age groups) and for Latinos, place of birth (U.S. vs. Mexico, South or Central America), oversampling 
African American, Native Hawaiian and European American controls to increase statistical power.  Many 
of the T2D variants have also been evaluated in studies of cancer in the MEC which allowed for inclusion 
of additional controls who met the criteria above. Informed consent was obtained from all participants. The 
study was conducted with the approval of the Ethics and Research Committees of all institutions. Genomic 
DNA extraction was done using Qiagen from buffy coat. 

UNAM/INCMNSZ Diabetes Study (UIDS): 
Cases were recruited between 2011 and 2013 at the outpatient diabetes clinic of the Department of 
Endocrinology and Metabolism of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador 
Zubirán (INCMNSZ)1.  All Mexican-mestizo individuals were invited to participate in the study.  
Diagnosis of T2D was done centrally following the ADA criteria, i.e., fasting plasma glucose values ≥126 
mg/dL, current treatment with a hypoglycemic agent, or casual glucose values ≥200 mg/dL. 
Control subjects were recruited from 2007 to 2013 from a cohort of adults aged 45 years or older among 
government employees, blue collar workers and subjects seeking for attention in medical units for any 
condition besides those considered as exclusion criteria (see below).  Normoglycemic status was defined as 
having a fasting plasma glucose concentration < 100 mg/dl and no previous history of hyperglycemia, 
gestational diabetes or use of metformin. 
Patients were interviewed following a standardized questionnaire; it included the medical history, a 
previously validated, three days food record and a physical activity registry.  In addition a blood sample 
(after 9-12 hours of fasting) was obtained.  The questionnaire included demographic, socio-economic and 
medical history of the patients and their family.  Blood pressure, height, waist circumference and weight 
must be measured in the same visit.  For taking blood pressure, systolic and diastolic pressure were 
recorded using a mercury sphygmomanometer; subjects remained seated and at rest for five minutes before 
measuring. 
Inclusion criteria: Men or women aged 25 years or older, with BMI greater than 20 but lower than 40 
kg/m2. 
Exclusion criteria: Diabetes, coronary heart disease, stroke, transient ischemic attack, lower limb 
amputations, alcoholism (more than 10 servings of alcohol per week) or any disease that in opinion of the 
researcher may limit life expectancy to less than 2 years.  Subjects that planned to move out of town 
permanently during the next three years were also excluded.  Pregnant women, individuals with drug 
addictions, the use of systemic corticosteroids in pharmacologic doses (intravenous, oral or injectable, 
including injections in the joints) were exclusion criteria also. Replacement dosage of systemic 
corticosteroids (up 7.5 mg/day of prednisone or 30 mg/day of hydrocortisone or its equivalent; as well as 
inhaled or topical corticosteroids) was allowed into the study.  Other exclusion criteria were: active liver 
disease (defined as AST (SGOT) or ALT (SGPT) > 2.0 x upper limit of the normal range, alkaline 
phosphatase (ALK-P) > 1.5 x upper limit of the normal range or total bilirubin > 1.5 x upper limit of the 
normal range), significant renal dysfunction (defined as serum creatinine > 1.7 upper limit of the normal 
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Weinberg equilibrium p-value < 5x10-8 in controls were excluded from association analysis. 

