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Abstract.

Let d be a positive constant and let fU 1 be an J

sequence of identically distrlbuted random vari

ables. Define a new sequence of variables recursively

by

A cruds model of physical exchange processes* based on the

sequence > is analyzed. The stationary distribution

of , of at an epoch of exchange (,Xn = U ) and of

the time between consecutive exchanges are determined. For

the case where is N(jj,,o‘") , sin asymptotic expansion for

the expected number of years between exchanges as d -4 0 is

sought.

Xf! = max^Xn~l - d > Un )





1. Introduction.

 The model to be considered here was proposed by

Herman G. Gade (Gade 1973) ia connection with his investi

gations of deep water exchanges in sill fjords. Though I

want to discuss the model abstractly (it may be used to de

scribe other physical phenomena), it is useful to have the

following physical process in mind.

The deep water masses of a sill fjord are characterized

by a relatively high degree of uniformity. As a first approxi

mation the density of the water may be considered hcmogeneous

throughout the basin, Various diffusion processes causes

this density to decrease approximately linearly with time.

In this paper I will follow Gade and assume a constant annual

density decrement d .

It is an empirical fact that influxes of Coastal water

into the basin tend to take place at the same time of the

year, thus establishing a recurring phenomenon with time in

tervals being essentially multiples of a full year. The deep

water renewals are relatively rapid events, often completed

within the course of a few weeks. The influx will take place

when the Coastal water at sill depth is heavier than the re

sident water in the fjord basin, I assume that in this case

all the resident water is replaced by water with the same den

sity as that of the Coastal water present at sill depth. The

density oX the Coastal water in adjacent years are assumed
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to be independent, identically dlstributed (i.i.d.) random

variables.

In a forthcomlng paper a more general model wlll be

considered in which also the annual density decrements are

assumed to be i.i.d. random variables, This wlll prove to

be a generallzation of existing models in the theory of queues.

My reason for discussing the special case of constant decre

ment here is twofold. As far as I know, it is only this spe

cialized model which up to now has been used to describe a

physical process. Furthermore, in this special case it is

possible to proceed by relatively elementary mathematical

methods. Thus tfc should be possible to follow the discussion

without being a specialist in complex integral equations.

2. The model.

Let (U | n - be a sequence of i.i.d. random

variables characterized by the distribution function

(Here and in the follov/ing P denotes probability. ) In the

physical model, is the density of Coastal water at sill

level in year number n , at the time of the year when ex

changes tend to take place. We number the yaars consecutively.

In most of the paper the U ’s are assumed to be absolute

G(x) = P[Un sx] ; n = 1,2,
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continuous variables with probability density

eOO « g(x)

Let X o be independent of the sequence (U n ) and

deflne a new sequence of random variables by

where d is a positive constant (the annual density decrement)

It follows from our assumptions that X may be interpreted

as the density of the deep water masses of the sill fjord in

year number n , assuming an initial density X o . (X Q may
be constant).

Equation (1) may be written

U, n
X, n

X n-1 - d

Thus we are led to study the events

A,
 n : u n > X n-1 ~ d (exchange at time n )

Q
A n : TJ n ~ X n-1 ~ d ( no ex chcinge at time n )

Most o 1 this paper is devoted to the study of the pro

cess (X n ; n = 0,1,2,,..) . Some information may be drawn di

rectly from equation (1), e.g.

X Un n

(i) X n = max(U n , X n-1 -d) ; n = 1,2,...

if U n > X n-1 - d

if X „ ~ d § Un~ 1 ~ n
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that is

E(Xn ) g E(Un )

provided both expectations exist. Here E denotes expecta

tion, e.g.

Thus the expected density of the resident water in the fjord

is greater than or equal to the expected density of the Coastal

water.

Furthermore, is easily seen to be a Markov pro

cess. That is, the conditlonal distrlbution of X , given

xk ,xk+r '• ’ jXn-1 (k<n~ 1 ) is independent of *• • • >\-2

This is immediate from equation (1). It is well known that

all the information about a Markov process can in principle

be obtained from the initial distrlbution and the transition

probability functlon

In general this function depends on n , but here v;e have a

so-called homogeneous Markov process where P(x;y) is inde

pendent of n . We find

co

E(Un ) = J x-dG(x)” 00

P(x;y) = P[Xn s y | = x]
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P(x;y) = P[rcax(Un ,Xn _ 1 -d) s y | = x]

(3)

where
1 if t s 0

V) I(t) -
0 if t < 0

Here v/e have used the fact that X , and U are inden- « n

pendent, slnce X depønds only on x<y 11 -j

through equation (i).

