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ABSTRACT 

Mouthrot is a major health and welfare problem in farmed Atlantic salmon (Salmo 

salar) smolts in the Pacific Northwest (West Coast of North America), particularly in 

the first few months following saltwater transfer. This disease, associated with the 

bacterium Tenacibaculum maritimum, is the main reason the Atlantic salmon farming 

industry in this region continues to use antibiotics. Mouthrot results in large economic 

losses due to direct fish mortality, as well as the cost of treatments and poor 

performance of treated fish. Affected smolts die with very little external or internal 

clinical signs other than characteristic small yellow plaques in the mouth. This clinical 

presentation is visibly different to that of tenacibaculosis, the disease commonly 

associated with T. maritimum in other regions of the world or in other marine fish 

species. T. maritimum is the most extensively studied member of the Tenacibaculum 

genus; however, its role in causing mouthrot in British Columbia (BC) has not been the 

focus.  

The main objective of this study was to gain more knowledge about T. maritimum in 

BC and its connection to mouthrot in the Pacific Northwest, and to make steps towards 

developing management tools that would help decrease the use of antibiotic treatments 

and improve fish welfare. 

Genotyping of T. maritimum isolates collected from natural outbreaks of mouthrot on 

Atlantic salmon farms in BC showed the presence of two genetic strains of the 

bacterium based on 11 housekeeping genes. These strains are most closely related 

genetically to strains collected from lumpsuckers (Cyclopterus lumpus) with skin 

lesions and Atlantic salmon in Norway, as well as Atlantic salmon gills in Chile. The 

division of the BC isolates into two genetic groups is further supported by a serological 

analysis that showed that there are two serological groups that match the genetic 

strains.  

Representative isolates from the two identified BC genetic strains were used to develop 

a bath challenge model with Atlantic salmon smolts, which is necessary for testing 
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management tools such as treatments and vaccines. Through these experiments, it was 

demonstrated that T. maritimum is the causative agent of mouthrot in BC without the 

need for other stressors or co-infections. The main pathology in Atlantic salmon smolts 

infected with BC T. maritimum strains are mouth lesions that damage the tissues 

surrounding the teeth causing a disease that is similar to periodontal disease in 

mammals. The pathological changes are focal, severe, and occur very rapidly with very 

little associated inflammation. A cohabitation experiment also showed that T. 

maritimum readily transfers from infected smolts to naïve ones. As mouthrot mainly 

affects smolts, further studies are needed to investigate the link between smolt status 

and susceptibility to developing mouthrot. 

With the knowledge gained from the genetic characterisation and serological analysis 

of the BC T. maritimum isolates, whole cell inactivated adjuvanted vaccines were 

created and tested using the developed challenge model. Despite giving an antibody 

response in immunised fish, the vaccines did not protect the smolts against mouthrot 

induced through a bath infection. Future research needs to focus on preventative tools, 

including other types of vaccines such as immersion or live-attenuated. This will 

require a better understanding of the pathogenesis of mouthrot. 
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KEY DEFINITIONS AND ABBREVIATIONS 

Mouthrot: bacterial stomatitis caused by Tenacibaculum maritimum in farmed 

Atlantic smolts of the Pacific Northwest and characterised by the presence of small 

yellow plaques in the mouth and no other internal or external clinical signs 

Tenacibaculosis: infection caused by Tenacibaculum spp. (generally T. maritimum or 

T. finnmarkense) in a number of marine fish species characterised by frayed fins, tail 

rot, mouth erosion and skin lesions/ulcers 

 

BAS Blood agar with added 1.5-2.0 % NaCl 

BC British Columbia 

ECP extracellular products 

ELISA Enzyme-linked immunosorbent assay 

FMM Flexibacter maritimus medium 

HK Housekeeping 

IP Intra-peritoneal 

MA Marine agar (Difco 2216) 

MLSA Multilocus sequence analysis 

MLST Multilocus sequence typing 

PCR Polymerase chain reaction 

ST Sequence type 

sp. Species (singular) 

spp. Species (plural) 

T9SS Type IX secretion system 
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1. INTRODUCTION 

1.1 Aquaculture on the West Coast of North America 

Salmon farming on the West Coast of North America (Pacific Northwest) started in the 

1970s when wild salmon numbers began to diminish. The industry began with the 

raising of native Coho (Oncorhynchus kisutch) and Chinook (Oncorhynchus 

tshawytscha) salmon that were already being produced by fisheries enhancement 

hatcheries. Over the following decades, the farming focus shifted to Atlantic salmon 

(Salmo salar) due to its better suitability for domestication and because it grows faster 

than the Pacific species of salmon (Olin, 2012). The main species farmed is now 

Atlantic salmon in open net-pens; concurrently, Chinook and Coho salmon continue to 

be farmed on a much smaller scale. Canada is the fourth largest producer of farmed 

salmon in the world, after Norway, Chile and the UK, with British Columbia (BC) 

representing over 75% of the total production in the country (about 80,000 tonnes 

annually) (Statistics Canada, 2017). It is the largest agri-food export from BC, with the 

United States being the largest market, and is a significant economic contributor to 

coastal and rural communities (Fisheries and Oceans Canada, 2016). The distribution 

of saltwater farms in the Pacific Northwest can be seen in Figure 1.  

1.1.1 Fish health of farmed salmon in the Pacific Northwest 

Unlike many Atlantic salmon regions, the Pacific Northwest has very few marine 

pathogens that impact the industry. Endemic diseases such as furunculosis (Aeromonas 

salmonicida), vibriosis (Vibrio anguillarum) and infectious haematopoietic necrosis 

(Salmonid novirhabdovirus) are well controlled through the use of effective vaccines 

(Kent, 1992; Traxler et al., 1999). Viral haemorrhagic septicaemia (Piscine 

novirhabdovirus) and bacterial kidney disease (Renibacterium salmoninarum) are also 

endemic but are well managed through screening of broodstock and/or good 

management practices; and therefore, account for only a small percentage of the overall 

losses during the saltwater phase of production.  
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The largest cause of mortality to farmed salmon in the region are harmful algal blooms 

that have been occurring since the start of the industry (Haigh et al., 2014). As a result, 

extensive monitoring programs have been put in place with mitigation methods to 

decrease economic losses. These include daily monitoring and identification of 

potential harmful plankton at every farm, as well as regional coordinated monitoring 

during riskier periods of the year.  

Although fish health issues are fewer than in other farming regions, there are a small 

number of marine bacteria that continue to give rise to disease outbreaks. These include 

Moritella viscosa, the cause of winter ulcers, and Tenacibaculum spp. that have been 

associated with two types of clinical presentations. One type results in skin 

lesions/ulcers, mouth erosion, frayed fins and tail rot. The other, bacterial stomatitis or 

Figure 1 – Map of British Columbia, Canada, and Washington State, USA, 
showing salmon farm locations (red dots). 
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mouthrot, causes lesions primarily in the mouth (Kent, 1992). These diseases can affect 

fish at any stage during the saltwater phase of the production cycle; however, mouthrot 

is more prevalent in smolts recently entered into saltwater, and lesions, due to either 

Tenacibaculum spp. or M. viscosa, or both, are a greater problem in harvest size fish 

due to significant economic losses as a result of downgrades at processing.  

1.2 Mouthrot 

Mouthrot is a significant fish welfare problem in the Pacific Northwest (Ostland et al., 

1999). The disease has been identified in Atlantic salmon farms in the region as early 

as the late 80s and is generally associated with losses in smolts recently transferred into 

saltwater (Frelier et al., 1994). The impact on the industry is significant due to direct 

costs of mortality and antibiotic treatments, as well as indirect costs of loss of 

production from poor performance. Mouthrot has been reported to cause up to 15 % 

mortality (Ostland et al., 1999); however, due to the effectiveness of antibiotic 

Figure 2 – Mouths from mouthrot affected smolts from an Atlantic salmon farm in 
BC showing the distinct yellow plaques (arrows). 
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treatments, mortality numbers are now much lower. At present, mouthrot accounts for 

around 1 to 3 % mortality during the saltwater phase of production with the majority 

occurring during the first 4 to 5 months in saltwater. Antibiotic treatments used to 

control the disease account for over 90 % of total use in the region (personal 

observations, Cermaq Canada). The continued use of antibiotics to treat this disease 

also impacts the acceptance of the industry to operate in the region by stakeholders and 

the general public.  

Diseased fish during a mouthrot outbreak die with small yellow plaques in the mouth 

(Figure 2) and little or no other clinical signs both externally and internally (Frelier et 

al., 1994; Ostland et al., 1999). Occasionally, the characteristic yellow plaques are seen 

on the gills (Figure 3), a finding that has also been noted in Europe (Mitchell et al., 

2011). The disease course in smolts is very rapid as surveys of the live population of a 

farm during an outbreak reveal a prevalence of clinical signs below 1 % (personal 

communication, Peter McKenzie). 

Figure 3 – Gills from a mouthrot affected smolt from an Atlantic salmon farm in 
BC showing a distinct yellow plaque (arrow). 
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The severity of a mouthrot outbreak is influenced by a number of factors that include 

smoltification quality, previous handling, and water quality parameters such as 

temperature, salinity and the presence of algal blooms (Frelier et al., 1994; Hewison et 

al., 2015). In general, susceptibility to outbreaks decreases after a certain amount of 

time in saltwater (3 to 6 months post-transfer); however there appears to be a trend 

Figure 4 – Two examples of mouthrot outbreaks on BC Atlantic salmon farms 
showing the daily percent mortality attributed to mouthrot and the effect of 
treatments with florfenicol (7 days at 10 mg kg-1). 
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towards more severe cases with outbreaks occurring in larger and better quality fish in 

lower salinities, and lasting longer than historical cases (Hewison et al., 2015). 

Mortalities showing clinical signs of mouthrot can occur as early as two days post-

transfer to saltwater and most commonly occur within the first few weeks. Figure 4 

shows examples of mortality curves from typical outbreaks on Atlantic salmon farms 

in BC, showing repeated spikes in mortality and treatments with florfenicol (Aquaflor, 

Merck). Florfenicol is the most commonly used antibiotic for this purpose due to its 

palatability and low toxicity; however, its rapid metabolism by the fish means that a 

mouthrot outbreak often requires multiple treatments (Morrison et al., 2013). 

The bacterium isolated from the mouth lesions of affected smolts is Tenacibaculum 

maritimum (Ostland et al., 1999) and is now known to be the causative agent of the 

disease (Paper II). Most commonly, T. maritimum is associated with tenacibaculosis, 

a disease characterised by ulcerative skin lesions, mouth erosion, frayed fins and tail 

rot (Toranzo et al., 2005). This is a disease that is clinically different from mouthrot as 

seen in BC and Washington state.  

1.3 Tenacibaculum maritimum 

Tenacibaculum maritimum (originally Flexibacter maritimus) is a marine gram 

negative bacterium in the family Flavobacteriaceae that was first identified in 1976 

from diseased Japanese farmed juvenile red sea bream (Pagrus major) and black sea 

bream (Acanthopagrus schlegelii) reared in seawater net-pens (Masumura et al., 1977; 

Wakabayashi et al., 1986; Suzuki et al., 2001). The pathogen has since been isolated 

from a large range of wild and farmed fish species all over the world (Table 1). 

Table 1 – T. maritimum: geographic origin and host species identified to date. 

Host Species Country Source 
Asia:    
Acanthopagrus schlegelii - Black sea bream Japan (Masumura et al., 1977) 
Lates calcarifer - Barramundi Singapore (Labrie et al., 2008) 
Oplegnathus fasciatus - Rock bream Japan (Wakabayashi et al., 1986) 
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Host Species Country Source 
Pagrus major - Red sea bream Japan (Masumura et al., 1977) 
Paralichthys olivaceus - Olive flounder Japan 

Korea 
(Baxa et al., 1986) 
(Jang et al., 2009) 

Seriola quinqueradiata - Yellowtail Japan (Baxa et al., 1988) 
Takifugu rubripes - Puffer fish Japan (Rahman et al., 2014) 

Oceania:    
Acanthopagrus butcheri - Black bream Australia (Handlinger et al., 1997) 
Aldrichetta forsteri - Yellow-eye mullet Australia (Handlinger et al., 1997) 
L. calcarifer - Barramundi Australia (Soltani et al., 1996) 
Latris lineata - Striped trumpeter Australia (Carson et al., 1992) 
Oncorhynchus mykiss - Rainbow trout Australia (Carson et al., 1992) 
Oncorhynchus tschawytscha - Chinook salmon New Zealand (Ministry for Primary Industries, 2017) 
Platax orbicularis - Orbicular batfish French Polynesia (Bardon-Albaret et al., 2016) 
Rhombosolea tapiriña - Greenback flounder Australia (Handlinger et al., 1997) 
Salmo salar - Atlantic salmon Australia (Carson et al., 1992) 

America:    
Atractoscion nobilis - White seabass USA (West Coast) (Chen et al., 1995) 
Engraulis mordax - Northern anchovy USA (West Coast) (Chen et al., 1995) 
O. tschawytscha - Chinook salmon USA (West Coast) (Chen et al., 1995) 
S. salar - Atlantic salmon Canada (West Coast) 

Chile 
(Ostland et al., 1999) 
(Apablaza et al., 2017) 

Sardinops sagax - Pacific sardine USA (West Coast) (Chen et al., 1995) 
Scophthalmus maximus - Turbot Chile (Habib et al., 2014) 

Europe:    
Carcharias taurus - Sand tiger shark Italy (Florio et al., 2016) 
Chelidonichthys lucernus - Tub gurnard Italy (Magi et al., 2007) 
Cyclopterus lumpus - Lumpsucker Norway (Småge et al., 2016) 
Dentex dentex - Common dentex Italy (Salati et al., 2005) 
Dicentrarchus labrax - Sea bass France 

Greece 
Italy 
Malta 
Turkey 

(Bernardet et al., 1994) 
(Kolygas et al., 2012) 
(Salati et al., 2005) 
(Bernardet, 1998) 
(Yardımcı et al., 2015) 

Dicologoglossa cuneate - Wedge sole Spain (López et al., 2009) 
Diplodus puntazzo - Sharp-snout seabream Italy (Salati et al., 2005) 
Diplodus sargus - White seabream Italy (Salati et al., 2005) 
Oncorhynchus kisutch - Coho salmon Spain (Habib et al., 2014) 
Pagellus bogaraveo - Blackspot seabream Spain (Castro et al., 2007) 
S. salar - Atlantic salmon Ireland 

Norway 
Spain 

(Downes et al., 2018) 
(PHARMAQ Analytiq, 2017) 
(Pazos et al., 1993) 

S. maximus - Turbot France 
Italy 
Norway 
Spain 

(Habib et al., 2014) 
(Magi et al., 2007) 
(Olsen et al., 2017) 
(Alsina et al., 1993) 

Solea senegalensis - Senegelese sole Portugal (Avendaño-Herrera et al., 2005) 
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Host Species Country Source 
Spain (Cepeda et al., 2002) 

Solea solea - Common sole Netherlands 
Scotland 
Spain 

(Habib et al., 2014) 
(Bernardet et al., 1990) 
(Avendaño-Herrera et al., 2004) 

Sparus aurata - Gilt-head bream Greece 
Italy 
Spain 

(Kolygas et al., 2012) 
(Salati et al., 2005) 
(Avendaño-Herrera et al., 2004) 

Africa:    
Cheilinus lunulatus - Broomtail wrasse Egypt (Abd El-Galil et al., 2012) 
Neoglyphidodon melas - Black damsel Egypt (Abd El-Galil et al., 2011) 
Rhinecanthus aculeatus - Picasso triggerfish Egypt (Abd El-Galil et al., 2011) 

In most reported cases, the disease associated with T. maritimum results in ulcerative 

skin lesions, mouth erosions, frayed fins and tail rot, called tenacibaculosis (Toranzo 

et al., 2005). This type of clinical presentation is what has been reported in Atlantic 

salmon smolts in Tasmania, Australia (Carson et al., 1992). Outbreaks can result in 

significant economic losses and therefore limit the culturing of many commercially 

valuable marine fish species around the world (Avendaño-Herrera et al., 2006b). The 

bacterium has also been isolated from sea lice (Lepeophtheirus salmonis) found on 

farmed Atlantic salmon from BC (Barker et al., 2009), and has been detected through 

molecular testing from jellyfish found on the gills of farmed Atlantic salmon from the 

Shetland Islands (Ferguson et al., 2010). These organisms may be acting as vectors for 

the bacteria.  

1.3.1 Phenotypic characterisation 

The bacterium, T. maritimum, is a gram-negative long slender rod (0.5 µm by 2 to 30 

µm) (Figure 5) that gets shorter and eventually spherical as cultures get older, is strictly 

aerobic, exhibits gliding motility without the presence of flagella, and only grows on 

agar containing sea water or a synthetic sea water (they do not grow on NaCl alone) 

(Avendaño-Herrera et al., 2006b). Colonies are pale-yellow and flat with uneven edges, 

and rarely exceed 5 mm in diameter (Wakabayashi et al., 1986). The optimal growth 

for T. maritimum has been published to be 30 ºC; however, bacterial growth can occur 

between 15 to 34 ºC and has been reported as low as 8 ºC (Suzuki et al., 2001; Småge 

et al., 2016). The bacterium is positive for oxidase and catalase, and negative for 
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flexirubin type pigments and the production of H2S (Wakabayashi et al., 1986; Suzuki 

et al., 2001).  

 

 

1.3.2 Genotypic characterisation 

Tenacibaculum maritimum is the type species of the Tenacibaculum genus, which is 

depicted in Figure 6. Two other species, Tenacibaculum dicentrarchi and 

Tenacibaculum finnmarkense have also been associated with disease in Atlantic 

salmon (Småge et al., 2015; Avendaño-Herrera et al., 2016; Småge et al., 2017; 2018). 

This latter one has been isolated, identified through 16S rRNA gene sequencing and 

connected to tenacibaculosis in BC (personal observations) (see section 4.1.2). A recent 

genome comparison between certain Tenacibaculum species (T. maritimum, T. 

dicentrarchi, Tenacibaculum ovolyticum and T. soleae) reveals significant differences 

between them, particularly with respect to virulence factors (Pérez-Pascual et al., 

2017).  

Figure 5 – Smear of a skin lesion on a diseased smolt showing a large amount of 
T. maritimum. (DifQuik stained) 
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Figure 6 – Phylogenetic tree showing all the identified type species of Tenacibaculum. Two 
species of Flexibacter spp. are included due to their close genetic relationship to the 
Tenacibaculum genus. Kordia algicidaT (AB681152) is used as an outgroup. The tree was 
inferred using an alignment of 1348 base positions of the 16S rRNA gene from 33 taxa. The 
alignment was constructed in AlignX in Vector NTI (Invitrogen) and then adjusted to equal 
length in GeneDoc (Nicholas et al., 1997). The best fitted evolutionary model (GTR+G+I) was 
calculated in Mega6 (Tamura et al., 2013). A Bayesian analysis (relaxed lognormal molecular 
clock and a MCMC of 150,000,000 generations) was performed using BEAST (Drummond 
and Rambaut, 2007). Sample size values (ESS) were inspected using Tracer ver. 1.6 (Rambaut 
et al., 2014), and found to be above the recommended range for all parameters (> 200). A 
maximum clade credibility tree was obtained using a 10% burn-in in TreeAnnotator and 
viewed using FigTree (Drummond et al., 2012). 
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Molecular typing methods (e.g. multilocus sequence typing (MLST)) have led to the 

establishment of bacterial pathogen nomenclature schemes that are both uniform and 

reproducible, which give researchers the tools to perform epidemiological studies 

(Gevers et al., 2005). MLST characterises isolates within a microbial species using the 

allelic mismatch of a small number of housekeeping (HK) genes, and assigns these 

isolates a sequence type (ST). As these schemes are nucleotide sequence based, they 

are easy to transfer and reproduce in different laboratories (Maiden, 2006). The 

sequence data provided by MLST can be concatenated and used for phylogenetic 

analysis, called multilocus sequence analysis (MLSA). MLSA is the current method of 

choice to explore phylogenetic relationships at the species and subspecies levels 

(Gevers et al., 2005; Glaeser et al., 2015). 

A number of T. maritimum STs have been described through MLSA and MLST using 

strains collected from a variety of host species worldwide (Habib et al., 2014) (HK 

genes listed in Table 2). The genetic data from this work is available through the 

Tenacibaculum MLST database (http://pubmlst.org/tenacibaculum/) and allow 

researchers to use and add to this work (Maiden, 2006), as was performed in Paper I. 

The population structure of T. maritimum suggests an endemic colonisation of fish 

farms by local strains with little or no indication of long distance contamination through 

fish movements (Habib et al., 2014). The same sequence type is found to infect multiple 

fish species in the same geographical area, which indicates cross-species contamination 

from the same bacterial lineage (Habib et al., 2014). However, this may not always be 

the case; for example, closely related strains can be found on the same host species 

(Atlantic salmon) in three different geographical regions (Norway, Western Canada 

and Chile) (Paper I). 

1.3.3 Diagnosis 

The identification of T. maritimum in BC is generally based on the observation of thin 

rod-shaped bacteria in wet mounts, and the colony and cell morphologies observed 

from cultures. Primary isolation of the bacterium requires sea salt in the growth 

medium and two agars are routinely used for this purpose: marine agar (MA) and 
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Flexibacter maritimus medium (FMM) (Pazos et al., 1996). It does not grow on blood 

agar that contains NaCl (BAS) that is traditionally used in routine diagnostics in salmon 

farming, and therefore may be the reason it has not been frequently recovered in BC. 

T. maritimum can be difficult to distinguish from other phenotypically similar bacteria, 

particularly from other yellow-pigmented Flavobacteriaceae (Suzuki et al., 2001; 

Toranzo et al., 2005). T. maritimum grows slower than other environmental bacteria 

such as Vibrio spp. commonly isolated from external lesions, which can make pure 

cultures from external lesions difficult to obtain (Pazos et al., 1996). To resolve this 

issue several authors have suggested adding antimicrobials compounds to the agar that 

select for T. maritimum (Baxa et al., 1986; Chen et al., 1995; Kolygas et al., 2012). The 

addition of kanamycin to the agar was used in this study (Paper I, II). 

Nowadays, the most common and specific way to identify the species of bacterium 

from a pure culture is PCR and sequencing, and these methods have now nearly 

completely replaced the traditional biochemical tests for bacterial identification. T. 

maritimum is no exception and two primer sets based on the 16S rRNA gene have been 

developed to identify the species (Toyama et al., 1996) (Table 2). The identification is 

confirmed by sequencing the 16S rRNA gene and matched against reference gene 

sequences. 

Table 2 – Primers used for PCR and sequencing of T. maritimum. 