Sequencing or genotyping of individuals used in the replication stage 

T2D-GENES Study 
The exons of HNF1A were sequenced in 13,098 additional individuals as part of the whole-exome 
sequencing studies performed through the Genetics of Type 2 Diabetes (GoT2D) and Type 2 Diabetes 
Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) consortia. 
Individuals were selected spanning 5 ethnicities: European (the FUSION study8 [FUSION], the METSIM 
study9 [METSIM], KORA-gen10 [KORA], the WTCCC/UKT2D consortium11,12  and the UK Adult Twin 
Registry13 [UKT2D], as well as Ashkenazi individuals recruited from the metropolitan New York region14 
[Ashkenazim] and small number of individuals from the Finnish [Botnia] and Swedish [Malmo] 
prospective cohorts used for the initial sequencing experiment15-22), African-American (the Jackson Heart 
Study (JHS) cohort [JHS] as well as additional individuals recruited from North Carolina, South Carolina, 
Georgia, Tennessee, or Virginia23 [WFS]), South Asian (the London Life Sciences Prospective Population 
Study (LOLIPOP)24,25 [LOLIPOP] and Singapore Indian Eye Study (SINDI)26 [Singapore Indians]), East 
Asian (the Korean Association REsource (KARE)27 [KARE] as well as the Singapore Diabetes Cohort 
Study (SDCS) and Singapore Prospective Study Program28-30 [Singapore Chinese]), and Latinos/Hispanic 
(the San Antonio Family Heart Study (FHS)31, the San Antonio Family Diabetes/Gallbladder Study 
(SAFDGS)32 , the Veterans Administration Genetic Epidemiology Study (VAGES)33, the Family 
Investigation of Nephropathy and Diabetes (FIND)34, San Antonio component [San Antonio], and 
individuals from Starr County, TX35 [Starr County]). Data generation and processing was performed in an 
identical fashion as for the initial sequencing experiment, although target capture was performed with the 
Agilent SureSelect Human All Exon platform rather than a custom hybrid capture array. 

Diabetes in Mexico Study 2 (DMS2): 
Participants were recruited between 2011 and 2012 from 18 different ethnic groups along Mexico 
(Tarahumara, Yaqui, Mayo, Mixteco, Nahuatl, Otomi, Chinanteco, Mixe, Zapoteco, Mazateco, Totonaco, 
Huasteco, Maya, Kanjobal, Mame, Poptijacalteco, Kaqchikel, Tojolabal).  Inclusion criteria were that they 
identified themselves as indigenous, both parents or their four grandparents speak the same native language 
and were born in the same community. Phenotyping was done centrally and diagnosis of T2D was made 
based on ADA criteria.  A total of 751 unrelated healthy subjects older than 45 years and with fasting 
glucose levels below 100 mg/dL were classified as controls. We also included 427 unrelated individuals, 
older than 18 years with either previous T2D diagnosis or fasting glucose levels above 125 mg/dL, as T2D 
cases.  Individuals with fasting glycemia between 100-125 mg/dL were excluded.  Informed consent was 
obtained from all participants.  The study was conducted with the approval of the Ethics and Research 
Committees of all institutions involved. Genomic DNA was purified from whole blood samples using a 
modified salting-out precipitation method (Gentra Puregene, Qiagen Systems, Inc., Valencia, CA, USA). 
Genotyping of the HNF1A p.E508K variant  was performed using  a custom TaqMan SNP Genotyping 
Assay (Applied Biosystems, Foster City, CA, USA) and genotype of each sample was assigned 
automatically by SDS 2.3 software (Applied Biosystems, Foster City, CA, USA). For the genotyping 
quality control, 5% of samples were randomly selected and measured in duplicates. TaqMan probes: Allele 
‘G’  V IC- CCACAAGCCCGAGGTG . Allele ‘A’ FAM- CACAAGCCCAAGGTG. Five positive controls 
were added to all plates and verified that their genotype matched the expected.  
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Statistical analyzes 

Single variant analysis 

Association analysis of each single variant was computed first in all SIGMA samples as well as replication 
analysis of p.E508K in the additional sequenced individuals (from the T2D-Genes consortium) were done 
using a mixed linear model implemented in EMMAX on the LTsoft transformed phenotype.36  EMMAX 
implements a mixed linear model that accounts for different layers of sample structure, including 
population stratification and sample relatedness. A kinship matrix was first computed using independent 
SNPs (MAF >1%) using EMMAX; association p-values were then computed for p.E508K. As EMMAX 
and LTsoft transformed phenotypes do not produce effect size estimates for dichotomous traits, point 
estimates for odds ratios were computed via a standard logistic regression as implemented in PLINK37 with 
age, gender, BMI and 10 principal components as covariates (computed via the EIGENSTRAT38 software 
package from the same SNPs as for the kinship matrix). These were then transformed into 95% Wald 
confidence intervals using standard error estimates back-calculated from the p-values produced by the 
linear mixed model. In the DMS2 dataset a linear regression implemented on PLINK was used on the 
LTsoft transformed phenotype to estimate significance. The 95% OR confidence intervals were estimated 
in the same way described above.  

