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A SPACE DECOMPOSITION METHOD FOR PARABOLIC EQUATIONS

Xue-Cheng Tai

Department of Mathematics,
University of Bergen,

Alleg. 55, 5007,
Bergen, Norway.

ABSTRACT. Convergence proof is given for an abstract parabolic equation using general space de
composition techniques. The space decomposition technique may be a domain decomposition method,
a multilevel method, or a multigrid method. It is shown that if the Euler or Crank-Nicolson scheme
is used for the parabolic equation, then by suitably choosing the space decomposition, only O{\logr\)
steps of iteration at each time level are needed, where r is the time step size. Applications to overlap
ping domain decomposition and to a two-level method are given for a second order parabolic equation.
Analysis shows that only a one-element overlap is needed. Discussions about iterative and non-iterative
methods for parabolic equations are presented. A method that combines the two approaches together
and utilizes some of the good properties of the two approaches is tested numerically.
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§ 1. Introduction

In this article, wc use space decomposition techniques for the abstract parabolic equation

(1.1)

Here, 5 is a Hilbert space and a(u, v) is a bounded bilinear, symmetric, and positive definite form
on the Hilbert space V. A space decomposition method refers to a method that decomposes the
Hilbert space V into a sum of subspaces, i.e.,

It was observed by Ku [28], see also Tai [20], that the domain decomposition methods, multilevel
methods, multigrid methods and substructuring methods can all be viewed in some way as space
decomposition techniques.

The above mentioned space decomposition methods have been widely used for elliptic problems.
When they are used for elliptic problems, they give two benefits. Firstly, by suitably using the
space decomposition methods, the original elliptic problem is reduced to a number of smaller prob
lems, and these smaller problems can be computed in parallel. Secondly, the space decomposition
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[^A +a(u,v) = (f,v) s , VveV ,te[o,T],

w(0) = uq € S.

V = Vl +V2 + ... + Vm , ViCV .
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methods are iterative methods. In the iteration procedure, they produce good preconditioners. So,
in order to reach a certain accuracy, the iteration number can be greatly reduced. See [I], [3], [4],
[s], [6], [B], [28] etc.

It is possible to use space decomposition methods for parabolic problems in two ways. Firstly,
one could use a time stepping scheme to discretize the time variable. Then, at each time level an
elliptic equation must be solved, and one could use the space decomposition method for this elliptic
equation. We shall call this the iterative approach. This approach was used in the pioneering work
by Lions [17]. Recent advances have been made by Cai [7], Dryja [12], Ewing, Lazarov, Pasciak and
Vassilevski [13], [14], Kuznetsov [16], etc. Secondly, one could combine the space decomposition
with the time stepping in such a way that the space decomposition is integrated with the time
stepping. This will give a "blockwise implicit" time stepping scheme. We shall call this the non
iterative approach. For overlapping domain decomposition, this approach has been used by Blum,
Lisky and Rannacher [2], Rannacher [18], Jager, Hebeker and Kuznetsov [15]. For nonoverlapping
domain decomposition, it has been used by Dawson, Du and Dupont [11], Dawson and Dupont
[10].

For the non-iterative approach, as was shown in [2], and [11], [10], it is not necessary to perform
any iterations between the subdomain problems at each time level. The subproblems need to be
solved just once and we can then proceed to the next time step. This saves computing time and
also communication cost when used with parallel processors. The essential idea in [2] is that when
a new time level is reached, an extrapolation procedure is used to get the boundary conditions for
the subdomain problems from the previous time levels. However, this will produce errors that will
explode exponentially. Then by using the property that the errors at the subdomain boundaries will
"decay" exponentially into the interior of the subdomains, a convergent algorithm is obtained by
taking small time steps or by using large overlapping area. In [10] and [11], nonoverlapping domain
decomposition is used with the Euler scheme, and the boundary conditions of the subdomains are
predicted by an explicit Euler method.

Both of the two approaches have advantages and disadvantages, see §6. In §6, we show a method
to combine these two approaches together and to utilize some of the good properties of the two
approaches. Numerical experiments are presented for this combination.

In this work, the iterative approach for parabolic problems is followed. A convergence proof is
given for an abstract parabolic problem for general space decomposition techniques. When this
general theory is applied to domain decomposition methods, we obtain algorithms which are the
similar to the additive Schwartz method. By suitably choosing the time step, and in a two-level
method by suitably choosing the coarse mesh size, the error reduction per iteration of the resulted
algorithms is independent of the fine mesh size, the coarse mesh size, the number of subdomains,
and the time step size. Numerical tests will be given which support the theoretical predictions.
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§2. Preliminaries

Wc consider the following abstract parabolic problem

(2.1)

Above and later, (•, •) denotes the inner product of the Hilbert space S. The Hilbert space V can
be imbedded into 5. The bilinear form a(-, •) is bounded, symmetric, and positive definite on the
Hilbert space V, i.e. a(u,v) = a(v,u) for any u,v € V and there exists A > 0 such that

(2.2)

Here, || • || denotes any norm for the Hilbert space V. Due to this special property of a(-, •), wc use
the following inner product and norm for V

