
OR I G I N A L A R T I C L E

Experimental induction of mouthrot in Atlantic salmon smolts
using Tenacibaculum maritimum from Western Canada

K Frisch1,2 | S B Sm�age1,2 | C Vallestad2 | H Duesund1 | Ø J Brevik1 | A Klevan3 |

R H Olsen3 | S T Sjaatil3 | D Gauthier3 | B Brudeseth3 | A Nylund2

1Cermaq Group AS, Oslo, Norway

2Fish Disease Research Group, Department

of Biology, University of Bergen, Bergen,

Norway

3PHARMAQ AS, Oslo, Norway

Correspondence

Kathleen Frisch, Cermaq Group AS, Oslo,

Norway.

Email: kathleen.frisch@cermaq.com

Funding information

Norges Forskningsr�ad, Grant/Award

Number: 251805/030

Abstract

Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic

salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British

Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare

issue which results in economic losses due to mortality and antibiotic treatments.

The associated pathogen is Tenacibaculum maritimum, a bacterium which causes sig-

nificant losses in many species of farmed fish worldwide. This bacterium has not

been proven to be the causative agent of mouthrot in BC despite being isolated

from affected Atlantic salmon. In this study, challenge experiments were performed

to determine whether mouthrot could be induced with T. maritimum isolates

collected from outbreaks in Western Canada and to attempt to develop a bath chal-

lenge model. A secondary objective was to use this model to test inactivated whole-

cell vaccines for T. maritimum in Atlantic salmon smolts. This study shows that

T. maritimum is the causative agent of mouthrot and that the bacteria can readily

transfer horizontally within the population. Although the whole-cell oil-adjuvanted

vaccines produced an antibody response that was partially cross-reactive with sev-

eral of the T. maritimum isolates, the vaccines did not protect the fish under the

study’s conditions.
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1 | INTRODUCTION

Mouthrot, or bacterial stomatitis, is a significant fish welfare problem

in Atlantic salmon (Salmo salar, L.) farming in both British Columbia

(BC), Canada, and Washington State, USA (Frelier, Elston, Loy, &

Mincher, 1994; Ostland, Morrison, & Ferguson, 1999). The disease

mainly affects smolts recently transferred into salt water and results

in economic losses due to mortality and antibiotic treatments. Dis-

eased fish show little or no clinical signs, with small yellow plaques

in the mouth as the only visible abnormality (Frelier et al., 1994).

The bacterium isolated from these lesions is Tenacibaculum mariti-

mum, a fish pathogen found worldwide on many marine fish species

(Frisch, Sm�age, Brevik, Duesund, & Nylund, 2017; Ostland et al.,

1999; Toranzo, Magari~nos, & Romalde, 2005). Most commonly,

T. maritimum is associated with tenacibaculosis, characterized by

ulcerative skin lesions, mouth erosion, frayed fins and tail rot (Tor-

anzo et al., 2005); a disease which is clinically different from mou-

throt as seen in BC. Although T. maritimum has been isolated from

mouthrot-affected fish, the bacterium has not been identified to be

solely responsible for this disease.
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One of the challenges in T. maritimum research is the difficulty to

develop a replicable challenge model. A number of experiments have

been conducted attempting to reproduce tenacibaculosis in economi-

cally important fish species around the world (Avenda~no-Herrera, Tor-

anzo, & Magari~nos, 2006a; Baxa, Kawai, & Kusuda, 1987; Carson,

McCosh, & Schmidtke, 1992; Handlinger, Soltani, & Percival, 1997;

Mabrok, Afonso, Valente, & Costas, 2015; Mabrok et al., 2016; Nish-

ioka, Watanabe, & Sano, 2009; Powell, Carson, & van Gelderen, 2004;

Soltani, Munday, & Burke, 1996; van Gelderen, Carson, & Nowak,

2010; Wakabayashi, Hikida, & Masumura, 1984; Yamamoto, Kawai, &

Oshima, 2010). Injection models are frequently used in fish as they

allow for more control and therefore reproducibility; for example, Infec-

tious pancreatic necrosis virus or Piscirickettsia salmonis in Atlantic sal-

mon (Rozas & Enr�ıquez, 2014; Taksdal, Ramstad, Stangeland, &

Dannevig, 1998). However, their main shortcoming is that they do not

reproduce a natural route of transmission. Intraperitoneal (IP) injection

of T. maritimum in Japanese flounder (Paralichthys olivaceus, Temminck

& Schlegel) (Yamamoto et al., 2010) has not resulted in disease, and

subcutaneous injection has only given disease in turbot (Scophthalmus

maximus, L.) (Fa�ılde, Losada, Berm�udez, Santos, & Quiroga, 2014). Bath

infection has been shown to be the most effective way to induce

tenacibaculosis with T. maritimum (Avenda~no-Herrera, Toranzo, &

Magari~nos, 2006b). Scarification or abrasion pre-exposure was origi-

nally thought to be a prerequisite for positive results, as was performed

in Black Sea bream (Acanthopagrus schlegelii, Bleeker) (Baxa et al.,

1987). However, this is not necessary, and prolonged bath exposure

without scarification has induced tenacibaculosis in Senegalese sole

(Solea senegalensis, Kaup) (Mabrok et al., 2016) and turbot (Avenda~no-

Herrera et al., 2006a). More recently, a shorter bath immersion has

also been successful in Japanese flounder (Nishioka et al., 2009), and a

short immersion followed by a dilution of the bath over time produced

more stable mortality rates in this species than immersion followed by

transfer into a new tank (Yamamoto et al., 2010).

