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Introduction,

The stability of rotating fluids has earlier bsen investigated by
several authors (see the references quoted xn [3])

Most of the earlier work has considered incompressible fluids.

The iinerature on compressible fluids is in fact rather small.

In rhis paper we study the stability properties of steady shear

xlow of an inviscid compressible fluid rotating betwesn two

coaxial sylinders. We consider flows where the strsamlines are

helical paths depending on the radial distance only (i. e . the

rotatxng fluid-has an axial velocity depending on the radial

distance), A necessary condition for stability is obtained.

The method applied is developed by Eckhoff [l] and is based on a

study of the transport equaticns similar to those appearing in
geometrical acoustics.

Tne stability problem studied in this paper has also been

investigated by Warren [s], By a different method Warren deduced

a sufficient condition for stability.

xn che last section our results are compared with Warren { s criterio

Xt XS proved, as should be expected, that his criterion in general

is inorø restrict ive than ours. For some profiles the

Cj. i teria coincide } an equation determining these profiles is found
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1. Formulation of the problem.

We consider an ideal compressible adiabatic fluid. The basic
equations are:

(1.1)

Bere v, o, p, t and V denote velocity, density, pressure, time

and pctential for the external forces, respectively, and y is a
constant.

lYe Wa- co mvestigate the stability properties of a fluid (gas)

rota ting befcween two coaxial sircular sylinders (radii r-, and

r2 f 0 < r l < r 1 Warren [s] we assume steady flows where
the velocity is of the form

(1.2)

and where the density,pressure and potential also are functions of
the radius only, i,e.

(1,3)

Here (r.cjjjz) are sylindrical coordinates and e.e , e are the
-r • —<s>' —2

unrt vectors in these coordinates.

It foilows from (1.2) that the streamlines are sircular helixes
depending on the radial distance r*

It is readily seen that (1.2,1,3) is a solution of (1.1) for

arbitrary functions vq , wq ,p r and V if and cnly if the
function pQ satisfies the eguation;

dp ,v x_ ( o . dv\
dr p o lx r dr ) (1.4)

9v
+ V * Vv = - i Vp + VV

It + x • V P + P v • V = 0

|t (PP~ Y ! +v • V(pp~Y ) = o

u = v {r) e t + w (r) eo *~9 o —z

p 0 = p o (r) '- p 0 = po (r) ' v = v{r)
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For given vq , p Q and V fchis equation determines the function
P o up to an additive constant.

In order to sfcudy the stability properti.es of the solution

p 0 r Po' we Perhurbate it by introducing into (1,1) the
following expressions;

(1.5)

Here F and E are arbitrary weightfunctions depending on r s

xve only as sume that F t 0, E + 0 everywhere. The quantity c
the local sound speed given by:

(1.6)

The transformation (1.5) is essentially the one applied in [3]

14j. The iinsarized version of the perturbation equations {given

xn [3] & [4]) is a system of linear symraetric hyperbolic p.d.e. !

We now write

(1.7)

and we introduce the 5-dimensional vector

(1.8)

xhe perturbation equations in sylinderical coordinates can be
written;

(1.9)

12 3
Hfcre A,A r A and B are 5x5 matrices and co is treated as

a coiumn vector. These matrices are calculated from (1.2, 1.3
S 1.5) and the perturbation equations to be:

-=- + f - ? ” +nr

p  p 0 T s i + fF S 2

/yp 1/ ! 1 oo. v _

w - v/ s “i* w.e, -f w e
s*-<? Z—2

40 ~ '' Wr • /W 2 f3X> S 9 )

. a l Sw 2 a 0) . _ 3 30i , _
St ' 9r A 94> + Å 9z 'r bw " 0





4
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(1.

Q

w q 0 0 0 0 v dv
o . o

r dr '0 w o 0 0 0
dw o0 0 w 0o c ,B HF"

0 0 0 w 0o a

100 c o W G0

where the quantities a, 6. G and H are:

(1.11)

r~
i n

r v o 0 0 0 o i

0 0 0 0 c .1 !

