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1. INTRODUCTION AND BACKGROUNO TO THE PROBLEM

1.1 The Verigin problem

Several models with varying degree of complexity have been

proposed for describing two-phase immiscible displacement in a

homogeneous porous reservoir. Commonly these models are based on the

assumption that both involved fluids may be treated as incompressible.

Our object will be to describe the pressure distribution when water is

injected into an oil reservoir with only one well present, and in this

situation, the fluid compressibility can not be neglected. A simple

mathematical model including effects of compressibility was introduced

by Verigin [l,2], assuming the reservoir to consist of two distinct

fluid zones separated by a moving discontinuity in fluid saturation:

§P.
9t°

1 9 9p
~ ( r s—o )r dr or

Initial conditions:

(1.1)

3p n 9 , 9p .
atw ‘ 7 97 (r Frwl o<r < r

Boundary conditions: lim ( ) = - q(t). _ orr-> 0

d plim ( ) = 0drr r
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Free-boundary conditions:

(I.lcont) p p
w o

3pM~w
or

3p
r°or r * r f

All variables and parameters are dimensionless as defined on p.67. p^

and p is the pressure in the inner water zone and in the outer oilo

zone respectively. r f is the position of the free boundary, i.e. the
water front.

The model describes a piston-like displacement; the effects of

capillary pressure, relative permeability variation and gravity are

neglected. In addition, a line-source assumption is used. The last

of the three free-boundary conditions is oniy valid if the connate

water is immobile. The model contains three parameters, the mobility

ratio M, the diffusivity ratio r), and the Redet number c. For water

injection into an oil reservoir, M and n are both of order 1-10, e is

of order 0.001-0.01 .

Problems characterized by the given free-boundary conditions are

usually called Verigin problems. These are similar to the dass of

Stefan problems, where the value of the dependent variable is

specified on the free boundary [2]. In contrast to this dass, the

Verigin problems always involve diffusion in at least two zones. The

last free-boundary condition given is common for both classes of

problems and is called the Stefan condition. In the Verigin problem,

this can be replaced by the following condition, which does not

contain explicitly:

Is* - u°11.2)

Verigin studies constant-rate injection into an infinite

reservoir (r = « , q = 1), and by using the Boltzmann's trans

formation he is able to give exact Solutions both for linear and

cylindrical geometry. In the cylindrical case, the solution is given

by

, dr, 9pr = —f = - e a~wx f dt or

A 2
eCI - M) [ gfiw ] r = r f
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f (1
M EK- - )(1.3) 2

V(r.t)
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2
g = is a constant determined from the Stefan condition:

g
2c exp ( )

40
(1.4) 9

2
The fact that r f /t is constant will be referred to as "constant
speed", in spite of the fact that the front speed is actually

decreasing with time. When c/o << 11g « 2c and < r c , where r c is

the radius of incompressibility defined in Appendix 1. That is, the

inner zone behaves as incompressible except from the first few seconds

where also the line-source assumption is invalid. The logarithmic

approximation to the exponential integral can be used and the

expression for p simplifies tow

P w

is the pressure at the water front and is seen to be

proportional to M.

constant,

A three-zone Verigin problem with linear geometry was studied by

Rubinstein [2], Both Green‘s functions and a qua si-stationary method

were used. Rubinstein also applied Green's functions to an inverse

two-zone Verigin problem [2,3]. In the inverse problem, the front

2
1 _. . r . Ic . . 9 .

P = - ~ Eit- -7 ) * tE 1 ( —7 )
2 4nt 2 40

o<r < r

M
p o = 'I 8 r „ < r < <*»f

2 ln ~2 + y lnUe ' Y) + 1~2 M ln(2e)r

(1.5) II
- ln f * p f

f

p f *
M €6^

- 2 ln 2
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speed is given and the objective is to determine the initial pressure

distribution. Kamynin [4,5] used 6reen's functions to prove the

existence of a solution to a linear two-zone Verigin problem where the

diffusivities were general functions of space and time.

The similarity with the Stefan problems is already mentioned.

The huge literature existing on this dass of free-boundary problems

is rrviewed by Rubinstein C2] and Muehlbauer & Sunderland [6]. Only a

few exact Solutions exist and also few general solution techniques.

This report shows how three of the techniques originally developed for

the Stefan problem can be applied to the Verigin problem. Chapter 2

demonstrates the use of 6reen*s functions for a finite cylindrical

reservoir. In Chapter 3, eigenfunctions are used both for linear and

cylindrical geometry. These chapters are of mathematical nature and

can be skipped by readers with primary interest in well-test

applications. Problems encountered in injection well testing, as

effects of an initial water bank, change of rates etc., are handled in

Chapter 4 by a quasi-stationary method originally developed by

Leibenzon [2]. The analytical results thus found are compared with

results from a numerical simulator in Chapter 5.

1.2 Analysis of water injection tests

A water-injection pressure test in an oil reservoir can be run on

several stages in the lifetime of a well. A general objective is to

estimate characteristic fluid mobilities and wellbore parameters.

Beside of this, the purpose of the tests and the conditions under

which they are run can vary considerably. No single mathematical

model exists that can describe this plurality, and unfortunately the

distinction between different testing conditions is not always clear

in the literature. One could roughlv group the tests into the

following categories;
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1) Tests in exploration wells: An important aim is to estimate maximum

injection pressure/rate without fracturing the reservoir. This is

done by using step-rate injection tests [7,B].

2) Tests in developed fields where the pressure is above the

saturation pressure: Estimation of the position of the fluid front,

residual oil and average reservoir pressure are important

objectives.

3) Tests in devloped fields where the pressure is below the saturation

pressure: Three different phases, water, oil and gas, coexist in

the reservoir and have to be taken into account in a theoretical

model.

4) Tests in watered-out areas: Theory for one-phase tests can be

employed.

A general description of a water-injection test scheme can be found in

Ref.C9]. Ideally, a test includes a period of constant-rate injection

and a falloff period during which the well is closed. Ref.[B] gives a

general introduction to well testing.

Among the first to describe the transient history of an

injection well is Huskat [lo], modelling a situation where a free gas

phase exists in the reservoir. He assumes that the reservoir can be

divided into three distinct zones; a water bank dose to the well, an

oil bank ahead of this, and an outer zone uninfluenced by the

injection. The zones are separated by discontinuities in the fluid

saturations, and these are moving according to the condition of

material balance. Also included in the model is an assumption that

the water and the oil banks can be treated as incompressible. Using

Darcy s law, Huskat gives an expression connecting wellbore pressure

and injection rate which can be used both for constant rate and

constant injection pressure.

The three-zone model was also used by Hazebroek et al. [ll] who

included the effects of compressibility. together with skin and

afuerflow. The discontinuity between the outer two zones was treated

as stationary. Independently, the authors refound the solution

already presented by Verigin [l], is spite of differences in the basic
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model. Based on this solution, the authors were able to derive an

expression for the pressure during falloff, using Laplace transform.

Unfortunately, the Muskat-type of analysis technique that developes

from the theory has only restricted applicability. To determine the

mobility of water, M and f) must be known.

During 1950-1965 several attempts using known theory for one

phase testing were tried for analysing tests in water-injection wells

[12,13,14,15]. These attempts had no stringent mathematical

foundation, and there were little discussion on the validity of the

assumptions involved. Some of the authors, though, report deviation

between real data and single-phase theory [l2]. One-phase models have

also been used as basis for studying special topics connected with

injection tests, as effects of fractures [16,17] and changing wellbore

storage [lB].

Based on results from theory describing in-situ combustion,

Morse and Ott [l9] claimed that plotting falloff pressure in a HDH or

Horner plot will produce two straight lines that both can be used for

analysis. The slope of the first of these lines is proportional to

the inverse of the mobility of water, the slope of the latter

proportional to the inverse of the mobility of oil. This statment was

confirmed when comparing well-test data with results from core

analysis.

Kazemi et al. [20,21] used a numerical simulator to test the

validity of the theory developed by Morse and Ott. The simulator was

based on equations describing the three-zone model used by Hazebroek

et al., but was also able to handle equations for a two-zone model, as

given in Eqs.(l.l). The Stefan condition was replaced by the

following expression, as if the water zone behaved as incompressible:

(1.6) r j.f f e

Only the solution for the falloff period was solved numerically,- the

Verigin solution was used for the injection period. The authors

conclude that the first straight falloff line can be used for

estimating water mobility if the discontinuity is not too dose to the

well. The second part will only give the oil mobility directly if the

compressibility ratio is dose to 1, but the authors present a general

correlation between slope ratio, mobility ratio and compressiblity
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Kazemi et al. also studied methods for estimating the positionratio.

of the fluid front.

The discontinuities between the different fluid zones are a

consequence of neglecting the influence of capillary pressure and

variations in relative permeability. Sosa. Raghavan and Limon [22]

present a numerical model where variations in relative permeability

are included. They restrict their study to compressibility ratios

equal to 1 and to reservoirs with no free gas, but are not able to

find any general correlation between oil mobility and the last part of

the falloff curve. In their work, though, it is difficult to

distinguish between boundary effects and effects from the relative

permeability variations.

Several authors have considered effects of a difference in

temperature between injection and reservoir fluids, and numerical

simulators capable of handling non-isothermal effects have been

created. Among these authors, Weinstein [23] is the only one

concerned with problems related to two-phase well testing. His

simulator includes variations in relative permeability, but since M

0,05 in the given examples, the water front is essentially piston

like. In spite of the fact that the compressibility ratio is not

equal to 1. Weinstein finds that the second part of the falloff curve

reflects the mobility of the (hot) oil directly. thus in conflict with

the results of Kazemi et al.

In two recent papers [24,25], Woodward and Thambynayagam present

an analytical approach to the two-zone based on Laplace

transform. Both infinite and bounded reservoirs are studied. and

effects of partial penetration and heat transmission are included.

Analytically, they find that the last part of the falloff curve

reflects the oil mobility directly. Comparison between their

analytical results and simulated data is very good. When using the

Laplace transform, the authors neglect the time dependency of the

front position in the transformation, but it is not clearified why

this is valid. In addition, the validity of Eq.(1.6), which is used

both for infinite and finite reservoirs, is not obvious.
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The main part of the literature in the field concentrates on

describing the falloff period, this because of problems connected with

keeping a constant rate during injection. Obviously, discrepancies

exist between different descriptions of this period. Much of the work

is based on results from numerical simulators, and unfortunately,

these results can be hard to evaluate or generalize because of lack of

information about the input parameters. The author of this report has

found very few descriptions of injection tests in the literature where

the data given is sufficient to evaluate basic parameters as M, n and

z [21,23,24,26]. Results from studies of two-zone models will be

further discussed in Chapter 4 and 5 with background in results from

the quasi-stationary method.
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2. REDUCTION TO A SET OF INTEGRAL EQUATIONS WITH HELP OF GREEN S

FUNCTIONS

Green‘s functions are one of the commonly used tools to study

existence and uniqueness of Solutions to free-boundary problems. The

method is analogues to the use of double-layer potentials for elliptic

equations; the free-boundary problem is reduced to a set of integral

equations which can be used as a basis for further analytical or

numerical treatment. Oetails of the method can be found in

Ref5.[28.29,30] .

contained in R 2 x [ 0,). Let R(t')

be the cross section of D and the plane

solution to the heat equation, then p is

formally given by

(2.1)

V Q is the gradient operator with respect to the coordinates ( ,tQ ) .

Under the integral sign, pis a function of r and t„. dV„ is a_g 0 0
volume element on R(t ), and ds is a surface element on 90. If R(t )0 —o 0

is varying with t Q , the last integral can generally not be made equal
to zero, even if p(t = 0) = 0 and G is chosen as the 6reen’s function0

for the problem. An arbitrary fundamental solution can be used in

Eq . (2.1), for instance the Green‘s function for 2-dimensional free

Let p be a solution of the heat equation

LCp] = o, defined over a finite domain D

t = f, and let 3D be the surface of D.

If G = 6(i,t llj *tg) is a fundamental

t

p(r,t) = J J G o(£Q ,tQ ) dVQ dt0
0 R (tQ )

+ J { GVQ p - p7Q G - pGe }’dsQ
9D 0
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space. In polar coordinates this is given by

(2.2) G

When the line-source assumption is used, the well has to be

included as a source term in the differential equation for the water

zone. For constant-rate injection q = 1. and the source term is given

by

(2.3)

6 is the Dirac delta function. As shown in Fig.l, the domain for the

Verigin problem in Eqs.(l.l) is divided in two sub-domains, and o^,

separated by a surface of revolution K. This surface is generated by

the curve y = r f (tQ ) = r fo * Each of the two sub " domains must be
of the two sub-domains must be

treated separatly when constructing the Green's solution

Fig.l; Integration domain for the Verigin problem

Utilizing symmetry, boundary and initial conditions, the solution of

the Verigin problem can be written as

t Q
P 2 it / 6 (£, t IH, t ) dtQw

0
(2.4)

+ n67 p -p7G - p Ge }’ds n0 w w 0 w t„ 0K 0

< _r2 * r„ 2 - 2rrp cos(9 - 6 0 l

timit-tg i 4n(t-t0 )

The notation G* = G(n=l) will be used in the following.

