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A FRONT TRACKING APPROACH TO A
TWO-PHASE FLUID FLOW MODEL WITH CAPILLARY FORCES

K. HVISTENDAHL KARLSEN, K.-A. LIE, N. H. RISEBRO, J. FRØYEN

ABSTRACT. Wc consider a prototype two-phase fluid flow model with capillary forces. The pressure equation is
solved using standard finite elements and multigrid techniques. The parabolic saturation equation is addressed via
a novel corrected operator splitting approach. In typical applications, the importance of advection versus diffusion
(capillary forces) may change rapidly during a simulation. The corrected splitting is designed so that any combination
of advection and diffusion is resolved accurately. It gives a hyperbolic conservation law for modelling advection and a
parabolic equation for modelling diffusion. The conservation law is solved by front tracking, which naturally leads to a
dynamically defined residual flux term that can be included in the diffusion equation. The residual term ensures that
self-sharpening fronts are given the correct structure. A Petrov-Galerkin finite element method is used to solve the
diffusion equation. Wc present several examples that demonstrate potential shortcomings of standard viscous operator
sphtting and highlights the corrected splitting strategy. This is the first time a front tracking simulator is applied to
a flow model including capillary forces.

0. INTRODUCTION

The nonlinear partial differential equations that describe certain two-phase flow situations in porous media
can be separated into an elliptic pressure equation and a parabolic saturation equation. The saturation equation
is often advection dominated and describes a physical problem where abrupt changes occur in the physical data
(steep fronts). In commercial reservoir simulation the finite difference method is the most commonly used
discretization technique. Due to the advection dominated nature of the saturation equation, one uses upstream
weighting methods to prevent non-physical oscillations from polluting the simulation. However, these methods
introduce large amounts of numerical diffusion destroying the structure of important fronts.

Since the flow is advection dominated, some people argue that capillary forces can be neglected. This gives
a hyperbolic saturation equation which possesses exact discontinuities instead of the steep (discontinuity like)
fronts seen in the parabolic saturation equation. Several groups within the petroleum community have tåken
such an approach, which enables them to choose from a diversity of sophisticated numerical methods developed
over the last two decades for hyperbolic conservation laws. See [25] for a comprehensive introduction to modem
numerical techniques for conservation laws. Here wc choose to mention the front tracking approach developed
by Glimmet al. [16], the higher order Godunov methods employed by Bell et al. [3], [4], and the front tracking
approach developed by Bratvedt et al. [s], [6]. Of particular interest to us is the latter approach which is based
on an idea of Dafermos [8] (see also [18]). It has been documented in previous studies that this front tracking
concept, which differs from that of Glimm et al., produces highly accurate and CPU efficient simulations of
two-phase flow models based on a "hyperbolic formulation" .

It is well known that the importance of advection versus diffusion (capillary forces) may change rapidly
during a simulation in the sense that the flow can be highly advection dominated in certain parts of the
reservoir, whereas in other parts the diffusion can be more important. From this point of view, the capillary
forces should not be neglected, instead it becomes increasingly important to have a numerical solution strategy
that can handle various balances of advection and diffusion within the same application. In particular, wc want
a strategy that maintains the advantages of the front tracking method and uses the algorithms developed when
the partial differential equations are "almost hyperbolic" .

A standard method for including capillary forces in hyperbolic solvers is viscous operator splitting (OS
henceforth). A second order, diffusive term appears in the saturation equation and the OS strategy is to isolate
the hyperbolic part in order to apply e.g. front tracking. The remaining diffusive part can be handled by some
standard finite element or difference method. This approach, or at least certain variations on this approach,
has indeed been tåken by several authors, wc only mention Beale and Majda [2], Douglas and Russell [11], [29],
[14], Espedal and Ewing [12], [13], Dawson [10] and more recently [20].

However, numerical experiments [20,22] suggest that OS can be severely diffusive near steep fronts, at least
when the splitting time step is large. OS is therefore not particularly well suited to use with hyperbolic solvers
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that allow for large time steps (e.g. front tracking). Let us elaborate on this feature by studying an application
of OS to a one-dimensional model equation. Consider therefore Burgers' equation [7]; dt s +dx [\s2 ) = ed^s,
with Riemann data; s(x, 0) = 1 for x < 0 and 0 for x > 0. The true solution is a single (shock) front moving with
positive velocity. In particular, the size of the shock layer is O(e) (see e.g. [30]) which contrasts the well-known
O(y/t) - layers seen for linear equations.

Formally, let S^(t) denote the solution operator associated with the nonlinear conservation law

(1) dt v + dx f(v)=o,

and let ?{(t) denote the solution operator associated with the heat equation

(2) dt w = edlw.

Then the OS approximation takes the form

(3) s{x,nAt) w [H(At)oSf (At)] n 80 (x)

Let us calculate the first step in (3) for Burgers' equation. The entropy solution to the convex conservation
law (1) is v(x, At) = 1 for x < l/2At and 0 for x > l/2At. Using v(x, At) as discontinuous initial data when
solving the heat equation (2), we obtain the following explicit formulafor the OS approximation

(4)

It is not difficult to deduce from this expression that the shock layer has size O(VsAt). Consequently, the shock
layer is not properly resolved unless a small time step (At = O(e)) is used, a claim that is in fact supported by
numerical evidence [20,22].