The resulting association statistics from the discovery and replication studies were combined via an inverse 
variance based fixed-effects meta-analysis (as implemented in the METAL software package39) to obtain 
an estimated odds ratio and P-value for association of p.E508K with type 2 diabetes. 

Local ancestry analysis 

Local ancestry estimation was performed using LAMP-LD40
 version 1.0 with previously generated array 

data on the same SIGMA samples1. Panels for inference included a diverse collection of 227 Native 
American samples from Central America and Mexico41,42, 72 Southern Europeans from HGDP and 12 
Spanish individuals43, and 109 Yoruba Africans (YRI) from HapMap44. Prior to performing local ancestry 
inference, the panels were merged, yielding an intersected SNP set of 252,402 markers. The panels were 
then jointly phased using SHAPEIT45

 version 1.532. Next the SNPs from the panels and the SIGMA data 
were intersected, yielding 235,660 SNPs, and LAMP-LD was run to infer local ancestry. 

Conditional analyzes 

Common variants (rs1169288, rs7957197) in HNF1A have previously been reported to be associated with 
T2D.11,46 We examined both variants in our cohort and found neither to be significantly associated with 
T2D risk (rs1169288 P=0.07, rs7957197 P=0.19). 

We conducted statistical conditional analyzes to evaluate the influence of known T2D variants (rs7957197, 
rs1169288) in the HNF1A gene to the novel variant. Genotypes from the same subjects within GWAS 
dataset previously described1 were used for rs7957197. Sixty one samples did not have genotype 
information for this variant and therefore the conditional analysis was based on 3730 samples. The 
conditional analyzes was carried out with a logistic regression using age, sex, BMI, 10 PCs and the variant 
to condition on implemented in PLINK.  The effect of HNF1A p.E508K was unchanged after adjustment 
for each of these variants and therefore represents an independent signal (data not shown). 
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Burden and Gene-set tests 

In addition to single variant testing, Sequence Kernel Association Test (SKAT)47 and collapsing tests48 
were used to test  the possibility of genes and groups of genes contributing to disease susceptibility via 
combinations of rare variants (burden tests). Burden tests included rare (MAF <1%) non-synonymous 
and/or loss-of-function variants in up to 15,469 genes. 

We also tested the cumulative effect of these potentially functional variants in two gene-sets: 13 MODY 
genes: HNF1A, HNF1B, KCNJ11, ABCC8, BLK, INS, NEUROD1, PDX1, INS-IGF2, HNF4A, GCK, 
KLF11, CEL; and a second gene-set of genes in 70 previously implicated T2D loci: ADAMTS9, ADCY5, 
ANK1, ANKRD55, AP3S2, ARAP1, BCAR1, BCL11A, BCL2, C2CD4A, CAMK1D, CCND2, CDC123, 
CDKAL1, CDKN2A, CDKN2B, CILP2, DGKB, DUSP8, DUSP9, FITM2, FTO, GCC1, GCK, GCKR, 
GIPR, GLIS3, GRB14, GRK5, HHEX, HMG20A, HMGA2, HNF1A, HNF1B, HNF4A, IDE, IGF2BP2, 
IRS1, JAZF1, KCNJ11, KCNK16, KCNQ1, KLF14, KLHDC5, LAMA1, LGR5, MACF1, MAEA, MC4R, 
MTNR1B, NOTCH2, PEPD, PPARG, PRC1, PROX1, PSMD6, PTPRD, R3HDML, RASGRP1, RBMS1, 
RND3, SGCG, SLC16A11, SLC16A13, SLC30A8, SPRY2, SRR, ST64GAL1, TCF7L2, THADA, TLE1, 
TLE4, TMEM163, TP53INP1, TSPAN8, UBE2E2, VPS26A, WFS1, ZBED3, ZFAND3, ZFAND6, ZMIZ1.49 
Non-synonymous and loss-of-function variants with a minor allele frequency <1% were extracted from 
these genes and were used as input for association with T2D.  