For space decomposition, it is assumed that V can be decomposed as

(2.3)

The above decomposition means that if Vi 6 Vi, i — 1,2, ••• ,m, then Y^JiLi vi €V, and on the
other hand, for any v € V there exists v, € Vi (which may not be unique) such that v = £Z™ x vi-
For the space decomposition (2.3), wc assume that there exist constants Cl > 0, Cs > 0 and
Cv > 0 which satisfy

(2.4)

For any general space decomposition, one can always find such constants; see Lions [17, p.7].
After decomposing the space V, wc can search for a solution in each subspace Vi iteratively, and

in the limit the sum of the solutions in the subspaces will converge to the solution of the original
problem. The following two algorithms are a combination of this space decomposition iteration
with the Euler and the Crank-Nicolson time stepping.

Algorithm 2.1. (Euler space decomposition).

Step 1. Set u° = ug, and choose cv such that o<q< Qj < 1 and i=l eti =l-

Step 2. At time level n, for k = 1,2, ••• ,s, do: for each k, compute ut ' in parallel for i
1, 2, •• • ,7n such that u{ ' — un+ ~^~ €Vj and

(2-5)

Step 3. Set

If k = s, then set k = 0, n = n + 1 and go to step 2 for the next time step. Otherwise, go
to step 2 and compute the new value for k = k + 1 .

f (-^,vj+a(u,v) = (f,v), VtjGF
[ w(0) = Ug G S .

|a(U , V)|<A|H||H|, Vu,veV,

a(u,u)> A" 1 !^!! 2 , VuGV.

(u,v)v — o,(u,v), Vu, j; 6F,

IHIv = y/a(v,v), Vy GV.

V = Vl +V2 + ... + Vm .

m

Vy € V, 3vi G Vi such that tj = Y^ Vi and
t=i

m
Elklll <ClNI|,t=i
m

i=i

p'r U\vA + a(u?+*,vi) = (fn+ \vi), Vvi 6Vi

m
u"+*=£X+* . (2.6)i=l
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Algorithm 2.2 (Crank-Nicolson space decomposition)
Step 1. The same.

n+-
Step 2. At time level n, for k = 1,2, ••• ,s, do: for each k, compute ut ' in parallel for i

1, 2, ••• , m such that u{ ' — w*1"1 ~G Vi and

(2.7)

Step 3. 77ie same.

In the above algorithms, ris the time step, /n+l = f((n + l)r) €5, /"+ 2 = /((n + |)r) €5,
the number i is the subscript of the subspace Vi, n indicates the time level, s is the number of space
decomposition iterations that wc shall perform at each time level, and k is the counter for the space
decomposition iteration. If s = 1, the algorithms are one-step space decomposition algorithms. In
the following sections, wc analyse how large 5 should be.

For the sake of analysis, it is convenient to introduce a constant Cd and a r-dependent norm

(2.8)

In (2.8) above, a is the constant in Step 1 of the above two algorithms. Later in the analysis, the
generic positive constant C, which does not depend on the time step r, the time level n and the
finite element mesh sizes in §5, may differ from context to context.

Remark 2.1. All the results in this work can be carried over to the case where a(v,v) only defines
a seminorm for V . In such a case, the V-norm in (2.4) should also be replaced by the seminorm

a(v,v).

(£L* >V\ + J£?+* tV\ = (r+i>vo, v„ e *

max(2CL ,2rCs + Cv )w = ,Q
INll = IMl| + r|H|?, = |M|| + ro(t;,i;).
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§ 3. Error Analysis for the Euler scheme

In order to simplify the error analysis, wc shall compare u{ ' with the standard Euler scheme
solution Vn+l of the problem

(3.1)

The following error estimate can be easily proved for the Euler scheme (see [27])

Theorem 3.1. Let the solution u(i) of (1.1) be in W2 <°° ((O,T), V), and f € W 1 ((0,T],5).
Then

where C only depends on u and ug .

Theorem 3.2. At each time level, assume that for some 0 < p < 1 the number s of the space
decomposition iteration satisfies

(3.3)

Then, the error satisfies
(3.4)

Above, C = C(u)e2p ( n+l ) T , and C(u) depends only on u.

The main part of the proof is described in the following lemma.

Lemma 3.3. For a given Gk 6V, let the function Gk+l satisfy Cr*+1 -Gk G Vit and

(3.5)

// wc set

(3-6)

then

(3.7)

Proof. By assumption (2.4), there exists <j)k+l GVi such that

(3.8)

(3.9)

Thus

f ; ,v)+a(Vn+ I,v)1 ,v) = (fn+ \v), Vy €V,
V° = u O .

u(tn+l )-Vn+l \\ ar <Ct, (3.2)

*>2|ln(,r)|/| toT^-

\\un - Vn \\ar < Cr .

T-1 (Gk+l ,Vi) + a(Gk+\vi ) =0, toi eV{ , i = 1,2,...,m

771

i=l

l|Gt+l lll < r^lo*fi.