Gene Primer Sequence (5'-3') Source 
16S rRNA  MAR1 AATGGCATCGTTTTAAA (Toyama et al., 1996) 

MAR2 CGCTCTCTGTTGCCAGA 
Mar1 TGTAGCTTGCTACAGATGA (Bader et al., 1998) 
Mar2 AAATACCTACTCGTAGGTACG 

atpA forward ATTGGWGAYCGTCAAACWGG  (Habib et al., 2014) 
reverse CCAAAYTTAGCRAAHGCTTC  

dnaK forward GGWACYACNAAYTCDTGTGT (Habib et al., 2014) 
reverse TCWATCTTMGCTTTYTCAGC 

glyA forward CAYTTAACWCAYGGWTCDCC (Habib et al., 2014) 
reverse ACCATRTTTTTRTTTACHGT 

gyrB forward AGTATYCARGCRCTRGAAGG (Habib et al., 2014) 
reverse GTWCCTCCTTCRTGYGTRTT 

ileS forward CCWACHTTTGGWGCHGAYGA (Habib et al., 2014) 
reverse GAATCRAACCAWACATCAAT 
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Gene Primer Sequence (5'-3') Source 
infB forward ATGCCDCAAACWAAAGARGC (Habib et al., 2014) 

reverse GTAATHGCTCCAACYCCTTT 
rlmN forward GCKTGTGTDTCDAGYCARGT (Habib et al., 2014) 

reverse CCRCADGCDGCATCWATRTC 
tgt forward GAAACWCCWATWTTYATGCC (Habib et al., 2014) 

reverse TAYAWYTCTTCNGCWGGTTC 
trpB forward GTWGCNCGWATGAAAATGYT (Habib et al., 2014) 

reverse CCWGGRTARTCYAATCCTGC 
tuf forward AGAGAWTTATTRTCTTTCTA (Habib et al., 2014) 

reverse GTTACCTGACCWGCWCCWAC 
yqfO forward GCBGAARRTTTTGAYAAYGT (Habib et al., 2014) 

reverse AYTTCRTARGCDACYTCTTC  

There are two published real-time RT-PCR assays for the detection of T. maritimum, 

both based on the 16S rRNA gene (Fringuelli et al., 2012; Fernández-Álvarez et al., 

2018). However, the 16S rRNA gene has lower phylogenetic resolution than other 

genes at the species level (Janda et al., 2007), and assays based on this gene tend to be 

less specific than other assays. As a result, these assays were not used in this study 

(Paper III).  

1.3.4 Pathology 

Since its discovery, T. maritimum has been shown to be able to produce disease on its 

own in a number of fish species, including Atlantic salmon (Avendaño-Herrera et al., 

2006b). The pathology associated with tenacibaculosis in marine fish has been fairly 

well described macroscopically and microscopically (Avendaño-Herrera et al., 2006b), 

and in general the disease is more severe in younger fish (Toranzo et al., 2005). In 

Tasmanian farmed Atlantic salmon, tenacibaculosis is predominantly associated with 

erosive lesions on the external surfaces (dorsal and lateral skin, gills, head and fins) 

with the most commonly affected area being the flank just behind the pectoral fins 

(Handlinger et al., 1997). Histologically, lesions are associated with bacterial mats of 

long thin rod-shaped T. maritimum-like bacteria. Destruction and loss of the epithelium 

with bacterial invasion of the underlying connective tissues is typical of the disease, 

and there are seldom any signs of inflammatory processes (Handlinger et al., 1997; van 

Gelderen et al., 2011). 
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There is scarce information on the pathology and pathogenesis of mouthrot in Atlantic 

salmon in the Pacific Northwest, which appears to be different from tenacibaculosis 

(see section 1.2). In this region, T. maritimum was thought to be a secondary invader, 

and would therefore require damaged tissue to invade (Ostland et al., 1999); however, 

the pathogen has been shown in this study to be able to induce mouthrot on its own in 

Atlantic salmon smolts (Paper II). Lesions of mouthrot affected smolts from the field 

are generally located in the oral cavity and usually involve the dentition and 

surrounding gingiva, and histopathology show changes in the mouth that may be 

similar to gingival diseases in humans (Frelier et al., 1994, Paper III). Interestingly, a 

pathology similar to mouthrot has been described in juvenile Atlantic cod (Gadus 

morhua) that the researchers called "yellow pest" (Hilger et al., 1991). The associated 

bacteria were not fully identified, but were described as T. maritimum-like; however, 

these isolates deviated phenotypically from T. maritimum.  

1.3.5 Challenge model 

As is the case with other fish pathogens of the Flavobacteriaceae family (Decostere et 

al., 2000), the main challenge in investigating T. maritimum is the difficulty in 

developing a reproducible bath challenge model. The most successful fish challenge 

models involve injecting fish with the causative pathogen as this provides more control 

of experimental conditions. Many experiments have been conducted in economically 

important fish species attempting to reproduce disease caused by T. maritimum. The 

injectable route has given repeatedly poor results, both intra-peritoneally (IP) and 

subcutaneously (Yamamoto et al., 2010; Faílde et al., 2014). 

Using a bath infection model seems to be the most effective way to induce disease with 

T. maritimum with many attempts at optimising this method in a number of fish species 

(Avendaño-Herrera et al., 2006b). These studies have included scarification or abrasion 

pre-exposure to the bacteria that was subsequently proven not to be necessary (Baxa et 

al., 1987; Mabrok et al., 2016). A range of bath bacterial concentrations and exposure 

times have been tested,  as well as varying water parameters including salinity and 

temperature (Avendaño-Herrera et al., 2006b). In Atlantic salmon in Tasmania, 
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researchers found that bath infecting smolts for one hour at a high concentration gave 

them the most replicable results (Soltani et al., 1996; Handlinger et al., 1997). This 

high dose bath model was used to bath infect smolts in this study (Paper II). 

1.3.6 Treatments and vaccination 

There is an increasing move towards non-therapeutic disease management in the 

aquaculture industry whenever possible. Non-therapeutic methods of managing 

mouthrot have been attempted by the industry in BC including improving smolt quality, 

using functional feeds, and targeting smolt entries based on site history and 

environmental conditions; however, none of these methods have been shown to be 

wholly effective (Hewison et al., 2015). While vaccination has reduced antibiotic 

treatments to almost zero for the predominant bacterial diseases (bacterial kidney 

disease, vibriosis, and furunculosis) in the Pacific Northwest, there is no commercial 

vaccine available for T. maritimum (Morrison et al., 2013). Without effective non-

therapeutic measures against mouthrot, affected fish need to be treated with antibiotics 

to maintain fish welfare and reduce mortality. T. maritimum is susceptible to many of 

the known antibiotics in use in aquaculture including amoxicillin, nitrofurantoin, 

florfenicol, oxytetracycline and trimethoprim-sulphamethoxazole (Avendaño-Herrera 

et al., 2008), and florfenicol is the most frequently used antibiotic against mouthrot in 

BC.  

At least three serotypes based on O-antigen have been identified for T. maritimum and 

the many studies indicate that this bacterium may not be as homogenous as previously 

believed (Ostland et al., 1999; Avendaño-Herrera et al., 2004; Castro et al., 2007). This 

suggests that different vaccine formulations may be required for different aquaculture 

regions or different fish species (Romalde et al., 2005). There are some major 

discrepancies between serological studies (e.g. differences in the antigens, antisera and 

techniques used) that impede comparisons between laboratories, and may therefore 

hamper the development and formulation of appropriate and effective vaccines.  

Prototype vaccines have been tested in Atlantic salmon in Tasmania with poor results 

from little to no level of protection (Carson et al., 1992; 1993; 1994; van Gelderen et 
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al., 2009b). However, the tested conditions do not reflect the ones in BC in regards to 

water temperature and disease progression. Currently there is only one vaccine 

available for use against T. maritimum, and it is for turbot in Spain (Santos et al., 1999). 

A protective vaccine against mouthrot is of high interest to the BC salmon farming 

industry to improve fish welfare (by decreasing mortality) and sustainability (by 

decreasing antibiotic use). 

1.4 The skin and oral cavity of salmonids 

The skin is the primary barrier against the environment, and fish are no exception. 

There are three main layers (epidermis, dermis and hypodermis) in the skin of salmon 

with a cuticle layer (or mucus layer) covering the whole structure (Figure 7).  

The epidermis, which is thicker in scale-less areas such as the head and fins, is made 

up of non-keratinising stratified squamous epithelium. This layer contains the mucous 

(or goblet) cells that are vital in the production of the mucus layer (Elliott, 2011). The 

epithelial cells retain the capacity to divide even in the outermost layer (unlike 

mammals) and the outer cells have a fingerprint-like microridge pattern (Ferguson, 

2006). The dermis is composed of two layers: the upper stratum spongiosum, a loose 

collagenous network, and the lower stratum compactum, a dense matrix of collagen 

fibres. This latter layer is what gives the skin its strength (Roberts et al., 2012). The 

epidermis and dermis are separated by an acellular basement membrane. Scales, some 

Figure 7 – Structure of the skin of salmon showing the different layers. 
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of the main physical protectors of the skin originate in the dermis in scale-pockets and 

are covered in the epidermis. Scale-loss is therefore a significant breach in the physical 

and/or osmotic barriers of the fish (Ferguson, 2006). The hypodermis is comprised of 

vascularised loose adipose tissue between the dense stratum compactum of the dermis 

and the subcutaneous muscle (Roberts et al., 2012).  

The outer surface of epithelial cells of the epidermis has microridges that provide an 

extensive surface area for the secreted mucus to adhere to that helps maintain the 

mucous layer that covers the epithelium (Peterson, 2015). Mucus is considered the first 

line of defence against pathogens entering though the skin, as it captures foreign 

particles, including bacteria and viruses that are then removed by the surrounding 

water. Additionally, mucus is constantly secreted and replaced, which prevents 

colonisation by microorganisms (Esteban et al., 2015). T. maritimum has the advantage 

that it is able to strongly bind to this protective mucous layer, and that the mucus does 

not seem to contain compounds that inhibits this bacterium's growth (Magariños et al., 

1995). This mechanism is likely the reason why T. maritimum is able to colonise the 

host so effectively.  

The integument of the oral cavity is made up of the same layers as the skin, however 

there are some differences. The epidermis contains an abundance of mucous cells and 

lies on a thick membrane with a very condensed dermis binding it to the bone or muscle 

(Roberts et al., 2012). Filiform and fungiform papillae may be found (Ferguson, 2006). 

Salmon are homodont: all their teeth have the same shape. These teeth are formed 

throughout the fish's life. Teeth have an inner pulp with an outer dentine layer that is 

covered by enameloid on the crown, or exposed part. In salmon, teeth are attached to 

the jaw bones by an acrodont connection made of dense connective tissue. Where the 

epidermis connects with the teeth (gingival-enameloid interface), gingival pockets are 

formed surrounding them (Kryvi et al., 2016). 
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2. AIMS OF THE STUDY 

The overall aim of the study was to increase the knowledge of mouthrot as it is seen in 

Atlantic salmon farms in the Pacific Northwest and make steps towards developing 

management tools that would help decrease the use of antibiotic treatments. This was 

accomplished through the following goals:  

• Characterising the bacteria isolated from field cases of mouthrot through the use 

of genotyping tools. (Paper I) 

• Testing if T. maritimum causes mouthrot on its own in Atlantic salmon smolts 

without other stressors or co-infections and thereby proving Koch's Postulates. 

(Paper II) 

• Developing a bath challenge model for T. maritimum using Atlantic salmon 

smolts that is necessary for testing management tools. (Paper II) 

• Testing whole cell inactivated adjuvanted vaccines using the developed 

challenge model. (Paper II) 

• Investigating the pathology of the disease. (Paper III) 
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3. PAPER ABSTRACTS 

Paper I 

Mouthrot infections (bacterial stomatitis) have a significant impact on the Atlantic 

salmon aquaculture industry in Western Canada due to economic losses and fish 

welfare. Bacteria isolated from lesions in the field have been identified as 

Tenacibaculum maritimum. Mouthrot is different to classical tenacibaculosis, which is 

most commonly associated with ulcerative lesions, frayed fins and tail rot. The marine 

fish pathogen T. maritimum is found worldwide; however, in Western Canada, the 

knowledge of the genetic profile of T. maritimum is limited. This study looked at 

increasing this knowledge by genotyping T. maritimum isolates collected from Atlantic 

salmon from farms in Western Canada. These genotypes were compared to other 

species of the genus Tenacibaculum, as well as other known sequence types within the 

species. The Western Canadian isolates belong to two new sequence types within the 

T. maritimum species. Phylogenetic analysis shows that the isolates form a distinct 

branch together with T. maritimum NCIMB 2154T separate from other Tenacibaculum 

type strains, and they are most closely related to strains from Norway and Chile. 

Paper II 

Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic 

salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British 

Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare 

issue which results in economic losses due to mortality and antibiotic treatments. The 

associated pathogen is Tenacibaculum maritimum, a bacterium which causes 

significant losses in many species of farmed fish worldwide. This bacterium has not 

been proven to be the causative agent of mouthrot in BC despite being isolated from 

affected Atlantic salmon. In this study, challenge experiments were performed to 

determine whether mouthrot could be induced with T. maritimum isolates collected 

from outbreaks in Western Canada and to attempt to develop a bath challenge model. 

A secondary objective was to use this model to test inactivated whole-cell vaccines for 

T. maritimum in Atlantic salmon smolts. This study shows that T. maritimum is the 

causative agent of mouthrot and that the bacteria can readily transfer horizontally 
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within the population. Although the whole-cell oil-adjuvanted vaccines produced an 

antibody response that was partially cross-reactive with several of the T. maritimum 

isolates, the vaccines did not protect the fish under the study’s conditions.  

Paper III 

Mouthrot, caused by Tenacibaculum maritimum is a significant disease of farmed 

Atlantic salmon, Salmo salar on the West Coast of North America. Smolts recently 

transferred into saltwater are the most susceptible and affected fish die with little 

internal or external clinical signs other than the characteristic small (usually < 5 mm) 

yellow plaques that are present inside the mouth. The mechanism by which these 

smolts die is unknown. This study investigated the microscopic pathology (histology 

and scanning electron microscopy) of bath infected smolts with Western Canadian T. 

maritimum isolates TmarCan15-1, TmarCan16-1 and TmarCan16-5 and compared the 

findings to what is seen in a natural outbreak of mouthrot. A real-time RT-PCR assay 

based on the outer membrane protein A specific for T. maritimum was designed and 

used to investigate the tissue tropism of the bacteria. The results from this showed that 

T. maritimum is detectable internally by real-time RT-PCR. This combined with the 

fact that the bacteria can be isolated from the kidney suggests that T. maritimum 

becomes systemic. The pathology in the infected smolts is primarily mouth lesions, 

including damaged tissues surrounding the teeth; the disease is similar to periodontal 

disease in mammals. The pathological changes are focal, severe, and occur very rapidly 

with little associated inflammation. Skin lesions are more common in experimentally 

infected smolts than in natural outbreaks, but this could be an artefact of the challenge 

dose, handling and tank use during the experiments.  
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4. DISCUSSION 

Mouthrot in the Pacific Northwest has been a significant smolt disease since the start 

of the industry in the region. The disease has been controlled through the use of 

antibiotics; however, this is not a solution as the aquaculture industry, like other animal 

production industries, strives to go antibiotic free. In addition, antibiotic treatments are 

expensive, as well as resulting in the poorer performance of treated fish. One of the 

conundrums when comparing to other production regions (in particular Tasmania) is 

that T. maritimum is associated with a different clinical presentation in the Pacific 

Northwest (mouthrot) than what is observed in Atlantic salmon in Spain and Tasmania 

(tenacibaculosis). This study has been able to give an insight into the strains of T. 

maritimum found during mouthrot outbreaks at BC salmon farms and their genetic 

relationship to T. maritimum strains found in other parts of the world (Paper I), as well 

as a definitive connection between the bacterium and the disease (Paper II). Whole 

cell oil adjuvanted vaccines were tested with the established bath challenge model 

(Paper II) and a description of the associated pathology was given (Paper III). As 

such, significant steps have been taken into the potential of a vaccine against mouthrot.  

4.1 Tenacibaculum maritimum in farmed Atlantic salmon 

The T. maritimum isolates collected from natural outbreaks of mouthrot in BC form a 

homologous group with only two different genetic strains based on the concatenated 

sequences of 11 HK genes (Paper I). The separation of the isolates into these two 

groups is further supported by the serological assessment (ELISA) that was performed 

showing strong cross-reaction between isolates from the same genetic strain and 

weaker cross-reactions with ones from the other genetic strain (Paper II). These 

findings are in line with the fact that despite T. maritimum having a very broad host 

range with a worldwide geographical distribution, it is a homologous species, 

exhibiting a low level of genetic diversity (Habib et al., 2014). The BC T. maritimum 

genetic strains are most closely related with strain NLF-15 isolated from diseased 

lumpsuckers in Norway and strain Ch-2402 isolated from Atlantic salmon gills in Chile 
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during a harmful algal bloom (Småge et al., 2016; Apablaza et al., 2017, Paper I). This 

wide geographic distribution between closely related strains is in contradiction with 

what has been described for other T. maritimum strains that suggest an endemic 

colonisation of fish farms by local strains with little or no indication of long distance 

contamination (Habib et al., 2014).  

The main concern with finding closely related strains to the BC ones in Norway and 

Chile, is the potential risk it presents to the Atlantic salmon industry of both these 

regions. This concern is increased by the fact that isolates closely related to the BC 

strains were recently isolated from the gills and oral cavity of Atlantic salmon in 

Western Norway experiencing gill health problems in autumn 2017 (personal 

communication, Are Nylund). In addition, T. maritimum NLF-15 was found linked to 

a disease outbreak in lumpsuckers (Småge et al., 2016), which have increased in usage 

as biological lice controls in recent years (Bornø et al., 2016). These lumpsuckers are 

kept in cohabitation with Atlantic salmon in saltwater net-pens, and therefore the 

potential risk of pathogen transference is quite high, particularly when considering the 

ease in which T. maritimum appears to spread horizontally between fish (Paper II). 

This potential risk is exacerbated by the fact that the water temperatures in Western 

Norway are similar to what are seen in Western Canada. This is also the case for Chile, 

where the water temperatures in region X (Los Lagos) are in a similar range. In Chile, 

the high level of antibiotics (with the vast majority being florfenicol) used to combat 

salmonid rickettsial syndrome (Piscirickettsia salmonis) (Miranda et al., 2018) may be 

masking the effects of T. maritimum. It is possible that reducing the usage of these 

drugs may result in an increased prevalence of Tenacibaculum associated infections in 

Chile.  

4.1.1 Why mouthrot? 

The differences in clinical presentations (mouthrot versus tenacibaculosis) observed in 

Atlantic salmon in Tasmania and BC may be attributed to a number of factors, such as 

genetic differences between the strains, host factors, and environmental conditions. The 

genetic relationship between the isolates used to reproduce mouthrot in this study 
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(Paper II) and the ones used to reproduce tenacibaculosis in Tasmania (Handlinger et 

al., 1997; van Gelderen et al., 2010) is not known, as these latter isolates were not 

included in the MLST scheme (Habib et al., 2014). It is therefore impossible to know 

how closely or distantly related the BC and Tasmanian strains are and whether or not 

this may be contributing to the differences in clinical presentations.  

The most significant difference between the outbreaks in Tasmania and BC appear to 

be the water temperature. Outbreaks of mouthrot occur in temperatures as low as 8 ºC 

and up to 16 ºC (Paper I). The tenacibaculosis outbreaks in Tasmania reported 

temperatures above 16 ºC (Handlinger et al., 1997). The 'yellow pest' syndrome 

described in Atlantic cod, which resembles mouthrot, was only found during the colder 

months (2 to 8 ºC) (Hilger et al., 1991) suggesting that there is a possibility that 

different temperatures may result in a variance in clinical presentations. 

Mouthrot has historically been described as a seasonal disease with smolts introduced 

later in spring and summer being most severely affected during their first summer in 

saltwater (Kent et al., 2002). Seasonality in the levels of T. maritimum associated with 

gill health problems has been reported in Ireland and Norway, with the highest levels 

of the bacteria being reported during the times of the year with the highest seawater 

temperatures (PHARMAQ Analytiq, 2017; Downes et al., 2018). The seasonality of 

mouthrot outbreaks in BC has gradually changed over time with outbreaks now 

occurring all year round, not only during the warmest times of the year. The higher 

frequency of harmful algal blooms in the warmer half of the year further leads to poorer 

control of mouthrot related mortality as antibiotic treatments are administered through 

feed and the halting of feed is one of the primary mitigation tools in the face of harmful 

plankton (personal observations).  

With warming sea water temperatures, the coastal areas of the Pacific Northwest where 

salmon farms operate can be expected to increase in biological productivity (Beamish 

et al., 2008). This results in higher levels of phytoplankton in the region. These elevated 

levels of organic material in the water will presumably lead to increased levels of 

polysaccharide and protein degraders including Flavobacteriaceae, the family to which 
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Tenacibaculum belongs (Buchan et al., 2014; Teeling et al., 2016; Bohórquez et al., 

2017). The Pacific Northwest is particularly productive, with high abundance of 

phytoplankton in the region for at least six months of the year, and sometimes more, 

particularly in warmer years or years with significant freshwater runoff (Haigh et al., 

2014; Zalzal, 2017). These environmental conditions may therefore lead to high levels 

of T. maritimum for a significant part of the year and may contribute to the reason why 

there no longer appears to be a seasonality to mouthrot outbreaks. The warmer waters 

and high organic load seen in the region have also been connected to jellyfish blooms 

and increased levels of sea lice, which have both been linked to T. maritimum (Barker 

et al., 2009; Ferguson et al., 2010).  

4.1.2 T. maritimum versus other Tenacibaculum spp.  

Although T. maritimum is the type species of the Tenacibaculum genus, phylogenetic 

analyses show that it branches out first and is quite different from the other species in 

the genus (Figure 6). There has therefore been some debate as to whether T. maritimum 

should be separated out; however, based on average amino acid identity analyses this 

species belongs in this genus (above the 55-60 % threshold) (Rodriguez-R et al., 2014; 

Pérez-Pascual et al., 2018). This "outgroup" phenomenon at the phylogenetic level is 

also reflected in the fact that T. maritimum is very different to the other pathogenic 

Tenacibaculum spp. (Bridel et al., 2018; Pérez-Pascual et al., 2018), including T. 

dicentrarchi and T. finnmarkense that have both been shown to cause disease in 

Atlantic salmon (Avendaño-Herrera et al., 2016; Småge et al., 2017; 2018). Whole 

genome sequencing has shown that the virulence factors of T. maritimum are strikingly 

different to the other pathogenic Tenacibaculum spp. (T. dicentrarchi, T. finnmarkense, 

T. ovolyticum, T. soleae) (Bridel et al., 2018; Pérez-Pascual et al., 2018). These 

differences in virulence factors (as deduced from their genes) likely contribute to the 

clinical presentation and pathogenic differences, as well as phenotypic characteristics, 

observed between the Tenacibaculum spp.  

During this study, outbreaks of tenacibaculosis were observed at two different Atlantic 

salmon farms in BC and were characterised by mouth erosion (or dropped jaw), frayed 
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fins and skin lesions. The affected smolts resembled what has been described for 

tenacibaculosis in Norway (Olsen et al., 2011; Småge et al., 2017; 2018). At both sites, 

the predominant Tenacibaculum sp. recovered was T. finnmarkense (T. finnmarkense 

L441-3 and T. finnmarkense L556-6 in Figure 8), and no T. maritimum was found. 

