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PERMEABILITY ESTIMATION WITH THE AUGMENTED
LAGRANGIAN METHOD FOR A NONLINEAR DIFFUSION

EQUATION

TRYGVE K. NILSSEN, TROND MANNSETH, AND XUE-CHENG TAI

Abstract. We consider numerical identification of the piecewise constant per

meability function in a nonlinear parabolic equation, with the augmented La

grangian method. By studying this problem, we aim at also gaining some in

sight into the potential ability of the augmented Lagrangian method to handle

permeability estimation within the full two-phase porous-media flow setting.

The identification is formulated as a constrained minimization problem.

The parameter estimation problem is reduced to a coupled nonlinear algebraic

system, which can be solved efficiently by the conjugate gradient method.

The methodology is developed and numerical experiments with the proposed

method are presented.

1. Introduction

The system of partial differential equations modeling two-phase immiscible flow

of incompressible fluids in a porous medium with zero gravity effects is

Here, <j> denotes porosity, S - wetting-phase fluid saturation, K - (absolute) perme

ability, /i - fluid viscosity, k - relative permeability, p - wetting-phase fluid pressure,

/ - fluid source term, and P denotes capillary pressure. The subscripts w and

n refer to the wetting and non-wetting fluid phases, respectively, while the prime

superscript denotes derivation.

Reservoir simulation based on these equations, (and more elaborate versions

of them, including additional physical effects) is a standard tool to help make

important decisions regarding the management of petroleum reservoirs, including

This work was partially supported by the Research Council of Norway (NFR), under grant
128224/431.

(L1) <l>(x)-q; ~ V  (K{x)irf{p)K{S)Vp) =fw (x),
dS

(1.2) -*(*) -V • {K(x)^ 1 (p)kn (S) (Vp + P'(5)V5)) =/„(*).
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selection of the type of recovery method. fluid production and injection rates, and

well locations.

The coefficient functions é(x), K(x), kw (S), kn (S) and P{S) vary from one porous

medium to another, and are inaccessible to direct measurements. To infer these

functions from measurable reservoir quantities like well pressures and flow rates is a

huge inverse problem. Usually this problem is divided in two parts - one involving

estimation of the spatially dependent functions and one involving estimation of the

saturation dependent functions. This paper is concerned with parameter estimation

methodology for one of the spatially dependent functions. K(x).

The permeability, K(x), is usually modeled as a piecewise constant function.

i.e., it is defined by a single value within each reservoir simulator grid cell. So,

one is interested in inferring as many parameters as there are grid cells in the

simulator. This number often exceeds 10° for a held simulation. There are mainly

two difhculties associated with this.

The first problem is that there is far from sufhcient information in objective data

(well pressures and flow rates) to infer the permeability function with such a high

resolution. This is usually dealt with either by substantially reducing the degrees of

freedom in parameter space, or by utilizing prior knowledge about the permeability

to aid in the estimation, or both. (The prior information could typically be a

quantitative expression - with uncertainty bounds and parameter correlations -

for the geologist/reservoir engineers opinion of what the permeability distribution

looks like.) Such issues are not the subject of this paper, and we refer the interested

reader to e.g. [l2. 11. 5. 6].

The second problem is that even with a modest amount of parameters to be es

timated - corresponding to the attainable resolution imphcitlv given by the data -

the computational cost can still be very high. A single field-model reservoir simula

tion may take several hours to complete and many such simulator runs are required

to obtain a permeability estimate with optimization methods like quasi-Newton or

Gauss-Newton. Note also that due to novel data acquisition techniques. like time

lapse 3D-seismic surveys. the attainable permeability resolution from objective data

is expected to increase in the near future. Hence. there will be an mcreasmg need

for parameter estimation techniques able to handle a larger number of parameters
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within a reasonable time span. This paper is concerned with further development

of such alternative parameter estimation methodology.

Ito and Kunisch [7], and Kunisch and Tai [9], considered the augmented La

grangian method for identification of q(x) within the linear elliptic equation

(1.3)

and recently, Nilssen and Tai [lo] considered the augmented Lagrangian method

for recovery of q(x) within the linear parabolic equation

(1.4)

Both (1.3) and (1.4) can be viewed as describing flow processes related to those

described by the coupled system (1.1)-(1.2). Equation (1.3) corresponds to model

ing of single-phase porous-media flow with constant fluid density and viscosity.