An interesting observation is the following. Let /c (w) denote the upper concave envelope of f(s) = |s2 in
the interval [o,l]. Applying OS to the linear equation dt s + dxfc (s)x = ed%s still yields the solution (4). In
fact, applying OS to the equation dts + dxg(s) = ed%s for any convex flux function g(u) that lies below or
equals fc (u) will give the approximation (4). As opposed to the exact solution, the OS solution does not take
into account the particular shape of the flux function, that is, the information needed to determine if the front
is self-sharpening and therefore O(e) - sized. However, the part of the flux function that is neglected can be
identified as a residual flux term of the form /res =f — fc - Now the idea is to include this residual term into
the equation modelling diffusion (2), i.e., we shall use an approximation formula of the form

(5) u(x,nAt)& [Vf"(At)oSf(At)] n uo {x),

instead of (3), where Vf"* (At) is the solution operator associated with the nonlinear diffusion equation dtw +
dx fres(w) = sd^w. Due to the special form of /res (convex with /res(o) = /res(l) = 0), this equation will contain
the necessary information needed to ensure the correct balance between advection and diffusion.

As we have seen, it is possible to derive å priori the explicit expression for /res for a single Riemann problem.
This was first observed by Espedal and Ewing [12] (see also [9]) who suggested a splitting method based on the
linear conservation law dtv + dxfc (v) = 0 and the nonlinear diffusion equation dt w +dxfTGs(w) = ed^w, instead
of (1) and (2). This two-step method, which can be viewed as a slightly different alternative to the splitting (5),
has the advantage of giving the correct size of the shock layer and måkes it possible to extend the characteristic
methods [11,29] to nonlinear problems without severe time step restrictions.

Of course, an å priori construction of the residual flux /res is not possible for general problems. However,
Karlsen and Risebro [21] recently observed that by using front tracking (as defined by Dafermos) to solve the
nonlinear conservation law (1), it is possible to dynamically construct a residual flux function fres (x, •) for general
problems, so that the corrected splitting approach (5) måkes sense in general. Furthermore, the existence of
/res (x, •) turned out to be a direct consequence of front tracking being based on solving Riemann problems.

The purpose of the present paper is to make the corrected operator splitting technique (COS henceforth) fit
into the context of two-phase flow simulation and the equations arising there. In particular, we apply both OS
and COS based strategies to a few water flooding test cases in order to highlight the features of COS. The main
conclusion drawn from the present study is that a numerical solution strategy for two-phase flow models based
on front tracking and the corrected splitting formula (5) provides a highly accurate and efficient strategy that
seems to manage different balances of advection and diffusion, ranging from the strongly advection dominated
case (including the purely hyperbolic one) to the diffusion dominated case.

The rest of this paper is organized as follows: In section 1 we describe the prototype mathematical model
used for simulation purposes. In section 2 we explain in detail the solution strategy and the corrected operator
splitting technique (5). In section 3 we study an application of our solution strategy to the well-known quarter
five-spot test case and a water flooding problem involving multiple wells. Finally, in section 4 we make some
concluding remarks.

r°° i \ —(x — v\ 2 ~\
s{x ' At) *L»rxp l^ssn •(» 
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1. The Two-Phase Flow Model

Wc study immiscible flow of water and oil in a two-dimensional oil reservoir Q over a time period (O,X].
To focus on the main ideas of the algorithm, wc consider a simplified prototype two-phase model [28], assume
incompressible flow, and neglect gravity. If wc choose the total Darcy velocity u, the total fluid pressure p,
and the water saturation s as primary variables, the immiscible displacement of oil by water is governed by a
(non-dimensional) system of nonlinear partial differential equations.

Wc have the pressure equation

(6)

where K = K(x,y) denotes the absolute permeability tensor, A,- = fcrl //i t- are the mobilities, kri = &r,(s) the
relative permeabilities, and m the viscosities of water and oil, i = w,o, respectively.

The pressure equation is coupled via the total Darcy velocity u= —K (Xw + X o ) Vp to the saturation equation

(?)

Here <j> — <f>(x,y) is the porosity of the rock in the reservoir. The fractional flow function / = f(s) and the
diffusion tensor D = D(x, y, s) are known functions given by the expressions

r KwX w a o åw ope
i = t—TT" 1 \—jTl~^7'i A o i Ag OS

where pc = pc (s) is the capillary pressure (a known quantity). The small scaling parameter e>o is introduced
when the equations are converted to non-dimensional form, and gives the relative balance between advective
and capillary forces. The system must be constrained by appropriate initial and boundary conditions, here wc
will use "no flow" boundary conditions,

(8)

Wc model injection and production wells as area wells; that is, wc let each well be defined over a small area Q{
with an outer boundary dQ, . For the pressure equation wc demand that u • n,- = <?,- on dQi , where g,- represents
the injection rate and n, is the outer normal of dQi. For the saturation equation, the production wells are
modelled as outflow boundaries and the injection wells as inflow boundaries with saturation kept fixed at 1. To
confine our presentation, the boundary conditions will not be explicitly mentioned later when wc describe the
solution techniques for the pressure and saturation equation.