Both isolates belonged to clade III, one of the two T. finnmarkense clades (Figure 8) 

(Olsen et al., 2017; Bridel et al., 2018). Tenacibaculosis outbreaks in Atlantic salmon 

smolts in Norway have also been associated with T. finnmarkense strains belonging to 

clade III and appear to be more pathogenic to Atlantic salmon than the ones belonging 

to clade I. This finding is supported by infection experiments that have shown that 

clade III strains are able to produce disease in smolts with no prior handling or stressor, 

whereas it was difficult to do so with isolates from clade I (Olsen et al., 2011; Småge 

et al., 2018). Strains belonging to clade I are therefore thought to be less pathogenic 

and most frequently found in association with other diseases. A T. finnmarkense isolate 

(T. finnmarkense L293-3 in Figure 8) belonging to clade III was also recovered from 

a smolt during a mouthrot outbreak from which T. maritimum strain TmarCan15-1 was 

recovered (Paper I). These findings indicate that tenacibaculosis in farmed Atlantic 

salmon in BC is associated with T. finnmarkense, and not T. maritimum like in 

Tasmania. However, it seems that Tenacibaculum spp. other than T. maritimum are 

sometimes recovered from mouthrot outbreaks.  

The Tenacibaculum sp. strains belonging to clade IV appear to be a novel species 

(Bridel et al., 2018). Furthermore, Tenacibaculum sp. TNO020 (= F95C/98) that 

belongs to clade IV is not pathogenic in challenge experiments (Olsen et al., 2011; 

2018). Isolates belonging to clade I and clade IV (data not shown) have also been found 

in BC; however, these are likely accidental findings as they were recovered during 

mouthrot outbreaks. Clade II contains T. dicentrarchi strains. There is no confirmed 

report of T. dicentrarchi being present in the Pacific Northwest, but as T. dicentrarchi, 

T. finnmarkense and T. maritimum are found in Norway and Chile, it is likely that T. 

dicentrarchi also exists in BC.   
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In Norway, tenacibaculosis outbreaks in smolts appear to be caused by T. finnmarkense 

with the highest mortality in fish recently transferred into saltwater (Småge et al., 

2017). In the above-mentioned BC cases, the observed tenacibaculosis outbreaks were 

connected to prior stressors; one was following a poor smolt transport from freshwater 

to saltwater and the other was following a harmful plankton bloom shortly after transfer 

to saltwater. These observations may suggest that T. finnmarkense isolates found in 

Canada requires some form of stressor to result in a significant outbreak similar to what 

has been reported from severe outbreaks in Norway (Småge et al., 2017). 

4.2 Virulence mechanisms and pathogenesis 

Despite the significance of mouthrot to the aquaculture industry in BC, little 

information is available regarding how T. maritimum is able to establish an infection 

and the mechanism by which it kills Atlantic salmon smolts. Several studies have 

looked into the virulence factors of T. maritimum, including recent whole genome work 

identifying encoding genes, that have provided insights into the mechanisms by which 

it causes pathological changes in host tissues (Avendaño-Herrera et al., 2006b; Pérez-

Pascual et al., 2017). The success of a pathogenic bacterium such as T. maritimum to 

infect the host is dependent on its ability to attach to and colonise the host, and to grow 

to pathogenic levels within host tissues whilst avoiding host defence mechanisms 

(Ribet et al., 2015).  

Interestingly, T. maritimum lacks external structures, such as pili, fimbriae and flagella 

that are known to be involved in adhesion and colonisation in other fish pathogenic 

bacteria (Avendaño-Herrera et al., 2006b; Ribet et al., 2015). Despite lacking these 

structures, T. maritimum possesses a type IX secretion system (T9SS) that secretes a 

variety of extracellular products (ECP) onto the cell surface (Pérez-Pascual et al., 

2018). This includes adhesins that likely gives the bacterium its strong adhesive 

properties (McBride et al., 2015). T. maritimum is able to strongly adhere to 

hydrophobic surfaces (Burchard et al., 1990) thereby allowing the bacterium to non-

specifically adhere to surfaces such as fish mucus (Ofek et al., 1994; Magariños et al., 

1995). Strong adhesion appears to be associated with virulence as T. maritimum strains 
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that are more adherent correlate with increased virulence (van Gelderen et al., 2009b). 

This was also the case with BC strains: TmarCan16-1 is the most adhesive of the 

isolates tested in the challenge experiments and the most virulent (Paper II). 

The T9SS is also associated with the motility of the bacterium by releasing adhesins 

that move rapidly along the cell surface, enabling T. maritimum to glide while firmly 

attached to the host surface (McBride et al., 2015). The ability to glide appears to be 

associated with virulence, as a non-gliding strain of T. maritimum has been shown to 

be less adhesive and avirulent (Rahman et al., 2014). This is likely due to the inability 

of a non-gliding strain to spread across surfaces, a key phenotypic characteristic of 

pathogenic Tenacibaculum spp. (Suzuki et al., 2001). Interestingly, genes that code for 

signaling molecules normally involved in quorum sensing (a bacterial communication 

process) in gram negative bacteria are lacking in the T. maritimum genome (Pérez-

Pascual et al., 2018), and therefore the mechanisms by which the bacterium functions 

at the population level is not known.  

In addition to creating strong adhesive colonies, T. maritimum  has the ability to create 

a matrix of exopolysaccharides (slime), resulting in a biofilm formation (Avendaño-

Herrera et al., 2006a). This is visible macroscopically as a yellow-tinged slime that is 

very distinct in mouthrot (Figure 2). In histopathological assessment, it is seen as large 

aggregates of T. maritimum-like bacteria (Paper III). Biofilm formation constitutes a 

protective mode of growth that makes T. maritimum more resistant to host defence 

mechanisms (Ribet et al., 2015) and likely enables the bacterium to grow to pathogenic 

levels (Dalsgaard, 1993). The production of this slimy biofilm is distinct for T. 

maritimum and has not been reported in other pathogenic Tenacibaculum spp.  

Tenacibaculum maritimum appears to liquify and destroy the tissues surrounding its 

biofilm (Paper III); this is different to the infiltration associated with T. finnmarkense 

where bacteria appear to be able to infiltrate laterally into the dermis below the 

epidermis (Småge et al., 2018). These differences in infection mechanisms are likely 

due  to the differences in virulence genes detected in their genomes (Pérez-Pascual et 

al., 2018). T. maritimum produces a number of toxins that are delivered through the 
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T9SS, some of which have high proteolytic activity facilitating the destruction of host 

tissues (Baxa et al., 1988; Handlinger et al., 1997; van Gelderen et al., 2009a; Vilar et 

al., 2012; Pérez-Pascual et al., 2018). An example of this is sphingomyelinase that has 

been shown to be present in vitro and has the ability to be cytotoxic to host cells by 

acting as a haemolytic factor (Pérez-Pascual et al., 2017). Besides this, the bacterium 

possesses multiple mechanisms for iron sequestration including the synthesis of 

siderophores and the utilization of haem groups as iron sources by direct binding 

(Avendaño-Herrera et al., 2005; Pérez-Pascual et al., 2017). The ability to acquire 

external iron allows T. maritimum to survive under poor iron conditions such as 

saltwater. Another virulence factor that has been demonstrated in vitro is a chondroitin 

AC lyase that has the ability to degrade chondroitin sulfate A and C, an important 

component of cartilage and fish connective tissue (Rahman et al., 2014; Pérez-Pascual 

et al., 2017). This is reflected by the large quantities of T. maritimum present in the 

dermis of the lining of the mouth in mouthrot affected smolts (Paper III). These tissues 

are also rich in collagen, another protein for which T. maritimum produces a proteolytic 

enzyme (Baxa et al., 1988; Pérez-Pascual et al., 2017).  

In mouthrot, the destruction caused by T. maritimum is limited to the oral cavity and is 

most likely initiated in the periodontal tissue (Paper III). It was originally thought to 

be linked to abrasion of these tissues (e.g. feeding on spiny crustaceans such as crab 

larvae) (Kent et al., 2002), but disease can occur without a pre-abrasion. This pathology 

is different to what is reported for T. maritimum associated tenacibaculosis seen in 

other regions of the world or other host species, in which the bacteria seem to infect 

any exterior surface of the host (Avendaño-Herrera et al., 2006b). It appears that with 

tenacibaculosis in Atlantic salmon smolts, the fish die as a result of osmoregulatory 

imbalances due to a significant breach of the protective skin barrier caused by the 

lesions or ulcers. However, for mouthrot, this does not seem to be the case as smolt die 

with only the smallest lesion in their mouths (Ostland et al., 1999). T. maritimum must 

therefore have other mechanisms, such as the production of toxins that can affect vital 

organs or regulatory processes, and may play a role in killing the host. In addition, as 
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mouthrot appears to only affect smolts, these mechanisms may be linked to processes 

that are vital to this stage of the salmon's life cycle.  

Histopathological assessments of mouthrot lesions usually show little immune 

response associated with the lesions and an abundance of bacteria (Paper III). This 

indicates that T. maritimum is able to avoid detection by the host's defence systems. 

Inflammatory processes such as tissue oedema occur at the lesion site and low levels 

of cellular infiltration are typically present (Paper III). This is either a specific immune 

response against T. maritimum or a response to the destruction of the host tissue. T. 

maritimum is likely able to escape immune surveillance through the formation of 

biofilms, and it is also likely to avoid the activation of the immune system through the 

production of extracellular proteases that can directly interact with the host defence 

mechanisms and tissue components (Finlay et al., 2006; Koziel et al., 2013; Pérez-

Pascual et al., 2018). The genome of T. maritimum also contains genes encoding 

multiple enzymes able to deal with stressors such as reactive oxygen species produced 

by host macrophages (Pérez-Pascual et al., 2018). This bacterium therefore possesses 

many mechanisms that likely help it adapt to different environments.   

4.3 Potential for a vaccine 

The greatest successes in controlling bacterial diseases in aquaculture has been through 

the use of vaccines. The development and widespread use of water-in-oil emulsion 

adjuvanted vaccines allowed the Atlantic salmon farming industry to bloom by 

significantly decreasing the mortality resulting from furunculosis and vibriosis and the 

associated antibiotic treatments. These vaccines are frequently thought to have been 

essential for the growth of the industry. As with other bacterial diseases, the most 

economically viable tool for the mitigation of mouthrot is believed to be a protective 

vaccine. The duration of protection is generally higher in an injectable vaccine versus 

immersion or oral ones and the development of water-in-oil emulsions allowed these 

injectable vaccines to induce an even longer duration of protection when compared to 

other types of formulations (Brudeseth et al., 2013). For these reasons, whole cell oil 

adjuvanted vaccines were tested in this study (Paper II). However, for mouthrot this 
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approach did not protect the smolts against the disease despite giving a plasma antibody 

response in immunised fish. This was the case for immunised smolts bath challenged 

with homologous or heterologous strains.  

The challenging part in vaccine development is how to determine the efficacy of a 

vaccine. In fish, the common method is to expose immunised individuals to the 

pathogen through a standardised and effective challenge model; thereby allowing the 

effect of the vaccine to be noticeable. In this study, a bath challenge model was 

developed and used to test the whole cell inactivated adjuvanted vaccines (Paper II). 

An immersion type challenge model reflects a natural transmission of T. maritimum 

from the environment; whereas an injectable type challenge model would bypass the 

integument that T. maritimum targets. However, with a bath infection, the fish are 

exposed to one high dose of bacteria that may not reflect the natural infection pressure 

during a mouthrot outbreak, which is more likely to be a low continuous pressure. This 

high dose may overwhelm the immune system of the host, making it difficult to 

determine the effectiveness of a vaccine, as suggested for M. viscosa (Karlsen et al., 

2017). Despite this, a bath challenge model appears to be the best way to reliably 

reproduce disease with T. maritimum when compared to injection methods (Avendaño-

Herrera et al., 2006b). 

As previously mentioned, a T. maritimum whole cell inactivated vaccine for Atlantic 

salmon in Tasmania has been attempted a few times (Carson et al., 1993; van Gelderen 

et al., 2009b). The latter attempt showed promising results with an adjuvanted vaccine 

giving partial protection against tenacibaculosis (van Gelderen et al., 2009b). However, 

the challenge conditions (including water temperature) and T. maritimum strains used 

were different, as was the clinical presentation when compared to the experiments 

conducted in this study (Paper II). Another potential difference is in the vaccine 

preparation.  

Although T. maritimum seems to become systemic, based on the detection through real-

time RT-PCR and bacteriology, it is likely that the systemic immune response induced 

by an IP vaccine will not give protection due to the acuteness of mouthrot (Paper II, 



32 

III). The immune system does not appear to notice the infection until it is too late and 

the damage has already occurred. A localised mucosal immune response is therefore 

likely needed for the host to combat the pathogen. For Flavobacterium psychrophilum, 

the causative agent of bacterial coldwater disease in rainbow trout, the stimulation of a 

strong serum antibody response with a whole cell inactivated adjuvanted IP vaccine 

does not always infer a detectable mucosal antibody response (LaFrentz et al., 2002; 

Madetoja et al., 2006). Therefore, as for F. psychrophilum, it is likely that for T. 

maritimum a different approach is required that would stimulate a localised mucosal 

immune response.  

Another possibility that may be hampering the effectiveness of a whole cell inactivated 

vaccine is that this method (IP) does not allow the pathogen to express virulence factors 

and that it is possible that it is these virulence factors that are antigens in stimulating 

the host's immune response. If this is the case, then the antibodies created in response 

to a vaccine like this would not protect the host against the disease. The identification 

of predicted virulence factors may hence lead to the development of attenuated T. 

maritimum variants for vaccine development (Pérez-Pascual et al., 2017). An option 

would be to test an apparently avirulent strain in a live vaccine such as T. maritimum 

TmarCan16-2 that did not cause disease in challenge experiments (Paper II). In 

addition, a protective vaccine against mouthrot would likely need to specifically 

stimulate a localised mucosal immune response. If effective, this may allow the smolt 

to stop T. maritimum from establishing an infection by targeting one the mechanisms 

it requires to invade and colonise host tissues. As the disease only seems to affect 

smolts during the first few months in saltwater (section 1.2), it is possible that a 

different delivery method may be more suitable, such as oral or immersion, as these 

are more likely to induce a mucosal immune response, but a shorter lived one (Soto et 

al., 2015). 
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5. CONCLUSION 

The main objective of this study was to make steps towards developing management 

tools that would help improve the welfare of the smolts and decrease the use of 

antibiotic treatments. Unfortunately, despite giving a plasma antibody response in the 

immunised fish, the whole cell oil adjuvanted vaccines tested in this study did not give 

protection against T. maritimum infections under the tested conditions. Nonetheless a 

number of findings were discovered that will aid in future mouthrot research. 

Based on a MLST scheme and serological analyses, T. maritimum isolates collected 

from natural outbreaks of mouthrot on BC Atlantic salmon farms belong to two 

different strains that are most closely related to strains isolated from diseased cultured 

lumpsuckers and Atlantic salmon in Norway and a strain isolated from Atlantic salmon 

gills during a harmful algal bloom in Chile. 

Mouthrot in Atlantic salmon smolts was reproduced in the laboratory using BC T. 

maritimum strains. The main pathological signs in experimentally infected smolts are 

mouth lesions that damage the tissues surrounding the teeth causing a disease that is 

similar to periodontal disease in mammals. The changes are focal, severe, and occur 

very rapidly with very little associated inflammation. T. maritimum is detectable 

internally by real-time RT-PCR and bacteriology, and one possible point of entry 

would be the teeth. However, the mechanism by which T. maritimum kills Atlantic 

salmon smolts remains a mystery. 

The reproduction of the disease in the laboratory with T. maritimum isolates collected 

from mouthrot outbreaks in BC, as well as the re-isolation of the bacteria from these 

diseased individuals fulfils Koch's Postulates, which is the preferred method for 

proving disease causation (Fredricks et al., 1996). This study therefore shows that T. 

maritimum is the causative agent of mouthrot in BC. Horizontal transmission of the 

pathogen was shown to readily occur between infected smolts to naïve ones. Also, there 

are major differences in pathogenicity between isolates, from avirulent ones 

(TmarCan16-5) to highly virulent ones (Tmar16-1). 
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6. FUTURE PERSPECTIVES 

A better understanding of the relationship between stressors and the development of 

mouthrot is required. This should include water temperature, as well as other 

environmental factors such as the presence of plankton, jellyfish, or crustacean larval 

blooms, and the effect of these on the risk and severity of disease. The fact that 

mouthrot mainly affects Atlantic salmon smolts recently transferred into saltwater 

suggests that investigations should include the significance of the smolt's transition 

from freshwater to saltwater and its impact on the fish's microbiota, immune function 

and homeostasis. 

Continued research is needed to determine the mechanism by which smolts die while 

only having minor clinical pathology. Is this the result of a toxin released by T. 

maritimum? If it is in fact a toxin, this may point towards a potential target for a vaccine 

antigen. A better understanding of the course of the disease may shed some light as to 

why the clinical presentation is different in Atlantic salmon smolts in Tasmania. 

Improved knowledge of host/pathogen interactions would also provide a better 

understanding of the potential risks of finding closely related T. maritimum strains to 

the BC ones in the Norwegian and Chilean salmon farming industry.  

Future vaccine development should focus on identifying important virulence factors 

and potentially using these to develop live attenuated T. maritimum variants that may 

be used in live vaccines. Investigations should include other vaccine methods such as 

immersion or oral vaccines, as these are likely to stimulate a better mucosal immune 

response than injectable vaccines. Further improvements to the challenge model would 

help with the testing of vaccines and other mitigation tools. The use of a cohabitation 

challenge model for testing vaccines may help with better mimicking the infection 

pressure of natural outbreaks of mouthrot.  
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Abstract

Mouthrot infections (bacterial stomatitis) have a significant impact on the Atlantic

salmon aquaculture industry in Western Canada due to economic losses and fish

welfare. Bacteria isolated from lesions in the field have been identified as Tenacibac-

ulum maritimum. Mouthrot is different to classical tenacibaculosis, which is most

commonly associated with ulcerative lesions, frayed fins and tail rot. The marine fish

pathogen T. maritimum is found worldwide; however, in Western Canada, the

knowledge of the genetic profile of T. maritimum is limited. This study looked at

increasing this knowledge by genotyping T. maritimum isolates collected from Atlan-

tic salmon from farms in Western Canada. These genotypes were compared to

other species of the genus Tenacibaculum, as well as other known sequence types

within the species. The Western Canadian isolates belong to two new sequence

types within the T. maritimum species. Phylogenetic analysis shows that the isolates

form a distinct branch together with T. maritimum NCIMB 2154T separate from

other Tenacibaculum type strains, and they are most closely related to strains from

Norway and Chile.

K E YWORD S

mouthrot, multilocus sequence analysis, phylogenetic, Salmo salar

1 | INTRODUCTION

Tenacibaculum maritimum is a marine Gram-negative bacterium in

the family Flavobacteriaceae (Suzuki, Nakagawa, Harayama, & Yama-

moto, 2001; Wakabayashi, Hikida, & Masumura, 1986). It is a patho-

gen found worldwide causing infections in a wide variety of farmed

marine fish. The disease, tenacibaculosis, is described as causing

mouth erosion, ulcerative skin lesions, frayed fins and tail rot (Tor-

anzo, Magari~nos, & Romalde, 2005). However, in British Columbia

(BC), Canada, the bacterium is most commonly associated with yel-

low plaques in the mouth (mouthrot) and is a significant issue for

Atlantic salmon, Salmo salar (L.), smolts newly transferred into salt-

water (Ostland, Morrison, & Ferguson, 1999). Mouthrot outbreaks

are associated with major economic losses in the Western Canadian

aquaculture industry and cause significant fish welfare problems

(Hewison & Ness, 2015). There are also reports of mouthrot affect-

ing farmed Atlantic salmon in Washington State (Frelier, Elston, Loy,

& Mincher, 1994).

On the west coast of North America, the bacterium has also

been isolated in California from white seabass, Atractoscion nobilis

(Ayres), northern anchovy, Engraulis mordax (Girard), Pacific sardine,

Sardinops sagax (Jenyns) and farmed Chinook salmon, Oncorhynchus

tschawytscha (Walbaum) (Chen, Henry-Ford, & Groff, 1995), and in

these fish species, the pathogen has been associated with gill lesions

and skin ulceration. Mouthrot has been recorded since the 1990s in

BC, however little research has been conducted into the disease and
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the role of T. maritimum as a causative agent. There are no publica-

tions confirming, through genetic identification, that the bacteria iso-

lated from mouthrot lesions are T. maritimum.

Molecular typing methods such as multilocus sequence typing

(MLST) have allowed the development of uniform and reproducible

nomenclature schemes for bacterial pathogens (Maiden, 2006). MLST

characterizes prokaryotes within a species using the allelic mis-

matches of a small number of housekeeping (HK) genes (Gevers

et al., 2005) and allows researchers to perform epidemiological stud-

ies and define strains within named species (Gevers et al., 2005).

Because MLST schemes are based on nucleotide sequences, they are

intrinsically reproducible and portable between laboratories (Maiden,

2006). The sequence data from MLST can be used for phylogenetic

analyses, called multilocus sequence analysis (MLSA) and defined as

the sequence analysis of multiple protein-coding genes for the geno-

typic characterization of a diverse group of prokaryotes including

entire genera (Gevers et al., 2005). The usual approach to MLSA is to

concatenate the sequences of several housekeeping genes and then

use these to assess clustering patterns. MLSA is the current method

of choice to explore phylogenetic relationships at the genera and spe-

cies levels (Glaeser & K€ampfer, 2015). Habib et al. (2014) used MLST

and MLSA to describe 47 sequence types (STs) of 73 T. maritimum

strains from a variety of host species worldwide. The genetic data

from their study were uploaded into the Tenacibaculum MLST data-

base (http://pubmlst.org/tenacibaculum/) and allow others to use

and add to this work as was suggested by (Maiden, 2006).

Although a lot of genetic research has been completed on

T. maritimum strains from European, Asian and Australian waters

(Habib et al., 2014), nothing is known about the genetic profile of

T. maritimum from Western Canada. This study provides this knowl-

edge and adds to the genotyping of T. maritimum worldwide.

2 | MATERIALS AND METHODS

2.1 | Bacterial isolation

The T. maritimum isolates included in this study were collected from

Atlantic salmon smolts showing clinical signs of mouthrot (yellow

plaques in the mouth) from saltwater farms in BC, Canada from

2011 to 2016 as shown in Figure 1. A marine agar (Difco 2216) was

modified to include 50 lg/ml kanamycin (MKA) to improve the

recovery of T. maritimum from primary cultures. MKA was used for

the primary isolation from diseased fish, and the plates were incu-

bated for a minimum of 5 days at 16°C. Cultures that matched the

phenotypic description of the Tenacibaculum genus (Suzuki et al.,

2001) were subcultured on marine agar (MA) and incubated at 16°C.