Equation (1.4) corresponds to modeling of slightly compressible single-phase flow

with constant compressibility, viscosity and porosity. There is no difficulty in han

dling a non-constant porosity, however. The time-derivative term would then have

to be changed to <f>{x)ut , but this would not add any new difficulties with respect to

the augmented Lagrangian formalism. In the following we will assume that porosity

is constant, for simplicity.

With these assumptions, the function q(x) in (1.3) and (1.4), is related to the

permeability function by q(x) = constant  K{x). In the following we will denote

the function q(x) the permeability.

In this paper, we attempt to take the augmented Lagrangian method further

towards application to permeability identification within multi-phase porous-media

flow by considering an intermediate step. That is, we extend the augmented La

grangian method to identification of q(x) within the nonlinear parabolic equation

(1.5)

Here, N(Vu,u) will model the main characteristics of the nonlinearity associated

with some of the coefficient functions in equations (1.1)-(1.2). These two coupled

nonlinear equations for S and p contain nonlinearities associated with both of the

-v  tøoovt») =/(*),

ut - V • tø(aOVw) =/(x,*).

ut - V • (q(x)N(Vu,u)Vu) = f(x,t).
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dependent variables. The influence of S is mainly through the actual value of 5,

while the influence of p is mainly through Vp. Hence, we have included both u and

Vu as independent variables in N.

Obviously, one can not expect that all aspects of the influence of the nonlin

earities in the coefficient functions in equations (1.1)-(1.2) will be modeled by the

function N in (1.5). What we should aini for is, thus, to assess the implications of

håving a generic nonlinear function multiplying the function to be identihed. both

on the formulation of the augmented Lagrangian methodology as such, and on its

computational performance.

The study of Equation (1.5) also will give information about the performance of

augmented Lagrangian method for the system (1.l)-( 1.2).

The organization of the paper is as follows: First, we give some more detail on the

selected generic model and the parameter estimation framework. Next. we present

the numerical scheme that is used to solve the parabolic initial-boundary condition

problem. Then we present the augmented Lagrangian method for the minimization

problem. Thereafter. we show how the preconditioned conjugate gradient method

can be used to calculate the gradients in the augmented Lagrangian method with

very low computational costs and modest need for dise space. Finally we present

results from numerical experiments with the method.

2. Generic model and parameter Identification framework

The generic nonlinear parabolic equation constituting the forward model in this

paper is of one of the following two forms:

(2.1)

or

(2.2)

with initial-boundary conditions

ut -V  {q(x)N(Vu)Vu) = f{xJ). in Q x (O,T)

ut-V- {q(x)N{u)Wu) = f(x.t). mQ x (O.T)

(2.3) u(x.O) =u o (x). in ft and u{xj) = g(x.t). m3fix(oJ).
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Here f 2 can be any bounded domain in Rc\ d> 1, with piecewise smooth boundary

dfl, and f(-,t) G H~ l (Q) is a given source term. N is some positive nonlinear

function of Vw or u. To simplify the notation we will some places write the two

nonlinear equations as one, cf. (1.5).

The identification process is carried out in a way that the solution u matches its

observation data ud {xi,t), i 1,..., n; t 6 (0, T) optimally. The measurements

may contain noise.

For parameter identification in elliptic systems, Ito and Kunisch [7] proposed a

hybrid method, which formulate the problem as a minimization problem, combining

the output least squares and the equation error formulation. This is then solved

with the augmented Lagrangian method. The minimization formulation is

(2.4)

where e(q,u) = 0 is the equation constraint. e(q,u) will be referred to as the

equation error, and could for example be defined as the left hand side minus the

right hand side of the equation, i.e.

(2.5)

The second term of the minimization, (3R(q), is a regularization term which will

be specified later.

Note that in our minimization formulation we do not use the interpolated version

of ud . In the formulation we only calculate the distance between u and ud at the

observation points. It's also interesting to notice that we minimize over both q and

u. This is a flexible formulation and it will hopefully give good convergence.

The minimizer for (2.4) can now be found by the augmented Lagrangian method.

We introduce the augmented Lagrangian functional

(2.6)

1 f T n
min o/Tl Hx ~ ud (xi,t)\ 2 + (iR(q)

e(<7,u)=o ZJ O *r^

ut - V  (qN(Vu,u)Vu) - /.

i rT n
Lc (q,u ) X)=- / 22Mxi,t)-ud (xi,t)\ 2 + ØR(q) 2

f T c rT
+ / (e,X) vdt+ - I \\e\\ 2vdtJo * Jo
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Here the subscript V denotes a proper inner product space, which will be speci

fied in the next section. A saddle point for Lc together with the equation constraint

fulfilled, is a local minima for (2.4).