Functional characterization of HNF1A p.E508K variant 

Plasmids, Cell Culture and Transfections 

We used the human liver HNF1A cDNA in the expression vector pcDNA3.1/HisC for all cell studies50. 
HNF1A mutants were made using the QuikChange Site-Directed XL Mutagenesis Kit (Stratagene). All 
sequences were verified by Sanger DNA sequencing. The firefly luciferase reporter gene construct pGL3-
RA, containing the promoter of the rat albumin gene, and the pRL-SV40 reporter vector encoding the 
renilla luciferase gene, was kindly provided by Professor Graeme I. Bell, University of Chicago, Chicago, 
IL. The reporter gene constructs pGL3-HNF4AP2 and pGL3-GLUT2 (containing human HNF4A P2 
promoter and mouse Glut2 promoter, respectively) were kindly provided by Dr. María-Angeles Navas, 
Complutense University of Madrid, Spain.51 HeLa cells and MIN6 β-cells were grown as previously 
described 50,52 and transfected using the Metafectene Pro (Biontex-USA, Dan Diego, CA) or Lipofectamine 
2000 (Life Technologies, Carlsbad, CA), respectively.  

Transactivation and Protein Expression Analyses 

HeLa or MIN6 cells were transiently transfected with nonmutant and/or mutant HNF1A plasmids together 
with pRL-SV40 and the reporter plasmids pGL3-RA, pGL3-HNF4AP2 or pGL3-GLUT2. Transcriptional 
activity was measured 24 h after transfection using the Dual-Luciferase Reporter Assay System (Promega 
Biotech, Madison, WI) on a Chameleon luminometer (Hidex, Turku, Finland). To measure expression 
levels of nonmutant and p.E508K HNF-1A proteins, we analyzed cell lysates (2.5 µg total protein) from 
transfected HeLa cells lysed in passive lysis buffer (Promega Biotech) by SDS-PAGE and immunoblotting 
using an anti-Xpress antibody (Life Technologies). HNF-1A protein expression levels were quantitated by 
densitometric analyses and were normalized to actin (Santa Cruz Biotechnology, Dallas, TX). 
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DNA Binding Studies 

HNF-1A proteins were expressed in an in vitro coupled transcription/translation system (TnT-T7 
transcription/translation system, Promega Biotech). The level of HNF-1A binding to a radiolabeled rat 
albumin oligonucleotide was investigated by electrophoretic mobility shift assays (EMSA) as previously 
described.53 Protein-DNA samples were analyzed by 6% non-denaturing polyacrylamide gel 
electrophoresis and subsequent autoradiography. We quantified the level of binding by measuring the 
intensity of the HNF-1A-oligonucleotide complexes. Competition assays were performed by adding 
increasing amounts of non-labeled oligonucleotides and supershift analyses by the addition of HNF-1A-tag 
specific antibody (anti-Xpress antibody) to the binding reaction. 

Immuofluorescence 

We transiently transfected HeLa and MIN6 cells with nonmutant or mutant HNF1A. The p.Q466X mutant 
was included as a positive control for impaired nuclear localization in HeLa cells, as previously reported.53  
The nuclear/cytosol distribution of HNF-1A proteins was detected by the HNF-1A-tag (anti-Xpress) 
antibody and Alexa Fluor 488 (green) essentially as reported before.50  

Statistical Analysis 

All data are expressed as means ± SD, and experiments were performed at least on three independent 
occasions unless otherwise specified. Statistical analyses were performed using 2-tailed Student's t test, and 
a P value <0.05 was considered significant.  
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Supplementary Figures 
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eFigure 1. Principal component analysis including parental samples.  
Principal components calculated using data from samples collected by the 
Human Genome Diversity Project (HGDP) and 1000 Genomes Project. PCA 
projection of SIGMA onto HGDP Yoruba, French, Karitiana and Han (Chinese) 
populations before ancestry quality control filters were applied (a), with cohort 
centroids as indicated, and after all quality control filters were applied (b), and 
after selection of individuals with highest Native American ancestry (c), this 
dataset was used for whole-exome sequencing (n=3,756)..  