2irq (t) 6{ r ) = 2ir6(x)
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* *
p G e } *(-di )

o "t 0
0

J { 6 7 p - p7G
0o o 0p

K

( 2.4cont)

*
ds and ds are surface elements on K and 30, respectively:“0 “0

.2
fO

1/2
ds r dø„ [ 1 + rfO 0

] dt
0 0

(2.5)
.2 -1/2

(1+ r )
fO

r e ]
fO -t

[ 3.n r0

and p Q are both assumed to be independent of the angle 0 Q

(2.6)

Consequently, G can be integrated with respect to 0 Q :

2tr

I G d 8
0

(2.7)

E ( r . 11 r 0 ,ta 1

The given integral is found for instance in Ref.[so]. E is an
*

instantaneous cylindrical heat source. Again, define E = E(n=l)*

Using Eq5.(2.5) - (2.7), Eq5.(2.4) can be written as

* *
f p V 6 • ds
J o 0 “0
30

*
ds„ = r d8 n dt e“0 e 0 0 r0

ds = n ds„ = r C e -r e ] dt0 fO r fO t 00 0

dpx
7 p = - e

O Px 3r "r 0
0

X = W, 0

2 2 2w ._ _ .
1 , r + r , r r rr cos(fl-øB ) , . aexp{- g_ } J øxp[ o o ] dø

4irn(t-tQ ) 4n(t-tQ ) o 2n(t-tQ )

rro
x O C 2n(t-t ) 3 r 2  r 2 .Q exp{- Q }

2n(t-tQ ) *n(t-tQ )
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(2.8)

The right hand sides of these equations contain several unknown

variables; the front speed and the values of the dependent variables

and their gradients on the boundaries. Equations for these can be

found from the boundary conditions, but it must then be assumed that

all the integrands have continious derivatives with respect to r, such

that differentiation under the integral sign is legal:

(2.9)

r , 3E , J { P -» }
0 w3r

r'r „_dtf 0 f 0 0

2
r

t exp[- . . ]
r 4n(t-t ) ..

p (r.t) = J Q dtn

w 0 2n(t-t Q ) °

 ; { r E |fiw
0 0 3ro

3E i h*r p 3 } dt0 w or 00
V r fo

t
+J{ p E }

0 w
V r fo

r . rt dtfO fO 0

t *
r /
£ r 0 P o 3r0 o

r E jpo } dt
0 dr Q 0r =r0 fO

p (r ,t)o

t
J { p 0 E )
0

0 fO

r fo r fodt 0

t *
r , 9E , ..

J { r n p x— J dtJ o o or o0 o r =ro e

2

a t r exp[ - 1
= ; «— dt

3r o tn2 (t-t i 2 0

r r dE dtp d 2 E . ..+ J t rn r- a w  rn ri— P ' dt_ o or or. o oror w o0 0 0
ro =rf 0

r o =r fo



.
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For simplicity, define

a (t) W4 ’ P (r ,t)o f

19 p ,
I? 3r° (r f' t}

3p
3rw ,rf t)b (t)

(2.10)
c (t) p (r ,t)o e

d (t)

When used under the integral sign, a,b and c are functions of tQ .If

nothing else is specified, d is a function of tQ . Assuming that
Eqs. (2.8) and (2.9) are satisfied on the boundaries, the boundary

conditions give the following integral equations for the unknowns a,b

and c:

t

t
 / { aE } dd’ dt

0

(2.11)

t

r f (t)

d 2 (t)

lt , * 9xpC - *nit-tn » 1 ...a(t) = J Q dt

0 2n(t-t fl )

lr
+ J { Eb - ar— } d dtn or o0 o r =d

r =d(t)

vdr =d(t)

t d(t) exp[- ***** ]
b(t) = f 4111-tg dt

0 2 2 °
4n (t-tQ )

| , ØE. 3 2 E .
*l { Tr b - 57a7o a } d dtor =d

r =d(t)

* S { } dd'dt
o 3r 0

Vdr =d(tl





1 4

t
(2.11 cont) dd ' dt

0

r dt
0

The set is closed using the integrated Stefan condition

t
(2.12) d e J b dt00

After solving the system of integral equations together with the

appropriate initial conditions, the wellbore pressure can be found by

setting r=r in Eq.(2.8). The equations could easily be extended tow

include effects of a finite wellbore radius, but this would involve

the wellbore pressure as an additional unknown.

It could be discussed whether the given system of integral

equations really represents a simplification of the original

problem. The equations, which are of Volterra type, are highly

coupled. This type of equations are usually amenable to numerical

treatment, but the system is probably too complicated to represent a

basis for constructing (approximate) analytical Solutions. The main

advantage of the method is probably that it can be used to prove

existence and uniqueness of a solution to the problem. The proof must

show both that the system of integral equations is equivalent to the

original problem, and that this system has a unique solution. This

could be done in a way outlined by Rubinstein [2], but will be left
out here.

t 9 £* *
c(t) = J { a— - E Mb }

„ or0 0 r =d0
r =r

d dt
0

J { aE*}
0 r Q =d

r =r

t - *
r / 3E i
i0 0

V r
r =r





15

3. USE OF EIGENFUNCTIONS

Eigenfunctions were first used to solve Stefan problems by

V.G.Melamed [31,32,2], studying a problem with linear geometry and

constant diffusivities. I.V.Fryazinov [333 generalized the method to

include general time- and space-dependent diffusivities. The set of

partial differential equations is reduced to a countable system of

ordinary differential equations which have to be solved numerically.

To construct the eigenfunctions, the method relies on the fact that

the value of the dependent variable is known on the free boundary in

the Stefan problems. This value is not given in the Verigin problems,

but this chapter shows how to extend

type of problems. The trigonometric

than the eigenfunctions involved in

extension of the method will first

linear geometry.

the method of Melamed to this

functions are more easily handled

cylindrical geometry, and the

be demonstrated on a problem with

3.1 Linear geometry

Given the linear Verigin problem

,2

9x
*-P o
8t

(3.1)

Boundary conditions: (o,t)ox q (t)

3p 32 p
—w = n —-w
9t 9x

0 < x < x f

X . < X < 1
f

Initial conditions: p (x,O) = f(x)w 0 < x < = xf

p (x,O) = f(x)o
X< X < 1

0

p (1. t) = p = f(1)o e
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(3.lcont)
Free-boundary conditions:

Note that a constant-pressure outer boundary is chosen here. Introduce

p (t) = p (x ,t) as a new unknown variable, and assume that thef w f

dependent variables can be written as

(3.2)

r
*f

1 - x
1 - x

f

The -First terms represent the solution of the analogue problem where

the effects of compressibilities are neglected, and the terms are

included to make the boundary conditions for the eigenfunctions

homogeneous. It will further be assumed that the infinite series can

be differentiated and integrated term by term. The eigenfunctions q>
n

and 4» have the general form

(3.3)

The coefficients a n - d n are determined from the boundary conditions:

3x n '» *' «
f

0a
n

W 4'

(3.4)

*n n.t) d 0n

W*'

prpW O
X = X

3p 1 6p 1
rw = a-0 = —x „ox M dx e f

00

p (x.t) = p + q (t) (x - x) + EA(t)(p{£)
wff 4 n nn= 1

X - X O»

p (x,t) = p + (p - p ) + IB ( t ) a» (o)
Otl~x e f 4 n nf n= 1

0 < X f < 1

(x,t) = a sin{A £) + b cos(A £)n n n n n

4» (x.t) = c sin(p o) + d cos(p a)n n n n n

0 =>

bn c ° s An = 0 => A n =(n - i).

b = 1
n n= 1 , 2

c sin M = 0 = > m = n?rn n n

C = 1
n
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Substituting Eq5.(3.2)-(3.4) into the partial differential equations

in Eqs.O.l) yields the following system of ordinary differential

equations:

(3.5)

1 - x

1 - x
P f

f

Now multiply the first of these equations by 2cos(A E) and thenm

integrate with respect to E from 0 to 1. The second equation is

multiplied with 2sin(p o) and integrated with respect to o in an equalm

manner. The following countable set of ordinary differential

equations is obtained:

A 2
m

A
2 m

x
f

(3.6)

2
P m

B
. . .2 m
(1 - x f )

where the functions are given by

q ,

(3.7)

q 2

00 X X '
p’ + qx‘ - q'(x - x.) + Z { A*cos(A £) + A A - sin(A £) }
f f f , n n n n x „ x „ nn= 1 f f

- A 2

H E ~ A cos(A £)2 n n
n= 1 x „f

x' (1 - x)

T (p e - V
(1 - X f )

°* (1 - X )
+ L { B'sin(p o) + B p cos(p o) }.nnnn . . .2 nn=l 1 - x

2
“ M
E B sin(p o)
~2 n nn=l (1 - )

ot

q + E r. A
1 4 In nn = 1

a’ + nm

m = 1 . 2

Oft

q 2 + E r 2n B n
n = 1

B' +
m

2 ( - 1) m ~ .

1 Pf '1»( M «, 1m

. X f
m { i~nr ‘p, - p f i -pf >m f
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The coefficients r. are given byin

r 1 n

(3.8)

r 2n

The Stefan condition gives the following equation for the front speed:

(3.9) x ;
The system is closed using Eq.(3.2) in the conjugation condition on
the front:

(3.10) P - p
e f

The appropriate initial conditions to be imposed on this set of

ordinary differential equations are constructed by using Eq5.(3.2)

together with the given initial conditions:

f (x)

(3.11)

- , , x - X rf, V * —1 { p0 f (x)

where

«• A
e { q - E ——(-I) n A }

« x. nn= 1 f

H , n
x (1 - x ) + C (-1 ) p B
eff n n

n= 1

o<x < x
0

00

f(xQ ) +q(o ) ( xQ -x)+EA n ( 0 ) q> n ( )n= 1

V x <
00

f (xn ) } + E B (0)4) (a )o,n n 0n= 1

(3.12) £ =
0 x o

1 - Xo =
0 1 - x„0
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Aqain, multiplying the equations with 2cos(A E) and 2sin(p o )3mo m 0

respectively and integrating, one finds for m = 1,2,...

2q(o ) x

m

0-

The system of ordinary equations can now be solved numerically by

truncating the infinite series after a finite number of terms. The

numerical integration of the equations involve several problems that

just will be pointed out here:

1 ) The oscillating series involved in the equations will generally

converge very slowly. This is illustrated by putting f(x) = 0 and

q(t) = 1. Combining Eq5.(3.13) and (3.9) then gives

x^(0)
(3. U)

The series representing arctg(l) need more than 500 terms to reach 3

significant digits. It is obvious that the oscillating series have to

be truncated carefully to obtain a reasonable result, and that special

convergence-acceleration methods are necessary.

2) The ordinary differential equations will generally be very stiff,

representing a quick damping of the coefficients A and 8 . This ism m
consequence of the fact that the liquids behave as incompressible

after a short time. Special numerical methods capable of handling

stiff systems must be used.

1
A (0) = 2/f( x E ) cos(A E.) dE n
mo° m 0 0

+ | (-I) m f(x )A 0
m

1

(3.13) 0(0)= 2 J g( o(1-xl + x n ) coslp a n ) da
m qOOo mo o

2 , ,2* (-1) f(x ) - p
M Opem m

x f (0) . x Q

p f (0) = f(Kø )

oo n+l

c{i - t 4 14 An= 1 n

= e { 1 - arctg(l) } = 0TT
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3.2 Cylindrical geometry

Now return to the cylindrical Verigin problem given in Eqs.(l.l), but

assume a finite wellbore radius r . Write the solution of the problemw
as infinite series of eigenfunctions, and assume that these can be

differentiated and integrated term by term:

P.w

p

(3.15)

r - rw
r. - rf w

The general form of the cylindrical eigenfunctions is

(P (£) = a J (a £) + b Y (ot E)n non non
(3.16)

These functions have singularities for r = r and r = r , and it isw e
generally not possible to satisfy boundary conditions at such points.