With traditional methods like quasi-Newton or Gauss-Newton, the objective

function is genuine nonlinear function of q. Here, Lc is quadratic in q for hxed u.

In Nilssen and Tai [lo] Lc is also quadratic in u for hxed q, but that is not true in

this paper because of the nonlinearity in the function N(\7u,u). In the following,

the presentation will be similar to that in [lo], extending this approach to allow for

the presence of the nonlinear function N(Vu,u). A thorough presentation is still

included, for completeness.

3. FINITE ELEMENT APPROXIMATION AND THE AUGMENTED LAGRANGIAN

METHOD

We first consider a finite element discretization for solving equation (1.5), and

then present the augmented Lagrangian approach in a discrete setting. The numer

ical solver, a simple implicit Euler-scheme, serves as a basis for the minimization

process for (2.4) and is used to make reference solutions to compare our results

with. If we use other numerical schemes for the forward problem, the augmented

Lagrangian functional, should be modified correspondingly.

3.1. Finite element approximation. Let i} be a polyhedral domain in B' 1 . d >

1, and let Th be a regular triangulation of f2, with simplicial elements, namely

intervals in one dimension, triangles in two and tetrahedra m three dimensions (cf.

Ciarlet [4]). The superscript h denotes the diameter of the largest simplex of the

triangulation. Let Vf, be the standard piecewise linear finite element space over this

triangulation. This is the element space where u and / are defined.

To define the space for q, we let TH be a triangulation of Q with either simplicial

or rectangular elements. Let WH denote the piecewise constant element space

over this triangulation. In practical applications. the dimension of V/, is normally

required to be much higher than the dimension of Wh- In the case that T l' is a

refined mesh of TH . the implementation is much simpler.
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We divide the time interval (0, T) into M equal subintervals by using time levels

tn = nr, n = 0,..., M with r = T/M. We initialize by setting:

where Ih is the interpolation operator into V/t . u}] is defined recursively by solving:

To find from xis a nonlinear problem. We use a Picard iteration to solve

this (see next section).

This defines

In the rest of the paper we drop the

3.2. Picard iteration. If we write (3.1) in the form:

where A(x) is a matrix depending nonlinearly on x, the Picard iteration is

(3.2)

This iteration solves the system efficiently in the case when TV = N(u), but does

often diverge in the case when N = A7 (Vu). For the latter case we have used a

more stabilized three term version of the Picard iteration:

(3.3)

with a e (0.4,0,6).

The Picard iteration is only used to solve the forward problem (3.1).

3.3. Equation error. In the augmented Lagrangian method, we regard Equation

(3.1) as a constraint. To minimize the equation error, we need to use a proper norm

to measure it. In our simulations, we have used the following two inner products

u°h = ih (u0 (x)) evh ,

u n _ un-l
(3-1) (h r h ,v) + ( qN(u)],Vu)l)Vu)],Vv) = (fn ,v) : W 6 Vh .

uh = ! e (14)"' +1 .

hop the subscript h on u.

A(x)x 6,

A(x k- l )x k = b.

A(axk ~ l +(1 - a)xk-2 )xk =b, ae (0,1),
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for this purpose:

(3-4)

The corresponding norm is j|-J|f = (•. -)v- When r = 0(lr). the two norms Lnduced

by the two inner products are equivalent with an equivalence constant independent

of h and r for functions from \)l . In such cases, we will use the inner product

(3.4.b). When r is big, we need to use the inner product (3.4.a). In order to

evaluate this norm. we need to solve a large linear system. This can be avoided by

using equivalent norms produced by multigrid or domain decomposition methods

as in [l3].

For any u G (V/l )M+l and q G Wh, the discretized equation error e = e(q } ti) G

o',) M is

(3.5)

We see that en depends on q, u n and i/" _i . For any given qG Wh and u G 0/, ) jU+l ,

we sav that {q,u) satishes Equation (3.F) if en =O. Vn. In an explicit form. the

equation for e n can be written in the following way:

when we use the inner product (3.4.a). Here the subscript h denotes that we use

a discretized version of the operator. The operator {I - rA,,)" 1 can be replaced

by some corresponding operators produced by domain decomposition or multigrid

methods, see [l3]. If we use the inner product (3.4.b). the equation error is:

(3.7)

3.4. Discretized minimization. We formulate the finite element problem corre

sponding to equation (2.4) as follows:

a). {u,v)v = {u,v) +r(V(i.Vi'), b). (u.c)\- = (u, v).