2.2 | PCR and sequencing

Genomic DNA was extracted from isolates of interest using an

E.Z.N.A Tissue DNA Kit (Omega Bio-tek). A PCR was performed using

the 16S rRNA primers 27F and 1518R (Giovannoni, Rapp#e, Vergin, &

Adair, 1996). Amplification was based on a standard reaction mixture

containing 2.5 ll Extra buffer, 1.25 mM deoxyribonucleotide triphos-

phates, 0.75 units (0.15 ll) Taq DNA polymerase (VWR), 5 lM (1 ll)

of forward and reverse primers, and then DNase-RNase free water

was added to a final volume of 25 ll (16.85 ll H2O). The amplifica-

tion was performed at 95°C for 5 min, 35 cycles of 95°C for 30 s,

58°C for 30 s and 72°C for 90 s, followed by 72°C for 10 min in a

Veriti Thermal Cycler (Thermo Fisher Scientific). The PCR product

was confirmed using gel electrophoresis and then enzymatically puri-

fied using ExoSAP-IT PCR Product Cleanup (Thermo Fisher Scientific)

in a Veriti Thermal Cycler at 37°C for 15 min then heated to 80°C

for 15 min. Sequencing was performed on PCR products using both

the forward and reverse PCR primers. Analyses of the sequences

were carried out by the Sequencing Facility at the University of Ber-

gen (http://www.uib.no/seqlab) using big dye termination chemistry.

Vector NTI (Invitrogen) software suite was used to assemble and

align the obtained sequences. A BLAST search was performed to

determine the identity of each isolate. Pure cultures of T. maritimum

were cryopreserved at !80°C.

PCRs were performed on the T. maritimum isolates using primers

designed by Habib et al. (2014) for 11 HK genes. Amplifications

were performed at 94°C for 5 min, 35 cycles of 94°C for 30 s, 55°C

(50°C for primers: glyA, infB, tgt, tuf and yqfO) for 30 s and 72°C for

1 min, followed by 72°C for 10 min using the same reaction mixture

and machine as above. The PCR products were confirmed and

sequenced as above.

2.3 | Genetic analysis

To determine whether the Canadian T. maritimum isolates from this

study belonged to a known ST of T. maritimum, the MLST profiles

that consisted of seven HK gene sequences (atpA, gyrB, dnaK, glyA,

infB, rlmN and tgt) were uploaded and analysed in the Tenacibaculum

MLST database. The Canadian isolates found to be genetically identi-

cal were assigned one unique ST name (e.g., STCan1, STCan2) and a

unique strain name (e.g., TmarCan1, TmarCan2) for the phylogenetic

analyses.

In this study, one 16S rRNA and two concatenated HK gene

sequence alignments were constructed for phylogenetic analysis. All

alignments were constructed in AlignX in Vector NTI before

sequences were adjusted to equal length and correct reading frames in

GeneDoc (Nicholas, Nicholas, & Deerfield, 1997). The 16S rRNA gene

sequence alignment included the Canadian T. maritimum strains from

this study and sequences from all known type strains in genus

Tenacibaculum. The length of the 16S rRNA gene alignment was

1351 bp. Concatenation of the HK gene alignments was performed

using Kakusan4 (Tanabe, 2011). The length of the concatenated HK

gene alignment was 5811 bp (atpA 1-567, dnaK 568-1140, glyA 1141-

1698, gyrB 1699-2295, ileS 2299-2841, infB 2842-3405, rlmN 3406-

3954, tgt 3955-4440, trpB 4441-4809, tuf 4810-5364 and yqfO 5365-

5811). The first HK gene sequence alignment included concatenated

sequences of the Canadian strains found in this study and 19 type

strains in genus Tenacibaculum. The second HK gene sequence align-

ment included concatenated sequences of the Canadian strains found
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in this study (Table 1), the Norwegian T. maritimum strain NLF-15 iso-

lated from lumpsuckers, Cyclopterus lumpus (L.) (Sm!age, Frisch, Brevik,

Watanabe, & Nylund, 2016), the Chilean T. maritimum strain Ch-2402

isolated from Atlantic salmon (Apablaza et al., 2017), as well as a single

strain from each of the 47 T. maritimum STs (identified by their ST

number) described in Habib et al. (2014).

All gene sequences, except the isolates from this study and the

Tenacibaculum finnmarkenseT HK genes sequences, were obtained

from GenBank (Table S1). The T. finnmarkenseT HK gene sequences

were obtained as described for the Canadian T. maritimum isolates.

For the 16S rRNA gene data set, the best fitted evolutionary model

was calculated using Mega 6 (Tamura, Stecher, Peterson, Filipski, &

Kumar, 2013). The BEAST package v1.8 (Drummond, Suchard, Xie, &

Rambaut, 2012) was used for Bayesian analysis using the K2 + G + I

model, a relaxed lognormal molecular clock and a mcmc of

100,000,000 generations. Kordia algicidaT was used as the outgroup.

For the MLSA of the two concatenated HK alignments, Kaku-

san4 was used to calculate the substitution rate and best fit model

for the individual loci and codon positions for the Bayesian analysis

performed in MrBayes (Ronquist et al., 2012) using the data block

with the proportional codon proportional model from Kakusan4 and

a mcmc of 100,000,000 generations. The effective sample size (ESS)

values in the Bayesian analysis were inspected using Tracer ver. 1.6

(Rambaut, Suchard, Xie, & Drummond, 2014). Due to the size of the

output file of the T. maritimum HK analysis, the sump command in

MrBayes was used to summarize the ESS values.

A maximum clade credibility tree was obtained for each analysis

using a 10% burn-in in Tree-Annotator and viewed using FigTree

(Drummond et al., 2012). Posterior probability values above 95%

were regarded as accurate (Huelsenbeck & Rannala, 2004). All

sequences obtained in the current study are available in GenBank

with accession numbers KY428880 to KY428914 and MF421902 to

MF422021.

3 | RESULTS

The MKA media supported growth for all Canadian isolates from this

study, as well as the Norwegian T. maritimum strain NLF-15, the Chi-

lean T. maritimum strain Ch-2402 and T. maritimumT. Field experi-

ence generated during the isolation of the Canadian T. maritimum

showed that MKA improved the success of isolating the bacterium

when compared to MA. The added kanamycin decreased the amount

of overgrowth by other bacteria.

The Western Canadian isolates collected in this study were found

to belong to two distinct ST (STCan1 and STCan2) based on the

Tenacibaculum MLST database (Table 1). This was supported by the

fact that the alignment of the 11 HK gene sequences for the MLSA

showed only two distinct genetic strains. The two strains were isolated

on both the east and west coast of Vancouver Island, and for one out-

break, they co-occurred (isolates F and G) (Figure 1). The results of the

16S rRNA phylogenetic analysis (Figure 2) show that the T. maritimum

isolates found in Western Canada form a distinct branch together with

T. maritimumT separate from other Tenacibaculum type strains. This is

further supported by the Tenacibaculum HK phylogenetic analysis (Fig-

ure 3). Figure 4 shows that the T. maritimum strains found in this

study form a branch with strains NLF-15 and Ch-2402.

F IGURE 1 Location of the origin of
each isolate listed in Table 1

TABLE 1 Canadian Tenacibaculum maritimum isolates used in this
study

Isolate

Map
reference
(Figure 1)

Sampling
date

Strain
(sequence
type)

Seawater
temperature
(°C)

TmarCan11-1 A Jun. 2011 TmarCan1 (STCan1) 8.9

TmarCan15-1 B Sep. 2015 TmarCan2 (STCan2) 14.7

TmarCan16-1 C Feb. 2016 TmarCan1 (STCan1) 8.7

TmarCan16-2 D Apr. 2016 TmarCan1 (STCan1) 9.0

TmarCan16-3 E Apr. 2016 TmarCan1 (STCan1) 9.0

TmarCan16-4 F Apr. 2016 TmarCan1 (STCan1) 12.0

TmarCan16-5 G Apr. 2016 TmarCan2 (STCan2) 12.0

TmarCan16-6 H May 2016 TmarCan1 (STCan1) 11.3

TmarCan16-7 I May 2016 TmarCan1 (STCan1) 11.3

TmarCan16-8 J May 2006 TmarCan2 (STCan2) 10.7

TmarCan16-9 K Jun. 2016 TmarCan1 (STCan1) 11.1

TmarCan16-10 L Oct. 2016 TmarCan2 (STCan2) 12.1
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4 | DISCUSSION

The use of MKA improved the success of isolating T. maritimum

from the field when compared to only using MA. MKA inhibited the

growth of other faster growing bacteria that routinely outcompete

T. maritimum on primary cultures from skin or ulcers grown on MA.

The idea of adding kanamycin to the growth medium was based on

previous work with Flavobacteria that showed that adding kanamy-

cin to growth media, such as TYS or SYL agar, allowed for selective

isolation of certain genera due to growth inhibition of others

(Hahnke & Harder, 2013; Rahman, Suga, Kanai, & Sugihara, 2014).

The T. maritimum isolates described in this study belonged to

two distinct STs (STCan1 and STCan2) different from all other

previously published STs (Habib et al., 2014), and the MLSA shows

that the Western Canadian strains are most closely related with

strain NLF-15 isolated from lumpsuckers in Norway (Sm!age et al.,

2016) and strain Ch-2402 isolated from Atlantic salmon in Chile

(Apablaza et al., 2017). These four strains are grouped together in

subgroup C (designated C in Habib et al. (2014)) with three strains

from Spain (salmonids and turbot, Scophthalmus maximus, L.) and two

from Tasmania (Atlantic salmon and striped trumpeter, Latris lineata,

Forster). Strains NLF-15 and Ch-2402 were isolated from fish reared

in waters of approximately 12°C and 14 °C, respectively (Apablaza

et al., 2017; Sm!age et al., 2016), which is in the same range as the

Canadian isolates (Table 1). Temperatures from the other strains in

subgroup C are unknown to the authors of this study, but thought

0.06
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T. crassostreaeT

T. adriaticumT
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F IGURE 2 The 16S rRNA phylogenetic relationship of the two Tenacibaculum maritimum Canadian strains and all type strains in genus
Tenacibaculum. Kordia algicidaT was used as an outgroup. The Bayesian analysis was performed on 1351 bp using the K2 + G + I model. The
posterior probability is presented next to each node. Scale bar = 0.06 substitutions per site
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to be in the same temperature range (9–16°C), which is in the lower

range of T. maritimum growth (Suzuki et al., 2001). This suggests

that there may be a temperature distribution, which would fit with

the geographic relationship suggested by Habib et al. (2014).

Increased data regarding the host environment of the other strains

in subgroup C are required to test this hypothesis. The isolation of

different T. maritimum strains from the same mouthrot outbreak at

the same site is likely due to the bacterium being present in the mar-

ine environment.

Habib et al. (2014) found that the relative positions of the

strains in subgroup B seemed correlated with fish host and geo-

graphic origin. Based on support values in the MLSA, the authors

of this study decided to divide subgroup B into two (Figure 4),

one of which consists solely of strains from Japanese waters (B1)

including the type strain, which would fit with the proposed geo-

graphic distribution. A possible hypothesis as to the global distri-

bution of closely related strains is the movement of organisms

between locations; for example, the transference of ballast waters

T. maritimumT

TmarCan1

TmarCan2

T. crassostreaeT

T. adriaticumT

T. gallaicumT

T. discolorT

T. litoreumT
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T. aestuariiT

T. soleaeT

T. ovolyticumT

T. finnmarkenseT
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T. skagerrakenseT
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T. litopenaeiT

T. geojenseT

100%

100%

95.58%

100%

100%

100%

100%

100%

100%

100%

78.42%

100%

100%

93.25%

100%

100%

100%

100%

99.66%

0.2

F IGURE 3 The phylogenetic relationship of the two Tenacibaculum maritimum Canadian strains and 19 type strains in genus Tenacibaculum
based on the concatenated HK gene sequences. The Bayesian analysis was performed on 5811 bp. The posterior probability is presented next
to each node. Scale bar = 0.2 substitutions per site
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when ships travel from one region to another. A wide range of

bacteria have been shown to be present in these waters including

Tenacbaculum spp. and more specifically T. maritimum (Brinkmeyer,

2016).

Other information, not looked at by Habib et al. (2014), such as

environmental conditions (e.g., temperature, salinity), clinical signs

and tissue tropism of the different T. maritimum strains would enable

further investigations into the pathogenic differences seen world-

wide, even within one host species. This variation is particularly

noticeable in Atlantic salmon, where typical tenacibaculosis infec-

tions have been described in Tasmania, Australia (Handlinger, Soltani,

& Percival, 1997) and Spain (Toranzo, 2015), whereas the infections

seen in Western Canada present as mouthrot (small yellow plaques

in the mouth) (Ostland et al., 1999). Understanding the pathogenic

differences between strains could allow for better management of

the disease, and studies of genetic variation, as presented in this

paper, may provide the needed genetic markers.

The strain most closely related to the two Canadian ones is

the one found in lumpsuckers in Norway. This finding should be

a concern to the Norwegian Atlantic salmon aquaculture industry

as the use of lumpsuckers as biological lice controls has

increased in recent years (Bornø et al., 2016). However, the aver-

age rearing water temperatures for Atlantic salmon in Norway

are lower than the ones seen in Western Canada, which may

decrease the risk of the development of mouthrot or T. mariti-

mum tenacibaculosis.

Most of the research conducted on T. maritimum has been on

warmer water (more than 16°C) strains. The authors suggest that

more research is needed on strains from Atlantic salmon in colder

regions. Furthering the knowledge is essential for the development

of diagnostic tools for the pathogen such as real-time PCR and pre-

ventative measures against the disease such as vaccine develop-

ment.
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Abstract

Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic

salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British

Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare

issue which results in economic losses due to mortality and antibiotic treatments.

The associated pathogen is Tenacibaculum maritimum, a bacterium which causes sig-

nificant losses in many species of farmed fish worldwide. This bacterium has not

been proven to be the causative agent of mouthrot in BC despite being isolated

from affected Atlantic salmon. In this study, challenge experiments were performed

to determine whether mouthrot could be induced with T. maritimum isolates

collected from outbreaks in Western Canada and to attempt to develop a bath chal-

lenge model. A secondary objective was to use this model to test inactivated whole-

cell vaccines for T. maritimum in Atlantic salmon smolts. This study shows that

T. maritimum is the causative agent of mouthrot and that the bacteria can readily

transfer horizontally within the population. Although the whole-cell oil-adjuvanted

vaccines produced an antibody response that was partially cross-reactive with sev-

eral of the T. maritimum isolates, the vaccines did not protect the fish under the

study’s conditions.

K E YWORD S

challenge model, cohabitation, experimental model, Pacific Northwest, Salmo salar

1 | INTRODUCTION

Mouthrot, or bacterial stomatitis, is a significant fish welfare problem

in Atlantic salmon (Salmo salar, L.) farming in both British Columbia

(BC), Canada, and Washington State, USA (Frelier, Elston, Loy, &

Mincher, 1994; Ostland, Morrison, & Ferguson, 1999). The disease

mainly affects smolts recently transferred into salt water and results

in economic losses due to mortality and antibiotic treatments. Dis-

eased fish show little or no clinical signs, with small yellow plaques

in the mouth as the only visible abnormality (Frelier et al., 1994).

The bacterium isolated from these lesions is Tenacibaculum mariti-

mum, a fish pathogen found worldwide on many marine fish species

(Frisch, Sm!age, Brevik, Duesund, & Nylund, 2017; Ostland et al.,

1999; Toranzo, Magari~nos, & Romalde, 2005). Most commonly,

T. maritimum is associated with tenacibaculosis, characterized by

ulcerative skin lesions, mouth erosion, frayed fins and tail rot (Tor-

anzo et al., 2005); a disease which is clinically different from mou-

throt as seen in BC. Although T. maritimum has been isolated from

mouthrot-affected fish, the bacterium has not been identified to be

solely responsible for this disease.
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One of the challenges in T. maritimum research is the difficulty to

develop a replicable challenge model. A number of experiments have

been conducted attempting to reproduce tenacibaculosis in economi-

cally important fish species around the world (Avenda~no-Herrera, Tor-

anzo, & Magari~nos, 2006a; Baxa, Kawai, & Kusuda, 1987; Carson,

McCosh, & Schmidtke, 1992; Handlinger, Soltani, & Percival, 1997;

Mabrok, Afonso, Valente, & Costas, 2015; Mabrok et al., 2016; Nish-

ioka, Watanabe, & Sano, 2009; Powell, Carson, & van Gelderen, 2004;

Soltani, Munday, & Burke, 1996; van Gelderen, Carson, & Nowak,

2010; Wakabayashi, Hikida, & Masumura, 1984; Yamamoto, Kawai, &

Oshima, 2010). Injection models are frequently used in fish as they

allow for more control and therefore reproducibility; for example, Infec-

tious pancreatic necrosis virus or Piscirickettsia salmonis in Atlantic sal-

mon (Rozas & Enr"ıquez, 2014; Taksdal, Ramstad, Stangeland, &

Dannevig, 1998). However, their main shortcoming is that they do not

reproduce a natural route of transmission. Intraperitoneal (IP) injection

of T. maritimum in Japanese flounder (Paralichthys olivaceus, Temminck

& Schlegel) (Yamamoto et al., 2010) has not resulted in disease, and

subcutaneous injection has only given disease in turbot (Scophthalmus

maximus, L.) (Fa"ılde, Losada, Berm"udez, Santos, & Quiroga, 2014). Bath

infection has been shown to be the most effective way to induce

tenacibaculosis with T. maritimum (Avenda~no-Herrera, Toranzo, &

Magari~nos, 2006b). Scarification or abrasion pre-exposure was origi-

nally thought to be a prerequisite for positive results, as was performed

in Black Sea bream (Acanthopagrus schlegelii, Bleeker) (Baxa et al.,

1987). However, this is not necessary, and prolonged bath exposure

without scarification has induced tenacibaculosis in Senegalese sole

(Solea senegalensis, Kaup) (Mabrok et al., 2016) and turbot (Avenda~no-

Herrera et al., 2006a). More recently, a shorter bath immersion has

also been successful in Japanese flounder (Nishioka et al., 2009), and a

short immersion followed by a dilution of the bath over time produced

more stable mortality rates in this species than immersion followed by

transfer into a new tank (Yamamoto et al., 2010).

In Tasmania, Australia, T. maritimum has been linked to

tenacibaculosis in Atlantic salmon smolts. This disease has been

reproduced in the laboratory by bath infecting fish for a short period

of time (1 hr) at a high concentration (Handlinger et al., 1997; Sol-

tani, Shanker, & Munday, 1995; Soltani et al., 1996; van Gelderen

et al., 2010; van Gelderen, Carson, & Nowak, 2011). These experi-

ments also showed that Atlantic salmon was more susceptible than

rainbow trout (Oncorhynchus mykiss, Walbaum) and that exposure at

lower salinities (15 ppt) gave very low mortality (Handlinger et al.,

1997; Soltani et al., 1996). This finding is consistent with the fact

that T. maritimum has a strict requirement of sufficient sea salt to

grow (Suzuki, Nakagawa, Harayama, & Yamamoto, 2001). In Atlantic

salmon, it has also been shown that T. maritimum can cause necrotic

bronchitis by directly inoculating high concentrations of the bacteria

on the gills and that this can be exacerbated by prior abrasion (Pow-

ell et al., 2004).

Currently, mouthrot in BC is managed through antibiotic treat-

ments and is the main reason the industry in this region continues

to use antibiotics in the production of Atlantic salmon (Morrison &

Saksida, 2013). This is mainly due to the fact that no commercial

vaccine is currently available for T. maritimum in this fish species.

Attempts to create a vaccine in Atlantic salmon against tenacibaculo-

sis have given mixed results, from no protection to partial protection

(Carson, Schmidtke, & Lewis, 1994; Carson, Schmidtke, & McCosh,

1993; van Gelderen, Carson, & Nowak, 2009).The only protective

vaccine used commercially for T. maritimum is in turbot (Toranzo

et al., 2005). A reproducible challenge model is required for the

development of vaccines, including determining the pathogenicity of

isolates, virulence factors and the testing of novel vaccines.

In this study, challenge experiments were performed to deter-

mine whether mouthrot could be induced with T. maritimum isolates

collected from outbreaks in Western Canada (Frisch et al., 2017) and

to develop a reproducible bath challenge model. A secondary objec-

tive was to use this model to test whole-cell adjuvanted vaccines

against T. maritimum in Atlantic salmon smolts.

2 | MATERIALS AND METHODS

2.1 | Challenge material

The T. maritimum isolates used in this study were collected from dis-

eased fish during mouthrot outbreaks on Atlantic salmon farms in

BC (Frisch et al., 2017). Tenacibaculum maritimum type species

NCIMB 2154T was also used in the first challenge experiment as a

comparison. The choice of isolates for the challenge experiments

was based on geographic distribution and genotyping results (Frisch

et al., 2017).

Aliquots of each of the isolates used in this study were created

by inoculating 500 ml of marine broth, Difco, 2216 (MB) with a

small amount of culture grown at 16°C on marine agar, Difco, 2216

(MA) in a 2-L flask which was then incubated at 16°C and 230 rpm.

After 48–72 hr, when a large quantity of active bacteria could be

seen microscopically, the culture material was cryopreserved in 1 ml

aliquots containing 20% glycerol at !80°C. To produce the challenge

material, one of these 1 ml aliquots was added to 500 ml of MB in a

2-L flask which was incubated at 16°C and 230 rpm for 72 hr. The

cell concentration of the bacterial cultures was determined using the

most probable number (MPN) method: 10-fold dilutions in duplicate

with eight replicates per dilution (Blodgett, 2010; Cochran, 1950).

The quantity of challenge culture needed to achieve the required

bath concentrations (Table 1) was based on growth curves (data not

shown) performed for each isolate prior to the start of this study

using the MPN method.

In one of the challenge experiments (experiment 2), a group of

fish was challenged with supernatant alone. The supernatant was

acquired by centrifuging a culture of isolate TmarCan15-1 at 3,000 g

for 30 min, decanting out the supernatant, and filtering this liquid

through a 5.0-lm syringe filter, followed by a 0.2-lm syringe filter.

