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Abstract
Arctic waters are often enriched with terrestrial dissolved organic matter (DOM) characterized by having ele-

vated visible wavelength fluorescence (commonly termed humic-like). Here, we have identified the sources of
fluorescent DOM (FDOM) in a high Arctic fjord (Young Sound, NE Greenland) influenced by glacial meltwater.
The biological transformation of FDOM was further investigated using plankton community size-fractionation
experiments. The intensity of ultraviolet fluorescence (commonly termed amino acid-like) was highly variable
and positively correlated to bacterial production and mesozooplankton grazing. The overall distribution of visi-
ble FDOM in the fjord was hydrographically driven by the high-signal intrusion of Arctic terrestrial DOM from
shelf waters and dilution with glacial runoff in the surface waters. However, the high-intensity visible FDOM
that accumulated in subsurface waters in summer was not solely linked to allochthonous sources. Our data indi-
cate that microbial activity, in particular, protist bacterivory, to be a source. A decrease in visible FDOM in sub-
surface waters was concurrent with an increase in bacterial abundance, indicating an active bacterial uptake or
modification of this DOM fraction. This was confirmed by net-loss of visible FDOM in experiments during sum-
mer when bacterial activity was high. The degradation of visible FDOM appeared to be associated with bacteria
belonging to the order Alteromonadales mainly the genus Glaciecola and the SAR92 clade. The findings provide
new insight into the character of Arctic terrestrial DOM and the biological production and degradation of both
visible and UV wavelength organic matter in the coastal Arctic.

Microorganisms produce, transform, and consume dissolved
organic matter (DOM) and as a result, all aquatic environments
contain a complex mixture of organic molecules that vary
greatly in chemical characteristics and size. This results in a
considerable analytical challenge for resolving the production,
turnover, and fate of carbon, nitrogen, and phosphorus bound
as organic matter. The most common approach to quantify
DOM is to measure its carbon content (dissolved organic
carbon [DOC]), however, this provides no information on
DOM characteristics, which ultimately impacts its fate. Other

measures such as bioavailable DOC (BDOC) (Søndergaard and
Middelboe 1995), and optical properties of the organic matter
(Stedmon and Nelson 2015), offer insight into the DOM char-
acter. Fluorescent DOM (FDOM) signal can be separated into
underlying components which group into broad visible wave-
length “humic-like” fluorescence (henceforth termed visible
fluorescence) and ultraviolet wavelength fluorescence (hence-
forth termed UV fluorescence) which is typical for simpler
structures such free or combined amino acids or benzoic acid
derivatives (Wünsch et al. 2015).

Arctic waters are characterized by having elevated visible
fluorescence and this is linked to the high-terrestrial input of
organic matter (Amon et al. 2003; Walker et al. 2013), which
have been used to trace large-scale water mass distribution of
Arctic water (Amon et al. 2003; Gonçalves-Araujo et al. 2016).
The rapid warming of the Arctic cryosphere is increasing river-
ine discharge and thus the land to ocean transport of organic
carbon (Holmes et al. 2008; Feng et al. 2013). In the glacial
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fjords of Greenland, the rate of ice loss from the Greenland
Ice Sheet has doubled in the last decade (Kjeldsen et al. 2015).
Glacial meltwater from the ice sheet contains a significant
fraction of bioavailable DOM (Lawson et al. 2014; Paulsen
et al. 2017), which potentially constitutes an important car-
bon source for coastal and marine food webs. This is particu-
larly relevant in low productive Arctic systems characterized
by a short ice-free summer, stratification, and low-light condi-
tions due to riverine freshwater and inorganic particle input.
Increases in stratification limit inorganic nutrient replenish-
ment from deeper waters and thus we can expect that local
primary production is more dependent on allochthonous
inputs and local mineralization. Young Sound in North East
Greenland (Fig. 1) is typical for such an Arctic system. It is
influenced by meltwater from the Greenland Ice Sheet via
land-terminating glaciers, while the marine end-member of
the fjord originates from the East Greenland Current stem-
ming from the Arctic. Local conditions are changing and this
is evident as the average salinity from 2003 to 2015, has
decreased in Young Sound by 0.12 per year indicating an
increased influence of freshwater (Sejr et al. 2017).

Young Sound is considered to be low productive (annual
pelagic primary productivity of 10.3 g C m−2 yr−1; Rysgaard
et al. 1999), due to the short sea ice-free season allowing for
only 30% of the yearly photosynthetically active radiation
(PAR) flux to reach the water column. Further, the silty glacial
runoff drastically reduces the euphotic depth. The effects of
the glacial runoff on the distribution of micro- and mesozoo-
plankton (Arendt et al. 2016; Middelbo et al. 2018), marine
ecosystem productivity (Meire et al. 2017), colored DOM

absorption (Murray et al. 2015), and the carbon availability
for bacteria (Paulsen et al. 2017) have previously been
described for Young Sound. Small phytoplankton (< 2 μm)
dominate the murky inner fjord and contribute on average
89% of chlorophyll a (Chl a) compared to 59% at the mouth
of the fjord. At the same time, copepod grazing is considerably
less in the inner fjord (Middelbo et al. 2018), while protist
grazing is enhanced (Arendt et al. 2016). Copepods and pro-
tists generally dominate the grazer biomass in Young Sound,
although the pelagic gastropod Limacina helicina is abundant
particularly in autumn (Middelbo et al. 2018).

The three major sources of organic carbon in Young Sound
are (1) the local phytoplankton production, (2) runoff from
land-terminating glaciers and lowland rivers, and (3) inflow
from the East Greenland Current waters on the shelf. The frac-
tion of bioavailable DOC (%BDOC) is highest in the glacial
runoff (30–35%) and lowest in the subsurface fjord water
(5–7%) (Paulsen et al. 2017). However, as DOC concentration
in the glacial runoff is low, absolute BDOC concentrations for
both are similar (15 � 8 μM) (Paulsen et al. 2017). BDOC is dif-
ficult logistically to measure at high temporal and spatial reso-
lution. Further, BDOC measurements do not reflect the
degradation potential by the representative in situ bacterial
communities when carried out in long-term (weeks to months)
bottle experiments. FDOM components, instead, can be mea-
sured at high resolution and related to: changes in biological
activity in the fjord; the in situ bacterial community composi-
tion; and changes occurring in short-term (days) incubations.

While FDOM has been used as a water mass tracer, little is
known about how the biological processes in marine waters

Fig. 1. Study sites in North East Greenland. Circles indicate the four sampling stations in Young Sound (Sta. 1–4) and triangles the three sampled rivers
(R1–R3). Satellite image in the bottom left corner illustrates the glacial cover at its minimum in August (available at http://ocean.dmi.dk/arctic/daneborg.
uk.php).
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may transform the FDOM signature (i.e., cause breakage or
production of fluorescent molecular structures) and thus alter
its terrestrial character in Arctic waters. Several recent studies
have aimed to link the spatial and vertical distribution of
FDOM components to biological standing-stock parameters
such as bacterial abundance (Catalá et al. 2016) or Chl
a fluorescence (Lønborg et al. 2014; Gonçalves-Araujo
et al. 2016; Sa and Kim 2017), but not to biological processes
and activity. Bacteria are often considered to be the sole
decomposers of DOM and can consume UV FDOM and pro-
duce visible FDOM (Guillemette and del Giorgio 2012;
Lønborg et al. 2014). The latter is therefore considered to be
less bioavailable and correlates negatively to bacterial growth
efficiency and BDOC (Asmala et al. 2013). The accumulation
of visible FDOM in the deep ocean is attributed to aphotic
bacterial transformation of organic matter (Yamashita and
Tanoue 2008; Jørgensen et al. 2011; Aparicio et al. 2015).
However, DOM is produced at all levels of the food web (Jiao
et al. 2010; Lønborg et al. 2013; Stedmon and Cory 2014) and
there is also evidence that protist grazing of bacteria produces
high-molecular weight DOM with a visible FDOM signature
(Nagata and Kirchman 1992; Baña et al. 2014).