In Tasmania, Australia, T. maritimum has been linked to

tenacibaculosis in Atlantic salmon smolts. This disease has been

reproduced in the laboratory by bath infecting fish for a short period

of time (1 hr) at a high concentration (Handlinger et al., 1997; Sol-

tani, Shanker, & Munday, 1995; Soltani et al., 1996; van Gelderen

et al., 2010; van Gelderen, Carson, & Nowak, 2011). These experi-

ments also showed that Atlantic salmon was more susceptible than

rainbow trout (Oncorhynchus mykiss, Walbaum) and that exposure at

lower salinities (15 ppt) gave very low mortality (Handlinger et al.,

1997; Soltani et al., 1996). This finding is consistent with the fact

that T. maritimum has a strict requirement of sufficient sea salt to

grow (Suzuki, Nakagawa, Harayama, & Yamamoto, 2001). In Atlantic

salmon, it has also been shown that T. maritimum can cause necrotic

bronchitis by directly inoculating high concentrations of the bacteria

on the gills and that this can be exacerbated by prior abrasion (Pow-

ell et al., 2004).

Currently, mouthrot in BC is managed through antibiotic treat-

ments and is the main reason the industry in this region continues

to use antibiotics in the production of Atlantic salmon (Morrison &

Saksida, 2013). This is mainly due to the fact that no commercial

vaccine is currently available for T. maritimum in this fish species.

Attempts to create a vaccine in Atlantic salmon against tenacibaculo-

sis have given mixed results, from no protection to partial protection

(Carson, Schmidtke, & Lewis, 1994; Carson, Schmidtke, & McCosh,

1993; van Gelderen, Carson, & Nowak, 2009).The only protective

vaccine used commercially for T. maritimum is in turbot (Toranzo

et al., 2005). A reproducible challenge model is required for the

development of vaccines, including determining the pathogenicity of

isolates, virulence factors and the testing of novel vaccines.

In this study, challenge experiments were performed to deter-

mine whether mouthrot could be induced with T. maritimum isolates

collected from outbreaks in Western Canada (Frisch et al., 2017) and

to develop a reproducible bath challenge model. A secondary objec-

tive was to use this model to test whole-cell adjuvanted vaccines

against T. maritimum in Atlantic salmon smolts.

2 | MATERIALS AND METHODS

2.1 | Challenge material

The T. maritimum isolates used in this study were collected from dis-

eased fish during mouthrot outbreaks on Atlantic salmon farms in

BC (Frisch et al., 2017). Tenacibaculum maritimum type species

NCIMB 2154T was also used in the first challenge experiment as a

comparison. The choice of isolates for the challenge experiments

was based on geographic distribution and genotyping results (Frisch

et al., 2017).

Aliquots of each of the isolates used in this study were created

by inoculating 500 ml of marine broth, Difco, 2216 (MB) with a

small amount of culture grown at 16°C on marine agar, Difco, 2216

(MA) in a 2-L flask which was then incubated at 16°C and 230 rpm.

After 48–72 hr, when a large quantity of active bacteria could be

seen microscopically, the culture material was cryopreserved in 1 ml

aliquots containing 20% glycerol at �80°C. To produce the challenge

material, one of these 1 ml aliquots was added to 500 ml of MB in a

2-L flask which was incubated at 16°C and 230 rpm for 72 hr. The

cell concentration of the bacterial cultures was determined using the

most probable number (MPN) method: 10-fold dilutions in duplicate

with eight replicates per dilution (Blodgett, 2010; Cochran, 1950).

The quantity of challenge culture needed to achieve the required

bath concentrations (Table 1) was based on growth curves (data not

shown) performed for each isolate prior to the start of this study

using the MPN method.

In one of the challenge experiments (experiment 2), a group of

fish was challenged with supernatant alone. The supernatant was

acquired by centrifuging a culture of isolate TmarCan15-1 at 3,000 g

for 30 min, decanting out the supernatant, and filtering this liquid

through a 5.0-lm syringe filter, followed by a 0.2-lm syringe filter.

2.2 | Fish husbandry

All live fish experiments were conducted at the Aquatic and Indus-

trial Laboratory (ILAB), Bergen, Norway, using flow-through tanks.
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TABLE 1 Experimental groups showing number of smolts and challenge bath isolate, concentration and duration (shed refers to shedders,
and cohab refers to cohabitants)

Experiment Group
Number
of fish Isolate

Bacteria bath
concentration
(cells/ml)

Bath
duration
(hr)

Accumulated
per cent
mortality

Start of
mortality
(days post-
exposure)

End of
mortality
(days post-
exposure)

