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Abstract 

Purpose 

The aim of this study was to examine Microvessel Density (MVD), Proliferating Microvessel Density (pMVD) 

and Vascular Proliferation Index (VPI) in Basal-like phenotype (BP) and Luminal A subtypes of breast cancer 

and to study their prognostic value.  

Methods 

Dual-colour immunohistochemistry for von Willebrand factor and Ki67 was done on sections from 62 Luminal 

A and 62 BP tumours matched for grade and selected from 909 breast cancers previously reclassified into 

molecular subtypes. Associations between MVD, pMVD and VPI, molecular subtypes and breast cancer 

prognosis were estimated using linear regression and survival analyses.  

Results 

Both pMVD (difference 1.9 microvessels/mm2 (p=0.002)) and VPI (difference 1.7 percentage points (p=0.014)) 

were higher in BP tumours compared to Luminal A. No clear difference between subtypes was found for MVD. 

However, only MVD was associated with prognosis. Hazard ratio (HR) for breast cancer death for all cases was 

1.10 (95% CI 1.02-1.18)/10 vessels increase. Among Luminal A tumours, HR was 1.22/10 vessels increase/mm2 

(p<0.001) and in BP it was 1.04 (p=0.37). 

Conclusions 

High MVD was associated with poor prognosis in Luminal A, but not in BP cancers. Vascular proliferation was 

higher in BP, indicating a more active angiogenesis than in Luminal A tumours. The Luminal A subgroup 

comprised mostly histopathological grade 3 cancers in this selected series, and further studies are needed to 

clarify whether MVD provides additional prognostic information for Luminal A tumours irrespective of grade. 

This may contribute to stratification of this large group of patients and may aid in identifying tumours with a 

particularly good prognosis. 



 

INTRODUCTION 

Angiogenesis is a necessity for tumour growth,1. Without it, tumour size does not exceed 1-2mm3,1-4. After 

vascularization, tumour growth rate quickly increases and becomes exponential,2 4. A quantitative measure of 

angiogenesis within a tumour could therefore provide important prognostic information in cancer patients.  

Microvessel Density (MVD) is an established method for quantifying the number of vessels within a tumour. 

However, the method does not reflect ongoing angiogenesis,5. Proliferating Microvessel Density (pMVD) and 

Vascular Proliferation Index (VPI) describe endothelial cell proliferation within the tumour and may provide 

better estimates of ongoing angiogenesis,6-10. Recent studies have indicated that VPI is an independent 

prognostic factor in endometrial cancer,6, prostate cancer,10 and breast cancer,8 9. Furthermore, high VPI has been 

associated with aggressive breast cancer features and with the basal-like phenotype,7-9.  

Gene expression studies have led to the identification of five biologically distinct breast cancer subtypes: 

Luminal A, Luminal B, Basal-like phenotype (BP), HER2 overexpressing and Normal breast-like,11 12. These 

subtypes are characterized by different clinical outcomes. While the Luminal A subtype has the best prognosis, 

the poorest outcomes are found in the BP and HER2 overexpressing subtypes,13. 

Immunohistochemical (IHC) and in situ hybridisation (ISH) biomarkers have been used as surrogates for gene 

expression analysis in studies of breast cancer subtypes,7 9 14-21. Although not capable of identifying the intrinsic 

subtypes with complete consistency,22 23, IHC and ISH markers provide prognostic information similar to that of 

gene expression analyses,17 19 24. This is now an established approach in studies of large patient cohorts,17 19 21 24.  

The aims of this study were to compare MVD, pMVD and VPI in the Luminal A and BP breast cancer subtypes, 

and to study the effect of these factors on prognosis in breast cancer patients with long-term follow-up. 