{e'\v)y = (un -un-\v)

+T{qN{Vun y un)Vun ,Vv) -T(f ll .c). V r éT,,. Vr? >O.

(3.6) e n (q, u) =(J - tA,,)" 1 !^1 - u' 1 - 1 - rVh  {qN{Vun ,un)Vhun) - r/").

en (q,u) =un - li"" 1 - rY h  (qN(Yu u ,un)V ~</") - rfn .

min rS" E(un) + 3R{q)
e(g,u)=o 7!
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subject to q € Wjj and u G (V/i) M+l satisfying u° = Ih (uQ (x)). Here

9

(3.8)

and the regularization term, (3R(q), will be specified in Section 5.

3.5. Minimization algorithm. The constrained minimization problem can solved

with an augmented Lagrangian method. The discretized augmented Lagrange func

tional L c :WH x (Vh ) M+l x (Vh ) M -> Ris now written:

Here c > 0 is a penalization constant, which is determined experimentally. In the

discrete setting, it is known that L c has a saddle point and that this point is a

minimizer for (3.4), see [7, 9, 3].

We will use the following modified Uzawa algorithm to find saddle-points for this

functional:

Algorithm 3.1. (The global minimization algorithm)

(1) Choose initial values for \q,uq € 14 and set k—l.

(2) Find from

(3.9)

(3.10)

(4) Update the Lagrange-multipher as

If not converged: Set k-k+l and GOTO (2).

4. IMPLEMENTATION ISSUES WITH THE CONJUGATE GRADIENT METHOD

In this section. we study an efficient method to solve the two sub-minimization

problems in the modified Uzawa algorithm. We will use the notations L'c  p =

E(un)=Y/ \wn (xi )-und (xi )\ 2i

Lc (q,u,X) =rJ^E(un ) + (5R(q) +]T n \\ 2v + £(An ,eB ) vnn ' n

Lc (qk ,uk-i,Xk-i)= min Le (q,uk-i,\k-i)-q&vvH

(3) Set u°k =u° and find u k = {u^}^=l from

Lc (qk,uk ,\k-i) = min Lc (qk ,u, A*_i).uGVh

Xk = \k-i + ce(qk ,uk ).
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L'c {q, u,X)-p= a . p and L'c  w = L'c (q. u. A) •w = dL^>x) .w t 0 denote

the Gateaux derivatives of the functional L c (q, u, X). Note that when writing L'c p,

the p indicates that we take the derivative with respect to q in the direction p.

Similarly the w in L'c • w indicates that we take the derivative with respect to

u in the direction w. The notations L[!(q.u.X)  (p,p) = c L^ q^ u - X] . (p,p) and

L"(q, u. X)  (w. w) = -—g^— • (w, w) are used for the second order derivatives.

4.1. The nonlinear conjugate gradient method. In this section we look at

methods to solve

(4.1)

where F is smooth function and we have its gradients available. For large scale

problems, conjugate gradient methods are an important class of optimization algo

rithms. These methods have the following form:

end

where ak is a step size. which can be found with a one-dimensional line search:

ak = arg min F (z/, + agk ).o(4.2)

The scalar øk can be chosen as either &\ or Øl, (see [1]):

(4.3)

(4.4)

min F(x)xeR n

fc =l, xQ - 0. gi = VF(a:0 ),

while ||VF(xfc )|| >e,

x k - x k -i + a k gk ,

gk+i = VF(xfc ) + 3k g k ,

k = k + 1,

\\YF(x k )\\-
Pk ~ ||VF(a:*_i)|| a

,_ (Vf(j t
||VF(x*_i)|| a
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where || • || and (•, •) denotes the L2 -norm and -inner product correspondingly. The

latter choice, /?|, is most stable with respect to nonoptimal line search. If F is a qua

dratic functional, we have that VF(xk ) and VF(zn) are orthogonal. Therefore

Pl = j3'l in that case.

For quadratic functions F, the exact solution of the line search is

(4.5)

where Hk is the Hessian of Fin the point xk , Hk = V 2 F(xk ). As an approximation

to the line search this can also be done in the nonquadratic cases. This will be done

in this paper.

To use the conjugate gradient method, we need to calculate VF(xk ) and g[S7'2 F(xk )gk

for given x k and gk . We do not need to form the Hessian. In the next subsection

we will show how this can be done.