Here, we evaluate the sources of FDOM in the Young
Sound fjord system and further study the biological transfor-
mation of DOM in short-term (days) incubation experiments
designed to contain a representative in situ microbial commu-
nity composition. While considering the FDOM signature
from mesozooplankton grazers (copepods and pteropods) and
different size classes of phytoplankton, the main focus is on
the effect that bacteria and heterotrophic nanoflagellate (HNF)
grazing activity have on the FDOM signal. Three central ques-
tions were addressed: (1) Can FDOM be used as a tracer in the
fjord to distinguish between different DOM sources, (2) What
imprint does the open water productivity period leave on the
FDOM signal, and (3) Is the fjord microbial community capa-
ble of modifying visible- and UV FDOM?

Material and methods
Study site and sampling

The study was conducted in the Tyroler fjord-Young Sound
system, Northeast Greenland (74.2–74.3�N, 19.7–21.9�W)
(Fig. 1). The system is 90 km long, 2–7 km wide, and covers an
area of 390 km2, with a maximum depth of 360 m. One 45-m
sill is situated in the inner part of the system at the mouth of
Tyroler fjord, and a second sill separates Young Sound from the
East Greenland shelf waters (Fig. 2). Sampling was conducted at
four stations located along the freshwater gradient from the
inner fjord to the shelf (Sta. 1–4), and in the three major rivers
(R1–R3) (Fig. 1). The fjord stations 1, 2, 3, and 4 are located
according to stations monitored yearly by the Greenland Ecosys-
tem Monitoring (GEM) MarinBasis Zackenberg program named
Tyro 05, YS 3.18, Standard St. and GH 05, respectively. The fjord
is influenced by runoff from June to September with an

accumulated amount of ca. 0.9–1.4 km3 yr−1 (Bendtsen
et al. 2014). Land-terminating glaciers contribute on average
50–80% of the runoff, mainly in the inner part of the fjord
(Citterio et al. 2017).

A Seabird SBE 19+ conductivity, temperature and depth
(CTD) profiler was deployed at every sampling occasion and
recorded vertical profiles of temperature (�C), salinity (practi-
cal salinity unit), oxygen (μmol kg−1), Chl a fluorescence
(fluchl, relative; no units), turbidity (FTU), and PAR (μmol
m−2 s−1). Discrete water samples were taken at six depths
(1 m, 10 m, 20 m, 30 m, 40 m, and 100 m) and additionally
at the Chl a maximum/maxima with a 12 bottle, 1.2-liter
Niskin mini-rosette. Location of the deep chlorophyll max
(DCM) was determined just prior to every sampling occasion
using a Satlantic Free-falling Optical Profiler. Each month a
longitudinal transect with CTD stations every 5 km (25 CTD
in total) were performed to obtain high-resolution coverage of
the fjord hydrography (Fig. 2). Three of the major rivers dis-
charging into the fjord were sampled as long as the water was
flowing (the last sampling was on 10th September). The melt-
water in the Tyroler river (R1) and Clay Bay river (R2) flows
from glaciers through rocky sediment basins with very little
vegetation and a distance of ca. 0.5 km and 2 km before they
reach the fjord. Zackenberg river (R3) is different from the two
others as the water has a longer residence time in two lakes
and flow through the vegetated Zackenberg Valley before
entering the fjord. As a result, DOC concentration in R3 is
approximately 50% higher than R1 and R2 (Paulsen
et al. 2017). A model study estimated the residence time of
river water in the fjord to be about 2 weeks in July and up to a
month in August (Bendtsen et al. 2014).

Water samples were kept in the dark in 10-liter opaque high-
density polyethylene (HDPE) plastic containers and transported
back to the Daneborg Marine Station (near Sta. 3) for further
analysis. Chl a was analyzed according to Jespersen and Chris-
toffersen (1987). Samples for DOC and total nitrogen
(TN) concentrations were collected in 30 mL acid-washed HDPE
bottles and stored at −20�C until analysis. Concentrations were
determined by high-temperature combustion (720�C) using a
Shimadzu TOC-V CPH-TN carbon and nitrogen analyser. Sam-
ples were acidified to pH 2 using hydrochloric acid. The instru-
ment was calibrated using acetanilide (Cauwet 1999) and
carbon determination was referenced to the community deep-
sea reference (Hansell laboratory, Miami). Bacterial production
(BP; μg C L−1 d−1) was estimated from the incorporation of 3H-
thymidine in 10 mL samples in triplicate (Riemann et al. 1982).
The specific BP (μg C L−1 d−1 cell−1) was calculated as BP/bacter-
ial abundance (cells L−1). Oxidized nitrogen (NO2

− + NO3
−),

phosphate (PO4
3−), and silicic acid (H4SiO4) were measured on a

Smartchem200 (by AMS Alliance) autoanalyser following proce-
dures as outlined in Wood et al. (1967) for NO3

− + NO2
−, Mur-

phy and Riley (1962) for PO4
3−, Holmes et al. (1999) for NH4

+,
and Koroleff (1983) for the determination of H4SiO4. Water for
DNA and RNA extraction was collected from the rivers and at
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1 m and the DCM in the fjord, and water for size-fractionated
Chl a and microsized protists were collected only at 1 m and
the DCM in the fjord.

Dissolved organic matter fluorescence
Samples for DOM fluorescence from the fjord and experi-

ments were filtered through 0.2 μm syringe filters (Acrodisc® ion
chromatography) into acid cleaned and precombusted amber
glass bottles and kept at 4�C until measured within 2 months.
The logistics of sampling in North East Greenland across four
expeditions hindered sample measurements on site and the mea-
surements can potentially be influenced by microbial regrowth
and organic matter degradation during storage despite 0.2 μm fil-
tration. Seven samples were checked for bacterial regrowth dur-
ing storage by 3 months and results showed a regrowth from
< 200 cells mL−1 to 11.000 � 7.500 cells mL−1. No optimal sam-
ple storage procedure exists for FDOM, as the addition of preser-
vatives and freezing can influence fluorescence more than sterile
filtration alone (Schneider-Zapp et al. 2013). Samples were accli-
mated to room temperature before measurement on a Horiba
Aqualog spectrofluorometer within 2 months. The instrument
measured fluorescence intensity across emission wavelengths
300–600 nm at excitation wavelengths from 250 nm to 450 nm
in a 1 cm quartz cuvette. Excitation-emission matrix (EEM) were
merged into a three-dimensional matrix and analyzed via the

multivariate data analysis technique parallel factor analysis
(PARAFAC) (Murphy et al. 2013). FDOM signal was split into five
components (Fig. 3) and they are named according to the wave-
length at their emission maximum, and the “Coble’s peaks” from
Coble (1996) that each component resemble is displayed. Three
components had emission maxima at visible wavelengths (C417,
C498, C405) and two at UV wavelengths (C340, C310). The fluores-
cence intensities reported here are at the excitation and emission
maximum in Raman units, nm−1 (Lawaetz and Stedmon 2009).

To better reveal how DOM properties varied between differ-
ent sources, samples were grouped by each river, and the
water types defined as “river plume” (S < 25), “fjord surface
waters” (S = 25–32.5 and T > −1�C), “subsurface waters”
(S < 32.5 and T < −1�C), and “coastal shelf waters” (S > 32.5)
as in Paulsen et al. (2017). The fluorescence intensity of the
five components was averaged within each water type for each
season (Fig. 4). The high salinity “coastal shelf water” was
encountered only at Sta. 4, at 100 m (Fig. 2) at few sampling
occasions, and FDOM was only sampled from this water type
on three occasions. Therefore, our FDOM description of this
end member is likely weaker than for the rivers.