2.2 | Fish husbandry

All live fish experiments were conducted at the Aquatic and Indus-

trial Laboratory (ILAB), Bergen, Norway, using flow-through tanks.
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TABLE 1 Experimental groups showing number of smolts and challenge bath isolate, concentration and duration (shed refers to shedders,
and cohab refers to cohabitants)

Experiment Group
Number
of fish Isolate

Bacteria bath
concentration
(cells/ml)

Bath
duration
(hr)

Accumulated
per cent
mortality

Start of
mortality
(days post-
exposure)

End of
mortality
(days post-
exposure)

Experiment 1 1-1a 10 TmarCan15-1 3.80 9 106 1.5 0 — —

1-1b 10 TmarCan15-1 3.80 9 106 5.0 0 — —

1-2a 10 TmarCan15-1 1.90 9 107 1.5 30 6 11

1-2b 10 TmarCan15-1 1.90 9 107 5.0 60 4 10

1-3a 10 Tenacibaculum
maritimumT

5.10 9 106 1.5 0 — —

1-3b 10 T. maritimumT 5.10 9 106 5.0 0 — —

1-4a 10 T. maritimumT 2.55 9 107 1.5 0 — —

1-4b 10 T. maritimumT 2.55 9 107 5.0 30 1 6

Experiment 2 2-1a 10 TmarCan16-5 7.30 9 106 5.0 0 — —

2-1b 10 TmarCan16-5 7.30 9 106 7.5 0 — —

2-2a 10 TmarCan16-1 2.25 9 106 5.0 100 3 6

2-2b 10 TmarCan16-1 2.25 9 106 7.5 100 4 8

2-3a 10 TmarCan16-6 1.52 9 107 5.0 100 5 13

2-3b 10 TmarCan16-6 1.52 9 107 7.5 100 5 10

2-4a 10 TmarCan15-1 1.87 9 107 5.0 70 7 16

2-4b 10 TmarCan15-1 1.87 9 107 7.5 40 7 14

2-5a 10 TmarCan15-1 3.74 9 107 1.5 40 5 10

2-5b 10 TmarCan15-1 3.74 9 107 5.0 50 3 14

2-6a 10 Control (marine broth) 500 ml 7.5 0 — —

2-6b 10 Control (supernatant) 500 ml 7.5 0 — —

Experiment 3 3-1 20 TmarCan16-5 1.81 9 107 5.0 5 11 11

3-2 20 TmarCan16-5 1.81 9 107 5.0 55 3 12

3-3 20 TmarCan15-1 5.74 9 106 5.0 75 4 8

3-4 20 TmarCan15-1 5.74 9 106 5.0 90 3 12

3-5 20 TmarCan16-2 1.28 9 107 5.0 0 — —

3-6 20 TmarCan16-2 1.28 9 107 5.0 0 — —

3-7 20 TmarCan16-1 6.36 9 105 5.0 100 3 6

3-8 20 TmarCan16-1 2.45 9 106 5.0 100 4 10

Cohabitation
experiment

4-1 20 shed
40 cohab

TmarCan15-1 1.68 9 107 5.0 Shed: 100
Cohab: 75

Shed: 2
Cohab: 9

Shed: 7
Cohab: 20

4-2 20 shed
40 cohab

TmarCan15-1 1.68 9 107 5.0 Shed: 100
Cohab: 76

Shed: 3
Cohab: 7

Shed: 7
Cohab: 17

4-3 20 shed
40 cohab

TmarCan16-5 1.78 9 107 5.0 Shed: 95
Cohab: 27

Shed: 2
Cohab: 12

Shed: 16
Cohab: 17

4-4 20 shed
40 cohab

TmarCan16-5 1.78 9 107 5.0 Shed: 84
Cohab: 31

Shed: 3
Cohab: 10

Shed: 10
Cohab: 20

4-5 20 shed
40 cohab

TmarCan16-1 8.75 9 105 5.0 Shed: 100
Cohab: 100

Shed: 3
Cohab: 6

Shed: 5
Cohab: 11

4-6 20 shed
40 cohab

TmarCan16-1 8.75 9 105 5.0 Shed: 100
Cohab: 100

Shed: 3
Cohab: 6

Shed: 6
Cohab: 9

4-7 20 shed
40 cohab

Control (marine broth) 1 L 5.0 Shed: 0
Cohab: 0

— —

4-8 20 shed
40 cohab

Control (no exposure) N/A N/A Shed: 0
Cohab: 0

— —

Accumulated per cent mortality is shown for each group in the challenge experiments, as well as the time period post-exposure that mortality occurred.
In general, the mortality curve for each group had a sigmoid shape.
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The Atlantic salmon used in the experiments were supplied by ILAB.

For the duration of each experiment, fish were checked at least

twice a day on weekdays and once on weekend days and fed ad libi-

tum with the commercial dry feed Nutra Olympic, Skretting AS, Nor-

way. All experiments were conducted in 12°C water. The outlet

water in all tanks had a minimum oxygen saturation of 77%, and the

water flow was 300 L per hour per tank (regardless of tank size).

Except during smoltification, the fish were kept on a 12-hr photope-

riod. Whenever smolts were transferred from freshwater to salt

water prior to being bath challenged, the salinity was gradually

increased to 34 ppt over the first 24-hr period. Prior to all handling,

fish were starved for 48 hr, and before vaccination and marking, fish

were anaesthetized with tricaine methanesulphonate, Tricaine,

PHARMAQ (TMS).

The population of fish were screened and found negative for

Infectious salmon anaemia virus, Infectious pancreatic necrosis virus,

salmonid alphavirus, Piscine orthoreovirus, Tenacibaculum spp. (includ-

ing T. maritimum) and Moritella viscosa with real-time RT-PCR prior

to the start of the experiments.

Fish showing signs of illness (e.g., ulcerative lesions) and/or

abnormal behaviour (e.g., erratic swimming and loss of equilibrium)

during the experiments were killed due to the low expectation of

fish showing these signs to recover. However, due to the rapidity in

the development of the disease, this was not always possible. In this

study, the term mortality includes both killed morbid fish and mortal-

ity. All morbidity, as well as any fish surviving at the end of each of

the experiments, was killed using an overdose of TMS or a swift

blow to the head.

The animal experiments were approved by the Norwegian Food

Safety Authority (Mattilsynet) in 2016 and 2017 under the identifi-

cation codes 16/33868, 16/174198, 16/207694 and 17/106558.

2.3 | Challenge model development
(experiments 1–3)

Three initial challenge experiments were conducted with three dif-

ferent aims: determine if mouthrot could be experimentally repli-

cated (experiment 1), ascertain whether or not there are differences

in pathogenicity between isolates and refine the challenge model

(experiment 2) and ensure that the challenge model is replicable (ex-

periment 3). Because of this, the protocols varied between these

experiments with details given in Table 1.

The smolts supplied for the challenge experiments were of an

average weight of 38 g for experiment 1, 45 g for experiment 2 and

70 g for experiment 3. The smolts were transferred from freshwater

and distributed into the 150-L experiment tanks containing salt

water (Table 1). The fish were maintained in these tanks for the

duration of the experimental infections. After 24 hr of acclimatiza-

tion, the smolts were transferred into aerated 40-L infection contain-

ers with 12°C salt water (34 ppt) and the challenge material as

described in Table 1. After the desired exposure time (Table 1), the

fish were transferred back into their respective experiment tanks.

There were two subgroups, differentiated by exposure times, for

each of the main groups in experiments 1 and 2, designated “a” and

“b” (Table 1). These were kept in the same experiment tank after the

bath infection. To differentiate between the two subgroups, half the

smolts were adipose fin-clipped at the time of transfer into salt

water. In experiment 2, 10 fish were exposed to MB alone (group 2-

6a) and 10 fish to supernatant alone (group 2-6b) for the longest

duration as a control. In experiment 3, TmarCan16-2 was included

even though it was not tested in experiments 1 or 2. This was done

because it grew better compared to the other Western Canadian

isolates and would therefore make an ideal vaccine candidate. All

experiments were concluded 3 weeks post-bath infection.

2.4 | Cohabitation and horizontal transmission
(experiment 4)

The supplied smolts for the cohabitation experiment were of an

average weight of 40 g. In the cohabitation experiment, each group

comprised 20 shedders (fish that were directly exposed to the bacte-

ria through a bath infection) and 40 cohabitants (na€ıve fish that were

added to the shedder population). At the time of transfer into the

150-L experiment tanks containing salt water, the shedders were

labelled by adipose fin clipping. After 24 hr of acclimatization, the

shedders were bath infected (Table 1) as described for the challenge

experiments. One control group (4-7) was exposed to MB for the

same duration as the other groups, and the other control group (4-8)

was not handled. The cohabitants (40 per group) were added to their

respective tanks 24 hr after the shedders were exposed to the bac-

teria. The experiment was ended 3 weeks later.

2.5 | Fish sampling

Smolts removed from the tanks were examined for internal and

external clinical signs. The gills, mouths and skin of all fish in the

cohabitation experiment were scored (Table 2). Scrapings from

TABLE 2 Scoring scheme used in the cohabitation experiment to
characterize external clinical signs seen in mortality

Organ Score Clinical signs

Gills 0 No abnormality on either side of fish

1 Lesion on one side of fish

2 Lesion on both sides of fish

Mouth 0 No abnormality

1 Mild change—tiny plaque and/or small haemorrhage

2 Moderate change—small lesion and/or haemorrhage

3 Severe change (mouthrot)—large plaques
and/or large lesion

Skin 0 No abnormality

1 Mild change—some scale loss and/or
small haemorrhage

2 Moderate change—lesion(s) with
scale loss through to skin

3 Severe change—lesions(s) through to
muscle and/or many lesions
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external lesions were examined with light microscopy. Reisolation of

the bacteria was performed by streaking mucus scraped off these

lesions onto Marine Kanamycin Agar (MKA) (Frisch et al., 2017). Kid-

neys from affected fish were streaked on MA. Cultures were incu-

bated at 16°C for a minimum of 3 days after which colony and cell

morphology was recorded. Colonies typical of T. maritimum were

subcultured on MA and a minimum of two cultures per group were

cryopreserved at !80°C, and subsequently, two isolates per group

were sequenced to confirm genetic identity with the challenge iso-

lates to support Koch’s Postulates (Fredricks & Relman, 1996). Geno-

mic DNA was acquired by placing single colonies into nuclease-free

water, heating at 95°C for 5 min, then centrifuging at 9,600 g for

5 min and transferring the DNA-containing supernatant into a new

tube. The resulting supernatant was stored at !20°C. PCR was per-

formed using the 16S rRNA gene primers 27F and 1518R (Giovan-

noni, Rapp"e, Vergin, & Adair, 1996), as well as the housekeeping

gene, atpA primers (Habib et al., 2014). The amplification and

sequencing were performed as described in Frisch et al. (2017).

Obtained sequences were compared to the ones from the challenge

material by aligning them using AlignX in Vector NTI, Invitrogen.

The skin of the lower jaw was sampled from five cohabitant mor-

talities from groups 4-1 to 4-6 in the cohabitation experiment for

T. maritimum screening with real-time RT-PCR as a confirmation of

the presence of the bacteria. Another four “healthy” fish were sam-

pled from the control group 4-7 as a comparison. The samples were

sent to a commercial laboratory for analysis.

2.6 | Vaccine formulation

Monovalent oil-adjuvanted vaccines were produced for the isolates

TmarCan15-1, TmarCan16-2 and TmarCan16-5. Unfortunately, due

to extensive aggregate formation, TmarCan16-1 was deemed unsuit-

able for vaccine formulation. The bacterial isolates were cultured by

inoculating 10 ml of preculture into 400 ml MB in 2-L baffled sha-

ker flasks at 90 rpm for 48 hr at 15°C. The cultures were inacti-

vated with formalin before being concentrated 10 times by

sedimentation. Prior to inactivation, the cultures were plated out on

blood agar containing 2% NaCl and MA and subject to prolonged

incubation at 15°C to verify purity. The concentrated bacterin sus-

pensions were homogenized by pressing between two syringes back

and forth 50 times, before formulation into three monovalent oil-

adjuvanted vaccines using mineral oil and prepared by a Silverson

LR5 rotor–stator mixer according to standard procedures for PHAR-

MAQ vaccines.

The vaccines for the vaccine challenge experiment were pro-

duced as described above; however, because a larger volume was

required, the protocol had to be adjusted. 1 L of bacterin culture

(instead of 400 ml) was incubated in 2-L baffled shaker flasks at

240 rpm, and the formalin-inactivated bacterins were concentrated

approximately 30 times by centrifugation at 3,000 g for 10 min.

The supernatants were removed and pellets were resuspended in

30 ml PBS before homogenization and formulation as described

above.

2.7 | Antibody cross-reaction

Antibodies were produced in parr to check their cross-reaction to

homologous and heterologous isolates. Parr of an average weight of

32 g were separated into three groups of 15 fish. The fish were

marked by fin clipping before being IP injected with 0.1 ml of one of

the three formulated vaccines. An unmarked fourth group, in which

the fish were injected with 0.1 ml of PBS, was included as control.

All the fish were kept in one 500-L tank in freshwater. Twelve

weeks post-vaccination (approximately 1,000 day-degrees), the fish

received an overdose of TMS prior to blood sampling with hep-

arinized syringes from the caudal vein. The blood samples were cen-

trifuged, and blood plasma was collected. The plasma was then

stored at !20°C.

Microtiter plates, MaxisorpTM, Nunc prepared with 5 lg/ml Poly-

L-lysine, Sigma were coated by adding 100 ll of inactivated bacteria,

diluted twofold starting with an OD600 nm of 0.1. After washing with

PBS containing 0.05% Tween-20, Merck (PBST), the plates were

blocked for 2 hr at room temperature with 5% skimmed milk in

PBST. Plasma was added in 1:100 dilution, and the plates were incu-

bated overnight at 4°C. A monoclonal antibody, mouse anti-Rainbow

Trout Immunoglobulin (cross-reacting with Atlantic salmon, produced

in-house), was diluted 1:3500 in PBST with 1% skimmed milk, and

100 ll was added to each well and incubated for 1 hr at room tem-

perature. The secondary anti-mouse immunoglobulin conjugated to

alkaline phosphatase, Dako, was diluted 1:500 in PBST with 1%

skimmed milk, and 100 ll was added to each well followed by 1-hr

incubation at room temperature. The plates were washed three

times with PBST between the incubations. Bound antibodies were

detected by adding 100 ll substrate p-nitrophenyl-phosphate, Sigma

in 10% diethanolamine buffer, pH 9.8, Sigma-Aldrich to each well,

and the colour reaction was read at OD405 nm after 60 min.

2.8 | Vaccine challenge (experiment 5)

Three groups of 190 parr (average weight 16 g) were vaccinated

with a 0.1 ml dose of one of the three formulated vaccines contain-

ing the isolates TmarCan15-1, TmarCan16-2 or TmarCan16-5. A

fourth group of 190 parr was vaccinated with 0.1 ml PBS. The fish

were marked by adipose fin clipping or maxilla trimming to identify

each group. The fish were kept in 500-L freshwater tanks. The parr

were triggered to smoltify 4 weeks prior to transfer to salt water by

increasing their photoperiod to 24 hr. At 8 weeks post-immunization

(approximately 675 degree days), 240 fish (60 per vaccine group)

were sorted into their respective groups (Table 3) and transferred

into 150-L saltwater tanks. The remaining fish (100 per vaccine

group) were sorted and transferred at 12 weeks post-immunization

(approximately 1,000 degree days) (Table 3).

Only isolate TmarCan15-1 was used to challenge the vaccinated

fish as the other two isolates used in the vaccines (TmarCan16-2

and TmarCan16-5) were not causing reproducible mortality. The

challenge material was produced as previously described, except that

1 L of MB (instead of 500 ml) was inoculated in each 2-L flask. The
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8-week groups (5-1 to 5-3) were bath challenged 24 hr post-transfer

as described in the challenge experiments using isolate TmarCan15-1

at a concentration of 4.35 9 107 cells/ml for 5 hr. The 12-week

groups (5-4 to 5-8) were bath challenged for 2 hr 48 hr post-trans-

fer into salt water with isolate TmarCan15-1 at a concentration of

3.24 9 107 for groups 5-4 and 5-5 and 3.50 9 107 for groups 5-6

and 5-7. Group 5-8 was bath challenged with marine broth as a con-

trol. The vaccine experiment was concluded 3 weeks post-bath

infection.

At 0 (unvaccinated fish), 8 and 12 weeks (approximately 675 and

1,000 degree days), 10 fish per vaccine group were killed with an

overdose of TMS and blood sampled with heparinized syringes from

the caudal vein to measure the antibody response at the time of

challenge. For the 8-week group, 15 fish were sampled instead of

10 with the exception of the group vaccinated with the TmarCan16-

5 vaccine, where only four fish were sampled. The blood samples

were centrifuged and the blood plasma stored at !20°C for subse-

quent ELISA analysis. The ELISA was performed as described above

with the exception that the bacterial coat had an OD600 nm of about

0.05, and the plasma was diluted twofold starting with 1:50, for the

purpose of estimating plasma antibody response against the homolo-

gous vaccine isolate.

3 | RESULTS

3.1 | Experiment 1: Koch’s postulates

Moribund fish showed loss of equilibrium and circling behaviour at

the surface. Externally, there was a mix of abnormalities ranging

from small mouth lesions (Figure 1a), to gill lesions (Figure 1c) and

small skin lesions. These lesions resemble what is seen during out-

breaks on farms (Figure 1b,d). Smears from these lesions showed

large amounts of long thin rod-shaped bacteria, matching the pheno-

typic description of T. maritimum (Suzuki et al., 2001). The isolated

bacteria were shown to be genetically identical with both the 16S

and atpA genes to the challenge material (data not shown). The

accumulated mortality percentage for each experimental group is

shown in Table 1.

The first challenge experiment demonstrated that the disease

could be replicated in the laboratory setting and that T. maritimum

NCIMB 2154T is not as pathogenic as the Western Canadian strain

TmarCan15-1. Disease was mainly seen in the group exposed to the

highest concentration of bacteria for the longer duration.

3.2 | Experiment 2: Virulence differences between
isolates

Based on the results from experiment 1, four isolates were used in

experiment 2 including TmarCan15-1. Also, because of the gill

lesions present in some of the affected fish, one group was exposed

to MB, and one to the supernatant alone to rule these out as the

cause of the damage. Two of the strains, TmarCan16-1 (groups 2-2a

and 2-2b) and TmarCan16-6 (groups 2-3a and 2-3b) resulted in

100% mortality with the former acting faster at a lower bacterial

bath concentration (2.25 9 106 cells/ml versus 1.52 9 107 cells/ml).

The more acutely affected fish showed fewer gross clinical signs

than the more chronically affected ones. TmarCan16-5 (2-1a and 2-

1b) resulted in no mortality in experiment 2 regardless of exposure

time; however, the bath concentration was lower at

7.30 9 106 cells/ml. No difference was observed between using 5

or seven and a half hours for the bath duration; however, one and a

half hours seemed too short as it gave more varied results. Neither

of the control groups in experiment 2 (2-6a and 2-6b) had mortality,

and none of the fish showed signs of disease.

3.3 | Experiment 3: Replicable challenge model

The isolates used in experiment 3 were chosen as these were the

most promising in regards to vaccine development. Again, Tmar-

Can16-1 (groups 3-7 and 3-8) gave 100% mortality even at the

lower bath concentration tested. TmarCan16-2 (groups 3-5 and 3-6)

gave 0% mortality and no fish showed signs of disease. TmarCan16-

5 (groups 3-1 and 3-2) gave variable results when comparing the

duplicate groups.

From experiments 1-3, isolate TmarCan15-1 produces the most

reproducible challenge model. The variation in mortality between the

isolates at similar bath concentrations in experiment 2 and 3 shows

that there are differences in pathogenicity between isolates.

3.4 | Experiment 4: Cohabitation and horizontal
transmission

Figure 2 shows the accumulated mortality in both shedders and

cohabitants for each group. Fish in the control groups exhibited no

signs of clinical disease or mortality. For groups 4-1 and 4-2 (Tmar-

Can15-1), the shedders had 100% mortality within 7 days of bath

infection (Figure 2a), which is higher than the previous challenge

experiments for this isolate. The cohabitants in these two groups

started showing signs of disease on day 6 post-transfer into the

tanks and resulted in around 75% mortality in both groups (Fig-

ure 2a). Shedder mortality in groups 4-3 and 4-4 (TmarCan16-5) was

between 80% and 95% (Figure 2b), which is also higher than in the

challenge experiments for this isolate. Disease in the shedders

started on day 2 post-exposure and continued to day 16. Cohabi-

tants started to show signs of disease 9 days post-transfer into the

tanks and accumulated mortality at the end of the experiment was

about 30% (Figure 2b). The third isolate (TmarCan16-1) used in the

cohabitation experiments caused 100% mortality in both shedders

and cohabitants within 9 days of exposure (Figure 2c). Mortality in

the shedders started 2 days post-exposure and mortality in the

cohabitants started 3 days later (4 days post-transfer).

Both shedders and cohabitants in groups 4-5 and 4-6 (Tmar-

Can16-1) presented with less external lesions when compared to the

other groups. Affected fish in groups 4-1 and 4-2 (TmarCan15-1)

had more gill lesions in the shedders than the other two isolates, but

less severe mouth and skin lesions than in groups 4-3 and 4-4
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(TmarCan16-5). Affected cohabitants in groups 4-1 to 4-4 showed

little gill lesions, but nearly all fish showed signs of mouth and skin

lesions. The percentage of mortality showing clinical signs and their

severity is shown in Figure S1. In general, fish that had an acute dis-

ease (within the first week post-exposure) exhibited less external

lesions than ones that had a more chronic presentation.

All fish sampled for T. maritimum screening with real-time RT-

PCR in groups 4-1 to 4-6 were positive for the bacteria, and the

control fish were negative.

3.5 | Antibody cross-reaction

The antibody responses against the three vaccinated bacterial anti-

gens were strong against the homologous bacteria, which demon-

strate that the immune system of the host was capable of producing

antibodies recognizing T. maritimum (Figure 3). More importantly,

the results showed that plasma from fish vaccinated against Tmar-

Can15-1 produced antibodies with the same specificity against

TmarCan16-5, demonstrated by the comparable binding pattern of

TABLE 3 Experimental groups for the vaccine experiment showing number of smolts per group

Group Vaccine
Number
of fish

Bacteria bath
concentration
(cells/ml)

Bath
duration
(hr)

Accumulated per
cent mortality

Start of
mortality
(days post-
exposure)

End of mortality
(days post-exposure)

5-1 TmarCan15-1 20 4.35 9 107 5.0 80 5 12

TmarCan16-2 20 75 4 10

TmarCan16-5 20 90 5 10

PBS (control) 19 74 5 10

5-2 TmarCan15-1 20 4.35 9 107 5.0 75 5 17

TmarCan16-2 20 60 5 16

TmarCan16-5 20 85 5 10

PBS (control) 20 50 5 10

5-3 TmarCan15-1 19 4.35 9 107 5.0 84 6 16

TmarCan16-2 20 60 5 13

TmarCan16-5 20 80 4 13

PBS (control) 20 75 4 18

5-4 TmarCan15-1 20 3.24 9 107 2.0 70 5 11

TmarCan16-2 20 80 4 12

TmarCan16-5 20 75 4 13

PBS (control) 20 80 4 17

5-5 TmarCan15-1 20 3.24 9 107 2.0 85 4 12

TmarCan16-2 20 65 5 14

TmarCan16-5 20 60 5 10

PBS (control) 20 60 5 10

5-6 TmarCan15-1 20 3.50 9 107 2.0 85 4 18

TmarCan16-2 20 90 6 13

TmarCan16-5 20 75 5 14

PBS (control) 20 75 4 13

5-7 TmarCan15-1 20 3.50 9 107 2.0 95 5 17

TmarCan16-2 20 75 5 13

TmarCan16-5 20 95 5 17

PBS (control) 20 60 6 14

5-8 TmarCan15-1 20 Control (marine broth) 2.0 0 — —

TmarCan16-2 20 0 — —

TmarCan16-5 20 0 — —

PBS (control) 20 0 — —

Groups 5-1 to 5-3 were bath challenged 8 weeks post-immunization, and groups 5-4 to 5-8 were bath challenged 12 weeks post-immunization. All
groups were challenged with TmarCan15-1. Accumulated per cent mortality is shown for each group, as well as the time period post-exposure that mor-
tality occurred. In general, the mortality curve for each group had a sigmoid shape.
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the homologous isolate (Figure 3a). The same pattern was observed

using plasma from fish vaccinated against TmarCan16-5 that bound

to TmarCan15-1 (Figure 3c). Vaccinating against TmarCan16-2

induced plasma antibodies with the same specificity towards Tmar-

Can16-1 as to the homologous strain (Figure 3b). Some cross-reac-

tion was also observed against TmarCan15-1 and TmarCan16-5.

