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Abstract

The velocity potential is expressed as a surface integral by using a Green function
approach, and from this integral solution a simple analytical wave solution can be
obtained in the surface zone. This wave solution is found to satisfy the non-linear
kinematic boundary condition on the free surface exactly. In this note the dynamic
boundary condition at the free surface is satisfied to the second order in the expansion
parameter (the wave steepness) on the surface itself and not at the mean surface
level which is the case when the Stokes expansion procedure is applied to the wave
problem. This wave solution in the surface zone may be considered as a hydrodynamic

justification for the engineering wave model introduced by Rodenbusch and Forristall.



1. Introduction.

Linear theory (the Airy solution) is in principal incapable of predicting fluid velocities
above the mean still water level and also fails to predict the intermittent nature of the
velocities in the region between the still water level and the deepest wave trough. Therefore,
in ocean engineering there has been suggested several kinds of wave models to improve the
description of the wavefield, especially in the crest. Such engineering wave models have
been suggested by Wheeler!, Chakrabarti?, Rodenbusch and Forristall®, Mo and Moan*, and
Gudmestad and Connor®. Most of them are obtained by modifying the Airy solution. These
engineering wave models have the advantage that they are simple analytical models which
are easily applied, and the purpose of introducing them is to obtain theoretical results which
are in better agreement with measurements made in laboratory investigations and in the
offshore environment than are those obtained from the Airy solution. Common to these
wave models is that they are not based on a strictly hydrodynamic approach, none of them
satisfies the Laplace equation everywhere in the fluid.

The purpose of this note is to obtain a simple analytical solution which is valid in
the surface zone, and which is easily applied. We call for a solution which satisfies the
Laplace equation and in addition the free surface boundary conditions to a given order of
approximation on the surface itself. In this note the second order problem is analysed, i.e.
the boundary conditions are to be satisfied to the second order in the wave steepness on the
free surface itself. This is obtained by using a Green function approach to the surface wave
problem.

Of course there exist both analytical and numerical wave solutions which satisfy the
Laplace equation (for a summary see Sarpkaya and Isacson®). In deep water for instance
there are the Stokes solutions of orders up to an including the fifth order. However, in the
Stokes expansion procedure the boundary conditions are applied at the mean surface level
and not on the free surface itself. The method, which we use, allows for the boundary
conditions to be applied on the surface itself, and it is the results of such an approach which

are presented in this note.




2. Formulation and solution.

We consider waves on the free surface of a homogeneous, incompressible and inviscid
fluid of finite depth. The wave motion is assumed to be two-dimensional and takes place in
the (z, z)-plane, with the x-axis in the mean surface level and the z-axis directed vertically
upwards. If the velocity potential is denoted by ®(z,z,t) and if the free surface is given by
z = n(z,t) , then the equation and the boundary conditions which govern this wave problem

are

Vie =0 —d < z< n(z,t) (1)
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where n = {k — (dn/dz)i}{1 + (Bn/ax)z}—% and i and k are the unit vectors in the x-
and the z-direction respectively.

The boundary conditions (2) are the dynamic and the kinematic boundary conditions at
the free surface, expressing that the pressure is continuous across the surface and that there
is no mass flux through the surface respectively. The boundary condition (3) ensures that
there is no mass flux through the bottom.

We assume that the surface elevation is a periodic function of u = kz — wt , where &k

is the wave number and w the frequency, and that it can be written as

iz, t) = qolzit) k= Re{afei“ + Ekl—ezi” + ...} (4)
where Re{...} means the real part of the complex function within the brackets. 7,,a, and
a; are non-dimensional equations; a, is taken to be real and a; is to be found.

The Stokes expansion procedure is usually applied to solve this wave problem, i.e. the
nonlinear free surface boundary conditions are expanded in series around 2z = o , and
the Laplace equation is then solved successively to satisfy the boundary conditions to the

different orders of magnitude at z=o.



