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Abstract.

The stability of steady shear flow of an inviscid compressible
fluid rotating between two coaxial sylinders is investigated. We
consider flows where the streamliines are helical paths depending

on the radial distance only. A necessary condition for stability
is obtained.

The method applied is based on a study cf the transport equations
similar to those appearing in geometrical acoustics.

*) Present address: Agder distriktshggskole, Box 607,
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Introduction.

The stability of rotating fluids has earlier been investigéted by
several authors (see the references guoted in [3]).

Most of the earlier work has considered incompressible fluids.
The literature on compressible fluids iz in faet rather small.

In this paper we study the stability properties of steady shear
fiow of an inviscid compressible fluid rotating between two
coaxial sylinders. We consider flows where the streamlines are
helical paths depending on the radial distance only {(i.ei the
rotating flﬁid'has an axial velocity depending on the radial

distance). A necessary condition for stability is obtained.

The methed applied is developed by Eckhoff [1] and is based on a
study of the transport equations similar to those appearing in

geometrical acoustics.

The stability problem studied in this paper has also been
investigated by Warren [5]. By a different method Warren deduced
& sufficient condition for Stamg it v

in the last section our results are compared with Warren's criterion
It is proved, as should be expected, that his eriterion in general
is more restrictive than ours. For some Veloeity profiles the

€riteria coincide : an equation determining these profiles is found.
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i. Formulation of the problem.

We consider an ideal compressible adiabatic fluid. The basic
equations are:

v 1

EE-+ L e 5 Vp + YV

EE ) Y - .e fms

e T Y s P L1
9 iy . e

5T (pp "N Ew Vipe ™ 0

7z

Here v, p, P, ¥ and VvV denocte velocity, density, pressure, time
and potential for the external forces, respectively, and v is a

constant.

We want to investigate the stability propertiee of a fluid (gas)
rotating between two coaxial sircular sylinders Mradid @ p. - and
L

¥r; 9 < ry <1r,). Like Warren [5] we assume steady flcws where

1 2
the velocity is of the form

U = ey W (L. 2}
U vg(r)g¢ W, (Tle, {

and where the density,pressure and potential also are functions of

Gt
ase
o

sagdus only, d.eq

B8 S an () 4 b s alr), W e W) (3 .2

Here ™ (r,¢,2)" are''sylindrical coordinates and ﬁr’ g¢, gy are the

unit vectors in these coordinates.

It follows from (1.2) that the streamlines are sircular helixes

depending on the radial distance r.

It is readily seen that {12, 8.3}) 1= & colttion of  f1.03 ‘for
arbitrary functions e A g and 'V if and only if the
function P, satisfies the equation:

2
dpo Vo dav\
po( g dr

s e T_) (1.4)
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For given Vor P and V this equation determines the function

0
P, up to an additive constant.

in order to study the stability properties of the solution
g, poi pO
following expressions:

¢+ Wwe perturbate it by introducing into (1.1} the

= .,1.... = ...,..,_...o“‘
i Sl b S R T
)
p
— ‘_E.__‘r‘ _,.‘.O_,
ey b gEe Tl e

Here ¥ and E are arbitrary weightfunctions depending lon | 1,

we only assume that F ¢« 0, E 2 0 everywhere. The quantity c

the local sound speed given s

) ARty
/Yp.
e A0 Gille))

O

T transformation (1.5} s essentially the one applied in [3]

{41. The linearized version of the perturbation equations (given

51

o
&

S

in [3] & [4}) is a gystem of linear symmetric hyperbolic djalltag.
e B Yp P

We now write

W=Wwe +w,a, +we QST
S r.__,,r M (i),__(p Bz ( Fl

and we introduce the S-dimensional vector

w = (wr,w¢iw7,sl;s A (22 )

2

The perturbation eguations in sylinderical coordinates can be

written:
I 1 3w 2030 3 3w :
c e Ry ] . S s g
AT A s + A 56 + A T + Buw 0 (1.9)

i
fore 8. AT, A and B are 65x5 matrices and w is treated
a column vector. These matrices are calculated Erom e Dl 8

& 1.5) and the perturbation equations to be:

a5
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0 0 0 #e 0 o 0 0
G ) 0
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where the quantities g, B G and H are:

