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ABSTRACT

The seismic oceanography method is based on extracting and stacking the low-frequency acoustic energy

scattered by the ocean heterogeneity. However, a good understanding on how this acoustic wavefield is affected

by physical processes in the ocean is still lacking. In this work an acoustic waveform modeling and inversion

method is developed and applied to both synthetic and real data. In the synthetic example, the temperature field

is simulated as a homogeneous Gaussian isotropic random field with the Kolmogorov–Obukhov spectrum su-

perimposed on a background stratified ocean structure. The presented full waveform inversion method is based

on the ray-Born approximation. The synthetic seismograms computed using the ray-Born scattering method

closely match the seismograms produced with a more computationally expensive finite-difference method. The

efficient solution to the inverse problem is provided by the multiscale nonlinear inversion approach that is

specifically stable with respect to noise. Full waveform inversion tests are performed using both the stationary

and time-dependent sound speedmodels. These tests show that themethod provides a reliable reconstruction of

both the spatial sound speed variation and the theoretical spectrum due to fully developed turbulence. Finally,

the inversion approach is applied to real seismic reflection data to determine the heterogeneous sound speed

structure at the west Barents Sea continental margin in the northeast Atlantic. The obtainedmodel illustrates in

more detail the processes of diapycnal mixing near the continental slope.

1. Introduction

Wave propagation through random media has been

studied extensively (Chernov 1960; Rytov et al. 1989;

Ishimaru 1999; Sato et al. 2012). Specifically, the

scattering of sound in a fully developed turbulent flow

(thought of as a random medium) has been given at-

tention in a number of theoretical and experimental

studies (Tatarskii 1961; Monin and Yaglom 1971).

Understanding of the ocean turbulence phenomenon

and its role in the energy balance is one of the essential

problems of the ocean sciences. In physical oceanog-

raphy, many applications deal with spectral statistical

characteristics of the fluid velocity, temperature, and

acoustic wavefield (Thorpe and Brubaker 1983;

Goodman 1990; Seim 1995; Ross and Lueck 2003;

Lavery et al. 2003). These studies were focused on the

fine structure of the ocean (1023 to 1m) and utilized

acoustic frequencies in the range of 1–1000 kHz. A
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lower-frequency signal (about 75Hz) has been utilized

in the context of long-range horizontal sound propa-

gation and acoustic tomography to investigate the

effect of internal waves on acoustics using a forward-

scattering approximation (e.g., Colosi et al. 1999).

The method to study the ocean structure using back-

scattered low-frequency sound (1–100Hz) was first

demonstrated by Gonella andMichon (1988). Holbrook

et al. (2003) brought this method to a wider scientific

community. Based on the analysis of the acoustic re-

flectivity images, this method was found to be useful to

study internal waves (Holbrook and Fer 2005), eddies

(Biescas et al. 2008), turbulence (Holbrook et al. 2013),

and statistical parameters of the ocean flow (Buffett

et al. 2010) and is known as seismic oceanography. The

concept of this method is schematically shown in Fig. 1.

During the past two decades the seismic full waveform

inversion (FWI) became a promising procedure in

seismology and seismic exploration (Tarantola 1984;

Pratt et al. 1998; Virieux and Operto 2009; Fichtner

2011). Traditional migration methods provide location

of the reflectors whereas the FWI recovers the full ma-

terial parameters (such as sound speed or acoustic im-

pedance) from the data (Bleistein et al. 2013). The FWI

of multichannel seismic data has also been applied to

predict the 1D temperature–salinity structure of the

ocean (Wood et al. 2008; Kormann et al. 2011; Bornstein

et al. 2013). An essential part of the FWI consists of

solving the forward problem. Kormann et al. (2009)

suggested an accurate finite difference (FD) method

with special attention to accurate absorbing boundary

conditions. However, the low sound speed in water and

the artificial reflections put serious computational limi-

tations on the FD methods.

Despite the undoubted usefulness of the seismic

oceanography method, there are several other limita-

tions. First, interpretations such as wavenumber spectra

characterizing the ocean flow are often made using

scaled reflectivity (proportional to the gradient of

acoustic impedance) instead of parameter maps (e.g.,

temperature, sound speed). At the same time, assuming

that ocean flow can often be described as a stationary

random process, a derivative of this kind of process

sometimes cannot be defined (Monin and Yaglom

1971). Second, the ocean is not stationary on the time

scale of data acquisition, and this creates additional

complications (Vsemirnova et al. 2009). Finally, the

simplifying assumption of single scattering underlies

most of the migration techniques used to construct

reflectivity images.

In the first part of this study, we perform an observing

system simulation experiment (OSSE) to address these

questions. We analyze the synthetic low-frequency

acoustic wavefield perturbed in stochastic turbulent

flow. By ‘‘low frequency,’’ we mean that the acoustic

wavelength (102–103m) is larger or comparable to the

size of the ocean sound speed fluctuations and much

larger than the fluid particle displacement during

one source pulse (’1022m). We suggest an efficient

acoustic waveform modeling and inversion technique

that makes it possible to go beyond previous 1D ap-

proach (Wood et al. 2008; Kormann et al. 2011;

Bornstein et al. 2013) and produce 2D/3D models of

sound speed. In addition, we describe and use a flexible

random field simulation technique and apply it for

modeling ocean turbulence in space and time. This

technique ensures the recovery of accurate statistical

moments over the realizations and thus enables us to

FIG. 1. The concept of seismic oceanography method. The pulses of acoustic signal are

produced by a low-frequency pneumatic source (air-gun shots). The signal, scattered on

ocean sound speed heterogeneities, is recorded by a few-kilometer-long hydrophone array

(streamer). Both source and receivers are towed at shallow depth (about 10m) behind the

vessel while it moves at about 5 kt (1 kt 5 0.51m s21).
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study a time-averaged sensing of a medium such as in

seismic oceanography.

The single-scattering or Born approximation implies

that the model and data can be separated into a smooth

background sound speedmodel and a rapidly varying in-

space small perturbation of this model. In this case the

solution in the reference model can be used to linearize

the forward problem (e.g., Coates and Chapman 1990).

This approximation is assumed to be valid in the case of

seismic oceanography as the sound velocity perturba-

tion is generally not more than a few percent. We show

that the accuracy of this method, when applied to a

random fluid medium, gives results that are very similar

to those obtained using the FD methods. Thus, the

perturbation approach avoids computational limitations

in previous studies.

This paper is organized as follows. First, we describe a

method to create a 3D time-dependent stochastic model

of a temperature and sound speed field corresponding to

the Kolmogorov–Obukhov spectrum. After that we

describe the ray-Born scattering method to compute

synthetic seismograms for a given ocean sound speed

model. We present synthetic seismograms correspond-

ing to static and time-dependent ocean models. Then we

present FWI and imaging results corresponding to these

two modeling setups. The quality of the reconstructed

models is additionally assessed based on the energy

spectrum pattern. We show that the suggested FWI

method makes it possible to recover the Kolmogorov–

Obukhov’s law for both static and time-dependent

ocean models. Finally, we apply our waveform in-

version method to real seismic reflection data in the vi-

cinity of the western Barents Sea continental margin in

the northeast Atlantic.