In a corresponding v;ay we flnd the n step transition

probability function

which is independent of k

(4)

= p t un *y * Xn-1 sy+ d 1 Xn-1 “x 3

= G(y)l(y + d - x)

P ' (x; y ) = P[Xk+n syj Xk =x] , (n = 1,2,...) ,

= P[tnax(Uk+nJ Xk+n _ rd) s y [ XR = x]

= PfmaxfU, , ,U, , , ~d.X, „-2d) s 7 I X, =xl1 v K+n J k-m- 1 1 k+n-2 * ~ * I k J

= P[max(Uk+nJ Uk+n_ 1 -d,... 5 Uk+1 -(n-l)d J Xk-nd) s y|Xfc = x]

= p l xk sy + nd,\+n _ (1 s y +Jd, (j-Oj 1,. . . ,n-1) (X, c =x]
n-1

= I(y + nd - x) f| G(y + jd)
j=0

with I(t) given by (J,).
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Statlonary distributlon.

Therefore the following limit always exists and is inde

pendent of x

(5)

It is easily seen that 0 g F(y) g 1 for all x and

$ F(y) when x< y , Let have the distribution

function F q (x) . Then by dominated convergence

(p)

The following theorem is the main result of this secfcion.

It may be generalized to the case of random decrements (see

Helland, 1973).

When n-> oo , l(y +nd - x) -> 1 for all x and y
n-1

the sequence ([| G(y + Jd), n=*l,2, decreases monotonically
J=0

n n-1 n-1

n G (y + J d ) = G (y + nd ) f] G(y + Jd) g f[ G(y + Id )
J=° J=0 J=0

00

F(y) = lim P n (x;y) = f[ G(y + Jd)
n ”*“ J=0

rø

lim P[Xn Sy] = lim / P' (x) ~ F(y)
n -4co A n -4 co °X~~ co
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F

Theorem 1.

(i)

functicn and {Xn ) converges in lav; to the dlstribution

(ii)

Femark.

With U* is rneant max(0,Un ) . E(u*) is of course

independent of n , since the dlstribution of Un is. The

term convergence in law is used in the usual probabilistic

sense. It simply means that (6) holds ( in general for all

y where F(y) is continuous), where F is a dlstribution

function.

Proof.

V/e have to show that F is a dlstribution function v/hen

is finite. Now we have already remarked that F(y) is

bounded by 0 and 1 and is monotonic in y . It is also

easy to see that F(y) is continuous from the right. When

G(y) = 0 it is trivial, olherwise show by monotone convergence

if E(U|) <oo , then F (y) is a dlstribution

If E(u|) = « , then

F(y) = lim P[Xn £ y] = 0 for all y .n-4»
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Furthermore F(y) g G(y) so that F(y) 0 as y^-co

Therefore F is a distribution function if and only if

No w

é 1

and

co

lim log F(z) - lira V log fx(z+Jd)

n y Z F fis b

co

\ lim log G(z+jd)

j=0 z &

00

V log G (y+Jd) = log F(y)
J=0

co

lim F(y) = lim j]c(y+Jd) = 1
y_> + oo y~> +oo j_q

00

F(y) = [[ G(y+Jd)
J=0

co

= |] (1 - P[U 1 > y + Jd])
J=0

02

V > y + J<3]

J=0
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VJhen

thus

where

real

+ 00 ,

all

00 00W

Y p[u 1 > y + Jd]
jY)

E(U{) <oo , the last expresslon tends to 0 as y

proving (i) of the theorem.