771

T7l

t=i

m
X>*+1 || 2v < Cs\\Gk+l \\ 2s + Cv\\Gk+l \\l .i=l

\\Gk+l \\ 2s + llGk+lll 2vT

f] [ (G?fc+l;^'+1) + a(G*+1 , <^ +1 )'
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£ (G -G-, ,0, ! + fl(gHi-(y^')
t=i " J

(Using relation (3.5))

(m \ i£ ||Gfc+l - Gf+1 || 2v (v^llG^Hs + v/Cvl|C?*+I ||v)i=l '
(Using (3.8) and (3.9) and the inequality Va + 6 < y/a + Vb )

From (3.6), it follows that

(3 10)

Therefore, we have arrived at

(3 11)

i=i L -"

<i ( f; \\Gk +i - Gkri ni) * v^in^+i ut i=i *

gt*' " g?+'"l +rrl|gt+l lll + I^Eai||gt+l -G?+'ll'vi=l t=l

+ t+, ll! + +I -G?«|fv + sllG' +IlPv1 lPvI=l
2 b 2

(Obtained by the inequality ab < \ia + -—, V/x > 0, and the fact that o < a, )
4/i

L ,TCs-rCv/2)j^ a (\\Gk+i-Gk+l \\ 2 | [[gt+l g?+lj|2 \
i=l '

+ +I |li + i||Gt+1 fy,

This shows that

T

a i=l V T /

j^n\Gk+i-Gk+l \\ 2s + ||(?fc+l _ Gk+ i ]l 2v \i=i '

< 2 ( llGk+1 : + iiGfc+l - g*u 2v

™ tifk+i _ r'* II 2 \
+ £Q.li^ ±Js + ||^+i _ G*||2, j (ImpUed by (a + b) 2 < 2(a2 + b 2) )t=i '

„(lE£,««y -Olli + l±ai{Gr - g*)p
+2f) a, ( l|g' + ' gt|l^ + lier ' ~ G"tfv) (By (3.6) and £0,-1)I=l ' I=l

<4 JT at /l|g?+1 -g*lll + |, G*+i _ Gktf\I=l '

Il g*+ls +||g*+l||2,

<4Cdf>( l|g'*+1 Gkll2s + ||G*+1 - G*|| 2V )i=l '
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Next, wc estimate the right hand side of (3.11). Taking vt = Gk+l -Gk in (3.5)
equality

and using the

wc get

(3.12)

Substituting (3.12) into (3.11), wc find that

This shows that

which proves the lemma.

Proof of Theorem 3.2. At each time level n, let Un+l €Vbe an auxiliary function which satisfies

(3.13)

Comparing (2.5) with (3.13) and using the fact that Vi C V, wc see that

(3.14)

and

Let us take

Note that Gk+l satisfies (3.5) and Gk+l -Gk € V*. Clearly, G*+1 and Gfc also depend on n, but
for notational simplicity the index nin Gk+l and G* is omitted. Using Lemma 3.3, wc obtain by
induction that

(u,u-v) = ±(\\u\\ 2 -\\v\\ 2 + \\u-v\\ 2 )

±(\\Gk+YS -\\Gk \\s + \\Gk+l -Gk \\ 2s )

+ \(\\Gk+1 \\ 2v - \\Gk \\ 2v + ||G? +1 - G fc || 2v ) = 0

\\nk+l \\ 2
T

d f^ a n\G%zMll& + llGk \i 2v _ ||Gf+1 || 2v )I=l ' '

< 4Cd olGk^-j lGk+l^ + \\Gk \\ 2v - \\Gk+l \\ 2y] .

\\Gk+l \\ 2s +]]Gk+ i ]] 2v

(rrn+i _  n \——,v J + a(Un+l ,v) = (fn+ \v), Vv£V

/%/ n+ ' - 77n+l \ j.a
M -^ ,^j+a«+ '-^n+1 ,vi) =0, VvteVt

ttJ+*-««+*Tl 6 Vj

Gk+l =u^-Un+l
Gk = un+!^ - Un+l

\\ un+l _ rrn+lfar = || un+} _ jp+l,,2^ = ||<-+l|| 2 r
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which means that

(3.15)

Since
(3.16)

and

+ ||C/n+l - Vn+l \\ ar + \\Vn - Vn+l \\ a

we get, assuming that 5 satisfies (3.3), that

(3.17)

Next, we estimate \\Un+l - Vn+l \\ ar and ||Fn+l - Vn \\ aT . Subtracting (3.1) from (3.13)
that

we find

(3.18)

(3.19)

An application of Theorem 3.1 shows that

ll^n+l - Vn \\ ar < \\Vn+l - u(tn+l )\\ ar + \\u(tn+l ) - u(tn)\\ ar + \\u(tn ) - Vn \\ ar < Cr.

Summarizing the estimates (3.16), (3.17), (3.19) and (3.20), we see clearly that

(3.20)

(3.21)

Hence, by induction, it follows from (3.21) that

Remark 3.4. In the proof, we did not assume that V is compactly imbedded into S. This enables
us to use the algorithms for a wider class of problems. However, if the embedding V C S is compact
and if

\\v\\s<co\\v\\ v , VveV, (3.22)

then we obtain from (3.18) that

(3.23)

Combining (3.16), (3.17), (3.23) and (3.20), we get a result similar to (3.21), i.e.

where the constant C does not grow exponentially with time t

,|tt»+l _ rjn+ l l]aT < (j^^ 2 \\un - Un^\\ ar .