For computational purposes, let us employ mobilities of the form

Thus, the fractional flow (or flux) function has the usual s-shape, i.e.,

(9)

Furthermore, wc replace the absolute permeability tensor by the identity matrix, and take the diffusion tensor
to be diagonal,

(10)

Hence, the components of the diffusion tensor have the typical bell-shape, with degenerate behaviour at s = 0
and B=l. Wc assume the rock porosity to be constant. Finally, for convenience wc take the reservoir domain
Sl to be rectangular.

2. The Numerical Strategy

The governing equations (6) and (7) are coupled. A sequential time stepping procedure is used to decouple the
equations, which essentially consists of solving one equation at the time, starting with the pressure equation to
generate a velocity field. Subsequently, this velocity field is used as input in the saturation equation. Although
not supported by mathematical rigour, this strategy reflects the different nature of the elliptic pressure equation
(6) and the advection dominated parabolic saturation equation (7). The velocity is assumed to be smoother

-V • (K(XW + X O )Vp) =0, in Q x (0, T] ,

<t>dt s +V • (ti/) -£V • (£>Vs) =0, in fi x (0, T] .

s\t=o = sq, in Q

u  n = 0, D(s)Vs - 0, on dQ x (0, T\

AU/=sPu; , A 0 = (l-s)Po , Pw,Po > 1.

sPy,

•W = sPu, + (l_ S )Po-

D{s) = diag (i/(«), i/(«)) , i/(«) = 4«(1 - s).
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than the saturation, which may develop large gradients. Let the pair (pn ,sn ) denote the approximate solution
to (6) and (7) at time t — nAt s , where At a > 0 denotes the sequential time step. The approximation at the
next time level is computed in the following two steps:

(1) Pressure: Let An (x,y) —\w (sn ) + Ao (sn ) be the total mobility at time t = nAt, and let pbe the
solution to the elliptic equation

This equation is first discretized using the Galerkin finite element method with the usual "hat" basis
functions. This gives us a linear system of equations. As solver for this system we have used the conjugate
gradient method, together with a V-cycle multigrid method as preconditioner. This procedure gives us a
piecewise linear approximation to the pressure. Once the pressure is found we can compute the velocity.
A straightforward differentiation of the piecewise linear pressure approximation would yield a piecewise
constant velocity approximation and convergence of linear order. Instead we have computed the velocity
field based on flux consideration. This method gives a piecewise linear velocity field, and the convergence
is superlinear. A detailed description of the pressure and velocity solver is given in [15].

(2) Saturation: Update the total Darcy velocity; u = —A" Vp. Let s be the solution to the parabolic
equation (with s"|t=o = sn )

where we have rescaled time to get rid of the constant <f>. This equation will be solved by a so-called
corrected operator splitting, which decomposes the equation into a nonlinear conservation law for mod
elling advection and a certain (nonlinear) parabolic equation for modelling diffusion. The main feature
of this splitting strategy is that correct balance between advection and diffusion is achieved for large
time steps (details are given below). The advection solution is computed using front tracking, whereas
the diffusion solution is found by a Petrov-Galerkin finite element scheme.

Finally, the approximation at the next time level is defined by (pn+l ,sn+l ) — {p,s).

The rest of this section is devoted to the saturation equation and a description of the corrected operator
splitting method. Under the assumption of incompressible flow, it is necessary to solve nonlinear advection
diffusion problems of the form

(11)

where w is a smooth velocity vector, so is the initial function, and T is the final computing time.
The parabolic equation (11) is "almost hyperbolic", and it is natural to exploit this when constructing

numerical methods. Roughly speaking, our strategy consists of decomposing (11) into two equations; a nonlinear
conservation law modelling advection and a parabolic equation modelling diffusion. The basic philosophy of
this splitting was explained in the introduction. Let us now describe the splitting in detail. Consider therefore
the one-dimensional advection-diffusion problem

(12)

where u(x) is a smooth scalar function defined on (a, b). An application of the widely used viscous operator
splitting (OS) approach [20] to (12) yields a nonlinear conservation law dts+u(x)dx f(s) = 0 and a nonlinear heat
equation dt s — edx (u(s)dx s), each of which is solved separately by some numerical scheme. This strategy works
well provided the time step is sufficiently small. However, for larger values of At, OS methods have difficulties
obtaining the correct balance between nonlinear advection and diffusion because "information" concerning the
possible self-sharpening nature of a front is thrown away. For a constant velocity function u, this problem has
been resolved in terms of a so-called corrected operator splitting (COS) [21,22]. We now describe a modification
of this approach capable of handling non-constant velocities (see also [23]). The equations modelling advection
will be solved by a front tracking scheme. Furthermore, the equations modelling diffusion will be solved by a
Petrov-Galerkin finite element method. Both these schemes are described in the appendix.

