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Abs tract

A dispersion-free numerical procedure for the solution of nonlinear
conservation equations based on exact Solutions of the Rieraann Problem
by the Randora Choice Method is reviewed. This paper is concentrated on
the displacement of oil by water in a onedimensional porous rock,
however, the technique applies equally well to a variety of physical
probleras where accurate modelling of the evolution of
discontinuities/shock waves is imperative.

For immiscible displacement, the nonlinear part of the conservation
equation is an empirical function with error bounds. The effect of
representing the (unknown) sraooth nonlinearity function by a tabulated
version is studied, accorapanied with a proof for the structural
stability of the problem with respect to small perturbations in the
nonlinear function.





1 Introduction

The Buckley-Leverett Equation of reservoir dynamics is a special case

of a non-linear conservation equation. The development of

discontinuities that such equations perrait, traditionally has been

difficult to describe numerically by finite difference raethods, as the

discontinuities (shock fronts) inevitably are smoothened by the FDE

algorithm (numerical dispersion).

7
Based on a work by Glimra , several authors have contributed to the

development of a numerical procedure where the analytical solution of

the Riemann problem is used to construct a global solution which is

free for numerical dispersion. (See references at end of paper.) The

positions of the shock fronts are coraputed without error, and the

raethod is dose to being second order accurate. A thorough description

of the method is given in the first part of the text.

The nonlinear part of the Buckley-Leverett Equation is basically a

function of the mobility ratio of the two fluids present. This ratio

is virtually an empirical function of the wetting fluid saturation.

Previous authors have, however, assumed a given analytical dependence

on saturation in their works. We generalize the method by allowing the

fractional flow function to be given by empirical table values.

Inaccura te raeasureraents introduce sources of error into the

description of the nonlinearity function. The method therefore raust be

structurally stable with respect to perturbations in this function, a

demand which we will show is fulfilled.

Another extension of previous theory is that, restricted to physical

possible situations, we permit the nonlinear function to have a quite

general shape.

The problem will be studied in one dimension only, for applications in

multidimensional probleras we refer to the list of references.





2 Basic uations

Our object shall be the description of one-diraensional flow of two

immiscible and incompressible fluids (water and oil). Sources and

sinks are located only at the boundary of the model, and will be

described by the boundary conditions, not included in the governing

equations.

The basic equations are;

(1) (Continuity Equation)

(2) Ui (Darcy"s law)

(Completely saturated

rock.)

(Capillary Pressure

Equation)

In these equations subscript i denotes the two phases o (oil) and w

(water), is the Darcy velocity, denotes saturation, K the rock

permeability and k relative perraeabili ty. p c is the capillary

pressure, $ = rock porosity, p = density, g = gravity, p = viscosity,

and 9 is the angle between the positive x~axis and the gravity vector.

We define the mobility of phase i by A. = k ./p. andJiri i

the specific gravity by y ; = p^g.

(3) ), and p = pw -

3u• 3S.
+ s(x )—i. = o

3x 3t

K(x)kri ( Sl ) 3p ±
i - Pigcosø I9x

Sw + So = 1

(4) p = p (S ) = p -pF c F c  w' F o Fw

Let S- Sw (hence S Q =1 - S by Eq
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Equations (1)~(4) are then written:

If we introduce the total Darcy velocity u =uw 4- u , we see from
Eqs. (7) and (8) that u is constant.

From Eqs. (5) and (6) we have:

which gives the Pressure Equation:

By solving Eq. (9) with respect to the pressure gradient, combining

Eqs. (5) and (7), and inserting the expression for the pressure

gradient, we arrive at:

(5) = - KAW { ~ - YwcosØ }dx

9p 9p
(6) uD - - KX 0 ( + - Yoco S 9 1

9u 9S
(7) + s(x) = 0

9x 3t

9u 9S
(8) —2. - <D(x)~ = 0

9x 9t

(9) u-- K I (Xw + Ao )Ji - (Aw yw + a o T o )cosØ + J

(10) fK ' U« + V~l - -K -<V„ + Vo )coso - - K-Ao^

(11) JL{ J£ u + [ iZs. -(y - Y„)cosØ ] + = 0
*w +*o \i +*„ »* ° " 3t
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Denoting the derivative with respect to S by a dash, Eq. (11) can be

expressed as:

Equation (12) is known as the Saturation Equation.

We now assume that the rock is homogeneous, that u is time

independent, and that capillary pressure is negligible.

Under these assumptions Eq. (12) is reduced to the well-known Buckley-

Leverett Equation;

Equation (13) is a special case of the conservation equation:

3S 3f(S)
(14) + - 0

31 3x

The nonlinearity function f(S) defined by Eq. (13) is known as the

fractional flow function. We shall study Eq. (14) for a general

nonlinearity function in the following.

3 The Rlemann problem

In this section we will examine the properties of the Solutions of the

nonlinear hyperbolic conservation equation for a special initial

condition. We use u as the dependent variable and denote differentials

by subscripts. The raodel problem is then:

3 X A 3S
(12) —(K   w ° p ' (S) ] +

9X K, + C 3XW o

+ j J|'u + K(to " yw)cosø|—l +
ArT i A A „ + Å oxW O W O

A A 3K 3S
+ (Yn - Y )cos9 w-°- +s = 0

Xw + Xo 9x 3t

3S u d- A K „ 3S
(13) - h | (1 + — (Y -Y )X cosØ )]] — = 0

3t *dS A + A u ° w ° 3xw o
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(15) u t + f(u) x = 0

The initial value problem (15)-(16) is known as the Riemann problem.

u^, x<at

(18) u =

x>at

i.e. a discontinuity moving to the right with the velocity a = dx/dt-

In the x-t plane the solution is composed by two constant cases

separated by the discontinuity line x = at. (Fig. 1. )

Fig 1

Returning to the general case, we note that if u 0 = const., u= u Q is

a global solution of the Riemann problem.