For fixed (u, Å), the functional Lc (q,u,\) is quadratic with respect to q, but for

fixed (q, A), the functional L c (q, u, A) is nonquadratic with respect to u. In order to

use the conjugate gradient method we need to calculate the Gateaux derivatives of

Lc . The next section shows these calculations when iV = N(Vu), and the section

after shows these calculations when N = N(u). The calculations in this section

are similar to the corresponding calculations in Nilssen and Tai [lo]. The only

difference is the nonlinear function N. For more detailed calculations, see [lo].

4.2. The Gateaux derivatives of L ( when N=N(V u). In this subsection we

first calculate the Gateaux derivatives of L c with respect to q, and comment how

these calculations are used in the implementation. Thereafter the same is done for

the derivatives with respect to u.

ak = TIT
9i Hk9k

We define d" = (en )' •p. We see that di satisfies

(d?,u)v = T(pN{Vun )Vun ,Vv) \;'v e Vk.
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The Gateaux derivative of Lc with respect to q in direction of p is:

(4.6)

In the implementation we need a formula for calculating '—-. Assume that {o 7-}

are the basis functions for Wh- Since entry jof is %f-(j) = £[.  øj- we see that

O r

= Ø#tø) -oj + Y,-(oJ X(Vu> l )Yu'\Y(\" +ce n ))

For the second order derivative with respect to q we get that

(4.7)

The Gateaux derivative of L c with respect to u is:

(4.8)

where we have dehned X AI+I = eM+l = <r° = 0 to simplify the notation.

Assume that {tjjj} are the basis functions for \),. We ran now calculare entry j

in time level n of

(4.9)

L'c p= 3R'{q)  p+^« ) A" +cen ) v dt

= J JR'(g)-p + f/")V«' ) .V(A" +cen)),
n

• (p,p) = 3R"(q) • (p,p) + c]TK,Oy.
n

As above we detine do = (e n )'  w. and see that it satisfies

((%,v) v = (wn -wn- I ,v)

+ r(gA"(Vu")- VwnVun + qN(Vun)Vwn . Yv) Vr eVh .

Llc -w = #>") • w '1 + A " + ce ")v
n n

- K(xi))wn (xi) + £(«>", (A" + re") - (A'!+1 + cen+1 ))
n.i n

+ Y^T(qN'{Vun ) -VwnVun + qN(Vun)Vwn , V(A" + ce")).
n

=ry>n (*i) - + tø,(Å" + ce") - (A"- 1 + ce"+1 ))
2

+ r{qXl {Vu n )-YvJ Ya n + q\(Yu n ) V r,. V(A n + ce")).
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The second order derivative with respect to u is:

13

4.3. The Gateaux derivatives of L c when N=N(u). The calculations are sim

ilar to those in the previous subsection and are omitted. Like above we define

d™ - (en )'  p and d% = (en )' •w. We see that d x and d 2 satisfy

The Gateaux derivatives of Lc are:

(4.11)

(4.12)

where we have defined A M+L = eM+l = w° = 0. The second order derivatives are:

(4.13)

(4.10) L"c  (tv, w) =rY;E"iun )  {iv,w) + c^((en )'  w, (e n )' • w) v
n n

+ "£((en)"-(w,w),Xn +cen ) vn

n,i n

+2r n ) • VwnVwn , V(An + cen ))

+ r J2{qN"{Vun )  (Vw'\ Vwn)\7un , V(An + cen)).
n

(d[\v) v = T(pN(un )Vun ,Vv) Vv eVh

(d^v) v = (wn -wn-\v)

+ r(qN'{un )  wn Vun + qN(un )Viun ,X7v) Vv G Vh .

L'c -p = PR'(q)-p + r(PN(un )Vun , V(A" + ce n )),
n

L'c  w = rJ2(un (xi) - v%(xi))wn (xi) + £(«;", (A" + cen) - (A'l+l + cen+1 ))
n,i n

+J2 r{qN'(un )  w ll X7un + qN(un)Vwn , V(An + ce n )),
n

Lnc  (p,p) = W"{q)  (P,p) + cj2(d\\d'l) v ,
n
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L"e  (w,w)(4.14)
n,i n

n

4.4. An efficient minimization algorithm. The most time consuming part of

the minimization algorithm is step (3). i.e. the minimization with respect to u.

This is because u(x,t) is a function of both space and time. and therefore have

most degrees of freedom. In addition the dimension of the space V/, is usually

larger than the dimension of Wh- bi this subsection we present an alternative

minimization algorithm (see also [10]). This minimization algorithm will not search

for the exact minimizer like the global minimization Algorithm 3.1. The algorithm

above minimizes over all time levels simultaneously. In the new algorithm we try

to split it up, and do the minimization for each time level separately.

