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Overlapping domain decomposition and multigrid
methods for inverse problems*

X.-C. Tait J. Frøyen* M. S. Espedal § T. F. Chan1

1 Introduction

This work continues our earlier investigations [2], [3] and [6]. The intention is
to develop efficient numerical solvers to recover the diffusion coefficient, using
observations of the solution w, from the elliptic equation

(1)

Our emphasis is on the numerical treatment of discontinuous coefficient and
efficiency of the numerical methods. It is well known that such an inverse prob
lem is illposed. Its numerical solution often suffers from undesirable numerical
oscillation and very slow convergence. When the coefficient is smooth, success
ful numerical methods have been developed in [4, s]. When the coefficient has
large jumps, the numerical problem is much more difficult and some techniques
have been proposed in [2] and [3].

The two fundamental tools we use in [2] and [3] are the total variation (TV)
regularization technique and the augmented Lagrangian technique. The TV
regularization allows the coefficient to have large jump and at the same will
discourage the oscillations that normally appear in the computations. The aug
mented Lagrangian method enforces the equation constraint in an H~ l norm
and was studied in detail in [6]. Due the bilinear structure of the equation
constraint, the augmented Lagrangian reduces the output-least-squares (OLS)
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minimization to a system of coupled algebraic equations. How to solve these al
gebraic equations is of great importance in speeding up the solution procedure.
The contribution of the present work is to propose an overlapping domain de
composition (DD) and a multigrid (MG) technique to evaluate the H~ l norm
and at the same time use them as a preconditioner for one of the algebraic
equations. Numerical tests will be given to show the speed-up using these tech
niques.

2 The augmented Lagrangian method

Let Ud be an observation for the solution u and ug be an observation for the
gradient Vn, both may contain random observation errors. Due to the illposed
ness of the inverse problem, it is often preferable to use the OLS minimization
to recover q(x). Let us define K = {q\ q G L°°(Q),o <ki < q(x) < fc2 < oo},
with k\ an fø known a priori, to be the admissible set for the coefficient. Let the
mapping e : K x Hq(Q) — H~ 1 (Ct) be e(q,u) = -V • (VgVu) - /, which is the
equation constraint. Wc shall use R(q) — Jn \/|Vg|2 + cdx, which approximate
the TV-norm of q(x), as the regularization term. In our experiments, the value
of e is always tåken in e 6 [0.001,0.01]. The OLS minimization can be written

(2)

For more details on numerical approximations of the TV-norms, wc refer to
Chan and Tai [3]. As the inverse problem is illposed, its numerical solution is
very sensitive to the observation errors. When the observation errors are very
large, wc must use proper noise removal procedure, see section 4 of [3] for the
detailed algorithms that remove noise from the observations.

The Lagrangian method is often used for minimization problems with equal
ity constraint. However, the augmented Lagrangian method is better when the
minimization problem is illposed or the Hessian matrix of the cost functional has
very small positive eigenvalues. For minimization (2), the associated augmented
Lagrangian functional is

Vg eX, ve H%{n), x e h-\q).

The following algorithm is used to find a saddle point for Lr (q,u,\)
Algorithm

Step 1 Choose u0e H^{n),\0 € H' l^) and r > 0

u™f q£K 2H u ~ wdllz,2(fi) + 2 " Vw " + &r(q)

Lr{q,u,\) = \\\u-ud \\l 2{n) + g \\ 2L2w +PR(q) (3)
T*

+ 2W e (<l' u )\\ 2H-Hn) + (^e(q,u)) H - Hn)
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Step 2 Set u°n = un-i- For k - 1,2, ">max i dO.

Step 2.1 Find gj € A' such that

(4)

Step 2.2 Find u£ € i^(ft) such that

u£ = arg min Lr (9*,w, An_i) (5)

In our simulations, wc take kmax = 2. The above algorithm has a linear rate
of convergence, see [s]. Second order scheme can also be used to search for a
saddle point, see [5, p.9B]. If (q*,u*, A*) is asaddle point of Lr , then {q*,u*) is a
minimizer of (2). For fixed u^~ l and g£, the minimization problems of Step 2.1
and Step 2.2 are equivalent to two algebraic equations. See [3] for the detailed
matrix representation of the corresponding algebraic equations. Problems (4)
and (5) are solved by direct solver in [2] and [3]. The numerical accuracy and the
executing time is superior to previous results in the literature. However, wc must
improve the efficiency and use iterative solver in order to be able to solve real
life large size problems. Without using iterative solvers, the memory limit will
prevent us from doing simulations for real life three dimensional problems. To
use an iterative solver, the rate of convergence of the iterative solver is of great
concern for the efficiency of the whole algorithm. Moreover, the way that the
ff" 1 -norm is evaluated is very critical in avoiding the solving of large size sparse
matrices in the iterative procedure. Let A denote the Laplace operator, which
is a homeomorphism from Hq(Q) to H' l^). It is true that HA" 1 /!^^) =
11/11/z-Mfi)- Thus. wc need to invert a sparse matrix A in order to compute the
H~ l -norm. However, wc can obtain the H~ x -novm of / by inverting smaller
size matrices or using multigrid type methods to avoid inverting any matrices
by using the theorem of the next section. In the following, wc propose to use
domain decomposition and multigrid techniques to evaluate the H~ l -noim and
also use them as preconditioners for equation (5).

