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Background: It is widely accepted that cleft lip with or without cleft palate (CL/P) results

from the complex interplay betweenmultiple genetic and environmental factors. However,

a robust investigation of these gene-environment (GxE) interactions at a genome-wide

level is still lacking for isolated CL/P.

Materials and Methods: We used our R-package Haplin to perform a genome-wide

search for GxE effects in isolated CL/P. From a previously published GWAS, genotypes

and information on maternal periconceptional cigarette smoking, alcohol intake, and

vitamin use were available on 1908 isolated CL/P triads of predominantly European or

Asian ancestry. A GxE effect is present if the relative risk estimates for gene-effects in the

offspring are different across exposure strata. We tested this using the relative risk ratio

(RRR). Besides analyzing all ethnicities combined (“pooled analysis”), separate analyses

were conducted on Europeans and Asians to investigate ethnicity-specific effects. To

control for multiple testing, q-values were calculated from the p-values.

Results: We identified significant GxVitamin interactions with three SNPs in

“Estrogen-related receptor gamma” (ESRRG) in the pooled analysis. The RRRs

(95% confidence intervals) were 0.56 (0.45–0.69) with rs1339221 (q = 0.011), 0.57

(0.46–0.70) with rs11117745 (q = 0.011), and 0.62 (0.50–0.76) with rs2099557

(q = 0.037). The associations were stronger when these SNPs were analyzed

as haplotypes composed of two-SNP and three-SNP combinations. The strongest

effect was with the “t-t-t” haplotype of the rs1339221-rs11117745-rs2099557

combination [RRR = 0.50 (0.40–0.64)], suggesting that the effects observed with

the other SNP combinations, including those in the single-SNP analyses, were

mainly driven by this haplotype. Although there were potential GxVitamin effects

with rs17734557 and rs1316471 and GxAlcohol effects with rs9653456 and

rs921876 in the European sample, respectively, none of the SNPs was located

in or near genes with strong links to orofacial clefts. GxAlcohol and GxSmoke
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effects were not assessed in the Asian sample because of a lack of observations for

these exposures.

Discussion/Conclusion: We identified significant interactions between vitamin use and

variants in ESRRG in the pooled analysis. These GxE effects are novel and warrant further

investigations to elucidate their roles in orofacial clefting. If validated, they could provide

prospects for exploring the impact of estrogens and vitamins on clefting, with potential

translational applications.

Keywords: gene-environment interaction, GWAS, case-parent triad, orofacial cleft, cleft lip with or without cleft

palate, birth defects, genetic epidemiology, Haplin

INTRODUCTION

With a prevalence of 3.4–22.9 per 10,000 live births (Mossey
and Castilla, 2003), cleft lip with or without cleft palate (CL/P)
ranks among the most common birth defects in humans. It is
widely accepted that CL/P results from the complex interplay
between multiple genetic and environmental factors (GxE),
but only recently have data and practical approaches become
available to enable an investigation of these effects at a genome-
wide level. Identifying GxE interactions may not only provide
important insights into the etiology of orofacial clefts, but may
also be important from a public health perspective because of the
potential for interventions on environmental risk factors alone,
particularly in genetically more susceptible subgroups of the
population. This rationale has long been demonstrated in animal
models (Millicovsky and Johnston, 1981a,b; Juriloff, 2002), but
the evidence in humans is less conclusive. Just as some murine
strains are more susceptible to external teratogens, human
fetuses harboring high-risk alleles may also be more sensitive to
particular environmental risk factors, and identifying those that
interact with genetic risk variants may lead to important inroads
in our understanding of the causes of CL/P.

Over the years, a growing list of maternal exposures has been

reported to influence the risk of isolated CL/P. In particular,
cigarette smoking (Zeiger and Beaty, 2002; Little et al., 2004;

Lie et al., 2008), alcohol consumption (DeRoo et al., 2008),
folic acid and other B-complex vitamin supplementation (Hayes,

2002; Munger, 2002; Munger et al., 2004; Wilcox et al., 2007),
and anti-folate medication (Hernández-Díaz et al., 2000; Holmes

et al., 2001) have been among the most widely studied exposures.
Associations with other environmental risk factors have also been

reported (reviewed in Dixon et al., 2011), but these have been less

consistent across studies and no consensus has yet emerged on
the harmful effects of these exposures.

A wide variety of study designs have been used to study GxE

effects in orofacial clefts, one of which involves treating a case-
parent triad as the unit of analysis. This family-based “triad

design” handles bias due to population stratification by using

non-transmitted parental alleles as controls, to be compared with
the alleles transmitted to the case child (Gjessing and Lie, 2006).

We and others have used the triad design to investigate GxE
effects in orofacial clefts (Jugessur et al., 2003; Shi et al., 2007; Wu

et al., 2010). In terms of statistical power, a unit comprising one
case and one control provides approximately the same power as

a complete triad when studying single-SNP associations (Schaid,
2002). For haplotype reconstruction, however, the triad design
offers the additional advantage of allowing haplotypes to be
deduced from the family structure (Gjessing and Lie, 2006).

A handful of genome-wide association studies (GWAS) have
now been published on orofacial clefts (reviewed in Dixon et al.,
2011; Mangold et al., 2011; Rahimov et al., 2012; Beaty et al.,
2016), offering unprecedented opportunities for investigating
GxE effects at a genome-wide level. Using data on case-parent
triads from a previously published GWAS (Beaty et al., 2010),Wu
et al. (2014) and Beaty et al. (2011) screened for GxE effects in one
category of orofacial clefts: isolated cleft palate only (CPO). Here,
we used the same GWAS dataset to search for GxE effects in the
larger category of isolated CL/P.

MATERIALS AND METHODS

Study Participants
Participants in this study stem from an international cleft
collaboration involving seven Asian and six European/US
populations. Characteristics of the study populations and details
of the GWAS have been provided in Beaty et al. (2010).
Briefly, genotyping was performed on an Illumina Human610-
Quad R© platform and genotypes for 589,945 SNPS were
deposited in the Database of Genotypes and Phenotypes (dbGaP;
http://www.ncbi.nlm.nih.gov/gap) under study accession ID
phs000094.v1.p1. Besides genotypes, information was also
available on maternal cigarette smoking, alcohol intake, and
vitamin use in the periconceptional period (i.e., 3 months prior to
conception through the first trimester of pregnancy). Interviews
and questionnaires were used to assess maternal exposures and
the data were coded as simple yes/no responses for cigarette
smoking, any reported alcohol consumption, and any use of
vitamin supplements. For a detailed description of thesematernal
exposures, see the recent work on isolated CPO by Wu et al.
(2014) and the study outline at dbGAP under study accession
ID phs000094.v1.p1. Quality control was performed using the
approach outlined in Haaland et al. (2017). The number of
SNPs before and after the pruning process is provided in
Table 1. Figure 1 shows the distribution of triads by ethnicity
and environmental exposure after quality control was performed.
Note that we did not analyze GxSmoke or GxAlcohol in the
Asian sample because very few of the mothers reported smoking
cigarettes or drinking alcohol in the periconceptional period. The

Frontiers in Genetics | www.frontiersin.org 2 February 2018 | Volume 9 | Article 60

http://www.ncbi.nlm.nih.gov/gap
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Haaland et al. Genome-Wide GxE Effects in CL/P

TABLE 1 | Number of SNPs before and after pruning.