4.4.1. Matching minimization algorithm. The idea behind this algorithm is that

we go through all the time levels recurcively. and at a given time level we assume

that the minimizer from the previous time levels are correct. Then we calculate the

minimizer for this time level based on observations from this time level only.

We shall use the notation:

where

We see that F(n n . un i ) also depends on Å and q. Since we only use this notation for

the solving of (3.10). we will omit q and Åin F(u n . u n ~ l ) for notational simplicity

The idea for the matching minimization algorithm is that the solution at time

level nof the minimizer for min,, L c (q, u. A), can be approximated by

where u ll lis the minimizer from the previous time level.

The following algorithm will be used as a replacement for Algorithm 3.1:

+ 2r J2(<lN'(un)wnVwn i V(A" + cen ))
n

+ r ]T( 9 A-"(u") • {wn . w n )Vv n . V(A n + cen )).

L c (q l u.\) = n ,un - i ) + ØR(q)
n

F(tin > wn- I )=rJß(t*n ) + |||cn + (An ,en ) v .

u" « argminF(t\ i/" 1 ).
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Algorithm 4.1. (The matching minimization algorithm)
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(1) Choose initial values for \q,uq G Vh o.nd set k=l.

(2) Find qk from

(3) Set uQk =u° and find uk = {u^}^f=l sequentially for n = 1,2, •  M such

that

(4.15)

(4) Update the Lagrange-multiplier as

When solving (4.15), the newest values for q and A are used. Step (3) in Algo

rithm 4.1 defines uk = {u%}n=o sequentially for each time level.

To use the conjugate gradient method to solve this new minimization problem we

should do some calculations similar to those in the previous section. The difference

is that we now take the Gateaux derivative in the direction of one time level wn

instead of in all time levels.

First we do the calculation with N = 7V(Vu). We denne d™ = (e n )' •wn

 wn , which satisfies

The Gateaux derivative of F with respect to un in direction w n is:

(4.16)

qk = arg min Lc (q,uk-i, Åfc-i).q€WH

u£ = arg min F(v, u? l ).v e Vh

Xk = A fc _i +ce(qk ,u k ).

If not converged: Set k=k+l and GOTO (2).

(d%,v) v =K» + T(qN'(Vun )  Vwn Vun + qN(Vun)Vwn , Vv) Vv e Vh .

F{un ,un ~ l y  wn = T J2(un (xi) ~ K(xi))wn '(xi) + {wn ,\n + ce n )
i

+ T(qN'(yun ) • Vwn Vun + qN{Vun )Vw'\ V(An + ce")),
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and the second order derivative

(4.17)

Then the calculation with N = N(u). We define d'j = (en )' •wn =

which satisfies

The Gateaux derivative of F is:

and the second order derivative

5. NUMERICAL EXPERIMENTS

We now show some numerical experiments with the proposed method for

rameter identification. The test problem is

i

+ T(qN"(Vun )  {Vwn ,Vwn)Vun + 2qN'{Vun )  WwnVwn y V(An + cen)).

(d£,u) v = {wn ,v) + r(qN'{u n )  wn Vun + qN(un)wn . Vu) Vv Gl),

(4.18) F(un ,un_l )'  wn =rJ2(un (xi) - v%{Xi ))wn {xi) + (æ'\Xn + ce n )
i

+ T{qN'(u n )  wnVun + qN(un)wn ,V(\n + ce n ))

(4.19) F(un ,ii n - 1 )"  (w n ,wn ) =rY/ (wn (xi )) 2 + c(d%,<%) v
i

+ r{qN"(u n )  {wn ,wn)Vun + 2qN'{un )  wnVwn ,V(\n + ce n ))

ut -V  (q(x)N(Vu, u)Vu) = f(x, t) mfl x (0. T)

u(x, 0) = uo {x) in Cl

u(x,t)=g(x) ondftx(O.T),
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with several choices for the function N. Here Cl = [o,l] x [o,l], T = 0.01, u0 (x) =

sin(7rx) cos(iry), g(x) 0 and the true permeability, q(x), is piecewise constant:

witn severai cnoices ror the mnction iv. ilere \l = [U, 1J x

sin(7rx) cos(7rj/), g(x) 0 and the true permeability, q(x), :

gi, x 6 [0,0.5] x [0,0.5]

I g 2, x G [0,0.5] x [0.5,1]
(5.1) g(x) =

g 3, x€ [0.5,1] x [0,0.5]

g 4, a; € [0.5,1] x [0.5,1].