3.6 | Experiment 5: Vaccine challenge

No difference was seen between vaccine groups (both 8-week and

12-week groups) and the controls vaccinated with PBS. Mortality in

all groups ranged from 50% to 95%, starting 4–6 days post-exposure

and followed a sigmoid pattern which plateaued around day 14

post-exposure. The groups bath challenged with MB showed no sign

of disease or mortality for the duration of the experiment. Mortality

results for the vaccine challenge experiment are presented in

Table 3. ELISA analysis of the plasma samples from vaccinated fish

(both at 8 and 12 weeks) taken just prior to being bath challenged

demonstrated that smolts in all three vaccine groups had developed

antibodies towards the vaccine isolates.

4 | DISCUSSION

Western Canadian T. maritimum isolates have been shown to pro-

duce disease, which resembles mouthrot as it is seen in the field, in

smolts without prestressors or coinfection. Differences in virulence

between the isolates were observed. A variation in virulence among

T. maritimum strains has also been shown in other studies (Avenda~no-

Herrera et al., 2006a; Rahman, Suga, Kanai, & Sugihara, 2014; van

Gelderen et al., 2010). Interestingly, these differences seem to be evi-

dent within Western Canadian genotypic strains. For example, Tmar-

Can16-1 and TmarCan16-2 are genetically identical on 16S rRNA

gene sequence and 11 housekeeping genes sequences (Frisch et al.,

2017). This study has shown that TmarCan16-1 causes 100% mortal-

ity with a bath concentration as low as 8.75 9 105 cells/ml, whereas

disease has not been induced with TmarCan16-2, even at concentra-

tions as high as 1.28 9 107 cells/ml. This highlights the importance of

full genomic studies of T. maritimum to identify the genes responsible

for virulence markers, as has been undertaken for this species type

strain (P"erez-Pascual et al., 2017).

Based on the ELISA results, the four T. maritimum strains (Tmar-

Can15-1, TmarCan16-2, TmarCan16-2 and TmarCan16-5) seem to

form two different serogroups, which coincides with the genotyping

observed for the same four strains (Frisch et al., 2017). TmarCan15-

1 and TmarCan16-5 are recognized by the immune system as one

serogroup, with some degree of cross-reaction against TmarCan16-

2. The other two strains, TmarCan16-1 and TmarCan16-2, can be

grouped in another serogroup with cross-reactivity against

TmarCan15-1 and TmarCan16-5. The development of improved ser-

otype-specific antibodies is needed to fully determine the serological

mapping of T. maritimum strains in the future.

(a) (b)

(c) (d)

F IGURE 1 (a) Mouth lesion showing
the typical yellow plaque, and (c) gill lesion
from a mouthrot-affected fish from a farm
in British Columbia, Canada. (b) Mouth
lesion and (d) gill lesion from a diseased
fish in the challenge experiments [Colour
figure can be viewed at
wileyonlinelibrary.com]
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The monovalent adjuvanted vaccines tested in this study did not

give protection against the disease in the conditions tested. The

absence of vaccine efficacy cannot be attributed to the lack of a

plasma antibody response. A study using Australian T. maritimum

strains and performed in Tasmania showed that a whole-cell inacti-

vated vaccine gave Atlantic salmon smolts partial protection against

the disease when adjuvanted (van Gelderen et al., 2009). How-

ever, the challenge conditions and isolates used were different, as

were the clinical signs observed in the diseased individuals which

showed higher levels of skin lesions when compared to this study

(van Gelderen et al., 2009). One of the challenges with the model

used for testing these vaccines is that the fish are exposed to one

high dose of bacteria which may not reflect the natural infection

F IGURE 2 Accumulated per cent mortality from the cohabitant
experiment [Colour figure can be viewed at wileyonlinelibrary.com] F IGURE 3 ELISA results showing the antibody binding from the

plasma of fish injected with a monovalent vaccine containing isolate (a)
TmarCan15-1, (b) TmarCan16-2 or (c) TmarCan16-5 to plates coated
with a dilution series of four isolates: TmarCan15-1, TmarCan16-2,
TmarCan16-5 and TmarCan16-1. Plasma was collected 12 weeks
post-immunization [Colour figure can be viewed at
wileyonlinelibrary.com]
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pressure as suggested by Karlsen, Thorarinsson, Wallace, Salonius,

and Midtlyng (2017).

Creating a challenge model for T. maritimum is difficult primarily

due to the highly adhesive property of the bacteria (Magari~nos, Pazos,

Santos, Romalde, & Toranzo, 1995). Because of this, we found that

estimating bacterial growth and cell concentrations was challenging.

The use of surfactants or detergents to avoid bacterial aggregates in

broth culture has been unsuccessful, and the best technique for grow-

ing the bacteria is rigorous shaking (Mabrok et al., 2016), which is the

method we used. Regular methods of bacterial cell concentration mea-

surements such as optical density (OD) and cell chamber counting

were found to be unreliable due to poor repeatability. The clumping

nature of T. maritimum is likely the reason for OD variations, and the

gliding motility of the bacteria hampers cell counting. The McFarland

standard has also been used in estimating T. maritimum concentration

(Fa"ılde et al., 2014); however, we found that the scale did not give

precise enough estimates for their purposes. MPN was therefore used

to estimate culture cell concentrations in these experiments; this has

the drawback of giving retrospective counts and making the challenge

model difficult to replicate.

The adhesive nature of T. maritimum means that the bacteria

create a biofilm on surfaces, including plastic ones, which can make

it challenging to target specific doses in bath infections. We tried to

challenge the fish in the same tank that they were kept in during a

pre-experiment; however, there was a visible biofilm formation on

the tank wall at the water surface which lingered for at least 24 hr

after the water flow was turned back on. The presence of a biofilm

could possibly extend the challenge duration.

The water quality parameters used in this study were chosen so

that the challenge model, if successful, could be used for vaccine

development and therefore need to follow regulatory guidelines, for

example the European Medicines Agency (EMA) guidelines (CVMP

2012). As such, temperature and salinity needed to reflect the envi-

ronment under which the vaccine would be used for commercial

purposes. The temperature of 12°C used in all the experiments is

much lower than previously performed challenge studies involving

T. maritimum. This is particularly relevant when comparing to other

experiments previously performed with Atlantic salmon smolts,

where temperatures up to 20°C were used (Handlinger et al., 1997;

Soltani et al., 1996; van Gelderen et al., 2010, 2011). These higher

temperatures are at the upper range of optimal rearing conditions

for Atlantic salmon smolts, which may have had an influence on

results (Jonsson, Forseth, Jensen, & Næsje, 2001). Based on this

study, a bath infection using a separate infection tank and a high

concentration (dependent on isolate pathogenicity) for a short dura-

tion gives the most reproducible challenge model in Atlantic salmon

smolts. Improving the evaluation of bacterial culture concentration

would allow for the improvement of this method.

The cohabitation experiment demonstrates that horizontal transfer

occurs easily for Western Canadian T. maritimum strains. This is an

interesting finding in view of the fact that a previous study has shown

that the bacteria does not survive well in sea water (Avenda~no-Her-

rera, Irgang, Magari~nos, Romalde, & Toranzo, 2006). The transmission

between fish of T. maritimum may be of concern to the Norwegian

salmon farming industry, as a closely related strain to the ones

found in BC was associated with disease on lumpsuckers, which are

frequently used as biological sea lice controls (Frisch et al., 2017;

Sm!age, Frisch, Brevik, Watanabe, & Nylund, 2016). Further studies

are needed to determine whether or not this is a valid concern.

5 | CONCLUSION

The reproduction of the disease in the laboratory with isolates col-

lected from mouthrot outbreaks, as well as the reisolation of the

bacteria from these diseased individuals, fulfils Koch’s Postulates,

which is the preferred method for proving disease causation (Fre-

dricks & Relman, 1996). This study therefore shows that T. mariti-

mum is the causative agent of mouthrot in BC. Despite giving an

antibody response in the immunized fish, the trialled whole-cell oil-

adjuvanted vaccines did not give protection under the tested condi-

tions. The results from the cohabitation experiment show that

T. maritimum readily transfers from fish to fish.
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Abstract 

Mouthrot, caused by Tenacibaculum maritimum is a significant disease of farmed Atlantic 

salmon, Salmo salar on the West Coast of North America. Smolts recently transferred into 

saltwater are the most susceptible and affected fish die with little internal or external clinical 

signs other than the characteristic small (usually < 5 mm) yellow plaques that are present 

inside the mouth. The mechanism by which these smolts die is unknown. This study 

investigated the microscopic pathology (histology and scanning electron microscopy) of bath 

infected smolts with Western Canadian T. maritimum isolates TmarCan15-1, TmarCan16-1 

and TmarCan16-5 and compared the findings to what is seen in a natural outbreak of 

mouthrot. A real-time RT-PCR assay based on the outer membrane protein A specific for T. 

maritimum was designed and used to investigate the tissue tropism of the bacteria. The results 

from this showed that T. maritimum is detectable internally by real-time RT-PCR. This 

combined with the fact that the bacteria can be isolated from the kidney suggests that T. 

maritimum becomes systemic. The pathology in the infected smolts is primarily mouth 

lesions, including damaged tissues surrounding the teeth; the disease is similar to periodontal 

disease in mammals. The pathological changes are focal, severe, and occur very rapidly with 

little associated inflammation. Skin lesions are more common in experimentally infected 

smolts than in natural outbreaks, but this could be an artefact of the challenge dose, handling 

and tank use during the experiments.  
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Introduction 

Tenacibaculosis is a disease characterized by frayed fins, tail rot, mouth erosion, and skin 

lesions that are often ulcerative; it causes significant losses in a number of economically 

important marine fish species worldwide [1,2]. Three species belonging to the genus 

Tenacibaculum have been associated with this clinical presentation in farmed Atlantic salmon 

(Salmo salar): Tenacibaculum dicentrarchi [3], Tenacibaculum finnmarkense [4-6], and 

Tenacibaculum maritimum [7]. However, the clinical presentation of T. maritimum infections 

in Atlantic salmon smolts in the Pacific Northwest (British Columbia (BC), Canada and 

Washington, USA) is different from classical tenacibaculosis (as described above) and is 

commonly referred to as mouthrot [8-11]. Cultured Pacific salmon species (e.g. Chinook 

salmon, Oncorhynchus tshawytscha) in the Pacific Northwest appear to be resistant to 

developing mouthrot [9].  

 

Mouthrot typically affects smolts recently transferred into saltwater, and has been present in 

the Pacific Northwest since the late 80s [12]. Due to a lack of preventative measures against 

this disease, mouthrot continues to be the main reason that antibiotics are used in the 

production of Atlantic salmon in the region [13]. Mouthrot is generally diagnosed by the 

presence of distinctive yellow plaques associated primarily with the teeth of affected smolts 

[10,14]. This clinical manifestation of T. maritimum infections has not been reported in any 

other Atlantic salmon farming region even in areas where T. maritimum is present. 

 

The pathology of mouthrot in the Pacific Northwest was first described in the early 90s, 

before the bacterial agent was identified [12,14]. Gross pathology includes focal yellow 

bacterial mats around the palate and teeth. The lesions range from small and hardly visible to 

multiple with erosion of the upper and/or lower jaw in severe cases [14]. Microscopic 
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examination of these lesions were described as “mats of Cytophaga-like filamentous bacteria 

associated with areas of ulceration and necrosis often extending into the underlying bone" 

[12]. Major taxonomical revisions have since identified these “Cytophaga-like” bacteria as T. 

maritimum [15,16]. Diseased individuals die with little or no other gross external or internal 

lesions other than these typical “yellow plaques” in the mouth, and there is no evidence of 

concurrent disease [10]. 

 

When Atlantic salmon smolts are experimentally bath infected with one high dose of Western 

Canadian T. maritimum, clinical signs are not exclusive to the mouth; the gills and skin can 

also be affected [11]. Necrotic gill lesions have sometimes been observed in mouthrot 

affected smolts in BC (personal observations, Frisch); however, this is not a common finding. 

Gill lesions associated with this bacterium have also been noted in naturally and 

experimentally infected Atlantic salmon smolts in Tasmania [7,17] and Chinook salmon in 

California [18]. Skin lesions are also more common in experimentally infected smolts than in 

natural outbreaks, but this could be an artefact of the experiments [11]. 

 

The mechanism by which T. maritimum kills Atlantic salmon smolts in the Pacific Northwest 

while only causing very small mouth lesions continues to be a mystery. This study describes 

for the first time the pathology associated with experimentally induced mouthrot and 

compares it to what is normally seen in natural outbreaks of this disease. Tissue tropism of 

the bacteria, using the newly developed real-time RT-PCR is also investigated.  

 

Materials and Methods 

Real-time RT-PCR for T. maritimum 
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Prior to this publication, there was only one published real-time RT-PCR assay specific for T. 

maritimum [19]. The assay targets the 16S rRNA gene and was tested using DNA [19]. 

However, the 16S rRNA gene has low phylogenic resolution at the species level when 

compared to other genes [20], and real-time RT-PCR assays based on this gene may not be 

very specific. The new real-time RT-PCR assay (Tmar_ompA) targets the outer membrane 

protein A (ompA) gene (forward primer: GCCAATAGCAACGGGATACC, reverse primer: 

TCGTGCGACCATCTTTGGT, probe: TGAATCAAATGCGATCTT). An alignment of the 

ompA gene using available Tenacibaculum spp. sequences in the GenBank and from the T. 

maritimum strains TmarCan15-1, TmarCan16-1, TmarCan16-5, NLF-15, and Ch-2402 

[16,21,22] (also available in the GenBank) was used during the design of the assay.  

 

The specificity of Tmar_ompA, based on this alignment, was tested using RNA extracted 

from clonal cultures of Tenacibaculum spp. The aim for the assay was to amplify T. 

maritimum strains NCIMB 2154T, TmarCan15-1, TmarCan16-1, TmarCan16-5, NLF-15, and 

Ch-2402 [16,21,22], and not to amplify Tenacibaculum adriaticum DSM18961T, 

Tenacibaculum dicentrarchi USC35/09T, Tenacibaculum finnmarkense HFJT, Tenacibaculum 

ovolyticum EKD-002T and Tenacibaculum soleae LL0412.1.7T. To compare this new assay 

to the already published one, these RNA samples were also tested using the assay developed 

by Fringuelli, Savage [19]. Tmar_ompA was optimized and the efficiency determined using 

10-fold dilutions of RNA extracted from TmarCan15-1 [16] and from known positive skin 

tissue samples from the cohabitation experiment described in Frisch, Småge [11].  

 

All RNA was extracted using TRI Reagent (Sigma-Aldrich) following the manufacturer’s 

protocol, except that an additional washing step using 100% ethanol was performed prior to 

air drying the RNA pellet. Extracted RNA was stored at -80 ºC. All assays were run using an 
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AgPath-ID kit (Thermo Fisher Scientific) with 2 µL of RNA and the standard concentrations 

of primers (400 nM) and probe (120 nM). Each run consisted of 45 cycles.		

 

Cohabitation experiment 

Tissue samples from a previously published cohabitation experiment [11] were used to 

investigate the tissue tropism of the bacteria through real-time RT-PCR screening. In this 

experiment six groups of 20 Atlantic salmon smolts (shedders) were bath infected with three 

different isolates of T. maritimum (TmarCan15-1, TmarCan16-1 and TmarCan16-5) that 

came from natural mouthrot outbreaks on BC Atlantic salmon farms [16]. The shedders were 

bath infected for 5 hours in 12 ºC saltwater (34 ppt) using one of the above isolates (groups 4-

1 and 4-2 with 1.68 x 107 cells mL-1 TmarCan15-1, groups 4-3 and 4-4 with 1.78 x 107 cells 

mL-1 TmarCan16-5 and groups 4-5 and 4-6 with 8.75 x 105 cells mL-1 TmarCan16-1). Two 

additional groups of 20 shedders were used as controls (4-7 and 4-8), one bath infected with 1 

L marine broth (Difco 2216) (MB) and the other untouched. 24 hours post-bath infection, 40 

smolts (cohabitants) were added to each group. The husbandry conditions are described in 

Frisch, Småge [11] and results are summarized in Table 1. The mouth, gill and skin lesions 

visible macroscopically on mortality were scored as described in Frisch, Småge [11] and are 

summarized in Table 2.  

 

The cohabitation experiment was approved by the Norwegian Food Safety Authority 

(Mattilsynet) under the identification code 16/207694.  

 

Cohabitation experiment tissue screening 

The mouth and gills of five diseased cohabitants from each group were sampled with the 

exception of the 2 control groups that had no mortality. The brain, heart, kidney and skin 
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mucus were also sampled from two smolts of each of these groups. At days 7 and 14 post-

infection, two randomly selected cohabitants were sampled (mouth, gills, brain, heart, kidney 

and skin mucus) from each group. However, due to the rapid mortality in groups 4-5 and 4-6, 

this was not possible in these groups. The day 7 samples in group 4-2 were also missed. All 

samples were collected aseptically and kept on ice and then stored at -20 ºC. Moribund 

smolts and randomly selected cohabitants were euthanized with a swift blow to the head.  

 

RNA was extracted from each of these samples and screened using the Tmar_ompA assay 

using the above protocol. An assay targeting the elongation factor 1 alpha (EF1A) was used 

on the mouth, gills, brain, heart and kidney samples as an endogenous control (forward 

primer: CCCCTCCAGGACGTTTACAAA, reverse primer: 

CACACGGCCCACAGGTACA, probe: ATCGGTGGTATTGGAAC) [23]. Due to the 

variability of an endogenous control such as EF1A in skin mucus, these samples were spiked 

with cultured Halobacterium salinarum DSM 3754T cells suspended in PBS prior to the 

RNA extraction. This exogenous control was detected using the Sal assay (forward primer: 

GGGAAATCTGTCCGCTTAACG, reverse primer: CCGGTCCCAAGCTGAACA, probe: 

AGGCGTCCAGCGGA) [24].  

 

Microscopic pathology 

Representative tissues from the lesions (mouth, skin and gills) of diseased fish sampled from  

Atlantic salmon smolts bath infected with BC strains of T. maritimum [11] were fixed in 10 

% neutral buffered formalin solution and kept at 4 ºC until processing. The tissue processing 

and sectioning for histology were performed by a commercial laboratory. Histology sections 

were stained with hematoxylin and eosin (H&E). Histology sections from a diseased smolt 

from a natural outbreak of mouthrot at a BC farm were used as a reference (Fig 1).  
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Tissues (mouth and skin) from experimentally infected smolts were also selected for 

scanning electron microscopy (SEM) examination. Preparation of tissues for SEM was 

performed as described in Småge, Frisch [21]. 

 

Results 

Real-time RT-PCR for T. maritimum 

The Tmar_ompA assay is specific to T. maritimum based on the testing of RNA extracted 

from the T. maritimum strains (T. maritimum strains NCIMB 2154T, TmarCan15-1, 

TmarCan16-1, TmarCan16-5, NLF-15, and Ch-2402) and RNA extracted from other 

Tenacibaculum species (T. adriaticum DSM18961T, T. dicentrarchi USC35/09T, T. 

finnmarkense HFJT, T. ovolyticum EKD-002T, and T. soleae LL0412.1.7T). When compared 

to assay developed by Fringuelli, Savage [19], Tmar_ompA is less sensitive (S1 Table). The 

efficiency of Tmar_ompA is 1.9138 for pure T. maritimum culture (TmarCan15-1) and 

1.9386 for T. maritimum positive skin tissue (S1 Table).  

 

Cohabitation experiment tissue screening 

All samples from diseased cohabitants were positive for T. maritimum using the newly 

developed Tmar_ompA assay (S2 Table). Bacterial loads were higher in the gills and mouth 

of the groups exposed to the two less pathogenic isolates (TmarCan15-1 and TmarCan16-5). 

Results from the heart, brain and kidney samples showed that T. maritimum was in all three 

of these tissues in clinically affected cohabitant fish, indicating that the bacteria or the 

detected segments become systemic. T. maritimum was also detected in most of the sampled 

tissues in the randomly sampled non-diseased cohabitants (S2 Table). Although a majority of 
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these were positive, not all internal tissues were positive in all individuals. Cohabitants from 

the control groups were screened by Frisch, Småge [11] and were negative for T. maritimum.  

 

Clinical signs 

As described in Frisch, Småge [11], Atlantic salmon smolts bath infected BC T. maritimum 

strains from BC presented with very few external (Fig 2) or internal clinical signs. Mouth 

lesions were the most common finding, with some fish also having skin and/or gill lesions. 

Mouth lesions were usually on or surrounding the teeth and tongue (Fig 2B) and were 

associated with a slime layer that generally had a yellow tinge. This slime contained a large 

quantity of long thin rod-shaped bacteria with T. maritimum morphology [11]. When lesions 

were on the skin (Fig 2A) or gills (Fig 2C), these were also linked with a slime layer 

containing large amounts of bacteria with T. maritimum morphology. 

 

Microscopic pathology 

In the experimentally infected smolts, histopathological changes are mainly present in the 

mouth, and some fish have gill and/or skin lesions. Generally, these changes are associated 

with the gross lesions (Fig 2). The gross oral lesions (Fig 2B) are microscopically associated 

with mats of long thin rod-shaped bacteria matching what is described for T. maritimum (Fig 

3 and 4). The severity of the histopathology varies between individuals. The distance between 

intact epidermis with no signs of structural damage to an open ulcer with large quantities of 

bacteria is very short (Fig 3). In most cases, little or no inflammation surrounds lesions (Fig 

3B). Large quantities of bacteria with T. maritimum morphology are present in the gingival 

pockets surrounding the teeth and these are often loose and, in some cases, falling out or 

completely missing (Fig 3 and 4). In severe cases, normal tissue structures are replaced by a 

structureless mass of large amounts of bacteria and cellular debris (Fig 4).  
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Most of the examined gills from the experimentally infected smolts have no microscopic 

changes associated with disease and were deemed “healthy”; however, gills with 

macroscopic lesions have significant microscopic changes (Fig 5). As with the mouth lesions, 

there is a total loss of cell and tissue structure linked to these lesions with little or no 

inflammation and large amounts of bacteria with T. maritimum morphology. Most of the gill 

lesions occurred at the curve of the gill arch (Fig 2C and 5A). The tip of the filaments in 

affected areas is completely destroyed and replaced by a thick layer of bacteria with T. 

maritimum morphology (Fig 5A). The distance between the ulcer and the intact filaments of 

the gills is very short (Fig 5A and 5B). Only remnants of the lamellae are within the ulcer 

(Fig 5B and 5C).  