- - iy
- <
a:.li.’igc(ife‘,%__‘i‘lo_} g C{Lffg,l_f.@,.Jré‘l] |
B Tide e Lo as N L‘
{ Wi
2
2
S LB 7, +dv) i
= 5 o = S Yo dY
Ep, > ¢ dr Ep B R e
2
S 1_1\[19_~+§_}Z3+_9__f32..s§£
W el Zp_ dr F dr
(sl 2)
v, .
e 170 dvy - avar
SthiE & e\ 4'5§/ F dr
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The characteristic equation associated with  (2.9) is-

EIR L s L SR

" H. g2v_+ g3w0} i(% g2 + 53‘”’0)2 - czkz} =0 ik
where

k =V (El>2+ (%, 52)24# (53)2 | (1.14

The characteristic roots and the associated orthonormal eigen-
vectors are easily obtained (cf. [3]) from e R s R

% k.2 3 e i
Q7 = e % Z W, (triple root)
Q% = % Szvo + gjwo + ck (simple root) mA1.15)
93 = é gzvo + EBWO = ¢k {simple root) i
il Lya .2 1 3 i)
rL &= E(’i‘ £ r"g :Oi’: ;0\
i 3 & iy oDk bl .
r S "}E(D.ﬂg ;"}:" i 30) ;__ RN
i 3 i Tk
rij = %"("E yotg .’% E O) J
21 S 0 e e NG \
= U
V2 K

3k X fgl LEs0 e

The stationary solution U, Poning of (1.1} wcorresponds to the

null sglution w =0 of 1.9V, In this paper we are going to
study the stability properties of the latter by the method

developed in [1l]. The discussion of the acoustic waves

corresponding to the simple roots QZ and Q3 is completely
analogues to the discussion in [2]. In our probliem these waves
never give rise to any instabilities for realistic physical flows
(ef£. [31). Thus we shall limit our further discussion to the mass

: : , : 1
waves ("gravity® waves) corresponding to the triple root @
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2. The transport equations associated with Ql,

For the mass waves the stability equations are identical with the
5 Mo ¢ gl ot B
Therefore we have to study the stability properties of these

transport equations associated with

equations. Applying the general formulas given in [1] we deduce
the transport equations from (1.10, 1.15, 1.16) to be:

et TR Ve r @0 =W,
dgl Gk gz ﬁé,deO } 53 dw ol
at 7 ¥ Gz dr b
i el il
dt * 3t
B Tl I 1 Tl
T Lt e etk D LI s fl
gt = ;7_ r &% Ak oF r & ¢ ‘Q+B)ng
- - -~ v dv 43 dw % -
] e o ORELE O T Yk T O ol 1 ‘
i bl ke s e et
- = ax 5 2
g % ok g bl b AN il i)
Tv;'_f. =¢ <r+dr ,} \E & y BT (\E; /’i Q:JU,3
dot « 2 dw dv 2 dw
2.1 f 1,12 (1 g2 o 123, _“M_w(g3\ o}cl
dt ert £ i Sdy T R Ve o D g ¢
o TN (2.3)
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The bicharacteristic equations (2.1) can be integrated directly,
the solutions are:
¥ 2
- TR @ = @0 4 = o O = o S wo(ro)“
(25
; v av -~ dw 2
i A R o o) & B 2 2 3 -
m € , =ER U o e e SO e = k =
& St ’oir R Sl o 2 S to
0 )
r $ T o initial val £ ot =0
- y re in 3 as = 0,
where r . ﬁo’ Le &OJ o EO are in al wvalu a
Substituting {2.5) into the amplitude equations (2.2, 2.3; 2.4)
we obatain a closed linear system of ordinary differential equations
g b, Ehp i 1 i i A i
for the amplitudes o0y, J,; 04 OF the mass waves:
at
where A(t} ig a 3x3 matrix and ¢ is a 3-dimensional column
vector with components o%, Gé, Gi respectively.