\UU+l - Vn+l \\aT < \\un+l - Un+l \\ ar + \\Un+l - Fn+l || ar

Un -Un+l \\ ar <\\un -Vn \\ a

\\un+l -Vn+l \\ aT
_5

< (i^r) 2(K " yn W«T + H^n+l " n+1 lk + ll^n - n+I IL)
+ \\Un+l -Vn+l \\ aT

<pr(||ttn - Vn \\ aT + \\Un+l - Vn+l \\a T + \\Vn - Fn+l || aJ

+ \\un+l -vn+l \\ ar .

nr+i-tr+i \ +a{vn+l _ un+l^ v) = (v^_^\ WveV

By taking v = Vn+l — Un+l , it is easy to deduce that

Wn+l - Un+l \\l r < \\Vn - un \\ 2s < \\Vn - un \\lT

Wn+l -un+l \\ ar
<pr(2\\un - Vn \\ ar + Cr) + ||u» - Vn \\ ar
<(l + 2pT)\\un -Vn \\ aT +CpT2 .

ll^n -"n IL

<(l+2pT)n \\uQ -V°\\ aT

+ Cpr2 (l +(1 + 2pr) +(1 + 2pr) 2 +• • •+(1 + 2pr)n )

< CfJT (l+2pr)n+l < £Te(,n+l)in(l+2pr) < £re2p(n+l)r

Vn+l - *7" +1 || 2 t < \\Vn - un \\% < -^-\\Vn - un \\l Tco + r

llV+i - tt»+i,| < (-*L- + 2pr) \\un - Vn \\«T + Cpr2\Cq+T J
By requiring 2(cq + r)p < 1, the above inequality implies

||VB+l -uB+l || aT < Cr,
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§ 4. Error Analysis for the Crank-Nicolson scheme
n+ h.

As before, the solution u{ ' of Algorithm 2.2 is compared with the solution of the standard
Crank-Nicolson scheme

The following error estimate for the Crank-Nicolson scheme is true (see [27]).

Theorem 4.1. Let u 6 W 3 ((O,T), V) and f € W 2 ((0,T],5). Then

where C does not depend on r or n

Theorem 4.2. At each time level, assume that for some 0 < p < 0 £/ie number s of the space
decomposition iteration satisfies

Then, the following error estimate holds for Algorithm 2.2

Remark 4.3. For the Crank-Nicolson scheme, if the constants Cl,Cs,Cv and r are the same as
for the Euler scheme, then at each time level the iteration number s needs to be doubled to retain
the second order convergence.

Proof. Similar to the proof of Theorem 3.2, at each level n, let Un+l be the solution of

(4.2)

By taking Gk+l = w"+ ' - Un+\ Gk = un+V - Un+l and r=f in Lemma 3.3 and using similar
techniques as for (3.15), it follows from the estimate (3.7) that

When the space decomposition iteration number s satisfies (4.1), it is true that

and so wc arrive at the result of Theorem 4.2 by similar induction procedures as in the proof of
Theorem 3.2.

However, if wc use a second order starting scheme at the first time level and modify the sub
problems at the other time levels, wc can achieve second order accuracy with the same number
of space decomposition iterations as for Algorithm 2.1. From Theorem 4.2, wc note that for the
first time step, if the iteration number s satisfies (4.1), then the first time step will be of second
order accuracy. For the other time levels, s can be tåken according to the following Algorithm and
Theorem.

r fvn+l -vn \ rvn+l +vn \ /,n+ i \ w T 7
I ( ,v)+al ,vj = \Jn+ *,v) , VveV,
\v°=uo.

|Ktn+l )-V+1 |UT/2 <Cr2

s >4|ln(Hl/|ln r^r|. (4.1)

Un -Vn \\ aT/2 <Cr2

Here, C = C(u)Ce2'2 ( n+1 >r 2.

/Tjn+l_ un \ /Tjn+1 +Un \
f ,v\ +o( ,t/J = [fn+2 ,vj, VveV

Comparing (2.7) with (4.2), wc get that

M ,Vi\-ral-L - ,^l=o, VvteVi.

IK+1 - Cn+l lk/3 < (i^r) 2IK " n+1 llaT/2 •

, |lt»+ i _ v»+i|| ar/a < Pv(iK - mflT/2

+ iicp+i _ vn+1 \\ ar/a + \\vn+l - vik,.) + \\un+ l - yn+1 ||aT/2
One can prove similarly as in obtaining (3.19) and (3.20) that

\\Un+l -Vn+l \\ ar/2 <\\un -Vn \\ aT/2
\\Vn+l -Vn \\ ar/2 <CT t
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Algorithm 4.1. All the other steps are the same as in Algorithm 2.2. Only (2.7) is modified to
be

.1. All the other steps are the same as in Algorithm 2.2. Only (2.

if k > 1, let tt"+ • - ttn+i^ G Vi ,

i/ fe =1, /ei ttn+^ - 2ttn + ttn_l €Vi .