MATERIALS AND METHODS 

Study population 

Between 1956 and 1959, 25 897 women born between 1886 and 1928 in Nord-Trøndelag county, Norway, were 

invited to participate in a breast cancer survey organized by the Norwegian Cancer Society. Through information 

linkage with the Cancer Registry of Norway, these women were followed up for breast cancer occurrence from 

1961 to 2008. Information on date and cause of death was available from the Cause of Death Registry,25-27. A 

total of 1393 primary breast cancers were diagnosed during the follow-up period. Of these, 909 tumours were 

retrieved from the archives of the Department of Pathology and Medical Genetics, St. Olav’s Hospital, 

Trondheim, and reclassified into molecular breast cancer subtypes,21. Sixty-three tumours were classified as BP 

and 433 tumours were classified as Luminal A. Of the BP tumours, 62 were suitable for inclusion in the present 

study.  A Luminal A case was selected from the same patient cohort for each BP case, matched for tumour grade 

if possible. Among the BP tumours, 52 were grade 3, 7 were grade 2 and 3 were grade 1. There were 42 grade 3, 

17 grade 2 and three grade 1 Luminal A tumours. The average grade for Luminal A tumours was 2.6, compared 

with 2.8 for BP cancers. 

Specimen characteristics 

All cases were classified according to histopathological type and grade, and then reclassified into molecular 

subtypes using IHC and ISH as surrogates for gene expression analyses. Full-face sections were cut at 4µm from 

formalin-fixed, paraffin-embedded (FFPE) tissue blocks, stained with haematoxylin-erythrosine-saffron (HES). 

Classification into histopathological type and grade was done by two experienced pathologists, according to 

World Health Organization Classification of Tumours of the Breast,28 and the Nottingham Grading System,29 30. 

In cases of disagreement, consensus was reached after discussion. Next, three 1mm in diameter tissue cores were 

extracted from peripheral areas of each tumour and assembled in tissue microarrays (TMA). 

Immunohistochemical (IHC) staining was done on sections from the TMA blocks for the following markers: 



oestrogen receptor (ER), progesterone receptor (PR), Ki67, human epidermal growth factor receptor 2 (HER2), 

cytokeratin 5 (CK5) and epithelial growth factor receptor 1 (EGFR). In addition, HER2 gene copy number status 

was estimated using chromogenic in situ hybridization (CISH) . Tumours were reclassified into molecular 

subtypes according to the algorithm in Fig1,21. 

Immunohistochemical staining 

For the present study, 4µm full-face sections were retrieved from the freezer at -20°C. Pretreatment was carried 

out in a Pre-Treatment Link (PT link) (DAKO). The sections were immersed in Dako Target Retrieval Solution 

buffer pH 6 (DAKO). The temperature of the solution was raised to 97°C and maintained for 20 minutes before 

cooling. Immunostaining was performed using Dako Autostainer Plus (DAKO). The process commenced with 

eight minutes of enzyme blocking using Dual Endogenous Enzyme Block (DAKO). Primary antibodies, rabbit 

von Willebrand factor antibody (3.8µg/L) (Polyclonal rabbit, A0082, Dako) and mouse Ki67 antibody (160µg/L) 

(Clone MIB1, M7240, Dako), were mixed with Dako antibody diluent (DAKO) and incubated for 60 minutes at 

room temperature. Secondary antibodies, SouthernBiotech Alkaline Phosphatase (AP) /Goat Anti-Mouse and 

Dako EnVision Detection System-Peroxidase/rabbit, diluted 1:100, were incubated for 30 minutes (room 

temperature). Ki67 was visualised by applying Ferangi Blue (BIOCARE medical) for 15 minutes. After rinsing 

with dH2O, Amino-Ethyl-Carbasol (AEC) Substrate Chromogen (Dako) was applied for 15 minutes to visualize 

von Willebrand factor. Coverslipping with Dako Faramount Aqueous Medium (DAKO). von Willebrand factor 

positive cells showed reddish-brown cytoplasmic staining and Ki67 positive nuclei stained blue as seen in Fig2. 

Scoring and reporting 

The most vascularized areas of the tumours were identified in the IHC-stained sections by two of the authors 

(MRK, AMB) prior to vessel counting. The number of microvessels was then counted in 10 high-power fields 

(400x) within the preselected areas. Each field comprised at least 50% tumour tissue. Sclerotic areas, fibrotic 

scars and areas close to normal breast tissue or necrosis were avoided. A countable microvessel was defined as a 

von Willebrand factor positive endothelial cell or cell cluster. A visible lumen was not necessary to fulfil the 

requirements of a vessel. However, in areas with long, twisted branches of endothelium or glomeruloid 

microvascular proliferations (vascular nests), each lumen was counted as a separate vascular unit. 