(2.5 vRaEs it EFadns
f'?ﬂ m@*wqa tesall besolo:s: aladsdo. ow

.ai «3 ¥ ‘i‘ ol
B Aoy e 4D asbw b leme adsr wo®

R i §
G e

U b Mivine £RE % .md

) I P
4 0 |
; ’Ng@ _ g;b s B0 bl QR ¢ L T
/ ; g




3. Discussion of stability.

According to the theory of stability developed in [11, the steady
flow U, LR i stable only 1f (2.6) 'i= stable as the oriqgin
{i.e. o =0 is stable) for all possible values of the

]

v
of 21 &g £g, Qs. Thus we have to study the

stability properties of the null solution Of  (2:6) 'for differcent

parameters L @ %

cheices of the parameters.

It is easily seen from (2.5) that (2.6) is autonomoug if and

oanty 183 e
y dv dw
- ST A o) kg e
E; go\r “dr el ’ (3.1}
For all possible values of r . Ez 53 which satisfy (3,11, "the

ORI 0
stability properties of (2.6} at the origin are thus determined

by the eigenvalues of the coefficient matrix A, These eigen-

values are faund‘to be:

Qo

where i 4is the imaginary unit,

Y l) i £ \2 7-3\27 X
E [ Z 33
kO ( / ,\(’O ( J)
and
e L 52\23 pe e L fﬁé‘~<53>2§a8°ﬂz 39(39+.53233 (3
\ro 0 r, 0o 2N dr. G T AT, axr’ /i
From (3.2) we conclude that a necesisasycondl Hilonl Eor 2 6 o
Ik
be stable at the origin for all values of Tor By 2,1 Ei, Eg, E;

is that D is a real quantity when (3.1) is satisfied. Thus a
necessary condition for stability is that *he guadratic form D2
given by (2.4)» is non-negative. The general discussion of the
quadratic form is done below in connection with the non-autonomous
case. Here we only cbnsider the marginal case D2 = 0. Since

Z : i :
REh sl simplies dhat. ) = O . is 2 triple eigenvalue, stability of
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(2.6) at the origin requires the coefficient matrix A to be zero

0 Ei = Eo = QT Sesie e [ easily seen from the amslitude equations

that A = 0. On the other hand, i€ <€§>2 + (£3 : # 0, A=0 for

all possible values of the parameters only if

dvo dwo
o= =R T et = el = () : (35

g, gg such that (3.1) is

not satisfied. 1In this case the system (2.6) is seen to be a

Then we consider all values of ros &

non-autonomous system where all the coefficients tend to zero as

t » + @, Introducing 1 = 1n ¢ (In = nat. log) as a new variable
B0 DRGIIE W (efl [21), 1 eHile system is transformed into an

equivalent system with respect to stability at the (ehzhileiioy
Asymptotically as 1 - + « the transformed system tends to a system
with constant coefficients. The coefficient matrix of the latter

is seen to be:

:J;__ E2 vO ‘_de ot }____ & e ..;;3 .‘.’_._.g.i.\.r.g_\
B oy iaE g o ae’ J
0 )
’ B 2 3
B wlitmpti il o s 2 0 Eiln (3
o . el r, ~o 0
dw : v
2 0 & 0 3 3 dw
- PoEr Lt & B & ar
) sl
where
dw
i 2V N 3
e‘}';%(?“a? et 0 e
The eigenvalues are
i} £l i 20
IO P ST S
1 2 2 il (3.8)

From results proved in the appendix of [2], it follows that (2.6)
is stable at the origin (when e =% 0) if the autonomous system
with coefficient matrix Bo is stable at the origin. Thus it is
seen from (3.8) that (2.6} . must be stable at the origin for all
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-
possible values of «r_ , &, , 2. Ei, gi, E; when the gquadratic
form D2 is positive definite. Conseguently, we are not led to any

g4

additional conditions for stability considering wvalues Toinehie B0

such that e % 0.

Combining the results from the autonomous and non-autonomous case,

we conclude that the linear system (2.6) 1is stable at the origin

2 2 kS
L

for all possible values of X éo’ Z
D2 is positive definite or (3.5) is satisfied.

4 1 Eandioniyiis

Finally we discuss the definite properties of the gquadratic form.