Experiment 1 1-1a 10 TmarCan15-1 3.80 9 106 1.5 0 — —

1-1b 10 TmarCan15-1 3.80 9 106 5.0 0 — —

1-2a 10 TmarCan15-1 1.90 9 107 1.5 30 6 11

1-2b 10 TmarCan15-1 1.90 9 107 5.0 60 4 10

1-3a 10 Tenacibaculum

maritimumT

5.10 9 106 1.5 0 — —

1-3b 10 T. maritimumT 5.10 9 106 5.0 0 — —

1-4a 10 T. maritimumT 2.55 9 107 1.5 0 — —

1-4b 10 T. maritimumT 2.55 9 107 5.0 30 1 6

Experiment 2 2-1a 10 TmarCan16-5 7.30 9 106 5.0 0 — —

2-1b 10 TmarCan16-5 7.30 9 106 7.5 0 — —

2-2a 10 TmarCan16-1 2.25 9 106 5.0 100 3 6

2-2b 10 TmarCan16-1 2.25 9 106 7.5 100 4 8

2-3a 10 TmarCan16-6 1.52 9 107 5.0 100 5 13

2-3b 10 TmarCan16-6 1.52 9 107 7.5 100 5 10

2-4a 10 TmarCan15-1 1.87 9 107 5.0 70 7 16

2-4b 10 TmarCan15-1 1.87 9 107 7.5 40 7 14

2-5a 10 TmarCan15-1 3.74 9 107 1.5 40 5 10

2-5b 10 TmarCan15-1 3.74 9 107 5.0 50 3 14

2-6a 10 Control (marine broth) 500 ml 7.5 0 — —

2-6b 10 Control (supernatant) 500 ml 7.5 0 — —

Experiment 3 3-1 20 TmarCan16-5 1.81 9 107 5.0 5 11 11

3-2 20 TmarCan16-5 1.81 9 107 5.0 55 3 12

3-3 20 TmarCan15-1 5.74 9 106 5.0 75 4 8

3-4 20 TmarCan15-1 5.74 9 106 5.0 90 3 12

3-5 20 TmarCan16-2 1.28 9 107 5.0 0 — —

3-6 20 TmarCan16-2 1.28 9 107 5.0 0 — —

3-7 20 TmarCan16-1 6.36 9 105 5.0 100 3 6

3-8 20 TmarCan16-1 2.45 9 106 5.0 100 4 10

Cohabitation

experiment

4-1 20 shed

40 cohab

TmarCan15-1 1.68 9 107 5.0 Shed: 100

Cohab: 75

Shed: 2

Cohab: 9

Shed: 7

Cohab: 20

4-2 20 shed

40 cohab

TmarCan15-1 1.68 9 107 5.0 Shed: 100

Cohab: 76

Shed: 3

Cohab: 7

Shed: 7

Cohab: 17

4-3 20 shed

40 cohab

TmarCan16-5 1.78 9 107 5.0 Shed: 95

Cohab: 27

Shed: 2

Cohab: 12

Shed: 16

Cohab: 17

4-4 20 shed

40 cohab

TmarCan16-5 1.78 9 107 5.0 Shed: 84

Cohab: 31

Shed: 3

Cohab: 10

Shed: 10

Cohab: 20

4-5 20 shed

40 cohab

TmarCan16-1 8.75 9 105 5.0 Shed: 100

Cohab: 100

Shed: 3

Cohab: 6

Shed: 5

Cohab: 11

4-6 20 shed

40 cohab

TmarCan16-1 8.75 9 105 5.0 Shed: 100

Cohab: 100

Shed: 3

Cohab: 6

Shed: 6

Cohab: 9

4-7 20 shed

40 cohab

Control (marine broth) 1 L 5.0 Shed: 0

Cohab: 0

— —

4-8 20 shed

40 cohab

Control (no exposure) N/A N/A Shed: 0

Cohab: 0

— —

Accumulated per cent mortality is shown for each group in the challenge experiments, as well as the time period post-exposure that mortality occurred.

In general, the mortality curve for each group had a sigmoid shape.
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The Atlantic salmon used in the experiments were supplied by ILAB.

For the duration of each experiment, fish were checked at least

twice a day on weekdays and once on weekend days and fed ad libi-

tum with the commercial dry feed Nutra Olympic, Skretting AS, Nor-

way. All experiments were conducted in 12°C water. The outlet

water in all tanks had a minimum oxygen saturation of 77%, and the

water flow was 300 L per hour per tank (regardless of tank size).

Except during smoltification, the fish were kept on a 12-hr photope-

riod. Whenever smolts were transferred from freshwater to salt

water prior to being bath challenged, the salinity was gradually

increased to 34 ppt over the first 24-hr period. Prior to all handling,

fish were starved for 48 hr, and before vaccination and marking, fish

were anaesthetized with tricaine methanesulphonate, Tricaine,

PHARMAQ (TMS).

The population of fish were screened and found negative for

Infectious salmon anaemia virus, Infectious pancreatic necrosis virus,

salmonid alphavirus, Piscine orthoreovirus, Tenacibaculum spp. (includ-

ing T. maritimum) and Moritella viscosa with real-time RT-PCR prior

to the start of the experiments.

Fish showing signs of illness (e.g., ulcerative lesions) and/or

abnormal behaviour (e.g., erratic swimming and loss of equilibrium)

during the experiments were killed due to the low expectation of

fish showing these signs to recover. However, due to the rapidity in

the development of the disease, this was not always possible. In this

study, the term mortality includes both killed morbid fish and mortal-

ity. All morbidity, as well as any fish surviving at the end of each of

the experiments, was killed using an overdose of TMS or a swift

blow to the head.

The animal experiments were approved by the Norwegian Food

Safety Authority (Mattilsynet) in 2016 and 2017 under the identifi-

cation codes 16/33868, 16/174198, 16/207694 and 17/106558.

2.3 | Challenge model development
(experiments 1–3)

Three initial challenge experiments were conducted with three dif-

ferent aims: determine if mouthrot could be experimentally repli-

cated (experiment 1), ascertain whether or not there are differences

in pathogenicity between isolates and refine the challenge model

(experiment 2) and ensure that the challenge model is replicable (ex-

periment 3). Because of this, the protocols varied between these

experiments with details given in Table 1.