Proliferating microvessels were counted in the same ten fields. A proliferating vessel was defined as a 

microvessel containing at least one endothelial cell nucleus with positive Ki67 staining. MVD and pMVD values 

were given as number of vessels per mm2, estimated as the average number of vessels per visual field divided by 

the visual field area of the microscope. VPI was defined as the ratio between pMVD and MVD, given in percent.  

All cases were assessed by one observer (MRK) who had undergone a period of training prior to the study. 

Using a test series of 24 colon cancer sections, intra- and interobserver (MRK, KK) agreement were estimated 

using Kappa (κ) and Spearman rho (ρ). Training was ended when the desired level of agreement, consistent over 

time, was achieved (κ>0,6 and ρ>0,8). This study complies with the REMARK reporting recommendations for 

tumour marker studies,31. 

Statistical analyses 

Linear regression was used to estimate the association between breast cancer subtype and MVD, pMVD and 

VPI. Age (<65, 65-79, ≥80 years), grade (1, 2 and 3) and stage (I, II and III/IV) at diagnosis were adjusted for. 

Breast cancer prognosis was assessed using survival analyses, where patients were followed until death from 

breast cancer, death from other causes or until December 31, 2010, whichever came first,21.  Using Kaplan-Meier 

plots with log-rank tests, breast cancer specific survival (BCSS) was compared for patients with MVD, pMVD 

and VPI below and above the median value. Cox proportional hazards models were used to estimate risk of death 

from breast cancer per unit increase in MVD, pMVD and VPI, as well as for patients with values below and 

above the median value. Hazard ratios (HR) were calculated with 95% confidence intervals (CIs) adjusting for 

age, stage, grade and subtype (if applicable). Survival analyses were performed for all cases combined and for 

the two subtypes separately. 



To evaluate the robustness of the results, the analyses were repeated with adjustment for time period of diagnosis 

(10-year categories), narrower age categories, restriction to grade 3 tumours and with the cut-off value set at the 

75th percentile for MVD, pMVD and VPI instead of the median. Proportionality between hazards was checked 

by comparing log minus log plots of survival and by performing tests based on Schoenfeld residuals and 

assumptions were met. All analyses were performed using Stata 13.1 (StataCorp LP, College Station, TX, USA). 

Ethics 

The study was granted approval including dispensation from the general requirement of patient consent by the 

Regional Committee for Medical and Health Sciences Research Ethics (REK, Midt-Norge, ref. nr: 836/2009).   

RESULTS 

Characteristics of the women and their tumours are presented in Table 1. A total of 38.7% of the patients with 

Luminal A tumours and 45.2% of the patients with BP tumours died from breast cancer during follow-up. The 

median age at diagnosis was 74 years for Luminal A cases and 72 years for BP cases. 

Table 1: Descriptive characteristics for the 124 breast cancer cases 

 Luminal A Basal-like 

phenotype 

Total 

    

Number of cases 62 62 124 

Median age at diagnosis, years (IQR) 74.0 (68.0-79.0) 72.0 (64.0-80.0) 73.0 (64.5-79.5) 

Median follow-up time, years (IQR) 5.7 (2.6-11.6) 4.9 (2.3-11.2) 5.3 (2.4-11.4) 

Median time to breast cancer death, years 

(IQR) 

3.2 (1.8-8.3) 2.5 (1.2-3.7) 2.5 (1.5-5.0) 

Death from breast cancer, n (%)    

   Yes 24 (38.7) 28 (45.2) 52 (41.9) 

   No 38 (61.3) 34 (54.8) 72 (58.1) 

    

Grade, n (%)    

   1 3 (4.8) 3 (4.8) 6 (4.8) 

   2 17 (27.4) 7 (11.3) 24 (19.4) 