Criteria Number

Total no. of SNPs before pruning 569,244

Failed HWE test 173,955

Failed missingness test 1,934

Failed SNP frequency test 61,167

Mendelian errors detected 349

Remaining SNPs after pruninga 341,191

aRemaining SNPs refer to those without deviations from Hardy-Weinberg equilibrium

(HWE) (p < 0.001), and those having less than 5% missed calls, minor allele frequencies

>5%, and Mendelian errors <1%. Note that because some SNPs may fail several criteria,

the number of remaining SNPs is not equal to the total number of SNPs minus those

removed in the pruning process.

FIGURE 1 | Distribution of families according to ethnicity and maternal

exposure status. The gray box shows the pooled sample consisting of all

ethnicities (N = 1,908). White boxes show the number of families according to

ethnicity and exposure (yes: exposed; no: unexposed; NA: data not available).

Note that we did not consider GxSmoke or GxAlcohol analyses in the Asian

sample because of a very low number of observations for these exposures.

final version of the dataset included genotypes for 1,908 nuclear
families; 825 were of European ancestry, 1,024 of Asian descent,
and 59 of other ethnicities. Table 2 provides an overview of triad
completeness and ethnicity. Among the 1,908 nuclear families,
1,594 were complete mother-father-child triads and 314 were
parent–child dyads only.

Statistical Analysis
We are continuously extending a comprehensive R-package,
Haplin, for analyzing different constellations of family-based data
(Gjessing and Lie, 2006). Haplin uses maximum likelihood to
estimate the relative risk (RR), p-value, and 95% confidence
intervals for a given risk allele or haplotype. To identify GxE
effects, a Wald test is used to test whether RR estimates for gene-
effects in the offspring are significantly different across strata of
exposed and unexposed mothers, as described in our previous
works (Skare et al., 2012; Gjerdevik et al., 2017). A GxE effect
is assessed as the ratio of relative risks (RRR). That is, RRR =

RR(1)/RR(0), where RR(1) and RR(0) are the relative risks for
the offspring of exposed and unexposed mothers, respectively. If
RRR 6= 1, the RR among the exposed is different from the RR
among the unexposed, which would indicate a GxE effect. See
Haaland et al. (2017) for more details on the calculation of RRR.

Since its inception, Haplin has incorporated haplotype
estimation for triads. By using the expectation-maximization
(EM) algorithm (Dempster et al., 1977), Haplin reconstructs
haplotypes from the multi-SNP data even though phase is not
known from the observed markers alone. The EM-algorithm also
enables Haplin to account for missing parental genotypes, thus
allowing the 314 parent–child dyads in the current dataset to be
included in the analyses.

If an offspring was homozygous for the risk allele at a locus, we
assumed a multiplicative dose-response model. In other words,
the relative risk with two copies of the risk allele was assumed
to be simply RR × RR. For each maternal exposure (smoking,
alcohol use, vitamin use), we performed separate analyses on
Asians (n = 1,024), Europeans (n = 825), and all participants
combined irrespective of their ethnicity (“pooled sample”; N =

1,908). The different sets of analyses are illustrated in Figure 1.
Further, we conducted haplotype analyses for SNPs that had

very low q-values. This was done using the haplinSlide function
in Haplin, as described in our previous works on candidate genes
for clefts (Jugessur et al., 2008, 2009b, 2012a,b).

Next, we performed statistical power calculations using
the hapPowerAsymp function in Haplin. It is based on the
asymptotic variance-covariance structure of the Wald test, as
described in our recent work (Gjerdevik et al., 2017). The sample
sizes used in these calculations reflect those that were available in
the current GWAS dataset (Figure 1).

To facilitate the interpretation of the large number of
statistical tests being performed simultaneously, we generated
Quantile-Quantile (QQ) plots (Wilk and Gnanadesikan, 1968)
using the pQQ function in Haplin to screen for significant
p-values. This was done separately for the analysis of each
exposure. To control the false discovery rate, we used the method
described by Storey and Tibshirani (2003) where q-values are
computed from the p-values. The function qvalue from the R-
package “q-value” in the Bioconductor repository [https://www.
bioconductor.org/, Gentleman et al., 2004] was used to generate
the q-values. A low q-value indicates a low likelihood that a
statistically significant association is a false positive. A q-value of
0.1, for instance, corresponds to a false discovery rate of 10%.

A regional plot was generated to map the chromosomal
area flanking the most significant SNP (“lead SNP”). This plot
provides a visual display of linkage disequilibrium between the
lead SNP and other SNPs, along with their positions. It also
provides the position of the closest genes and the recombination
rates in the region. We generated the plot by modifying an
R-script available at http://www.broadinstitute.org/files/shared/
diabetes/scandinavs/assocplot.R (Pruim et al., 2010).

The plethora of publicly available data makes it feasible
to explore the connections between different entities, e.g.,
genes and vitamins. Hetionet integrates different sources of
information from actively maintained meta-databases and allows
the visualization of possible paths between various diseases,
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TABLE 2 | Triad completeness by ethnicitya.

Ethnicity Complete triadsc Incomplete triadsd Total

Individuals Families Individuals Families Individuals Families

European 2,024 670 310 155 2,334 825

Asian 2,670 890 268 134 2,938 1,024

Otherb 102 34 50 25 152 59

Pooled 4,796 1,594 628 314 5,424 1,908

a In total, 317 individuals had genotype call rates <10% and were removed from the analyses. Columns show the number of remaining families and individuals.
bAnalyses were not conducted for this group because of small numbers.
cSome families had more than one offspring.
dThese are parent-offspring dyads.

genes and compounds (Himmelstein et al., 2017, https://neo4j.
het.io/). For example, to explore possible links between a given
disease, compounds and gene nodes, Hetionet uses the following
databases: Disease Ontology (Kibbe et al., 2015), Drug Bank
(Law et al., 2014), and Entrez Gene (Maglott et al., 2005).
Furthermore, Hetionet can also integrate information from the
Human Interactome Database (Rolland et al., 2014), CMap
(https://clue.io/) or Bgee (Bastian et al., 2008) to identify potential
gene-gene interactions, compound-gene interactions and gene
expression in specific tissue, respectively. We queried Hetionet to
visualize the relationship between genes and maternal exposures
for the cleft lip phenotype. The complete query and output codes
are provided in the online Supplementary Text 1.