The smolts supplied for the challenge experiments were of an

average weight of 38 g for experiment 1, 45 g for experiment 2 and

70 g for experiment 3. The smolts were transferred from freshwater

and distributed into the 150-L experiment tanks containing salt

water (Table 1). The fish were maintained in these tanks for the

duration of the experimental infections. After 24 hr of acclimatiza-

tion, the smolts were transferred into aerated 40-L infection contain-

ers with 12°C salt water (34 ppt) and the challenge material as

described in Table 1. After the desired exposure time (Table 1), the

fish were transferred back into their respective experiment tanks.

There were two subgroups, differentiated by exposure times, for

each of the main groups in experiments 1 and 2, designated “a” and

“b” (Table 1). These were kept in the same experiment tank after the

bath infection. To differentiate between the two subgroups, half the

smolts were adipose fin-clipped at the time of transfer into salt

water. In experiment 2, 10 fish were exposed to MB alone (group 2-

6a) and 10 fish to supernatant alone (group 2-6b) for the longest

duration as a control. In experiment 3, TmarCan16-2 was included

even though it was not tested in experiments 1 or 2. This was done

because it grew better compared to the other Western Canadian

isolates and would therefore make an ideal vaccine candidate. All

experiments were concluded 3 weeks post-bath infection.

2.4 | Cohabitation and horizontal transmission
(experiment 4)

The supplied smolts for the cohabitation experiment were of an

average weight of 40 g. In the cohabitation experiment, each group

comprised 20 shedders (fish that were directly exposed to the bacte-

ria through a bath infection) and 40 cohabitants (na€ıve fish that were

added to the shedder population). At the time of transfer into the

150-L experiment tanks containing salt water, the shedders were

labelled by adipose fin clipping. After 24 hr of acclimatization, the

shedders were bath infected (Table 1) as described for the challenge

experiments. One control group (4-7) was exposed to MB for the

same duration as the other groups, and the other control group (4-8)

was not handled. The cohabitants (40 per group) were added to their

respective tanks 24 hr after the shedders were exposed to the bac-

teria. The experiment was ended 3 weeks later.

2.5 | Fish sampling

Smolts removed from the tanks were examined for internal and

external clinical signs. The gills, mouths and skin of all fish in the

cohabitation experiment were scored (Table 2). Scrapings from

TABLE 2 Scoring scheme used in the cohabitation experiment to
characterize external clinical signs seen in mortality

Organ Score Clinical signs

Gills 0 No abnormality on either side of fish

1 Lesion on one side of fish

2 Lesion on both sides of fish

Mouth 0 No abnormality

1 Mild change—tiny plaque and/or small haemorrhage

2 Moderate change—small lesion and/or haemorrhage

3 Severe change (mouthrot)—large plaques

and/or large lesion

Skin 0 No abnormality

1 Mild change—some scale loss and/or

small haemorrhage

2 Moderate change—lesion(s) with

scale loss through to skin

3 Severe change—lesions(s) through to

muscle and/or many lesions
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external lesions were examined with light microscopy. Reisolation of

the bacteria was performed by streaking mucus scraped off these

lesions onto Marine Kanamycin Agar (MKA) (Frisch et al., 2017). Kid-

neys from affected fish were streaked on MA. Cultures were incu-

bated at 16°C for a minimum of 3 days after which colony and cell

morphology was recorded. Colonies typical of T. maritimum were

subcultured on MA and a minimum of two cultures per group were

cryopreserved at �80°C, and subsequently, two isolates per group

were sequenced to confirm genetic identity with the challenge iso-

lates to support Koch’s Postulates (Fredricks & Relman, 1996). Geno-

mic DNA was acquired by placing single colonies into nuclease-free

water, heating at 95°C for 5 min, then centrifuging at 9,600 g for

5 min and transferring the DNA-containing supernatant into a new

tube. The resulting supernatant was stored at �20°C. PCR was per-

formed using the 16S rRNA gene primers 27F and 1518R (Giovan-

noni, Rapp�e, Vergin, & Adair, 1996), as well as the housekeeping

gene, atpA primers (Habib et al., 2014). The amplification and

sequencing were performed as described in Frisch et al. (2017).

Obtained sequences were compared to the ones from the challenge

material by aligning them using AlignX in Vector NTI, Invitrogen.

The skin of the lower jaw was sampled from five cohabitant mor-

talities from groups 4-1 to 4-6 in the cohabitation experiment for

T. maritimum screening with real-time RT-PCR as a confirmation of

the presence of the bacteria. Another four “healthy” fish were sam-

pled from the control group 4-7 as a comparison. The samples were

sent to a commercial laboratory for analysis.

2.6 | Vaccine formulation

Monovalent oil-adjuvanted vaccines were produced for the isolates

TmarCan15-1, TmarCan16-2 and TmarCan16-5. Unfortunately, due

to extensive aggregate formation, TmarCan16-1 was deemed unsuit-

able for vaccine formulation. The bacterial isolates were cultured by

inoculating 10 ml of preculture into 400 ml MB in 2-L baffled sha-

ker flasks at 90 rpm for 48 hr at 15°C. The cultures were inacti-

vated with formalin before being concentrated 10 times by

sedimentation. Prior to inactivation, the cultures were plated out on

blood agar containing 2% NaCl and MA and subject to prolonged

incubation at 15°C to verify purity. The concentrated bacterin sus-

pensions were homogenized by pressing between two syringes back

and forth 50 times, before formulation into three monovalent oil-

adjuvanted vaccines using mineral oil and prepared by a Silverson

LR5 rotor–stator mixer according to standard procedures for PHAR-

MAQ vaccines.