The proof of (ii) Is similar.

we have used the fact that 1 - t $ exp {-t) for

t

As in the first part of the proof we find

V \ P[kd <u t - y s (k+1)d]
/=0 k=J

oo k

\ y P [kd <U,- y s (k+1 )d]
k=0 J=0

00

V (k+1 )P[kd < U - y s (k+1 )d]
k=6

co

=g- )kd P[kd <U 1 - y s (k+l)d] + P[U, > y]
\ko

S-J E((u ry) +) + P[U 1 >y]

co

0 s F(y) ={] ( 1 - P[U 1 >y + Jd])
j=0

co

exp | P[U 1 >y + Jd]|
/=0 J
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Assume from now on that E(u|) is finite. The following

proposltion shows that when we have an initial distribution

F (y) = F(y) , all the variables have the same distri

bution F(y) . This may be deduced from more general theorems

on Markov process, but the direct verification in the present

case is simple.

Prooosition.

V/hen < +oo , F(y) is a stationary distribution

in the sense that

(7)

Proof.

The right-hand side of (7) is

06 06

> y + jd] = - y (k+l)d P(kd < U, - y s (k+1 )d]
J=0 k=0

2 £ E((u,-y) + ) = + -

v/hen = +<» . Thus F(y) s 0 and the proof is complete.

00

F(y) = JP(x;y) dF(x)- 00
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U 1

Usually it is difficult to gst an explicit expression

for F(y) from (5)- Koweverj the following example is easy

to handle.

(8)

The probability density for U 1 is

(9)

For later reference we need the expectation and variance of

00 00

I p (x;y) dF(x) = J G(y )l (y+d-x) dF(x)
~C0 - co

G(x) = exp {-a e" ox ] , a,b >0, -«< x < »

*g(x) - G» (x) - ab exp [-bx-a e~bx }
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0,5772

bxa e

CO
i V)

EfU.j) - ab J x exp {-bx-a e
— oo

r- (in a+C)

where 0 is the Euler-Mascheronl constant

rø
- -Z ,In z e dz

o

We have made the change of variable x -> z

Similarly we find

_L2b

where

= - i/m (f) e" zO

m

C = lim [ \ J - In m]m—* rø * *

oo
o C O _V) y

E (u^) =ab j x c' exp (-bx-a e )dx
- co

00

J (in z- In a) 2 dz
o

1 2
= -W (s+2C In a + (In a) )

b"

CO 2

(3 = J (in z)'' e" z dz = -r- +
o
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The relevant integrala may be found in any large table,

for istance Erdélyi et al. (1950* The variance of is

which is independent of a

The stationary distribution of (X ] is found fromIx

(5) and (8)

(e -bd)k|
do)

Thus under stationary conditions

> E(U n )

The stationary probability density f(x) for [X n ]

is given by an expression similar to (9)* In fig.1 and

o 2 = Var (U,) = — (p-C 2 ) =2L
1 b c 6b 2

oo

F (x) = [j exp |-a e ~k(x+xd)\k=o J

00

- exp i~ a e~^ x \
v, l~- — }k~o

= e *p } = GX P {- a 1 e ' bx }

V\ i
vmere a, = a(l-e )

E(X n ) = 1 (In a r C) = a-C-ln(1-e" bd A

2
Var(X ) = Var(U )

n 6b £ n
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fig.2 f and g are drawn for the two cases = 1 and

~ ~ 2 , a ~ 1 in both cases.d J

4. The exchanges.

From the model (i) we see that the process (X^)

(denslty of resident water at time n) developes as follows

X

(s up

(s U 2 )

(11)

where Is the year of the first exchange. Assurne that

the exchanges take place in the years , N. -i- ,

-f- -f iL, and so on. We then have to study the associated

process:

(nuraber of years between

suocessive exohanges)

k’th exchange)

0

X, = X - d1 o

X 2 - X o - 2d

x n,-i = x o - <* u N r i>

X N, “ U N, (> V N 1 d )

X !i j+ 1 = U N 1 ' d '

(\ ; k = 1,2,...}

{S k ; k = 1,2,,..] with \ - U N +N + ..,+m1 ei K

(the density of water at the
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These two processes være also studied in Gade (1973)•

We shall attack the problem by different means, which give

explicit formulae for the relevant stationary distributions

First of all we want to find the probability of ex

change in year n , given nothing but the initial density

distribution (that is the distribution of X Q ). This pro

bability is

where F , is the distribution function of X 1 andn-1 n-i

We have utilized the independence of and U n

From nov; on as sume that E(U ) <co and that G is

continuous. Then from (5) the stationary distribution fune

tien F is continuous and

Therefore from (12)

F |(x) «lim F (x-h)h i,o

lim = F(x) for all x
n~> oo
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(13)

rr A is the stationary probability of exchange in a given year.