To determine the coefficients and eigenvalues, the exact condition

must be replaced with a restriction that the solution is finite in the

singularities. This would have been the case if a constant-pressure

outer boundary had been used, but for the present case where a no-flux

condition is specified on the outer boundary, all the boundary

conditions can be satisfied by choosing the eigenfunctions as

n ,E) ' W

(3.17) f (o)n

Now insert Eq 5.(3.15) and (3.17) into the partial differential

equations as for the linear geometry. Multiply these equations with

00

p - q In + E A (t)«p (£)fr. . n nf n= 1

m

p + E B (t )0> (o)
f, n nn= 1

r < r r < rw f
r - re

o = r - r .e f

f (o) = cJ„(po)+dYn (po)nnon n o n

J (0 o)o n n = 1,2

J(a)= 0 a = 0On n n
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2
2zJ (a z)/J (a ) where z is £ and o respectively, and then integrate

Om 1 m

with respect to z from oto 1. The orthogonality properties of the

Bessel functions then yield the following system of ordinary

differential equations:

(3.18)

where now

. 2p ?

a J (a )
m 1 m

(3.19) r,1 n

r
2n

When m* n, the first integral in r in (i=l,2) can be found by using
the following integral, given by Ref.CSO]:

2
a «»

~m . _
A+HA= q + E r A

m , .2 m 1 , 1 n n(r . - r n= 1
f w

m = 1,2,
2a 00

B' + ~ B = q + E r B
m . .2 m 2 , 2n n(r - r.) n= 1e f

r f 2q = -Cd* +q + q 'ln r )
q 1 Mr. q f o J, (a )fm 1 m

i / EJ n (a E In [r + £(r - r ] d£.2 Om w f w
J. ( am ) 0i m

2 “n r f 1
T' n { ' r~'- r 1 5 El d£
J,(a ) r f rw 0 0 m 1 ni tn

„ 1 r J (a S)J (a 5)
 —3—r ;- w ' n ° n dt )

,r f  V 0 rw * lr f - rw ls

2a r' 1
n,f ' 2

t - - j 0 j (a o)J.(a o) do
J?(aJ Vrf 0 0 m ' ni m

i 1 r J (a o) J (a o)
* 1 r S ° m !—=- da )

(re' V 0 r e ' ,re 'V°
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/ xJQ (ax )J Q (Px ) dx

(3.20)
2 2 - 1

(p -a ) [pxJ Q (px) -axJ Q { px) (ax ) ]

a and P is arbitrary parameters, a t p. Differentiating both sides

with respect to p gives

2
J x J (ax )(px) dx

(p 2 - a 2) [px2 (ax) (px) + ax2 (ax) ( Px) ](3.21 )

2 2-2
2p ( P - a ) [ØxJ (ax)J (px) - (ax )J Q (px ) ]

and using the definition of a^ # the followingn
result is obtained:

a
m

J. (a )J. (a )221 n 1 m m t n
a - a

m n

When m = n, the integral is found by the simple substitution

1 2

2a 1 n
n

No explicit expressions have been found for rest of the integrals

involved in the computation of the coefficients r and q .in i
Consequently, in a numerical solution these integrals will have to be

calculated numerically. Since this calculation must be done in each

time step, it is obvious that the numerical solution will demand an

insurmountable amount of work.

The Stefan condition now gives

J (a )
1 n. q(t)e {(3.24) r'

f }r
f nnr - r

f w

For the linear case, the coupling between the coefficients A and 8
n n

given through the equation for the front pressure, Eq.(3.10) an

equation denved from the conjugation condition. For the present

Putting a = ot , Pm

1

(3.22) J x2 J (a x)J.(a x) dx
0m 1 n

0

u = xJ (a x)
1 n

1

(3.23) J x2 J (a x) J(ax) dx0 n 1 n
0

m

l a A
n

n= 1
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problem this condition only gives a relationship between infinite

series involving these coefficients:

B r
n n f

J (a )
r-r 1 n

e f

0

The difference between the two cases is not due to the difference in

geometry, but rather to the difference in boundary conditions. A

similar summed form as Eq.(3.21) would have been found for the linear

case if a closed outer boundary had been chosen. This form makes the

numerical solution much more complicated than in cases where are

explicitly given, as in Eq.(3.10)

In the assumed form of the solution, Eq5.(3.15), terms had to be

included to make the eigenfunctions satisfy homogeneous boundary

conditions. These terms are of course not unique, several choices are

possible. A form of the solution which could eliminate the problem

with the summed form of the conjugation condition can be sought. If

such a solution form exists, however, it will probably involve more

integrals which cannot be calculated analytically.

<«> a A r 00
n n f

(3.25) Mq + M E 3 (a ) + E
r-r 1 n

n= 1 f w n= 1
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A QUASI-STATIONARY METHOO4 .

4.1 Discussion of the method

A quasi-stationary method for solution of free-boundary problems

was introduced by Leibenzon C 34 3. It has not been possible to

identify the details of his work, a study of the molten centre of the

earth. The method is, however, reviewed by Rubinstein [2] together

with several applications. Among the problems the method is applied

to, are crystallization of a melt, dissolution of a gas bubble in

liquid, and a three-zone Verigin problem with linear geometry.

The quasi-stationary method is based on the following algorithm:

1) Solve the associate problem with a stationarv boundary between the

zones. Let the solution of this problem be = u (r,t;y) where

2) Use the solution u. in the Stefan condition to construct ani

explicit equation for Q(t) , which is an approximation to the

position of the moving boundary:

3) Substitute y = p(t) into and use this as an approximation for

the solution to the free-boundary problem

p(r,t) « u (r,t;ø(t))
(4.2) 1

p ( r , t)

P Q (r,t) * u (r, t;e(t))

No criterium which can be used for testing the validity of the

algorithm has been found in the literature. After companng results

produced by the method with numerical Solutions, Rubinstein states

that the method "gives a qualitatively correct result, although

r = y is the position of the stationary boundary.

. du
(*• 1) Q = -e^;l(e.t;e)



'
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quantitatively it contains errors."

Eqs.(4.l) and (4.2) clearly show that a basic assumption in the

method is that the movement of the front does not change the gradients

compared to the problem with stationary front. Only the time

dependency of the two Solutions is unequal:

3p r 3u .r-w * [ r~l ]3r 3r
y = q

(4.3)

3p r du ,
a 0 * C k-2 ]dr 3r

y = q

Both and u (r,t;y) are Solutions of the same diffusion

equation, and consequently

L[p ]w
0

L[u (r,t;g(t))]

(4.4)

tr,t:y) }
y-Q (t)

Obviously, the approximation p (r.t) » u (r.t;q) is only valid if theW

term o(r,t) can be neglected in the diffusion equation for the free

boundary problem. If the solution to the problem with stationary

boundaries can be found, all the variables needed to calculate o are

known. However, there is still a problem with what criterium to use

when deciding whether or not the term really can be neglected. No

genqral criterium has been found, but it will be shown later how o can

be used to predict the validity of the results in the case studied.

The Vørigin problem involves at least two time scales; the first

is a fast scale corresponding to diffusion, - t, the second a

slower connected to the moving front, t ~ et. A multiple scale

singular perturbation technique should thus be adequate for studying

the problem, but it is not clear how this technique can be applied. A

comparison between the Verigin solution and the associate u shows a
i

significant difference in the numerical values of the two Solutions,

,3 n 3 3 ,
t r * - r r*-) } pdt r 3r 3r w

{ L [u (r,t;y)] } + g'{ }
y=Q(t) y y=Q(t)

o(r,t)
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the effect of the moving front is not merely a small perturbation of

the stationary-front solution.

This chapter applies the quasi-stationary method to several

problems encountered in injection well testing. A quasi-stationary

approach will also be applied for estimating the validity of the

different expressions developed for the wellbore pressure, i.e.

validity limits will be constructed using the results in Appendix 2,

replacing the parameter y with an approximation of the water-front

position. Following the given algorithm, one first has to solve the

associate problem with stationary boundaries. The next two sections

will discuss this problem in detail.

4.2 An infinite reservoir with a lateral discontinuity in mobility

and diffusivity.

Now return to the problem given in Eqs.(l.t) and let r =-. If

in addition, the Stefan condition and the time dependency of r are

dropped, the equations decribe the pressure in an infinite reservoir

with a stationary discontinuity in mobility and diffusivity. Let r = y

be the position of the discontinuity, and let u and u be the1 2
solution in the inner and the outer zone respectively.

The described problem is encountered when testing a reservoir

with a lateral change in permeability, fluid properties etc. as

discussed by several papers in the petroleum literature, An exact

analytical solution is given by Hurst [3s] together with a simple

approximate solution valid for large time, both Solutions restricted

to the case M= q. Based on this work and a paper by Larkin [36],

Bixel and van Poollen [37] generalize the Solutions to cases where

M * H- derivation of the Solutions can be reviewed briefly in the

following way;
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Let u (r;z) be the Laplace transform of the solution, where z is
i

the Laplace variable. Solving the transformed equations with the

associate boundary conditions, are found to be

u
1

(4.5)

/n
K q (/zr)u

2

Z 3/2 y[ I, (Jf ylK0 (/iy)  I 0 (Jf 1

The inversion integral for Laplace transform can be used to give

u
1

ds

(4.6)

/n J i ( /^ lJo lsy) ' J o lsy)M 1

/t! “ J n*7^ ,Y i( S y)/n 1 o o /n i
N

1

The approxima te solution is found by expanding the modified Bessel

functions in Eq5.(4.5) for small values of the arguments:

(4.7)

K (/zr)
0u 2 * z

These expressions can be inverted according to the table of Laplace

transforms in Appendix 4. Using an asymptotic property of the Laplace

transform [3B], the result is valid for large values of t:

(4.8) U 1 *
U(r , t; y )

1 f f K i ( Ja * IK. I/iyl ~ ylKi l/iyl t,7K ( y ) -f i—- i— —-*• l r /

20 0 Z [I,,J2 y ,K0 ,/iy, *

2 . , , sr
/kJ °° 4 ““ S t J ( r- )4M , 1 - e 0 /rjr d s
2 2 Jn 3 2 2tt y 0 s

_2M_ 71 - Vo (Sr) - N 1J 0 ISr)
“ 2 ' ** 0 s 2 ' M 2 + N 2

- . Vif- Ko'Jf yl „ K o ,/iy)
u i ' i + M i

I El( - -l!| * lEi,I Ei ,- Jf!,
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2
H . , r ,
2 EI '4l(4.Bcont) u

2

The approximate solution has a form very similiar to the Verigin

solution Eq.(1.3). The time dependency of the two Solutions is,

however, quite different, as can be seen from figure 2.

Fig.2:

Comparison between the Verigin

solution ( dottet line ) and U

M 4n

0.001

t

2
If y » max ( 41,4r|t) , the last two exponential mtegrals in the

2 2
expression for U can be neglected. In additition, if r < nr , wherec

r c is the the radius of incompressibility defined in Appendix 1, the
first exponential integral can be approximated by a logarithm:

1 4qt -y
-ln( e )
2 2

(4.9) U(r , t; y) u (r,qt)
h

r

Note that the condition used to derive this contradicts the one used

to derive u » U, and it is consequently not obvious that u « u. .h

2 2 2 2
When max( r ,y ,ny ) < qr , the logarithmic approximation canc

be used for all the three terms:

Both Eqs. (4.9) and (4.10) describe a stable situation where constant

pressure "fronts" are moving outwards in the reservoir with constant

r = 1 y = 500

t = y 2 /2 e0

yMt M - v
(4.10) U ( r,t ;y) « In— + —ln “2 + —ln(4e )

r 2 y 2
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speed. (Remember that the expression "constant speed" involves

cylindrical decay, as stated in the Introduction.) Between these

imaginary fronts and the well, the liquid behaves as incompressible,

The relationship between the exact u. and the approximate

Solutions has been investigated for r = 1, the details are shown in

Appendix 2. The exact solution was represented by a numerical solution

based on the Stehfest algorithm [39]. The conclusions from the

comparison are as follows:

1 ) It is not possible to tabulate the exact solution as a function of

t , M and r) alone, as done by Satman et al. [4o]. In addition, the
y

value of y has to be given, as is clearly seen from the approximate

expressions.

2) The maximum error in the approximate solution U can be quite large,

especially for small values of n together with large values of M, say

H < 1 and M > 5. The absolute error is uniqely determined by t , H
y

and n• The relative error in addition depends on the absolute value

of y, decreasing with increasing value of y.

3) For small values of t, u can be approximated both by u. and U, h

døspite the fact that Eq.(4.8) was derived as an asymptotic

expression. For most values of M and n. the error in u « U is mainly
1

localized in the t -interval (1/1 0n,25). When t is small, u » u isy i h
the better approximation, generally valid for t < ir/lOn. The error

y
in the expression on the right hand side of Eq.(4.10), compared to the

exact solution, can be both smaller and larger than the error in U,

depending on M and n• As a general rule, the lower limit t =25 will
y

be used also for the validity of this approximation.