In the examples qt —i, i = 1,... ,4 unless otherwise defined. The source function

is

(5.2)

where X{ for i = 1,..., 4 are the corners and ar 5 is the center of Cl and åis Diracs

delta function. This corresponds to håving one producer in the center of Cl and one

injector in each corner of Cl.

The domain is triangulated by first dividing it into h x h squares. Then each

square is divided into two triangles by the diagonal with positive slope to get Th .

The element functions u(x,t) and f(x,t) are defined over this triangulation with

linear elements. The element triangulation where q(x) is defined, TH , is built up

of H x H squares. The number of time steps is M 4r.

With the Euler-scheme described in Section 3, the forward problem can be solved.

The solution from this, w, will then be used as a source for the observations that

our algorithms will use to recover the permeability q.

In Example 5.5 we will add normally distributed noise to the observations in a

multiplicative way, ie.:

(5.3)

Here rand(xls l) is a vector of normally distributed numbers with expectation 0 and

standard deviation 1, and a € R is the noise level.

4
f (x) Xi) - 4S(x - x 5),

I=l

Ud(xi,i) = u(xi,t) + a u(xi,t) vaxid(xi,t).
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As a stopping criteria for the conjugate gradient method. we have used that the

relative L2-norm of the gradient of the functional, VF(.x/,). is below a certain level:

In the figures in the following examples we illustrate the convergence rates of

the Uzawa algorithms. In all examples we plot — q\\ L 2 with increasing fc-value,

where q is the true permeability. In Example 5.1 we also illustrate the convergence

rates of uin L 2 -norm. i.e. we plot JQ \\uk ln the examples the Uzawa

algorithm has been stopped by inspection of these plots.

The initial value for u is the spatial linear interpolation of 11,-iix,, t). The Lagrange

multiplier is initially Aq = 0. The c-value is determined experimentally.

In the three first examples we have tested three different iV-functions: First

7V(Vu) =1 + O.ljVuj 2 then N(Vu) = i+o^Vu \-> and tlien N{u) =l+ \u + a 2.

With these choices of N, the nonlinearity is approximately of the same magnitude.

In the fourth example we test the matching minimization, and in the fifth we test

how our algorithms handle noise in the observations. In the last example we have

tested our algorithm in an example with strong discontinuities. In the last three

examples the nonlinear function N(Vu) = 1 + o.l| Vu| 2 is used.

In the following examples we have observed the convergence rates when either

the inner products (3.4.a) or (3.4.b) are used. We have seen that the conjugate

gradient method converges in fewer iterations when (3.4.b) is used, but since (3.4.a)

is computationally less expensive this has been preferable in our examples.

In the examples we use the regularization term R(q) = ||<?||j,2- However, the

results seems to be best when the regularization parameter is chosen 3 - 0. The

reason for this is probably that the dimension on TH is relatively small in our

examples.

In all examples we have used H = J, h = |, M = 20 and T = 0.01. In the

center of each square element of TH . there is one observation point. That ineans

we have 16 observation points for u d and 16 parameters representing q.

N ||VF(a; fc )||5.4 e
||VF(xo)ll

In all the examples we have set e = 10 6 .
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Example 5.1. In the first example we use the global minimization Algorithm 3.1.

The nonlinear function Nis iV(Vu) =1 + o.l|Vu| 2 , with Gateaux derivatives:

In this example the c-value was set to 7• 10 7 . The convergence rate of qis shown

in Figure 1, and the convergence rate of u is shown in Figure 2.

FIGURE 1. \\qk - q\\ L -i versus k. Logarithmic scale on the vertical axis.

Figure 2. JQ \\u k - u\\ L 2dt versus k. Logarithmic scale on the
vertical axis.

Example 5.2. In this example we also use the global minimization Algorithm 3.1.

The nonlinear function iV is N(Vu) = I _Q^ with Gateaux derivatives:

N'(Vu)  Vw =O.2Vu • Vio,

W" (Vu)  (Vw, Vu;) =o.2|Vuf-

, O.2Vu • Vw
N (Vu)  VW - ; —— ,

v } (l-o.l|Vu|2 ) 2 '

„ 0.08(Vn • Vw)2 + o.2|Vt/;| 2 (l - Q.l\Vu\ 2 )iv ( vu)  (v w, vw) = !
V (l-o.l|Vw| 2 ) 3
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In this example the c-value was set to 6 10 '. The convergenee rate of qis shown

in Figure 3.