Enumeration of microorganisms
The abundance of bacteria, heterotrophic HNFs, and small

phytoplankton were determined on an Attune® Acoustic

Fig. 3. The excitation (solid line) and emission (red dashed line) of the five FDOM components isolated by PARAFAC. The fluorescence maximum is
shown as well as the “coble peaks” that each component resembles (Coble 1996). The three-dimensional fluorescence contour plots with emission on
the y-axis (300–600 nm) and excitation on the x-axis (250–450 nm).
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Focusing Flow Cytometer (Applied Biosystems by Life Tech-
nologies) with a syringe-based fluidic system and a 20 mW
488 nm (blue) laser (Paulsen et al. 2016). Samples for hetero-
trophic bacteria and HNFs were fixed with glutaraldehyde
(0.5% final concentration) and kept dark at 4�C until analysis
within 12 h. Phytoplankton samples were enumerated from
fresh samples and the populations of pico- and nanosized
phytoplankton were grouped based on their pigmentation
on biplots of green vs. red fluorescence as in Paulsen
et al. (2016). Samples for heterotrophic prokaryotes (hereafter
bacteria) and HNF were stained with SYBR Green I
(Molecular Probes, Eugene, Oregon, U.S.A.) for minimum
1 h. Bacteria were analyzed at a low-flow rate (25 μL min−1)
following the protocol of Marie et al. (1999). HNF were measured
at a high-flow rate according to Zubkov et al. (2007) and subdi-
vided into two different size groups of ca. 3–5 μmdiameter (here-
after small HNF) and ca. 5–10 μm diameter (hereafter large HNF)
by filtering parallel samples through 3 μm, 5 μm, and 10 μm
polycarbonate filters and counting the filtrate and adjusting
gates. The ratio of small HNF to bacteria is used here as an indica-
tor of bacterial grazing pressure as in other studies (Sanders
et al. 1992). Samples for the larger microsized protists (ciliates,
heterotrophic dinoflagellates, and microphytoplankton) were
fixed in acid Lugol’s solution (2% final concentration) and stored
cold and dark until analyses. Fifty milliliters were examined after
24 h sedimentation in Utermöhl chambers. The protists were
enumerated and identified to species/morphotype level using an
inverted microscope (magnification: ×200–400). While only het-
erotrophic dinoflagellates were enumerated by microscope, chlo-
roplast 16S ribosomal ribonucleic acid (rRNA) gene analysis
additionally detected autotrophic dinoflagellates.

DNA and RNA extraction, 16S rRNA sequencing, and data
analysis

Samples for molecular analysis were collected by filtering
onto 0.22 μm Sterivex filters (2 L filtered from environmental
samples and 4 L from experiments). DNA and RNA were
extracted simultaneously from the filters using the AllPrep
DNA/RNA Mini Kit (Qiagen, Hilden, Germany). We used DNA
for the analysis of the community composition in experimen-
tal samples and RNA for the analysis of the in situ fjord and
river samples. RNA was treated with the DNA-free DNA
Removal kit (Invitrogen, California, U.S.A.), and reverse tran-
scribed using the SuperScript III First-Strand Synthesis System
for reverse transcription polymerase chain reaction (RT-PCR)
(Invitrogen). Amplification of complementary DNA (cDNA)
and DNA was performed using a two-step nested PCR
approach with primers 519F and 806R targeting both the
archaeal and the bacterial 16S rRNA gene V4 hypervariable
region. Details regarding extraction, amplification and ampli-
con library preparation can be found in Wilson et al. (2017).
Libraries were sequenced at the Norwegian Sequencing Centre
(Oslo, Norway) using their MiSeq platform (MiSeq Reagent Kit
v2, Illumina, California, U.S.A.). Sequencing data are available

at “The European Bioinformatics Institute” under study acces-
sion number PRJEB16067 (http://www.ebi.ac.uk).

Paired-end sequences were processed using different bioin-
formatic tools incorporated on a qiime-processing platform
(Caporaso et al. 2011) as described in Paulsen et al. (2016).
FASTQ files were quality end-trimmed, merged and prokaryotic
operational taxonomic units (OTUs) were selected at a sequence
similarity threshold of 97%. Taxonomy was assigned using the
Greengenes reference database (DeSantis et al. 2006). The
eukaryotic plastidial sequences were taxonomical assigned
using the Phytoref database of the plastidial 16S rRNA gene of
photosynthetic eukaryotes (Decelle et al. 2015).

Plankton community size-fractionation experiments
Three plankton community fractionation experiments were

performed; Experiment 1 was initiated while the central fjord was
still ice-covered (on 11th July), Experiment 2 was initiated 4 d
after the fjord became ice-free (19th July), and Experiment 3 was
initiated during autumn (16th September). We chose to collect
water for the experiments from Sta. 3, as this was most accessi-
ble from Daneborg field station during ice-cover and at the same
time with its central location it is representable for the fjord sys-
tem as a whole. For each experiment, water (70–100 L) was col-
lected at the Chl a maximum at Sta. 3 and directly gently
syphoned into dark carboys. Prior to the setup, bottles and car-
boys were acid-washed and then rinsed in Milli-Q water. The
treatments (hereafter: < 0.8, < 3, < 10, and < 90) were prepared
by screening the water through either a 0.8 μm polycarbonate
filter or a 3 μm, 10 μm, or 90 μm mesh filter by gentle reverse fil-
tration in order to successively exclude protists of increasing
sizes. Water for each treatment was gently transferred into tripli-
cate 5-liter transparent foldable politainers (RPC Promens®) by
staggered filling using silicone tubing. To mirror the seasonal
change in mesozooplankton biomass in the fjord (Middelbo
et al. 2018), Exp. 2 and 3 included additional treatments where
mesozooplankton were added to < 90 μm filtered water. During
Exp. 1, there were relatively few copepods present in the fjord
(a biomass of < 0.5 mg C m−3), therefore a treatment with cope-
pod addition was not included. After the ice broke up copepod
abundance increased up to 5 mg C m−3 (Middelbo et al. 2018)
and a “copepod treatment” was included both in Exp. 2 and
3. As pelagic pteropods (snails) became abundant in autumn
(up to 2 mg C m−3), an additional treatment was included only
in Exp. 3. In both Exp. 2 and 3, copepods (Calanus hyperboreus
CVI) were added to a final abundance of 1 copepod L−1. In
Exp. 3, pteropods (L. helicina) were added to a final abundance
of two individuals per 5-liter carboy. Hereafter, the treatments
are referred to as “Copepod” and “Pteropod” (“Co” and “Pt” in
Fig. 5). All individuals were alive after the 8–9 d of incubation.

The experimental carboys were incubated on a pier by the
fjord in a 1000-liter PVC tank submerged in a flow-through
water bath pumping water from the shore (1–3 m depth
depending on the tide) to keep the temperature close to in situ
surface temperature. The bottles were wrapped in dark nylon
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mesh, reducing the irradiance to ~ 30% of surface PAR, similar
to the light conditions at the depth at which they were col-
lected. The bottles were rotated twice per day by hand. Every
day, 50 mL sample (1% of total volume) was removed for the
quantification of bacteria, small phytoplankton, and HNF.
Every second day, 200 mL was additionally removed to mea-
sure bacterial production, FDOM, DOC, and inorganic nutri-
ents. Further Chl a (> 0.7 μm [total], 2–10 μm and > 10 μm)
and samples for enumeration of microsized protists were col-
lected initially (T0), after 3 d and at the end of each experi-
ment. Samples for 16S rRNA gene sequencing were collected
from the < 90 treatment initially from Exp. 1 and Exp. 3 and
from all treatments at the end of each experiment by filtering
the remaining water onto 0.22 μm Sterivex filter (ca. 4 L) to
enable comparison between the starting community and the
effect of treatments by the end. The initial community from
the < 90 treatment in Exp. 2 was lost and we, therefore, can
only compare to the unfiltered in situ sample collected along
with the experimental water. Exp. 1 was terminated after 5 d
and Exp. 2 after 7.8 d and Exp. 3 after 9 d.