Ethics Approvals
Ethics approvals for the International Cleft Consortium were
obtained from the respective institutional review boards of the
participating sites. The consortium was formed in 2007 and
each participating institution approved research protocols for
the recruitment of case-parent triads from 13 individual sites.
All participants have granted their written informed consents.
The participating sites included institutions in the US (Johns
Hopkins University; University of Iowa; Utah State University;
National Institute of Environmental Health Sciences (NIEHS);
University of Pittsburgh), Denmark (University of Southern
Denmark), Norway (University of Bergen), China (Peking
University Health Science Center; Wuhan University; Peking
Union Medical College; West China School of Stomatology,
Sichuan University; School of Stomatology, Beijing University),
Korea (Yonsei University), Taiwan (Chang Gung Memorial
Hospital), and Singapore (KK Women’s & Children’s Hospital;
National University of Singapore). For more details on the
recruitment sites, the research approvals and protocols, see the
online “Supplementary Note” of the original publication (Beaty
et al., 2010), as well as the study outline at dbGAP (https://
www.ncbi.nlm.nih.gov/gap) under study accession number
phs000094.v1.p1.

RESULTS

Tables 3–5 provide the relative risk ratios (RRRs) and 95%
confidence intervals (CIs) for the top 20 SNPs in each set

of analyses depicted in Figure 1. These SNPs were ranked by
p-value, and their corresponding q-values are also provided
in these tables. RRRs were calculated as previously described
by Haaland et al. (2017). Figures 2–4 show the QQ-plots for
each maternal exposure. The corresponding Manhattan plots
are provided in Figures 5–7. For SNPs that are not associated
with isolated CL/P, –log10 (p-values) in the QQ-plots are
expected to fall along the straight diagonal line representing
the null distribution, within the 95% confidence band (gray
area). Conversely, –log10 (p-values) would fall above this line,
outside the confidence band and in the upper right-hand corner
of the plot. Several SNPs were significantly associated with
isolated CL/P in the GxVitamin analyses of the pooled sample
(Figure 2). In the other analyses, none of the SNPs were outside
the confidence bands, suggesting that the distribution of p-
values is as expected if there are no associations. Still, in each
of the GxVitamin and GxAlcohol analyses of the European
sample (Tables 3, 5), two SNPs had markedly lower p-values
than expected (see also Figures 5, 7). However, none of these
SNPs was located in or near genes with obvious links to orofacial
clefts. In the remainder of this section, therefore, we focus
mainly on the results of the GxVitamin analysis of the pooled
sample.

All the top 20 SNPs in the GxVitamin analysis of the
pooled sample had q-values below 0.54 (Table 3). The two top
SNPs among these, rs1339221 and rs11117745, both had a q-
value of 0.01 and are located in the gene for “Estrogen-related
receptor gamma” (ESRRG). These SNPs are in strong linkage
disequilibrium (LD) with one another (R2 = 0.77 and D’ =
1.00). A third SNP, rs2099557 (q = 0.037), is also located
in ESRRG but is in weaker LD with the above two SNPs
(R2 =0.33 and D’ = 0.57 with rs1339221; R2 = 0.28 and
D’ = 0.61 with rs11117745). A regional plot centered around
the lead SNP in ESRRG (rs1339221) was generated to visualize
the strength of the association signals and regional information
around that SNP (Figure 8). Next, we performed stratified
analyses of the SNPs in ESRRG by first testing for an overall
child effect in the unstratified sample, followed by the effects
among children who were exposed and unexposed to maternal
vitamin use, respectively (Table 6). All three SNPs exhibited a
so-called “qualitative interaction” (Clayton, 2009), in that the
effect of the SNP-allele among mothers taking vitamins was
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TABLE 3 | Relative risk ratio (RRR) and 95% confidence interval (CI) for the top 20 SNPs in the GxVitamin analyses.

Analysis Top 20

SNPsa
Chromosomal band locationb Location of SNP in or near a given gene(s)b p-value q-value RRR (95% CI)

Pooled rs1339221 1q41 In ESRRG 5.9e-08 0.011 0.56 (0.45–0.69)

rs11117745 1q41 In ESRRG 6.8e-08 0.011 0.57 (0.46–0.70)

rs13027140 2p16 Between FLJ30838 and LOC101927285 1.0e-06 0.117 1.70 (1.38–2.11)

rs4233974 2p16 Between FLJ30838 and LOC101927285 2.2e-06 0.15 1.67 (1.35–2.06)

rs1316471 7p12 Nearest gene is COBL 2.2e-06 0.15 2.36 (1.66–3.38)

rs16970288 19q13.1 Between pseudogene EEF1A1P7a and LINC01531 6.2e-06 0.337 1.69 (1.35–2.13)

rs2099557 1q41 In ESRRG 7.0e-06 0.337 0.62 (0.50–0.76)

rs13022580 2q21.1 Between pseudogenes RPL19P4 and TEKT4P3 8.4e-06 0.337 1.60 (1.30–1.96)

rs5762534 22q12.1 In TTC28 9.0e-06 0.337 1.90 (1.43–2.51)

rs938868 2q21.1 Between pseudogenes MTND5P29 and RPL19P4 1.02e-05 0.343 1.59 (1.29–1.95)

rs10992247 9q22.2 Between pseudogenes IL6RP1 and OR7E31P 1.19e-05 0.367 0.42 (0.28–0.62)

rs130413 22q12.1 In TTC28 1.61e-05 0.453 1.81 (1.38–2.37)

rs10072077 5q14 Near LOC101929423 1.81e-05 0.468 2.35 (1.59–3.48)

rs949771 2q21.1 In pseudogene MTND5P29 1.94e-05 0.468 1.56 (1.27–1.92)

rs6696232 1p22.2 Between ZNF644 and HFM1 2.12e-05 0.477 0.60 (0.47–0.76)

rs247405 16q23 Nearest gene is HSBP1 2.59e-05 0.5 0.48 (0.34–0.67)

rs621188 11q23.3 In DSCAML1 2.63e-05 0.5 1.59 (1.28–1.97)

rs6431784 2p25.3 Nearest gene is SOX11 2.66e-05 0.5 1.74 (1.34–2.26)

rs2042743 18p11.2 In LDLRAD4 3.04e-05 0.539 1.55 (1.26–1.91)

rs11676593 2q21.1 Between pseudogenes RPL19P4 and TEKT4P3 3.18e-05 0.539 1.56 (1.26–1.92)