The vaccines for the vaccine challenge experiment were pro-

duced as described above; however, because a larger volume was

required, the protocol had to be adjusted. 1 L of bacterin culture

(instead of 400 ml) was incubated in 2-L baffled shaker flasks at

240 rpm, and the formalin-inactivated bacterins were concentrated

approximately 30 times by centrifugation at 3,000 g for 10 min.

The supernatants were removed and pellets were resuspended in

30 ml PBS before homogenization and formulation as described

above.

2.7 | Antibody cross-reaction

Antibodies were produced in parr to check their cross-reaction to

homologous and heterologous isolates. Parr of an average weight of

32 g were separated into three groups of 15 fish. The fish were

marked by fin clipping before being IP injected with 0.1 ml of one of

the three formulated vaccines. An unmarked fourth group, in which

the fish were injected with 0.1 ml of PBS, was included as control.

All the fish were kept in one 500-L tank in freshwater. Twelve

weeks post-vaccination (approximately 1,000 day-degrees), the fish

received an overdose of TMS prior to blood sampling with hep-

arinized syringes from the caudal vein. The blood samples were cen-

trifuged, and blood plasma was collected. The plasma was then

stored at �20°C.

Microtiter plates, MaxisorpTM, Nunc prepared with 5 lg/ml Poly-

L-lysine, Sigma were coated by adding 100 ll of inactivated bacteria,

diluted twofold starting with an OD600 nm of 0.1. After washing with

PBS containing 0.05% Tween-20, Merck (PBST), the plates were

blocked for 2 hr at room temperature with 5% skimmed milk in

PBST. Plasma was added in 1:100 dilution, and the plates were incu-

bated overnight at 4°C. A monoclonal antibody, mouse anti-Rainbow

Trout Immunoglobulin (cross-reacting with Atlantic salmon, produced

in-house), was diluted 1:3500 in PBST with 1% skimmed milk, and

100 ll was added to each well and incubated for 1 hr at room tem-

perature. The secondary anti-mouse immunoglobulin conjugated to

alkaline phosphatase, Dako, was diluted 1:500 in PBST with 1%

skimmed milk, and 100 ll was added to each well followed by 1-hr

incubation at room temperature. The plates were washed three

times with PBST between the incubations. Bound antibodies were

detected by adding 100 ll substrate p-nitrophenyl-phosphate, Sigma

in 10% diethanolamine buffer, pH 9.8, Sigma-Aldrich to each well,

and the colour reaction was read at OD405 nm after 60 min.

2.8 | Vaccine challenge (experiment 5)

Three groups of 190 parr (average weight 16 g) were vaccinated

with a 0.1 ml dose of one of the three formulated vaccines contain-

ing the isolates TmarCan15-1, TmarCan16-2 or TmarCan16-5. A

fourth group of 190 parr was vaccinated with 0.1 ml PBS. The fish

were marked by adipose fin clipping or maxilla trimming to identify

each group. The fish were kept in 500-L freshwater tanks. The parr

were triggered to smoltify 4 weeks prior to transfer to salt water by

increasing their photoperiod to 24 hr. At 8 weeks post-immunization

(approximately 675 degree days), 240 fish (60 per vaccine group)

were sorted into their respective groups (Table 3) and transferred

into 150-L saltwater tanks. The remaining fish (100 per vaccine

group) were sorted and transferred at 12 weeks post-immunization

(approximately 1,000 degree days) (Table 3).

Only isolate TmarCan15-1 was used to challenge the vaccinated

fish as the other two isolates used in the vaccines (TmarCan16-2

and TmarCan16-5) were not causing reproducible mortality. The

challenge material was produced as previously described, except that

1 L of MB (instead of 500 ml) was inoculated in each 2-L flask. The
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8-week groups (5-1 to 5-3) were bath challenged 24 hr post-transfer

as described in the challenge experiments using isolate TmarCan15-1

at a concentration of 4.35 9 107 cells/ml for 5 hr. The 12-week

groups (5-4 to 5-8) were bath challenged for 2 hr 48 hr post-trans-

fer into salt water with isolate TmarCan15-1 at a concentration of

3.24 9 107 for groups 5-4 and 5-5 and 3.50 9 107 for groups 5-6

and 5-7. Group 5-8 was bath challenged with marine broth as a con-

trol. The vaccine experiment was concluded 3 weeks post-bath

infection.

At 0 (unvaccinated fish), 8 and 12 weeks (approximately 675 and

1,000 degree days), 10 fish per vaccine group were killed with an

overdose of TMS and blood sampled with heparinized syringes from

the caudal vein to measure the antibody response at the time of

challenge. For the 8-week group, 15 fish were sampled instead of

10 with the exception of the group vaccinated with the TmarCan16-

5 vaccine, where only four fish were sampled. The blood samples

were centrifuged and the blood plasma stored at �20°C for subse-

quent ELISA analysis. The ELISA was performed as described above

with the exception that the bacterial coat had an OD600 nm of about

0.05, and the plasma was diluted twofold starting with 1:50, for the

purpose of estimating plasma antibody response against the homolo-

gous vaccine isolate.