3 Space decomposition methods
Recent research reveals that both domain decomposition and multigrid type
methods can be analysed using the frame work of space decomposition and
subspace correction, see Chan and Sharapov [I], Tai and Espedal [7] and Ku
[9]. In this section, wc show that wc can use them to evaluate the H~ 1 -noim.

Wc present the results for a general Hilbert space and for general space
decomposition techniques. For a given Hilbert space V, wc denote V* as its

Step 3 Set un = u^qn = g£, and update Ån as An = An_i +re(qn ,un ).
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dual space and use (•, •) to denote its inner product. Notation (•, •) is used to
denote the duality pairing between V and V*. We consider the case that V can
be decomposed as a sum of subspaces: V= V\ +V2 +   + Vm . Moreover, we
assume that there is a constant C\ > 0 such that Vi; e V, we can find vr € Vj
that satisfy:

771

Vi , and (6)V

Vi\\vY ,Vvi eVi and VVj EVj

{-)

Theorem 1 Assume the decomposed spaces satisfy (6) and (7), then

(8)

The proof of the above theorem is given in a full version of this paper. The
theorem shows that in order to get ||/||v, we just need to use some parallel
processors to compute \\f\\y. and sum them together. For domain decomposi
tion methods, we need to invert some smaller size matrices to get H/H^*- For
multigrid methods, no matrices need to be inverted.

4 Numerical Tests

Let Q = [o, l] x [o, l]. For a given / and piecewise smooth g, we compute the
true solution from (1) and get its gradient Vw. Let Rd and Rg be vectors of
random numbers between [—1/2, 1/2]. The observations are generated by

We shall use finite element (FE) approximations. Domain fi is first divided
into subdomains fi;,z = 1,2, • • • ,m with diameters of the size H, which will
also be used as the coarse mesh elements. Each subdomain is refined to form a
fine mesh division for Q of mesh parameter h (h << H). Each subdomain Q t
is extended by a size 6 = cH (0 < c < 1) to get overlapping subdomains fif.
Let So(ft). sq(^*) and S^(rt) be the bilinear FE spaces with zero traces on
the corresponding boundaries on the fine mesh, subdomain $7* and coarse mesh
respectively. It is true that

x 4

t=l '7=l

and there is an C-2 > 0 such that
mm , m -, i / m

z= l j=l I=l / V I=l

ud =u + 6Rd \\ud \\ L2( Q), u g = + 6Rg \\ug \\ L 2 (n) ,. (9)

m



5

30000

25000

+
20000 +

+
+

+15000 +
+

+
+10000 +

+
+

5000 +
+

+
0

0 2 4 6 8 10 12 14 16 18 20

Figure 1: CPU time (in sec.) versus iteration number with 0 = 0.00125, h =
1/128.

For the above decomposition, the constants C\ and C2do not depend on the
mesh parameters h and H, see [9]. Estimate (8) shows that wc only need to
invert the matrices associated with the subdomains and the coarse mesh to get
the H~ l norms.

In order to use multigrid type techniques, wc take ft as the coarsest mesh
and use rectangular elements. At a given level, wc refine each element into four
elements by connecting the midpoints of the edges of the rectangles of a coarser
grid. Starting from Q and repeating the above process J times, wc will get J
levels of meshes. Let V*, k = 1,2, •• • , Jbe the bilinear FE spaces over the levels
and denote {øf }^ 2 the interior nodal basses for the k th level FE space, it is
easy to see that

For the multigrid decomposition, the subspaces Vrfe are one dimensional and the
constants C\ , C2are independent of the mesh parameters and the number of
levels. No matrix need to be inverted to get the H~ l norms.