Theorem 4.4. Under the same conditions as in Theorem 3.2, if \\u° — V°\\ aT/2 < Cr2 , and
Hu 1 — Fl ||qt < Cr2 , then the following error estimate holds for Algorithm 4-1

Proof. With the above new modification of step 2, wc can use Lemma 3.3 similarly as in obtaining
(3.15) to get

Under condition (3.3) , the above inequality gives

(4.3)

By using a standard energy approach, it can be proved similarly as in obtaining (3.19) and (3.20)
that

(4.4)

(4.5)

and an application of (4.3), (4.4) and (4.5) gives that

(4.6)

A summation of (4.6) shows that

It now follows from the Gronwall inequality that

Above, wc assume that Ijtt 1 - V^k,, < Cr2 and ||tt° - Vo || Or/2 < Cr2 . This proves the theorem

un -Vn \\aT/2 <Cr2 , Vn>l .

Here, C = C(u)e4pnT , and C(u) depends only on u.

ii«n+i -t/"+i ik,,<(l^)Vik/a

=(r^)V-«"-'-^+W

\\un+l -Vn+l \\ ar/2

<pr(\\Un+l - Vn+l \\ar/2 + 2\\un - Vn \\ar/2 + litt"" 1 - Vn~%r/2

+ \\Vn+l - 2Vn + Vn'l \\ ar/2 ) + ||t/n+l - Vn+l ||„ T/2 .

\\Un+l -Vn+l \\ ar/2 <\\un -Vn \\ar/2
||FB+l -2Vn + VB"1 |k/a <Cr2 ,

|| tt»+i _ Vn+l \\ aT/2 <(1 + 3pr)||ttB - VB ||«T/a

+ pr||tt"- 1 -F"- 1 || ar/2 +Cpr3

un+l _ F»+l||OT/2 < ||W1 -VX \\ar, 2
n

+ 4pr^||tt fc -^||aT/2 + C/mr3
fc=o

un -Vn \\ar/2 <Cr2 e4pnT
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§5. Applications to domain decomposition

Here, wc show the applicability of our algorithms by applying them to the finite element solution
of the second order parabolic equation

(5.1)

with

Wc can use different space decomposition techniques to solve (5.1). Here, wc will only apply
the proposed algorithms to an overlapping domain decomposition and to a two-level overlapping
domain decomposition method, i.e. an overlapping domain decomposition with a coarse mesh.
Application to higher level substructuring methods leads to multigrid-like algorithms. Wc first
show how to decompose the finite element space when solving (5.1). Let {fli}^ be a shape
regular finite element division, or a coarse mesh, of fl, where fli has diameter of order H. For
each fli, wc further divide it into smaller simplices with diameter of order h. In the case where fl
has a curved boundary, wc also fill the area between dfl and dfln, here flu = U^fli, with finite
elements with diameters of order h. Wc assume that the resulting elements form a shape-regular
finite element subdivision of fl, see Ciarlet [9]. Wc call this the fine mesh or the /i-level subdivision
of fl with mesh parameter h. Wc denote by fl^ = U{e € T^} the fine mesh subdivision. Let
Sq C Hq(U) and Sq C H^fl) be the continuous, piecewise linear finite element spaces with zero
trace on dfl h and dflh over the //"-level and /i-level subdivisions of fl, respectively.

For each fli, wc consider an enlarged subdomain flf = {e € Th,dist(e, fli) < 6}. The union
of the tø covers flh with overlaps of size 6. Let us denote by Sq (flf) the piecewise linear finite
element space with zero trace on the boundary dflf . Then one can show that

(5.3)

(5.4)

For the overlapping subdomains, assume that there are m colours such that each subdomain flf
can be marked with one colour, and that the subdomains with same colour will not intersect each
other. By choosing the overlap suitably, one can always get m = 2 if d = 1, m < 4 if d = 2, and
m<6if d = 3. Let fl\ be the union of the subdomains with the z'th colour, and let

Let us define Vg = Sq , V = Sq . Now, decompositions (5.3) and (5.4) imply that

(5.5)

(5.6)

Let {oi}™=l be a partition of unity with respect to {fli}^, i.e. 0, 6 C0x, (fl'i nfl) and YlT=i ei = L
It can be chosen so that |V#i| < C/6. Let Ih be an interpolation operator which uses the function
values at the /i-level nodes. For any v e V, let Vi = Ih(&iv) € Vi. The functions Vi satisfy
v = £^1 Vi and

(5.7)

(5.8)

Uut,v)LHn) +a(u,v) = (f,v)L 2 in) , flcRd , Vv€Hi(Q),

\u{0) = uq(x) ,

d

a(u,v) = 2J (o-ij(x)DiU,Djv) L2^, Vu, v € #o(ft) • (5 - 2 )

5} ss £s}(flf) l

Vi ={v €S} u(x) =0, x<Zfl'i}.