c 
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eFigure 2. Proportions of Native American ancestry. 
Boxplots representing proportions of Native American ancestry for each SIGMA 
study included in the discovery stage. A. SIGMA samples before selection of high 
Native American ancestry. B. SIGMA samples after selection of high Native 
American ancestry (n=3,756). Convention for box-and-whisker plots: the central 
horizontal lines indicate the median; the extremes of the boxes indicate the 1st 
and 3rd quartile; the top whisker indicate maximum value after removing outliers; 
bottom whisker indicate minimum value after removing outliers; outliers are 
represented as unfilled circles. 
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eFigure 3. Principal component analysis of exome-sequenced samples in 
SIGMA. 
Scatterplots for different combinations of principal components (i.e., C1 vs C2; 
C1 vs C3; C2 vs C3; C3 vs C4). Each dot represents a participant of each one of 
the four SIGMA studies included in the discovery stage (n=3,756). Figures in the 
same columns and rows share the same axes and are therefore not shown. 
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eFigure 4. Quantile-Quantile plot of observed vs expected test statistics 
Quantile-Quantile (QQ) plot showing observed (y-axis) vs expected (x-axis) of 
the test statistics of the SIGMA T2D discovery study (n=3,756). A) Common 
variants (MAF > 0.05), B) Low frequent and rare variants (MAC > 15 and MAF < 
0.05). Abbreviations: T2D, Type 2 Diabetes; LT-SOFT, liability threshold 
transformmed phenotype; MAC, Minor allele count; MAF, Minor allele frequency; 
P_EMMAX, P value estimated with the software EMMAX.  

a 
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eFigure 5. Regional association plot of the HNF1A locus. 
The x-axis represents genomic position in chromosome 12 and the y-axis 
represents the –log10 P of association with type 2 diabetes in the SIGMA 
discovery cohort (n=3,756). Black boxes represent exons interconnected by 
introns (lines). In purple are local recombination rates. Red horizontal line 
indicates P < 5 x 10-8. 
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eFigure 6. Transactivation and subcellular localization experiments 
A-B. Transcriptional activation of WT and p.E508K HNF-1A as measured by the 
expression of the firefly luciferase reporter gene in HeLa or MIN6 cells. Cells 
were transient transfected with the indicated plasmids together with reporter 
plasmids pGL3-RA and pRL-SV40. Measurements are given in fold activity 
relative to wild-type activity. Each point represents the mean (error bars indicate 
95% confidence intervals) of nine readings (n = 9), for the wild-type and each 
mutant. All values were statistically significant (P < .05) compared to wild-type 
activity. TA denotes transactivation domain, DNAbind the DNA binding domain, 
WT meaning wild-type and pcDNA3.1 meaning empty pcDNA3.1 vector. B). 
Transactivation detected with reporter constructs pGL3-GLUT2 or pGL3-
HNF4AP2 in HeLa and MIN6 cells. C) Uncut EMSA gel from figure 4A. D) 
Quantification of the subcellular localization of wild-type and HNF-1A p.E508K in 
HeLa and MIN6 cells. Error bars indicate the variance in percent (%) number of 
cells demonstrating cytosolic versus nuclear HNF1A accumulation, obtained from 
3 individual experiments. E) Cell lysate from transfected HeLa cells used in 
transactivation assay in Figure 3 were here analyzed by SDS-PAGE and 
immunoblotting (anti-Xpress antibody). The level of HNF-1A protein expression 
was normalized to actin.  
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SUPPLEMENTARY TABLES 
 
 

eTable 1. Study descriptives of replication studies 
 

Study 
/ 

Referen
ces Ancestry Type 

Number 
of 

sample
s 

Per cent 
male 

Age 
(years) 

Age-of-
onset 

(years) 
BMI 

(kg/m2) 

Fasting 
Plasma 
glucose 
(mmol/l) 

T2D-
GENES 

/ 
Ref 6-33 

 African-
American 

controls 1063 40.4 
53.5 

(11.7) NA 
30.9 
(6.8) 4.8 (0.3) 

cases 1037 36.9 
61 

(10.2) 
47.9 

(10.4) 
31.3 
(6.8) 7.5 (3.2) 

East-Asian controls 1159 40.2 
60.7 
(6.2) NA 

23.3 
(3.3) 4.6 (0.5) 

cases 1018 51.3 
55.8 
(8.7) 