Now turn to the density of water at exchange. It is

easy to see that (S k ; k = 1,2,...) is a Markov process,

but the transition probability function is cumbersome to

handle (see Gade (19725 formula (8) which gives the deriva

tive of this function). Therefore we will find the stationary

distribution function T(x) of directly. As sume that

stationary conditions have been reached, that is, all the

(14)

X
-1

7r A F (u-fd )dG (u)
oo

v/here again F is continuous and we have used the indepen

dence of X R _ 1 and U n . By combining (5), (13) and (14)

00r
= lim P[ A ] = / F(u+d)dG(u)

n~> co ' — 00

variables X R , n = 1,2,... have the same distribution F(x).
Then

T(x) = P[S k s x]

= P[X„ s x I A ]1 n 1 n J

P[(-X n sx) r. (U n > X n _ 1 -d)]

P[Aj ~~~

= 7r~ 1 P[ (U n sx) n (X n _, < U n +d)]



• ' ‘• ’  . /\r:;
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we can give T(x) directly in terms of the given distri

bution G(x) :

(15)

When T(x) is known, we can also find the probability

distrlbution of the number of years between two successive

exchanges. First assume that X ~ y is constant. Then

we find by simple inspection of the scheme (11) :

P[N 1 - n]X o - y] - Q(njy)

/m r \
Oo)

n- 1

* { 1 - G(y-nd)) [] G (y-Jd)

This formula is also given by Gade (19T3) (formula(6)), and

it is valid whether or not an exchange takes place in the

year 0 ,

Under stationary conditions the probability that two

consecutive exchanges are separated by n years will be

x r -
/ l [[ G(u+Jd) - dG (u)J M=1 J

T(x) = -00 CX)

J | I] G(u+Jd)j dG(u)- 00

- js y~d,U 2 g y-2d,. . . ,U n-1 å y-(n-l)d,U n > y-ndj

J-1
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00

Q(n) - Q(n;y)dT(y)
00

(17)

from (16) and (3).

Alternatively

(18)

The (stationary) expectation of N isKl

oo co

P [N, a nlKl

By a change of variable and partial integration in (18)
we find

00 11-1

/{i “ G (y-Rd ) U"" f] G (y-jd ) i F (y+d )dO (y )L J L-?~i J- CO

00
r r „ CO CO

= W A / 1 gTTT Fl G (y+Jd) - qT-j II G dC-(y)
- » ‘ J=-n+1 J=-n J

co
= '"'Å 1 J { F (y- nd+d ) - F (y-nd)l —~ CO

00 oo

FN k £nj = ) Q(m) = tt” 1 J F(y-nd+d)
r rT=Tn - oo

n = V n Qfn) = V
L-j

n-1 n=1
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Therefore

or by (13)

(19)

The result n ~ 1 is also valid in the general model with

random decrements. This was indicated in Helland (197,3) and

will he proved rigorously in a forthcoming paper.

By methods similar to those used above, we could find

other quantities of interest., e.g. the (stationary) variance

of N, , the correlation between N, and N. (k 4* j ), theK X J

probability distributlon of the increase of the density of

water by exchange and so on.

00

P[N n] = tt7 ! / F (y+d) cl [In G(y+nd))R j
- eo

co

I In G (y+nd) dP(y+d)
“ 00

co co

n= - 7T^ 1 j 2 111 G (y+nd) dF(y+d)
- co n= 1

co

 n~ k 1 J In F (y+d) dF (y+d)
— CO

1
lr A 1 J lnX dx = W Å 1o

co

n = j F (u+d) dG (u )jj“ co



. i .  3- -i 9rlO  

: . , . .... ‘



20

Example (continued).

Wh en G(x)- is given by (8) and F (x) by (10) we

find by straightforward integration

(20)

(, - ) exp { }

Therefore from (13)

(21 )

and from ( 19 )

(22)

2where o is the variance of U In fig.3 n is drawn1
as a fim ct ion of : ?-

From (14), (20) and (21) we get

by (10). That is, and { have the same stationary

distribution. In fact one can show* that this property nearly

characterizes the special distribution (8). More precisely.