In this note we will use a different approach, a Green function approach, in order to get
the boundary conditions satisfied on the surface itself and not at z = o . The first thing
to do then is to find the expression for the velocity potential ® on the surface. From (2)

and (4) we get (see Engevik? for the derivation)

&, = ps + Ct, where
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where the index s means ”at the free surface”.

We write ® = ¢ + Ct , where ¢ is equal to ¢ at the surface, and introduce the new
variables u (defined above) and v = kz. ¢ = p(u,v) has to satisfy the Laplace equation,

i.e.

o? 92
(51? =+ 5;5)&0 =0. (6)

The kinematic boundary condition at the surface and at the bottom become

op w _1

7 = ~gae{1+ (o)} 2 at v = no(u),

. (7)
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where the prime denotes differentation with respect to v ,and d, = kd .

The solution can be written as (for details, see Engevik’)

G)ds, (8)

where the integration is along Sy, , the part of the surface which is chosen to lie between
v=—(2m+1)r and u = (2m + 1)7 where m is an integer. ¢, and Odp,/dn are
the velocity potential and the normal derivative of the velocity potential at the surface, and

G(u,v,u0,v0) is the Green function, i.e.



G(u,v,u0,v0) = In{(u — uo)? + (v — vo)z}% +In{(u —uo)® + (v + v, + 2do)2}% (9)

We introduce the expression for G and O¢s/0n into the integral (8), and make an
integration by parts of the integral into which dps/0n enters. Furthermore we introduce
the complex representations ¢$ and 7n{ of the velocity potential and the surface elevation

respectively, defined by

s = Re{pl}, no = Re{n}, (10)

and which are given by (4) and (5) to the second order of approximation. Then the integral

(8) can be expressed as
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The first two integrals in (11) give the solution of the infinite water depth problem. The
last two integrals represent the effect from the bottom and must be included in order for the
boundary condition at the bottom to be satisfied.

The integrals in (11) can be evaluated by using the residue theorem. They can be
considered as integrals along the real axis in the complex w-plane, where w = u + ts , and
the u-axis is the real axis and the s-axis the imaginary axis. If we assume that n,(w) is

an analytic function of w , we get
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where w,j,w,;, ws; and w,; are the zeros of Fy(w), Fz(w), Fs(w) and Fy(w) respectively

in the upper half of the w-plane, and where

Fi(w) = no(w) — vo + i(w — u,)

F(w) = no(w) —vo — i(w — 1.10) 13)
F3(w) = no(w) + vo + 2do + 1(w — uo)

Fy(w) = no(w) + vo + 2do — 1(w — uo)

In obtaining (12) we have assumed that the zeros of Fj(w), Fz(w), Fs(w) and Fy(w) are
simple zeros. However, if two zeros should coalesce to form a double zero for some values of
(uo,v0), then the residue at the pole corresponding to the double zero is equal to the sum
of the residues at the two poles corresponding to the two coalescing zeros. This means that
the expression (12) is valid even if two zeros should coalesce for some values of (uo,v,) . It
is easily verified that the contributions from each of the poles satisfy separately the Laplace
equation.

The expression (12) is the general solution of ¢(u,,v,) , and it will be shown how it can

give a simple approximation to the wave field in the surface zone.

3. Wave motion in the surface zone.

We assume that the depth d is so large that the bottom has neglegible effect on the
wave motion in the surface zone. (Numerical calculations have shown that when d, = 4,
the influence from the bottom on the wave motion in the surface zone is of order 10™* to
1075 when a, = 0.1,0.2 and 0.3 , and largest when the amplitude is large.) In the
following we therefore neglect the last two sums in (12).

The one of the zeros of F;(w) , which we denote wg , plays a more important role than
both the other zeros of F;(w) and the zeros of F;(w) as far as the wave motion in the
surface zone is concerned. Let (uo,v,) be a point in the fluid just below the free surface.