44.9 
(9.2) 

25.7 
(3.5) 7.1 (2.6) 

European controls 2247 57.1 
64.6 

(11.6) NA 
28.7 
(5.2) 5.2 (0.6) 

cases 2415 62.2 
58.4 
(9.9) 

51.4 
(7.7) 

28.1 
(4.7) 8.1 (2.3) 

Hispanic/La
tinos 

controls 922 31 
42.3 

(12.6) NA 
30.2 
(6.4) 4.8 (0.5) 

cases 1016 40.9 
56.7 
(12) 

46.2 
(12.1) 

31.9 
(6.6) 9.8 (3.9) 

South-
Asian 

controls 1126 66.8 
59.6 

(10.3) NA 
26.2 
(4.3) 5.2 (0.4) 

cases 1095 70.2 
56.9 
(8.9) 

50.7 
(10.6) 

26.8 
(4.2) 9.1 (3.2) 

DMS2 
/ 

This 
paper Mexican 

controls 751 26.4 
59.57 

(11.42) NA 
27.21 
(4.99) 

4.77 
(0.54) 

cases 427 38.5 
57.29 

(12.62) 
49.15 

(11.87) 
28.00 
(4.71) 

9.59 
(4.53) 
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eTable2. Functional annotation of variants identified in the discovery cohort 
 

Variant Category Before QC After QC MAF>=0.01 MAF<0.01 Private (MAC>=2)* 
loss_of_function 28 986 18 813 267 18 546 4 945 

stop 10 639 9 442 151 9 291 1 681 

splice 5 963 4 742 72 4 670 1 047 

frameshift 12 384 4 629 44 4 585 2 217 
missense 483 018 431 777 20 113 411 664 80 259 

probably_Damaging 122 497 111 624 2 252 109 372 21 225 

possibly_Damaging 83 696 75 398 2 301 73 097 14 388 

benign 254 928 228 636 14 690 213 946 41 213 

unknown 22 431 16 785 900 15 885 3 544 

coding_syn 300 629 269 071 23 246 245 825 44 493 

UTR3prime 32 143 26 157 2 187 23 970 5 666 

UTR5prime 26 040 18 167 1 534 16 633 4 667 

intronic 511 773 415 133 36 919 378 214 120 549 

intergenic 10 782 7 448 672 6 776 2 234 

inframe_indels 7 773 2 803 60 2 743 2 021 

init_codon 971 827 31 796 161 

Total 1 402 115 1 190 196 85 028 1 105 167 264 995 
Variants in the SIGMA T2D discovery study (n=3,756). Abbreviations: QC, Quality Control; MAF, Minor 
Allele Frequency; MAC, Minor allele Count.  
*Variants observed at least two times in the SIGMA project  (MAC>=2), and not present in 1000 Genomes or 
exome sequencing project (ESP). 
 
 
 
 
 
 
 
 

eTable 3. Intersection of known and novel variants ascertained by the SIGMA T2D exome project 
 

Sequencing Project Number of variants 

SIGMA T2D specific 741145 

SIGMA T2D specific with a MAC>=2 264,995 

1KG specific 36,564,476 

ESP specific 806,726 

SIGMA T2D and ESP 133,733 

SIGMA T2D and 1KG 157,959 

1KG and ESP 96,314 

SIGMA T2D and 1KG and ESP 180,355 
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Variants in the SIGMA T2D discovery study (n=3,756) compared to their presence in other public datasets. 
Abbreviations: SIGMA T2D, SIGMA T2D Exome project; ESP, Exome Sequencing Project, 1KG, 1000 
Genomes Project; MAC, Minor allele count 

 

eTable 4. Discovery stage results for all significant markers in the exome 
 

ID GENE CHR
OM POS Conseq

uence 
AA 

Chang
e 

R
EF 

A
LT 

MAF A 
(%) 

MAF U 
(%) 