The limits given for the validity of the different approximate

expressions are based on the concepts of drainage radius and radius of

incompressibility, defined in Appendix 1. For most values of M and n«

the error was found to be less than 1Z within the given limits.

However, larger error may exist also within these bounds, for instance

when n< 1 together with M> 5. It must be emphasized that they

should only be used as a rough rule of thumb and not as basis for

estimating the position of the discontinuity.
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4.3 A finite reservoir with a lateral discontinuity in mobility

and diffusivity

An analytical solution describing a finite reservoir with a

lateral discontinuity is given by Carter [4l] for the case M = f| •

Again, the Laplace transform was used to construct the solution. In

Ref.[42], Odeh claims to have found this solution independently of the

work of Carter. Hopkinson et al. [49] give an approximate solution

valid for large time and general values of the parameters, but as

parts of their manuscript is written by hand, details in this solution

is not clear.

Appendix 3 shows how to generalize Carter's solution to cases

where the value of H differs from n- The solution has a complicated

form, containing an infinite series of residues. An approximate

solution, valid for large values of t, can be found as the term

corresponding to the residue in z = 0, where z is the Laplace

variable. This solution is probably identical to the one presented by

Hopkinson et al. The residue in z = 0 is given by Eqs.(A3.7)

(A3.9), and yields for the pressure in the water zone:

2Mt y
(4.11)

u i (r, t ;y) « c
+ In

2 r
r

2 2
yHy M M r

 CC -Mln -  (n-D(—) -- + —(—) ]
r 2r) r 2 2F) re e e

The factor C is defined as

2
1 M y

1 + (~ - 1 ) (—)
n r

(4.12)
C

The product Mt in the first term of Eq,(4.11) is somewhat misleading,

the factor M only being a consequence of the scaling of the variables.

2 2 4
2MyyM vMv 1M

 c C -(M-q)( —) In - + (M-1)( ) - —(—) { (M-1 ) + (M-n)(1+-)> - - 3
n r r 2r| r 4n r ' n 4
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Returning to the ohvsical variables, this term vill have the form

CT/c R 2 corresponding to usual depletion as in the homogeneous case.0 e
As the time dependency is isolated to this term, the inner zone only

appears as a constant skin in the solution. If the values of M and n

not differ too much and in addition y/r << 1, then C a 1, ande

Eq .(4 . 11) may be further simplified:

3M
4

In this case, the equation shows that the inner zone behaves as

incompressible, just as in the infinite-acting period.

An approximate solution similiar to Eq. (4.8) can also be

constructed for a finite reservoir. First define the function w by

the following equation:

Using the expansion of the modified Bessel functions for small values

of the argument, it is possible to show that

2 2
M r

+ —( ) ]
2r) r

e

-CM y
w + C —(n - 1) ( —)

z 2 n r

M
(4.15) u

1 2

0
+ 0( z )

Remember that u has a double pole in z = 0. Hence, if terms of order

higher than 1/z are neglected, » w for small z. The asymptotic

property of the Laplace transform gives « w valid for large t,

where wis the inverse transform of w. From the table of Laplace

transforms in Appendix 4, it follows that

2Mt y y
(4.13) u(r,t;y) ~ C—- + In - M In1 2 r r

r

i nr i rr cm _ 2cm _
(4. U ) w = -K {— r) - —K ( -y) + —K (/zy) + K (/zr )

zo Jn z o q Z 0 3/2 1 e
z r

2 2 2 4
CMyyM y M y 1M

+— C -(M-n) ( ) In + —(M- 1) ( ) - { —) { (H-1 ) + (H-n )(1+ - ) ) ]
z H r r 2n r 4n r p 4
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r

For small values of t, where the last two terms can be neglected, this

expression differs from 1) defined in Eq . (4.8 ) by the factor C. For

large t, Eq.(4.16) can be simplified further to

2Mt y_
r

MC In -
r(4.17) w ~ C + In

2
r

This should be compared with the approximate Solutions in Eq 5.(4.11)

and (4.13). All the expressions show the same time dependency, but

differs in constant values.

a finite homogeneous reservoir first given by Homer [43] who derived

the expression from physical arguments.

A systematic analysis of the error in approximate Solutions for

a finite reservoir must include variation in three parameters; M, n

and y/r and will consequently be rather laborious. When C « i,e
Eq .(4.16) behaves approximatly as the solution U in the infinite

acting period, the error of which was investigated in Appendix 2. For

large values of t, the absolute error in the approximate expressions

Eqs. (4.13) and (4.17) are constant and can be found by comparing with

the asymptotic solution, Eq.(4.11).

For M = n = 1 Eq.(4.16) reduces to an approximate solution for

2 2
1 . r 1 y

w = — — E i ( — ) + -Ei ( -
2 4nt 2 4qt

(4.16) 2
2

r
2

r
M y M e 2Mt e

+ CC - -Ei (- —) + —Ei ( - —) + —— exp ( - —) ]
2 41 2 41 2 41
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4.4 Injection into an infinite reservoir.

With basis in the Solutions found in Secs. 4.2 and 4.3, we are

now capable of proceeding with the second and third step in the quasi

stationary method. In the next sections, this will be done for

different problems encountered in injection well testing. To test the

the validity of the method, it will first be applied to injection into

an infinite reservoir, where the exact Verigin solution, Eq. (1 .3), is

known.

To describe the pressure in an infinite reservoir with a

stationarv discontinuity, the solution U(r,t;y ) given in Eq.(4 .8 ) will

be used. Substituting this into Eq.(4.1) yields the following equation

for an approxima tion of the front speed:

(4.18)
2

e exp(- )
4qt

Comparing this equation with Eq.(1.4) found by Verigin, it is seen

that Eq.(4.18) is exact, although it is not imposed here that q must
2

have the form p = gt.

An approximate solution for the pressure in the water zone is

now constructed as p « U(r,t;/gt):w

2
ri g M g

Ei(- —) + -Ei(- —) - -Ei(- -)
4 nt 2 4n 2 4

1
(4.19) U(r,t;/gt)

2

This expression differs from the Verigin solution only by an

exponential factor. When e is small, this factor is approximatly

equal to 1, and the Solutions are identical.

. 3U
ee = - EQ . ( Q.t;g )dr
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It was found in Sec. 4.2 that the expression U(l,t;y) can be

used for the wellbore pressure in reservoir with stationary
2

discontinuity if t > 25. Since now t = t/r « 1/2e, the use can be
y y f

defended for oil/water where e is of order 0.01-0.001. If e

increases, both the error in u (r,t;/jTE) » U(r,t;/gt) and the

difference between the Verigin solution and the solution found through

the quasi-stationary method will grow.

Knowing p and « U, it is now possible to calculate o defined

in Eq.(4 .4 ) :

L C U(r ,t; q ) ]o

(4.20)

—• C exp(- —) - M exp(- —) ]
21 4q 4

Obviously, o tends to zero as t increases. Also U(r,t;y) is only an

approxima te solution of the equation LC 3 = 0, and applying the

diffusivity operator to U gives

2
1 y

C exp ( - )
2t 4nt

2

M exp(- —) 3
41

(4.21 ) L [U(r.t;y)3

When y = r , the right hand side is equal to o, except for the

opposite sign. Consequently, the quasi-stationary method does not

seem to introduce larger error than already introduced by using the

approximation « U. Without knowledge of the Verigin solution, one

should in this manner still have been able to predict the successful

result of the quasi-stationary method when the Peclet number e is

small.

The previous discussion can be used to enlighten some results

presented by H.J.Ramey in Ref.[443. In this paper, Ramey used a

solution for an infinite reservoir with a lateral discontinuity to

study a finite homogenous reservoir. A no-flow boundary was modelled

by letting the mobility in the outer region, , tend to zero and

constant-pressure boundary by letting tend to infinity. Starting

T h the Ve rioin solution. Rsmpu fnimri jnnmvimifa col nf i nne in 1i Hy.eriflin solution. Ramey found approximate Solutions valid

both in the transient and (semi-)stationary period. For the no-flux

case, this solution is equal to Eq.(4.16) with M = n = 1. The

calculations included two limiting operations; one involving A and0

second involving the front speed. In the Verigin solution. the moving

. a
q { —U (r, t; y ) }

dy
y=e(t)
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boundary was replaced by a stationary, i.e. the front speed was put

equal to zero, but it is not clear from Ramey's work why this could be

done. Obviously, Ramey is doing the opposite of what is done in the

quasi-stationary method, and the successful result is due to the dose

relationship between the Verigin solution and the solution for the

problem with a stationary boundary.

For the constant-pressure case, the solution could just as well

have been found starting with the approximate solution U instead of

the Verigin solution. The no-flux case is somewhat more complicated,

as will be described below. In both cases, the time variable t should

be rescaled using the properties in the inner zone before the limit

operation on A .
0

Starting from the Verigin solution, Ramey retains the

exponential factor in this solution, a factor not present in U. For

the no-flux case, this factor turns out to be critical in the limit

operation Aq —O, and the desired result can not be derived from U.
A closer look at the restriction imposed on the time scale in the

derivation of U also reveals that this solution is not valid when A
0

tends to zero. U is an asymptotic expression, and in the derivation it

was assumed that the arguments of the modified Øessel functions in

Eq . (4.5) were small. Remembering that rescaling the time causes a

rescaling of the Laplace variable z, it is easy to shown that this

assumption is not justified as A 0.0

For both types of boundary conditions, the limit operation on A Q
may be carried through on the rescaled equivalent of the exact Laplace

transform, Eq.(4.5), instead of using the Verigin solution or the

solution U. The limit thus found is, however, just the transform of

the exact solution; the pressure in a finite homogeneous reservoir.

The expression can be simplified and then inverted to give the desired

solution in the same manner as the solution w was derived in 5ec.4.3.
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4.5 Injection into a infinite reservoir with an initial water bank.

Now let = r Q > 0, i.e. the reservoir has an initial water
bank. The solution U can still be used as basis for the quasi

stationary method, and consequently, the approxima tion for the front

speed is still given by Eq.(4.18). This equation was found to be

exact when = 0, but a priori nothing is known about the validity

in the present case.

Let the function <p be defined by the following equation:

(4.22) q2 rQ 2 + tp (t)

Inserted into the front-speed equation, Eq.(4.18), this gives

Assume the variation in <p with t to be of order e. For small values
2

of t, such that 4qt << r , Eq.(4.22) and Eq.(4.23) may be consistently

approximated by q « and p' » 0 respectively. Further, the quasi

stationary method gives for the pressure in the wellbore:

1 1
Ei ( - )

4qt
(4.24) p U( 1 ,t; r ) %0w 2

The exponential integrals with arguments containing r have been
% 0

neglected as a consequence of the assumption 4qt << r*. Eq.(4.24)

simply describes the situation before the oil zone outside the water

bank is felt in the wellbore pressure. The pressure response in the

reservoir has not yet accelerated the front between the water and oil.

Based on the results found in Appendix 2, an upper limit for the

validity of Eq.(4.24) is given by the concept of drainage radius:

Now assume that tis large enough to neglect r^/ 4r|t compared to

<p/4qt. If ois assumed to have the form q 2 = pjj + gt. p Q and g being

2
~ v . r r n <p (t)
(4.23) qq = e exp[ 0- - ——]

4nt 4qt

2 2
(*•25) r (nt ) = 10nt/ tt = r

d A 0
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2
constants, a sufficient condition for this is that r Q << gt. Remember

that g is of order e. hence t generally must be very large to satisfy

this condition. The constant g can be determined from Eq.(4.18);
2

neglecting terms with argument O Q /t one finds that g must satisfy

Eq.(1.4). Consequently, g« 2e for small values of £, and the

wellbore pressure is given by the following equation, identical to

Eq. (4. 19) ;

U( 1 , t;q ) * U(l,t;/gt)(4.26) p
w

2
Ag ain terms with argument o Q /t have been neglected in the last

approximation. For large values of time, the equations for the front

speed and for the wellbore pressure are thus both found to be

independent of whether an initial water bank is present or not.

As a lower limit for the validity of Eq.(4.26), the value given

12.5 r
0

(4.27) t
6 e

The values given for the validity of the different approximations will

be further discussed in Chapter 5, with background in the numerical

simulations.

4.6 Use of superposition to describe pressure during falloff

The quasi-stationary method may be applied directly to derive an

expression for the pressure during falloff. However, an important

problem in the modelling of the falloff period has been the use of the

principle of superposition, and the use of this will be discussed

before the quasi-stationary method is applied to a general change in

rate in the next section.