2

Obviously D can be transformed to a diagonal form

D2 = % <2 + uzyz , ¥ (3359

by an orthogonal transformation (gi,gi) o AU & 9570 PRI 3 o'

coefficients "y and u are the eigenvalues of the symmetric

2
matrix associated with the guadratic form and are found to be:
L. Pl /”v Ty dw y i
g of o S RRE e ab | G 02 o} :
R i E"(r Tax ) e E ) t(r dr ) T (ke
6" o 0 0
Toyiie— it 7]
For D2 to be positive definite everywhere it is necessary and
sufficient that ny > 0 and Mo > 0 foriall valuesiof r,
dvo dwo
(aJLvo,E§~, I are all functions of ro), This is satisfied if
WL dv v v dv dw\ 5y
of o matunlioN2l(Tog o2 (i o2 3.1
4w Eo(ro}kdr ) (10} {(ro'kdr ) + (dr bl } ok

for ail values of = .

hccording to the general stability theory {1], we now can
summarize our results as follcws (using the relations AL
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Theoremn.

A necessary condition for stability of the flow (o2 LRy g
that

2 2

SR TAT T G e
& e i S R
( T dr Py dr CZ( L

@i

" ZB Xg+,dv0 i v/ 22)2!(z94‘dv0>2 " (dwo\z
L oE dr ol dr de’
holds everywhere in the fluid.

If equality holds in (3.12) on some set of positive measure, it
is necessary for stability that

dp dv dw
=0 e Vo s e | W

hold almost everywhere on this set.
Remarks.

It follows from (3.12) that the shear in the axial velocity
dw
(i.e. EEQ may give rise to instabilities. Stability is

obtainable only if this shear is not too large.

dw .
Tt a;£—= 0 everywhere in the fluid, we get a special case

treated in [3]. The condition (3.12) then simplifies to

A dv v ﬁ dv
_25§G£+*£) if .£G3+ °><0

ie dr O %G
N > WS (3.14)
o/ 0o o

here N is the analogue of the local Brunt-Vaisala frequency
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which is determined by

2 b2
B e el (fo 20
. R ;7 T oidr
S
2
k. (Vo _+§z)~{l dpo_ i dpo}
i dx (o) . ehe oh

The condition (3.14) agrees with the results obtained in [3].

4. A comparison with Warren's stability criterion.

Introducing the Brunt-Vaisala frequency given by {3.14}) , onr
necessary stability condition (3.12) can be written

@ o) I T

If N =0 on some set of positive measure, it is necessary that
(3.13) is satisfied. At the pecints where N % 0, (R h alc it
be a strict inequality almost everywhere.

Now let us compare our results with the stability criterion of
Warren [5]. His sufficient condition for stability of the flow
R GO (P 5 R £

2 dv W Ghs N 2
@ b ()

i.—l

4 "\dr 7z

or equivalently

e Dl e C G e

everywhere in the fluid.
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Let us denote the right hand side of (4.1) and (

4:2Y

respectively. Both A and B are non-negative and

-t [HE ) (3 - )

0

This implies that (4.1) and (4.2) becone exactly the same

relation if and only if

v dv_\2 dw 2 vV \2
_9_+*3)+_e Saile
= bz dr e

For all the solutions (1.2, 1.3) not satisfying

(did), bk

and B,

(4.3)

(4.4)

follows from (4.3) that (4.2) 1is a more restrictive conditicn

than (4.1). This conclusion is of course not unexpected since

Warren's criterion is sufficient for stability.

Finally let us consider velocity profiles satisfying (4.4),

profiles where the criteria coincide

(1) If the shear of the axial velocity vanishes

dw

tice. 2 =0 everywhere) the equation (4.4)
dr

has two classes of solutions

2 g l i
v_o= an v =l c !
5 co ;3 d . R { yen real

constants) .

f44) If the axial velocity is of the form

n
W= il

0 1 et

i.e,

(cl, C,s M Yeal constants),

the equation (4.4) determines bl and 'n . to be

= it 08 g - V& il
iR e S S or
-q - Vg° + 3
2

C

. =~ 5 == 0
where co 18 a real constant and g R

4
Co Cl
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(N1 Similarly, if Wy = corn (Co’ Ty real constants)

the equation (4.4) determines W, and n to be

% I‘~q+v’q Hy (B
W, =oeyrt o+ Syr o mo=
e s

where S5 and C, are real constants and q =
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