O
R 95% CI P 

rs13342692 SLC16
A11 17 69462

87 
missens

e 
p.D127

G T C 42.93 34.18 1.
31 

1.2 - 
1.42 

2.08
E-10 

rs2292351 SLC16
A11 17 69469

21 
5-prime-

UTR NA C G 41.33 32.34 1.
33 

1.22 - 
1.45 

3.10
E-10 

rs76070643 SLC16
A13 17 69416

25 
synonym

ous 
p.Y166

Y C T 41.44 32.76 1.
31 

1.2 - 
1.43 

1.68
E-09 

rs75493593 SLC16
A11 17 69450

87 
missens

e 
p.P443

T G T 41.31 32.78 1.
31 

1.2 - 
1.43 

3.66
E-09 

rs4796576 SLC16
A13 17 69432

66 
synonym

ous 
p.G422

G G A 40.37 47.57 0.
78 

0.72 - 
0.85 

2.34
E-08 

rs75418188 SLC16
A11 17 69454

83 
missens

e 
p.G340

S C T 41.83 33.57 1.
32 

1.19 - 
1.45 

3.08
E-08 

rs11776786
7 

SLC16
A11 17 69463

30 
missens

e p.V113I C T 40.69 33.01 1.
32 

1.19 - 
1.47 

2.64
E-07 

var_12_121
437091 

HNF1
A 12 12143

7091 
missens

e 
p.E508

K G A 1.05 0.18 5.
48 

2.83 - 
10.61 

4.40
E-07 

Abreviations: CHROM, Chromosom; POS, Position in genome build 37; AA, Amino Acid change; REF, 
Reference allele; ALT, Alternative allele;  
MAFA, Minor allele frequency in affecteds; MAFU, Minor allele frequency in unaffected; OR, odds ratio from 
logistic regression and it's 95%  
confidence interval; P, P-value estimates. 
Results from the SIGMA T2D discovery study (n=3,756). The odds ratios are per allele copy for T2D 
difference in prevalence among cases as compared with controls  
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eTable 5. Local ancestry results near the HNF1A p.E508K variant 
 

HFN1A 
E508K 

Cases Controls 
N=0 N=1 N=2 N=0 N=1 N=2 

A=0 
207 729 823 282 876 797 

100.0% 98.5% 96.8% 100.0% 99.9% 99.3% 

A>=1 
0 11 26 0 1 6 

0.00% 1.49% 3.06% 0.00% 0.11% 0.75% 
Native American local ancestry counts (N) stratified by A allele counts (A) at the p.E508K variant from the 
SIGMA T2D discovery study (n=3,756). 
Also shown are percentages of samples within a given genotype class that have the a given Native 
American local ancestry count.    
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eTable 6. Top burden association tests results for non-synonymous variants with MAF < 1% 
 

GENE TRANSCRIPT COLLAPSE SKAT MINA MINU 

BDKRB1 ENST00000216629 0.439 4.31E-05 81 93 

HNF1A ENST00000257555 0.016 5.03E-05 106 86 

PRDM9 ENST00000296682 0.179 0.000257 60 51 

PTAR1 ENST00000340434 0.0099 0.000356 30 14 

SLCO5A1 ENST00000524945 0.697 0.000479 56 70 

SLCO5A1 ENST00000260126 0.638 0.000555 64 79 

USP29 ENST00000269834 0.00952 0.000767 95 76 

ZIM3 NA 0.00952 0.000767 95 76 

DEFB1 ENST00000297439 0.00332 0.000804 31 16 

C5orf49 ENST00000399810 0.57 0.000824 63 73 

CDKL1 ENST00000395834 2.75E-05 0.000963 31 100 

SFRP5 ENST00000266066 0.000901 0.00208 63 34 

TMEM120B ENST00000449592 0.000666 0.00268 11 36 

HABP2 ENST00000351270 1.99E-05 0.00371 125 78 

HABP2 ENST00000542051 2.89E-05 0.00372 124 77 

FLVCR2 ENST00000238667 0.000728 0.00415 50 26 

SEP2 ENST00000360051 0.000318 0.00437 14 1 

RGS9 ENST00000262406 1.12E-05 0.0247 48 111 

GIPC2 ENST00000370759 0.00079 0.0265 16 50 

NCAPG ENST00000251496 0.000674 0.0738 55 28 

AMBP ENST00000265132 0.000424 0.0772 52 24 
Results from the SIGMA T2D discovery study (n=3,756). Abbreviations: COLLAPSE: Collapsing test; SKAT: 
Sequence Kernle Association Test; ns, Non-synonymous variants, MINA, sum of total minor allele counts of 
all variants in the gene in Affecteds; MINU, sum of total minor allele counts of all variants in the gene in 
Unaffecteds 
 