Divide the time interval (0, T] into time strips (nAt, (n + I)A<], where NAt — T, and let {xc, h} be a uniform
subdivision of the interval [a,b]. Furthermore, let Uh be the linear interpolant of u at {x,} and f$ the linear
interpolant of/ at {i6}. Here, h and 6 denote the spatial and polygonal discretization parameters, respectively.

-V • (An (x, y)Vp) = 0, in Q x (0, A*.]

dt s +V • («/(«)) -eV • (i/(?)Vs) =0, in Q x (0, A/,]

dt s + u{x, y)  V/(s) =eV  (v(s)Vs) , in Q x (0, T]

s(x,y,o) = so (x,y), in fi,

dt s + u(x)dx f(s) = edx (u(s)dxs) , (x, t) e (a, b) x (0, T] ,

s(x,o) = sq(x), xe(a,b),
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Let sn denote the approximate solution to (12) at time t = nAt, for some fixed n> 0. Wc now describe how
to inductively construct the solution sn+l from sn .

Advection update: Solve the following hyperbolic conservation law by front tracking (see the appendix),

(13)

Let Sl6h 'x (t) denote the approximate (front tracking) solution operator associated with (13), i.e., v{x,i)
Sl6h ' x (t)sn (x). Using this notation, wc may define an intermediate solution by

The function sn+l / 2 (x) is piecewise constant on a finite number of intervals. Let the discontinuities of sn+l ' 2
be located at the points {yt }, and let {z,} be a sequence of spatial positions chosen so that y,- G (3J,-,£,+i). In
the interval [y,-,y, + i) wc denote the value of sn+l /2 by Ji+l . Then wc define the residual flux term by

(14)

Here f^c denotes the correct envelope of fs restricted to [?,-,s,+i]. Notice that the envelope function U,c depends
on the sign of the velocity function Uh(x), see the appendix. Several ways of choosing {xi} obviously exist, see
[21,22,23]. In the present paper wc choose these positions such that each interval (x~i,x~i+ i) coincides with the
monotonicity interval of s"+1 / 2 on which y,- is found, see Figures 3.6 and 3.10. The reason that this works well
is that only one significant discontinuity is located in each monotonicity interval.

Diffusion update: Let w(x,t) be the Petrov-Galerkin finite element solution (see the appendix) to the para
bolic diffusion problem

The Petrov-Galerkin approximation is a piecewise linear function on a grid chosen such that its nodes coincide
with the discontinuity points of the front tracking solution. To ensure convergence of our method, wc have to
add nodes whenever the spacing between two discontinuities becomes larger than h. Note that this results in a
grid well suited for resolving shock layers. Wc define the COS solution at time t — (n + l)At in terms of the
formula

where Yl"*'x (t) is the approximate solution operator associated with equation (15) at time t.
To sum up, the COS solution at time t = T can be written abstractly using the product formula

(16)

Remark. Observe that in the presence of shock fronts, the advection part of (15), /res , only has a sharpening
or anti-diffusive effect, whose purpose is to balance the diffusion to the correct order. Furthermore, the /res -
term is relatively small (but important) in most applications; see the numerical section and [22]. Wc shall later
see that the residual flux term substantially decreases the temporal splitting error.

Note that according to (14), a "local" flux term /res(^»+,s) is constructed with respect to each shock in the
front tracking solution. In particular, since front tracking replaces smooth parts of the flow by series of small
shocks, a large number of these local flux terms will be approximately zero and therefore not have significant
influence on the flow. Consequently, to increase the efficiency of the COS algorithm wc neglect a local flux
term when |s# — sl\ < Ctr , where sl and sr denote the values that the local flux term is based on, and ctr
is a (problem dependent) threshold parameter. This way the Petrov-Galerkin solver will only pay attention
to anti-diffusive flux terms based on strong shocks in the advection solution, which corresponds to significant
shock layers in the solution of the advection-diffusion equation. Wc should also mention that the anti-diffusive
flux terms are given (implicitly) as a part of the front tracking method and can be collected by only a few extra
computations.

Wc now turn our attention to the two-dimensional problem (12). The COS scheme presented above is
genuinely one-dimensional. There are two obvious ways of generalizing it to several space dimensions; the
method of streamlines or the method of dimensional splitting [19,26,22]. Wc will in the present paper rely on
the latter approach. The streamline approach will be considered elsewhere.

dt v + uh (x)dxf6 (v) =0, v(x, 0) = sn (x), (x, t) e (a, b) x (0, At] .

sn+l ' 2 = Sfrx (At)sn .