We put u, = no(us) — € , where 0 < € << 1, into the equation Fj(w) =0, and find that

Wi = Uo + a + 103, where
a = —eng(uo) /{1 + (16(u0))*} + O(€?) (14)
B = e/{1+ (m5(u0))’} + O(€*),
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which shows that wjo lies in the upper half of the w-plane near the point (u,,0) . Fur-
thermore w;o — u, when € — o, i.e. when the free surface is approached from below.
F;(w) has a zero near the point (u,,0) as well, but this zero lies in the lower half plan and
is therefore not among the zeros w,; .

It is found that on and near the surface most of the contribution to the solution of
©(uo,vo) is due to the zero wjg , so that we can neglect the contributions from the other
zeros here. However, into the fluid at some distance from the surface the contributions from
the other zeros may become significant and must be taken into consideration. Consequently
we put

1 LW
©(uo,v0) = 'Z-Re((pg - ang)wlo (15)
to be valid in the surface zone. As mentioned previously this solution satisfies the Laplace
equation. It also satisfies the non-linear kinematic boundary condition at the free surface
exactly. The dynamic boundary condition (or the condition (5)) is satisfied to order a2 if
w? =gk and a; =a2/2. Then

2

nS(u) = aoet® + %ezi“ + ...
(16)
- 2
tw R,
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which can be put into (15) to give,
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where we have used that w;o = uj0 + 1510 - The velocity components become
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w10 = Uj0 + tS1o satisfies the equation



2
&cos2w+aocosw—vo+i(w—uo) = (19)

wjo is the solution which is equal to u, on the surface, i.e. when v, = n,(u,) -

We notice that the surface elevation 7, = Re{nS} is the same as the one obtained from
the Stokes second order theory.

We have done some numerical calculations which are presented in Tables 1-6. The
dimensionless velocity #; = vz(w/k)™! has been calculated both from the integral (11),
the formulae (18) and the Stokes second order theory for different values of a, (the wave
steepness parameter) and with the depth d, =4 . When d, = 4, then the contribution
from the bottom to the velocity field in the surface zone is of order 10™* to 107° , and
largest when the amplitude is large. Tables 1-6 show that the difference between the values
of #; calculated from the integral (11) and the formulae (18) is less than 0.5 % when
a, = 0.1, about 2% when a, = 0.2 , and 4-5 % when a, = 0.3 . This means that the
zero wio contributes to the velocity field in the surface zone with more than 99.5 % when
a, = 0.1 , with about 98 % when a, = 0.2 , and with 95-96 % when a, = 0.3 , so we can
conclude that the simple expression for ©(u,,v,) given by (17) is a good approximation
to the integral solution (11). We also notice that the value of ¥, calculated from the
formulae (18) is closer to the integral solution (11) than is the value given by the Stokes
second order theory. Moreover the horizontal velocities underneath the crest (u, = o)
calculated from the integral solution (11) and the formulae (18) are both less than those
given by the Stokes second order theory, (which in deep water equals the Airy solution).
It should be mentioned that is has long been recognized that the Airy solution leads to
horizontal particle velocities in the crest which are too high when compared to velocities
measured in laboratory investigations and in the offshore environment!®°,

Let us consider our solution (17) a little more, and also compare it with the wave model
introduced by Rodenbusch and Forristall®. As most measurements indicate that the Airy
solution predicts too high horizontal velocity in the crest, Rodenbusch and Forristall have
suggested a linear extrapolation method to obtain the wave kinematics in the crest. In deep

water their wave model in the crest reads



w ) \
o il = ﬁao(l + v,) sinu,
w
vz (%o, o) = %—ao(l + v5) COS Ug > for 0 < vy < no(uo) (20)

w .
v oo —k-ao(l + v,) sin u,

Beneath the mean water level (v, = 0) the Airy solution is used. We notice that the
velocity potential in the crest does not satisfy the Laplace equation.