For large positive xwe hence may infer that the solution of the

problem for small times is a wave u = propagating with a velocity

a( and for large negative x we will have a wave u = propagating

, x<o

(16) u Q = u(t=o)
x>o

where and are constant cases.

3f
By defining a(u) = — , equation (15) may be written;

3u

(17) u t + a(u)ux = 0

The linear case (a = pos. const.) has the solution:





6

with a velocity a(u R ).

These raodes are, however, valid only for a limited time, depending on

the absolute raagnitude of x. Ås t increases or/and x approaches zero,

this simple approach ceases to be valid. When a(uR ) < a(uR ) the

solution will become raultiple-valued in finite time. (Fig. 2a)

The case a(u R ) > a(uR ) implies that a sector expanding from the origin
exists where no solution is defined (Fig. 2b)

The Rieraann problem has been intensively studied the last few decades,

leading to a theoretical basis

for one case, namely when f(u) is

all u. The main contributors to

Oleinik.

which can be looked upon as coraplete

strict nonlinear, i.e. a*(u) * 0 for

the theory are Glimm et al, Lax, and

7 1
A coraplete description is found in e.g. Smoller

We shall present a brief summary of the main results:

When uR tuR we have a jump discontinuity at the origin of the x-t

system. This discontinuity, which seperates the constant states U| and

Ur, will propagate as a centered expansion wave or a shock (which may

be a contact discontinuity.) It is readily shown that the Riemann

problem perraits several Solutions, see e.g. Smoller 21 . We seek the

unique weak solution that is physically feasible. Then the following
raust hold;

Let x = x(t) be a curve of discontinuity for a solution u(x,t) of

the Rieraann problem. Let u_ be the limiting value of uas x(t) is

approached from the left, and u + = lim u(x,t) as x tends to x(t)

from the right. Standard shock theory then provides:
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I) The curve of discontinuity is a straight line with slope

(Rankine-Huginot jump condition)

2)

for every u between u + and u_.
1 7 \ 8

(E-condition of Oletnik ' , or the entropy condition.)

If u 1 and u 2 are two arbitrary values of u, we define

f(uj) “ f(u 2 )
S 12

U 1 ~ u 2

as the slope of the straight line connecting the two points (u I ,f(u 1 ))

and (u 2 j f(u 2 ))• The entropy condition then reads:

If conditions (19) and (20) are not fulfilied, the appropriate

solution raust be continuous. Contrary to the linear case we here have

a situation where discontinuous Initial data raay generate a smooth

solution. On the other hand, discontinuities (shocks) can develop from
smooth initial data.

Håving described the conditions under which shocks are perraitted to

develop, we turn to the smooth solution case.

The situation is depicted in Fig. 2b. The two constant cases and

are seperated by a region where for the time being no solution is

defined. Looking at the physics, we have two waves propagating in the

same direction, where the "first" wave has a greater velocity than the

second one. In other words: The "first" wave is "running away" from

the second one. ihis leads to the definition of the so~called

(19) s +. i(-Uj ' f(°
d t u + u _

(20) f(u -«- ) ~ f < u > , f < u +) - f(u_)
u + - u u + -u_

S +> . S +,~ for every u between and u_.
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rarefaction wave. This wave is impleraented as a smooth curve

connecting the two constant states, so that the total solution is

continuous.

More accurately: The sector that separates the constant states uR and

u R is bounded by the straight lines x = aL *t and x = a ß *t,

We seek the rarefaction solution for t = x > 0 at a point x = 5

within the sector. The desired solution is then u(x,£) = a -1 (C). As £

runs from aR to a R along the line segment t = x inside the sector, we

see indeed that the solution is everywhere continuous.

From the analysis so far, we conclude that only four permitted cases

can exist as Solutions of the strictly nonlinear Rieraann problem. We

shall denote these cases as the four primitive modes of the problem:

Mode 1: f(u) convex and uR > u R .

Mode 2: f(u) convex and uR < u R .

Mode 3: f(u) concave and uR > u R .

Mode 4; f(u) concave and uR < u R .

(Rarefaction)

(Shock)

(Shock)

(Rarefaction)

The primitive modes are shown pictorially in Figs. 3—6, where a) shows

the nonlinearity function, b) the solution in the x—t plane, and c) is

a qualitative picture of the solution along the line t = x.

Fig. 3. (Mode I. )

where - and = a(u^).
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Fig. 6. (Mode 4. )

Composite Solutions.

When the condition of strict nonlinearity is violated, the solution is

coraposed by several of the primitive modes. This case lacks the solid

theoretical foundation that supplies the strict nonlinear case, but by

physical reasoning and application of the conditions (19) and (20), it

is possible to construct a solution that is unique and physically
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acceptable. Fig. 7 shows a rather complex nonlinearity function

a: Convex hull b: Concave hull

Fig 7.