2. Stochastic model of turbulence

The very large ranges of both time (1022–104s) and space

(103–1023m) scales of the turbulent motion put serious

limitations on the practical computations of ocean tur-

bulent flows based on direct solution of the Navier–

Stokes equation. Therefore, the numerical solutions are

usually difficult to obtain and may involve various types

of subgrid-scale parameterization such as used in large-

eddy simulation techniques (e.g., Sagaut 2006). In this

paper we use another simplified approach utilizing the

simulation of 3D time-dependent realizations of tem-

perature random field based on spectral statistical

characteristics of ocean turbulence.

Large-scale stochastic simulations of randomfields with

multiscale resolution (Sabelfeld 1991) have found appli-

cation in studies of turbulent flow (Kurbanmuradov 1997),

flow in porous media (Kolyukhin and Sabelfeld 2005),

large-scale density structure of the universe (Sabelfeld

2010), and other problems. In geoscience applications,

different simulation techniques are addressed, for in-

stance, in Christakos (2012). The spectral methods based

on the fast Fourier transform (FFT) seemingly became

the most popular (Holliger et al. 1993; Sato et al. 2012).

The method we present here includes a special treatment

for the sampling of the wavenumber intervals in order to

get physically consistent random realizations with accu-

rate statistics. In addition, our method is more flexible for

large simulations than FFT-based methods.

a. Spectral model of turbulent temperature

In this work we use the randomized spectral model

of the high Reynolds number pseudoturbulence de-

scribed in Kurbanmuradov (1997) and Sabelfeld and

Kurbanmuradov (1998). Kurbanmuradov (1997) as-

sumed that the velocity of incompressible turbulent flow

can be represented by a Gaussian homogeneous and

isotropic random field with the Kolmogorov–Obukhov

energy spectrum in the inertial subrange (Monin and

Yaglom 1971):

E(k)5

(
C

1
«2/3k25/3 if k 2 [k

0
,k

max
]

0 if k;[k
0
,k

max
],

(1)

where C1 is the universal constant in the Kolmogorov–

Obukhov’s law (C1’ 1.4) and k5 jkj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 1k2

2 1 k2
3

p
is

the wavenumber. The minimum and maximum wave-

numbers are defined as k0 5 2p/Lmax and kmax 5 2p/h,

respectively; Lmax is the external [O(102–103)m], and

h is the internal (millimeter scale) characteristic spatial

scale. The lower limit of the inertial subrange is estimated

as h5 (n3/«)1/4. Parameter « is the mean rate of dissipa-

tion of kinetic energy (typically 1026–10210Wkg21), and

n is the kinematic viscosity of the flow (about 1026m2 s21).

Previously, a similar approachwas employed inKraichnan

(1970) to study the diffusion of fluid particles by a random

velocity field.

Here, we adopt a similar method for modeling the

temperature and sound speed field in the case of turbu-

lent ocean flow. We consider the temperature fluctua-

tions dT(x, t) as a statistically homogeneous random field

with spectrum developed from the Kolmogorov similar-

ity hypotheses for high Reynolds (ratio of inertial to

viscous forces) and high Péclet (ratio of convective to

molecular processes of heat exchange) numbers (Monin

and Yaglom 1971):

E
T
(k)5

(
0:4C

T
N«1/3k25/3 if k 2 [k

0
,k

max
]

0 if k;[k
0
,k

max
],

(2)
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where CT is the universal constant in the temperature

spectrum (CT’ 2.7) andN is themean rate of dissipation

of the turbulent thermal variance (N ’ 1026 8C2 s21).

Also, we assume that the Prandtl number, which is a

dimensionless quantity that characterizes the ratio of

viscous diffusion rate to thermal diffusion rate, has an

order of unity as it most often happens (Monin and

Yaglom 1971).

Following Kurbanmuradov (1997), we assume that

the time evolution of the spectrum of the random tem-

perature field can be modeled using an exponential time

decorrelation function:

E
T
(k, t)5E

T
(k) exp(2a«1/3k2/3t) , (3)

where a is a dimensionless parameter characterizing the

temperature decorrelation in time. Using a 5 10 and

«5 1028Wkg21 in Eq. (3), we obtain a half-life time of

470 and 100 s for the temperature perturbation with a

size of 200 and 20m, respectively.

b. Numerical simulation technique

An efficient simulation of random fields is an impor-

tant problem in physical sciences, including geoscience.

Most methods are based on the representation of a

Gaussian isotropic random field by a stochastic Fourier

integral (Monin and Yaglom 1971; Kramer et al. 2007)

that can be written in the form

dT(x)5

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
E

T
(k)

q
W(k) exp(2ik � x) dk , (4)

where dT is a random field, x denotes spatial co-

ordinates, i 5
ffiffiffiffiffiffiffi
21

p
, k is the wavenumber vector, ET(k)

is the spectrum of the random field, W(k) is the ampli-

tude spectrum of white noise, and the bold font denotes

vectors.

There are various methods that discretize this integral

(Kramer et al. 2007). In this contribution we implement

the randomization method which estimates a random

realization of a stochastic process. We also compute

physically constrained wavenumber intervals to produce

random fields. The presented method ensures accurate

recovery of themean and correlation function (Kolyukhin

and Sabelfeld 2005).

The general technique for simulation of scalar real-

valued isotropic homogeneous Gaussian random field

with a given spectrum is described in Sabelfeld (1991).

We sample kj according to the probability density

function pj(k) defined as (Kurbanmuradov 1997):

p
j
(k)5

(
E

T
(k)/E

j
if k 2 D

j

0 if k;D
j

, and (5)

E
j
5

ð
Dj

E
T
(k) dk5

1

n
0

ð
D

E
T
(k) dk , (6)

where

D
j
5 [ ~k

j
, ~k

j11
), J5 1 . . . n

0
; ~k

1
5 k

0
, . . . , ~k

n011
5 k

max
,

D5<
n0

j51
D
j
.

The realizations of temperature random field with the

spectrum defined by Eq. (3) and zero mean can be

simulated by the formula

dT(x, t)5 �
n0

j51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

T
(k

j
, t)

q
[z

j
cos(u

j
)1h

j
sin(u

j
)], (8)

where n0 is the number of harmonics and z and h are

independent random variables with zero mean and unit

variance.

The phase component in Eq. (8) can be expressed as

u
j
5 k

j
V

j
� x1 ~v

j
t , (9)

where Vj is an independent three-dimensional random

isotropic unit vector.We obtain the ensemble of random

realizations by using the expression for the power

spectrum Eq. (3) in Eq. (8). We sample the random

numbers ~vj and kj by the formulas (Kurbanmuradov

1997)

~k
j11

5 [(12 j/n
0
)k22/3

0 1 j/n
0
k22/3
max ]

23/2 , (10)

k
j
5 ( ~k22/3

j 2 u2
0n

21
0 C21

1 «22/3g
1j
)23/2, and (11)

~v
j
5a«1/3k2/3

j tan[p(g
2j
2 1/2)] . (12)

Here g1j and g2j are mutually independent ran-

dom numbers uniformly distributed in [0, . . . , 1], and

u2
0 5 (2/3)

Ð
DE(k) dk, j 5 1, . . . , n0. Equations (10)–(12)

provide that the wavenumber k is sampled according to

the probability density function described by Eqs. (5)–

(7). Note that kj in the equation is linked to the flow

velocity spectrum. It is also important to mention that

the presented method is well suited for modeling vector

random fields such as turbulent flow velocity. In this

case, z and h in Eq. (8) will be random vectors.