   3 42 (67.7) 52 (83.9) 94 (75.8) 

Tumour diameter, n (%)    

   <2 cm 13 (21.0) 5 (8.1) 18 (14.5) 

   ≥2 cm 39 (62.9) 40 (64.5) 79 (63.7) 

   Unknown 10 (16.1) 17 (27.4) 27 (21.8) 

Lymph node status, n (%)    

   Negative 22 (35.5) 19 (30.7) 41 (33.1) 

   Negative, less than 5 7 (11.3) 5 (8.1) 12 (9.7) 

   Positive 22 (35.5) 27 (43.6) 49 (39.5) 

   Unknown (not examined) 11 (17.7) 11 (17.7) 22 (17.7) 

Stage, n (%)    

   I 30 (48.4) 25 (40.3) 55 (44.4) 

   II 27 (43.6) 30 (48.4) 57 (46.0) 

   III-IV 5 (8.1) 7 (11.3) 12 (9.7) 

Ki67, n (%)    

   <15 % 62 (100.0) 10 (16.1) 72 (58.1) 

   ≥15 % 0 (0.0) 52 (83.9) 52 (41.9) 

Ck 5, n (%)    

   Negative 56 (90.3) 8 (12.9) 64 (51.6) 

   Positive 6 (9.7) 54 (87.1) 60 (48.4) 

EGFR, n (%)    

   Negative 62 (100.0) 22 (35.5) 84 (67.7) 

   Positive 0 (0.0) 40 (64.5) 40 (32.3) 

    

Median MVD, microvessels/mm2 (IQR) 63.4 (49.0-81.3) 72.9 (49.6-103.2) 66.9 (49.6-94.6) 

Median pMVD, microvessels/mm2 (IQR) 1.2 (0.6-2.9) 2.3 (1.2-4.6) 1.7 (0.6-3.5) 



Median VPI, percentage points (IQR) 1.8 (0.8-4.3) 3.2 (1.3-6.8) 2.3 (1.1-5.9) 

IQR=interquartile range, MVD=Microvessel Density, pMVD=Proliferating Microvessel density, VPI=Vascular 

Proliferation Index 

For all tumours combined, the median MVD was 66.9 microvessels/mm2(Inter Quartile Range (IQR) 49.6-94.6). 

The median pMVD was 1.7 microvessels/mm2 (IQR 0.6-3.5). The median VPI was 2.3% (IQR 1.1-5.9). The 

scatterplot in Fig3 shows the distribution of MVD and pMVD in Luminal A and BP tumours. 

Table 2 shows unadjusted and adjusted differences in mean MVD, pMVD and VPI according to tumour subtype. 

BP tumours had higher pMVD (Δ 1.9 proliferating microvessels/mm², 95% CI 0.7-3.1, p=0.002) and VPI (Δ 1.7 

percentage points, 95% CI 0.3-3.0, p=0.014) than Luminal A tumours.  No clear associations were found 

between subtypes and MVD score. There was little variation between unadjusted and adjusted estimates.  

Table 2. Mean differences in MVD, pMVD and VPI according to tumour subtype based on linear regression. 

 Δ Unadjusted 95% CI Δ Adjusted* 95% CI 

     

MVD, microvessels/mm2     

   Luminal A  Ref  Ref 

   Basal-like phenotype 9.6 -4.1-23.2 7.5 -6.1-21.2 

     

pMVD, microvessels/mm2     

   Luminal A  Ref  Ref 

   Basal-like phenotype 1.9 0.6- 3.1 1.9 0.7-3.1 

     

VPI, percentage points     

   Luminal A  Ref  Ref 

   Basal-like phenotype 1.5 0.2-2.8 1.7 0.3-3.0 

     

*Adjusted for age, grade, subtype and stage 

Patients with MVD above the median showed a trend towards poorer BCSS than those with MVD below the 

median (p=0.066)(Fig4). HR for death from breast cancer was 1.10 (95% CI 1.02-1.18, p=0.008) per 10 vessels 

increase in MVD (Table 3), adjusted for age, grade, stage and subtype. Neither pMVD nor VPI showed any clear 

prognostic association (Fig5a and 5b). HR was 1.04 (95% CI 0.96-1.13, p=0.28) for each single vessel increase 

in pMVD and 0.99 (95% CI 0.91-1.08, p=0.90) for every percentage point increase in VPI. Adjusting for age, 

grade, stage and subtype had little influence on the estimates.  