The u axis is divided into regions, so that each region contains

exactly one primitive mode. From the E-condition we deduce that the

classification into primitive modes always starts at the u D -end of the

diagram. The physical statement we use as basis for constructing the

composite solution is: Different shock waves starting simultaneously

from the origin of the x~t system must be ordered so that the waves

with the greater shock velocity at every time precede waves with lower

shock velocities. In the x-t plane this statement is interpreted as;

When x runs from to along the line t = i, the different

wavemodes coraposing the solution must be encountered in the same

sequential order as when u runs from uR to uL along the nonlinearity

function. I.e. the shock speeds must form a decreasing sequence when u
varies as mentioned.

This request is satisfied if (and only if) we replace f(u) by its

convex hull when u R < u R , and the concave hull if uR < uR . This

procedure is based on a result by Karten*"’, namely that the solution

is independent of the actual shape of the nonlinearity function in the

concave (convex) regions when uR < (>) uR .

The construction of the composite wave is then a simple task. The case

shown in Fig. 7a will as an example be composed by a constant State

u R , a shock wave separating u R from a rarefaction wave connecting
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u,j and U2, and so on, resulting in a solution which is qualitatively

shown in Fig- 8.

The solution corresponding to Fig. 7b is shown in Fig. 9

4 The Randoa Choice Method»

We now turn to the actual problem we are atterapting to solve, namely:

y
A method developed by Gliram to prove the existence and boundedness of

Solutions to the Rieraann problem, was during the 70's used in a

constructive manner to obtain a numerical solution to the problem

(21) u t + f(u) x = 0

(22) u(t=o) - I(x)

(23) u(x=o) = B 0 (t), u(x=l) = Bj(t)



r
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(21)—(23). The procedure has been developed and studied by Gl i ram,

Marchesin, Mcßryan, Chorin and others 1 ~ 5 ’ 7-13 ’ 16, 20 . An excellent

description of the method is given by Concus and Proskurowski I+ .

We seek a solution u(x,t) at the points xi = ih, i=1,2,..., and

tj ~ jk, j=1,2,..., where h is the spatial increment Ax and k = At.

In the following we shall denote the numerical solution by Capital

letters, and the analytical results by lowercase.

The solution is advanced one complete time step in two cycles.

Starting with the known array U(ih,jk), we first corapute the solution

half a time step ahead on a shifted grid, i.e. U is evaluated in the

points |(i+l/2)h, (j+i/2)k|. The second cycle is similar, so that at

the end of a complete time step, we obtain u{ih, (j+l)k(. In the

following we concentrate on the first time cycle, the other half is

analogeous.

The grid systera is shown in Fig. 10:

Fig. 10.

We use a control volurae interpreta tion of the discrete approximation,

i.e. U(x,jk) is taken as constant on each interval

For the grid points (ih,jk) and {(i+l)h,jk) we thus have the problem:

U(ih,jk),

(i l/2)h * x < (i+l/2)h, and similar for u{x,(j+l /2 )k}.

(24) u t + f(u) x = 0 t > jk

x < (i+l/2)h

(25) U(t=jk)

U{(i + I)h,jk |, x>(i+ l/2)h
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In order to simplify both the notation and the computer prograras, we

shift the point {(i+i/2)h,jk} to the origin. The original Rieraann

problem is then recognized. Our task is hence to solve one Rieraann

problem for each grid point.

If the size of the time step is restricted by imposing the Courant
condition:

(26) max la(u)S < h/k

we are guaranteed that none of the separate Rieraann probleras will

interfer with each other, hence assuring that waves propagated from

the discontinuity of different Rieraann probleras do not intersect.

The Rieraann problem generates a coraplex solution composed of at least

one of the primitive modes, defined on the line segment

This analytical solution raust be represented by one single value

appointed to the point t = k/2, x= 0 in the nuraerical procedure.

The straightforward angle of attack is to utilize the analytical

solution directly, hence defining U(0, k/2) = u(0, k/2). No stable

raethod is, however, obtained by this approach.

In order to achieve stable results, a point on the given line segment

is chosen randomly, and the u-value taken at that point is assigned to

the point x - 0, t = k/2. I.e. a uniformly distributed randora variable

0 is sampled from the interval (-1,1), and we define the solution at

x =O, t = k/2 as:

(Hence the name Randora Choice Method, also referred as the Uniform

Sampling Method. )

As an example, a raretaction solution of the Rieraann problem is shown

in Fig. 11. Once t) Is sampled, the nuraerical solution to be assigned

to the point x = 0, t = k/2 is defined by:

t - k/2, -h/2 < x < h/2.

(27) U(0, k/2) = u(Gh/2, k/2)
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*
where a is defiaed by the equation

Fig. 11.

The convergence and stability of the Randora Chioce Method is sensitive
\ 9

to the sampling procedure, as pointed out by Chorin ’ . He found that

stable results were obtained only if the same value of ø is used for

every spatial point of a given time step. ø is most naturally sampled

by a pseudo randora generator. We require from this generator that the

Ø-distribution converges rapidly to a uniform distribution, without

too small repetitive patterns, and have chosen to use a randora

generator proposed by that serves our purpose:

R j + l/2 E 32768*Rj (mod 16775723), j -0, 1/2, 1, 3/2,

To prevent loss of information at the boundaries, Chorin suggests the

following procedure;

Let Kj <K 2 be mutually prime integers with K 2 odd, and let <K 2 be

an integer. Construct the sequence of integers

uR i f Øh/k <aR

(28) U(o,k/2) = u(Gh/2,k/2) = u* if aL < Oh/k <aR

u R if Øh/k >

a(u ) = Oh/k.
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(29) N g +J = (N s + Kj) (mod K 2 ) #

Then for the Rieraann problem Solutions in the first half-step we use

when sampling at time t = (j + l/2)k. In the second half-step we use

Chorin showed that boundary conditions should be treated in the

following manner;

When the Dirichlet condition u Q = B Q is prescribed

Note that this way of defining the image points may require an

extension of the domain of definition for the nonlinearity function.