European rs17734557 7p12 Nearest gene is COBL 5e-07 0.163 3.22 (2.04–5.09)

rs1316471 7p12 Nearest gene is COBL 1e-06 0.168 3.36 (2.07–5.46)

rs10875883 12q13.1 Nearest gene is CCDC65 1.17e-05 0.607 0.49 (0.36–0.68)

rs2838965 21q22.3 Nearest gene is SLC19A1 1.29e-05 0.607 0.49 (0.35–0.67)

rs7741153 6p23 Nearest gene is JARID2 1.5e-05 0.607 0.45 (0.31–0.64)

rs247405 16q23 Nearest gene is HSBP1 1.52e-05 0.607 0.23 (0.12–0.45)

rs9544295 13q22 Nearest gene is KCTD12 1.63e-05 0.607 2.77 (1.74–4.41)

rs13027140 2p16 Between FLJ30838 and LOC101927285 1.83e-05 0.607 2.02 (1.46–2.78)

rs2159963 12p13.3 Between A2ML1 and PHC1 1.9e-05 0.607 2.35 (1.59–3.48)

rs10746803 9q21.3 Between C9orf170 and DAPK1 2.23e-05 0.607 0.34 (0.21–0.56)

rs2575625 4q25 Between OSTC and ETNPPL 2.35e-05 0.607 1.96 (1.44–2.68)

rs3792390 3q21 In PDIA5 2.46e-05 0.607 0.44 (0.30–0.65)

rs17651808 15q21.2 Between ARPP19 and FAM214A 2.49e-05 0.607 0.28 (0.15–0.50)

rs4932844 19p12 In pseudogene ZNF724 2.53e-05 0.607 0.51 (0.37–0.70)

rs295367 19p12 In pseudogene LOC100132815 3.21e-05 0.719 0.51 (0.38–0.70)

rs9821623 3p22 In ULK4 3.66e-05 0.768 2.19 (1.51–3.18)

rs2362803 19p12 Nearest gene is ZNF724P 4.16e-05 0.783 0.52 (0.38–0.71)

rs260818 11q22.3 In PDGFD 4.2e-05 0.783 1.94 (1.41–2.67)

rs10743549 12p13.3 Between A2ML1 and PHC1 4.45e-05 0.786 2.33 (1.55–3.51)

rs642307 1p32.1 In C1orf87 6.4e-05 0.905 1.89 (1.38–2.59)

Asian rs13261120 8p22 In SGCZ 3.4e-06 0.73 2.45 (1.68–3.57)

rs8055365 16q24 Between TLDC1 and COTL1 6.2e-06 0.73 0.39 (0.26–0.59)

rs12546303 8p22 In SGCZ 8.4e-06 0.73 2.35 (1.62–3.43)

rs4773818 13q32 In LOC101927284 9.9e-06 0.73 3.16 (1.90–5.25)

rs247832 16q24 Between TLDC1 and COTL1 1.29e-05 0.73 0.42 (0.29–0.62)

rs792306 13q32 In LOC101927284 1.33e-05 0.73 3.10 (1.86–5.17)

rs12374531 5q32 Between PPP2R2B and STK32A 1.53e-05 0.73 3.22 (1.90–5.47)

rs4695853 4q34 Nearest gene is HAND2-AS1 2.34e-05 0.897 3.12 (1.84–5.29)

(Continued)
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TABLE 3 | Continued

Analysis Top 20

SNPsa
Chromosomal band locationb Location of SNP in or near a given gene(s)b p-value q-value RRR (95% CI)

rs6860289 5p15.3 Nearest gene is MTRR 2.65e-05 0.897 2.35 (1.58–3.50)

rs1615355 12q24.33 In LOC100190940 2.98e-05 0.897 2.29 (1.55–3.38)

rs13418410 2p22 Between RASGRP3 and FAM98A 3.24e-05 0.897 2.35 (1.57–3.52)

rs423909 1p36.2 Nearest gene is SLC45A1 3.52e-05 0.897 2.18 (1.51–3.16)

rs4670209 2p22 Between RASGRP3 and FAM98A 3.59e-05 0.897 2.25 (1.53–3.31)

rs1448561 2p22 Nearest gene is FAM98A 4.12e-05 0.897 2.32 (1.55–3.46)

rs9286945 1p35 Nearest gene is PTPRU 4.49e-05 0.897 0.45 (0.30–0.66)

rs2002022 13q21.3 Between pseudogenes NPM1P22 and OR7E111P 4.6e-05 0.897 2.35 (1.56–3.54)

rs17138910 10p13 In RSU1 5.05e-05 0.897 2.22 (1.51–3.26)

rs4290780 3q13.2 In CCDC80 5.19e-05 0.897 3.85 (2.01–7.41)

rs10503525 8p22 In SGCZ 5.96e-05 0.897 2.39 (1.56–3.65)

rs13388224 2p22 Between RASGRP3 and FAM98A 6.04e-05 0.897 2.27 (1.52–3.39)

aSNPs with q-values <0.2 are shown in bold.
bLocation of SNP was determined using the 1,000 Genomes browser at https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/.

in the opposite direction of that among mothers not taking
vitamins. Specifically, RR>1 among non-takers, whereas RR<1
among takers, and none of the 95% CIs included 1 (Table 6).
There were no statistically significant overall effects of the child’s
allele alone for any of the SNPs; all the 95% CIs included RR
= 1. As mentioned earlier, the total GxE effect was measured
as the ratio of the RRs in each stratum of vitamin use (i.e.,
RRVitamins/RRNo vitamins). RRRs and 95% CIs were 0.56 (0.45–
0.69) with the variant allele at rs1339221 (q = 0.011), 0.57 (0.46–
0.70) with the variant allele at rs11117745 (q = 0.011), and
0.62 (0.50–0.76) with the variant allele at rs2099557 (q = 0.037)
(Table 6).

Next, we considered haplotypes of the top three SNPs in
ESRRG (Table 7) and analyzed the following two-SNP and three-
SNP combinations: (i) rs2099557-rs1339221, (ii) rs1339221-
rs11117745, and (iii) rs2099557-rs1339221-rs11117745. The
RRRs and 95%CIs were 0.52 (0.41-0.66) for SNP combination (i),
0.55 (0.44–0.68) for SNP combination (ii), and 0.50 (0.40–0.64)
for SNP combination (iii) (Table 7). The pattern of RRRs was
similar to that in the single-SNP analyses. Provided that vitamin
use itself is not harmful, the haplotypes with the lowest p-values
appeared to be protective among vitamin-takers, but detrimental
among non-takers (Table 7). The RRs and RRRs were even
further away from 1, and the p-values were lower than in the
single-SNP analyses. The most prominent effect was with the “t-
t-t” haplotype in the analysis of SNP combination (iii) above,
suggesting that the observed effects with SNP combinations (i)
and (ii), as well as those observed in the single-SNP analyses, are
likely to be driven by this haplotype.