0 0 0 0 0 ° r V O 0 0 j

0 0 0 0 0,a 2 = 0 0 i» 0 0 I
00000 x 0 j

cooooo o o iy 0-J ro
1

0 ~'C 0 0 —v— r r o

A 3 =

„ Ep 0 [ dp o 1 d P 0 ] E p/’ f’ <3p , /V 2
a = c “-i, 3—2. = 2_ c i o_l ( o . dv\]

Ldr c 2 dr J F [p o dr r + drjj

S- - -iL i f£2. =_ F 2 1/ V Q 2 dv\
Ep ” c dr Ep 2 c '' r dr /O *o

2

G= - (i- 1) f -1- 4. l + _c dP
c ' 2 /i r drj dr Fdr

2

H-~4- k( 0 + d.V\ cdF
r c\ r dr/ Fdr



{ v;V ; \J. ' ' . (
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The characteristic equation associated with (1.9) i ss

det (C XA X + £ 2a2 -f £ 3 A 3 - XI)

(1

where

(1

The characteristic roots and the associated orthonormal eigen

vectors are easily obtained (cf, [3]) from (1.10) and (1.13)

The stationary solution U, p Q , p Q of (1.1) corresponds to the
' J' UJ~I solut ion w “ 0 of (I*9). In this paper we are going to

study the stability properties of the latter by the method
developed in Cl]. The discussion of the acoustic waves

corresponding to the simple roots Q 2 and Q J is completely
analogues co the discussion in 12]. In our problem these waves

never gi/e rise to any instabilities for realistic physical flows
(cf. [3]}. Thus we shall limit our further discussion to the mass

waves ("gravity >f waves) corresponding to the triple root fl l .

i i(| +53wq ) 2 - c 2k 2 ] = o

0 1 1 ,2 t J
" r5 Vo + 4 w 0 (triple root)

~ ~ C 2v o + C'5 wq +ck (simple rcot)

3 3 _2 3
q »~£ vq + £wQ ~ck (simple root)

r 'U “ e(I e 2 .-?1^^ 3 ,©)

r- 12 = |(o,C 3 ; - i 5 2 ,r\o]

riJ = C 2 ..0y

r2l -_i AIA A O tNr —rr— 5 5 ,-t, ,o,k i
V? k x

r3i _ i (i1 2 . . \r —i 5 ' ~ 5 ,5 ,0,-k
\PSk v 1 /
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The transport equations associated with Q l .2,

For the mass waves the stability equations are identical with the

transport equations associated with fl l (cf. [l], [3] & [4]).
Therefcre we have to study the stability propsrties of these
equations, Applying the general formulas given in [l] we deduce
the transport equations from {l.lO, 1.15, 1.16) to bø:

(2,1)

+ i_'_ i ,1,2« . 1 ,2,3/vo , dv o\ . /,3N 2 dwol 1
kri rc43+?45 b~ + d—) + y argt

(2.2)

t 7$ * 0
k A

(2.3)

1 f i -3 /1 9\2/V dv s , dw / \ 2 /v dv \-j ,
+ —syl rit +f™ | - ~—2 |- i 2 -2L 4- / r'3 ) j~2. 4 _ 2.) q"

ic4 \r /\r ar ; r s dr ‘V. /\r dr yj 3

dr ft ciø _ 1 dz
dt u ' dt r o ' dt ~Wo

nr 1 1 O/V dv v odw
ai- = i 5 2 - 5 3 _aat r \r år J * dr

Éål = o d ? 3 - *dt 0 ' dt u

aa l _I f Ifl r 2 /V'o dvo\ 1 .2,3, -.1 1
at" “ r 5 5 [~~åTj -r t (Cri-6)JC,

* -(i • (s 3) 2«H

fd = i_[- i?V +(± c 2\2 dWo _ 1 ,2,3 , dvo /. dwo ] 1
dt k2[ rssa + U 5 J 3F~ ?? ? 2 dF-“i 5 } dF“j°l
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d°7 1 r I_l r 2 dwoj_,X r 3 ,v o fl r 2V / r 3'\ 2 fl l 1
3t" ** yT r 5 5 a— + 5 5 2 -"h ? ) “ l 5 ) 6 h

The bicharacteristie equations (2,1) can be intsgrated directly,
the Solutions are:

(2.5)

Substituting (2.5) into the amplitude equations (2.2, 2.3, 2.4)
we obatain a closed linear system of ordinary differentiai equations

111
for the amplitudes a,, 00,o 0 , a, of the mass waves;J. *3

A(t)a (2.6)

where A(t) is a matrix and a is a 3-dimensional column
111 ....

vector with components , t respectivaly.

x f-I-S- (1r2WV o dvo\ , 1 ,2.3 dWo , /.3\ 2 , Vo] 1 ~
+ 5 e “ir 5j i~ "dF-j T ? 5 5 dF' + ( 5 ;' z F-j a z <2 - 4)Kl

1 F,1,3 aw o . i .2,3, Il
+ r?!? t 3F- + ? s* (a+o) ]0 3K.

v (r )
r= r , ø» 0 0 + -V2"' ' z “ z o + wo (ro )t0

_1 _ 1 fl r 2fvo dM r 3 dW0,  ,2 = f.2 £ 3 ,3
r L r dr / Sto 1 ' ' o ' 00 v 0

where r 9 ø - z , f C“' are initial valuss at t 0 ,0 0 o o o o





3 * Discussion of stability.