Table 3. Risk of death from breast cancer according to MVD, pMVD and VPI 

 Unadjusted 

HR 

95% CI Adjusted HR* 95% CI 

     

MVD, microvessels/mm2     

   <66.9  1 Ref 1 Ref 

   ≥66.9  1.68 0.96-2.95 1.44 0.79-2.65 

     

   Per 10 vessels increase 1.09 1.03-1.16 1.10 1.02-1.18 

     

pMVD, microvessels/mm2     

   <1.7  1 Ref 1 Ref 

   ≥1.7 0.98 0.57-1.69 0.86 0.48-1.54 

     

   Per 1 vessel increase 1.05 0.99-1.13 1.04 0.96-1.13 

     

VPI, percentage points     

   <2.3  1 Ref 1 Ref 



   ≥2.3  0.74 0.43-1.29 0.61 0.33-1.11 

     

   Per percentage point increase 1.01 0.94-1.09 0.99 0.91-1.08 

     

* Adjusted for age, grade, subtype and stage 

In separate analysis of each subtype, high MVD was associated with poorer survival for patients with the 

Luminal A subtype (p=0.038)(Fig6), but not for patients with the BP subtype (p=0.7)(Fig6). After adjusting for 

age, stage and grade, HR was 1.22 (95% CI 1.09-1.37, p<0.001) per 10 vessels increase in the Luminal A and 

1.04 (95% CI 0.95-1.15, p=0.37) per 10 vessels increase in the BP subtype (Table 4). No association was found 

between pMVD or VPI and prognosis in either subtype. 

Table 4. Risk of death from breast cancer according to MVD, pMVD and VPI by tumour subtype 

 Unadjusted 

HR 

95% CI Adjusted 

HR* 

95% CI 

     

MVD, microvessels/mm2     

   Luminal A, per 10 vessels increase 1.11 1.02-1.21 1.22 1.09-1.37 

   BP**, per 10 vessels increase 1.07 0.98-1.17 1.04 0.95-1.15 

     

pMVD, microvessels/mm2     

   Luminal A, per 1 vessels increase 0.97 0.78-1.21 1.11 0.86-1.43 

   BP**, per 1 vessels increase 1.07 1.00-1.15 1.04 0.96-1.14 

     

VPI, percentage points     

   Luminal A, per percentage point increase 0.93 0.80-1.08 0.98 0.83-1.16 

   BP**, per percentage point increase 1.06 0.97-1.17 1.02 0.91-1.13 

     

*Adjusted for age, grade and stage  

**Basal-like phenotype 

The results were similar when the analyses were carried out with cut-off at the 75th percentile, with adjustments 

for time period at diagnosis, using different methods to adjust for age and in analyses restricted to grade 3 cases.  

DISCUSSION 

In this study there was no clear difference in MVD between BP and Luminal A tumours. However, there was a 

clear difference in BCSS between Luminal A tumours with high and low MVD, suggesting that MVD may be of 

prognostic significance in Luminal A tumours. A higher number of proliferating vessels was found among BP 

tumours compared to Luminal A tumours, although neither pMVD nor VPI was associated with BCSS. 

Tumour capillaries are different from normal vessels of the body. Tumour vessel diameter is typically three 

times larger, mural cell coverage is sporadic, and the vessel can suddenly end blindly or anastomose with itself32 

33. The capillary walls of tumour vasculature are about ten times leakier than normal capillaries,34, and they are 

difficult to identify in HES-stained sections. In 1991, Microvessel Density (MVD) was introduced by Weidner et 

al., who showed that risk of metastasis increased with increasing microvessel count. However, without an 

estimation of the proliferating fraction, it is not a measure of ongoing angiogenesis within a tumour 6. Some 

studies have found MVD to be a prognostic factor in cancer 35-37, while others have not 6 8 9.It has been suggested 

that measuring vascular proliferation may be a better estimate of actively ongoing angiogenesis within a 

tumour,6-10 32 38. In the present study, significantly more proliferating vessels were found in the BP compared to 

Luminal A tumours. This finding is in accordance with those of other studies,7 9, and is also in line with studies 

suggesting that the BP has more aggressive features than the Luminal A subtype,12 20 39.  