Net-growth rates (μ, d−1) were calculated as the change in
cell abundance (N) from the abundance at t0 (N0) to the abun-
dance at sample time t1 (N1) as:

μ¼ lnN1− lnN0ð Þ= t1− t0ð Þ ð1Þ

When protist grazing was reduced in the smaller size-fractions
(i.e., < 0.8 and < 3), prey growth rate was higher (μno grazer) than
in the larger size-fractions, i.e., < 10 and < 90 where grazers
are present (μwith grazer). Protist grazing (g, d−1) could then be
estimated by subtracting the two growth rates as:

g¼ μno grazer−μwith grazer ð2Þ

It should be noted that the < 0.8 μm-filtration in Exp. 2 did
not successfully exclude all picophytoplankton, small HNF
and nanophytoplankton which all multiplied in the
< 0.8-treatment (Supporting Information Fig. S1). The treat-
ment was however still included in the further analysis as the
HNF : Bac ratio was significantly reduced.

In the experiments, the change in FDOM intensity is calcu-
lated as:

ΔFDOM¼ FDOMX

FDOM0
−1 ð3Þ

where FDOM0 and FDOMX are the fluorescence intensities of
each component averaged for all treatments at day 0 and the
intensity averaged within each treatment at day X, respectively.

Statistical analysis
Redundancy analysis was done using primer-e version

6 (Plymouth, UK) and Canoco 5 (Ter Braak and Šmilaur 2012).
multivariate analysis of variance (MANOVA and of covariance
between depended variables, using a general linear model) was

used to examine covariance between the five fluorescence
components both in situ and in the experiments using the
program R and the package “car” (Fox and Weisberg 2011).

Results
Hydrography, nutrients, and plankton

In the summer (July–August), terrestrial runoff created a
clear halocline at 5–6 m with a layer of low salinity (< 20)
water in the surface and more saline bottom water (> 30)
(Fig. 2). In autumn (September–October), the runoff had
ceased, and periodic storms followed, mixing the surface layer
depth so that the mixed layer depth (MLD) extended to
around 40 m and the near-surface water was colder (2�C). In
general, the inner part of the fjord system was more stratified
than the coastal shelf waters, but the wind mixing in October
was enough to deepen the MLD in the entire fjord (Fig. 2).
Phytoplankton Chl a fluorescence was most intense at
26–35 m depth at the outer fjord stations (3 and 4) in the
summer period (up to 3.1 μg Chl a L−1). At the innermost sta-
tions, the Chl a maximum was shallower (20 m) and concen-
trations were highest in late autumn (up to 1.6 μg Chl a L−1)
(Fig. 2, Supporting Information Fig. S2).

With respect to Redfield, oxidized nitrogen (NOx) (0.26 �
0.25 μM) was limiting relative to phosphate (P) (0.41 �
0.19 μM) during both seasons in the upper mixed layer.
Ammonium was only measured at Sta. 3 in the fjord and was
at low concentrations ranging between 0.05 μM and 0.4 μM
(avg. 0.27 � 0.17 μM). In the rivers, phosphate was compara-
bly low as in the fjord (0.3 � 0.2 μM) but NOx was several fold
higher (1.1 � 0.5 μM). Silicate was elevated in the river water
(avg. 17 � 12 μM, max 46 μM) with increasing concentrations
during the runoff period compared to the fjord surface values
(2 � 1.8 μM). The inner part of the fjord became ice-free prior
to the central part. During the first sampling July Sta. 3 was
still ice-covered, and there was a reduction in nutrients just
below the ice (NOx = 0.01, P = 0.33, Si =1 μM) compared to
deeper waters at 100 m (NOx = 3.2, P = 0.7, Si = 6.4 μM) indi-
cating that a phytoplankton spring bloom had already started
in the inner fjord.

The phytoplankton community differed between the inner
fjord (Sta. 1 and 2) and the outer fjord (Sta. 3 and 4). In the
outer part of the fjord, diatoms, mainly Chaetoceros sp., and
autotrophic dinoflagellates dominated, while picophytoplank-
ton dominated the inner fjord (Middelbo et al. 2018). Large
and small heterotrophic HNFs also had different distribution
patterns with large HNF being most abundant in the inner
part of the fjord in autumn (max. 170 cell mL−1, 63 � 36 cell
mL−1), while small HNF generally were more abundant in
summer, but without strong spatial variations (250 � 155 cell
mL−1) (Supporting Information Fig. S2). Abundances of both
HNF size groups were significantly reduced in the freshwater-
influenced surface water compared to the more saline waters
below (Supporting Information Fig. S2). Ciliate abundances
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were also lower (3.4 � 2.3 cells mL−1) in 1 m samples than in
deeper samples (data not shown). This resulted in a general
low predator to prey ratio in the surface water during summer
stratification (Fig. 6).

DOM distribution in the fjord and rivers
The average concentration of DOC was 100 � 22 μM in the

fjord (Supporting Information Fig. S2) and the rivers had sig-
nificantly lower DOC concentrations (< 40 μM). Thus, the riv-
ers diluted the upper 5 m of the fjord in terms of DOC. The
three visible wavelength FDOM components displayed a simi-
lar vertical distribution with maximum intensities at 30–40 m
and decreasing above 20 m, illustrated by C417 in Fig. 6. From
summer to autumn, the intensity decreased in the upper
40 m. Visible FDOM signals were also generally lower at the
outermost station at the shelf. The two UV FDOM signals
exhibited a higher degree of variation and no distinct vertical
patterns, as illustrated by C340 in Fig. 6, and the highest inten-
sities of UV FDOM were measured in the central fjord (Sta.
2 and 3) (Fig. 6). When FDOM intensities were averaged
within the different water types (Fig. 4), an ANOVA analysis
of each component revealed that the visible fluorescent com-
ponents were highly significantly different between water
types (C417: p = 6.8 × 10−6, C498: p = 2.7 × 10−9, C405:
p = 2.2 × 10−6), whereas the UV fluorescent components were
only marginally different (C340: p = 0.02, C310: p = 0.04). The
seasonal change within water types revealed a significant
decrease in C417 and C498 and UV fluorescent C340 from sum-
mer to autumn, as well as an increase in the fjord (Fig. 4). The
fluorescence signal of the rivers had higher variation than in
the fjord. The glacial rivers (R1 and R2) had the lowest
intensity of visible fluorescence of all samples (C498 = 0.04–
0.05 R.U.), and R3 during summer had the highest
(C498 = 0.13 R.U.).

Links between bacteria and FDOM
In summer, bacterial abundances were lower in the fjord

(ca. 4 × 105 cell mL−1) than at the shelf (Sta. 4) (7 × 105 cell
mL−1) and peaked at 10 m just below the halocline at all sta-
tions (Fig. 6). In the central fjord, abundances increased signif-
icantly during the transition to autumn in the upper 40 m,
whereas at the shelf station they did not change (Fig. 6 and
Supporting Information Fig. S2). Similarly, BP was stable over
the study period at the shelf, whereas in the fjord BP rates
were higher (up to 2 μg C L−1 d−1) in the summer than in
autumn (< 0.2 μg C L−1 d−1) (Fig. 6). As a result, the specific
BP (production per cell) was on average more than twice as
high in the fjord (averaged to 5.4 × 10−10 μg C d−1 cell−1)
than on the shelf (1.8 × 10−10 μg C d−1 cell−1) (Supporting
Information Fig. S2).

BP rates and several other environmental parameters were
tested for correlations with the FDOM using Pearson’s correla-
tions (Table 1), in order to identify links between environmen-
tal factors and FDOM fluorescence. UV components C340 and

C310 were positively correlated to Chl a and BP, but C417,
C498, and C405 were strongest correlated to HNF : Bac and
salinity and inversely correlated to bacterial abundance
(Table 1).