Our in silico analyses using Hetionet revealed that the cleft
lip phenotype is influenced by vitamins A and D through a
network of genes connected to ESRRG (Figure 9). Except for
“Platelet derived growth factor subunit A” (PDGFA), few of the
genes in the network have previously been linked to orofacial
clefts. Figure 9 shows that ESRRG is expressed in three major
tissues/organs and that the cleft lip phenotype is localized to

the embryo, head, and telencephalon (the most highly developed
and anterior part of the forebrain). ESRRG regulates or interacts
with various genes that are regulated by the levels of vitamin A
and D. Note that several genes are up- or down-regulated in the
telencephalon (marked by blue arrows in Figure 9) and they also
interact directly with ESRRG.

DISCUSSION

The current genome-wide search for GxE effects in isolated CL/P
is based on the largest available GWAS dataset on orofacial
cleft triads (Beaty et al., 2010). We identified a statistically
significant GxE effect betweenmaternal periconceptional vitamin
use and genetic variants in ESRRG in the pooled analysis. We
also identified potential GxVitamin and GxAlcohol effects in the
European sample (Tables 3, 5), but none of the SNPs were outside
the 95% confidence bands in the QQ plots (Figures 2, 4), nor
were they located in or near genes with obvious connections
to orofacial clefts. Because of a lack of observations, we were
unable to performGxSmoke andGxAlcohol analyses in the Asian
sample. The low level of alcohol intake and cigarette smoking
appears to be a general trend among Asian women, and is likely
to be even lower among those who are pregnant or planning
pregnancy (Yang et al., 2010; Ng et al., 2014; Haaland et al.,
2017). Although GxVitamin analysis of the Asian sample was
not hampered by a lack of observations, vitamin intake was
nevertheless markedly lower in this group compared to European
women (14 vs. 56%) (Figure 1).

The current genome-wide scan for GxE effects in isolated
CL/P was motivated by a number of observations. First, several
studies have reported associations between orofacial clefts and
periconceptional maternal cigarette smoking, alcohol intake and
vitamin use (reviewed in Jugessur et al., 2009a; Dixon et al.,
2011; Marazita, 2012; Rahimov et al., 2012; Leslie and Marazita,
2013; Beaty et al., 2016), but our comprehensive analysis of
334 autosomal cleft candidate genes showed little evidence of
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TABLE 4 | Relative risk ratio (RRR) and 95% confidence interval (CI) for the top 20 SNPs in the GxSmoke analyses.

Analysisa Top 20 SNPs Chromosomal band locationb Location of SNP in or near a given gene(s)b p-value q-value RRR (95% CI)

Pooled rs820930 7q31.1 Nearest locus is C7orf66 1.06e-05 0.994 1.93 (1.44–2.58)

rs210625 6q22.2 In DCBLD1 1.36e-05 0.994 1.79 (1.38–2.33)

rs7258736 19q12 In LOC101927210 1.56e-05 0.994 2.99 (1.82–4.91)

rs7247342 19q12 In LOC101927210 2.59e-05 0.994 2.89 (1.76–4.73)

rs2024140 19q12 In LOC101927210 2.91e-05 0.994 2.97 (1.78–4.94)

rs6810129 3q26.1 Nearest gene is CT64 2.94e-05 0.994 0.57 (0.44–0.74)

rs1182865 6p21.2 Between KCNK5 and KCNK17 3.43e-05 0.994 0.51 (0.37–0.70)

rs1013592 19q12 In LOC101927210 3.47e-05 0.994 2.81 (1.72–4.57)

rs10085496 7p21 Between pseudogenes GAPDHP68 and PER4 3.85e-05 0.994 0.58 (0.45–0.75)

rs4805661 19q12 Nearest gene is TSHZ3 4.05e-05 0.994 0.57 (0.43–0.74)

rs2543146 8p22 In TUSC3 4.19e-05 0.994 1.73 (1.33–2.24)

rs4804843 19q12 In LOC101927210 4.41e-05 0.994 2.86 (1.73–4.73)

rs10417454 19q12 In LOC101927210 4.63e-05 0.994 2.84 (1.72–4.69)

rs244226 21q21 Between pseudogenes MAPK6PS2 and ZNF299P 4.88e-05 0.994 1.72 (1.32–2.23)

rs352806 8p22 In TUSC3 5.21e-05 0.994 0.53 (0.38–0.72)

rs2191018 19q12 In LOC101927210 5.4e-05 0.994 2.82 (1.71–4.67)

rs6806286 3q22 In CPNE4 6.37e-05 0.994 1.72 (1.32–2.25)

rs2834061 21q22.1 Nearest gene is OLIG2 6.37e-05 0.994 1.80 (1.35–2.41)

rs12204228 6q22.1 Between RFX6 and VGLL2 6.44e-05 0.994 0.40 (0.25–0.63)

rs11014205 10p12.2 In ARHGAP21 8.06e-05 0.994 0.55 (0.41–0.74)

European rs10106898 8q22.1 Between pseudogenes GAPDHP30 and TUBBP7 4.1e-06 0.684 0.29 (0.18–0.50)

rs10095562 8q22.1 Between pseudogenes GAPDHP30 and TUBBP7 1.4e-05 0.684 0.30 (0.17–0.52)

rs10282921 8q22.1 Between pseudogenes GAPDHP30 and TUBBP7 1.43e-05 0.684 0.30 (0.18–0.52)

rs820930 7q31.1 Between LOC646614 and LOC100421901 1.45e-05 0.684 2.11 (1.51–2.97)

rs266642 5q23.2 Nearest gene is GRAMD3 1.55e-05 0.684 2.69 (1.72–4.22)

rs601904 11q13.4 Between peudogene CYCSP27 and LIPT2 1.59e-05 0.684 0.49 (0.35–0.68)

rs17608059 17p12 Nearest gene is COX10-AS1 1.68e-05 0.684 1.97 (1.44–2.67)

rs657339 11q13.4 In LOC100287896 1.85e-05 0.684 0.49 (0.35–0.68)

rs617989 11q13.4 In LIPT2 1.9e-05 0.684 0.49 (0.36–0.68)

rs649460 11q13.4 Nearest gene is LIPT2 2.28e-05 0.684 0.49 (0.36–0.68)

rs2509563 11q13.4 Nearest gene is LIPT2 2.29e-05 0.684 0.50 (0.36–0.69)