771
V-EVuI=l

771
V = V0+ J2 Vi-i=l

771
El^Hi2(n.)^ CIHIi 2 (n)'
m „

£lMllr»<n,) < (n) + C||Vi;||ia(Q)i=l
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The proof of (5.7) and (5.8) can be found in various papers, see e.g. Cai [7] [B]. When the two-level
method is used, let vg 6Vq be the solution of (v0 , ø# ) = (v,(f>H),V<f>H € VO , and Vi = Ih(0i(v — vo )).
They satisfy v = YaLi v»' anc^

(5.9)

(5.10)

In the literature, the overlapping size 6 is often tåken to be very large, i.e. 6 = c\H , see [7], [28].
In the following, wc shall only choose 6 = h. The corresponding estimates (5.9) and (5.10) can be
obtained with minor modifications of the proof given in Ku [28, p. 608].

The estimates (5.7)-(5.10) show that for the overlapping domain decomposition the constants
in (2.4) are

and for the two-level method the constants are

For the Euler scheme, the time step ris normally tåken as r = Ch2 . Using an overlapping
domain decomposition with a one-element overlap and without a coarse grid, the constant Cd is
independent of

a) The mesh parameters h and H;
b) The number of subdomains;
c) The dimension d of the physical domain

This implies that the error reduction factor

does not depend on the above mentioned parameters. However, for the Crank-Nicolson scheme,
the time step r is often tåken as r = Ch, and so

ah2

In return, the s in (4.1) depends on h and r, and can be very large. This means that at each
time step many space decomposition iterations need to be performed. In order to overcome this,
a computation on a coarse mesh should be added. If wc use a coarse mesh with the overlapping
subdomains that only have a one-element overlap, then

Cd ~a-hT

Since wc compute the coarse mesh problem in parallel with the subdomain problems, wc shall keep
dim(Vo) w dim(Vi), i = 1,2, ...,m. This requires that h « CH2 , and so

_ CtH2 C
Cd W TJ" ~— •an* a

Hence wc also get an error reduction factor which is independent of the parameters h and H with
a cost of computing the coarse mesh problem.

771
Niii2(n) + £lXiii2(n<) <ciMii2(n)I=l

m CH2
IM&.ØI, + £ \M\Wi) * -p-Mln*) + c||Vu|| 2 2(fi) .i=l

Q
Cl — C, Cv —C, Cs = tj

Cl =C,Cv = C, Cs = ,2

1 + 4C*

max(Ci , rCs + Cv )
Cd = a

C r
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Next, we continue with the implementation of the Crank-Nicolson scheme Algorithm 4.1 with
the two-level method. Decomposition (5.6) means that we have m + 1 subspaces, and we take the
coarse mesh finite element space Vo as the "zero colour" subspace. When we know un and un+ ~^1 ,

let us define Wq ' =Ug ' - un+ ~r~ cS^ for the coarse mesh problem. Then from (2.5), Wq + 7
satisfies

/tt>o + < + tt"+^-tt" \ ( w»+i +un+^ +un \
— ,vH +a — 7, ,%

V / V 2 ) (5-11)

, fe
needs to be solved in each subdomain is to find w" T e Sh (fl'i ) DSq such that

(5.12)

of u" * is known in n\QJThe value

The equations (5.12) shall be computed in parallel in each of the subdomains and also in parallel
with the coarse mesh problem. We make the following remarks.

(1) The matrices and load vectors for (5.11) and (5.12) need only to be assembled once.
(2) From step k - 1 to fe, we only need to update the boundary values for the subdomain

problems in solving (5.12) in each ftf. So the LU decomposition for the linear algebraic
systems needs only to be done once.

(3) Due to the minimum overlap, the communication between the processors is finite.

In [21]-[24], [25], [26], the methods proposed here have been used for some nonlinear problems
and some variational inequalities.

Example 5.1. We use Algorithm 4.1 to compute the one dimensional problem

with a = ex ,u = sin(67rxt). This solution is oscillatory. The numerical experiment with this
solution is representative for the numerous tests that have been done for the proposed algorithms.

In the subsequent tables, TV is the number of the elements in each subdomain and M is the
number of subdomains. Each subdomain fli is extended by just one element to get overlaps.
Uniform mesh size is used both for the fine mesh and the coarse mesh. Since the coarse grid
problem is computed in parallel with the problems in the subdomains, we take

to balance the work, and thus fli = [(i - I)H,iH). In using parallel machines, the number of
subdomains is often determined by the number of processors. Then we may not be able to choose
the coarse mesh freely. In such a case we may need to use one processor to compute several
subproblems or to adjust the overlapping size and time step to get better convergence.

The overlapping subdomains can be marked by two colours. Together with the coarse mesh
finite element space, we have m = 3, and so we shall take a { = 1/3 for the under-relaxation
parameters. Numerical tests show that the error reduction factor 0 w 0.8. Thus, in order to show
the dependency of the computational error on the iteration number s, we take

= (/n+ W), VvHeSo"

The problem which needs to be solved in each subdomain is to find u{ ' € Sh (fl

u"+ * = 2un - un_l on dfl^dfl ,iffe = 1 ;

tt"+^ = ttn+i^ on dflWdfl ,iffe > 1 .