To test the cumulative effect of all environmental parame-
ters on the entire set of FDOM components and to identify
the most influential variable, a redundancy analysis was per-
formed separately for the two seasons with FDOM compo-
nents as the dependent variables and environmental
parameters as the explanatory variables (Fig. 7). In summer,
the environmental parameters explained 53% of the total
FDOM variation, with “HNF : Bac” (18%, p = 0.002) and “Chl
a” (11%, p = 0.008) explaining most. In autumn, 42% of the
FDOM variation could be explained, with “Salinity” (14%,
p = 0.008) and the water type “Shelf water” (9%, p = 0.004)
explaining most (Supporting Information Table S1). When a
redundancy analysis was done for the entire data set the envi-
ronmental variables were related similarly to FDOM, but with
poorer explanatory power (Supporting Information Table S1).

Since bacteria can both produce and consume FDOM, we
were further interested in whether FDOM components corre-
late with the abundance of the bacterial OTUs (Table 2).
Several OTUs from different classes correlated both positively
(e.g., Balneatrix and SAR92 clade) and negatively (e.g., Litori-
cola and SAR86 clade, SAR116 clade) to visible wavelength
FDOM components. Only a few OTUs (e.g., Colwellia and
SAR92 clade) correlated with the two UV FDOM components.
The relative contribution (%) of OTUs that correlated positively
to visible wavelength FDOM was especially high during sum-
mer, such as Balneatrix (10%) and SAR92 clade (11%). Interest-
ingly, the genera that correlated strongly with visible FDOM
signals did not correlate with salinity. The only genera that did
correlate negatively with salinity (i.e., Variovorax and cyanobac-
teria) were freshwater taxa. In autumn, however, only a few
OTUs correlated positively to visible wavelength FDOM and
negative correlations were more common (Table 2).

In order to test whether the FDOM components might
explain the changes in the composition of the bacterial com-
munity we applied another redundancy analysis. Here, the
OTUs were the dependent variables and the FDOM compo-
nents are the explanatory variables (Supporting Information
Fig. S4). However, this analysis showed the FDOM compo-
nents do not explain well the changes in the bacterial com-
munity composition. The only significant relationship on
community level was found for UV FDOM component C340 in
July (p = 0.024), where it explained 24.5% of the bacterial
community composition.

Phytoplankton diversity in the experiments
The abundance of different size-classes of phytoplankton

was successfully altered as part of the plankton community
size fractionation manipulation (Fig. 5, Supporting Informa-
tion Figs. S1, S3). In the first two experiments, Chaetoceros
sp. dominated all size fractions larger than 10 μm, with
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occasionally high contributions of silicoflagellates and chryso-
phytes (Fig. 5A). The large Chl a fraction (> 10 μm) increased
significantly in the treatments < 90 μm and the treatments
with copepod addition, whereas in the treatments < 3 μm
and < 10 μm the pico- and nanophytoplankton biomass
increased (Fig. 5B). The third experiment (initiated in
September) was dominated by pico- and nanosized phyto-
plankton groups including silicoflagellates, cryptophytes, pra-
sinophytes, and also the contribution of autotrophic
dinoflagellates increased in autumn (Fig. 5A). Microsized dia-
toms contributed little to the biomass in Exp. 3 (maximum
10–20% in the treatments with mesozooplankton) despite rel-
atively high SiO4 concentrations (4 μM), compared to Exp. 1
and 2, where silicate was reduced to < 1.7 μM and thus in lim-
iting concentrations according to Egge and Aksnes (1992).
NH4

+ increased only in the mesozooplankton amended treat-
ments in Exp. 3; with a gradual increase from 0.2 μM to
1.7 � 0.4 μM in the pteropod treatment and an increased
from 0.2 μM to 0.5 � 0.03 μM in the copepod treatment, fol-
lowing a decrease after 5 d (Fig. 5B, Supporting Information
Fig. S1). Chl a in the 2–10 μm fraction doubled in the treat-
ment with mesozooplankton, while it significantly decreased
in the treatments with protists as top predators. Heterotrophic
dinoflagellates dominated over ciliates numerically, especially
in Exp. 1 and 2, during which the diatoms dominated the
phytoplankton biomass (Supporting Information Fig. S3).

Bacterial diversity, growth, and grazing in experiments
The order Alteromonadales (genera Glaciecola, Colwellia,

Pseudoalteromnas, and the SAR92 clade) dominated the bacte-
rial community in Exp. 1 (46% � 2%) and Exp. 2
(48% � 10%)). Exp. 3 was dominated by the order Oceanos-
pirillales (29% � 10%) and was in general more diverse with a
higher number of unassigned OTUs than in the two other
experiments (27% � 6%) (Fig. 5C). The genus Glacieocola var-
ied most throughout the season and contributed as much as
33–36% in the first experiments whereas Exp. 3 only con-
tained up to 4% Glaciecola. In treatments where mesozoo-
plankton were added the Alteromonadales genera became
more abundant with Colwellia (22–23%) and Pseudoalteromo-
nas (10–21%) being most prominent. Oceanospirillales
(Balneatrix, Oleispira, and the SAR86 clade) dominated when
protists were the only grazers.

The treatments < 3 μm, 10 μm, and 90 μm were grouped
into one treatment: “plus protists” in Figs. 8,9, as we found no
significant differences between the three in regards to FDOM
development (Supporting Information Fig. S6) nor in the abun-
dance of bacteria and BP (Supporting Information Fig. S1). Like-
wise, the treatments with addition of copepods and pelagic
pteropods were grouped as “plus mesozooplankton.” The
0.8 μm-filtration resulted in a reduction of the bacterial abun-
dance at day 0 (Fig. 8A–C). In summer, the abundance was
reduced by around 18% and in Exp. 3 as much as 40–45%,

Fig. 4. The contribution of the three visible wavelength (gray) and two UV wavelength (green) FDOM components in the three rivers and in the fjord
water types during (A) summer (July) and (B) autumn (September–October), values are shown as average � SE, number of samples (n) given above
the bars.

Lund Paulsen et al. Biological transformation of Arctic FDOM

9



indicating that bacteria were larger in autumn than in summer.
The abundance of bacteria in the 3 μm, 10 μm, and 90 μm fil-
tered water at the beginning of the experiments were also
around four times higher in autumn (9 × 105 mL−1) than in
the summer experiments (1.9 × 105 mL−1 and 2.6 × 105 mL−1).
Bacterial production increased from 0.5 μg C−1 L−1 d−1 to 6.3 μg
C−1 L−1 d−1 within the first 3 d of incubation in the summer
experiments (Fig. 8D,E), while in autumn (Exp. 3) BP remained
less than 1.2 μg C−1 L−1 d−1 during the entire experiment. The
predator-prey ratio (HNF : Bac × 103 in Fig. 8, see also HNF
numbers in Supporting Information Fig. S1) was reduced to
near zero in the fraction with only bacteria, except in Exp. 2.

The ratio remained between 1 and 5 (i.e., 1000–5000 bacteria
per HNF) in treatments with protists and mesozooplankton,
except for the end of Exp. 2 where it increased to 14 in the treat-
ments with protists (Fig. 8G–I). On the whole, this indicates that
the experimental size fractionation successfully released grazing
pressure so that we could differentiate between FDOM changes
due to bacterial degradation and those due to grazing.