3 | RESULTS

3.1 | Experiment 1: Koch’s postulates

Moribund fish showed loss of equilibrium and circling behaviour at

the surface. Externally, there was a mix of abnormalities ranging

from small mouth lesions (Figure 1a), to gill lesions (Figure 1c) and

small skin lesions. These lesions resemble what is seen during out-

breaks on farms (Figure 1b,d). Smears from these lesions showed

large amounts of long thin rod-shaped bacteria, matching the pheno-

typic description of T. maritimum (Suzuki et al., 2001). The isolated

bacteria were shown to be genetically identical with both the 16S

and atpA genes to the challenge material (data not shown). The

accumulated mortality percentage for each experimental group is

shown in Table 1.

The first challenge experiment demonstrated that the disease

could be replicated in the laboratory setting and that T. maritimum

NCIMB 2154T is not as pathogenic as the Western Canadian strain

TmarCan15-1. Disease was mainly seen in the group exposed to the

highest concentration of bacteria for the longer duration.

3.2 | Experiment 2: Virulence differences between
isolates

Based on the results from experiment 1, four isolates were used in

experiment 2 including TmarCan15-1. Also, because of the gill

lesions present in some of the affected fish, one group was exposed

to MB, and one to the supernatant alone to rule these out as the

cause of the damage. Two of the strains, TmarCan16-1 (groups 2-2a

and 2-2b) and TmarCan16-6 (groups 2-3a and 2-3b) resulted in

100% mortality with the former acting faster at a lower bacterial

bath concentration (2.25 9 106 cells/ml versus 1.52 9 107 cells/ml).

The more acutely affected fish showed fewer gross clinical signs

than the more chronically affected ones. TmarCan16-5 (2-1a and 2-

1b) resulted in no mortality in experiment 2 regardless of exposure

time; however, the bath concentration was lower at

7.30 9 106 cells/ml. No difference was observed between using 5

or seven and a half hours for the bath duration; however, one and a

half hours seemed too short as it gave more varied results. Neither

of the control groups in experiment 2 (2-6a and 2-6b) had mortality,

and none of the fish showed signs of disease.

3.3 | Experiment 3: Replicable challenge model

The isolates used in experiment 3 were chosen as these were the

most promising in regards to vaccine development. Again, Tmar-

Can16-1 (groups 3-7 and 3-8) gave 100% mortality even at the

lower bath concentration tested. TmarCan16-2 (groups 3-5 and 3-6)

gave 0% mortality and no fish showed signs of disease. TmarCan16-

5 (groups 3-1 and 3-2) gave variable results when comparing the

duplicate groups.

From experiments 1-3, isolate TmarCan15-1 produces the most

reproducible challenge model. The variation in mortality between the

isolates at similar bath concentrations in experiment 2 and 3 shows

that there are differences in pathogenicity between isolates.

3.4 | Experiment 4: Cohabitation and horizontal
transmission

Figure 2 shows the accumulated mortality in both shedders and

cohabitants for each group. Fish in the control groups exhibited no

signs of clinical disease or mortality. For groups 4-1 and 4-2 (Tmar-

Can15-1), the shedders had 100% mortality within 7 days of bath

infection (Figure 2a), which is higher than the previous challenge

experiments for this isolate. The cohabitants in these two groups

started showing signs of disease on day 6 post-transfer into the

tanks and resulted in around 75% mortality in both groups (Fig-

ure 2a). Shedder mortality in groups 4-3 and 4-4 (TmarCan16-5) was

between 80% and 95% (Figure 2b), which is also higher than in the

challenge experiments for this isolate. Disease in the shedders

started on day 2 post-exposure and continued to day 16. Cohabi-

tants started to show signs of disease 9 days post-transfer into the

tanks and accumulated mortality at the end of the experiment was

about 30% (Figure 2b). The third isolate (TmarCan16-1) used in the

cohabitation experiments caused 100% mortality in both shedders

and cohabitants within 9 days of exposure (Figure 2c). Mortality in

the shedders started 2 days post-exposure and mortality in the

cohabitants started 3 days later (4 days post-transfer).

Both shedders and cohabitants in groups 4-5 and 4-6 (Tmar-

Can16-1) presented with less external lesions when compared to the

other groups. Affected fish in groups 4-1 and 4-2 (TmarCan15-1)

had more gill lesions in the shedders than the other two isolates, but

less severe mouth and skin lesions than in groups 4-3 and 4-4
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(TmarCan16-5). Affected cohabitants in groups 4-1 to 4-4 showed

little gill lesions, but nearly all fish showed signs of mouth and skin

lesions. The percentage of mortality showing clinical signs and their

severity is shown in Figure S1. In general, fish that had an acute dis-

ease (within the first week post-exposure) exhibited less external

lesions than ones that had a more chronic presentation.

All fish sampled for T. maritimum screening with real-time RT-

PCR in groups 4-1 to 4-6 were positive for the bacteria, and the

control fish were negative.