We assume that the temperature perturbation is lin-

early related to the sound speed perturbation. For the

temperature to sound speed conversion, we use a co-

efficient derived from the Mackenzie (1981) equation,

ignoring second-order terms and pressure dependence:

dc(x)’ 4:6dT(x) . (13)
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3. Forward modeling of acoustic wavefield

In a general moving fluid, the acoustic wavefield must

be affected by both heterogeneities and flow velocity.

However, in most seismic oceanography applications,

the contribution of flow velocities on wave propagation

should be small. The phase shift due to ocean currents

can be estimated from (Ostashev and Wilson 2015)

DF’22pfRu
R
/c2 , (14)

where f is the frequency of the sound wave, R is the

distance from the source to the receiver, uR is the ocean

flow velocity, and c is sound speed. Substituting 20Hz

for frequency, 3 km for the propagation distance,

0.3m s21 for flow velocity, and 1500ms21 for sound

speed, we obtain a phase delay of about 0.05 rad or p/62

that can be neglected here. This effect may become

important in the case of high frequencies and strong

currents.

In this paper we simulate the wave propagation in the

turbulent sound speedmodel by linear acoustic equation

2c22(x)›2t u(x, t)1=2u(x, t)5 s(t)d(x2 x
s
) , (15)

where u(x, t) is the acoustic pressure that depends on the

position (x) and time (t), c(x) is the sound speed, s(t) is

the density of the point source at xs, and d is the Dirac

delta function (DeSanto 1992). Using that, the following

assumptions are made: (i) the flow velocities are small

when compared to the sound speed and (ii) the hetero-

geneous density has a small effect on wave propagation.

The turbulence model sound speed heterogeneities are

assumed to be ‘‘frozen’’ during the propagation time of

the acoustic pulse. For a more general treatment of

sound propagation in moving heterogeneous media, we

refer to Ostashev and Wilson (2015).

We solve Eq. (15) using two methods. The first

method is a time-domain FDmethod.We use an explicit

scheme with fourth-order accuracy in space and second-

order accuracy in time. The absorbing boundary condi-

tions are implemented using a sponge method (Cerjan

et al. 1985). The secondmethod is based on the ray-Born

approximation (Coates and Chapman 1990; �Cervený
2005) and explained below.

Ray-Born scattering method

The ray-Born approximation with application to for-

ward and inverse seismic modeling has been used and

discussed in more detail by Dahlen et al. (2000), Thierry

et al. (1999), Lambaré et al. (2003), Operto et al. (2003),

Moser (2012), and others. Here, we present just a gen-

eral outline of the theory and present our modeling

technique.

It is convenient to transform Eq. (15) to the frequency

domain. We adopt the following definition for the

Fourier transform pair:

f (v)5

ð
F(t) exp(ivt) dt, and (16)

F(t)5
1

2p

ð
f (v) exp(2ivt) dv , (17)

where v is the angular frequency. The wave equation

[Eq. (15)] in the frequency domain becomes the

Helmholtz equation:

v2c22(x)u(x,v)1=2u(x,v)5 s(x, x
s
,v). (18)

In seismic reflection imaging (Tarantola 1984), it is as-

sumed that the pressure wavefield can be approximated

by a sum of incident u0(x, v) (direct wave) and scattered

pressure wavefield du(x, v) (Bleistein et al. 2013). Sim-

ilarly, the sound speedmodel is represented by a smooth

background c0(x) and a weak perturbation dc(x):

c(x)5 c
0
(x)1 dc(x) . (19)

This gives rise to the first-order Born approximation as

an integral over the scattering volume (Clayton and

Stolt 1981; Hudson andHeritage 1981; Rytov et al. 1989;

Coates and Chapman 1990; �Cervený 2005; Symes 2008):

du(x
s
, x

r
,v)

5 2v2s(v)

ð
V

G
0
(x,v, x

s
)dc(x)c23

0 (x)G
0
(x,v, x

r
) dx,

(20)

where xr is the receiver location and G0(x, v, xs) and

G0(x, v, xr) are the source and the receiver Green’s

function in the background medium, respectively.

The Green’s function G0(x, v, xs) in 3D is

G
0
(x,v, x

s
)5R21

sx exp[ivT(x, x
s
)], (21)

where Rsx is the source to scatterer geometrical

spreading (which is the inverse of the distance in ho-

mogeneous background media) and T is the travel time

from x to xs (e.g., �Cervený 2005).

For the purpose of 2D synthetic modeling, it is useful

to derive the corresponding solution. A 2D Green’s

function for a smooth acoustic medium has the form

G
0
(x,v, x

s
)52(i/4)H

(2)
0 [vT(x, x

s
)], (22)

where H
(2)
0 is the zeroth-order Hankel function of the

second kind. Using asymptotic expression for the Hankel

function (DeSanto 1992), the asymptotic form of
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Green’s function [Eq. (22)] for large jxj is approxi-

mated by

G
0
(x,v, x

s
)52

i

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

0
(x)

pvR
sx

s
exp[ivT(x, x

s
)1 ip/4]. (23)

The receiver Green’s functions can be obtained by

analogy.

If the backgroundmodel is heterogeneous, we find the

geometrical spreading R and travel time T by ray trac-

ing. Ray paths for the acoustic waves emanating from a

source xs are found by solving the kinematic ray

equations

dx

dt
5 c20(x)p(t), and (24)

dp

dt
52

1

c
0
(x)(t)

=c
0
[x(t)] , (25)

with initial condition x(0) 5 xs and p(0) 5 p0 as the

initial takeoff direction. The independent parameter is

the travel time t along the ray and p is the slowness

vector. We assume that this path always exists and that it

is unique. There is therefore no multipathing and the

Maslov index is zero (�Cervený 2005).

The geometrical spreading R is computed by solving

the dynamic ray tracing equations:

d

dt

�
›x

›q
i

�
5 2c

�
›c

0

›x

��
›x

›q
i

�
p1 c20

›p

›q
i

, and (26)

d

dt

�
›p

›q
i

�
5 c22

0

�
›c

0

›x

›x

›q
i

�
2 c21

0

›2c
0

›x›x

›x

›q
i

, (27)

where qi (i 5 1, 2) are the takeoff angles. The geo-

metrical spreading R is now given by

R5
›x(t,q

1
,q

2
)

›(t, q
1
, q

2
)
. (28)

Thus, we can write the kernel of the integral Eq. (20) as

K(x
s
, x, x

r
,v)5 2v2s(v)G

0
(x,v, x

s
)G

0
(x,v, x

r
)c23

0 (x) .