Grazing rates of bacteria (calculated by Eq. 2), picophyto-
plankton and HNF were highest in summer and very similar
between Exp. 1 and 2 (Supporting Information Table S2). The
net-grazing on bacteria correlated strongly to HNF : Bac in all
experiments (r2 = 0.82, 0.59, and 0.77; p < 0.0001, for Exp. 1,

Fig. 5. The abundance of different size-classes of protists in the three incubation experiments. Initial and final values are given on the left and right-hand
side of the dashed line, respectively. Duration was 5 d, 7.8 d, and 9 d of Exp. 1, 2 and 3, respectively. (A) Relative abundance of the most abundant phy-
toplankton species (phylum [size class]; order) based on plastidial 16S rRNA gene sequence data, showing the taxonomic diversity. (B) Chl a fractions
(< 2 μm, 2–10 μm, and > 10 μm) and initial and end nutrient concentration for all treatments (average � SD). (C) Bacterial community composition of
the 15 most abundant taxa at genus level (order; genus) in the three incubation experiments. N.B. there are no initial molecular data from Exp. 2 only
from unfiltered in situ water.
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2 and 3, respectively; Supporting Information Fig. S5). We,
therefore, consider HNF : Bac to be an appropriate indicator of
bacterial grazing in our system.

Consumption and production of FDOM in the experiments
As a result of the changing seasonal conditions in the fjord,

the three size-fractionation experiments were initiated with fjord
water differing significantly in initial FDOM composition (two-
way ANOVA, p < 0.0001) (Fig. 9, left panel). We observed a
strong significant difference in development of FDOM between
the experiments (MANOVA: F2,122 = 0.55, p < 0.00001, partial
eta squared = 0.28).

During the incubation, the relative change in intensity (cal-
culated by Eq. 3) differed between the visible and UV

wavelength FDOM components (Fig. 9). The UV FDOM
increased in all experiments, mainly in Exp. 2 during which
the initial UV FDOM intensity was close to zero. C310 was
often produced at high rates in the treatment with only bacte-
ria (Fig. 9). Mesozooplankton addition to the incubations
resulted in elevated UV FDOM intensities after 3.7 d in Exp. 2
and by 2.8 d in Exp. 3, with the addition of the pteropod
L. helicina having a slightly higher effect than copepods
(Supporting Information Fig. S6).

The visible wavelength FDOM components developed dif-
ferently in the two seasons. In summer (Exp. 1 and 2), we
observed a gradual decrease (i.e., consumption or transforma-
tion) of all components, while in autumn (Exp. 3), they were
produced. In general, C417 was consumed at lower rates and

Table 1. Pearson correlation coefficient, r, for the linear association between the FDOM components and environmental and biological
variables are given for the two seasons from in situ observations from the four fjord stations. Red indicates negative and green positive
associations. Significant relationships are marked by *.

nmutuAremmuS

                  Visible  

                   wavelength 

UV 

wavelength 

Visible  

wavelength 

UV 

wavelength 

C417 C498 C405 C340 C310 C417 C498 C405 C340 C310

HNF:Bac 0.54 ** 0.47* 0.49** –0.05 0.15 –0.03 0.04 0.14 -0.38* –0.20 

Chl a 0.44 * 0.45* 0.46* 0.22* 0.19 0.15 0.14 0.03 0.19 0.10 

Salinity 0.41* 0.40* 0.31* 0.16 0.07 0.37* 0.43** 0.51** –0.14 –0.10 

BA –0.16 –0.22* –0.10 0.07 –0.05 –0.36* –0.39* –0.52** 0.14 0.12 

BP –0.20* –0.18 –0.11 0.19 0.12 0.24* 0.26* 0.14 0.27* 0.24* 

BDOC –0.08 –0.11 –0.28* 0.33* –0.02 –0.09 –0.10 –0.08 –0.08 0.15 

Fig. 7. Redundancy analysis biplot summarizing the variation of the five FDOM components in summer and autumn from in situ samples (dark blue
arrows) in response to selected environmental and biological variables (red arrows) and to the water type as a categorical value (red triangles).

Lund Paulsen et al. Biological transformation of Arctic FDOM

12



produced at higher rates than C498 (Fig. 9). The highest con-
sumption rates were measured in Exp. 1. In Exp. 2, visible
wavelength FDOM decreased the most in the treatment with
only bacteria, while the presence of mesozooplankton grazers
even stimulated a small net-production of C417 and C405 dur-
ing the first 3 d (Fig. 9E). In Exp. 3, there was no net-
consumption of FDOM, but production rates were almost
twice as high in grazer-treatments than in the “bacteria only”
treatments after 7.5 d (Fig. 9F–K). We observed that the
change in visible wavelength FDOM correlated negatively to

bacterial net-growth (Eq. 1) in the summer experiments
(Exp. 1: r2 = 0.62, p < 0.0001, Exp. 2: r2 = 0.32, p = 0.0008),
and a positively to grazing on bacteria in all experiments
(Exp. 1: r2 = 0.45, p = 0.0034, Exp. 2: r2 = 0.43, p = 0.0005,
Exp. 3: r2 = 0.19, p = 0.017).

Overall, in Exp. 1, the presence of grazers affected the rate
of change in FDOM intensity during the first 3 d, whereas all
the different treatments essentially arrived at similar net-
change of FDOM intensity after 5 d. In Exp. 2, the decrease in
visible FDOM was lowest in treatments with grazers whereas

Table 2. Pearson correlation coefficient, r, for the positive (green) and negative (red) linear association between selected OTUs of bac-
teria (based on plastidial 16S rRNA sequence data), and the five FDOM components and salinity in the entire fjord data set (not includ-
ing the rivers). Significant relationships are marked by *. The OTU number, the assigned order, and genera/clade are given in the three
first columns. The 4th column indicates the relative abundance of each OTU as the sum of reads out of the total (green = high abun-
dance, red = low abundance) separated into summer (July) and autumn (September).