However, while pMVD and VPI have been associated with poor prognosis in previous studies,6-10, no such 

associations were found in the present study. It should be recognized that pMVD is generally low in breast 

cancer,8, and therefore prone to variations in estimation leading to a similar variation in VPI. Also, the two 

tumour categories in our study were matched for histological grade, and this could influence the results. 

When analysing all cases in this study, MVD was found to be a borderline prognostic factor. This is in 

accordance with previous studies,5 40. However, the results suggest that MVD is a prognostic factor in the 

Luminal A subtype, but not in BP tumours. Cases were matched according to grade whenever possible, and 

therefore the Luminal A cases in this study represent a high-grade subpopulation of the Luminal A subtype 

comprising mostly grade 3 tumours. Despite this, a clear difference in survival was found between Luminal A 

patients with high MVD and low MVD. This finding has, to the best of our knowledge, not been presented in 

any previous studies. To further explore and validate this finding, MVD should be investigated in a larger 

population of Luminal A breast cancers including all grades.  

The majority of women in this cohort lived in an era when birth control pills, hormone replacement therapy and 

mammography screening were largely unavailable,25 26. Furthermore, they were diagnosed with breast cancer in 

a time period or at an age when adjuvant therapy was not an option, thus providing an opportunity to study the 

near natural course of the disease after surgery. However, it must be recognised that there may be differences 

between the tumours arising in this cohort and tumours occurring among women who have had access to 

mammography screening and menopausal hormonal treatment.   

Today, breast cancer treatment is based on histological type, histopathological grade, stage, proliferation rate and 

expression of ER, PR and HER2,41. In addition, breast cancer can be classified according to molecular 

subtypes,11. While the main focus has been to identify breast cancer patients with poor prognosis, it is equally 

important to identify women with a particularly good prognosis to avoid unnecessary treatment. The results of 

this study underline the need to further study the prognostic and predictive value of MVD, pMVD and VPI. 

Vascular proliferation was higher in the BP, indicating that this subtype might be more susceptible to anti-

angiogenic treatment. Studies are needed to further explore whether pMVD and VPI could serve as predictive 

markers in the BP category.    

The Luminal A subtype has the best prognosis of all subtypes,12 13 19 21. High MVD was significantly associated 

with poorer prognosis among high grade Luminal A tumours. If MVD provides additional prognostic 

information for these tumours, this might be helpful in further stratifying this large group of patients according to 

prognosis and may thus contribute to identifying breast cancer patients with a particularly good prognosis that 

may receive unnecessary treatment today.  
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Take home messages 

MVD is a prognostic factor in high grade Luminal A breast cancer. Vascular proliferation is higher in the Basal-

like subtype of breast cancer, but is not associated with BCSS in this series.  
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Figure 2. Breast cancer section at 400x stained with immunohistochemistry. Von Willbrand factor positive cells 

display reddish-brown cytoplasm and Ki67 positive cells display blue nuclei. 

 



 
Figure 3. Distribution of Luminal A and Basal-like phenotype subtypes according to MVD and pMVD. 

Predicted values were estimated by quadratic functions. 

 



 
Figure 4. Breast cancer specific survival according to MVD. Log rank test: p=0.066 

 



 
Figure 5a. Breast cancer specific survival according to pMVD. Log rank test: p=0.73 

 
Figure 5b. Breast cancer specific survival according to VPI. Log rank test: p=0.24 



 
Figure 6. Breast cancer specific survival according to MVD and subtype. Log rank test for Luminal A cases: 

p=0.038. Log-rank test for Basal-like phenotype cases: p=0.7 
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