In our study, u represents saturation, which is certainly a nuraber

between 0 and 1. U(x = -h/2) as defined above may however exceed 1.

For waves travelling to the right, e.g. water displacing oil, the

left-end-point condition reduces to U(o,j) = u Q , while the right-end

condition is superfluous, as the waves travel out of the medium at

this end.

If the nonlinearity function has a minimum, a(u) will be negative in

some domain, and we have waves travelling to the left. In this case

the last mentioned treatraent of the boundary may be insufficient.

(3°) Qj + i/2 = <N 2j +1 + Rj4.j/2 )/K 2 - 1

(31) Øj + 1 ( N 2j +1 + jM ) /K 2

when sampling at time t = (j+l)k, j = 0,1,2,

With this procedure, -1 * 0.,, /9 * 0 and 0 < 0. . , < 1.j + i/

we set u(-l/2, (jH-1/2) } -2B Q -u{ 1/2, ( j+l/2) } , and similar for the

boundary at x = 1.

If we impose a Neuraan condition (3u/8n) 0 = C Q the image point is

defined by u{-I/2, (j+l/2)} = U{l/ 2, (j+l/2)) - h«C Q .
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Solution of the multidimensional conservation equation deraands an

extension of the raethod which is not straightforward. One angle of

attack is the "operator splitting" scheme of Sethian, Chorin, and

Concus, where the problem is split into two or three one-dimensional

Rieraann problems which are solved sequentially. As the x-y-z

coraponents of the computed wave speeds in the different sweeps may be

inconsistent with the actual displaceraent, an additional routine is
? 0

required to analyze the propagation topology .

Another approach is the front tracking scheme of Glimm et al, where

the Randora Choice Method is used solely to deterraine the velocity

vector of the saturation discontinuity, a one-dimensional problem.

Away from the front the solution is sraooth, and can be found by a
A O

finite element solver on a moving grid 1 .

6 Discretization of the nonliuearity functlon.

The authors of the referenced papers all assume the nonlinearity

tunction f(u) to be given in a closed form. This is a valid approach

e.g. for the non-viscous Equation where f(u) = Bu 2 . In our

case, namely iramiscible displaceraent of oil by water, the most coramon

approach has been to define the relative permeability curves for water

and oil by (u being water saturation):

Hence the nonlinearity function is:

This approach is less satisfactory if we wish to study a real case. A

very special form of the relative permeability relationship has been

assuraed. This functional form will seldom or never be fulfilled in

practice. Moreover, it is highly improbable that we are able to obtain

any closed expression for f(u) at all. The normal case is that we are

given a table of measured values for relative permeabilities as a

(32) k rw ' u2 > k ro = ('-u) 2





17

function of saturation. Viscosity is in this discussion assumed to be

constant.

We shall henceforth discuss the algorithm for the Riemann problem when

f(u) is given only at a finite number of points

i=0,1,2,...,n.

5
Daferraos has studied the case where f(u) is a polygon-line. Our

approach is, however, soraewhat different. We still assume that f(u) is

C', with known values only at selected points. The differential a(u)

is computed on the node points with second order accuracy. This

procedure differs from Dafermos, who obtains a piecewise constant

differential, while a(u) will be a discrete approximation to a

continous function in our case.

Another generalization of the cases studied in the litterature

hitherto, is that we perrait a larger dass of nonlinearity functions

than previously assumed. Concus & Proskurowski e.g., assume that f(u)

is strictly increasing with at most one inflection point. For the time

being we will allow a quite general nonlinear function, although the

dass of permitted fractional flow functions is restricted by physical

reasoning and coraputational simplification later in the text.

We are concerned with the stability and convergence of the nuraerical

procedure for the modified problem. Although the discussion is

concentrated on the case of interest, namely that f(u) is approxiraated

by a polygon-line, the argument holds equally well for an arbitrary

perturbation of f(u). Hence we will show that the Riemann problem is

struc turally stable with respect to small perturbations of the

nonlinearity function. This is an important result as f(u), the

fractional flow function, always will be a result of measureraents with

error bounds.

We define F(u) as the polygon-line passing through the points

i 0,1,...,n. In the same manne r A(u) is defined as the polygon—line

approximation to a(u). F and A are used exclusively in the procedure

in place of f and a, i.e. all function values between node points are

deterrained by linear interpolation.
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6.1 Stability analysis»

In this section we corapare the nuraerical solutlon obtained by the

reference raethod with the "perturbed solution", achieved by using the

polygon-line approximation. We denote the difference between the

results obtained as the "deviation of the modified method". The maln

goal is to show that the discretLzation of the nonlinearity function

is perraitted if the node points are properly chosen.

The Shock Wave.

Deroting the reference results with lowercase letters, and the

coiresponding polygon line approximations with capital letters, ue

have: The shock velocity is defined by:

(reference)

(perturbed)

Wht.n uR < the situation is shown in Fig. 12. We discuss this case

in the following. The case <C ,s analogeous

\

I

ir “ f R
(34) S = 4.1 _R

U L “ UR

ft - F I?
(35) S = —lt F

U L ~ UR





19

Define T - Ax/At, where Ax and At are the space and time increments.