Order OTU# Genus/ taxa 

Percentage of community Visible FDOM UV FDOM 

Salinity

S
u

m
m

e
r 

A
u

tu
m

n
 

C417 C498 C405 C340 C310

0.3 0 0.42* 0.44* 0.25 0.34 0.34 –0.02 

0.2 0 0.57** 0.55** 0.71**** 0.43* 0.28 –0.01 

10.9 2.6 0.46* 0.45* 0.62*** 0.3 0.17 –0.33 

0.3 0.1 0.51** 0.55** 0.56** 0.48* 0.34 0.08 

1 0.1 0.6*** 0.6*** 0.5** 0.40* 0.40* –0.04 

0.2 0.2 0.53** 0.59*** 0.31 0.18 0.18 0.41* 

9.5 3.9 0.39* 0.36 0.29 0.25 0.25 0.08 

0.3 0 0.57** 0.55** 0.75**** 0.47* 0.36 –0.04 

0.2 0.1 0.49** 0.49** 0.43* 0.22 0.19 0.19 

1.4 0.2 0.5** 0.47* 0.38* 0.32 0.32 0.08 

0.4 0.1 0 0 0.22 –0.04 0.06 –0.62*** 

0.6 0 0.43* 0.43* 0.51** 0.52** 0.26 0.18 

0.6 0 0.04 0.01 0.19 –0.04 –0.11 –0.64*** 

0.9 0.3 0.04 –0.02 0.06 –0.24 –0.39* –0.4 

0.4 0 –0.08 –0.07 0.17 –0.15 0.03 –0.76**** 

0.2 1.6 –0.48** –0.45* –0.31 –0.29 –0.29 –0.5** 

0.2 1.3 –0.54** –0.51** –0.68**** –0.41* –0.35 0.22 

0.2 1.6 –0.58** –0.56** –0.72**** –0.37 –0.32 0.21 

0.2 1.5 –0.53** –0.49** –0.66*** –0.25 –0.19 0.2 

0.5 0.6 –0.57** –0.51** –0.42* –0.46* –0.14 –0.59*** 

2.8 0.9 –0.31 –0.24 –0.08 –0.2 0.12 –0.67*** 

0.5 2 –0.51** –0.48** –0.65*** –0.31 –0.26 0.12 

1.2 3.5 –0.45* –0.43* –0.29 –0.29 –0.29 0.09 

0.9 1.8 –0.5** –0.48* –0.53** –0.28 –0.22 0.02 

8.4 0.2 –0.09 –0.07 0.15 –0.17 0.01 –0.76 

0.6 2.3 –0.42* –0.40* –0.22 –0.16 –0.16 0.26 

Alteromonadales 37,117 Glaciecola 

Alteromonadales 25,156 SAR92 clade 

Alteromonadales 31,010 SAR92 clade 

Alteromonadales 154,480 SAR92 clade 

Alteromonadales 1564 SAR92 clade 

Oceanospirillales 50,365 uncultured 

Oceanospirillales 133,547 Balneatrix 

Oceanospirillales 71,739 Balneatrix 

Oceanospirillales 36,864 Balneatrix 

Oceanospirillales 96,009 Balneatrix 

Methylophilales 121,499 Methylotenera 

Alteromonadales 107,394 Colwellia 

Cyanobacterium 118,758 uncultured 

Alteromonadales 162,434 Glaciecola 

Burkholderiales 157,176 Variovorax 

Flavobacteriales 70,100 NS5 

Oceanospirillales 16,552 Litoricola 

KI89A 53,876 uncultured 

Alteromonadales 71,481 Porticoccus 

Oceanospirillales 41,665 uncultured 

Cyanobacterium 110,706 uncultured 

Rhodospirillales 145,914 AEGEAN169 

Rickettsiales 45,394 SAR116 clade 

Rhodobacterales 20,147 Rhodobacter 

Burkholderiales 50,758 Variovorax 

Oceanospirillales 62,656 SAR86 clade 

Oceanospirillales 37,238 SAR86 clade 0.7 5 –0.55** –0.52** –0.69**** –0.31 –0.27 0.24 
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the production of UV FDOM was clearly stimulated by their
presence. In Exp. 3, where bacterial activity was low, visible
FDOM was produced in all treatments and the positive effect
of grazers on FDOM change remained significant after 7.5 d.

Discussion
FDOM properties have been used as water mass indicator,

and especially the “humic-like” FDOM characterized with emis-
sion maxima at visible wavelengths is often considered to be
refractory and therefore used as a conservative tracer (Catalá
et al. 2015). Yet, the imprint that marine microbes have on
FDOM remains poorly resolved. The data collected here pro-
vides an opportunity to examine the interplay between biologi-
cal activity and hydrography on the distribution and
composition of FDOM. In this light, the FDOM signal can be
used as an indicator revealing the dynamics of DOM produc-
tion, consumption, and transformation in the fjord system.

FDOM dilution by glacial meltwater
Surprising and in contrast to most fjord systems, visible

wavelength FDOM correlated positively to salinity (Fig. 7)

indicating that the marine end-member is the important
FDOM source rather than the local runoff. The reduced inten-
sity of visible wavelength FDOM in the freshwater influenced
surface layer could potentially also have been caused by pho-
tochemical degradation (Ward et al. 2014; Aarnos et al. 2018).
However, as the ice in the Young Sound fjord system disap-
pears after the summer solstice, the sun angle is also decreas-
ing rapidly and as a result, the inner fjord system is shaded by
surrounding mountains preventing direct exposure. Thus, the
likely impact of photochemical degradation is probably lim-
ited in Young Sound. In addition, light penetration is inhib-
ited by the silty runoff that increases turbidity in the fjord
(Murray et al. 2015), mainly early in the ice-free period.

The FDOM signal from local terrestrial runoff is difficult
to resolve, as FDOM intensity, DOC concentrations, and
bioavailability can fluctuate (Kroon et al. 2017; Paulsen
et al. 2017) in response to episodic input events which are eas-
ily be missed when sampling. However, the low fluorescence
intensity of riverine FDOM measured 16 times from July to
September strongly suggests that the rivers are not a major
contributor of carbon or of FDOM in the system but rather
dilute FDOM in the fjord. This is in strong contrast to the

Fig. 8. (A–C) The change in bacterial abundance (× 105) mL−1, (D–F) bacterial production (μg C L−1 d−1), and (G–I) predator to prey ratio HNF : Bac
(× 103) during the course of the three experiments.
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majority of Arctic rivers, which are important sources of car-
bon and visible FDOM with as high as 1.8 nm−1 (Walker
et al. 2013). In comparison, the highest intensity of visible
fluorescence sampled in the Young Sound was 0.08 nm−1 in
the glacial rivers and 0.13 nm−1 in R3.

The FDOM signals from the three rivers were directly
related to their catchment, with the glacial rivers R1 and R2
supplying similar and low signal, while the tundra and lakes
in the R3 catchment supply an elevated and more variable
signal. Similar variations in FDOM intensity of large Arctic
rivers have been explained by the difference in the vegeta-
tion characteristics of the catchment (Walker et al. 2013),

further the presence of proglacial lakes results in higher DOC
concentrations (340–406 μM C) (Bhatia et al. 2010; Haupt-
mann et al. 2016). The low-carbon content in glacial meltwa-
ter in Young Sound is consistent previous observations from
the western part of Greenland Ice Sheet with 7–32 μM C,
15–51 μM C, and 21–100 μM C found in subglacial, supragla-
cial discharge, and a glacial stream with connection to a
proglacial lake, respectively (Bhatia et al. 2010; Lawson
et al. 2014; Hauptmann et al. 2016). In terms of carbon con-
centration and FDOM, the runoff connected to Greenland
glaciers thus rather dilutes, than contributes, to the fjord
system.

Fig. 9. (A–C) The initial intensity of the three visible wavelength (gray) and two UV wavelength (green) FDOM components in the three experiments.
(D–K) The change in FDOM fluorescence in the different treatment “only bacteria,” “plus protists,” and “plus mesozooplankton” calculated by Eq. 3 for
the approximately time intervals 0–3, day 0–5, and day 0–7.
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Coastal water as a source of visible FDOM
The shelf water in the East Greenland region is character-

ized by three general layers (Sejr et al. 2017): (1) Re-circulating
Atlantic water (T > 0�C) at depths greater than 200 m (not
sampled in the current study), (2) Polar water that originates
from the Polar halocline transported from the Arctic Ocean in
the East Greenland Current (T < 0�C, S ~ 31–32), and (3) Sur-
face waters (S < 25), which are modified locally by the inclu-
sion of meltwater from sea ice and the Greenland Ice Sheet in
summer. The overall distribution of visible FDOM was hydro-
graphically driven by the high-signal intrusion of Polar water
terrestrial DOM from the marine end-member and dilution by
low-signal glacial runoff in the surface.

The fluorescence characteristics of visible FDOM C498

reported here is identical to “C1” described on the Greenland
Shelf outside of Young Sound by Gonçalves-Araujo et al.
(2016) (Tucker’s congruence coefficient Em/Ex = 0.96/0.97),
who also linked this signal to organic matter in Polar water.
The intensity of C498 found on the Greenland Shelf (0–300 m)
in September ranged from 0 nm−1 to 0.1 nm−1 and is thus not
higher than our measurements within the subsurface water in
Young Sound in September (range: 0.09–0.16 nm−1, avg.:
0.12 � 0.02 nm−1, n = 30). This suggests that Polar water is
not the only source of the high visible fluorescence signal
associated with waters in the depth range of 20–40 m, but
rather local biological productivity. It seems that autochtho-
nously produced visible wavelength FDOM is indistinguish-
able from the allochthonous component of terrestrial FDOM
in Polar waters found in the East Greenland Shelf. Thus, the
visible wavelength components identified from EEMs cannot
serve as a conservative tracer of DOM alone as suggested by
Gonçalves-Araujo et al. (2016). Our results indicate that local
microbial productivity contributes to altering the signal and
thus although behaving conservatively during its passage
across the Arctic, microbial productivity at coastal sites stimu-
lates both the production and degradation of visible FDOM.