rs1013592 19q12 In LOC101927210 2.45e-05 0.684 3.84 (2.05–7.17)

rs1783196 11q13.4 Nearest gene is LIPT2 2.85e-05 0.684 0.50 (0.36–0.69)

rs648677 11q13.4 Between LIPT2 and POLD3 2.85e-05 0.684 0.50 (0.36–0.69)

rs10028174 4q22 In CCSER1 3.65e-05 0.796 0.40 (0.26–0.62)

rs1655475 11q13.4 Between LIPT2 and POLD3 3.79e-05 0.796 0.51 (0.37–0.70)

rs2089253 4q21.1 In USO1 4.34e-05 0.858 0.28 (0.16–0.52)

rs3317 5q22 In REEP5 and SRP19 5.55e-05 0.89 0.53 (0.39–0.72)

rs11692230 2q12 In IL1RL2 5.67e-05 0.89 1.89 (1.39–2.58)

rs4805661 19q12 Nearest gene is TSHZ3 6.19e-05 0.89 0.53 (0.38–0.72)

aWe were unable to assess GxSmoke effects in the Asian sample because very few of the mothers reported smoking cigarettes in the periconceptional period.
bLocation of SNP was determined using the 1,000 Genomes browser at https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/.

interaction with these maternal exposures despite being the
largest GxE study of clefts at the time (Skare et al., 2012). Second,
the lack of GxE effects may be due to a combination of limited
statistical power to detect nothing but the largest GxE effects and
the a priori small environmental contributions to CL/P (∼9%)
and CPO (∼10%) (Grosen et al., 2011). Because most previous
GxE studies have used a candidate-gene approach and are
based on relatively small sample sizes, the small environmental

contributions are likely to have further reduced the power to
detect a GxE effect. Third, only two genome-wide studies of GxE
effects have so far been published in orofacial clefts—in isolated
CPO (Beaty et al., 2011; Wu et al., 2014). We thus focused on the
larger sample of isolated CL/P and screened for GxE effects using
the same GWAS dataset as in Wu et al. (2014).

The connection between vitamins and variants in ESRRG
is novel in the context of orofacial clefts. To shed more light
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TABLE 5 | Relative risk ratio (RRR) and 95% confidence interval (CI) for the top 20 SNPs in the GxAlcohol analyses.

Analysisa Top 20 SNPsb Chromosomal band locationc Location of SNP in or near a given gene(s)c p-value q-value RRR (95% CI)

Pooled rs17023089 3p24.1 Nearest gene is RBMS3 7.4e-06 0.858 0.32 (0.19–0.53)

rs7164773 15q22.2 In RORA 9.8e-06 0.858 1.73 (1.35–2.20)

rs6748903 2q14.3 Near LOC101927881 1.65e-05 0.858 0.51 (0.38–0.69)

rs11691558 2q21.1 In LOC101927881 1.72e-05 0.858 0.51 (0.38–0.69)

rs4132008 1q32.1 In PLEKHA6 1.94e-05 0.858 1.75 (1.35–2.27)

rs2118769 2q22.3 Nearest gene is ACVR2A 2.04e-05 0.858 0.58 (0.46–0.75)

rs1335594 13q33 In ITGBL1 2.3e-05 0.858 1.74 (1.35–2.25)

rs3805025 3p26 In ITPR1 2.77e-05 0.858 1.96 (1.43–2.69)

rs30306 5q32 Nearest gene is ADBR2 3.58e-05 0.858 1.66 (1.30–2.11)

rs6685648 1p36.2 In CASP9 3.89e-05 0.858 0.59 (0.46–0.76)

rs2064317 6p21.3 In TULP1 4.45e-05 0.858 1.65 (1.30–2.11)

rs686805 11q13.4 In SHANK2 4.66e-05 0.858 2.24 (1.52–3.30)

rs9653456 2q12 Nearest gene is EDAR 4.76e-05 0.858 1.85 (1.37–2.49)

rs2163752 5q32 Between HTR4 and ADRB2 4.77e-05 0.858 1.64 (1.29–2.09)

rs13086826 3q22 In CPNE4 4.94e-05 0.858 0.59 (0.45–0.76)

rs4810165 20q13.3 Between EDN3 and peudogene PIEZO1P1 5.01e-05 0.858 1.75 (1.34–2.30)

rs4859190 3q27 Nearest gene is MCF2L2 5.12e-05 0.858 0.58 (0.45–0.76)

rs2740882 8p23.3 In CSMD1 5.15e-05 0.858 0.48 (0.33–0.68)

rs13077768 3q22 In CPNE4 5.29e-05 0.858 0.59 (0.45–0.76)

rs11076508 16q12.1 Between ZNF423 and pseudogene RPL34P29 5.56e-05 0.858 0.61 (0.48–0.78)

European rs9653456 2q12 Between EDAR and SH3RF3 4e-07 0.148 2.40 (1.71–3.37)

rs921876 2q12 Nearest gene is EDAR 9e-07 0.153 2.09 (1.56–2.81)

rs11076508 16q12.1 Between ZNF423 and pseudogene RPL34P29 2.25e-05 0.892 0.54 (0.40–0.72)

rs7713774 5q14 In ACOT12 3.05e-05 0.892 0.51 (0.37–0.70)

rs10784765 12q15 Between CPM and CPSF6 4.76e-05 0.892 0.41 (0.27–0.63)

rs893912 15q22.3 Between LCTL and SMAD6 5.04e-05 0.892 2.28 (1.53–3.39)

rs17199679 9q31 Between pseudogene RPL36AP35 and ACTL7B 5.1e-05 0.892 2.86 (1.72–4.76)

rs3020054 11q21 Nearest gene is CCDC67 6.7e-05 0.892 0.52 (0.38–0.72)

rs2192926 2p12 Nearest gene is TACR1 7.24e-05 0.892 0.50 (0.36–0.71)

rs7862797 9q31 Between pseudogene RPL36AP35 and ACTL7B 7.49e-05 0.892 2.77 (1.67–4.58)

rs851674 7q35 In CNTNAP2 7.85e-05 0.892 1.87 (1.37–2.56)

rs6581864 12q15 Between CPM and CPSF6 8.72e-05 0.892 1.81 (1.34–2.43)

rs6495940 15q14 Between TMCO5A and SPRED1 8.82e-05 0.892 0.41 (0.26–0.64)

rs6822683 4q34 Nearest gene is GALNT7 9.58e-05 0.892 1.82 (1.35–2.46)

rs2276049 11q24 In VWA5A 9.78e-05 0.892 0.48 (0.33–0.69)

rs2417976 9q31 Between TMEM245 and FRRS1L 9.82e-05 0.892 2.04 (1.42–2.91)

rs10759878 9q33 In ASTN2 9.89e-05 0.892 1.93 (1.39–2.69)

rs4778036 15q26.1 Between SLCO3A1 and pseudogene DUXAP6 0.0001033 0.892 1.80 (1.34–2.43)

rs17104078 10q23.1 Nearest gene is CCSER2 0.0001042 0.892 2.48 (1.57–3.93)

rs12540601 7p15.3 Between TRA2A and pseudogene LOC442517 0.0001044 0.892 0.56 (0.42–0.75)

aWe were unable to assess GxAlcohol effects in the Asian sample because very few of the mothers reported drinking alcohol in the periconceptional period.
bSNPs with q-values <0.2 are shown in bold.
cLocation of SNP was determined using the 1,000 Genomes browser at https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/.