Then the reference solution of the Rieraann problem is:

when ØT > s

(36) v =

when ØT < s

while the perturbed solution is:

when OT S

(37) V =

when ØT < S

We see that a deviation in the shock mode will result in a wave

propagating with a shifted front velocity. We therefore discuss this

case thoroughly. Symmetry considerations permit us to assume S < s.

See Fig. 13

Fig 13.

Refering to the figure, we easily deduce

S/T <ø < s/T <=> 2x j/Ax <ø < 2x 2 /Ax

i.e. a nonzero deviation occurs if S < OT < s or s < ØT < S.

<=> 0 < 0 < 2(x 2 - Xj)/ Ax <=> 0 < 0 < (s - S)/T
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Hence the conditional probability that the solution is perturbed,

given S < s is given by: (using "PS" for "perturbed solution")

Define the node points u i and so that <fR < ui+i and

Uj < < u j+l* Denote the increment u i +1 - by hR , and

sirailar for hR , and let hRi =ur “ u p> hR j =uR -uy
(See Fig. 12)

We first need an expression for FR and fR :

Hence

(38) P{ PS « S < s } =P{ S/T < ø < s/T I S < s }

= p{ o < 0 < (s-S)*At/Ax }

(39) FR = + hßl£i±l_fi
h R

(40) fR -f t + hRI -l | + Mi{ h*i + f l-l - 2fl } + 0(h|)
2h R 2 h R

(41) fR - Fr - 0.5-1 - 1) Hf t + 1 - 2f t + Ej.jl + 0(h|)
n R hR

= 0.5* { - l)}.h|«fV + O(h^)
h R hR

- 0. 5• {p ( p  1) |• a

where p - hRi /hR and a is defined by a = hn 2 «f"- = hT 2 «f"..K l L J
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The constant a determines the increraent sizes of the discretization of

f(u). In short the definition

should be used in regions where f

is intuitively reasonable.

states that the smallest increraents

changes rapidly, a conclusion which

From the expressions above we can

exact and approximate shock speed

calculate the difference between

The positions of uR and uR between two successive node points are not

known, we assurae that H and HR j will take values between 0 and HR or
more or less at randora. More precisely we assume that A and p are

uniforraly distributed random variables on [o,l]-

Inserting Eq. (41) into Eq. (38) and rearranging gives:

Define the variables kR = 1/2 - p and kR - 1/2 - X,
uniformly distributed on (-1/2, 1/2), and let

At • a
Ø 2

2Ax(u L - u R )

Then

Define the randora variables X and Y by:

In a sirailar way, X is defined by X = hLj/hL .

( (f T -F t ) - (f n~F p ) 1 a
(42) s-S = - —h * {A(I-A) - p(l-p)}

UL - U R 2(ul -ur ) 1

(43) P( PS I S<s ) =—— | (1/2 - p) 2 - (1/2 - X) 2 j
2( ul - u R ) Ax

(44) p( PS ! S<s( =p(o < 0 4 82.JB 2 .J k| - J )

(45) X = 3 2 *k 2 Y = 0 2 -k 2
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Our next task is to determine the

variables X and Y:
distribution of the stochastic

Hence the density functions are:

(47) f* (x) “i
I

fY(y) -

A deviated solution is found if the stochastic variable E = X-Y is

positive and ois less than E. To proceed, we hence need the density
function g(E) for E:

As the conditional probability P| ø < E i E } is simply equal to E,
we have:

(46) P{ X<x\ = P{ 6 2, kj? <x} = P{ *kR < } = I^l
RllO R 3 1 3

3 2
where 0 < x <—- and similar for Y.

4

Bi B d
(48) g(E) = / f x (y+E) *fy (y) dy =—7 J __L_

o 3 o +E ' fy'

1 f 3 2 /2 -E + e/3 2 /4 - E
F logf i *

where B = - E.

82/4B 2 /4

(49) P{ E>o, 0 e (O,E) (= / g(E)-p( O<EI E } dE
0

0 2

=—7 1 81og(2) - log(S 2 ) + 1/6 }
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The total probability that the discretization of f(u) implies a

nonzero perturbation in the solution is therefore:

The rarefaction wave

In the same manner as above we have the reference and approximate
Solutions:

U R

UL

u*

(51) v

U R

(52) V - uL

u*

If we assutne the ordering aR AR < a R AR) the situation is
depicted in Fig. 14.

Fig. 14.

(50) P{ PS I=P{PSI S < s } -P{S <s}+P( PS f s< S } -P{s <S}

At a f r At
- - { 81og(2) + 1/6 - log •]}

Ax 256(ul - u R ) Ax 2(u L - uR )

0T * a R

OT < aL
SL 's OT

0T s ar

OT < Al

al < øt < ar

where u* and U* are defined by a(u*) = A(U*) = QT
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This ordering is discussed in the following, other situations are

treated in a smilar raanner. The deviation due to the discretization
of f is then:

We take a(u) and A(u) as exact in the node points. (a(u) is really a

second order approximation to the derivative of the nonlinearity
function.)

The deviation (U* - u*) is discussed first, see Fig. 15.

Fig. 15.