The bilinear FE spaces introduced above will be used as the approximation

'MultigricT
'Domain decomp." -O^-

'LU-decomp. +
+

J nk
V = Vf with V- = Vj,^*=span(^),
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a) True coefficent b) Identified coefficent c) Identified coefficent

d) Observation for u

Figure 2: The identified coefficients and the observation data

spaces for u and A. Piecewise constant FE functions on the fine mesh are used to
approximate the coefficient q. For a given q,u and A, let B(q,u,\) and A(q, A)
be the matrices that satisfy

Let B^ = BføJ.ujpSAn-i) and A^ = A(qk ,Ån-i). Assume that the solution
of (4) is in the interior of K, then (4) and (5) are equivalent to solving

(10)

with some known vector a£ and (3k . Due to the regularization term R{q), the
matrix f?£ depends on^. A simple linearization procedure is employed to deal
with the nonlinearity, see [3, B]. If wc use conjugate gradient (CG) method to
solve the equations (10), it is not necessary to know the matrices, wc just need
to calculate the product of the matrices with given vectors. It is easy to see
that the equations in (10) have symmetric and positive define matrices. Wc

e) Observation for u_x f) Observation for u_y

dLr (q, u, X)/dq = B(q, u, \)q, dLr (q, w, X) /du = A(q, X)u.

a) B*q*=al b) Akn u kn = Ø kn .
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Table 1: CPU time (in sec.) versus iteration with 0 = 0.00125, h = 1/128.

use CG without preconditioner to solve (10.a) and use a preconditioned CG to
solve (10.b). The stopping criteria for the CG iterations is that the residual
has been reduced by a factor of 10~ 10 or the iteration number is has reached
300 (In Table 2 the maximum iteration number is 5000 in order to see the CPU
time usage for bad 0). The constants k\ and fø used for defining the admissible
coefficient set are tåken to be k\ = 0, fø = 00. The simulations are tested with
a sequential machine in programming language C++. Three different methods
are used for the preconditioner and for evaluating the H~ l norms:

1. Do LU decomposition (LU-D) for the Laplace operator and use it as the
preconditioner and also for the H~ l norms.

2. Use domain decomposition for the preconditioning and also for the H l
norms.

3. Use multigrid for the preconditioning and also for the H l norms.

Table 2: CPU time (in Sec.) versus 0 with h = 1/64, iteration = 20.
P= MG DD LU-D

0.00001 1309.67 3270.60 5009.87
0.00005 544.13 1320.36 2146.69
0.00025 256.89 758.76 1107.20
0.00125 173.72 431.31 747.76
0.00625 172.15 459.70 728.08
0.03125 224.22 566.91 922.79

iter = MG DD LU-D
1 31.87 94.04 942.76
3 121.27 370.15 3350.17
5 221.68 668.06 5999.82
7 327.14 954.52 8749.58
9 433.74 1244.67 11509.80

11 541.47 1538.97 14227.90
12 653.80 1836.38 16935.80
15 777.22 2137.01 19628.30
17 885.29 2439.20 22309.40
20 1043.60 2887.72 26300.10
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Table 3: CPU time (in Sec.) versus h = 1/n.rwith £ = 0.00125. iteration = 20.

As the tests are done with a sequential machine, the multiplicative version
of the MG and DD methods are used. In Table 1 and Figure 1, the CPU
time for different iteration numbers is given. Wc have used 0 = 0.00125 and
h = /128. Here and later h and nx denote the mesh size and number of ele
ments used both for the x- and i/-directions, respectively. Wc observe that the
domain decomposition approach and the multigrid approach are much faster
than the LU-decomposition. The multigrid method is slightly better than the
domain decomposition method. The identified coefficients and the observations
are shown in Figure 2. In identifying the coefficient in subfigure 2.b), wc have
added 10% of noise and used h = 1/128,/? = 0.00025, r = 100. At iteration
20, \\qn - q\\LHQ) = 0.0631 and \\e(qn ,un )\\ L 2 {n) = 1.5 x 10~ 7 . In subfigure
2.c), the identified coefficient is with noise level b = 100% and wc have used
h = 1/128, 0 = 0.03125, r = 100. At iteration 20, \\qn - q\\mn) = 0.1013 and
lie(gn ,un )|| L2(n) =l.lxlo-6 .

The regularization parameter 0 is introduced to prevent numerical oscilla
tions. If it is chosen to be big, the discontinuity is smeared out and large errors
are introduced. If it is chosen to be too small, it can not control the numerical
oscillations and so prevent us from getting accurate numerical solutions. From
our numerical tests, wc find that the value of 0 is also of critical importance
for the rate of convergence for the CG method. In Table 2, the CPU time in
seconds for different values of 0 is compared for the three different approaches.
It is clear that very small or very large 0 increases the computing time.

Table 3 is used to show the CPU time usage for different mesh sizes h. Let
us note that the finest mesh is of size h = 1/128 with a total number of grid
points 128 x 128 «2x 104 . For inverse problems wc considered here, there
are not many numerical approaches that can handle such a large number of
unknowns. It shall also be noted that 100% of observation errors are added to
the observations, i.e. 6 = 100% in (9), see d) e) f) of Figure 2.
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