TVip valne» of 11 ' ic Irnrram in OV O'

n+ i f 2un - u"- 1 in fl\fl'i ,iffe = 1u • * — /
\ttn+i^ mfl\fl'i , if fe>l .

ut - (aux ) x =f , x G [o, l]

N= M, i.e. h= H 2,

Smax = 2|ln/i|/|lno.B
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and according to Theorem 4.4, s = smax is sufficient to retain the second order accuracy. In Table
5.1, the solution of the equation is computed using different « € [1, s max]. The table contains
the maximum errors, i.e. the maximal error over all nodal points and all time levels. In the table
e ah is the error of Algorithm 4.1 by performing sufficiently many iterations for the first time step
and carrying out s steps of iterations for the other time steps. In the last column of the table,
e9h is the error of the global Crank-Nicolson solution. We can clearly see that for s « smax ,
the solution computed by the domain decomposition method is as accurate as the global Crank-
Nicolson solution.

§6. A COMBINATION OF TWO DIFFERENT APPROACHES

In this section, we shall discuss some of the advantages and disadvantages of the two different
approaches used for parabolic equations and try to combine some of the good properties of both
approaches.

In using non-iterative methods for parabolic problems, it is customary to use an explicit method
to predict the boundary values for the subdomains. Dawson et al. [10] and [11] use nonoverlapping
domain decomposition and the boundary values of the subdomains are predicted by an explicit
Euler method. Blum et al [2], Rannacher and Zhou [19] and Rannacher [18] use an overlapping do
main decomposition and the boundary values of the subdomains are predicted by the extrapolation
formula

with a suitable starting scheme for the first time level. However, this boundary error will cause the
computed solution to explode exponentially. Then by using the property that the boundary error
will decay exponentially into the interior of the subdomains, and by cutting off the solution that is
"near" the subdomain boundaries, a convergent algorithm is obtained. Due to the explicit manner
in which the boundary values of the subdomains are obtained, both the methods of Dawson et al
[11] and Rannacher [18] need to impose the stability condition

(6.2)

Here r is the time step size. In [11], 6 is the maximum size of the subdomains, and in [2], [18], 6
is the overlapping size.

In using iterative methods for parabolic problems (see Cai [7], Dryja [12], etc), one reduces the
parabolic equation to an elliptic equation at each time level and then solves this elliptic equation
by using an iterative domain decomposition method. For this approach, the advantage that we

Figure 1: The solution u = sin(67ra:t) in the (x,t) plane

tt?+1 = 2ttn - un~ l (6.1)

r<C62 .
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can in fact get a better boundary condition for the subdomains from the previous time levels is
not utilized.

For the non-iterative approach, the stability condition is not restrictive for the Euler method,
but for the Crank-Nicolson scheme and other higher order schemes the stability condition is rather
restrictive. In order to remove the time step constraint (6.2), one should use some method to
further reduce the error produced by the "explicit prediction" at each time level. In the following,
wc propose combining the overlapping domain decomposition methods of the last section with
the scheme of [2]. The combined scheme is absolutely stable and allows the use of larger time
steps. Compared with the purely iterative procedure, the combined scheme can reduce the iteration
number needed in each time step to reach a prescribed accuracy. Because an extrapolation method
is already used in Algorithm 4.1 to get the subdomain boundary conditions, the combined scheme
only differs from Algorithm 4.1 in (2.6); i.e. when the solutions in each subdomain have been

obtained, ttn+ 7 is obtained not by the averaging method of (2.6), but by the cutting off technique
of [2]. When the iterative procedure of the last section is used to further reduce the "explicit
prediction" errors and if there is no coarse mesh for the overlapping domain decomposition, the
error reduction per iteration will be very small and depend on the overlapping size. Thus an
overlapping domain decomposition with a coarse mesh is more appropriate in the combined scheme.
Wc give the scheme below.

_L_ fe k
Step 2. At time level n, for fe = 1,2, ••• ,5, do: compute Wq 7 e Stf from (5.11) and tt"+T for

i = 1, 2, ••• , m from (5.12) in flf in parallel.

Table 5.1. Maximum error with h = l/N2 , r = h,H — l/N.

Algorithm 6.1.

Step 1. Set tt° = uq.

S = 11 16 21 26 Smax < =

<* = l.le+OO 8.7e-02 7.3e-02 7.2e-02 7.2e-02 7.2e-02 29 7.2e-02

S = 15 22 29 Smax p 9 -

pS —eh — 2.4e-01 2.1e-02 1.9e-02 I.Be-02 I.Be-02 35 I.Be-02

S = 15 22 29 36 p 9 _

pS _eh — 1.4e-01 7.6e-03 6.8e-03 6.7e-03 6.7e-03 6.7e-03 39 6.7e-03

S = 17 25 33 41 Smax ei =
pS _ 8.9e-02 3.4e-03 3.0e-03 3.0e-03 3.0e-03 3.0e-03 43 3.0e-03