2 .
by 2etg = 25rg 15 proposed:

2
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The principle of superposition is strictly valid only if the

problem is linear. This will again be the case only if the water

front is assumed to halt immediately at shut-in. The problem is then

to find expressions that can be used to construct the total solution.

Oue to the dose relationship between the Verigin solution and the

solution for a reservoir with a stationary discontinuity, such

expressions are now readily found. The basic assumption that the the

water front is stationary after shut-in will be discussed in the next

section by using the Stefan condition.

Only falloff in an infinite reservoir will be studied. Let the

well be closed at time t = t and let the front position at this time
s

be y = r.(t ) * / 2et . The pressure during falloff can be describedf s s

as a superposition of the Solutions to the following problems:

1) Find the pressure in an infinite reservoir with a stationary

discontinuity at r = y. Reservoir fluid is injected with rate q = 1

from time At = t - t =O, and the pressure distribution at At = 0 iss

given by the Verigin solution V(r,t ).s

2) Find the pressure in an infinite reservoir with a stationary

discontinuity at r = y. Fluid is produced with rate (-q) from time

At = 0, and the pressure distribution at At = 0 is identical zero.

Both these problems are purelv mathematical and do only involve

one fluid; the reservoir fluid. An approximate solution to the first

problem is given by U(r,t;y), this because U(r,t ;y) * V(r,t ) when e
s s

is small. The solution of the second problem can be approximated by

U(r,At;y). The principle of superposition then gives:

For all practical applications, the logarithmic approximation can be

used for the first four exponential integrals:

(4.28)

p M.At) * U(1,t;/2et ) - U(1.At;/2et )
w s s

* - - Ei ( - ) + -Ei { ) - -Ei (

et
s

)
2 40t 2 2nt 2 21

 ;Ei(- -—) - -Ei (-

et
s

) +

et
M s
-Ei (

2 4qAt 2 2 nAt 2 2At
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(4.29) et et
M s

) + -Ei ( )
2 2At

1 s
Ei (

2 2nAt

If At is small, the effect of the discontinuity is not important in

the solution to problem 2), and the two last exponential integrals can

be neglected:

p
w

(4.30)

The last expression is found using the MDH-approximation t « t . Notes
that the first equation does not contain the Horner-time At/t, but

M
rather an argument of the form At/t

If y < r (At)], the logarithmic approximation can

be used for all the terms. This gives an equation on the Horner-form:

M t
-In
2 At

(4.31) p
w

From 5ec.4.2 we know that an intermediate region in t exists
y

where the error in the approximate solution U can be quite large, but

this error region does not influence the solution of problem 1)

because t « t/2et > 25. For problem 2), the error must be takeny s

into account, and the error in Eq.(4.28) may be large in the At

interval (1/10q,25).

1 Ml -y
p % (1 - H)lny - -ln(r|At) + -Int + -(M - 1)ln(4e )

w 2 2 2

1 M 1
(1 - M)lny - -In(nAt) + -Int + -(H - 1)ln(4e )

2 2 2

1 M 1 -y
» (1 - H)lny - -In(nAt) + -Int + -(M - 1)ln(4e )

2 2 s 2
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4.7 Changes in rate

Let the dimensionless rate q(t) be given by the equation

1

For a general value of q i ( the water front will continue to move also
after the rate has changed, Hence, the problem is non-linear, and the

principle of superposition is a priori not valid.

Returning to the problem with a stationary discontinuity, this

problem is linear, and the pressure response following a change in

rate can be described using the solution U and superposition:

(4.33) u U(r,t;y) + Aq U(r,At;y) t > t
1 1

Inserting Eq.(4.33) into Eq.(4.1) yields the following approximate

equation for the front speed:

(4.34) q’q

Approximate Solutions of this equation can be found by splitting the

analysis into two time regions, as for the initial water bank case.

First, assume that At is small enough to neglect the last exponential

term in Eq.(4.34). The equation then takes the same form as for

constant injection into an infinite reservoir, and the solution can be

approximated by p « 2et. Remember that e is scaled using the first

rate, hence the water front continues to move with the same speed as

before the change of rate. The pressure response following the change

has not yet reached the moving front.

Once again, the pressure is determined by replacing y with q,

now in Eq.(4.33). By neglecting the terms with argument g~ l At, the

equation for the pressure in the wellbore is given by

o<t < t
1

(4.32) q(t)

q = 1 + Aq t <t = t + At1 1 1

2 2
r 0 Q

e { exp(- ) + Aq exp{- ) }
4 nt 4pAt
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p « U(l,t;/2et) + Aq u (I,nAt)
w hh

(4.35)

A general upper limit for the validity of Eq.(4.35) is given by

We then search a solution valid for large t. Again, assume that
2 2

q has the asymptotic form q = ø Q + gt, where ø Q and g are constants.
If t - t = At is large enough to neglect the terms with arguments

øg/t or (øq + gt )/At, Eq. (4.34) gives

2e(l + Aq)exp{- )(4.37) g 2eq 1

Defining = eq i , the wellbore pressure derived from Eq.(4.33) is

U(l.t;/2FT) + Aq U( 1 , At; JTTt )P
w

(4.38)

Following the same arguments as for an initial water bank, an estimate

of the lower limit for the validity of this equation is found from the

25 t
(4.39) At 1 d 1 * 0B

q t

Eqs . ( 4.32 )-( 4.37) are also valid for falloff where Aq = -1. The

arguments following Eq. (4.34) show that the assumption of an immediate

halting of the water front at shut-in hardly can be justified, and the
nciple of superoosition i

5ec.4.6 showed that this principie could be used to produce

mathematical expressions for falloff pressure, but as the basic

assumption in this section is incorrect, these expressions are
generally invalid.

1 Aq M + Aq -y 1 - M
-Int + —ln(nAt) + InUe ) + ln(2e)
2 2 2 2

(4.36) r (r)At ) = JTIFd A 1

1 Aq Mq -> q
-Int + —lnAt + —lln(4e ) + -1 (1 - H)ln(2e )
2 2 2 2 1

equation 2e At = 25(2et ):
1 B 1
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Inserting Aq = -1 into Eq.{4.35) gives an expression for the

early-time falloff pressure with the usual Homer argument At/t. An

estimate of the validity of this equation is still given by Eq.(4.36),

but note that Kazemi et al. [2l] give a more detailed listing of At A

for different values of M, n and r f .

For large values of At, the water front has halted, and y in

Eq. (4.33) should be replaced by the approximate stationary value

J 2et ’. This gives a late-time approximation identical to Eq.(4.31 )
s

with a lower limit of validity given by

(4.40) At 50et 50 et
1B s

In connection with changes in rate, it is usual to define an

"equivalent drawdown time”, t , bye

(4.41) q Int1 Int + Aq InAt q f 01

Introducing t in Eq 5.(4.35) and (4.38), the expressions describing

change in rate can be written as

(4.42)

25 t
1 <

q ,

Note that the last expression is identical to

approximation of q V( 1 , t ), using the Redet number e1 e 1

logarithmic

q 4 Aq M + Aq -y 1-M iret
p - + —lnq + ln(4e ) + - ln(2e) At <

w 2 e 2 2 2 5n

p * -1 [ Int + M InUe T ) + (1-M)ln(2e ) 3w 2 e 1
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4.8 Injection into a finite cylindrical reservoir.

When injecting into an infinite reservoir, only the

compressibility in the outer zone is significant. Consequently. it is

likely that the outer boundary of a finite cylindrical reservoir will

start influencing the wellbore pressure at a time given by the radius

of drainage concept, using oil parameters:

-re >10 e
(4.43) t eia

This value has been confirmed by numerical simulations. The front

position at time t . is given approximately byeia

2 ire 2
r

5 e
(4.44) r 2ct

f, eia eia

According to Eq.(4.44), the water bank is still only occupying a small

part of the total volume at the end of the infinite-acting period.

Hence, it is to be expected that the compressibility in the outer zone

is dominating also after the boundary is felt.

Several approximate expressions are given in 5ec.4.3 for

describing the pressure in a finite reservoir with a stationary

discontinuity, and these may all be used as a basis for the quasi

stationary method. The most exact expression is given by the

asymptotic solution in Eq.(4.11) and inserting this into the front

speed equation, Eq.14.1), gives

2
(4.45) q‘q

M
2(— ) ]

r
c[ 1

n + (m - n) ( )r

This equation is separable, and the solution is given implicitly by

2
2eqtr

exp{- e - }H

The value of the argumenta in the exponential functions are small even

Tor values of t following the end of the infinite-acting period.

2 2

(4 - 46 ) Cl -( ) ] exp{- (1 - -)(—) }
r Mr® P
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Retaining two terms only in an expansion of these functions yields
2

q * 2et, as for the infinite-acting penod.

If the approximation q « is correct, the water front

continues to move with constant speed also after the outer boundary is

felt in the wellbore pressure. The liquid in the inner zone still

behaves as incompressible, only the compressibility in the large outer

zone is significant.

Following the third step in the quasi-stationary method, the

wellbore pressure can be constructed as

(4.47) p u i (1, t; /2e t)w

where is given in Eq.(4.11). From Eq.(4.44) it follows that the

constant C is approximatly equal to 1 also for a certain time after

the end of the infinite-acting period. The simplified expression,

Eq.(4.13), can thus be used for u :1

(4.48) p »
w

The influence of the moving front is less important than in the

infinite-acting period.

An expression that could be used both before and after the

boundary is felt is found by using the approximate solution w given in
2

Eq.(4.16). Obviously, also this approach gives the solution q » 2et

when inserted in the front-speed equation. Further, the pressure

during injection is given by

P * w(l,t; 2 et)
w

2Mt 3
+ (1 - M)ln(2et) + Mlnr - -M

2 e 4
r

2 2
r r

M e 2Mt e
+ -Ei( - —) + exp { )2 41 2 41

r

(4.49)
1 1 1 e 1 e

* - -Ei ( ) + -Ei ( ) - -Ei(- -
2 4 qt 2 2D 2 2
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Again, the approxima tion C * 1 is used. For small t, this equation

behaves as the Verigin solution. For large t, it differs from the

asymptotic expression Eq.(4.48) by the constant 3M/4.

The validity of the results may be tested by calculating the

term o defined in Eq.(4.4). For all the approximate Solutions, it is

found that o contains a term proportional to t, and hence it must be

expected that the error in the approxima tions also will increase with

time. Still, one can hope that a time interval exists dose to t
eia

where the error can be neglected and this has partly been verified by

comparing the Solutions with results from numerical simulations, as

will be shown in the next section. The result, however, depends

critically on the values of the parameters M, n and e, and a more

thorough investigation is needed to clearify the validity of the

different expressions.

4.9 Comments to papers by Woodward and Thambynayagam, Refs.[24,2s]

In Ref.[24] Woodward and Thambynayagam study constant-rate

injection into an infinite reservoir and apply the Laplace transform

directly to the system of partial differential equations in Eqs.(l.l).

The Stefan condition is replaced with the approxima tion Eq.(1.6). The

authors thus rederive the exact Verigin solution and claim that this

can be made valid also when a initial water bank is present by

replacing » 2et with « rjj + 2et.

When the Laplace transform is applied directly to the Verigin

problem, a problem arises about how to handle the movement of the

front. In an exact treatment, the time dependency of the front

j.tion has to be transformed as well as the time dependency of the

pressure, but as long as is an implicit variable in the problem, no
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straightforward way to do this exists. In Ref.C24] this problem is

handled by the following algorithm:

1) Transform the equations and boundary conditions, but neglect the

time dependency of in the transformation.

2) The undetermined constants in the general solution of the

transformed differential equations is found by applying the

boundary conditions of the movino-front problem. is explicitly
2

given, and g = is assumed to be a constant.

3) The resulting expression is then inverted using standard rules for

the Laplace transform.

The authors seem to neglect that this is an aDDroximation method, and

the validity of the method is not discussed. The analogy with the

quasi-stationary method is, however, obvious. In the latter method,

the undetermined constants are found by applying the boundary

conditions of the problem with a stationarv front, and the front speed

is determined as a part of the algorithm. These differences are

small, however, and should only produce minor discrepancies between

Solutions produced by the algorithms. It is believed that the quasi

stationary algorithm provides a better understanding of the

assumptions inherented in the methods.

The transformed problem for an infinite reservoir is in

Ref.C24] solved by searching for a solution of the form

B(z)[ A(g) + K ( - r) ]
0 Jn

(4.50) p
w

The exact solution, however, has a form given in Eq.(4.5), and

Eq.(4.50) only gives an approximation to the solution. This

approxima tion is based on the same assumptions as were used when

deriving U in 5ec.4.2, a fact which explaines why the two methods

produce similar results.

Based on their algorithm, Woodward and Thambynayagam also

present an expression for falloff pressure. This expression is based

on an assumption that g is constant during the whole falloff period,

an assumption that cannot be justified from the Stefan condition.