(29)

It depends on the source and receiver locations,

scattering point, and frequency. A more general for-

mulation of the ray-Bornmethod including reflections at

the interfaces can be found in Dahlen et al. (2000).

Equations (20) and (29) in matrix form are0
B@

du
1

. . .

du
M

1
CA5

0
B@

K
11
. . . K

1N

. . .

K
M1

. . . K
MN

1
CA
0
B@

dc
1

. . .

dc
N

1
CA . (30)

Here, Kij represents a single-frequency kernel for the

source–receiver pair i and the scattering volume j. The

seismograms for the scattered wavefield are obtained

after repeating the matrix multiplication up to the

highest cutoff frequency and taking the inverse Fourier

transform for each seismogram (source–receiver pair).

The numerical implementation of ray tracing is done

using a fourth-orderRunge–Kuttamethod.We interpolate

travel times and amplitudes along the ray paths into the

grid nodes x. The interpolation is performed using De-

launay triangulation. This process is repeated for each

source and receiver in themodel. The integral inEq. (20) is

replaced by summation over all scattering volumes. The

single scatterer is approximated by a blockwith volume dx.

4. Waveform inversion method

In this section, we discuss the inverse problem: how

can one reconstruct the sound speed dc given acoustic

data scattered by ocean heterogeneities? We formulate

the acoustic waveform inversion as a nonlinear least

squares problem. Suppose we have a collection of seis-

mic traces d, given at a discrete number of sources s,

receivers r, and frequencies v. A least squares estimate

for dc is obtained by minimizing the functional

x(dc)5 �
s,r,v

[d(s, r,v)2 du(s, r,v)]2

5 �
s,r,v

[d(s, r,v)2K(s, r,v)dc]2. (31)

Here, the summation is over all sources, receivers, and

frequencies. Let m be a vector of dc estimates. We

search formwhich minimizes the misfit functional x(dc)

using a variant of regularized Newton’s optimization

(Aster et al. 2011; Fichtner 2011):

m
n11

5m
n
1Dm

n
, (32)

where the descent directionDm at iteration n is found by

solving the least squares problem linearized by the Born

approximation:

min

����
�

K

b2I

�
Dm

n
2

�
d2 u

n

0

�����
2

. (33)

where K is the waveform sensitivity kernel [Eq. (29)]

written as a matrix, un is the ray-Born synthetic wavefield

computed at iteration n, d is the data vector, and b is the

damping coefficient that determines the relative impor-

tance of the data misfit and (L2) solution norm. This

regularization results in a spatially smoothed solution.

We solve the underdetermined problem Eq. (33) us-

ing the iterative LSQR method (Paige and Saunders
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1982). We choose the regularization parameter b that

gives the lowest data misfit. Solving the problem in

Eq. (33), we obtain the descent direction Dmn. We

select a frequency range of the data perturbation

d(s, r, v) 2 du(s, r, v) and sensitivity kernel K(s, r, v)

at iteration n. The travel times and geometrical

spreading at the scattering points are computed by ray

tracing in the background model [Eqs. (24)–(28)] and

used for all iterations in the sensitivity matrix and to ob-

tain data residuals. At each iteration we use Eq. (20) to

produce synthetic data and then transform it to the time

domain to obtain data residuals. This significantly reduces

the computation costs of forward modeling. Starting with

the lowest frequency, we sequentially include higher fre-

quencies into the minimization process. This multiscale

approach helps to guide the iterative inversion toward the

global minimum as explained in Fichtner (2011).

We assume that the background sound speed model is

smooth enough to avoid multipathing in the ray tracing.

This is reasonable, as in our case the background model

is 1D with only a slight variation in sound speed. If

multipathing takes place in the background model, it

still can be possible to apply our inversion algorithm, but

the forward problem has to be solved by an extension of

ray-Born to include multipathing (which may be called

beam-Born) or by a completely numerical method (e.g.,

finite differences). An example of this approach when

applied to seismic data is shown by Tengesdal et al.

(2014). It is also possible to include additional acoustic

phases (such as multiple reflections) by a linear combi-

nation of corresponding sensitivity kernels (Dahlen

et al. 2000).

It can be shown that setting the derivative of the ob-

jective function to zero, =cx(dc) 5 0, and ignoring

second-order terms results in the normal equation

(Tarantola 1984; Symes 2008)

KyKDm
n
5Kyd , (34)

where Ky is the adjoint of K.

According to the classical imaging condition

(Claerbout 1971), the reflector location Dm* can be

obtained by correlation of forward-propagated wave-

field from the source location and backward-propagated

wavefield from the receiver location. Using Eq. (29) and

under some general conditions, this leads to

Dm*5lKyd , (35)

where l is a scaling coefficient. It is possible to see that

Eq. (35) is equivalent to Eq. (34). The squarematrixKyK
is the approximate Hessian, which contains scaling fac-

tors that correct for illumination and geometrical

spreading. To find the scaling coefficients, we further

approximate the Hessian matrix by its diagonal terms

and invert it to find l. In the next section, we will use

Eqs. (32) and (33) to reconstruct the sound speed vari-

ations associated with the turbulence temperature

model [Eq. (8)]. In addition, we will use the imaging

equation [Eq. (35)] to recover the reflectivity.

5. Results of synthetic modeling

a. Parameters of the temperature and sound speed
model

The sound speedmodel shown in Fig. 2 consists of a 1D

layered model on which the perturbation due to the iso-

tropic turbulence is superimposed. The background

model is representative for the North Atlantic region as

determined by hydrographic transects described in

Walczowski (2014). This is a standard sound speed profile

characterized by the main thermocline at a depth of 200–

1000m overlain by a near-surface mixed layer (Ewing

and Worzel 1948; Jensen et al. 2011). The model size is

3000m 3 1000m. The grid spacing is 10m. We use the

parameters to describe the turbulence model as pro-

vided by Goodman (1990). The kinematic viscosity n is

1027m2 s21 and the average kinetic energy dissipation is

« 5 1028Wkg21. The maximum and minimum wave-

numbers that describe the turbulent flow in themodel are

1.1 3 104 and 0.013 cpm, respectively. The Reynolds

number is written as Re 5 (kmax/k0)
4/3, so that in our

simulation Re5 0.853 108. The mean rate of dissipation

of the turbulent thermal variance N 5 1026 8C2 s21.

Klymak and Moum (2007) reported on the measure-

ments of temperature spectra and showed that the tur-

bulence subrange of isopycnal slope spectra can extend to

horizontal wavelengths of hundreds of meters. Based on

FIG. 2. Synthetic sound speedmodel. (a) Themodel is composed

of the random sound speed field due to the turbulence model su-

perimposed on a laterally homogeneous background sound speed

model. The shot location is shown by triangles and the receiver

array (streamer) is shown by dots. The receivers outside the model

are not used. Therefore, the number of receivers per shot decreases

with the shot point number (SP). The left side of the model is

poorly covered by rays since the receivers are located to the right of

the source point. (b) Background sound speed profile.
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their observations, we assume Lmax 5 500m. The dimen-

sionless parameter a characterizing the temperature decor-

relation in time is chosen to be a 5 10. We use n0 5 2000

harmonics to produce random realizations. We convert

temperature fluctuations to sound speed with Eq. (13).

b. Synthetic seismograms

In this section we present synthetic seismograms

computed using the ocean sound speed model described

above. The method presented in section 3 is formulated

for 3D geometry. However, it is applied to seismic

oceanography data, which are usually acquired in along

transects. We consider relatively short-range propaga-

tion (1–3-km scale) and deep water.