Biological production of visible wavelength FDOM
In the fjord, the intensity of the visible wavelength fluores-

cence signals correlated positively to Chl a and HNF : Bac in
summer and positively to salinity in autumn (Fig. 7; Table 1).
This seasonal change may best be explained by the change in
biological activity; in summer, high-primary production, bac-
terial growth, and high-grazing rates results in an accumula-
tion of visible wavelength FDOM in the subsurface fjord
water. When biological processes were low in autumn, the
hydrographical distribution of visible FDOM became more
obvious as indicated by the strong positive relationship
between salinity and visible FDOM in this period (Table 1).
Our experimental results during autumn (Exp. 3), together
with the previous work by Baña et al. (2014), suggest that that
the presence of grazers increases the production of visible
wavelength FDOM. We hypothesize that the reason for the
increase in Exp. 3 is that the bacterial growth was so low that

the production of visible fluorescence due to bacterial grazing
exceeded the bacterial consumption. Also, in Exp. 3, there
were more and larger bacteria (and thus even higher bacterial
biomass than suggested by just their numbers) than during
the summer experiments (Fig. 8A–C).

A link between UV FDOM and mesozooplankton
The UV FDOM signals have been linked to phytoplankton

abundance (e.g., Chl a) (Lønborg et al. 2014; Gonçalves-
Araujo et al. 2016) as well as to water mass mixing (Catalá
et al. 2016). In Young Sound, their variability was best
explained by productivity related parameters such as Chl
a and BP (Fig. 7; Table 1), although correlations with UV
FDOM were weaker than those of visible FDOM (Table 1). The
high production of UV FDOM associated with the presence of
mesozooplankton in the experiments (Fig. 9) was in agree-
ment with the in situ fluorescence intensities being highest in
the central fjord (Sta. 2 and 3), where maximum copepod
activity was recorded (Middelbo et al. 2018). When perform-
ing linear regression analysis between our UV FDOM intensity
and copepod biomass, fecal pellet production and egg produc-
tion published in Middelbo et al. (2018), we found a weak pos-
itive correlation between specific fecal pellet production and
C310 (r2 = 0.26, p = 0.03, n = 19), while there was a stronger
correlation when comparing to the community fecal pellet
production for both UV components (C340: r2 = 0.35,
p = 0.008, C310: r

2 = 0.34, p = 0.009). However, there was no
correlation of UV FDOM to copepod biomass, nor between
the visible fluorescent components and any copepod related
parameters. Although the correlations with copepod activity
were relatively weak, copepod activity relates better to the UV
fluorescence than to any other environmental parameter, and
we speculate that this is due to sloppy feeding, excretion and
leakage from fecal pellets as found in other studies (Poulet
et al. 1991; Møller et al. 2003; Urban-Rich et al. 2004; Møller
2007), and possibly, bacterial degradation of organic matter
associated with grazing. Our experimental work further dem-
onstrated that the pelagic pteropod L. helicina could have a
similar, or even stronger effects, on FDOM transformations as
well as NH4

+ production.

Bacterial consumption of visible wavelength FDOM
Visible wavelength FDOM decreased markedly in the fjord

from summer to autumn (Figs. 4, 6). The deepening of the
mixed layer caused by autumn storms can partly account for
the reduction in subsurface visible FDOM (Fig. 6). However, if
the autumn mixing were the only explanation, a correspond-
ing increase in visible FDOM at the surface (1 m) would be
expected, which was not the case. The decrease in visible
wavelength FDOM co-occurred with a net-increase in bacterial
abundance. This is seen as a negative correlation between
visible FDOM and bacterial abundance (Table 1) and indicates
a net uptake or transformation of visible fluorescent compo-
nents by bacteria. This is further supported by relatively
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higher subsurface bacterial production in the fjord (Sta. 1–3)
in summer when visible wavelength FDOM intensities were
high, compared to autumn. Moreover, the incubation experi-
ments demonstrated a decrease in visible FDOM when bacte-
rial growth was high in summer (Exp. 1 and 2). The
consumption of visible FDOM in these experiments is sup-
ported by a similar experiment from the Alaskan Arctic by
Sipler et al. (2017), where they found consumption (7%
within 4–6 d) of “humic-like” terrestrial-derived DOM.

As the change in FDOM in the “only bacteria treatment”
was similar to the change in treatments with larger organisms,
bacteria are likely the main decomposers of visible wavelength
DOM. Certain bacterial taxa, especially within the class Gam-
maproteobacteria, are commonly known to degrade a wide
range of different carbon sources, including high-molecular
weight terrestrial DOM (Sosa et al. 2015; Sipler et al. 2017),
and can occur at high concentrations in coastal environments.
Predominantly taxa from this class, such as Glaciecola spp.,
Balneatrix, and the SAR92 clade dominated the summer exper-
iments (Fig. 5) and were highly abundant in the fjord in July
(Table 2), and thus further supports our finding that Young
Sound residing bacterial community was able to degrade
humic-like visible wavelength FDOM. Interestingly, however,
we found that not all taxa belonging to Gammaproteobacteria
showed a positive correlation with visible wavelength FDOM.
Especially the order Oceanospirillales was more abundant in
autumn and correlated negatively to visible wavelength
FDOM as previously observed also in river DOM in Arctic
Alaska by Sipler et al. (2017) who further reported there to be
no influence of river DOM (positive or negative) on the bacte-
rial community down to the phylogenetic level of “order.” We
saw the same noncoherent tendency with OTUs belonging to
the same genus but having different correlation patterns,
i.e., most Glaciecola OTUs correlated positively with visible
wavelength FDOM, but few correlated negatively (Table 2).
Such different functional behavior between clades and strains
within the same genus calls for future work focusing on link-
ing bacterial function rather than diversity to DOM turnover.

Our study stresses that bacterial community composition
and functioning are central for the bioavailability of FDOM
and contradict the view that visible wavelength FDOM, in
general, is refractory to bacteria. Measurements of %BDOC
reveal that the subsurface fjord water had the lowest bioavail-
ability (5.3% � 1.8%; Paulsen et al. 2017) and it is tempting
to conclude that the low bioavailability is connected to the
high contribution of visible FDOM in this water mass. How-
ever, we here find a rapid planktonic transformation of visible
FDOM from subsurface fjord water during the summer period.
Though the loss of FDOM is not a quantitative measure of car-
bon remineralization, it can be used as a sensitive indicator of
DOM processing occurring at levels below the detection limits
of DOC measurements. We therefore speculate that the BDOC
method underestimates the in situ potential for degradation
of visible FDOM. This method relies on long-term incubations

and as a result an altered bacterial community composition
(Müller et al. 2018) and function, which as a consequence
likely reduces the ability to degrade visible FDOM. In contrast,
the method applied here has a bacterial community more rep-
resentative of natural conditions in the fjord and reveals their
potential to degrade visible FDOM. An underestimation of the
in situ carbon degradation by the BDOC method implies that
the significant amounts of BDOC in glacial runoff reported by
Hood et al. (2009), Fellman et al. (2010), and Lawson
et al. (2014), may, in fact, be negligible compared to the degra-
dation potential of the various autochthonous carbon sources
that are already present in the fjord.

Conclusions
The low visible FDOM signal of the glacial runoff indicated

that the rivers contributed to a seasonal dilution of DOM and
FDOM in the surface waters, whereas the more saline coastal
water (transported from the Arctic Ocean) had a higher con-
tent of visible FDOM. In this light, the NE Greenland fjord
systems are unique in the sense that the dominant source of
terrestrial organic matter comes from the marine end-member.
The high biological productivity period resulted in an elevated
visible FDOM signal in the fjord subsurface. The degradation
of visible FDOM appears to be linked to specific bacterial taxa
(Glaciecola spp., Balneatrix, and the SAR92 clade) and there is a
lack of coherency down to the order level suggesting that
clades and strains within the same genus may have different
functional behavior. Although bacteria are the major decom-
posers of FDOM, the dynamics of FDOM depends on grazing
at protozoan and metazooplankton levels.
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