For small values of At, however, they find an approximate expression
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identical to Eq.(4.35). Surprisingly, their late-time approxima tion is

also identical to Eq.(4.31), which was derived assuming the front to

be stationary. The movement of the front does not influence the

solution for large At.

Woodward and Thambynayagam claim that their expression for

falloff also can be found by using the principle of superposition.

This is only partially correct; adding Verigin Solutions with

different arguments does not reflect superposition, as these are

Solutions of non-linear problems.

Ref.[2s] includes a study of a finite reservoir. g is still

assumed to be constant, an assumption that now can be verified from

the results in Sec.4.B. For large values of injection time, the

author finds an expression identical to a late-time approximation of

Eq. (4.49).
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5. NUMERICAL SIMULATION OF WATER INJECTION TESTS

To verify the analytical results developed in Chapter 4, a

large number of injection tests, covering a wide range of reservoir

parameters, have been simulated. This chapter only shows results

created with four different sets of fluid and reservoir properties,

denoted Set 1-4, as these were found to be characteristic for all the

simulations. These four sets are based on reservoir and fluid

properties from the North Sea. All the expressions given in this

chapter are written using field units. the time T in hours. P will
w

here be used to denote the pressure in the wellbore.

The simulations were performed with a three phase, two

dimensional, black-oil simulator named TODVARS, developed at Rogaland

Research Institute [27]. Based on a more detailed model of themore detailed model of the

physical situation, TOOVARS solves a

equations different from the Verigin

and capillary pressure as well

permeabilities are accounted for

effects of pressure on the oil

between analytical and numerical

simplifications inherent in the

system of partial differential

problem. Both effects of gravity

as variations in relative

by the simulator, together with

viscosity. Hence, discrepancies

results may be caused both by the

Verigin model and by the

approximations used when constructing the analytical Solutions.

TOOVARS does not include effects of variation in temperature in
the reservoir.

A total number of 240 grid blocks is allowed in the simulator,

with a maximum of 93 in radial direction. First, several test-runs

were made keeping reservoir and fluid properties constant, but varying

the number of grid blocks between 1x93, Ix3o and Bx3o. For all the

four sets of input parameters, the wellbore pressure was found to
differ with a maximum of s nsi a-Pi-or hmirc «x imaximum of 6 psi after 500 hours of injection. The

outer boundary was chosen so as not to influence the pressure in the

wellbore during this period.
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The data sets were then run with and without the force of

gravity included. Still using an injection time of 500 hours, the

difference in wellbore pressure was found to be of same order as that

due to varying number of grid blocks. Hence, it was decided to run

all the simulations without gravity included and with a maximum number

of grid blocks in radial direction.

All basic input parameters used in the simulations are listed in

Appendix 5. The values specific for each simulation, as rate and

radius of outer boundary, are listed together with the figures in this

chapter. Note that the values of absolute permeability and injection

rates are very large, but the dimensionless parameters have values

typical for water injection into an oil reservoir:

The value of e is based on an injection rate of 7000 Stb/d, which is

used in most of the examples shown. The four sets of parameters are

identical except for the mobility of water, i.e. viscosity and

relative permeability of water.

Fig.3 shows the pressure in the wellbore when injecting with

co nst a n t rate Q into a small finite reservoir. In all the

simulations, Eq.(4.43) was found to be a very good estimate of the end

of the infinite-acting period. In field units, this estimate is given
by

2
(pp c R

o o(5.1) T 1190.0
eia kk*

o

Including a skin factor S, the Verigin solution gives for the pressure
in the wellbore

Set M n e

1 1 .05 1.15 0.0013

2 1 .58 1 .73 0.0013

3 2.11 2.31 0.0013

4 3.16 3.46 0.0013
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(5.2)

1 Qm c
o o

+ (1 - M){ lg( ) + 2.10 } ]
1 - S hkk ‘S

or wc o

The following notation is used

162.6 Qp
w

m
w hkk'

w

(5.3)

162.8 Qm
o

m
hkk'o

o

Note that there is two possibilities of defining the dimensionless

skin factor, as either water or oil parameters may be used in the

scaling. From the Verigin solution and the early-time falloff

approxima tion, the present definition is the natural, but no unique

definition exists in the literature. In the simulations, the input

value of S is always equal to zero.

The Verigin solution as well as the analytical expressions

developed in Chapter 4 have been used to analyse simulated wellbore

pressure by using a root-mean-square method for data fitting. The

straight-line segments that could be used for analysis where chosen by

using the validity estimates given for the different expressions.

Generally, the test analysis provided very good estimates of water

mobility, but a small artificial skin factor of order 0.2-0.5. This

is demonstated in Fig.4, showing a comparison between the Verigin

solution and the simulated result using Set 3. The results from the

investigation of the effects of varying the number of grid blocks

indicate that a large part of the artificial skin may be due to errors

in the numerical solution.

To determine the skin factor in a test analysis, the oil

mobility has to be known, and the value of S turns out to be very

sensitive to the value of used. Above bubble-point pressure the

vanation in oil viscosity with pressure is small, but the temperature

kk*
o

P = P + m [ IgT + lg 2 - 3.23 + 0.07S
w i w (pp c R0 0 w
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dependency is significant. The initial value p (P.) has been used in01

the present analysis, causing only a minor part of the artificial

skin. In a real field application, however, thermal effects may be

severe in the skin analysis.

The simulated wellbore pressure following the end of the

infinite-acting period is plotted in Fig.s, and Figs.6-9 show the

absolute difference between the approximate expressions

Eq5.(4.47)-(4.49) and the simulated result. Oscillations in the

numerical solution is clearly visible. The anaiytical expressions are

reasonable accurate in a time period following the end of the

infinite-acting period, but as expected from the results in Sec.4.B,

the error is increasing with time. In almost all the cases

investigated, Eq.(4.49) was found to be the best approxima tion. The

magnitude and functional form of the error have been found to vary

considerably with the input parameters, but the general validity of

the approximate expressions has not been investigated.

Injection into an infinite reservoir with an initial water bank

is shown in Fig.lo. The vertical lines show the estimates for the

limits of the straight-line segments as given by Eq5.(4.25) and

(4.27). In field units, these limits are given by

The time needed for the pressure to pass from the first straight line

to the second, T 0 - T^, is proportional to R q2 , the square of the
initial position of the water front.

The effects of a change in rate is illustrated in Fig.ll. the

vertical lines showing the limits of the straight-line segments as

given by Eq5.(4.36) and (4.39). If the rate is changed from Qq to Q
<* time Tj , these limits are written

T
A

1190.0

2
(PM c R

w w 0

kk'
w

T 335. 3

(ph( 1 - S - S ) R 2
or wc o

B Q
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The time needed for the pressure to "stabilize" after a change in rate

is generally very long, of order 25 times the time at which the rate

was changed. Hence, it is very important to keep a constant rate as

long as possible before falloff.

The falloff pressure caused by short injection time of

T 1 = T s = 50 hours is plotted in Fig.l2. The estimate of the end of

the first straight line, given by AT. in Eq.(5.5) , shows that theA

response from the water zone in these tests is the order of seconds,

i.e. it would be impossible to determine water mobility from an

analysis of these tests. The equation for the first straight line is

found from Eq.(4.35) putting Aq = -1 and T « T :
s

(5.6)

P s is the wellbore pressure at shut-in. The second straight line is

given by Eq.{4.31), resulting in

(5.7)

The estimate for the lower limit of the validity of this equation is

given by Eq.(4.40) or in field units;

kk'

P = P - m [ IgAT + lg —~—? - 3.23 + 0.87 S ]
w s w (PM c RWWW

AT
P = P - m lg

w s o T + AT
s

1 Q m c T
2ireT 0 w w 1

AT = 1 = 88.7
A i on 1 - S - S hkk'

or wc w
(5.5)

Q
AT = t—oIinCM

B Q 1
1
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1 Q|j c T
o o s

(5.8) AT 50eT 706 1
B 1 - S S hkk ’s

or wc o

The injection time used in the simulation resulting in Figs.l3 and 14,

T = 2850 hours, was chosen on the basis of the first equation ins

Eq5.(5.5) to give a first straight falloff line lasting for

approximatly 20 minutes. This equation has been found to give a

reasonable estimate of the end of the first line.

All the plots of falloff pressure show that the estimate given

by Eq.(5.8) is too pessimistic. This result is typical for all the

simulations, but still it has been found that the time needed for the

second straight line to develop may be very long, and a significant

error may be introduced if too early data points are analysed. Once

again it must be emphasized that the given limits were chosen as a

rough rule of thumb, valid for a large range of values for the

parameters and the front position. The results given in Table 2,

Appendix 2, for M = q = 2 and y = 500, indicates that the general

value t = 25, chosen as basis for the analysis, is too pessimistic

in the present case. In a general situation where more exact

estimates of t are needed, an analysis equal to the one resulting in

Table 2, Appendix 2, must be carried through for the actual parameter

region.

B°th the analytical and numerical results developed for falloff

confirm the theory first presented by Morse and Ott [l9]; the shut-in

pressure developes two straight lines that both can be used for

analysis. However, it must be empasized that effects of variations in

relative permeabilities are not included in the present analytical

model and that the simulated well-test examples have relatively short

injection periods. In addition, the reservoir is assumed to be

infinite-acting both during injection and falloff.

In Ref.C2o], Kazemi et al. states that the second straight

falloff line can be used for analysing the oil parameters directly

only if n= 1 and. in addition, R f /R g < 0.1. From Eq.(4.44) it is

seen that the latter condition is alwavs satisfied in the infinite

actmg period. Continuing the work. Kazemi et al. in Ref.[2l] give a

qeneral correlation between the ratio of the slopes of the straight

imes and the parameters M and q. The results are based on a
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numerical simulator which uses the Verigin solution to describe the

injection period, but solves the falloff period by finite differences.

Hence, the reservoir is assumed to be infinite-acting during the

injection period, whereas a finite outer boundary is specified during

falloff. This is only correct if consistent values between injection

time and radius of outer boundary is used; the injection time must at

least be less than the time T given by Eq.(5.1 ) . The reason whyeia
Kazemi et al. find that the second line cannot be used for analysis

directly is probably that their numerical result is influenced by

boundary effects, but unfortunately, insufficient information is given

about the input parameters used to confirm this. It must be

concluded, however, that the correlation they present generaily is

incorrect. When boundary effects are present during falloff, the

eventual development of a second straight line will depend on all the

three parameters M, n and r (t )/r
f s

The numerical simulations show that the analytical results

developed in Chapter 4 provides an accurate foundation for well-test

analysis. The theory shows that several factors make it essential to

design and carry through a field test very carefully, for instance are

effects of changes in rate much more severe than in usual one-phase

testing. When analysis of both oil and water properties is desired

from falloff, the injection time is essential; it must be long enough

to produce a sufficient number of data points on the first straight

line, but as short as possible to minimise the time period before the

second straight line starts developing. Theoretically, the mobilities

can be estimated with high degree of accuracy whereas the skin factor

may be more difficult to determine exactly.
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Semilogarithmic plott of
well pressure when injecting >3
into a finite reservoir.

Fle.4 ; £
i

Comparison between simulated

solution and the Verigin solution g
(dotted line) for Set 3.

T (hrs)
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T (hrs)

T (hrs)

Fig» 6

Absolute difference between

simulated result and approx.
Solutions for injection into

finite reservoir.

Input parameters from Set 1.

Eq.(4.47)
Eq.(4. 48)
Eq.(4.49)

Fig. 7

As Fig.6, but input
parameters from Set 2.

Q = 7000 Stb/d
- 2000 ft
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Fig. 8

As Fig.6, but input
parameters from Set 3.

T (hrs)

-Elg* 9 :

As Fig.6, but input
parameters from Set 4.

T (hrs)
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Fig.

Well pressure when injecting
into a reservoir with an

initial waterbank.

Reservoir parameters from Set 3c

T (hrs)

Fia.ll :

Set 3®

Re = 40000 ft
Rq » 93.5 ft

TA = 9 10“ 3 hrs
Tfi 3 644 hrs

«.s-o4 4 .e-oa i .e+oa * .s+aa 4 .e-m**

Sn— r —*—— rn— i ——'*r>

Well pressure following
o _ a cange in rate.