According to the theory of stability developed in [l]* the steady
fj.ow D, P O , po is stable cnly if (2.6) is stable at the origin
(i.e. a-0 is stable) for all possifale values of ths

parameters rQ , ø g , z g , . Thus we have to study the
stability propsrties of the null solution of (2.6) for different
choices of the parameters.

It is easily seen from (2.5) that (2.6) is autonomous if and
only if:

(3,1)

‘ or axl possible values of rQ , which satisfy (3.1), the
stability proper ties of (2.6) at the origin are thus determined

oy the eigenvalues of the coefficient matrix A, These eigen
values are found to be;

h - 0 h (3.2)

where i. is the imaginary unit,

(3.3)

and

From (3.2) we conclude that a necessary condition for (2,6) to
be stable at the origin for all values of r, ø 2 r r 2_ 0' 0 J Q r 0 f S 0
xs that D is a real quantity when (3 0 1) is satisfied. Thus a
necessary condition for stability is that the quadratic form D 2
given by (3,4) is non-négative. The general discussion of the
quadratic rorra is done below in connection with ths non-autonomous
case, Here ws only consider the marginal case D 2 = 0. Since

•i /V dv \ dw
P2i ~ ___£ ) _ Q - n

r 0 o \r o dr J 'o dr ~ 0

A 2 xk_ D # A 3

k = vfFFTIXTTizTTF^10 10 / \rQ ; o J vo J

D 2 = - (k- r 2) 2 ae-±- £V 71° dW° /r3VLp , Vvo dvoM „ .
' ro ero 5 ° 5 ° r 0 dr~ j [“ e ” 2 + dF-;J < 3 - 4

0 implies that X * 0 is a triple eigenvalue f stabil ity of
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at the origin requires the coefficient matrix A to be zero

C o -5o - 0 ' Lt 15 easily seen from the amplitude equations

that A= °- 0n the other hand, if U~)2 + h3 ) 2 +O , A= 0 for
ari possible values of the parameters only if''

(3.5)

Then we consider all values of ro , such thafc (3>l)
not satisfied. In this case the systera (2.6) is seen to be a

non-autonomous system where all the coefficients tend to zero as

* Intreducj.ng x -In t (In = nat. log) as a new variable
(c,u . [2 j) jthis system is transformed into an

equivalent system with respect to stability at the origin.

Asymptotically as x -» + - the transformed system tends to a system
wlth constant. coefficients. The coefficient matrix of the latter
is seen to be:

(3,7)

The eigenvalues are:

(3.8)

From results proved in the appendix cf [2], it follows that (2.6)

is stable at the origin (when e + 0) if the autonomous system
with coefficient matrix B o is stable at the origin. Thus it is

seen from (3.8) that (2.6) must be stable at the origin for all

dv dw
a - 0 = v = --2 == JL = oo dr dr

.  _i_ £ g f 3/vo, dM
ro °Vr dr J ro «o 6 - ? oiF~ + dirj

B = lim t A(t) = - j 2 „ n 3
t-+» e ro 0 ° 5 0 “

*? -5 dw .. v
~2-+£ 3 p £ 3 J dw

r 0 odr r C o 6 dr

where

e= i- r 3 dwo „
r 0 'o[x dr ) 5 0 dr * 0

A, = 0 , X ~-.1 |
1 a 2 2 V 4 “T D

e

\ = _ i _ /1~1 n 2 1
A 3 2 V42 De
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X 2 3
possible values of r,ø . 2, CT/ £ J when the quadratic
r 2 000000

form is positive definite. Conseguently, we are not led to any
2 3"

additional conditions for stability considering values r Q , f £
such that e t 0.

Combining the results from the autonomous and non-autonomous case,

we conclude that the linear system (2.6) is stable at the origin
12 3

for all possible values of r , z , Z Q if and only if
is positive definite or (3,5) is satisfied.