We compute synthetic waveforms using both the ray-

Born scattering method and the FD method. The grid-

cell size for the simulation of wave propagation is 10m.

We use a Ricker wavelet with the peak frequency of

10Hz to produce seismograms. The data are presented

for a single shot (SP 65 in Fig. 2). The maximum source–

receiver distance is 2500m, whereas the receivers are

separated by a 12.5-m interval.

In Fig. 3a we present synthetic seismograms for the first

realization of the turbulence model (shown in Fig. 2). To

compare the 2D FD with the ray-Born solution, we use

Green’s function of Eq. (23) in Eq. (20). The FD am-

plitudes were normalized to match the maximum am-

plitude found using the dynamic ray tracing. We use a

single scaling coefficient for all traces. The resulting

seismograms computed using the two methods match

well. There is no apparent phase misfit. The relative

RMS amplitudemisfit is about 3%.Most of the acoustic

energy is observed within 1–1.5 s after the arrival time

of the direct wave. The close fit of the FD and ray-Born

solutions within this time interval indicates that the

multiple scattering has a small effect on the acoustic

wavefield in our model. However, the effect of multiple

scattering can be important for weak later arrivals. This

also suggests that the ray-Born scattering method can

be used for full waveform modeling and inversion.

The ocean flow velocity is small when compared to the

sound velocity. However, during the period of data

collection over the same scattering volume (102–103 s),

the ocean structure produced by internal waves and

turbulence may change significantly (Vsemirnova et al.

2009). In the Eulerian reference frame, a scattering

point would be characterized by the changing with time

the scattering radiation strength. To show how this can

affect the acoustic wavefield, in Fig. 3b we present syn-

thetic seismograms computed for the moving ocean

model. We update the turbulence model every 12.5 s

using the spatial–temporal spectrum of Eq. (3). The

modeling geometry is the same as in the previous ex-

ample. Thus, the difference in the recorded wavefield

reflects the change of the scattering strength during the

period of data acquisition (120 shots or about 1500 s in

the presented model). In Fig. 3b we observe both am-

plitude and phase misfit accumulated during 65 shots.

c. Full waveform inversion results

For the synthetic modeling we use 2D FD acoustic

waveform data that we invert with the 2D ray-Born FWI

FIG. 3. Synthetic seismograms (SP65). (a) Finite-difference (black) and ray-Born scattering pressure waveforms

(red). The direct wave has been removed. (b) Acoustic waveforms corresponding to the static (red) and dynamic

sound speed model (black).
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method. To generate synthetic data we use the acquisi-

tion geometry similar to what is employed during ac-

quisition of multichannel seismic reflection data. We

produce acoustic waveforms with a 10-Hz Ricker

wavelet. The gridcell size for simulations is 10m. Ab-

sorbing boundary conditions are applied at the bound-

aries to avoid artificial reflections. The interval for

sources is 25m, and receivers are located with a 12.5-m

interval. We use an array of receivers with themaximum

length of 3000m moving to the left in Fig. 2. The active

length of the receiver array is limited by the model

width. Therefore, the number of receivers per shot re-

duces from the left to right in Fig. 2. The sound speed

model is fixed during the shot time. The model for in-

version is parameterized with block scatterers of 10 3
10m size (Fig. 4). Since both the seismic data and

background sound speed model (generally not a 1D

model) are normally defined in space coordinates, we

have chosen a pixel parameterization. However, repre-

sentation of the sound speed model in terms of Fourier

series might have had some advantages (e.g., the num-

ber of harmonics is substantially smaller than the num-

ber of grid points). The sound speed perturbation varies

from about 21.5 to 1.5m s21 in accordance with the

turbulence temperature model. The background model

is not shown to make the sound speed variation visible.

In our model, the upper 200m represents the oceanic

mixed layer where the temperature is assumed to be

nearly uniform, and therefore, the sound speed is fixed.

In real data applications, it will be important to include

coincident oceanographic data to constrain the model in

the vicinity of sources and receivers.

We implement numerically the FWI algorithm using

Eqs. (32) and (33). The multiscale frequency-domain

inversion approach is similar to that by Pratt et al.

(1998). The inversion of the acoustic wavefield consists

of a number of iterations. At each iteration, we solve the

problem [Eq. (33)] for a single frequency. Similarly, we

proceed from the low to high frequencies in such a way

that we update the initial model, produce synthetic data,

and use the data residual for the next iteration. In the

presented examples, the frequency range is between 2

and 20Hz. We find the data residuals subtract (in the

time domain) the ray-Born synthetics corresponding to

the inverted sound speed model at given iteration (fre-

quency) from the initial FD data. We obtain the com-

ponents of the sensitivity matrix Eq. (29) using the

background sound speed model. We make use of the

amplitude and phase components of Green’s solution in

Eq. (23), found using the dynamic ray tracing, throughout

the inversion process. The oceanographic observa-

tions suggest that, on a scale of several kilometers, the

background (reference) structure can be accurately

modeled using a 1D sound speed distribution with

depth. The knowledge of the background model sig-

nificantly improves the inversion results, but the lack of

this information is not a serious limitation (as shown in

supplemental material).

1) STATIONARY MODEL OF SOUND SPEED

The sound speed model, shown in Figs. 2 and 4a, was

used to produce synthetic data. This realization corre-

sponds to the last time step of the stochastic turbulence

model. In the inverted model (Fig. 4b), both the loca-

tions and the shape of the anomalies are well recovered.

The magnitude of the anomalies gets slightly smeared

with depth because of the natural resolution of the data

acquired at the surface. This can also be seen in the

difference plot (Fig. 4c). The features with a size of 50m

or more are well resolved. Smaller-scale structures are

not well recovered (especially toward the lower and side

boundaries of the model).

The initial misfit is reduced more than 4 times after

about 40 iterations when the background model is

known exactly. The total misfit reduction is about 2

times smaller in the case when we know only the mean

FIG. 4. Full waveform inversion results. (a) Input (true) sound

speed perturbation model. Background model is not shown in the

figure. (b) Inverted model using the full waveform inversion

method. (c) Difference between the true and recovered sound

speed perturbations. The model is best recovered in the upper

central region. The largest difference is located at the sides (es-

pecially at the left side) and the lower boundary of themodel where

the ray coverage is poor (cf. with the acquisition geometry in

Fig. 2).
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value of the sound speed (see supplemental material for

additional tests with uniform reference model and dif-

ferent source–receiver geometry). The model in Fig. 4b

reproduces data to the modeling accuracy [the total

misfit defined by Eq. (33)]. To additionally assess the

distribution of the data fit, we plot the difference be-

tween the reconstructed and input FD waveforms

(Fig. 5). Thewaveformsmatch well within about 1 s after

the arrival time of the direct wave. The final misfit in-

creases at a later time. This effect is probably caused by a

combination of uncertainties of forward modeling (such

as multiple scattering, side reflections, and others) and a

limited model resolution at the bottom and toward the

sides of the model.