Reservoir parameters from

Re » 30000 ft
- .X " Q 0 ’ 5000 stb/d

Q x = 7000 Stb/d

j2_ _ T j =* 10 hrs'f

ATa » 2.5 10" 3 hrs
,—, » .—, ,—,—l .—, . ATb =* 175.6 hrsT . E—o 2 4.E-Q1 I .E+OO <.E+a< i .E-H32 i .E+OS i .E-H3* „ _ __ ,- v T * - 0.93 hrs

Te (hrs)  eA
Tefi - 185.7 hrs
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6. SUMMARY AND CONCLUSIONS

The Verigin problem, describing two-phase immiscible displacement

in a homogeneous porous medium, has been investigated. Separately,

three different methods originally developed for the Stefan problem

have been applied to the problem. From the study of these methods,

the following conclusions can be drawn:

1) Green's functions may be used to reduce the original problem to a

system of integral equations. This system can be further used to

prove existence and uniqueness of Solutions to the original

problem, but is probably too complicated for constructing simple

approximate Solutions.

2) By introducing the pressure at the water front as a new unknown

variable, the method of eigenfunctions may be generalized to

Verigin problems. The method reduces the original problem to a

countable number of coupled ordinary differential equations which

have to be solved numerically. The complexity of this system

depends heavily on the outer boundary condition used, and in all

cases, the equations are very stiff. For cylindrical geometry,

the coefficients in the ordinary equations contain integrals which

it has not been possible to calculate analytically.

3) The quasi- stationary method is an approximate method, but no

general way of testing its validity has been found. For the actual

problem, however, the validity has been investigated by

substituting the produced Solutions into the diffusion equation.

When the Redet number is small, the method is found to produce

accurate results for infinite reservoirs. For finite reservoirs,

the method gives reasonable results in a time period following the

end of the infinite-acting period, but the error introduced is

increasing with time.
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As basis for the quasi-stationary method, one-phase displacement in

a reservoir with a stationary discontinuity has been investigated.

The error in three approximate Solutions for infinite reservoirs have

been studied by representing the exact solution by a numerical

inversion of the Laplace transform. Estimates of the validity of the

different Solutions are proposed. Further, exact and approximate

Solutions are developed for finite reservoirs, valid for all values of

mobility and diffusivity ratios.

Different problems encountered in well-test analysis have been

investigated by using the quasi-stationary method. The main results

from this study are:

1 ) During injection the zone occupied by the injected fluid usually

behaves as incompressible. When the reservoir is infinite, the

pressure at the water front is constant and proportional to the

mobility ratio.

2) Approximate analytical expressions describing effects of an initial

water bank and a general change in rate, respectively, have been

given, together with limits on their validity. These expressions

have been confirmed by simulations of injection well tests and can

be used in well-test analysis with a high degree of accuracy.

3) When injecting into an infinite reservoir with an initial water

bank. the wellbore pressure developes two straight line segments

with equal slopes. The approximations describing these segments

are independent of the initial position of the water bank. and the

late-time approximation is identical as if no initial water bank
was present.

4) Except from a shut-in, a change in rate yields two straight line

segments with identical slopes when wellbore pressure is plotted

against "equivalent drawdown time”.

5) Plotting falloff pressure in an infinite reservoir against Homer

time produces two straight lines reflecting the two fluid zones.

Assuming the water front to halt immediately at shut-in and using

superposition gives an incorrect expression for the early-time

falloff pressure. However, a correct expression can be found using
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the quasi-stationary method. The late-time falloff pressure is not

influenced by whether a stationary or moving water front is

assumed.

8) Expressions are presented for injection into a finite cylindrical

reservoir. By comparing with simulations, these have been found to

be reasonable accurate in a time period after the end of the

infinite-acting period. The error is, however, increasing with

time, and the general validity of the expressions has not been

investigated.

The quasi-stationary method provides a very good method for

studying general problems in injection well testing. The method can

easily be extended to problems not treated here, such as injection
into a reservoir with a vertical fault.
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LIST OF VARIABLES AHO SYMBOLS

The variables r. t, d and d are all scaled variables as defined inw o
the following list. The corresponding dimensional variables are

written as Capital letters, R, T etc.

The Laplace transform of a function f{t) is denoted by f(z).

r 1
J -exp(- s) dss

Total compressibility

Dimensionless factor defined

in Eq.(4 , 12 )

Unit vectors in r and t directions

Cylindrical heat source

defined in Eq.(2.7 )

Exponential integral function

Green‘s function for 2-dimensional

free space defined in Eq.(2.2)

Height of reservoir

Imaginary unit

Absolute permeability

End-point value of rei, permeability

Oiffusivity operator

End-point mobility ratio

Ei(- x )
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2Trhkk

Dimensionless pressure

Initial pressure

Dimensionless wellbore rate

Wellbore rate

Dimensionless radius

Radius of incompressibility

Radius of drainage

Wellbore radius

Residual oil saturation

Connate water saturation

Dimensionless time based on

wellbore radius

Lower and upper limits for the
validity of approx. expressions

Injection time

Dimensionless time based on the

position of a stationary discontinuity

Exact solution for a reservoir with

a stationary discontinuity

Approx. solution for a
homogeneous infinite reservoir

Approx. solution for an infinite

reservoir with a stationary
discontinuity, conf. Eq.(4.8)

V V(r ,t) Verigin solution, conf. Eq.(1.3)
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w(r,t;y) Approx. solution for a finite

reservoir with a stationary

discontinuity, conf. Eq .(4 . 16)

w

Y/R Dimensionless position of

stationary discontinuity

y w

Euler's constant

Peclet number

Diffusivity

Diffusivity ratio

kk'
x

A MobilityX M
x

M Viscosityx

Q e(t) Approx. water-front position

o(r,t)o Error term defined in Eq.(4 .4)

Subscripts:

b bubble point

external boundary

eia end of infinite-acting period

water frontf

o oil

s shut-in

waterw

x oil or water
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APPENOIX 1. ORAINAGE RADIUS AND RADIUS OF INCOMPRESSIBILITY.

The pressure response in an infinite reservoir during one-phase

injection or production can be characterised by two radii, both

functions of time. The drainage radius, denoted r , is a measure ofd
how far into the reservoir the pressure response has reached. The

term "radius of incompressibility", r , will be used here to describec
an outer bound for the zone around the well where the total

compressibility is negligible.

r and r do not represent physical discontinuities ord c
boundaries, and consequently there is some arbitrariness in their

definition, which is reflected in the literature. The following

definition will be addopted here for the radius of incompressibility:

2
(Al.1) r 0.04 t

c

2 2
For r = r , the error in the approximation Ei(- r /41) * ln(r /4t) + yc
is about 0.25Z.

Some confusion exists about the term "radius of drainage", and

two different types of definitions are used in the literature. The

first defines r as the position where the value of the pressured

change or fluid flow is below a certain limit, say 1Z of the wellbore
2

value [4s]. This gives a definition where r is of order 9t. Thed
second type of definition is is concerned with the area influencing

the pressure in the wellbore, or rather with the time passing before a

discontinuity in the reservoir is sensed in the wellbore pressure.

That is, if a discontinuity of some sort exists in the position r = y,

this should be visible in the wellbore pressure at a time given by

rd ltl . y.

Whereas the first definition of drainage radius only involves

the propagation speed of the pressure response out in the reservoir,

the second also involves a response back to the well. The latter

definition is perhaps the most adequate in well testing, often



-
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referred to as "radius of investigation". Following Earlougher [B],

the following expression will be used:

2 10
t(A1.2) r

d ir

r (t) = r defines the end of the infinite-acting period for a finite
d e

cylindrical reservoir. For r = r , the pressure change in an infinite

homogeneous reservoir has been found to be about 42 of the wellbore

value.
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APPENOIX 2: COMPARISON BETWEEN THE EXACT AND APPROXIMATE SOLUTIONS

FOR AN INFINITE RESERVOIR WITH A LATERAL OISCONTINUITY

IN MOBILITY AND OIFFUSIVITY

The pressure distribution in a reservoir with a stationary

discontinuity in H and n may be described exactly by Eq 5.(4.6) or

approximatly by Eqs.(4.B), (4.9) and (4.10). The error in the

approximate solution U(l,t;y), defined in Eq.(4.8), has previously

been investigated by Bixel and van Poollen [37] with basis in a finite

difference solution of the partial differential equations describing

the problem. When n = 1. good agreement between the Solutions is

found; when n * 1. "the comparisons are usually less favourable".

Bixel and van Poollen give an upper limit t = t for the
y yA

validity of Eq. (4.9). This limit is also estimated by Odeh [42],

together with a lower limit, t = t for the validity of the late
y yB

time approxima tion Eq.(4.10). The investigation of Odeh is based on

an analytical solution for a finite reservoir, but the value of t is
yA

of course common both for finite and infinite reservoirs. No exact

mathematical definition is given for any of these limits. Earlougher

[B] uses the concept of drainage radius to define t , i.e
yA

r = V* From the definition of this concept, this is only known

to be correct if the mobility in the outer zone is zero, confer

Appendix 1. Comparison between the different values given for t and
yA

t „ are listed below;
yB

nt t
yA yB

Odeh M = n < 1

M = r) > 1

1 . 5 7.7/n
7.70.15

Bixel and van Poollen All M and n 0.25 not given

Drainage radius concept = o IT / 1 0
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The main reason for trying to estimate these limits has been to

support a basis for calculating the position of the discontinuity.

The relationship between the exact and approximate Solutions was

investigated for M and n in the interval [0.5,10] and y ranging from

100 to 5000. The exact solution was represented by a numerical

inversion of the Laplace transform in Eq.(4.5), following the Stehfest

algorithm [39]. The modified Bessel functions involved were calculated

by subroutines from the NAG library [46], but asymptotic expressions

had to be used for large values of the arguments. Also the exponential

integral was calculated by a NAG subroutine.

When M=n = 1. the exact analytical solution is easily

calculated, and the numerical inversion was found to produce 5-6

significant digits. In addition, the inverted solution was compared

with results tabulated by Satman et

based on the Stehfest algorithm, but

to specify their values of n and y.

was assumed to be 1, but the results

can not be determined uniquely by t

al [4o]. These results were also

unfortunately the authors forget

In the comparison, the value of n

in Table 1 show that the solution

, H and n; the actual value of y

has to be known. This could also be seen from the approximate

expressions.

The absolute and relative errors in the approximate Solutions

are defined in a usual manner:

ABS ERR(t;y) |u (I,t;y) - Approx. sol.(l,t;y)|

(A 2.1)

ABS ERR
REL ERR(t;y)

U 1 ( 1 , t;y)

Figs.Al -A3 show relative error in U(l.t;y) versus t for different
y

values of H, n and y. For a given M and n. the maximum value of the

relative error decreases for increasing value of y whereas the values

of the ab.solute error were found to be independent of y. The

functional form of the error shown in Fig.A2 is typical when n is

slightly less than M. Keeping H fixed and increasing n. the left

maximum will increase and the right decrease until only one maximum is

visible. If n is decreased, the left maximum will decrease and the

right increase.
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As can be seen from Figs.Al-A3, the error in 11(1,t;y) is mainly

localized in a restricted region in Defining this region as the

interval where the error exceeds 17. the limits of the interval were

found to vary considerably with the values of the parameters M. n and

y. Table 2 shows some results based on this definition. In almost all

the investigated cases, though, the error was found to be below 17.

outside the t -interval (1/10r),25). These limits are shown by the
y

vertical lines in the figures. As a consequence of the generality in

the definition of this interval, the error can be negligible also for

large parts inside the interval for certain values of M, r) and y.

The maximum value of the relative error is plotted as function

of M and n in Figs.A4 and A5. Note that the values can be large even

when n = 1• The highest maximum values occur for smal values of n

together with large values of M.

Figs.A6-A8 show a comparison between the error in all

approximate Solutions. The approximation u « u w is generally validh
for a longer time than « U. No such generality is found for the

long-time approximation Eq.(4,10). Again using a 17-defintion for the

validity-bounds of Eqs . (4.9)-{4.10), these limits of the error region

were found to vary considerably with H, n and y. Based on the

concepts of drainage radius and radius of incompressibility defined in

Appendix 1, the limiting values qt . = ir/10 and t „ = 25 will beyA yB
25 will be

chosen to give a rough rule of thumb for the validity of these

expressions. It must be emphasized that a certain arbitrariness

exsists in these definitions, and the values should not be used for

estimating the position of the discontinuity.
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Table 1

Table 2

SOL H= 1 M = 2 M= 5 M= 1 0

Ref.[4o] 5.7023

Auth. 4,0935

5.7027

4.0939

5.7038

5.7033

4.0944

5.7038

5.7037

4.0946

5.7040

4,0935

Auth. 5.7029

Comparison between own solution (Auth.) and tabulated

Some results from the error analysis for U (upper section) and

for the logarithmic expressions Eq5.(4.9 )-(4 .1 0 ) (lower section)
error less than 0 , 1 Z .

values from Satman et al. [4o] for t =0.16
y

In own solution, n = 1 •

l error for qt = Limits for 1 l error,
y

lower: upper:

M n TT / 1 0 , 0.25, 0.15, nt t
y y

0.75 8.0 2.9 2.4 1.2 0. 1 5.1
2.0 2.0 1 .3 1.1 0.5 0.2 0.7
3.0 2.25 1 .2 1.1 0.5 0.2 3.6
3 . 0 10.0 2.5 1.8 0.6 0.2 17.5
8.0 0 . 75 27. 21. 10. 0.07 39.