Denoting the difference (u^ +J - by h, and using the same notation
as in the previous section, we have:

b 2 n 3 ,
a i + l a i + a i +-7~a i" + 0(h ) in Eq. (54), we have:

ur “ U* a R OT < Ar

(53) E = U* -u* Al < GT < a R

uL ~u* a L < Grr <AI

U* - U.
(54) OT = A(U*) =a. + i(a, , . - a,) =1 h I+l 1

(u* - u.) 2
= a(u*) = a i + (u* - u i )a i ' + + o[(u A -u ][ ) 3 ]

2
Replacing h by a, and utilizing the approximation

(55) („*- u*)^. Vl iSlLJ^!.iHl^l>!L (+o( h 3)h 2 2
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Using the inequality (u* - < h and solving for (U* - u*) we have

i.e. the deviation is of the second order, and is therefore comparable

with the error inherent in the numerical procedure.

From Fig. 16 we see directly that iup -U*i<fu* - U* I

(as aR < ØT < AR ), hence we conclude that the deviation in the

rarefaction wave is always of the second order.

Fig 16.

The conposite wave

The solution of the Rieraann problem in this case is composed by shock

and rarefaction waves, the mode appointed to the numerical result

hence depending on the randora variable 0. The deviation in the

Primitive modes is discussed above, an additional source of error is,

however, introduced when we construct the convex or concave hull. As

previously mentioned, the exact procedure consists of drawing a

tangent from the right State to the curve f f(u). More precisely,

the hull is constructed so that the slope of the straight line

between points (u R>f r ) and ( u ra >f ra ) equals the derivative am = a(um ).

In the numerical procedure, the point u m is searched only among

candidate node points. The hull will hence be given by the straight

line from to where and the slope S are defined
by the expression

0(h 3 ) 9
(56) U* -u* < = 0(h Z )

a h
—2 —a i "n 2 1

(57) SRM = max ll F R
i U i " UR UM “ U R
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For simplicity we set f R - F R in the analysis. The case is shown in

Fig. 17.

km is a uniforraly distributed random variable taking values between

-1 and +l. In the same manner as by the analysis following Eq. (38),

it is easily shown that the probability that a nonzero deviation

evolves due to the approximate construction of the hull is given by:

ff—

*m

i

S RM j |

R I I t h J

I ' 'I I I
U R “M um

Fig. 17.

We seek the probability that the deviation between the computed shock

velocity and the reference velocity has consequences for the

solution of the problem.

By definition, Let h = um - We then have;

q -fM “f R _ am (ura “ UR } +fM ~fm
bRM ~

UM U R UM ~U R

UM U R UM U R UM U R

As am = = sn we hence have:
UM “UR
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!• The deviation in the rarefaction wave is small and coraparable to

the error in the numerical method. (The Randora Choice Method is dose

to being second order accurate.) Moreover, it is to be expected that

the element of randoraization that is inherent in the method will tend

to stabilize the small deviations that occur, so that the perturbed

solution will in some sense oscillate with the reference solution as

raean value. Experience has shown that this is actually the case.

2. A perturbation in the shock wave is observed as a displacement of

the shock of magnitude one grid point at a given time step, relative

to the reference solution. This displacement is observed to persist

for following times, and may in some instances grow larger.

Hence it is of vital interest to choose node points for the

discretization of the nonlinearity function so that the probability

that a perturbed shift in the shock speed occurs, is as small as

possible.

We have found that the discretization process will imply a shift in

the shock speed relative to the reference method with probability p.

(where p is given e.g. by Eq. (50).) Define q = I-p, and denote the

number of shock discontinuities on a given time level by J. By

eleraentary analysis we infer that the probability that some shock

velocity is shifted at the given time step Is I— From the analysis

it is clear that a deviation can arise in one of the two half steps
only.

After K time steps we hence have a probability q JK that no shock

speed deviates from the reference solution in this time interval. We

therefore conclude that the probability that the first shift in the

shock speed eraerges during the first K time steps is given by:
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Demanding that this probability shall be less than a prescribed e and

solving for K, gives:

log(l-e)
(61) K-l >

J *i°g(q)

By this expression we can estiraate the number of time steps, and hence

elapsed time, until the solution deviates from the reference solution,

with a level of significance £. As q will depend on the number of

nodes in the discretization of f(u), Eq. (61) gives the number of node

points necessary to obtain an acceptable solution up to time tK , with
probability (1-e).

Example

For the fractional flow function defined by Eq. (33) the maximum value

of the second derivative f"(u) is approximately 2. An appropriate

average value of a is hence a = n where n is the total number of

discretization node points. Comparing Eqs. (50) and (59), we see that

the deviation predicted by Eq.(59) is larger than the one predicted by

Eq*(so) as long as n is less than approx. 100, a condition that is

fulfilled in practice. Inserting the values we have utilized in our

2
P ~ 0.15/ n . This value of p is used in Eq. (61) to produce the

"stability regions" shown in Fig. 18.

(60) P{ PS during K time steps } = 1 -

test runs, namely Ax = .02, At = .009, into Eq. (59) gives
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O 40 20 SO 40 SO
NODES

a)

For a given "deviatiou-free" time interval, the minimum nuraber of

nodes demanded is read directly from the figure. a) is for a 1% level

of signif icance, while b) is valid for £ = 0.05, the value we have

found to be appropriate.

Example runs are shown in Figs. 19 and 20, where the reference

solution is shown with a solid line, utilizing the fractional flow

function defined by Eq. (33). The dotted curves reier to results

obtained using a discrete version of the same function with 10 node

points.

A problem with constant initial saturation of u = 0.05 with boundary

value u(x=o) = 1.0 is shown in Fig. 19, while the sequence shown in

Fig. 20 has a sinusoidal initial saturation.