To apply our solution (17) we have to calculate wjo = ujo + 2810 , that solution of the
complex equation (19) which is equal to u, on the surface, i.e. when v, = no(u,) . This

means that u;o and s;g are the solution of the following set of real equations

2
a
—29- cos2ucosh2s + a,cosucoshs =v, + s

(21)

a? . . .
— sin2u sinh2s + a,sinusinhs = u — ug

and with uj;p = u, and s;0 = 0o on the surface. If we put wuj; o = uo and s;0 =0
into the expression (17) for ©(uo,v,) we see immediately that, to order a2, p(uo,v,) is
equal to the velocity potential taken from Rodenbusch and Forristall’s wave model, see (20).
The same is found to be true for the velocity field. This shows that, although Rodenbusch
and Forristall start from the linear wave solution, they obtain a wave model which satisfies
the boundary conditions to order a? on the free surface itself in the crest. However, the
Laplace equation is not satisfied in the crest.

The set of equations (21) is easily solved numerically to obtain ;o and s;o. We have
done some calculations which are shown in Tables 7-12. We write u;0 = uo + Au and
S10 = Mo(uo) — vo + As , where n,(uo) — v, is the distance from the surface to the point
(¥0,v0) in the fluid. The calculations show that the phase wu;o , which is equal to uy on
the surface, varies as we go down into the fluid, except when wu, = o,7 , in which cases
Au = o, which follows directly from eqs. (21). For the other values of u, the phase change
deviates more and more from zero downwards. Also | As |, which is zero on the surface, is

increasing downwards from the surface. Moreover, both | Au| and | As| are increasing
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with the amplitude a,. However, although both Au and As are small in the surface
zone, they are vital in order for the velocity potential to satisfy the Laplace equation.

If now we introduce ujo = uo + As and ;0 = 7o(uo) — vo + As into our solution
and compare it with Rodenbusch and Forristall’s wave model, we find that the two solutions
differ by terms of order a3, a,Au and a,As , and of course also by the fact that our
solution satisfies the Laplace equation but theirs does not. However, the terms of first and

second order in a, are equal in the two solutions.

4. Discussion and conclusion.

The velocity potential has been expressed as a surface integral by using a Green func-
tion technique, and from this integral solution simple analytical expressions for the velocity
potential and velocity field in the surface zone have been derived. Traditionally it is the
Stokes expansion procedure which has been applied to the surface wave problem. If ¢,
(the velocity potential on the surface), dps/dn (the normal derivative of the potential on
the surface) and n (the surface elevation) are approximated to some given order in the wave
steepness parameter a, , then these two approaches (the integral method and the Stokes
method) will give solutions which are more or less good approximations to the exact solution
of the wave problem. It is to be expected that these two approximations will not become
exactly equal, and that the difference between them for a given order of g, dp,/dn and
n will increase with a, , which the numerical calculations also show. It should also be
expected that this difference may become smaller if we go to a higher order of approximation
of s, dps/On and 7.

In this note we have evaluated ¢s, dps/n and n to order a? . It is found that on
and near the surface most of the contribution to the integral solution comes from the zero
wio of Fi(w) = (a/2)cos2w + aocosw — vo + 1(w — u,) . This contribution represents a
simple analytic wave solution valid in the surface zone. It satisfies the Laplace equation. It
also satisfies the kinematic boundary condition on the free surface exactly, and the dynamic
boundary condition to order a? on the free surface itself. Therefore it should be a better
approximation to the wave solution than is the Stokes second order solution which satisfies
the boundary conditions at the mean surface level. (In deep water, which we consider here,
the Stokes second order solution equals the Airy solution.)

Rodenbusch and Forristall® have introduced an engineering wave model which in the

crest predicts better measured wave kinematics than does the Airy solution. Although



their wave model is not based on a strictly hydrodynamic approach and does not satisfy the

2
0

Laplace equation in the crest, it yields a wave field in the crest which, to order a; , is equal
to the one given by our theory. Thus we may say that it has been given a hydrodynamic
justification for their wave model.