_ / -fa (s ) ~ c (s; *• ' *i+l ) ' for x e [Xi ' Xi+l ) and s e p* ' *'+IJ'

(15) dtw + uh (x)dxfres (x, w) = edx (v(w)dxw) , w(x, 0) = sn+l/2 (x), (x, t) G (a, 6) x (0, At] .

sn + l = pW(A*)fin + 1 / 2 ,

sN =[Vl<r*(At)oSli'*(At)] N so.
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Let us explain the dimensional splitting approach in some detail. Assume that the domain Q, is rectangular and
consider a uniform Cartesian grid {zij ; h}, where each square grid cell is of the form z,-j = [x{, a;,+i) x [yj , t/j+i).
Let 7T denote the two-dimensional projection operator defined on {zij;h}, i.e.,

Let /{ and g& be Lipschitz continuous, piecewise linear approximations to / and g, respectively. Furthermore,
let Uh(x; y) denote an approximation to the first component of the velocity vector u(x, y). The approximation is
continuous, piecewise linear in x and piecewise constant in y . Similarly, let Uh(y;x) denote the approximation
to the second component. Let sn denote the piecewise constant splitting solution at some positive time t = nAt,
s° — ttsq. We now proceed by explaining how to construct sn+l from sn .

x - sweep: Let v(x, At;y) be the front tracking solution at time t — At to

(17)

Note that y only acts as a parameter in (17). Next, construct the residual fiux function fres(x, v; y) with respect
to the constant values tåken by v(x, At;y). Let w(x, At;y) be the solution at time t = At to the parabolic
equation

(18)

This solution is obtained by using the one-dimensional Petrov-Galerkin method on a grid with nodes determined
by the discontinuities in v(x, At;y).

(19)

Note that x only acts as a parameter in (19). Next
respect to the constant values tåken by v(y, At;x).
t = At to the parabolic equation

construct the the residual fiux function gres(y, v; x) with
Let w(y, At; x) be the Petrov-Galerkin solution at time

(20)

In terms of approximate solution operators, the corrected operator splitting solution at time t = T can
formally be given by the composition

(21)

Remark. Note that sN is piecewise constant with respect to {zij}. However, in applications we replace sN
by a proper piecewise linear function to obtain second order accuracy in space. Furthermore, in applications
we also employ a Strang splitting for the x and y - sweeps, that is, for the dimensional splitting, but not the
viscous splitting.

3. NUMERICAL EXPERIMENTS

In this section we apply the ideas from the previous section to model problems. The first problem is the
well-known quarter five-spot case, and the second is a water flooding problem with multiple wells. This type of
test cases is well established in the petroleum community. To illustrate the advantages of the corrected operator
splitting approach (COS), we will compare it with the standard operator splitting approach (OS).

The pressure and saturation solver make use of the same grid system, and the pressure (velocity) is updated
only once in the examples presented below. We have used a fractional flow function given by (9) with pw =
po = 2. Since the main purpose is to demonstrate the effect of the residual fiux terms, it is sufficient to take
the diffusion coefficient u(s) to be constant; v(s) — 1. However, to convince the reader that there is no loss
of generality in doing so, we present one computation with the nonlinear diffusion coefficient (10) (see Figure
3.5). We let the reservoir domain Q be given in unit coordinates and time T in PVI (Pore Volumes Injected).
The reservoir is divided into 128 x 128 grid cells. Reference solutions are computed by OS on a 256 x 256 grid
using 100 time steps. We are primarily interested in discussing the temporal splitting error and not the spatial
discretization error, which is small compared with the splitting error when we use a fine grid such as 128 x 128.

1 f
7ts(z, y) = — / s{£, r)) d£ drj, V(z, y) € zi}j .

n Ja.*

dt v + u h (x;y)dx f6(v) =0, v(x,o;y) = sn (x;y).

dt w + uh (x; y)dx fres(x, w; y) - edx (v{w)dxw) . w(x, 0; y) = v(x, At; y),

y - sweep: Let v(y, At; x) be the front tracking solution at time t = At to

dtv + uh (y; x)dy g6 {v) =0, v(y, 0; x) = (ww(-, At; -))(y; x).

dt w + u h (y; x)dy gTes(y, w, x) = cdy (v(w)dy w) , w(y, 0; x) = v(y, At; x).

The solution at time f = (n+ l)At is defined as sn+l = ttw(-, At; •)

sn = [^r,y(A<) o S»»{At) o Vtrx (At) o Sll>*(At)] N B°.
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In the Petrov-Galerkin solver wc use at most 5 Picard iterations. This has proven to be more than sufficient to
resolve the nonlinear residual flux terms and is in agreement with the numerical observations reported in [17]
on the convergence properties of the iteration.

Due to the well model, the near-well velocities may become very large and force the time step to be unrea
sonably small. On the other hand, the velocities are of moderate size away from the wells, and there a large
time step is feasible. Therefore wc have included two or three stages in the computations. During the first
stage, when water fronts are close to injection wells, wc use a small time step. In the intermediate stage, the
water fronts have moved away from the injection wells and wc can apply a large time step. Finally, the time
step must be reduced again as the water fronts approach the production wells. Note that it is in the "large
time step areas", when the problem is advection dominated, that COS compares most favourably with OS. In
the other areas most of the behaviour can be attributed to the simplified well model.

Example 1 (Quarter five-spot). The first example is a quarter five-spot test case with a unit injection well
placed at (0, 0) and a production well with unit production rate placed at (1, 1). The reservoir is Q = [o, l] x [o, l],
and the solutions are advanced forward in time (until T = 0.6) as follows: [0,0.01] in one step, [0.01,0.5] in
four steps, and finally [0.5, 0.6] in ten steps. The diffusion coefficient is tåken to be constant (u(s) = 1), and the
scaling parameter e is 0.01. In order to demonstrate that a nonlinear diffusion coefficient causes no trouble, a
calculation using (10) is shown in Figure 3.5 (right).