3.5 | Antibody cross-reaction

The antibody responses against the three vaccinated bacterial anti-

gens were strong against the homologous bacteria, which demon-

strate that the immune system of the host was capable of producing

antibodies recognizing T. maritimum (Figure 3). More importantly,

the results showed that plasma from fish vaccinated against Tmar-

Can15-1 produced antibodies with the same specificity against

TmarCan16-5, demonstrated by the comparable binding pattern of

TABLE 3 Experimental groups for the vaccine experiment showing number of smolts per group

Group Vaccine
Number
of fish

Bacteria bath
concentration
(cells/ml)

Bath
duration
(hr)

Accumulated per
cent mortality

Start of
mortality
(days post-
exposure)

End of mortality
(days post-exposure)

5-1 TmarCan15-1 20 4.35 9 107 5.0 80 5 12

TmarCan16-2 20 75 4 10

TmarCan16-5 20 90 5 10

PBS (control) 19 74 5 10

5-2 TmarCan15-1 20 4.35 9 107 5.0 75 5 17

TmarCan16-2 20 60 5 16

TmarCan16-5 20 85 5 10

PBS (control) 20 50 5 10

5-3 TmarCan15-1 19 4.35 9 107 5.0 84 6 16

TmarCan16-2 20 60 5 13

TmarCan16-5 20 80 4 13

PBS (control) 20 75 4 18

5-4 TmarCan15-1 20 3.24 9 107 2.0 70 5 11

TmarCan16-2 20 80 4 12

TmarCan16-5 20 75 4 13

PBS (control) 20 80 4 17

5-5 TmarCan15-1 20 3.24 9 107 2.0 85 4 12

TmarCan16-2 20 65 5 14

TmarCan16-5 20 60 5 10

PBS (control) 20 60 5 10

5-6 TmarCan15-1 20 3.50 9 107 2.0 85 4 18

TmarCan16-2 20 90 6 13

TmarCan16-5 20 75 5 14

PBS (control) 20 75 4 13

5-7 TmarCan15-1 20 3.50 9 107 2.0 95 5 17

TmarCan16-2 20 75 5 13

TmarCan16-5 20 95 5 17

PBS (control) 20 60 6 14

5-8 TmarCan15-1 20 Control (marine broth) 2.0 0 — —

TmarCan16-2 20 0 — —

TmarCan16-5 20 0 — —

PBS (control) 20 0 — —

Groups 5-1 to 5-3 were bath challenged 8 weeks post-immunization, and groups 5-4 to 5-8 were bath challenged 12 weeks post-immunization. All

groups were challenged with TmarCan15-1. Accumulated per cent mortality is shown for each group, as well as the time period post-exposure that mor-

tality occurred. In general, the mortality curve for each group had a sigmoid shape.
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the homologous isolate (Figure 3a). The same pattern was observed

using plasma from fish vaccinated against TmarCan16-5 that bound

to TmarCan15-1 (Figure 3c). Vaccinating against TmarCan16-2

induced plasma antibodies with the same specificity towards Tmar-

Can16-1 as to the homologous strain (Figure 3b). Some cross-reac-

tion was also observed against TmarCan15-1 and TmarCan16-5.

3.6 | Experiment 5: Vaccine challenge

No difference was seen between vaccine groups (both 8-week and

12-week groups) and the controls vaccinated with PBS. Mortality in

all groups ranged from 50% to 95%, starting 4–6 days post-exposure

and followed a sigmoid pattern which plateaued around day 14

post-exposure. The groups bath challenged with MB showed no sign

of disease or mortality for the duration of the experiment. Mortality

results for the vaccine challenge experiment are presented in

Table 3. ELISA analysis of the plasma samples from vaccinated fish

(both at 8 and 12 weeks) taken just prior to being bath challenged

demonstrated that smolts in all three vaccine groups had developed

antibodies towards the vaccine isolates.

4 | DISCUSSION

Western Canadian T. maritimum isolates have been shown to pro-

duce disease, which resembles mouthrot as it is seen in the field, in

smolts without prestressors or coinfection. Differences in virulence

between the isolates were observed. A variation in virulence among

T. maritimum strains has also been shown in other studies (Avenda~no-

Herrera et al., 2006a; Rahman, Suga, Kanai, & Sugihara, 2014; van

Gelderen et al., 2010). Interestingly, these differences seem to be evi-

dent within Western Canadian genotypic strains. For example, Tmar-

Can16-1 and TmarCan16-2 are genetically identical on 16S rRNA

gene sequence and 11 housekeeping genes sequences (Frisch et al.,

2017). This study has shown that TmarCan16-1 causes 100% mortal-

ity with a bath concentration as low as 8.75 9 105 cells/ml, whereas

disease has not been induced with TmarCan16-2, even at concentra-

tions as high as 1.28 9 107 cells/ml. This highlights the importance of

full genomic studies of T. maritimum to identify the genes responsible

for virulence markers, as has been undertaken for this species type

strain (P�erez-Pascual et al., 2017).

Based on the ELISA results, the four T. maritimum strains (Tmar-

Can15-1, TmarCan16-2, TmarCan16-2 and TmarCan16-5) seem to

form two different serogroups, which coincides with the genotyping

observed for the same four strains (Frisch et al., 2017). TmarCan15-

1 and TmarCan16-5 are recognized by the immune system as one

serogroup, with some degree of cross-reaction against TmarCan16-

2. The other two strains, TmarCan16-1 and TmarCan16-2, can be

grouped in another serogroup with cross-reactivity against

TmarCan15-1 and TmarCan16-5. The development of improved ser-

otype-specific antibodies is needed to fully determine the serological

mapping of T. maritimum strains in the future.