Finally we discuss the definite properties of the quadratic form.
2

Obviously D can be transformed to a diagonal form

(3.9)

by an orthogonal transformation (x,y) . The

coefficients and are the eigenvalues of the symmetric

matrix associated with the quadratic form and are found to be;

(3.10)

o
For D to be positive definite everywhere it is necessary and

sufficient that h 1 > 0 and h 2 > 0 for all values of r Q
dv dw

(a,3 ; v 0 , -g~- are all functions of r Q ) , This is satisfied if

v /V dv \

o x 0 '
(3.11)

for all values of r .0

According to the general stability theory [l], v/e now can

summarize our results as follcws (using the relations (1,11);

_ 2 2,2
D = -- H 2 y

c , V o/ V o . dV o\ V 7~~ dV o)2 + dW ol 1
*n "-“ 6 + + dF-j + ( - 15 v ar-j + a

n “ 1, 2



c-  !. . 9 ';

. v Tara, i ‘

fjon::  ’ 

-f
c 99 ‘V

0-: v v- i-:  f;

j: 9:r a .caa /r;

v

a i .*2 ‘X £- 
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Theorem.

A necessary condxtion for stability of the f lov/ (1,2, 1.3) is
that

(3.12)

r\r dr / \r / {{r 3F"j (hF~ j j

holds everywhere in the fluid.

If equality holds in (3.12) on so.me set of positive measure, it
is necessary for stability that

(3.13)

hold almost everywhere on this set.

Remarks.

It tollows from (3.12) that the shear in the axial velocitydw J

(i. e . ) may give rise to instabilities, Stability is
obtainable only if this shear is not too large.

dw

If dF~ = 0 everywhere in the fluid, we get a special oase

treaued in [3]. The condition (3.12) then simplifies to

r\r dr ) < 02N >
(3.14)

V' o n
F” [~ + ZF~) 1 0

0 if

here N is the analogue of the local Brunt-Vaisala frequency

2

+ ri_ Jo.iÆ + av\i >
\ r dr j [p o dr c 2\ r "dr/J i

d °o _dV _ . dv 0 dw
dr dr 0 & v 0 ~ g*- = gj- = 0

V /V dv x

2 F~(r~ + dr^") if
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which is determined by

N 2 *-a$ ~ (-5 -f {l_. dp ° _ 1 (/V °.... ( dv.Vi
P \ r dr/ I p o dr “2\“ 3?; j

(3.13)

The condition (3.14) agrees with the results obtained in [3]*

Introducing the Brunt-Vaisala frequency given by (3.14) , our
necessary stability condition (3.12) can be written

o /V dvrt \ //V v2 r /V dv \ 2 /dw x 2x
" i {(r1 * ai*) 'a/)) (4.1)

If N = 0 on some set of positive measure, it is necessary that
(3.13) is satisfied. At the points where N4= 0, (4-1) has to
be a strict inequality almost everywhere.

Now let us compare our results with the stability criterion of

Warren 15], His sufficient condition for stability of the flow
(1.2. 1,3) is that

9 i /dv v\2 /dw \2

or equivalently

2 Vo/V n dvo\ 1 f/V rt \2 /dw \2s /V s2

»  /(f2 2) > tHf2 * jf 2) * (jf 2) } • (f2) (4.2)

everywhere in the fluid-

= ri_ dp o _ i dpo,
V r dr/ 1 p Q dr cE“

4. A comparison with Warren ; s stability criterion.
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Let us denote the right hand side of (4.1) and (4.2), A and

respectively, Both A and B are non~negative and

>2 - *mhg^)2 *(^)2j - £)2r.. (4.

This implies that (4.1) and (4.2) become exactly the same
relation if and only if

/V dv v 2 /dw x 2 /v x 2

(t- '**) '{sr)  (4.

For all the Solutions (1.2, 1.3) not satisfying (4.4), it

follows from {4.3} that (4.2) is a more restrictive condition

than (4.1) , This conclusion is of course not unexpected since

Warren’s criterion is sufficient for stability.

Finally let us consider velocity profiles satisfying (4.4), i.e
profiles where the criteria coincide

(i) If the shear of the axial velocity vanishes
dWQ

(i.e. ~ 0 everywhere) the equation (4.4)
has two classes of Solutions

1 •
v = c -x- and =c r (c , c' realo o o o o o o

constants)/

(ii) If the axial velocity is of the form

the equation (4.4) determines v and n to beo

or

wq = c^r11 +c 0 f ( c j ' °2 1 n constants) ,

f- q + \/q S + 3 1
V o = c n r ' n=<0 0 | r-y j

- q •- \/q +3

2c
where c o is a real constant and q= —^

c o +CI
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(ixi) Similarly, if vq - c Q r n (c q , n real constants).
the aquation (4.4) determines w and n to be

2c
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r n 1
n ~ q + Vq + 3

w=cr-f - n H
i 2 r ,

L - q - vq + 3

where and are real constants and q =
c 2 +co
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