The results of the computations are depicted in Figures 3.1-3.6. Figure 3.1 shows contour plots of the
reference solution at times t = 0.1, 0.47, and 0.6. Due to large velocities near the injection well, the problem
is highly advection dominated at time t = 0.1, whereas at time t = 0.6 wc see that advection and diffusion are
equally important (except in a small neighbourhood of the production well). At time t = 0.47 the problem is
again advection dominated, but not as much as when t = 0.1. The importance of advection versus diffusion,
often measured by the Péclet number Pc = Hullooll.fllooA, may change quite rapidly during a simulation.
Consequently, a proper numerical scheme should be able to resolve the different balances of advection and
diffusion in an accurate and consistent way. Wc feel that COS satisfies such demands, but that neither OS
nor any hyperbolic solver ("zero diffusion" models) have this desirable feature, as will be demonstrated in the
sequel

Figure 3.1. Example 1. Reference solution (OS) computed on a 256
and 0.6 from left to right.

256 grid using 100 time steps Snapshotsat times 0.1, 0.47,

Figure 3.2. Example 1 Three-dimensional plots. (Left) OS solution at time 0.47. (Right) COS solution at time 0.47. Note that
OS is more diffusive than COS
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Figure 3.3 shows contour plots of the OS calculations. We see that OS is far too diffusive at times t = 0.1 and
0.47, whereas at final time t = 0.6 the structure of the water front is resolved rather accurately. But there is a
cumulative error which manifests itself in late breakthrough of water. This effect is perhaps easier to observe in
Figure 3.5 (middle), where the saturation fronts along the diagonal of the grid are shown at times 0.47 and 0.6.
Figure 3.4 shows the corresponding COS solutions. It is evident that COS produces both correct placement and
structure of the water front for all three times. In particular, the improvement over OS at times t = 0.1 and
0.47 (advection dominated areas) is remarkable. Note that at time 0.47 neither the COS nor the OS solution
is perfectly symmetric with respect to the diagonal. This is due to the dimensional splitting; by increasing the
number of time steps slightly, this effect can be eliminated

Figure 3.3. Example 1. OS solution; snapshots at times 0.1 0.47, and 0.6 from left to right

Figure 3.4. Example 1. COS solution; snapshots at times 0.1, 0.47, and 0.6 from left to right

0 ai 02 0.3 0.4 0.5 0.6 07 O« 0.» 1 0 0.1 0.2 0.3 04 05 06 0.7 0.1 0.9 1 0 01 02 0.3 0.4 OS 0.6 0.7 0.1 0.8 1

Figure 3.5. Example 1. (Left) Diagonal plot at times 0.47 (left) and 0.6 (middle); zero diffusion (hyperbolic) model solved
by front tracking (dotted), reference solution (solid), OS (dashdot), and COS (dashed). (Right) COS with nonlinear diffusion
coefficient (10) at times 0.1, 0.47, and 0.6. Note that there is only a slight "loss" of regularity at the "foot" of the front compared
with the constant diffusion case (left and middle).

Example 2 (Several injection and production wells). The next example is also water injection into a
homogeneous horizontal oil field. But now we use five injection and five production wells distributed throughout
the reservoir ft = [0,2] x [0,2] as shown in Figure 3.7. Each injection well is marked with a circle and each
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Figure 3.6. Example 1. (Left) Typical one ditnensional solutions generated by front tracking (solid), OS (dotted), and COS
(dashed). (Right) The flux function (dashed), the envelope function (dotted), and the residual flux function (soh'd) as defined by
the front tracking solution. Note that the residual flux acts on the entire monotonicity interval [o,l]. Wc see that the effect of the
residual flux term is significant (left); OS is several orders of magnitude more diffusive than COS.

production well with a cross. The scaling parameter € is 0.0025. Wc show the water saturation (as contour
plots) at times t = 0.32 and 0.8. To reach final computing time 0.8 wc have used a short initial time step of
0.01 followed by 5 time steps. The reference solution is shown in Figure 3.7. Notice that the problem is less
advection dominated than in the previous example due to lower injection rates.

Figure 3.7. Example 2. (Left) Well configuration. The initial saturation is indicated by a few contour lines. (Middle and right)
Reference solution at time 0.32 (left) and time 0.80 (right). Note that the injection rates are lower than in the previous example,
so that the velocities are smaller than before and the problem becomes slightly less advection dominated.

In Figure 3.8 the OS and COS solutions are compared at time t = 0.32. It is evident that COS yields a
more accurate picture of the flow than OS, which contains too much diffusion. Wc have also included a plot
of the pointwise discrepancy between COS and OS to emphasise on the different ability to resolve the water
fronts. Similar plots are given for time t = 0.8 in Figure 3.9. This is immediately before water reaches some of
the production wells. As before, the conclusion is that OS produces a significant amount of difFusion (splitting
error) in areas of high Péclet numbers, whereas COS has virtually no viscous splitting error and therefore gives
both correct placement and structure of the water fronts. When the spatial grid size is too big to resolve the
fronts, wc of course introduce an error in form of a numerical broadening corresponding to the grid size, but
the solution is otherwise well behaved.