The tirst case only permits one shock to emerge, hence we use the

This value agrees with the front curves in Fig. 19, where the first

deviation in shock position is observed for 0.243 < t < 0.324.

For the second case, J = 3, and in the same manner we infer that

tmax = which is in agreement with the sequence in Fig. 20.

curve J = 1 in Fig. I8b). With n = 10 we find t - 0.315max
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From the numerical experiments we have found that the "stability

regions" in practice are at least as great as the ones depicted by

Eq. (61) with e = 0.05. The results using 10 equidistant node points

(Fig. 19) are shown with dashed lines. Utilizing an optimal

diseretization, the deviation between the reference case and the case

n = 10 (opt.) is hardly detectable on the plots (dotted lines). In the

same raanner, the second case could be treated with a deviation less

than the plotter pen thickness with 25 optimally chosen node points.

The criterion for choosing the optimal node points given in the theory

may be difficult to use in practice. We recoramend the following "rule

of the thumb", which successfully has been applied in our test runs:

Let d(i) be the raaximum normal distance from F(u) to f(u) between node

points u i and u^ +l . The node points should be chosen so that d(i) is

constant as i varies. In addition, it is advantegous to define nodes

at the inflection points.

When the number of node points in the given table for the fractional

flow funetion is insufficient, additional points may be determined by

interpolation, possibly by inspection of a plotted figure. This is

equally well done manually, as the qualitative look of the nonlinear

funetion is the critical property in the procedure.
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7 The computatlonal procediire-

7.1 Penaitted fractional flow functions

From Eq. (13) we find that the fractional flow function can be

expressed as

where all parameters that are independent of u are collected in the

constant C. Fractional flow curves for different values of C are shown

in Fig. 21

Fig 21.

C = 0 corresponds to horizontal flow, the two upper curves represent

downdip flow, and the twp lower updip. The effect of gravity is

exa SBera ted, C-values will be significant sraaller in practice, except

for extreraely slow flow.

Exaraple runs with C = 0, +3, and -3

In the updip case the downward bend

due to gravity. For small values of

The oil will hence be opposed

are shown in Fig. 22.

of the fractional flow function is

water saturation a(u) is negative,

to the displacement, and the front

velocity is reduced. For larger values of u, a(u) is greater than for

(62) f (a) = ( 1 +C • A )
A+ X 0w o
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C =O. This results in an increased jump in the saturation

discontinuity, so that the saraple is flooded out with greater

efficiency. This is clearly seen in Fig. 22 b).

The upward bend of f(u) in the downdip case also results in an

interval near the residual oil region where a(u) is negative. This is

due to buoyancy, as a large water volume resides upon the lighter oil,

an unstable situation which cannot persist. For small values of u,

a(u) is increased corapared to the horizontal case, which in this case

results in an increased front velocity. In Fig. 22 c) we observe that

the saturation is decrased to the stable interval instantaneously at

the start of the experiment. The overall result is a rapid, but less

efficient flood-out, an intuitively expected result.
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Fig. 22
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In a real case the range of saturation is restricted by the existence

of connate water and residual oil. When the initial saturation is

defined within the perraitted interval, saturation remains in this

interval for all subsequent times. The part of the fractional flow

function outside this interval is hence never used in the procedure,

and need not be taken account of. Note that the procedure raay produce

non-possible physical results if initial or boundary values are

improperly given, e.g. by defining u(x=o) >1 - SQr . This is clearly
seen in Fig. 23, where we have used North Sea data for relative

permeabilities and viscosities to compute f(u). In this case Swc
0.05 and = 0.3. The "valid" run, with u(x=o) =0.7 is shown in

Fig. 23 a), in b) we have put u(x=o) equal to 1. Unphysical saturation

values occur in the inlet end of the sample, note however that the

figures are tdentical for x > 0.35.

Fig 23
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From the foregoing argument we conlude that all occuring situations

are covered if we perrait f(u) to have at most one interior extremal

point and two inflection points. Thls restriction is pleasant from a

computationai viewpoint, as the construction of a general hull (with

both tangent points unknown) is avoided. This tasle is not at all

straightforward, and may consume appreciable processor time. (See e.g.

Graham .) Whenever a hull is constructed in the procedure, the hull

will hence be a line from a known point on F(u) that touches F. To

speed up the coraputation, the tangent points are only searched among

candidate node points. As shown in the theory, this approximation is

consistent with other approximations that enter the procedure.

7.2 AlgoritlaE.

The computer program is split into two parts, a preprosessor and the

main program.

7.2.1 The Preprosessor.

In advance of passing input data to the main procedure, the

nonlinearity funetion is handled by a separate routine, which returns

the differential a(u) = f"(u) and a classi fication vector.

For consistency reasons, a(u) is evaluated by a second order

difference formula. Nevertheless, false "oscillations" in f(u) may be

evaluated by this routine, mainly in the intervals with water

saturation less than connate water, and oil saturation less than

residual oil.

As a'(u) is generally discontinuous at u = S wc and u= 1 - S Qr , a(u)

may be poorly evaluated at these points, which may have great

significance in the procedure. This weakness can be met by utilizing

the property that only node points within the interval |r S , 1-S1 wc’ or j

enter the coraputation, hence allowing for an arbitrary definition of

f(u) outside this interval, affecting the evaluation of a(u) only.
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The classification vector is a string containing information on the

inflection points of f(u), the zones where f is concave resp. convex,

and indices of the u-values included in each zone.