We estimate the mean energy spectrum in the ver-

tical (depth) direction using the recovered sound

speed model and reflectivity images. These types of

spectral plots should help to recognize small-scale

perturbations in the oceans and distinguish them

from noise in the data. The energy spectrum is esti-

mated using an averaged vertical periodogram. Apart

from the region of high wavenumbers, the spectrum for

the inversion matches the spectrum estimated using

the input model (Fig. 6). The theoretical turbulence

spectrum in the inertial subrange (25/3 law) is well

recovered. The recovered spectrum is lower than the

theoretical one above the wavenumber of 0.1 cpm be-

cause of the regularization of the least squares solu-

tion. This produces a smoother sound speed model

than the true model. Both the inversion with a 1D

reference and constant reference model (see also

supplemental material) recover the Kolmogorov–

Obukhov spectrum for the intermediate to low wave-

numbers. For the reference, we also plot the energy

spectrum estimated using the scaled reflectivity image.

The imaging recovers a much shorter interval of the

theoretical spectrum than FWI, and only near the high

wavenumber limit.

2) MODEL RESOLUTION

The spatial resolution of linearized waveform in-

version depends on the frequency, source–receiver ap-

erture, and background sound speed at the scattering

point. Resolution can be characterized by themagnitude

of the scattering wavenumber vector (Virieux and

Operto 2009):

k
SR

5
v

pc
0

cos

�
u

2

�
n , (36)

where u is the scattering or aperture angle and n is a unit

vector in the direction of ks 1 kr; ks, kr are propagation

directions of rays from the source and receiver to the

scattering point. The maximum wavenumbers (smallest

features) are resolved for normal-incidence reflections

FIG. 5. Themisfit between reconstructed and input finite-difference

waveforms (shot point SP65) corresponding to the sound speedmodel

in Fig. 4b. Region 1 is where the input and reconstructed waveforms

match well. Region 2 is where the final misfit increases because of

a combination of limitedmodel resolution and uncertainties related to

forward modeling.

FIG. 6. Sound speed energy spectrum estimated in the depth

direction. Shown are the Kolmogorov–Obukhov spectrum (solid

line), true input sound speed model (dashed line), full waveform

inversion results in the static model (circles), full waveform in-

version results in the time-dependent model (crosses), and imaging

by prestack depth migration (squares).
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(u 5 0). Therefore, in our applications it should be

possible to resolve a sound speed perturbation of 37.5m

(half of the acoustic wavelength) using 20-Hz acoustic

waves in the inversion.

To assess the resolution in different regions of the

model, we have performed several tests with a point

perturbation. We invert a single point perturbation

(10m3 10m) of11m s21 at the depth of 500m and the

profile distance of 750 and 1500m (Figs. 7a–d). In addi-

tion, we constructed a point spread function (Figs. 7e,f)

that is based on an asymptotic representation of the

Hessian matrix (Lecomte 2008). The point spread func-

tion can be expressed as

PSF(x, x0,v)5

�����
s,r
exp[iv=T(x, x

s
, x

r
) � (x0 2 x)]

����, (37)

where T(x, xs, xr)5 T(x, xs)1 T(x, xr); x
0 is the location

of the point perturbation. We estimated the Hessian at

the frequency of 10Hz.

The recovered point perturbation (Figs. 7c,d) is

characterized by side rings and side lobes (in the vertical

direction). The size of the recovered sound speed

anomaly is about 100m in the vertical direction (in-

cluding the upper and lower negative lobes) and about

25m in the horizontal direction. The point spread is

associated with the small amplitude of the recovered

perturbation when compared to the input model. The

recovered perturbation is symmetric in the center of the

model (Fig. 7c) while it is inclined at the left side of

model (Fig. 7d). This indicates a better spatial resolution

in the center. The larger tradeoffs, associated with the

sound speed structure in the vicinity of the imaging point

FIG. 7. Resolution tests. A recovery of the 10m 3 10m point perturbation of sound speed (11m s21) by the

waveform inversion from the (left) model center and (right) left side of the model. (a),(b) Input point perturbation;

(c),(d) model recovery by inversion; and (e),(f) point spread function. The recovered magnitude of sound speed is

reduced because of spreading of the input anomaly and development side lobes (in the vertical direction). The test

shows a larger smearing and asymmetry of the reconstructed perturbation caused by poor ray coverage at the side of

the model.
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at the side of model in comparison with the model

center, are also clear from Figs. 7e,f.

3) NONSTATIONARY MODEL OF SOUND SPEED

We proceed with application of our FWI algorithm

to a time-dependent ocean model. First, we produce

synthetic FD data in such a way that the sound speed

model is modified at every shot time. The time evolution

of the model is controlled by the time decorrelation

function in Eq. (3). The ray-Born FWI setup includes the

same parameters as in the static case. We assume that

the 1D reference model is fixed.

Figures 8a and 8b show random realizations of the

turbulencemodel at 300 and 800 s. Themeanmodel over

120 realizations is shown in Fig. 8c. We observe that

the realizations are not completely decorrelated, and the

mean model is representative for the ensemble. The

averaging over realizations acts as a low-pass filter ap-

plied to the model. The results of the waveform in-

version [Eqs. (32) and (33)] and depth imaging [Eq. (35)]

are presented in Figs. 9a and 9b. A conventional seismic-

oceanography image is obtained using normal move-out

correction and stacking of common midpoint seismo-

grams. The corresponding image of sound speed is

presented in Fig. 9c.

The inversion process is stable and the misfit re-

duction proceeds to iteration 40. At the higher fre-

quencies (.20Hz) the inversion starts diverging due to

high nonlinearity. We halt iterations at this point. The

inverted model (Fig. 9a) contains a general pattern of

the sound speed perturbation close to the time-averaged

model (Fig. 8c). The imaging produces a more hori-

zontally oriented pattern and has a problem to recover

near-vertical or isometric structures (Figs. 9b,c). The

energy spectrum (Fig. 6) computed using the inverted

model shows that, even in this case, the Kolmogorov–

Obukhov slope is recovered well except for the high

wavenumbers (similarly to the static case). The wave-

numbers smaller than 0.07 cpm (structures larger than

100m) are well recovered (in the statistical sense).

A nonstationary ocean model implies significant dis-

tortion of the waveforms (Fig. 3b) that is characterized

by both phase shifts and amplitude changes. The effi-

cient stable solution to this problem is provided by our

multiscale nonlinear inversion approach. The conver-

gence is achieved by extracting first the large-scale co-

herent characteristics of the medium and gradually

introducing more details. This makes our approach

specifically stable with respect to noise.