on how vitamins, ESRRG and clefting might relate to one
another, we performed in silico analyses using the Hetionet
database (Figure 9). By harnessing data from several publicly
available meta-databases, Hetionet generates a detailed overview
of the relationships between a given disorder/disease, genes and
compounds that might easily be overlooked if the focus were
solely on specific aspects of disease-gene associations (Greene

et al., 2015; Himmelstein et al., 2017). Our analyses revealed
a rich network of genes connecting cleft lip to ESRRG and
to two vitamins in particular—vitamins A and D. These genes
are significantly influenced by the levels of these two vitamins,
which might partially explain why the extra vitamin intake by
pregnant mothers appears to protect the fetus against clefts.
There is some evidence in the literature linking vitamin A
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FIGURE 2 | QQ-plots for the GxVitamin analyses in the pooled, European and Asian samples.

FIGURE 3 | QQ-plots for the GxSmoke analyses in the pooled and European samples.

FIGURE 4 | QQ-plots for the GxAlcohol analyses in the pooled and European samples.

itself and genes related to vitamin A, e.g., retinoic acid receptor
alpha, RARA, with the risk of orofacial clefts (Rothman et al.,
1995; Mitchell et al., 2003; Bille et al., 2007; Johansen et al.,

2008; Boyles et al., 2009; Skare et al., 2012). For instance,
early studies in mice showed that the timing of exposure
to retinoic acid (a metabolite of vitamin A) is important
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FIGURE 5 | Manhattan plots for GxVitamin effects in the pooled, Europeans-only and Asians-only analyses. SNPs with p-values below 10−6 are shown in blue.

FIGURE 6 | Manhattan plots for GxSmoke effects in the pooled and Europeans-only analyses.
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FIGURE 7 | Manhattan plots for GxAlcohol effects in the pooled and Europeans-only analyses. SNPs with p-values below 10−6 are shown in blue.

FIGURE 8 | Regional association plot to assess the strength of association and regional information flanking the lead SNP in ESRRG, rs1339221, shown here in blue

alongside its p-value.

in the disruption of the expression patterns of key growth
factors, resulting in abnormally small palatal shelves that cannot
fuse (Abbott et al., 1989, 2005; Abbott and Birnbaum, 1990).
Compared to vitamin A or vitamin B complex, few studies
have examined the effects of high or low dose of vitamin
D on clefting risk. Unfortunately, the cleft consortium (Beaty
et al., 2010) did not include detailed information on the use of
different types of vitamins, which would have allowed a more

targeted analysis of vitamins A and D in relation to the ESRRG
variants.

The impact of specific variants in ESRRG on the risk of
orofacial clefts is also uncharted territory, but several lines of
evidence point to a biologically plausible link between estrogens,
ESRRG and craniofacial malformations. First, estrogens are
a group of steroid-based sex hormones that are involved in
several important developmental and physiological processes,
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including cartilage proliferation and growth, and formation of
the craniofacial complex (Ahi, 2016). Second, sex hormones are
involved in several traits associated with sexual dimorphism
(Callewaert et al., 2010; Randall et al., 2013; Sanger et al., 2014).
Given the consistently observed higher male-to-female ratio of
isolated CL/P (∼2:1 in Caucasians), it is plausible that the skewed
sex prevalence is a manifestation of opposing sex steroid actions.
Third, exposure to very high or very low doses of estrogens
during embryonic development results in craniofacial skeletal

TABLE 6 | Stratified analyses of the top three SNPs in ESRRG.

SNP namea Stratum RR (95% CI)b p-value Frequency

rs1339221 All (child effect) 0.94 (0.84–1.04) 0.22 0.40

No vitamin use 1.17 (1.03–1.33) 0.016 0.38

Vitamin use 0.66 (0.56–0.78) 5 × 10−7 0.43

Across strata 0.56 (0.45–0.69) 6 × 10−8 –

rs11117745 All (child effect) 0.96 (0.87–1.06) 0.41 0.46

No vitamin use 1.19 (1.05–1.35) 0.0064 0.46

Vitamin use 0.68 (0.58–0.80) 2 × 10−6 0.46

Across strata 0.57 (0.46–0.70) 7 × 10−8 –

rs2099557 All (child effect) 0.96 (0.87–1.06) 0.40 0.40

No vitamin use 1.15 (1.01–1.31) 0.031 0.37

Vitamin use 0.71 (0.61–0.84) 5 × 10−5 0.44

Across strata 0.62 (0.50–0.76) 5 × 10−6 –

aAll three SNPs are located within chromosomal region 1q41 according to the 1000

Genomes browser (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/).
bRelative risk (RR) for the overall child effect, and effects within each stratum of vitamin

use. Across strata, an effect is measured as the ratio of the RRs (i.e., RRR) for vitamin use

and no vitamin use.

malformations in various animal models (Fushimi et al., 2009;
Cohen et al., 2014; Morthorst et al., 2016). For instance, when
zebrafish are exposed to bisphenol-A (an endocrine-disrupting
chemical that mimics estrogen), they develop craniofacial
malformations (Kramer et al., 1990). Signaling and dosage
regulation of estrogens are finely orchestrated by estrogen
receptors (ERs) and estrogen related receptors (ESRRs). These
two closely-related families of receptors share target genes, co-
regulators and promoters (Maglott et al., 2005). ESRRG, the gene
identified in our GxVitamin analyses, encodes the orphan nuclear
receptor “Estrogen-related receptor γ” (ERRγ). ERRγ itself does
not appear to be important for skeletal development, but it is
a sex-dependent negative regulator of postnatal bone formation
(Cardelli and Aubin, 2014).