X X

J F (u+d) dG (u) = J exp | |. ab e~ bu du"00 — 00

, -bd
7T A = 1 - e

~ f. , -bd\ 1 f . j rrd 1

)  ('"“rwtrj

T(x) = exp \ - F ( x )
L i~e Q J
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if G (x) is such that T(x) - F (x) 9 then eit her is

concentrated on an interval of length less than d (in which

G(x) « exp - a(x) e DX |

vfnere a(x) is periodic with periode d and such that G(x)

is monotonic and continuous from the right. The proof is

straightforward, but cumbersome, and will not be given.

The stationary distribution of is also easily

found in this case. By ( 18 (8), (10) and (21) we find

That is 5 under stationary conditions is geometrically

distributed. From this we find again (22) and

(24) Var (N k )

case 7ip =1) or

e- bd

“ (1 - e' hd ) 2
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For other distributions than (8), the evaluation of

F (x) , T(x) , etc. is not so simple. Take for instance

U.j to be normally distributed. Without lack of generality

we can take the mean of to be zero (translatlon off all

the variables u n * wlll not alter the raodel). Then

(23)

2
where o is the variance of U, , 0 is the standard nor

mal distribution. From (5) we find

(26)

(13) gives

(27)

Flnally, the correspondlng probability denslties f(x) = F* (x)

ajid t(x) =T' (x) are

x _ jbf_

G(x) = f e 2 °~ dt =<!>(-) ,
J sT2tto- oo

co _ ,

F(x) = f] 4>(f + k -)k=o

2co co Z

TT ft = J P(y+d)g(y )dy =J| [1 o(z + k -)| ; e £ dz-00 - CO

(14 ) gives

£ 2
,_ x co _ z

(28) T (x) = Tri 1 /f (u+d)g (y )dy = tt~ 1 f| f| ®(z+k -) l e‘ dz
-i L k=1

(x+kd)^CO 00 2~ —
<») rt») - I feSj»w -»<«>I • 20 R Si *(|* k l>rk-o k=o
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(30)

The last two expressions have been evaluated numerically

for = 1,2 and 4 and the corresponding curves are shown

in fig, 4, 5 and 6.

Asymptotic expansions.

This section is maternatically a little more involved

than the previous ones. However. it is simple to pose the

problem: Is it possible to find sirnpler, approximate expres

sions for quantities characterizing the model when d is

small? Physically we should expect the fcllov/ing when d -» 0

As the annual decrease of ths density of the water becomes

small., the expected number of years between successive ex

changes should increase, Hence the probability of exchange

in a given year should decrease. Pinally, exchanges take

place only when the density of the coastal water is extremely

high, therefore the expected density of the exchanged water

will increase.

First of all we must make precise what we mean by small

d . The model is in general determined by d and the dis

tribution function G(x) of U. , hence small d should

2x

t(x) = n^ 1 F(x+d)g(x) = e 2ct j] $(-- +k -)
it a v2to' k= 1



 - -
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mean that d is much less than some parameter characterizing

the distribution G(x). It is easy to see that is

irrelevant in this connection rnay he changed arbi

trarily by translating all the variables U n *X n etc ).

Usually by small d we will mean

expresslons which vie are going to develop are not simply func

tions of å/o , but depend on the detailed form of G(x) .

Assume that E(u*) is finite and that G(x) is absolute

continuous with probability density g(x). Then (see (3)*

(13) and (19))

(31)

02)

The infinite products occuring here are difficult to handle

analytlcally. By taking logarithm these may be expressed by

means of infinite sums f which in turn may be approximated by

integrals when d is small. In this v;ay vie get the following

d
-« 1 ,o

p
where o~ = Var (li,) . Note ,, however, that the asymptotic

co

F (x) - [T G (x+kd)
k=o

co

7 r A = (n)~ 1 = J |[j G (x+kd) j- g(x)dx- 00 '



r ; •' ' \



25

Theorem 2.

Let E(ll|) <co and let G(x) have ccntinuous second

derivative in (- oo,oo). As sume that the density g(y) 0

uniformly in x when x £ c for all c > a , and

00

(G (x) ) 2 exp jd~ 1 J [In G(y)] dyj- g(x)dx (l-fO(d))
x

F(x) - exp i
l

and the sum converges because <co (cf. Theorem i).