Qk q\\l 2 versus k. Logarithmic scale on the vertical axis.FIGURE 3

Example 5.3. In this example we also use the global mininhzation Algorithm 3.1

The nonlinear function N is N(u) = 1 + |u + ir. with Gateaux derivatives:

In this example the c-value was set to 8•10 7 . The convergenee rate of qis shown

in Figure 4.

||<?A _ q\\l 2 versus k. Logarithmic scale on the vertical axis.Figure 4

The three different .V-functions tested seems to give about the same convergenee

rate. However. if the nonlinearity is mcreased (i.e. the coefhcients in front of the

nonlinear terms in X), the convergenee rate will be reduced.

N'(u)  w =-w + 2uw,

N"(u) -(w,w) =2w 2 .
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Example 5.4. In this example we use the matching minimization Algorithm 4.1

The nonlinear function TV is N(Vu) =1 + o.l|Vu| 2 . In this example the c-valu(1 + o.l|Vw| 2 . In this example the c-value

was set to 1.4 • 10 5 . The convergence rate of q is shown in Figure 5

FIGURE 5 Qk - q\\v2 versus k. Logarithmic scale on the vertical axis

We see that the convergence rate with the matching minimization Algorithm 4.1

is almost as good as with the global minimization Algorithm 3.1. The computa

tional time in this example is about 65% of the time in Example 5.1 due to reduced

cost per iteration. The reduction of computational cost will be larger when working

with problems involving more time steps.

Example 5.5. This example is as described in Example 5.1 and Example 5.4,

except that we have introduced multiplicative noise (see Equation (5.3)). The

convergence rates of q when the noise level is a = 1CT 3 and a - IO-2 are shown in

Figure 6 and Figure 7 respectively. Here the global minimization Algorithm 3.1 is

used.

In Figure 8 we show the convergence rate when the matching minimization Al

gorithm 4.1 is used, and the noise level is a IO -2 .

To show the infiuence of a noise level of magnitude IO" 2 on the data, we have

in Figure 9 plotted the pressure with and without noise in a point x x = (|,|) as a

function of time.

Figure 10 shows the result after 30 iterations, when a = 10~ 2 and the global

minimization Algorithm 3.1 is used (cf. Figure 7). The relative L 2 error in q is

H gfiVHIMI
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FiGURE 6. ||g* - g||i2 versus k. Logarithmic scale on the vertical
axis. The noise level is a 10~ 3 .

FiGURE 7. \\qk - q\\u2 versus k. Logarithmic scale on the vertical
axis. The noise level is a 10 __ .

FiGURE 8. ||g* - q\\ L - versus k. Logarithmic scale on the vertical
axis. The noise level is a = ILT 2 and the matching nnmmization

Algorithm 4.1 is used.

Example 5.6. In oil reservoirs the permeability value otten have very Large jumps.

In this example ve shall tr v Algorithm 3.1 with permeability as described in (5.1)

In this example the c-value vas set to 2.9 • IO" 7 . The convergence rate of q

is shown in Figure 11. We see that the convergence is a little bit slower rhan m

with q, = lO'- 3 . i= l 4.
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FIGURE 9. The pressure with and without noise in position x\
(|,|) i.e. u(xi,t) and Ud(xi,t), t G (O,T). The noise level is

Estimated Error

FIGURE 10. The exact, the estimated and the error in permeability

the previous examples. In addition every iteration is about twice as costly as in

Example 5.1, because the conjugate gradient method converges slower.

6. CONCLUDING REMARKS

In this paper we have further developed the augmented Lagrangian method

to solve a parameter estimation problem associated with a nonlinear parabolic

equation. This problem can be wieved as a simplified form of the permeability

estimation within multiphase porous-media flow.

a = IO" 2

Exact

q(x) with noise level a = 10 2 .
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Figure 11. Hg* - q\\L 2 versus k. Logarithmic scale on the vertical axis.

The convergence rate for the Uzawa algorithm is approximately the same as in

Nilssen and Tai [lo], which consider parameter estimation m a linear parabolic

equation. The model equation in that paper is the same as in this paper if A" = 1.

Each iteration of the Uzawa algorithm is about 60% more expensive than in [lo].

This is because the nonlinear conjugate gradient method converges slower than the

linear conjugate gradient method. Our code could probably be optimized some by

doing the line search in the nonlinear conjugate gradient method more accurate.

The increase in computational cost when going from linear to nonlinear parabolic

equations is sufficiently small that we find that it would be of interest to develop the

augmented Lagrangian method further to solve permeabilitv estimation problems

in the multiphase flow equations.
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