At this point the significance of using linear interpolation when

evaluating f-values between node points should be mentioned. One could

a priori assume that a better algorithm could be constructed by using

a higher order curve-fit to approximate f(u), e.g. a spline function.

Such a procedure will inevitably introduce "false" inflection points

and thereby superfluous convex/concave zones, which in turn will have

a tremendous effect on the results. We use only the node values of f

to construct the "classification vector", thereby guaranteeing that

the correct wavetype is found for each Riemann problem. Errors

introduced by the procedure will hence affect only wave speeds, not

types, and the qualitative picture of the evolution is preserved.

Results from the preprosessor are written to a "metafile", which in

turn is redirected as input to the next task. This can be either the

raain program, or norraally an "analyzer", which plots the output

information (f(u), a(u), inflection points and zones) for inspection.

With some experience, knowledge of the fractional flow function and

the initial saturation is sufficient to estimate the number of shocks

that will evolve in the process. The theory then provides the

appropriate number of node points in the discretization. Inspection of

the preprosessor output allows one to accept the discretization and

classification, reject the results and start from scratch, or most

often accept the results after raanually adjusting some quantities. Our

experience is that a(u) frequently needs some "refreshing" in critical

regions. On rarer occasions it raay be desireable to move the

inflection points slightly. (Superfluous or missing inflection points

have never occured in our runs.)

Whether the preprosessor output data have been adjusted or not, the

next stage is to use the metafile as input for the main program. The

advantage with the preprosessor, aside the possibility of håving

influence on the handling of the nonlinearity function, is that

normally a series of probleras will be run with the same fractional

flow function. The preprosessor is then used only prior to the first

numerical experiment.
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The structure of the procedure, with

preprosessor -> analyzer -> graphics output -> adjustraent -> main prog,

possibly skipping sorae of the steps, is extreraely well suited for the

"redirection" and "piping" facilities of the Unix operating system, in

which any route we may choose araong the mentioned is simply treated

with a single command. Although more commands may be necessary, the

structure should nevertheless easily be adapted on any systera.

7.2.2 The main program.

The dominating part of the procedure is the calculation of the

solution to the Rieraann problem. For each time step a randora nuraber is

drawn, and passed as argument to a sequence of calls to the procedure

Riemann, one call for each grid point. The first part of this

procedure classifies the configuration, determined by the positions of

u L and u R . The configuration type (0 - 16.) is passed to a procedure

which evaluates the appropriate solution according to the parameters

determined by the wavetype.

A flow chart for the configuration type classification is shown in

Fig. 24, the 16 different nonconstant configuration types that can

occur in Fig. 25, and the possible wavetypes in Fig. 26.

Abbreviations used in Fig. 24 are defined as follows:

f R concave: f is concave in the region surrounding f R

zone R ~ zoae L : u R and uR lie in the same concave/convex zone

Convex hull: Gonstruct the convex hull with slope SRM from u R
SRM _ to F(u), touching Fin the point u^

"T" and "F" by the "choice-boxes" point to the appropriate route to

follow, according to whether the statement in the box is true or
false.



*
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In Fig. 25 the locations of occurring inflection points are shown by

solid circles. Hull tangents are drawn with a solid line when they are

explicitely used in the procedure, elsewise the tangents are dashed.

Evaluation of the rarefaction wave requires the solution of a

nonlinear equation ØT = A(U*). As A is approximated by a polygon line,

this equation is explicite once the node indices on each side of the

root is known. Search for particular indices also enter the routine

for construction of hulls. The procedure that determines the desired

nodes must hence be efficient, as it is frequently called. The search

interval is first restricted by knowledge of the configuration, and

the desired index is then found by binary search. The corabined work to

determine the appropriate index and evaluate U* is nevertheless less

time consuming than the direct solving of a nonlinear equation. Such

an angle of attack is raandatory when f(u) is explicitly given, as in

the reference raethod. In this case we use an efficient root-solver,

the so-called Illinois-routine 6 , a raodified version of the "regula
fa.lsi" raethod.

8 Conclusion.

The Random Choice Method can be successfully applied also to cases

where the fractional flow function is defined in terms of a table, if

on ly the table values provide sufficient information on the

qualitative behaviour of the displacement process. Knowledge of the

physics in the raodel we endeavor to simulate perraits the inclusion of

these characte r istics in the nonlinear function by manual adjustraent

when the given table contains an insufficient number of node points.

The most general fractional flow functions occuring in practice are

treated with the same ease as those studied hitherto in the

litterature. Although the computer programs are more complicated than

the reference programs, only small portions of the programs are used

for the solution of each Riemann problem, thus the processor time is

not increased. On the contrary, the test runs indicate that the

di seretization implies a reduetion in CPU-time, as the solution of

nonlinear equations is avoided.
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Classification of possible wave types emerging from the permitted dass
of fractional flow functions.

Crypt Wave type Pos. in x-t plan Qualitative shape

Increasing waves

Si Shock

Ri Rarefac tion

Composite.
C-1 i Shock followed by

rarefaction

Composite.
C-2i Rarefaction followed

by shock

Composite.
C-3i Two shocks separated

by rarefaction

Decreasing waves

Sd Shock

Rd Rarefaction

Composite.
C-ld Shock followed by

rarefaction

Composite.
C-2d Rarefaction followed

by shock

In the x t charts a thin line represents continuous transition from
a constant state into a rarefaction wave. A heavy line separates
adjacent states by a shock discontinuity.
The waves in the rightmost column are travelling to the right.

two

Fig. 26
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