 

The skin lesions that developed during the experiments were associated with scale pocket 

edema. Total destruction of the underlying tissue is replaced with mats of bacteria with T. 

maritimum morphology. The SEM micrographs support the histopathological findings. Large 

aggregates of bacteria with T. maritimum morphology are in the areas of tissue destruction 

and surrounding the teeth (Fig 6). Cellular debris is clearly visible within these bacterial mats 

(Fig 6C and 6D). The bacteria are embedded in the surface of some of the teeth (Fig 7). Some 

teeth are fractured and bacterial aggregates are within the exposed pulp of these teeth (Fig 8). 

Bacterial mats and aggregates with associated tissue destruction are also in the skin lesions 

(Fig 9).  

 

Discussion 

The macroscopic and microscopic findings of experimentally induced mouthrot described in 

this study match the pathology in field cases (Fig 1), as well as what is described in the 
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literature [12,14]. Comparing our findings to publications is difficult as most of these were 

written in the 1980s and 1990s before the Tenacibaculum genus was described and it is 

therefore difficult to make a meaningful comparison. Bacterial mats with T. maritimum 

morphology typically surround the teeth, and bacterial cells are seen within the gingival 

epithelium invading the tissues below. This suggests that the bacteria proliferate in the 

gingival pockets surrounding the teeth and spread to the surrounding tissues as was described 

by Frelier, Elston [12]. The SEM micrographs (Fig 6) add to the picture by showing that the 

bacteria adhere to the tooth surface and epithelium, creating large aggregates. This is 

associated with destruction of the surrounding tissues.  

 

Skin lesions with associated scale pocket edema that matched the description by Handlinger, 

Soltani [7] occurred in a subset of Western Canadian T. maritimum experimentally infected 

smolts, particularly ones with a more chronic presentation [11]. Skin lesions, which are not 

common in natural outbreaks of mouthrot, may be attributed to the use of tanks that result in 

a greater potential for physical skin abrasions than saltwater net-pens. The use of dip nets to 

transfer the smolts in and out of the challenge tanks may also have contributed to this by 

disrupting the protective mucus layer and causing scale loss. The greater prevalence of gill 

lesions in experimentally infected smolts might be due to the clumping nature of T. 

maritimum that may create bacterial aggregates capable of lodging themselves in the gill 

filaments during respiration. This hypothesis is supported by the finding in the cohabitation 

experiment that fewer cohabitants had gill lesions than the shedders that were directly 

exposed to the bacterial culture during the bath infection (Table 2) [11]. 

 

The reasons why T. maritimum targets the teeth and surrounding mucosa in mouthrot are not 

fully understood. However, the teeth are a high source of calcium that has been shown to 



12 

promote the growth of T. maritimum [26] and thus may contribute to the affinity for this 

particular tissue. Also, a gene encoding a collagenase has been identified in the whole 

genome sequence of T. maritimum [27] and likely the reason why high levels of T. 

maritimum are present in the collagen-rich submucosa (Fig 3 and 4). T. maritimum is also 

strongly adhesive to hydrophobic surfaces, including fish mucus [28,29]. This ability to 

adhere and colonize is an important first step for pathogenic bacteria to invade the host [30]. 

This is likely the main mechanism by which T. maritimum is able to create biofilms so 

effectively. Biofilms, created by many pathogenic bacteria including Staphylococcus aureus, 

provide resistance against many host defense mechanisms [31], and may explain the low 

level of  immune response in mouthrot. 

 

We developed a new real-time RT-PCR assay based on the ompA gene that is as specific but 

less sensitive than the published assay based on the 16S rRNA gene [19]. The results from 

the real-time RT-PCR tissue screening performed in this study and the recovery of the 

bacteria from kidneys of experimentally diseased fish [11] provide evidence that mouthrot is 

a systemic disease. However, no significant pathology occurred in internal organs [11]. This 

is further supported by the fact that when examining mouthrot affected smolts from the field, 

lesions in other organs are not obviously associated with mouthrot but further research is 

required to determine if such a link exists (personal communication, Gary Marty). The 

microscopic pathology of the mouth suggests that T. maritimum might be entering the highly 

vascular tooth pulp (Fig 8) that might provide an entry point to the bloodstream, to then 

become systemic. This hypothesis matches what is described for periodontal disease in 

mammals. The lack of visible internal pathology, as well as the lack of observable 

inflammatory response may reflect the acuteness of the disease and resulting rapid tissue 

destruction. This is likely due to toxins with high proteolytic activity produced by T. 
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maritimum [7,27,32-34]. 

 

The real-time RT-PCR screening of the cohabitants showed that the external tissues (gills, 

mouth and mucus) of the fish infected with TmarCan16-1 had a lower load of T. maritimum 

than TmarCan15-1 and TmarCan16-5. This is interesting in view of the fact that this isolate 

results in a more rapid and severe disease (Table 1) with less severe gross clinical signs 

(Table 2). This relationship between highly pathogenic strains and a lack of severe lesions 

has previously been noted before for Flavobacteria [30]. The real-time RT-PCR results are 

therefore not an indicator of pathogenicity. Variation in pathogenicity between T. maritimum 

strains has been shown in other studies, including other fish species [2,35,36]. Differences in 

pathogenicity also occur between isolates belonging to the same multilocus sequence type 

(genetically identical on 11 housekeeping gene sequences) as was the case for TmarCan16-1 

and TmarCan16-2 [11]. 

 

The pathology in this study is different to what has been described in both experimentally and 

naturally infected farmed Atlantic salmon smolts in Tasmania, Australia with T. maritimum 

[7]. In Tasmania, the pathology has to a greater extent resembled what is described for typical 

tenacibaculosis: frayed fins, tail rot, skin lesions/ulcer and mouth erosion [7,17]. The reason 

behind these pathological differences is not known. It could be due to a difference in the T. 

maritimum strains associated with the different pathological presentations, but it could be due 

to other factors, including host and environment. One possibility is that the experiments were 

conducted at different temperatures, 12 ºC in our study and around 18-20 ºC in the 

experiments in Tasmania [7,17,36,37]. Pathogenicity differences associated with temperature 

has been shown in vitro with M. viscosa, a different skin pathogen of Atlantic salmon [38].  
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Conclusion 

The mechanism by which T. maritimum kills smolts in the Pacific Northwest still remains a 

mystery. The main pathology in experimentally infected smolts with Western Canadian T. 

maritimum strains are mouth lesions that damage the tissues surrounding the teeth causing a 

disease that is similar to periodontal disease in mammals. The pathological changes are focal, 

severe, and occur very rapidly with very little associated inflammation. T. maritimum is 

detectable internally by real-time RT-PCR and bacteriology, and one possible point of entry 

would be the teeth.  
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Table 1. Cohabitation experiment groups.  

Group Number of 
Fish 

Isolate Bacterial Bath 
Concentration 
(cells mL-1) 

Accumulated 
Percent Mortality 

Start of Mortality 
(days post-
exposure) 

End of Mortality 
(days post-
exposure) 

4-1 20 shed 
40 cohab 

TmarCan15-1 1.68 x 107 shed: 100 
cohab: 75 

shed: 2 
cohab: 9 

shed: 7 
cohab: 20 

4-2 20 shed 
40 cohab 

TmarCan15-1 1.68 x 107 shed: 100 
cohab: 76 

shed: 3 
cohab: 7 

shed: 7  
cohab: 17 

4-3 20 shed 
40 cohab 

TmarCan16-5 1.78 x 107 shed: 95 
cohab: 27 

shed: 2 
cohab: 12 

shed: 16 
cohab: 17 

4-4 20 shed 
40 cohab 

TmarCan16-5 1.78 x 107 shed: 84 
cohab: 31 

shed: 3 
cohab: 10 

shed: 10 
cohab: 20 

4-5 20 shed 
40 cohab 

TmarCan16-1 8.75 x 105 shed: 100 
cohab: 100 

shed: 3 
cohab: 6 

shed: 5 
cohab: 11 

4-6 20 shed 
40 cohab 

TmarCan16-1 8.75 x 105 shed: 100 
cohab: 100 

shed: 3 
cohab: 6 

shed: 6 
cohab: 9 

4-7 20 shed 
40 cohab 

Control 
(Marine Broth) 

1 L shed: 0 
cohab: 0 

- - 

4-8 20 shed 
40 cohab 

Control 
(no exposure) 

N/A shed: 0 
cohab: 0 

- - 

This table is a summary of the group descriptions and results from the cohabitation experiment in Frisch, 

Småge [11] (shed refers to shedders and cohab refers to cohabitants). The isolates used were collected from 

natural outbreaks of mouthrot on Atlantic salmon farms in BC, Canada [16]. Accumulated percent mortality 

is shown for each group, as well as the time period post-exposure that mortality occurred. In general, the 

mortality curve for each group had a sigmoid shape. 

 

 

Table 2. Cohabitation experiment gross lesion scoring of mortality.  

Tissue Score 
Shedders (% of total mortality) Cohabitants (% of total mortality) 
TmarCan15-1 TmarCan16-1 TmarCan16-5 TmarCan15-1 TmarCan16-1 TmarCan16-5 

Mouth 0 62.5 94.9 27.8 - 82.7 - 
1 30.0 5.1 19.4 13.0 13.6 19.0 
2 2.5 - 33.3 35.2 3.7 57.1 
3 5.0 - 19.4 51.9 - 23.8 

Skin 0 47.5 97.4 36.1 9.3 88.9 28.6 
1 45.0 2.6 22.2 42.6 11.1 28.6 
2 5.0 - 33.3 33.3 - 33.3 
3 2.5 - 8.3 14.8 - 9.5 

Gills 0 32.5 100.0 88.9 94.4 100.0 95.2 
1 35.0 - 5.6 5.6 - 4.8 
2 32.5 - 5.6 - - - 

Scoring of external clinical signs seen in mortality in the cohabitation experiment as a percentage of total 

mortality. Duplicate groups are combined. Scores were 0 to 3 for mouth and skin lesions, and 0 to 2 for gill 

lesions as described in Frisch, Småge [11], with 0 being no visible abnormalities and 2 or 3, the most severe. 
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Fig 1. Histopathology of the jaw of a smolt from a natural outbreak of mouthrot.  

Histopathology of the jaw from a farmed Atlantic salmon that died 2 months after it was transferred from 

freshwater into a saltwater net-pen in BC; H&E stain. (A) The mucosal epithelium on the left side of the 

section is ulcerated and covered by a layer of deeply basophilic bacteria (arrowheads). The black box 

surrounds the transition from the bacteria-covered ulcer (left) to intact epithelium (right), and it outlines the 

area included in B. (B) Higher magnification of the transition between the ulcer covered by filamentous 

bacteria (arrowheads) and intact epithelium (right of right arrow); black box outlines the area included in C. 

(C) Higher magnification of abundant filamentous bacteria streaming in a proteinaceous matrix. 

(Optimization of photomicrograph illumination and color balance followed published methods [25]).  
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Fig 2. Gross clinical signs of an experimentally infected smolt. A moribund Atlantic salmon smolt that 

was bath infected with T. maritimum strain TmarCan16-1. Gross lesion scoring [11]: mouth = 2 out of 3, 

skin = 1 out of 3, gills = 1 out of 2. (A) Very few clinical signs are on the body surface other than some 

scale loss at the base of the peduncle and dorsal-lateral surface (arrows). (B) The gingiva is swollen (arrow). 

(C) A gill lesion (arrow).  
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Fig 3. Histopathology of the jaw from an experimentally infected smolt. Histopathology of the gills from 

a moribund Atlantic salmon smolt experimentally bath infected with T. maritimum strain TmarCan15-1; 

H&E stain. (A) Oblique section of the jaw with mouthrot and loose teeth (arrowheads) with only a few of 

them connected to the jaw. The top is the inside of the oral cavity and the bottom the outside. The epidermis 

on the outside is intact. The black box outlines the area included in B and represents the transition at the 

edge of the ulcer. (B) The distance between intact mucosal epithelium (arrow "a") and the ulcer (arrow "b") 

is very short. Large quantities of bacteria with T. maritimum morphology are within the ulcer (arrow "c"). 

No signs of inflammation at the edge of the ulcer. 
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Fig 4. Histopathology of the jaw from an experimentally infected smolt. Histopathology of the jaw from 

the smolt in Fig 2; H&E stain. (A) Oblique section of the jaw. The epidermis is completely missing and the 

outer surface is covered with a thick mat of long thin rod-shaped T. maritimum-like bacteria that have 

infiltrated the submucosa (arrow "a"). Only one tooth (arrow "b") remains and holes are present where there 

used to be more teeth (arrow "c"). The black boxes labelled "B" and "C" outline the areas included in Fig 4 

B and C. (B) A mat of bacteria with T. maritimum morphology is on the outer surface (arrow "d") and the 

bacteria have infiltrated the underlying submucosa. (C) Large quantities of bacteria with T. maritimum 

morphology are within the destructed submucosa surrounding the tooth (arrow "e"). Some intact red blood 

cells (arrow "f") are within the mass of bacteria and remnants of tissue.  
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Fig 5. Histopathology of the gills from an experimentally infected smolt. Histopathology of the gills 

from the smolt in Fig 2; H&E stain. (A) Section of the gills with a distinct lesion on the top of the curve of 

the gill arch. The tips of the filaments are missing in the center of the lesion, and the remaining distal end of 

the filament is necrotic. The tissue is replaced by a thick layer of bacteria with T. maritimum morphology. 

The black box includes the transition between the lesion and normal tissue and outlines the area included in 

B. (B) The distance between the lesion and normal gill filaments is very short. In the damaged area, only the 

blood vessels remain in some of the lamellae. The black box outlines the area included in C. (C) Abundant 

bacteria with T. maritimum morphology cover the destroyed region of the gills. Only remnants of the 

lamellae are within the ulcer. 
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Fig 6. SEM of teeth from an experimentally infected smolt. Micrographs of teeth and the surrounding 

tissue from the mouth of a diseased smolt bath infected with TmarCan15-1 in the cohabitation experiment. 

(A) Teeth and surrounding gingiva are covered by mats of bacteria with T. maritimum morphology 

(arrowheads) and the associated tissue is damaged. (B) Zoomed in view of a tooth showing bacterial growth 

on the surface of the tooth (arrow "a") as well as the surrounding gingival tissue (arrow "b"). (C) The dentin-

enameloid interface with associated tissue destruction. White box indicates area in D. (D) Cellular debris 

within the bacterial mats.  
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Fig 7. SEM of a tooth surface from an experimentally infected smolt. Micrograph of a tooth surface 

from a diseased smolt bath infected with TmarCan15-1 in the cohabitation experiment. Bacteria with T. 

maritimum morphology are within the enameloid of the tooth (arrowheads).  
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Fig 8. SEM of a fractured tooth from an experimentally infected smolt. Micrograph of a fractured tooth 

from a diseased smolt bath infected with TmarCan15-1 in the cohabitation experiment. Large aggregates of 

bacteria with T. maritimum morphology are on the outside of the tooth (white arrowheads) as well as within 

the exposed pulp (black arrowheads) of the tooth.  
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Fig 9. SEM of a skin lesion from an experimentally infected smolt. Micrographs of a skin lesion on the 

dorsal-lateral surface of a diseased smolt bath infected with TmarCan15-1 in the cohabitation experiment. 

(A) Mats of bacteria with T. maritimum morphology (arrowheads) are associated with epithelial damage 

exposing the scales (sc). (B) Cellular debris with aggregates of bacteria with T. maritimum morphology. 
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Supporting information 

S1 Table. Real-time RT-PCR results for the development of the Tmar_ompA assay. Ct values of the 

specificity and efficiency analyses performed during the development of the Tmar_ompA assay. 

 

S2 Table. Cohabitation experiment real-time RT-PCR results. Ct values of the real-time RT-PCR 

analysis performed on diseased and non-diseased cohabitants.  
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Abstract

Mouthrot, caused by Tenacibaculummaritimum is a significant disease of farmed Atlantic

salmon, Salmo salar on the West Coast of North America. Smolts recently transferred into

saltwater are the most susceptible and affected fish die with little internal or external clinical

signs other than the characteristic small (usually < 5 mm) yellow plaques that are present

inside the mouth. The mechanism by which these smolts die is unknown. This study investi-

gated the microscopic pathology (histology and scanning electron microscopy) of bath

infected smolts with Western Canadian T.maritimum isolates TmarCan15-1, TmarCan16-1

and TmarCan16-5 and compared the findings to what is seen in a natural outbreak of mou-

throt. A real-time RT-PCR assay based on the outer membrane protein A specific for T.mar-

itimum was designed and used to investigate the tissue tropism of the bacteria. The results

from this showed that T.maritimum is detectable internally by real-time RT-PCR. This com-

bined with the fact that the bacteria can be isolated from the kidney suggests that T.mariti-

mum becomes systemic. The pathology in the infected smolts is primarily mouth lesions,

including damaged tissues surrounding the teeth; the disease is similar to periodontal dis-

ease in mammals. The pathological changes are focal, severe, and occur very rapidly with

little associated inflammation. Skin lesions are more common in experimentally infected

smolts than in natural outbreaks, but this could be an artefact of the challenge dose, han-

dling and tank used during the experiments.

Introduction

Tenacibaculosis is a disease characterized by frayed fins, tail rot, mouth erosion, and skin
lesions that are often ulcerative; it causes significant losses in a number of economically impor-
tant marine fish species worldwide [1,2]. Three species belonging to the genus Tenacibaculum
have been associated with this clinical presentation in farmed Atlantic salmon (Salmo salar):
Tenacibaculum dicentrarchi [3], "Tenacibaculum finnmarkense" [4–6], and Tenacibaculum
maritimum [7]. However, the clinical presentation of T.maritimum infections in Atlantic
salmon smolts in the Pacific Northwest (British Columbia (BC), Canada andWashington,
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USA) is different from classical tenacibaculosis (as described above) and is commonly referred
to as mouthrot [8–11]. Cultured Pacific salmon species (e.g. Chinook salmon, Oncorhynchus
tshawytscha) in the Pacific Northwest appear to be resistant to developing mouthrot [9].

Mouthrot typically affects smolts recently transferred into saltwater, and has been present
in the Pacific Northwest since the late 80s [12]. Due to a lack of preventative measures against
this disease, mouthrot continues to be the main reason that antibiotics are used in the produc-
tion of Atlantic salmon in the region [13]. Mouthrot is generally diagnosed by the presence of
distinctive yellow plaques associated primarily with the teeth of affected smolts [10,14]. This
clinical manifestation of T.maritimum infections has not been reported in any other Atlantic
salmon farming region even in areas where T.maritimum is present.

The pathology of mouthrot in the Pacific Northwest was first described in the early 90s,
before the bacterial agent was identified [12,14]. Gross pathology includes focal yellow bacte-
rial mats around the palate and teeth. The lesions range from small and hardly visible to multi-
ple with erosion of the upper and/or lower jaw in severe cases [14]. Microscopic examination
of these lesions were described as “mats of Cytophaga-like filamentous bacteria associated with
areas of ulceration and necrosis often extending into the underlying bone" [12]. Major taxo-
nomical revisions have since identified these “Cytophaga-like” bacteria as T.maritimum
[15,16]. Diseased individuals die with little or no other gross external or internal lesions other
than these typical “yellow plaques” in the mouth, and there is no evidence of concurrent dis-
ease [10].

When Atlantic salmon smolts are experimentally bath infected with one high dose of West-
ern Canadian T.maritimum, clinical signs are not exclusive to the mouth; the gills and skin
can also be affected [11]. Necrotic gill lesions have sometimes been observed in mouthrot
affected smolts in BC (personal observations, Frisch); however, this is not a common finding.
Gill lesions associated with this bacterium have also been noted in naturally and experimen-
tally infected Atlantic salmon smolts in Tasmania [7,17] and Chinook salmon in California
[18]. Skin lesions are also more common in experimentally infected smolts than in natural out-
breaks, but this could be an artefact of the experiments [11].

The mechanism by which T.maritimum kills Atlantic salmon smolts in the Pacific North-
west while only causing very small mouth lesions continues to be a mystery. This study
describes for the first time the pathology associated with experimentally induced mouthrot
and compares it to what is normally seen in natural outbreaks of this disease. Tissue tropism of
the bacteria, using the newly developed real-time RT-PCR is also investigated.

Materials andmethods

Real-time RT-PCR for T.maritimum
Prior to this publication, there was only one published real-time RT-PCR assay specific for T.
maritimum [19]. The assay targets the 16S rRNA gene and was tested using DNA [19]. How-
ever, the 16S rRNA gene has low phylogenic resolution at the species level when compared to
other genes [20], and real-time RT-PCR assays based on this gene may not be very specific.
The new real-time RT-PCR assay (Tmar_ompA) targets the outer membrane protein A
(ompA) gene (forward primer: GCCAATAGCAACGGGATACC, reverse primer: TCGTGCGAC
CATCTTTGGT, probe: TGAATCAAATGCGATCTT). An alignment of the ompA gene using
available Tenacibaculum spp. sequences in the GenBank and from the T.maritimum strains
TmarCan15-1, TmarCan16-1, TmarCan16-5, NLF-15, and Ch-2402 [16,21,22] (also available
in the GenBank) was used during the design of the assay.

The specificity of Tmar_ompA, based on this alignment, was tested using RNA extracted
from clonal cultures of Tenacibaculum spp. The aim for the assay was to amplify T.maritimum
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strains NCIMB 2154T, TmarCan15-1, TmarCan16-1, TmarCan16-5, NLF-15, and Ch-2402
[16,21,22], and not to amplify Tenacibaculum adriaticumDSM18961T, Tenacibaculum dicen-
trarchiUSC35/09T, "Tenacibaculum finnmarkense" HFJT, Tenacibaculum ovolyticum EKD-
002T and Tenacibaculum soleae LL0412.1.7T. To compare this new assay to the already pub-
lished one, these RNA samples were also tested using the assay developed by Fringuelli, Savage
[19]. Tmar_ompA was optimized and the efficiency determined using 10-fold dilutions of
RNA extracted from TmarCan15-1 [16] and from known positive skin tissue samples from the
cohabitation experiment described in Frisch, Småge [11].

All RNA was extracted using TRI Reagent (Sigma-Aldrich) following the manufacturer’s
protocol, except that an additional washing step using 100% ethanol was performed prior to
air drying the RNA pellet. Extracted RNA was stored at -80˚C. All assays were run using an
AgPath-ID kit (Thermo Fisher Scientific) with 2 μL of RNA and the standard concentrations
of primers (400 nM) and probe (120 nM). Each run consisted of 45 cycles.