Finally, wc point out that the solution is non-monotone. This results in the generation of several residual
flux functions. In Figure 3.10 (left) wc have plotted a typical one-dimensional advection solution (in the x -
direction) corresponding to row number 120 in the grid (y » 1.88). In the plot on the right wc show the residual
flux term defined by the advection solution (left). Notice that /res is a function of both the space variable x
and the saturation s because the solution is non-monotone. Here wc must stress that the calculations leading
up to the residual flux terms consumes very little time compared with the rest of the algorithm. The necessary
data are already contained in the data structure used by front tracking.

4. CONCLUDING REMARKS

In reservoir simulation it is important to have a numerical strategy that can cope naturally with the different
balances of advection and difFusion that will occur during a simulation. In a typical application, advection



KARLSEN, LIE, RISEBRO, AND FRØYEN10

Figure 3.8. Example 2. (Left) OS solution at time 0.32
the pointwise discrepancy between COS and OS. As befoi

(Middle) COS solution at time 0.32. (Right) Three dimensional plot of
As before, we note that there is a difference near the water fronts, even though

the problem is less advection dominated than in the previous example

Figure 3.9. Example 2. (Left) OS solution at time 0.8 . (Middle) COS solution at time 0.8 (Right) Three dimensional plot of
the pointwise discrepancy between COS and OS.

forces are highly dominant in certain parts of the reservoir, whereas in other parts diffusion (capillary) forces
are more important. On one hand, there exists a variety of accurate numerical schemes for hyperbolic saturation
equations obtained by ignoring capillary forces (advection dominated flow). On the other hand, if the flow is
diffusion dominated virtually any finite element or finite difference scheme performs well.

Our starting point has been a desire to develop a numerical strategy that maintains the advantages of modem
hyperbolic solvers and uses the algorithms developed when the equations are "almost hyperbolic" . In addition,
we wish to capture all balances of advective and diffusive forces ranging from advection to diffusion dominated
problems. Numerical examples show that the usual operator splitting (OS) methodology is too simple in the
sense that it does not resolve steep (self-sharpening) fronts. To amend this shortcoming, we have developed a
corrected operator splitting (COS) methodology. COS models diffusion via a parabolic equation which contains
a nonlinear residual flux term ensuring the correct amount of self-sharpening. The residual term turned out
to be computationally easy to realize if we use Dafermos' method to solve the hyperbolic part of the problem.
Numerical examples show that the COS strategy possesses the desired properties mentioned above. Finally, we
have also managed to define a COS scheme in terms of a higher order Godunov scheme instead of front tracking.
The computational results are satisfactory, see [22].
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A. Appendix

A.l. Front Tracking. We give a brief description of the front tracking method. Let u(x) and f(v) be Lipschitz
continuous, piecewise linear functions. Consider a nonlinear conservation law of the form

(22)

where we assume that vo (x) is a step function with a finite number of jumps. We will first describe the front
tracking algorithm for a constant velocity function (u(x) = 1) and subsequently do the necessary modifications
to cope with non-constant u(x). The piecewise constant initial function yields a sequence of Riemann problems
of the form

Each of these Riemann problems can be solved analytically, and since the flux function f(v) is piecewise linear,
the solution will be a step function. Rarefaction waves (smooth parts of the solution) are replaced by sequences
of small shocks. Recall that a discontinuity (vl, vr) propagating with shock speed s = (f(vL) — f(vR))/(vL — VR)
is admissible provided the entropy condition

(23)

is satisfied for all v between vl and vr. This condition, which is due to Oleinik [27], ensures that the solution
is physically correct. To give the complete solution of the Riemann problem, introduce the function

{the lower convex envelope of / between vi and vr if vl < vr,the upper concave envelope ot / between vr and vl, il vl > vr

Suppose that {v,} are the breakpoints of f(v), i.e., the points where f(v) is discontinuous. Since f(v) is
piecewise linear, then so is fc (v), and the breakpoints {vi} of fc (v) form a subset of {v,}. If we set vi =vl and
vm — vr, then the solution of the Riemann problem is given by

(24)

where xi (i) satisfies the Rankine-Hugoniot condition

(25)

and /, = fc (t;,-; vl, vr). By connecting the solutions of the local Riemann problems we obtain the global solution
of (22) for u(x) = 1 up to the first time when two waves from neighbouring Riemann problems interact. This
interaction defines a new Riemann problem with left and right states given by the values immediately to the
left and right of the collision point. The new Riemann problem is then solved as outlined above, thereby, giving
the global solution until the next interaction occurs, and so on. Summing up, the front tracking algorithm goes
as follows:

(1) Solve the Riemann problems defined by the piecewise constant initial data.
(2) Keep track of shock collisions and solve Riemann problems arising at the collision points.