4) OCEAN STRATIFICATION

The structure of ocean turbulence is reported to be

anisotropic in such a way that the vertical length scale is

smaller than the horizontal length scale (e.g., Thorpe

2007). However, the degree and amount of anisotropy is

not well constrained and would require additional

FIG. 8. Realizations of the turbulence model (sound speed field):

elapsed time of (a) 300 s and (b) 800 s, and (c) the model averaged

over all time realizations (1500 s).
FIG. 9. Reconstruction in the time-dependent ocean model:

(a) full waveform inversion results, (b) imaging using prestack

depth migration, and (c) imaging by stacking common-mid-point

seismograms corrected for normal move-out.
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complications in the stochastic modeling. Therefore, we

leave the theoretical investigation of anisotropy for fu-

ture studies. However, anisotropic effects have been

shown to be important in the context of long-range

sound propagation and acoustic tomography (Flatte and

Colosi 2008). In particular, the horizontal correlation

length of sound speed perturbations induced by internal

waves can be one to two orders of magnitude larger than

the vertical length.

The ocean stratified sound speed structure is

addressed in our calculations by incorporating positive

and negative slab-like sound speed anomalies super-

imposed on the isotropic turbulence structure (Fig. 10a).

The slabs are characterized by sharp boundaries and a

2–3 times larger magnitude than the turbulence pertur-

bations (65ms21) and thus dominate in the seismic

signal. Despite these complications, the sound speed

model is well reconstructed with our waveform in-

version method (Fig. 10b). In Fig. 10c, the imaging by

stacking common midpoint seismograms corrected for

normal move-out is applied on the synthetic waveform

data. The boundaries of stratified layers are well re-

covered while the turbulence structure is missing in the

image. Thus, waveform inversion must be performed on

real data in order to obtain information about diapycnal

mixing in the ocean. Moreover, state-of-the-art acqui-

sition instrumentation employed by commercial explo-

ration seismics should provide sufficient data quality for

further implementation of the proposed method on real

data. Our test example is provided in the next section.

6. Real data example

The described FWI method has been applied to seis-

mic oceanography data from the western Barents Sea

continental margin, off Bear Island in the northeast

Atlantic Ocean. A multichannel seismic reflection pro-

file was acquired by the University of Bergen along a

mainly west–east direction (close to 758N) in September

2006 (Libak et al. 2012, 2013), suborthogonal to the di-

rection of the West Spitsbergen Current.

A 3000-m-long digital 240-channel seismic streamer

was towed at 5m depth while the recording hydrophone

group length was 12.5m. The acoustic source consisted

of a tuned air-gun array (five Bolt air guns) with a total

volume of 1406 cubic inches and a peak frequency of

around 10Hz. The shots were fired every 50m at a depth

of 6m. The data processing included removal of noisy

traces, bandpass filtering, and f–k filtering to remove the

direct wave and coherent noise due to bubble pulses.

The main thermocline that separates warm, less dense

Atlantic waters above from cold and denser waters be-

low is marked by an increased reflectivity between 200

and 1000ms in Fig. 11. The reflectivity pattern changes

approaching the continental slope. The highly reflective

zone becomes wider and more irregular. The upward

concave reflectors crossing the ocean stratification can

be interpreted as fronts of internal waves. We interpret

FIG. 10. Reconstructed model of sound speed containing tur-

bulent structure superimposed on stratified perturbations. The

magnitude of the slab anomalies is 65m s21. (a) The input model,

(b) the full waveform inversion results, and (c) reconstruction done

by stacking common midpoint seismograms corrected for normal

move-out.
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the more transparent areas adjacent to the internal wave

fronts as zones of intense turbulent mixing.

For the real data inversion, we used 3D Green func-

tions [Eq. (21)]. However, the inversion was limited to a

vertical 2D plane that contained the source and receiver

locations. This ignores 3D side-scattering effects. How-

ever, these are likely to be small as the air-gun array that

was employed is the one that is typically used in 2D

seismic data acquisition and that emits most energy in

the in-plane direction (i.e., the plane that contains the

receivers) and much less to the sides.

We have performed the waveform inversion on the

processed seismic data using 40 frequencies in the range

of 3–15Hz targeting the area that is presumably affected

by turbulent flow (Fig. 11). We used a 10-Hz Ricker

wavelet as an acoustic source time function. The am-

plitudes of observed waveforms were scaled by the

maximum amplitude obtained from dynamic ray trac-

ing. The background temperature–sound speed struc-

ture was derived from CTD measurements performed

along a nearby hydrographic transect in the same year

(Walczowski 2014). The target area covers the depth

interval of 200–1000m corresponding to the main ther-

mocline. The imaging of the upper 200m of the ocean

including the mixed layer would require an accurate

separation of nearly horizontally scattered waves from

the direct wave. In our application we assume a laterally

homogeneous temperature and sound speed in the

mixed layer.

We apply both the waveform inversion and imaging

methods (discussed in the synthetic examples in section

5). They are shown to be complementary to invert

seismic reflection data for the detailed sound speed

structure. Taking into account that the scattered signal is

very subtle and can be heavily affected by noise, it is

important to compare inversion results based on dif-

ferent methods.

The sound speed perturbation obtained with respect

to the 1D reference model using the FWI is shown in

Fig. 12a. Subvertical upward concave structures can be

observed below a reflector at about 250m. At the depth

of 250–800m, isometric positive and negative sound

speed anomalies with a diameter of 200–400m are re-

solved. The coincident point measurements of the sound

speed would be required to convert our sound speed

perturbations to absolute values.

The contours of sound speed anomalies obtained us-

ing the FWI are consistent with our imaging results. The

reflectors form at sharp gradients of the sound speed.

The most prominent reflectors are located at about 250,

400–500, and 600m depth (Figs. 12b,c). These are in-

terpreted as internal wave fronts or large eddies (profile

distance 240–255 km in Fig. 11). The turbulence-

dominated region is sandwiched between the reflectors

at 250 and 600m depth (Figs. 11, 12).

We estimated the power spectral density of the sound

speed perturbation (in the z direction) using an aver-

aged periodogram (Fig. 13). The computed spectrum is

FIG. 11. The stacked multichannel reflection seismic data near the western Barents Sea continental slope in the

northeast Atlantic Ocean (Libak et al. 2012, 2013).
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compared with the theoretical turbulence spectrum.

For comparison, we plot the power spectrum with the

exponent 22 that approximates the empirical internal

wave spectrum. The decay of spectral amplitudes with

wavenumber follows the Kolmogorov–Obukhov law

below 0.07 cpm (Fig. 13), similarly to our synthetic re-

sults. This implies a maximum sound speed perturba-

tion of about 1–2m s21. The spectral pattern indicates

that the ocean flow in the study area is probably af-

fected by both turbulence and internal waves. The next

step toward more accurate inversion results should be

the implementation of a more detailed background

model of sound speed that would include internal

waves and other larger-scale features. This, however,

will require additional oceanographic data and/or

acoustic travel-time tomography to constrain the sound

speed since the large-scale features ($500m) would

require very low frequencies (#3Hz) and/or a large

source–receiver aperture to be resolved by waveform

tomography.