The majority of the genes in Figure 9 have not previously
been linked to orofacial clefts, except perhaps for PDGFA. This
gene belongs to the PDGF family of genes that play important
roles in the PDGF receptor-alpha (PDGFR-α) signaling pathway.
Compared to PDGFA, PDGFC has a well-substantiated role
in palatogenesis (Eberhart et al., 2008). Mice with the Pdgfc
gene knocked out (Pdgfc−/−) exhibit a complete cleft of the
secondary palate (Ding et al., 2004). The phenotype is less severe
in Pdgfa−/− mice. The ligands PDGFA and PDGFC share a
common pathway with the PDGFR-α receptor in regulating
the development of craniofacial structures. Targeted deletion
of murine Pdgfra causes neural tube closure defects, including
midfacial and palatal clefts (Soriano, 1997). Retinoic acid, on the
other hand, inhibits proliferation of embryonic palatal shelves
in mice by downregulating Pdgfc activity (Han et al., 2006).
Pedigo et al. (2007) later reported the location of a complex
retinoic acid response element in a region upstream of the
transcription start site of PDGFA that was previously shown to
harbor basal and vitamin D-inducible enhancer activity, which

TABLE 7 | Haplotype analysis for the top three SNPs in ESRRG.

SNP combinationa Haplotype Topb Ref.c Frequency (top vs. ref) Stratum RR (95% CI)d p-value

rs2099557-rs1339221 t/C × t/C t-t C-C 0.30 vs. 0.50 All (child effect) 0.93 (0.83–1.04) 0.20

0.27 vs. 0.51 No vitamin use 1.21 (1.04–1.40) 0.013

0.35 vs. 0.48 Vitamin use 0.63 (0.53–0.75) 6 × 10−7

– Across strata 0.52 (0.41–0.66) 6 × 10−8

rs1339221-rs11117745 t/C × t/G t-t C-G 0.40 vs. 0.54 All (child effect) 0.94 (0.85–1.04) 0.25

0.39 vs. 0.54 No vitamin use 1.19 (1.04–1.36) 0.0091

0.43 vs. 0.54 Vitamin use 0.65 (0.55–0.77) 6 × 10−7

– Across strata 0.55 (0.44–0.68) 4 × 10−8

rs2099557-rs1339221-rs11117745 t/C × t/C × t/G t-t-t C-C-G 0.30 vs. 0.46 All (child effect) 0.94 (0.83–1.05) 0.27

0.27 vs. 0.45 No vitamin use 1.24 (1.07–1.45) 0.0061

0.35 vs. 0.46 Vitamin use 0.63 (0.52–0.75) 7 × 10−7

– Across strata 0.50 (0.40–0.64) 2 × 10−8

aAll three SNPs are located within the chromosomal band 1q41 according to the 1,000 Genomes browser (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/).
b“Top” refers to the haplotype with the lowest p-value in the analysis.
cThe most frequent haplotype was used as reference.
dRelative risk (RR) for the overall child effect, and effects within each stratum of vitamin use. Across strata, an effect is measured as the ratio of the RRs (i.e., RRR) for vitamin use and

no vitamin use.
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FIGURE 9 | Relationships between cleft lip, vitamins and ESRRG, visualized as a heterogenic network, where each relationship evidenced in public databases is

depicted as an arrow connecting two nodes. Different types of nodes (e.g., genes, diseases, etc.) are connected by different types of relationships (e.g., regulation,

interaction, etc.). The nodes and arrows are colored according to the legend at the top of the figure. The thickness of the “DOWNREGULATES_AdG” arrow is less

than that of “UPREGULATES_AuG,” and similarly for “DOWNREGULATES_CdG” and “UPREGULATES_CuG.” The numbers on the two latter arrows show the

Z-score, which is a measure for the strength of the influence. The figure was generated using the Hetionet network (see the Materials and Methods section for details).

lends support to the connections seen between these entities in
Figure 9.

In addition to the novel insights from the biological findings,
we aimed at developing a robust method for genome-wide
screening of GxE effects in GWAS data. Using a log-linear model
with multiplicative dose-response is a very efficient statistical
approach, and case-parent triads provide sufficient information
to reconstruct haplotypes with high precision. Yet, our study
may still lack power to detect effects that are small. Figure 10
depicts power simulations for different sample sizes and different
proportions of exposed to unexposed mothers, reflecting those
that were available in the current GWAS dataset. The figure
shows that there is acceptable power at a nominal significance
level of 5% to detect a single-SNP GxE effect with relative risk
ratio (RRR) of 1.4 or higher in a sample consisting of 2,000 triads,
and an effect with RRR of 1.6 or higher with 1,000 triads. The
proportion of exposed to unexposed cases does not have a major
impact on power as long as it does not deviate substantially from
1-to-1. In a GWAS setting, there is of course the extra burden of
extensive multiple testing. Controlling the FDR in our study for
each exposure is less taxing on statistical power and better suited
for discovery than, for instance, a strict Bonferroni correction.
However, it increases the need for independent verification of top
hits.

Our study has limitations. Even though it was based on the
largest collection of isolated CL/P triads to date, it still had limited
statistical power in the smallest group of exposed mothers. This
was especially true for the GxSmoke and GxAlcohol analyses in
the Asian sample, where the low level of exposure prevented any
meaningful GxE analysis. The lack of a replication cohort was
also a major shortcoming. Our study is the first to investigate
the risk of isolated CL/P using GWAS data in two major
ethnicities, and there are currently no other similar studies
on isolated CL/P that can be used to confirm our findings.
Further, our assumption of a detectable RRR of 1.4 with a
sample size of 2,000 triads and an RRR of 1.6 with 1,000 triads
may be optimistic in the context of birth defects and complex
traits in general. The current scan for GxE effects in isolated
CL/P should therefore be considered exploratory and hypothesis-
generating at this stage, assuming that other researchers who
in the future have access to comparable cleft data and more
detailed information on different types of vitamins (including
vitamins A and D) would be interested in replicating these
findings.

To summarize, we identified significant interactions between
variants in ESRRG and vitamin use in the pooled analysis.
Our in silico analyses revealed an intricate network of genes
linking cleft lip, ESRRG and two vitamins in particular: vitamins
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FIGURE 10 | Single-SNP power for different sample sizes and proportions of

exposed to unexposed mothers. The figure shows the power for detecting a

GxE effect with increasing relative risk ratios (RRR). The relative risk in the

smallest exposure group was increased, but the relative risk in the largest

exposure group was set equal to 1. Additionally, we used a minor allele

frequency (MAF) of 0.2, a nominal significance level of 5%, and a total sample

size of 1,000 triads and 2,000 triads with different proportions of

exposed/unexposed mothers. Note that the minor allele was used as the risk

allele.

A and D. These GxE effects are novel and warrant further
investigations to unravel the potential interplay between vitamins
and ESRRG variants. If confirmed in other cleft samples, they

could provide prospects for exploring the impact of estrogens
and vitamins on orofacial clefts, with potential translational
applications.
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