(a) (b)

(c) (d)

F IGURE 1 (a) Mouth lesion showing
the typical yellow plaque, and (c) gill lesion
from a mouthrot-affected fish from a farm
in British Columbia, Canada. (b) Mouth
lesion and (d) gill lesion from a diseased
fish in the challenge experiments [Colour
figure can be viewed at
wileyonlinelibrary.com]
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The monovalent adjuvanted vaccines tested in this study did not

give protection against the disease in the conditions tested. The

absence of vaccine efficacy cannot be attributed to the lack of a

plasma antibody response. A study using Australian T. maritimum

strains and performed in Tasmania showed that a whole-cell inacti-

vated vaccine gave Atlantic salmon smolts partial protection against

the disease when adjuvanted (van Gelderen et al., 2009). How-

ever, the challenge conditions and isolates used were different, as

were the clinical signs observed in the diseased individuals which

showed higher levels of skin lesions when compared to this study

(van Gelderen et al., 2009). One of the challenges with the model

used for testing these vaccines is that the fish are exposed to one

high dose of bacteria which may not reflect the natural infection

F IGURE 2 Accumulated per cent mortality from the cohabitant
experiment [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 ELISA results showing the antibody binding from the
plasma of fish injected with a monovalent vaccine containing isolate (a)
TmarCan15-1, (b) TmarCan16-2 or (c) TmarCan16-5 to plates coated
with a dilution series of four isolates: TmarCan15-1, TmarCan16-2,
TmarCan16-5 and TmarCan16-1. Plasma was collected 12 weeks
post-immunization [Colour figure can be viewed at
wileyonlinelibrary.com]
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pressure as suggested by Karlsen, Thorarinsson, Wallace, Salonius,

and Midtlyng (2017).

Creating a challenge model for T. maritimum is difficult primarily

due to the highly adhesive property of the bacteria (Magari~nos, Pazos,

Santos, Romalde, & Toranzo, 1995). Because of this, we found that

estimating bacterial growth and cell concentrations was challenging.

The use of surfactants or detergents to avoid bacterial aggregates in

broth culture has been unsuccessful, and the best technique for grow-

ing the bacteria is rigorous shaking (Mabrok et al., 2016), which is the

method we used. Regular methods of bacterial cell concentration mea-

surements such as optical density (OD) and cell chamber counting

were found to be unreliable due to poor repeatability. The clumping

nature of T. maritimum is likely the reason for OD variations, and the

gliding motility of the bacteria hampers cell counting. The McFarland

standard has also been used in estimating T. maritimum concentration

(Fa�ılde et al., 2014); however, we found that the scale did not give

precise enough estimates for their purposes. MPN was therefore used

to estimate culture cell concentrations in these experiments; this has

the drawback of giving retrospective counts and making the challenge

model difficult to replicate.

The adhesive nature of T. maritimum means that the bacteria

create a biofilm on surfaces, including plastic ones, which can make

it challenging to target specific doses in bath infections. We tried to

challenge the fish in the same tank that they were kept in during a

pre-experiment; however, there was a visible biofilm formation on

the tank wall at the water surface which lingered for at least 24 hr

after the water flow was turned back on. The presence of a biofilm

could possibly extend the challenge duration.

The water quality parameters used in this study were chosen so

that the challenge model, if successful, could be used for vaccine

development and therefore need to follow regulatory guidelines, for

example the European Medicines Agency (EMA) guidelines (CVMP

2012). As such, temperature and salinity needed to reflect the envi-

ronment under which the vaccine would be used for commercial

purposes. The temperature of 12°C used in all the experiments is

much lower than previously performed challenge studies involving

T. maritimum. This is particularly relevant when comparing to other

experiments previously performed with Atlantic salmon smolts,

where temperatures up to 20°C were used (Handlinger et al., 1997;

Soltani et al., 1996; van Gelderen et al., 2010, 2011). These higher

temperatures are at the upper range of optimal rearing conditions

for Atlantic salmon smolts, which may have had an influence on

results (Jonsson, Forseth, Jensen, & Næsje, 2001). Based on this

study, a bath infection using a separate infection tank and a high

concentration (dependent on isolate pathogenicity) for a short dura-

tion gives the most reproducible challenge model in Atlantic salmon

smolts. Improving the evaluation of bacterial culture concentration

would allow for the improvement of this method.

The cohabitation experiment demonstrates that horizontal transfer

occurs easily for Western Canadian T. maritimum strains. This is an

interesting finding in view of the fact that a previous study has shown

that the bacteria does not survive well in sea water (Avenda~no-Her-

rera, Irgang, Magari~nos, Romalde, & Toranzo, 2006). The transmission

between fish of T. maritimum may be of concern to the Norwegian

salmon farming industry, as a closely related strain to the ones

found in BC was associated with disease on lumpsuckers, which are

frequently used as biological sea lice controls (Frisch et al., 2017;

Sm�age, Frisch, Brevik, Watanabe, & Nylund, 2016). Further studies

are needed to determine whether or not this is a valid concern.

5 | CONCLUSION

The reproduction of the disease in the laboratory with isolates col-

lected from mouthrot outbreaks, as well as the reisolation of the

bacteria from these diseased individuals, fulfils Koch’s Postulates,

which is the preferred method for proving disease causation (Fre-

dricks & Relman, 1996). This study therefore shows that T. mariti-

mum is the causative agent of mouthrot in BC. Despite giving an

antibody response in the immunized fish, the trialled whole-cell oil-

adjuvanted vaccines did not give protection under the tested condi-

tions. The results from the cohabitation experiment show that

T. maritimum readily transfers from fish to fish.
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