S = 10 19 28 37 46 Smax p 9 _e h —
pS _eh - 6.3e-02 1.7e-03 1.5e-03 1.5e-03 1.5e-03 1.5e-03 46 1.5e-03

S = 10 19 28 37 46 Smax e{ =

e*h = 4.7e-02 9.7e-04 8.7e-04 8.7e-04 8.7e-04 8.7e-04 49 8.7e-04

11 21 31 41 51 Smax e 9 -eh —

el = 3.7e-02 5.8e-04 5.3e-04 5.3e-04 5.3e-04 5.3e-04 51 5.3e-04

S = 11 21 31 41 51 Smax p 9 -eh —

< = 3.0e-02 3.8e-04 3.4e-04 3.4e-04 3.4e-04 3.4e-04 53 3.4e-04
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Step 3. Take a = 1/2 and set

r (l-a)u"+ ' +a(ttn+V +Wq + ') infli\dfli ,i = 1,2,- • • ,m,

tL-^(tt"+ ' +tt"+ ') + a(un+^i +tt;J+ *) on^n^ ,Vi,j, z#j .w 2

If k = s, then set fe = o,n = n + 1 and oo io t/ie nex£ time level. Otherwise, go to step 2
and compute the new value for fe = fe + 1 .

Above, fli and flf are defined as in §5. When the computations for (5.11) and (5.12) have been_i_ fe
computed, a continuous function un+^, which is defined in the whole domain fl, is assembled from

the subdomain solutions and the coarse mesh solution. In assembling ttn+ * , the values of ut 'in

fli are used. The subdomain solution u( * in the overlapping area fl\ n flj contains more errors.
This is due to the exponential decay property of the boundary errors, see [2, Lemma I]. This
exponential decay property were also used in [16].

Example 6.1. In tables 6.1, 6.2 and 6.3, the problem of Example 5.1 is tested by using Algorithm
6.1. As before, sufficiently many space decomposition iterations are performed for the first time
step to guarantee that the accuracy is of second order. For the other time steps, only s steps of
the space decomposition iterations are performed. The method of [2] is equivalent to taking s = 1
in Algorithm 6.1 and not using the coarse mesh. Tables 6.1 and 6.2 show the computed maximum
errors by Algorithm 6.1 without a coarse mesh (i.e. a = 0 in (6.3)) for different values of s. Wc find
that the stability of the algorithm of [2] has a special relation to the iteration number s. When
s is tåken to be an even number, the stability is better. When s is tåken to be an odd number,
the stability is much poorer. In such a case, unless s is sufficient large, oscillation soon appears in
the computed solution and is amplified with time integration. Compare Tables 6.1 and 6.2. This
special relation between the iteration number and stability does not appear in our two dimensional
simulations.

In Table 6.3, the problem is computed by Algorithm 6.1 with a coarse mesh. It can be seen
from Table 6.3 that the algorithm is stable and that only a few iterations (s « 7 for N < 20) are
required at each time level to reach the same accuracy as the global Crank-Nicolson scheme. In
Tables 6.1, 6.2 and Table 6.3, e9h is the error of the global Crank-Nicolson scheme.

Acknowledgement: The author would like to thank Prof. Dr R. Rannacher and Dr G. H. Zhou for
valuable discussions.
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S = 10 Smax P 9 -

pS _e h — 5.0e-01 1.9e-01 l.le-01 8.5e-02 7.6e-02 29 7.2e-02

S = 10 p 9 _e h -

pS —e h - 4.1e-01 1.6e-01 8.6e-02 5.2e-02 3.5e-02 35 I.Be-02

10 Smax P 9 _eh -
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Table 6.3. Maximum error by Algorithm 6.1 with h = l/N2 , r = h,H = l/N.

s = ii Smax 4 =
pS _eh ~ 3.9e-01 B.Be-02 7.5e-02 7.2e-02 7.2e-02 7.2e-02 29 7.2e-02

11 Smax P 9 -s =

pS — l.le-01 2.5e-02 2.0e-02 1.9e-02 I.Be-02 I.Be-02 35 I.Be-02

S = 11 Smax P 9 -eh —

pS _eh — 6.3e-02 I.oe-02 7.3e-03 6.9e-03 6.7e-03 6.7e-03 39 6.7e-03

s — 11 Smax 4 =
eh — 4.2e-02 5.6e-03 3.4e-03 3.1e-03 3.0e-03 3.0e-03 43 3.0e-03

s = 11 Smax P 9 _eh —

«* = 3.0e-02 4.1e-03 I.Be-03 1.6e-03 1.6e-03 1.6e-03 46 1.5e-03

s = 11 Smax p9_eh —

Cft = 2.3e-02 3.1e-03 l.le-03 9.2e-04 B.Be-04 8.7e-04 49 8.7e-04

s = 11 Smax 4 =N =17
eh * I.Be-02 2.5e-03 7.3e-04 5.6e-04 5.4e-04 5.3e-04 51 5.3e-04

S = 11 Smax p 9 -eh —N=l9
e ah = 1.4e-02 2.0e-03 5.5e-04 3.7e-04 3.5e-04 3.4e-04 53 3.4e-04
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