0.75 8.0 0.9 0.4 * 0.3 6.3
2.0 2.0 0.1 * * 0.7 2.9
3.0 2.25 0.2 0.1 * 0.5 2.0
3.0 10.0 * * * 1 .5 21 .
8,0 0.75 0.6 0.2 * 0.05 39 .





Fig. Al

Relative error in U(l,ty ;y)
when M 3 T) 3 2.

Fig. A3

As Fig.Al, but
M » 3. and r\ =» 10.

ty

Fig. A2

Ås Fig.Al, but
M =» 3. and r| » 2.25

cy
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Fig. A4

Maximum value of the

relative error in U(l,ty ;y)
as function of r|.
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w
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Fig. A5

Maxinrum value of the

relative error in U(l,ty ;y)
as function of M.

y » 500.
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Fig.A6

Relative error in all

approximate Solutions

U(l,ty ;y) Eq.(4.8)
uh(l, Tlt) Eq. (4. 9)

Eq.(4.10)

cy

when y = 500 and H =* t\ =» 2.

I ,£-<32 4.5-0 1 1 .E-HJO I.S-KSi i .E-H32 < .E-K35

cy
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APPENOIX 3. SOLUTION FOR A FINITE RESERVOIR WITH A LATERAL

OISCONTINUITY IN MOBILITY AND OIFFUSIVITY

A finite reservoir with a stationary discontinuity in mobility

and diffusivity can be described by Eqs.(l.l), leaving out the Stefan

condition. Note that the no-flux condition is used as an outer

boundary condition. Let = y be the position of the stationary

discontinuity. To separate the current problem from the one defined

in Eqs.(l.l), let u and übe the dependent variables instead of p1 2 w

and p . In the following, the Laplace transform will be used to solveo

the problem, thus generalizing a solution for the case M= n first

given by Carter [4l].

Let u,(z.r) be the Laplace transform of u.(t.r). Transforming

the equations and the boundary conditions in Eqs.(l.l) produces a

system of ordinary differential equations which can be solved to give

u
1

u
2

(A3.1) A
K 1 (a){ KQ (b)I 1 (c) + K (c) I (b) }

ZT
M K(a){ K (b)I (c) - K (c)I (b) }M u

A

The arguments a.b.c.x, and x are defined by1 2 3

1 A
Kn (x ) + ~I (x 1Z 0 1 zA 0 1

/rf
( IJOKIx 1 + K (c) (x ) >3/2 102 102

yz A

I (a){ K (b)I (c) + K (c)I (b) }
I 0 1 10

Zq
+ J n (a,{ K i (b)I i (c) " K * (c)I . < b > >ri " •
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z
a (z)

b (z)

(A3.2) c(Z)

z
x (z)

1
— r

*2 (z)

The modified Bessel functions of second kind have a branch cut along

the negative real axis. The expressions for ir, however, are

analytical for all values of the Laplace variable z, except for a

double pole in z = 0 and simple poles in the zeroes of the term A.

These zeroes will be named z , ( k = 1,2,... ), and are situated alongk
the negative real z-axis. The proof of these statements will be

omitted here, but the consequence is that the inversion integral can

be used together with the residue theorem to give the solution as an

infinite series of residues:

(A3.3) u i
i

k

First, the residues in z = 0 will be calculated. This is

double pole, and the residues are given by

(A 3.4) Res C u i
i

The expression on the right hand side is most easily found by

expanding for small values of z. Using expansions for the modified

Bessel functions given for instance by Ref.[47], these result in the

following expressions:

- y

/Fy

/F r

fz r

00
zt zt

ResC u e 3 + E ResC u e ]
i z=o i z=z

k= 1

zt
]

z = 0
d 2 - zt

[ { z u e ) ]
dt i z=o

(A3.5)
. 1

N - t 2 ' 1 * N o 2 *

U 1 =
z

% 2 °

. 1

+ 0 1 z +
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(A3.scont)

where the first coefficients in the infinite series are given by

/n
yr

N
-1

/nr
ny y

d - -) ———in -  
M 2/qr r

y
r

InN
0 2My

/qr 2r
r

+ In +
4/qyr2y y

/qr 2
e y 1
-C 1 + (- , ( - - 1 ) ]

r q4y

(A3.6) 0
0

D
1

3
/qr

+

1 6My

/qr /qrr
/qr 2
4r y

*
N In +

0 2y r 4y

-1 * o
IN.2 N n z +- ~ 1 0

U 2 * 0 1
z D o Z + 0 z +

/rir
y n e

—- (1 - -) +
2/nr M 2My

yr r yr
H e e e

(1 --) —= In * (1 - M) ——
h 4/n y BH/n

3

+ —7= -C (M - 1) + (M - n)M  -) ]
1 6/nMr n
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Now insert Eqs.(A3.s) into Eq.(A3.4). This gives

Res [ u
1

N DN- N D
0 0 -11-1

t +
0 2

0
0 D

(A3.7)

2Mt y
C + In -

2 r
r

The factor C is given by

2
1 M y

1 + (~ - 1 ) (—)
n r

2My
—— D
/nr 0

(A3.8)
C

The residue of u^e ound by replacing with N^:

zt
Res[ u e 3

2z= 0

2
M r
~ (~) 3
2 r

2Mt
C[ M In +

r

M
(A3.9) C

2 2
r

zt
3

z = 0

2 2
yMy M M r

+ C[ - Mln + (n-D( ) - ~ + —(—) ]
r 2n r 2 2n r

2 2 4
2MyyM y M y 1M

+ C C ~(M-n) (~) In + (M-1 ) (—) - ) { (M-1 ) + (M-q) ( I+-)} - - ]
nrr2nr4nr n 4

e e e e

,M 2 2 4
2 n y y M vMv 1M

+ c t -(M-n)(~) In + —(M-1)( —) - —(— ) { (M-1 ) + (M-n)(1+-)} ]
H r r 2n r 4n r n 4
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The poles z = are simple, and the values for the residues are

given from the formula for a quotient:

zt
Res[ u ]

1
k k

(A 3.10)

zt
Rest u e ]

2 7.-2. dA

dz
k

The calculation of the right hand side is carried through by

introducing the following new variables:

(A 3. 1 1 )

The calculations are rather laborious, and details will be omitted

here. The result is most easily written using the following notation:

 (s )
mn k J (6)Y {f ) - J (y )Y (0 )

mknk nkmk

2
The value of the zeroes z = - s are then given by the equationk k

/n
—J (a ) (s )

M 0 k 11 k
(A3.13) J (a ) (s )

1 k 01 k
0

.A A zt
1 7VV * I VV ,e

[ o ] 2 = zdz
z = z

-%-2{V cI VV * K, |C| VV )eZt
c ]dA z = z

2
z= - s s > 0

2
Z, = - s s > 0

k k k

ys
2 k

a = - ia(-s) =
k k /rf

0 = - i b(- s ) = ysk k k
(A3.12)

2
r = - i c(- s ) = r s
kk e k
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The values of the residues are given by

zt
Rest u e ] 2

1 z = -s
k

r "k 2
n V /rf ’ eXpl ' V 1

r 2 -i
4f)J (ot ) 2 H 2

Ok - y (1 - -)J (a )
M 0 k

2 2 2
TT Ms  

L k 01 J

2
nJ (a ){ 3 (*y )Y (rs ) - 3 (rs )Y (-f ) } exp(- s t)

Ok IkOk 0 kik k2

r 2 -i
2 2 2 4nJ (a ) 2 n 2

s y (M - 1)J (a ) Ok + y (1 )J (a ) 
k 1 k 01 M 0 k 01

2 2,TT HS 9
L k 01 J

By inserting the values of the residues given in Eqs.(A3.7), (A3.9)

and (A 3.14) into Eq.(A3.3), the exact analytical solution to the

problem is given. For the case M = n. this solution differs from the

one given by Carter only by the scaling of variables.

As t—> <* , the transient terms given by the residues in z =

are damped, and the first term corresponding to the residue in z = 0

is dominating. Consequently, this term may be used as an approximate

solution for large t.

Carter also presents numerical results from a computation based

on his expressions for M = n• This computation involved calculation

of the roots in Eq.(A3.13) together with a calculation of the infinite

series in Eq.(A3.3). It is believed that numerical inversion of the

Laplace transform, Eqs.(A3.l), according to the Stehfest algorithm is

an easier way to provide numerical results. This inversion has been

carried through, showing that the wellbore pressure can deviate

considerably from the value predicted by Carter‘s formula if Mtr) •





93

APPENOIX 4. TABLE OF LAPLACE TRANSFORMS.

Let f(z;a) be the Laplace transform of the function f(t;a).

arbitrary positive parameter.

is an

f(t ;a) f(z ; a )

2
1 a

(A 4.1) - -El(- )
2 41

K (/za)
_0

z

2
1 a

exp(- —)
21 41

K (/za)0(A4.2)

2
2t a

exp(- —)
41

1
-K (/za) +
z 0

2
(A4.3) K (/za)

3/2 12
a z

The first two transforms can be found for instance in Ref.[4B]. The

last can be found from the second by using the general rule

22
t f (t; a )

d
~~2 f( z; a )
dz

(A 4,4 )
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APPENOIX 5. PARAMETERS USED IN THE NUMERICAL SIMULATIONS

This Appendix gives a listing of the input parameters used to

produce the numerical results presented in Chapter 5. Four different

sets of input parameters were used, based on field data from the North

Sea. Where detailed information about the values was missing, such as

for relative permeabilities and residual oil saturation, those values

were chosen more or less arbitrary. The following reservoir and

wellbore properties are common for all four sets:

Absolute permeability k = 4621 mD

Porosity <P = 0.307

Formation compressibility c f
= 5.0*10 psi 1

Height of reservoir h = 13.12 ft

Wellbore radius R
w

= 0.36 ft

Residual oil saturation S
or

= 0.34

Connate water saturation S
wc

= 0.279

Initial pressure P .
i

= 4500 psi

Bubble-point pressure
p b

= 3000 psi

Skin factor S = 0

The following table gives a listing of the PVT-properties of the

saturated oil:

Pressure B
0 M 0

R
so

2680.3 1.221 1 . 20 412.0

3132.8 1.250 1 . 10 467.0

5119.8 1.350 0. 90 784.0

7106.8 1.450 0. 70 1101.0

Cpsi] [bbl/Stb] Ccp] [Scf/Stb]

B = Formation volume0 factor of saturated oil

R = Solution gas/oilso ratio

M q = Viscosity of saturated oil
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Above bubble-point pressure, the volume factor and viscosity of oil

are assumed to be linear functions of pressure:

dB
—o
dP

-6 -1
6.5*10 psi

P > P
s

d M
—o
dP

-5
9.0*10 cp/psi

Together with linear interpolation in the PVT-table, this gives the

following initial values for compressibility and viscosity of oil:

M 1.26 cpo

The compressibility and volume factor of water are both constants,

given directly into the simulator as

0 1.0 bbl/Stbw

Hence, the total compressibility in each fluid zone may be calculated

c
0

c
w

The viscosity of water is assumed to be constant in each simulation,

but differs for the various sets of input parameters:

[cp]

, . J_ dBC ( 01l ) = —o
B dP

o

5. 17* 10" 6 psi 1

p.= p
1

- 6 -1
c(water) = 3.0*10 psi

c + S c(water) + [1 - S ]c(oil)f wc wc

9 .57 -IQ -6 psi~ 1

c + [1 - S ]c(water) + S c(oil)f or or

8.74*10 ® psi 1
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The variations in relative permeability are given by

The capillary pressure is identically zero in all simulations.

The values of rate and radius of the outer boundary are specific for

each simulation and are given along with the results in Chapter 5.

When effects of gravity were included, identical values of

horizontal and vertical absolute permeabilities were used. Further,

the following values of the densities at standard conditions were

applied:

is the density of the dissolved gas as given by the solution

gas/oil ratio.

All simulations that did not include the effects of gravity,

were run in a radial mode with 1x93 grid blocks.

q = 54.93 Ibm/Scfo

o = 9.11•10‘ 3 Ibm/Scf9

q = 62.42 Ibm/Scfw
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ERRATA:

correct equations should read
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correct definition of the Peclet number in the List of Vanables

Symboles, p. 69, is
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