First we have to show

(35)

uniformly in x (x c) as d 0 . To this end use the

as y rø . Let a g [-»,<») be such thafc G(x) = 0 when

x g a , G (x) > 0 when x > a (eventually a = - «). Then

oo

F (x) = v'G (x)' exp «Jd~ 1 J [In G(y)] dyj- (1 + 0{d))x

From (31) F (x) ~ 0 when x £ a . When x > a

m

In G(x+kd)|
k=o

00 00

) Xn G(x-i-kd) = d~ ** J [In G(y)] dy + -|ln G{x) + 0(d)
k-o x
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where x+kd < <x + (k+1 )d . This may be shown by

approximating the area corresponding to the integral by the

area of a trapezoid and estimating the error. (Cf. e.g.

Conte p.122). Now put

(y c)

Then the trapezoldal formula may be written

+ T2 h k )

Since g(y) 0 as y-»00 , also cp(y) -» 0 as y <» and

cp(y) wlll be uniformly bounded for y o [c,oo). Therefore

uniformly in x (x c) By adding the equations (37)

trapezoldal formula

x+(k+1)d

J In G(y) dy =— In G(x+kd) +In G(x + (k+1 )d)
x+kd L J L

d 3 fd 2 , ., .
12 L dy 2 (y) >=n k

<p(y) =|ln G(y) =

x+(k+1 )d

(37) iIn G (x+kd) + iInG (x + (k+l)d) = d~ 1 f Fin G(y) !dy +
J L Jx+kd

00 co

d X = I 9 ’ dy + °^ 1 )= - <?(*) + o(l) = 0(1)
k=o x



T?jO
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, (36) follows.

Put

r(x) « -

Then r and s are nonnegative and from (36)

Finally (34) is proved by noting that

for k - 0,1,2,

00

In G(x+kd)
k=o

00

s(x) ~ - d" 1 [ [In G(y)]dy - i In G (x)J
x



/

' - ,  

\cf b ' u 'f'  ' ' *'*' j :
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dx

is

00 c oo

m g(x) dx ffftr g(x) dx +W A
a a c

Since from (31) Og 1 > we can make the first inte

gral as small we wish by taking c small ønough. In the

second integral we can replace F(x) by the uniform asymp

totic expresslon (33) • The proof of the theorem is completed

by letting c a .

To analyse (34) further, we want to change the inte

gration variable from x to

(38) z

When x grows from a to 00 } z will decrease monotonically

from

00

(39)
a

to zero. Let b e (a,oo] be such that G(x) = 1 when x£ b

G(x) < 1 when x< b (eventually b = co). Then the upper

integration limits co in (33), (34), (38) and (39) may be

replaced by b . When a<x < b , In G(y) < 0 and the

transformation (38) is one-to-one. The inverted transformatlon

(40)

v/here \|/ is differentiable, Straightforward change of variable

«o

J [In G(y)]dy , (x >a)
x

h = [In G(y)]dy

x - \|r(z) , 0<z < h ,





29

2

in (34) gives

(il)

By combining this with a well known result from the

theory of asymptotic expansions we get the following

Theorem 3-

Let G(x) and g(x) satisfy the conditions in theorem

Let \j/ be given by (38) and (40), Suppose that we can find

an asymptotic expansion

.!/ i z
(42)

G (\|/ (z)) In G (']/ (z))

and that each $ n has a Laplace transform

for sonie t s 0 , Suppose that

for each e > 0 and each n . Then

I _ e - d " 1z dz{l+0(d))
£ CzTT InG (\l/ (z))

\ 3. (J) (Z j } Z —>0/ n n' 1J
n

co

r n (t) = J<f> n (z)e - " z dz , at Q
o

» X
e'" 3? (fc } —> co as

tt a - ya n r n (cr ! ) (i + 0(d)) , d-> 0
ri



!
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Proof,

The integral in (41) is the Laplace transform of

-1
as a function of d , Theorem 3 is therefore a simple

consequence of (41) and the theorem on pp. 31-32 in Erdélyi

(1956).

Example.

The last two theorems may easily be applied to the

special distribution (8) discussed in section 3 and 4. How

ever, here the results are of little value, as we already

have closed expressions for tta and F (x). Instead we will

consider the oase where is normally distributed. As be

lore we can take the mean to be zero. Purthermore, from (27),
-1

ti£ is a function of do only. Therefore, without lack
o

of generaliby, we can take the variance a of U 1 to be

unity. Then

x x?'