For a more detailed treatment of the front tracking method we refer to [18]. For a non-constant velocity function
u(x) the entropy condition (23) becomes

This introduces some small changes in the solution of the Riemann problem. For positive u(x) the function fc (v)
in not altered, while for negative u(x) the roles of the upper and lower envelope are interchanged. Similarly,
the Rankine-Hugoniot condition (25) becomes

(26)

dt v + u(x)dx f(v) =O, v(x,o) = vo (x), x EM, t>o,

, A. f yL,vL , whenz<o,
v(x,Q) = <

I, yr, when x> 0.

f(v)-f(vR) <c< f(v)-fM
V— Yr ~ ~ V— Yl

{YL,VL , X < X 0 (t)

Vi, Xi(t) <x < xi+i(t), i=1,... ,M -1

YR, X>XM-l(t),

dXi_ _ /„•+! - fj
dt v,-+i - Vi

sign («(*)) /H " /("fl) < sign («(*)) •. < sign(u(x)) f{v) ~ fM .v — yr v — vi,

# = "(**) *+1 fi= *(*,)• «i, t = 0,...,Af-lai v»+i — v»
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The shock paths Xi(t) are no longer straight lines, but are given as the solution of the ordinary differential
equation (26). However, since u(x) is assumed to be piecewise linear, wc can derive a simple explicit formulafor
the shock paths. Suppose now that the velocity is given by u{x) = a,x +&, on intervals [x,-,x,+ i] for nonzero a,-.
The intervals are given such that u has constant sign on each. The shock path starting at a point xq £ [x,-, x,+i]
at time to is then given by

where s is the shock speed from the Rankine-Hugoniot condition for u(x) = 1. Wc see that a new calculation of
the future path is required each time a shock enters another interval in u{x). Thus the front tracking algorithm
remains the same, but with a slight difference in how the Riemann problems are solved and how possible shock
collisions are computed.

Remark. The front tracking method for general conservation laws (arbitrary u, f, and vg) consists in replacing
u and / with piecewise linear approximations and vg with a piecewise constant approximation, and then to
solve the resulting (perturbed) problem exactly according to the procedure described above.

A.2. The Petrov-Galerkin Finite Element Method. Consider the nonlinear parabolic equation (15),
which can be written in conservative form as follows

(27)

By "freezing" the coefficients in this equation wc obtain linear equations which can be solved by a Petrov-
Galerkin finite element method. To be more precise, let wp be the Petrov-Galerkin approximations at time
t = At to the linear, variable coefficients, advection-diffusion equation

where fres(x, w) = b"(x, w)w. The approximate solution to (27) is now tåken to be it; 9 for some q > 1.
The rest of this section is devoted to describing the Petrov-Galerkin scheme for problems of the form

(28)

with initial and, say, homogeneous boundary data; w\ t=o — w and w\x=aib =0, respectively.
Wc are interested in computing approximations to (28) at time t = At. Let Sh be the standard piecewise

linear finite element space spanned by hat functions {o,(x)} with nodes {x,}, so that boundary conditions
automatically are tåken care of, and let Axt- = x, — x,_i be the size of each element. Hence, a finite element
approximation Wh G 5a may be written

for some proper coefficients {tvi} and {wi}. The time derivative in (28) is replaced by a single backward Euler
step. Note that this implies that At must be reasonably small to ensure that the method of "freezing" the
coefficients converges, see [17]. For larger At it may be necessary do several Euler steps.

Multiplying equation (28) by a test function tpi(x) and subsequently doing an integration by parts, leads to
the variational formulation

(29)

where (•, •) denotes the usual Li inner product on (a,b).
Since (29) is not completely symmetrized by the advection step because of the b - term, wc have to choose a

test space Th different from the trial space Sh to stabilize equation (29). A theory for choosing an appropriate
test space is given in [I]. This consists in choosing a discrete test space that transforms the bilinear form (29)
into an equivalent V - elliptic and symmetric bilinear form. Based on previous experience (e.g. [9]) a good choice
seems to be quadratic functions with support on [x,_i,xj+ i],

x(t) = xoeo^-^ + o '*^-'») - 1),a*

dt w +dx [uh (x)fres (x, w) - eu{w)dx w]
= dx uh (x)fres (x,w).

dtu? +dx [uh {x)bn6 {x, uf-^w? - eu{wP- 1 )dx wP]

= dx u h (x)fres (x,wp- 1 ), p=1,2, ...,

dtw +dx [b(x)w - ed(x)dx w] = r(x), (x, t) e {a, b) x (0, At] ,

t t

(wh ,ipi) +A* (b(x)wh - ed{x)dx wh ,dx il>i) = (w + rAt,

t/j • ( J? i \
I + Cj+l/2^», X e [Xi, Xi+i] ,
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where

and

Here,

is the mesh Péclet number on element [x t _i,x,], and &i_i/2 and d,_i/2 are average values over this element
Using the above notation, the finite element approximation now reads;

Find Wh(x) G Sh so that (29) is satisfied for each ipi(x) G T/,.

Note that a mesh Péclet number has to be computed for each component of the velocity field on each element
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