Cohabitation experiment

Tissue samples from a previously published cohabitation experiment [11] were used to investi-
gate the tissue tropism of the bacteria through real-time RT-PCR screening. In this experiment
six groups of 20 Atlantic salmon smolts (shedders) were bath infected with three different iso-
lates of T.maritimum (TmarCan15-1, TmarCan16-1 and TmarCan16-5) that came from natu-
ral mouthrot outbreaks on BC Atlantic salmon farms [16]. The shedders were bath infected for
5 hours in 12˚C saltwater (34 ppt) using one of the above isolates (groups 4–1 and 4–2 with
1.68 x 107 cells mL-1 TmarCan15-1, groups 4–3 and 4–4 with 1.78 x 107 cells mL-1 Tmar-
Can16-5 and groups 4–5 and 4–6 with 8.75 x 105 cells mL-1 TmarCan16-1). Two additional
groups of 20 shedders were used as controls (4–7 and 4–8), one bath exposed to 1 L marine
broth (Difco 2216) (MB) and the other untouched. 24 hours post-bath infection, 40 smolts
(cohabitants) were added to each group. The husbandry conditions are described in Frisch,
Småge [11] and results are summarized in Table 1. The mouth, gill and skin lesions visible
macroscopically on mortality were scored as described in Frisch, Småge [11] and are summa-
rized in Table 2.

The cohabitation experiment was approved by the Norwegian Food Safety Authority (Mat-
tilsynet) under the identification code 16/207694.

Cohabitation experiment tissue screening

The mouth and gills of five diseased cohabitants from each group were sampled with the
exception of the 2 control groups that had no mortality. The brain, heart, kidney and skin
mucus were also sampled from two smolts of each of these groups. At days 7 and 14 post-infec-
tion, two randomly selected apparently healthy cohabitants were sampled (mouth, gills, brain,
heart, kidney and skin mucus) from each group. However, due to the rapid mortality in groups
4–5 and 4–6, this was not possible in these groups. The day 7 samples in group 4–2 were also
missed. All samples were collected aseptically and kept on ice and then stored at -20˚C. Mori-
bund smolts and randomly selected cohabitants were euthanized with a swift blow to the head.

RNA was extracted from each of these samples and screened using the Tmar_ompA assay
using the above protocol. An assay targeting the elongation factor 1 alpha (EF1A) was used on
the mouth, gills, brain, heart and kidney samples as an endogenous control (forward primer:
CCCCTCCAGGACGTTTACAAA, reverse primer: CACACGGCCCACAGGTACA, probe: ATCG
GTGGTATTGGAAC) [23]. Due to the variability of an endogenous control such as EF1A in
skin mucus, these samples were spiked with culturedHalobacterium salinarumDSM 3754T

cells suspended in PBS prior to the RNA extraction. This exogenous control was detected

Pathology of experimentally inducedmouthrot
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using the Sal assay (forward primer: GGGAAATCTGTCCGCTTAACG, reverse primer:
CCGGTCCCAAGCTGAACA, probe: AGGCGTCCAGCGGA) [24].

Microscopic pathology

Representative tissues from the lesions (mouth, skin and gills) of diseased fish sampled from
Atlantic salmon smolts bath infected with BC strains of T.maritimum [11] were fixed in 10%
neutral buffered formalin solution and kept at 4˚C until processing. The tissue processing and

Table 1. Cohabitation experiment groups.

Group Number of
Fish

Isolate Bacterial Bath Concentration
(cells mL-1)

Accumulated Percent
Mortality

Start of Mortality (days post-
exposure)

End of Mortality (days post-
exposure)

4–1 20 shed
40 cohab

TmarCan15-1 1.68 x 107 shed: 100
cohab: 75

shed: 2
cohab: 9

shed: 7
cohab: 20

4–2 20 shed
40 cohab

TmarCan15-1 1.68 x 107 shed: 100
cohab: 76

shed: 3
cohab: 7

shed: 7
cohab: 17

4–3 20 shed
40 cohab

TmarCan16-5 1.78 x 107 shed: 95
cohab: 27

shed: 2
cohab: 12

shed: 16
cohab: 17

4–4 20 shed
40 cohab

TmarCan16-5 1.78 x 107 shed: 84
cohab: 31

shed: 3
cohab: 10

shed: 10
cohab: 20

4–5 20 shed
40 cohab

TmarCan16-1 8.75 x 105 shed: 100
cohab: 100

shed: 3
cohab: 6

shed: 5
cohab: 11

4–6 20 shed
40 cohab

TmarCan16-1 8.75 x 105 shed: 100
cohab: 100

shed: 3
cohab: 6

shed: 6
cohab: 9

4–7 20 shed
40 cohab

Control
(Marine
Broth)

1 L shed: 0
cohab: 0

- -

4–8 20 shed
40 cohab

Control
(no exposure)

N/A shed: 0
cohab: 0

- -

This table is a summary of the group descriptions and results from the cohabitation experiment in Frisch, Småge [11] (shed refers to shedders and cohab refers to

cohabitants). The isolates used were collected from natural outbreaks of mouthrot on Atlantic salmon farms in BC, Canada [16]. Accumulated percent mortality is

shown for each group, as well as the time period post-exposure that mortality occurred. In general, the mortality curve for each group had a sigmoid shape.

https://doi.org/10.1371/journal.pone.0206951.t001

Table 2. Cohabitation experiment gross lesion scoring of mortality.

Tissue Score Shedders (% of total mortality) Cohabitants (% of total mortality)

TmarCan15-1 TmarCan16-1 TmarCan16-5 TmarCan15-1 TmarCan16-1 TmarCan16-5

Mouth 0 62.5 94.9 27.8 - 82.7 -

1 30.0 5.1 19.4 13.0 13.6 19.0

2 2.5 - 33.3 35.2 3.7 57.1

3 5.0 - 19.4 51.9 - 23.8

Skin 0 47.5 97.4 36.1 9.3 88.9 28.6

1 45.0 2.6 22.2 42.6 11.1 28.6

2 5.0 - 33.3 33.3 - 33.3

3 2.5 - 8.3 14.8 - 9.5

Gills 0 32.5 100.0 88.9 94.4 100.0 95.2

1 35.0 - 5.6 5.6 - 4.8

2 32.5 - 5.6 - - -

Scoring of external clinical signs seen in mortality in the cohabitation experiment as a percentage of total mortality. Duplicate groups are combined. Scores were 0 to 3

for mouth and skin lesions, and 0 to 2 for gill lesions as described in Frisch, Småge [11], with 0 being no visible abnormalities and 2 or 3, the most severe.

https://doi.org/10.1371/journal.pone.0206951.t002
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sectioning for histology were performed by a commercial laboratory. Histology sections were
stained with hematoxylin and eosin (H&E). Histology sections from a diseased smolt from a
natural outbreak of mouthrot at a BC farm were used as a reference (Fig 1).

Tissues (mouth and skin) from experimentally infected smolts were also selected for scan-
ning electron microscopy (SEM) examination. Preparation of tissues for SEM was performed
as described in Småge, Frisch [21].

Results

Real-time RT-PCR for T.maritimum
The Tmar_ompA assay is specific to T.maritimum based on the testing of RNA extracted
from the T.maritimum strains (T.maritimum strains NCIMB 2154T, TmarCan15-1, Tmar-
Can16-1, TmarCan16-5, NLF-15, and Ch-2402) and RNA extracted from other Tenacibacu-
lum species (T. adriaticumDSM18961T, T. dicentrarchiUSC35/09T, "T. finnmarkense" HFJT,
T. ovolyticum EKD-002T, and T. soleae LL0412.1.7T). When compared to assay developed by
Fringuelli, Savage [19], Tmar_ompA is less sensitive (S1 Table). The efficiency of Tmar_ompA
is 1.9138 for pure T.maritimum culture (TmarCan15-1) and 1.9386 for T.maritimum positive
skin tissue (S1 Table).

Cohabitation experiment tissue screening

All samples from diseased cohabitants were positive for T.maritimum using the newly devel-
oped Tmar_ompA assay (S2 Table). Bacterial loads were higher in the gills and mouth of the
groups exposed to the two less pathogenic isolates (TmarCan15-1 and TmarCan16-5). Results
from the heart, brain and kidney samples showed that T.maritimum was in all three of these
tissues in clinically affected cohabitant fish, indicating that the bacteria or the detected seg-
ments become systemic. T.maritimum was also detected in most of the sampled tissues in the
randomly sampled non-diseased cohabitants (S2 Table). Although a majority of these were
positive, not all internal tissues were positive in all individuals. Cohabitants from the control
groups were screened by Frisch, Småge [11] and were negative for T.maritimum.

Clinical signs

As described in Frisch, Småge [11], Atlantic salmon smolts bath infected with T.maritimum
strains from BC presented with very few external (Fig 2) or internal clinical signs. Mouth
lesions were the most common finding, with some fish also having skin and/or gill lesions.
Mouth lesions were usually on or surrounding the teeth and tongue (Fig 2B) and were associ-
ated with a slime layer that generally had a yellow tinge. This slime contained a large quantity
of long thin rod-shaped bacteria with T.maritimummorphology [11]. When lesions were on
the skin (Fig 2A) or gills (Fig 2C), these were also linked with a slime layer containing large
amounts of bacteria with T.maritimummorphology.

Microscopic pathology

In the experimentally infected smolts, histopathological changes are mainly present in the
mouth, and some fish have gill and/or skin lesions. Generally, these changes are associated
with the gross lesions (Fig 2). The gross oral lesions (Fig 2B) are microscopically associated
with mats of long thin rod-shaped bacteria matching what is described for T.maritimum (Figs
3 and 4). The severity of the histopathology varies between individuals. The distance between
intact epidermis with no signs of structural damage to an open ulcer with large quantities of
bacteria is very short (Fig 3). In most cases, little or no inflammation surrounds lesions (Fig

Pathology of experimentally inducedmouthrot
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3B). Large quantities of bacteria with T.maritimummorphology are present in the gingival
pockets surrounding the teeth and these are often loose and, in some cases, falling out or
completely missing (Figs 3 and 4). In severe cases, normal tissue structures are replaced by a
structureless mass of large amounts of bacteria and cellular debris (Fig 4).

Most of the examined gills from the experimentally infected smolts have no microscopic
changes associated with disease and were deemed “healthy”; however, gills with macroscopic

Fig 1. Histopathology of the jaw of a smolt from a natural outbreak of mouthrot.Histopathology of the jaw from a
farmed Atlantic salmon that died 2 months after it was transferred from freshwater into a saltwater net-pen in BC;
H&E stain. (A) The mucosal epithelium on the left side of the section is ulcerated and covered by a layer of deeply
basophilic bacteria (arrowheads). The black box surrounds the transition from the bacteria-covered ulcer (left) to
intact epithelium (right), and it outlines the area included in B. (B) Higher magnification of the transition between the
ulcer covered by filamentous bacteria (arrowheads) and intact epithelium (right of right arrow); black box outlines the
area included in C. (C) Higher magnification of abundant filamentous bacteria streaming in a proteinaceous matrix.
(Optimization of photomicrograph illumination and color balance followed published methods [25]).

https://doi.org/10.1371/journal.pone.0206951.g001

Fig 2. Gross clinical signs of an experimentally infected smolt. Amoribund Atlantic salmon smolt that was bath infected with T.maritimum strain TmarCan16-1.
Gross lesion scoring [11]: mouth = 2 out of 3, skin = 1 out of 3, gills = 1 out of 2. (A) Very few clinical signs are on the body surface other than some scale loss at the base
of the peduncle and dorsal-lateral surface (arrows). (B) The gingiva is swollen (arrow). (C) A gill lesion (arrow).

https://doi.org/10.1371/journal.pone.0206951.g002

Pathology of experimentally inducedmouthrot
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Fig 3. Histopathology of the jaw from an experimentally infected smolt.Histopathology of the gills from a moribund Atlantic salmon smolt experimentally bath
infected with T.maritimum strain TmarCan15-1; H&E stain. (A) Oblique section of the jaw with mouthrot and loose teeth (arrowheads) with only a few of them
connected to the jaw. The top is the inside of the oral cavity and the bottom the outside. The epidermis on the outside is intact. The black box outlines the area included
in B and represents the transition at the edge of the ulcer. (B) The distance between intact mucosal epithelium (arrow "a") and the ulcer (arrow "b") is very short. Large
quantities of bacteria with T.maritimummorphology are within the ulcer (arrow "c"). No signs of inflammation at the edge of the ulcer.

https://doi.org/10.1371/journal.pone.0206951.g003

Fig 4. Histopathology of the jaw from an experimentally infected smolt.Histopathology of the jaw from the smolt in Fig 2; H&E stain. (A) Oblique
section of the jaw. The epidermis is completely missing and the outer surface is covered with a thick mat of long thin rod-shaped T.maritimum-like
bacteria that have infiltrated the submucosa (arrow "a"). Only one tooth (arrow "b") remains and holes are present where there used to be more teeth
(arrow "c"). The black boxes labelled "B" and "C" outline the areas included in Fig 4B and 4C. (B) A mat of bacteria with T.maritimummorphology is
on the outer surface (arrow "d") and the bacteria have infiltrated the underlying submucosa. (C) Large quantities of bacteria with T.maritimum
morphology are within the destructed submucosa surrounding the tooth (arrow "e"). Some intact red blood cells (arrow "f") are within the mass of
bacteria and remnants of tissue.

https://doi.org/10.1371/journal.pone.0206951.g004
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lesions have significant microscopic changes (Fig 5). As with the mouth lesions, there is a total
loss of cell and tissue structure linked to these lesions with little or no inflammation and large
amounts of bacteria with T.maritimummorphology. Most of the gill lesions occurred at the
curve of the gill arch (Figs 2C and 5A). The tip of the filaments in affected areas is completely
destroyed and replaced by a thick layer of bacteria with T.maritimummorphology (Fig 5A).
The distance between the ulcer and the intact filaments of the gills is very short (Fig 5A and
5B). Only remnants of the lamellae are within the ulcer (Fig 5B and 5C).

The skin lesions that developed during the experiments were associated with scale pocket
edema. Total destruction of the underlying tissue is replaced with mats of bacteria with T.mar-
itimummorphology. The SEMmicrographs support the histopathological findings. Large
aggregates of bacteria with T.maritimummorphology are in the areas of tissue destruction
and surrounding the teeth (Fig 6). Cellular debris is clearly visible within these bacterial mats
(Fig 6C and 6D). The bacteria are embedded in the surface of some of the teeth (Fig 7). Some
teeth are fractured and bacterial aggregates are within the exposed pulp of these teeth (Fig 8).
Bacterial mats and aggregates with associated tissue destruction are also in the skin lesions
(Fig 9).

Discussion

The macroscopic and microscopic findings of experimentally induced mouthrot described in
this study match the pathology in field cases (Fig 1), as well as what is described in the litera-
ture [12,14]. Comparing our findings to publications is difficult as most of these were written
in the 1980s and 1990s before the Tenacibaculum genus was described and it is therefore diffi-
cult to make a meaningful comparison. Bacterial mats with T.maritimummorphology typi-
cally surround the teeth, and bacterial cells are seen within the gingival epithelium invading
the tissues below. This suggests that the bacteria proliferate in the gingival pockets surrounding
the teeth and spread to the surrounding tissues as was described by Frelier, Elston [12]. The
SEMmicrographs (Fig 6) add to the picture by showing that the bacteria adhere to the tooth
surface and epithelium, creating large aggregates. This is associated with destruction of the sur-
rounding tissues.

Skin lesions with associated scale pocket edema that matched the description by Handlin-
ger, Soltani [7] occurred in a subset of Western Canadian T.maritimum experimentally
infected smolts, particularly ones with a more chronic presentation [11]. Skin lesions, which
are not common in natural outbreaks of mouthrot, may be attributed to the use of tanks that
result in a greater potential for physical skin abrasions than saltwater net-pens. The use of dip
nets to transfer the smolts in and out of the challenge tanks may also have contributed to this
by disrupting the protective mucus layer and causing scale loss. The greater prevalence of gill
lesions in experimentally infected smolts might be due to the clumping nature of T.mariti-
mum that may create bacterial aggregates capable of lodging themselves in the gill filaments
during respiration. This hypothesis is supported by the finding in the cohabitation experiment
that fewer cohabitants had gill lesions than the shedders that were directly exposed to the bac-
terial culture during the bath infection (Table 2) [11].

The reasons why T.maritimum targets the teeth and surrounding mucosa in mouthrot are
not fully understood. However, the teeth are a high source of calcium that has been shown to
promote the growth of T.maritimum [26] and thus may contribute to the affinity for this par-
ticular tissue. Also, a gene encoding a collagenase has been identified in the whole genome
sequence of T.maritimum [27] and likely the reason why high levels of T.maritimum are pres-
ent in the collagen-rich submucosa (Figs 3 and 4). T.maritimum is also strongly adhesive to
hydrophobic surfaces, including fish mucus [28,29]. This ability to adhere and colonize is an
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important first step for pathogenic bacteria to invade the host [30]. This is likely the main
mechanism by which T.maritimum is able to create biofilms so effectively. Biofilms, created
by many pathogenic bacteria including Staphylococcus aureus, provide resistance against many

Fig 5. Histopathology of the gills from an experimentally infected smolt.Histopathology of the gills from the smolt in Fig 2; H&E stain. (A)
Section of the gills with a distinct lesion on the top of the curve of the gill arch. The tips of the filaments are missing in the center of the lesion,
and the remaining distal end of the filament is necrotic. The tissue is replaced by a thick layer of bacteria with T.maritimummorphology. The
black box includes the transition between the lesion and normal tissue and outlines the area included in B. (B) The distance between the lesion
and normal gill filaments is very short. In the damaged area, only the blood vessels remain in some of the lamellae. The black box outlines the
area included in C. (C) Abundant bacteria with T.maritimummorphology cover the destroyed region of the gills. Only remnants of the
lamellae are within the ulcer.

https://doi.org/10.1371/journal.pone.0206951.g005
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host defense mechanisms [31], and may explain the low level of immune response in
mouthrot.

We developed a new real-time RT-PCR assay based on the ompA gene that is as specific but
less sensitive than the published assay based on the 16S rRNA gene [19]. The results from the
real-time RT-PCR tissue screening performed in this study and the recovery of the bacteria
from kidneys of experimentally diseased fish [11] provide evidence that mouthrot is a systemic
disease. However, no significant pathology occurred in internal organs [11]. This is further
supported by the fact that when examining mouthrot affected smolts from the field, lesions in
other organs are not obviously associated with mouthrot but further research is required to
determine if such a link exists (personal communication, Gary Marty). The microscopic
pathology of the mouth suggests that T.maritimummight be entering the highly vascular
tooth pulp (Fig 8) once significant damage has occurred to the tooth and surround tissues.
This may provide an entry point to the bloodstream, to then become systemic. This hypothesis
matches what is described for periodontal disease in mammals. The lack of visible internal
pathology, as well as the lack of observable inflammatory response may reflect the acuteness of
the disease and resulting rapid tissue destruction. This is likely due to toxins with high proteo-
lytic activity produced by T.maritimum [7,27,32–34].

Fig 6. SEM of teeth from an experimentally infected smolt.Micrographs of teeth and the surrounding tissue from the mouth of a diseased smolt bath
infected with TmarCan15-1 in the cohabitation experiment. (A) Teeth and surrounding gingiva are covered by mats of bacteria with T.maritimum
morphology (arrowheads) and the associated tissue is damaged. (B) Zoomed in view of a tooth showing bacterial growth on the surface of the tooth
(arrow "a") as well as the surrounding gingival tissue (arrow "b"). (C) The dentin-enameloid interface with associated tissue destruction. White
box indicates area in D. (D) Cellular debris within the bacterial mats.

https://doi.org/10.1371/journal.pone.0206951.g006
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The real-time RT-PCR screening of the cohabitants showed that the external tissues (gills,
mouth and mucus) of the fish infected with TmarCan16-1 had a lower load of T.maritimum
than TmarCan15-1 and TmarCan16-5. This is interesting in view of the fact that this isolate
results in a more rapid and severe disease (Table 1) with less severe gross clinical signs
(Table 2). This relationship between highly pathogenic strains and a lack of severe lesions has
previously been noted before for flavobacteria [30]. The real-time RT-PCR results are therefore
not an indicator of pathogenicity. Variation in pathogenicity between T.maritimum strains
has been shown in other studies, including other fish species [2,35,36]. Differences in

Fig 7. SEM of a tooth surface from an experimentally infected smolt.Micrograph of a tooth surface from a diseased
smolt bath infected with TmarCan15-1 in the cohabitation experiment. Bacteria with T.maritimummorphology are
within the enameloid of the tooth (arrowheads).

https://doi.org/10.1371/journal.pone.0206951.g007

Fig 8. SEM of a fractured tooth from an experimentally infected smolt.Micrograph of a fractured tooth from a
diseased smolt bath infected with TmarCan15-1 in the cohabitation experiment. Large aggregates of bacteria with T.
maritimummorphology are on the outside of the tooth (white arrowheads) as well as within the exposed pulp (black
arrowheads) of the tooth.

https://doi.org/10.1371/journal.pone.0206951.g008
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pathogenicity also occur between isolates belonging to the same multilocus sequence type
(genetically identical on 11 housekeeping gene sequences) as was the case for TmarCan16-1
and TmarCan16-2 [11]. Further analysis of the genome of TmarCan16-1 and TmarCan16-2 is
required to identify the potential differences in virulence factors resulting in the observed vari-
ation in pathogenicity.

The pathology in this study is different to what has been described in both experimentally
and naturally infected farmed Atlantic salmon smolts in Tasmania, Australia with T.mariti-
mum [7]. In Tasmania, the pathology has to a greater extent resembled what is described for
typical tenacibaculosis: frayed fins, tail rot, skin lesions/ulcer and mouth erosion [7,17]. The
reason behind these pathological differences is not known. It could be due to a difference in
the T.maritimum strains associated with the different pathological presentations, but it could
be due to other factors, including host and environment. One possibility is that the

Fig 9. SEM of a skin lesion from an experimentally infected smolt.Micrographs of a skin lesion on the dorsal-lateral
surface of a diseased smolt bath infected with TmarCan15-1 in the cohabitation experiment. (A) Mats of bacteria with
T.maritimummorphology (arrowheads) are associated with epithelial damage exposing the scales (sc). (B) Cellular
debris with aggregates of bacteria with T.maritimummorphology.

https://doi.org/10.1371/journal.pone.0206951.g009
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experiments were conducted at different temperatures, 12˚C in our study and around 18–
20˚C in the experiments in Tasmania [7,17,36,37]. Pathogenicity differences associated with
temperature has been shown in vitro withM. viscosa, a different skin pathogen of Atlantic
salmon [38].

Conclusion

The mechanism by which T.maritimum kills smolts in the Pacific Northwest still remains a
mystery. The main pathology in experimentally infected smolts with Western Canadian T.
maritimum strains are mouth lesions that damage the tissues surrounding the teeth causing a
disease that is similar to periodontal disease in mammals. The pathological changes are focal,
severe, and occur very rapidly with very little associated inflammation. T.maritimum is detect-
able internally by real-time RT-PCR and bacteriology, and one possible point of entry would
be the teeth.
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