G(x) = $(x) -—— / e 2 du
v/2tt — 00

2

g(x) - -L- e‘2~
v 2n
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and these functions satisfy the conditions of theorem 2 v with

a 00

From this theorem we have

(43)

where

(44) e(x)

by partial integration.

Now 6 (x) > 0 for all x and ø(x) -> 0 as x » .

Therefore, as d 0 , the important contribution from the

integrand in (43) comes for large positive values of x , We

know that <$>(x) -» 1 very fast as x-> 00 . Therefore we rnay

safely neglect the factors <6(x) and $(y) in the denorai

nators in (45) and (44). Also v/e may neglect the integral

from -co to 0 in (43) This gives

(45)

where

2
x

03 ~ ~ „ -i

St e " e(x)dx(1+0(d))“CO ' 1

2
oo ro — —-

/ In <j>(y) dy =x In $(x) +— — / r- dy

CO X 2

tt a ~ ~~~ Ie " e" d e '\M cixv 2tt

2 200 v_ X
('io) =x In o(x) -f ~~ Iy e fly =xIn $ (x) + —-— e

•ten' i V&tt
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To simpllfy (45) further, it is natural to utilize

the well-known asymptotlc expansion

(47)

(Cf. e.g. Dettrnan (1965) p. 451-32). This gives

(48)

Note that the approximation obtained by only taking a finite

number of terms in (48) is coarser than the one used in

going from (43) to (45).

From now on the rest is only technicalities and is

defered to the appendix. By change of variable from x to

u •- in (45) and by means similar to those used in proving

theorem 3j we find an asymptotlc expansion for tt* asA
d-> 0 . I choose to state the result in terms of

the expected number of years between consecutive exchanges

under stationary conditions. Also, we allow U 1 to have a
p

general N(p,o ‘ )-distribution, that is, we replace d by
d o . To three terms the pynan?,inn isTo three terms the expansion is

2
x

$(x) ~1- —e “ ~— + -2- _ 15. + 1 ( x \
\ l x 3 ' 5 7~’ * * ) (x —> co jv \ X ( /

e1(x) ~^? e ' + •••) (x^“}

n = ' = E(N k ) ,



 

;    •" : ;: r;  : --   
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where

(Euler-Mascheronl constant).C * 0,5772

In fig.7 and fig.8 the right-hand side of (49) with

1, 2 and 3 terms is drawn as a function of o d~ 1 Thls is

compared with a few exact values of n calculated directly

from (27) and with Gades M semiemplrical n formula.

(50)

6. Conclusions

The purpose of this paper was to analyze a concrete

stcchastical model. In general the model was determined by

a constant d (the annual density decrement) and a distribu

tion function G(,x) (the distribution of the density of Coastal

water in the physical interpretation). We succeeded in flnding

expllcit expressions for many quantities characterizing the

model : the stationary distribution of the density of the re

sident water (5), the stationary density-dlstrlbution of the

(49) n = — (\+ -to-P. +a ~ 1 + 2 C? lnp+3a-5) 2 + tt 2 +22 Q /Ir.p pN
a/p v p 12 P 2 p /

'P = m (f) 2

a = In '/ST - C » 0,3417

s H

n « 1 + 0,729 (f) 2



• ‘ f- '*
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water entering the basin (15), the expected number of years

between exchanges (19) etc. Mostly these results depended on

the detalled form of G(x) and were rather difficult to ana

lyze. Sqme results were remarkably simple, however. For

instance, when G(x) Is absolutely continuous with probabi

lity denslty g(x) , frorn (u) the probability density of the

water entering the basin is

(51)

The normalizing factor n = may in principle be found by

requiring the area under t(x) to be unity. This is to be

compared to Gades procedure, finding t(x) by solving numeri

cally a complicated integral equatlon.

Also, lt is interesting to note hov/ thing simplify vinen

G(x) Is the special distributlon (8). This distribution re

sembles somewhat the normal one (see figs.1 and 2), and may

be useful in applications.

When G(x) is the normal distribution, we do not find

as simple answers, One main result here is the asymptotic ex

pansion (4-9). To three terms it seems to give a better appro

ximation to n than (50) vinen o d >5 • Still more invoor

tant, however, is that it indicates that the behavior of n as
•” 1

s~ o d -> co is not like s a (a <1) , but rather like

s(ln s) , that is, only a slight deflect from llnearity.