There is no problem in going to higher orders of approximation in our theory, and it

should perhaps be necessary in order to improve the results in the cases with large amplitude.
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Table 7. u,, and S,, when a, =
u, = 0
Vo =kz, Uye S10 Ny = Vo
0.105 0 0 0
0.085 0] 0.02002 0.02 0.0507 0.7870 0.0199 0,02
0.065 0 0.0401 0.04 0.0307 0.7886 0.0398 0.04
0.045 0 0.0602 0.06 0.0107 0.7902 0.0597 0.06
0.025 0 0.0804 .08 0.0007 0.7911 0.0697 0.07
0.005 0 0.1006 0.10
Table 8. u,, and 4, when ag =
up = 3n/4 u, =T
vy =kz, Uso 510 Ny =V v, =kz, Yio S10 Vo
=0,0707 3n/4 0 0 =0, 095 m 0] 0
-0,0907 23574 0.0199 0,02 =0.115 m 0.01998 0,02
-0,1107 2.3586 0.0398 0.04 =0.135 m 0.0399 0.04
=0,1307 2.3598 0.0597 0.06 =0,155 T 0.0599 0.06
-0.1507 | 2.3610 0.0795 0.08 -0.175 T 0.0798 0.08
-0,1707 2.3622 0.0993 0.10 =0,195 L 0.0996 0.10
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Table 9. Uy, and Syo when a,= OF2
u, = 0
vo=kz, Uyp 510 Ny =V v, =kz, Uio S10 n, =V
0.22 0 0 0 0.1414 /4 0 0
0.20 0 0.02006 0.02 0.1214 0.7889 0.0194 0,02
0.16 0 0.0605 0.06 0.0814 0.7961 0.0583 0.06
0.12 0 0.1014 0.10 0.0414 0.8034 0.,0974 0.10
0.08 0 0.1429 0.14 0.0014 0.8108 0. 1366 0.14
0,04 0 0.1848 0.18
0.00 0 0.2273 0.22
Table 10. u,, and s,, when a, = OR2
= 3n/4 u, =
Vo =kz, Sy S10 Ny = Vo Vo =kzg Uio 510 Ry =¥,
=0.1414 3n/4 0 0 -0.18 T 0 0
-0.1614 2.3582 0.0198 0.02 -0,20 m 0.01988 0.02
-0.1814 2.3602 0.0395 0.C4 -0,22 m 0.0399 0.04
=0,2014 2.3621 0.0592 0.06 -=0.24 T 0.0598 0.06
=0,2214 2.3641 0.0788 0.08 -0,26 m 0.0796 0.08
-0.,2414 2.3660 0.0983 0.10 -0.28 m 0.0994 0.10
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Table 11. u,, and s,, when a,= 063
u,=0 u, /4
Vo =kz, Yo 510 Ny = Vo v, =kz, Yo Sy N, ~ V%
0.345 0 0 0 0.2121 m/4 0 0
0.305 0 0.0404 0.04 0.1721 0.7966 0.0367 0.04
C.225 0 0.1237 0.12 0.0821 0.8197 0.1107 0.12
0.145 0 0.2107 0.20 00,0121 0.8440 0.1850 0.20
0.065 0 0.3023 0.28 0.0021 0.8471 0.1943 0.21
0.005 0 0. 3745 0.34
Table 12. u,, and S, when a, = 0.3
us 3m/4 mo =T
vy =kz, Yo S10 Ny = Vo v, =kz, Yo S10 N, =V,
=0,2121 3m/4 0 0 =0,255 b1 0 0
=0.2321 2.3586 0.0197 0.02 =0.,275 T 0.01998 0.02
=0.,2721 | 2.3633 0.0588 0.06 =0.315 'rr 0.0598 0.06
=0,2921 2.3656 0.0722 0.08 =0,335 T 0.0796 0.08
=0,3121 2.3679 0.0976 0.10 =0, 355 T 0.0994 0.10
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