eTable 7. Top burden tests for loss of function variants with MAF<1% 
 

GENE TRANSCRIPT COLLAPSE SKAT MINA MINU 
KIF9 ENST00000265529 0.0644 0.00055 6 16 
KIF9 ENST00000444589 0.0159 0.000555 4 15 
LNX1 ENST00000263925 0.00314 0.00223 44 14 

FAM166B NA 0.00191 0.00242 26 4 
RUSC2 ENST00000399742 0.00191 0.00242 26 4 
ZNF772 ENST00000343280 0.00289 0.00296 9 1 
SMC5 ENST00000361138 0.00338 0.00332 4 26 

C3orf26 ENST00000489081 0.00932 0.00627 38 13 
FILIP1L ENST00000421999 0.00932 0.00627 38 13 

SIGLEC1 ENST00000344754 0.00552 0.00664 56 32 
CWF19L2 ENST00000282251 0.003 0.00734 0 9 
WDR17 ENST00000280190 0.00314 0.00795 1 17 

 21 

Downloaded From:  by Laeya Najmi on 06/17/2018



BCS1L NA 0.00539 0.00869 0 7 
RNF25 ENST00000359273 0.00539 0.00869 0 7 
DPYD ENST00000370192 0.0032 0.0123 35 11 
PZP ENST00000261336 0.00325 0.0141 24 53 

KIAA1586 ENST00000370733 0.00198 0.0147 11 33 
OR5M3 ENST00000312240 0.00653 0.0202 1 10 
ZNF425 ENST00000378061 0.00321 0.0238 13 2 
CARD9 NA 0.00727 0.0445 9 1 

SNAPC4 ENST00000371732 0.00727 0.0445 9 1 
CCDC129 ENST00000407970 0.0075 0.0546 2 8 
THUMPD3 ENST00000345094 0.0071 0.0667 12 2 

LY9 ENST00000368041 0.00409 0.097 0 10 
SOAT2 ENST00000301466 0.00616 0.122 2 14 

Results from the SIGMA T2D discovery study (n=3,756). Abbreviations: COLLAPSE, Collapsing test; SKAT, 
Sequence Kernle Association Test; ns, Non-synonymous variants, MINA, sum of total minor allele counts of 
all variants in the gene in Affecteds; MINU, sum of total minor allele counts of all variants in the gene in 
Unaffecteds 
 

eTable 8. Gene-set association test results for non-synonymous variants with MAF < 1% 
 

Gene 
set NS FRAC_WITH_R

ARE 
NUM_PASS_V

ARS 
NUM_SING_VA

RS P P (removing 
p.E508K) 

GWAS 3792 0.81487 2169 1341 0.007 0.16 
MODY 3792 0.21915 280 165 0.001 0.26 

Results from the SIGMA T2D discovery study (n=3,756). Abbreviations: NS, Number of SIGMA Samples on 
which this analysis was done; FRAC_WITH_RARE, Fraction of individual carrying rare variants below 1%; 
NUM_PASS_VARS, Number of variants passing filters; NUM_SING_VARS : Number of singletons among 
variants in NUM_PASS_VARS; P, P-value in Gene set 
 

eTable 9. Gene-set association test results for non-sunonymous variants with MAF < 1% 
 
Gene set NS FRAC_WITH_RARE NUM_PASS_VARS NUM_SING_VARS PVALUE 

GWAS 3792 0.040612 62 43 0.15 
MODY 3792 0.011076 11 7 0.86 

Results from the SIGMA T2D discovery study (n=3,756). Abbreviations: NS, Number of SIGMA Samples on 
which this analysis was done; FRAC_WITH_RARE, Fraction of individual carrying rare variants below 1%; 
NUM_PASS_VARS, Number of variants passing filters; NUM_SING_VARS : Number of singletons among 
variants in NUM_PASS_VARS; P, P-value in Gene set 
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