7. Discussion and future perspectives

The study and detection of turbulence is essential to

understand the transport and dissipation of energy in the

ocean. Here, we simulate the temperature field in an

evolved turbulent ocean flow using a stochastic numer-

ical model. Our ocean turbulence temperature model is

developed based on the model of isotropic incompress-

ible turbulent flow by Sabelfeld and Kurbanmuradov

(1998). The random field simulation technique allows us

to compute the time-dependent temperature field (Fig. 8)

based on a spatial–temporal spectral tensor proposed

in Kurbanmuradov (1997). The suggested randomiza-

tion technique can accurately recover the mean over

the ensemble. This makes the technique attractive to

study the observations dealing with time-averaged in-

formation such as sampling the fluid heterogeneity with

low-frequency sound.

Our numerical analysis addresses the limits of the

single scattering assumption to study the ocean sound

speed heterogeneity by comparisonwith a full numerical

simulation (Fig. 3).We first compute random realization

for the fully developed turbulent flow in the ocean.After

that we compute theoretical seismograms using both an

FIG. 12. A detailedmodel of the ocean sound speed based on real

seismic oceanography data. The reference 1D sound speed profile

is shown in Fig. 2. (a) Full waveform inversion results using nor-

malized waveforms. The positive and negative sound speed

anomalies correspond to the red and blue regions, respectively.

The maximum absolute value based on ray-tracing amplitudes is

about 1.5m s21. (b) Imaging using prestack depth migration.

(c) Imaging by stacking common midpoint seismograms corrected

for normal move-out. The ‘‘T’’ and ‘‘IW’’ labels denote the regions

characterized by the presence of turbulence and internal waves,

respectively.

FIG. 13. The power spectral density estimated using the sound

speed model obtained from the full waveform inversion applied to

real seismic reflection data (black curve). The Kolmogorov–

Obukhov and internal wave spectra are shown by the red solid

and dashed lines, respectively.
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FD and an approximate ray-Born method. We confirm

that a low-cost ray-Born scattering method is accurate

enough to model and predict the isotropic turbulence

structure at the source–receiver offsets (1–3km) and

propagation times (0.2–1.5 s) characteristic for seismic

oceanography (Figs. 3, 5).

The energy spectrum estimated from the sound speed

models both for 1D and a homogeneous reference

model reproduces the energy spectrum of true model

and the theoretical Kolmogorov–Obukhov spectrum for

the wavenumbers 0.01–0.1 cpm (Fig. 6). The higher

wavenumbers are less well resolved because of limited

model resolution and spatial smoothing. The estimation

of the energy spectrum using imaging is only successful

for intermediate wavenumbers. Thus, we conclude that,

with respect to the spectral estimates, the FWI provides

better statistical estimates of the ocean heterogeneity

than imaging.

The imaging techniques based on migration of seismic

reflection data recover spatial derivatives of the model

parameters (Bleistein et al. 2013). In the frequency do-

main, the spectrum of the derivative can be expressed as

k2E(k). The condition upon which the derivative exists

is (Monin and Yaglom 1971)

ð‘
0

k2E(k) dk,‘ . (38)

The ocean flow is often described by a power-law function.

In our case, E(k) ; k25/3, which makes the integral in

Eq. (38) diverge.Thismeans that (in the least squares sense)

the spatial gradient sought by imaging techniques cannot

be defined. Thus, from the theoretical point of view, the

FWI is a more appropriate method to recover the charac-

teristics of the turbulent ocean flow than imaging. Our re-

sults showa limited recoveryof the sound speedmodelusing

the imaging and thus support this theoretical conclusion.

In this paper, we considered the temperature random

field described by the Kolmogorov–Obukhov spectrum.

This certainly is a simplified model that cannot describe

real large-scale flow. The experimental evaluation of the

energy spectrum shows that the Kolmogorov–Obukhov

power-law exponent25/3 holds only in some part of the

total range of wavenumber values. Nevertheless, we

believe that the present study proves the accuracy and

numerical efficiency of our method. Furthermore, the

proposed stochastic modeling method to simulate the

ocean temperature or sound speed fields can be ex-

tended to study more realistic flow models using other

spectral representations. For example, Goodman (1990)

considered an empirical anisotropic spectrum obtained

from oceanographic measurements. This one-dimensional

spectrum is represented by gluing together the functions of

wavenumbers with different power-law exponents in the

buoyancy-dominated, inertial, and Batchelor subranges, re-

spectively. The experimental measurements of ocean tem-

perature spectrum are presented, for example, in Gargett

(1985) and Van Haren and Gostiaux (2009). Energy and

temperature spectra of stably stratified turbulence were

studied inHolloway (1986) andKimura andHerring (2012).

For simplicity, we assumed that the acoustic scattering

is mainly affected by temperature and less by salinity

(density) variation. In the real ocean that is affected by

complex interactions of various physical processes, these

variations can be important (Sallarès et al. 2009). The
Arctic–northeast Atlantic waters are known for the sa-

linity inversion, such as a warmer and more saline water

layer occurs in the top of the ocean stratification

(Walczowski 2014). This situation is favorable for a

double-diffusive small-scale convection.

The density variation related to salinity changes has a

minimal impact on the sound speed. However, it may

affect amplitudes of backscattered acoustic waves. This

indicates that exploring the effects of density heteroge-

neities on the scattering amplitudes and waveform in-

version is a natural way forward. In this case, it is

straightforward to incorporate the corresponding den-

sity variations in the scattering integral Eq. (20) (Dahlen

et al. 2000). In addition, with the ray-Born formulation

of the forward problem, it is possible to tackle a multi-

parameter inversion through a Monte Carlo inversion

approach such as in Cordua et al. (2012).

8. Conclusions

We develop a stochastic time-dependent model of

the ocean turbulent temperature field based on the

spectral model of isotropic incompressible flow.We use

this model to produce 2D synthetic acoustic data sim-

ilar to those employed in seismic exploration. We show

that a migration technique commonly used in seismic

oceanography may fail to recover a random field,

characterized by a power-law function of wave-

numbers, such as in the case of ocean turbulence. To

avoid this limitation, we present a method for full

seismic waveform inversion incorporating a ray-Born

method and use it to predict temperature structure due

to turbulence. We develop and apply the acoustic

waveform inversion linearized with the Born approxi-

mation to study the ocean heterogeneity. The ray-Born

scattering method was evaluated to yield sufficiently

accurate forward modeling and full waveform in-

version results at a low cost relative to the finite

difference method when applied to seismic oceanog-

raphy data. The presented inversion strategy accurately

reproduces both the true model and the theoretical
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turbulence spectrum. We apply our waveform inversion

method to real seismic data at the west Barents Sea con-

tinental margin in the northeast Atlantic. The obtained

model shows sound speed variations that are probably

related to a superposition of several diapycnal mixing

processes in the vicinity of the continental slope. We

conclude that the presented method offers a useful alter-

native to purely numerical waveform inversion methods

and can be used to estimate both deterministic and sta-

tistical properties of the ocean heterogeneity.
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