- “
t(x) - tt a g(x) [j G (x+Jd)
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Appendix.

Here I want to fill in the gaps in the derivation

of (49) from (45) and (48).

Put

(52)

where (x) is given by (46). Then

as x-> co from (47). Therefore

2
X

|-®<! (* *k - J(55) (x -* 05 ) .

(54) mA -
o

(52). From (48)The problem is to invert

u = e (x)1

2 2_ x_ x
du = ln *(*) + *J§JL
dx •J2tP <5 (x) V5P

2 2 2

1_ e'?~ (1 --L+\T • • V x
V2? Vx x3 x,5 ; vy

Note that u .[0 as x » and is negative when x 0
_ i_

When x= 0 u - . Therefore from (45) and (53)

(2?r)~ 2 <
f f / N , 1 2 1 -du.



.
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u ,ou

or

(55)

Put w 2 In u and take the logarithm in (55). This

gives

In x 2 ~ In w - ihlVI

Insert this in (55) to get

In ( J~2~\ w)) ~ - 4 In ( -/2tt w ) + 6x w 5 -
2.

0 22 w

Inserted in (54) this gives

(2tt) 2

(56) tt a ~ J| JZ

v' 2?t w

\Tw

1

o

In ( n/2tt w)) *~ -_6In ( n/2tt w) + 10 1 ~d~^
1 J 622 w

where

w 2 In u

In u ~ -In x 2 -In s- + — ( x 00 )
x c x 4 (u -> 0)

x 2 ~ - 21n u-2 In 72? -2In x 2 - +1|X x*

In x 2 ~ In w + In (1 - --- — - )w w 1



t
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To perform the integrations in (56), we change variable
-1from u to t = d u « Then

where

p « - 21n d -> 00 as d 0

The factor in curly brackets in (56) has the following

asymptotic expansion as p cc

Now for each e > 0 the factor in curly brackets in (56)

is bounded in absolute value by u~ £ as u_» 0 . Therefore

the part of the integral from 0 to is bounded by

w = - 21n t - 2 In d = p - 21n t



! • *
 r
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'j
when e <-j • Neglecting corrections of this order, we may

multlply (57) by e , integrate from 0 to co to get

Here we have agaln utlllzed the definlte integrals

which we used to find E(U 5 ) ard E(u 2 ) in the first exanple

in cection 3. The order of the first neglected term may easily

be checked. From (58) we find n= rf and replace d by

da ‘ to obtain (49)-

. 4^ . o (å)o o y

(58) r k ~ d (i - -C - 1

2
(ln(sTSp)) 2 - 6ln(/S?p) +10+ C 2 + +6C- 2C 1  

2p 2 '
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The statlonary dlstrlbutlon of the density of Coastal

water (g) and resident water (f) when

G (x) = exp(~e~bx )

o _ 7T __ ,
d" bd =
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The stationary distribution of the density of Coastal

water (g) and resident water (f) when

G(x) = exp(-e~bx )
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6 td VF





The (sfcationary) expected nurnber of years between

consecutive exchanges when

G(x) = exp(-e dx )

as a funcfcion of

O _ 7T

d bd se





Faj  h.

Tne stationary distribution of the density of Coastal

water (g) , resident water (f) and exchanged water

(t) when

u, ~ N(0,o2 ) , f= 1





The statlonary distrlbution of the density of Coastal

water (f>) s reoioent watep (f ) and exchanged watep
(t) when

cr

Eio. 5, lill Ml III III l-«>j g- -4

U 1 ~ N(0,o 2 ) , ~= 2





The statlonary dlstribution of the denslty of Coastal

water (g) , resident water (f) and exchanged water
(t) when

U 1 ~ N(°>a2 ) , -1 = 4





ihc (stationary) expected number of years between conse

cutive exchanges v/hen ~ as a function of o/d

Crosses: Exact values, calculated from (27).

Dotted line: Gades approximation (50).

a 1 J a 2-’ a3 : The asymptotlc expression (49) With 1, 2 and
3 terrns.
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Enlarged portion of fig.7.

Dciohcd line: Drawn through exact_, calculated values.










