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Abstract

With remarkable spatial and temporal specificities, peripheral membrane proteins bind to

biological membranes. They do this without compromising solubility of the protein, and their

binding sites are not easily distinguished. Prototypical peripheral membrane binding sites

display a combination of patches of basic and hydrophobic amino acids that are also fre-

quently present on other protein surfaces. The purpose of this contribution is to identify sim-

ple but essential components for membrane binding, through structural criteria that

distinguish exposed hydrophobes at membrane binding sites from those that are frequently

found on any protein surface. We formulate the concepts of protruding hydrophobes and co-

insertability and have analysed more than 300 families of proteins that are classified as

peripheral membrane binders. We find that this structural motif strongly discriminates the

surfaces of membrane-binding and non-binding proteins. Our model constitutes a novel for-

mulation of a structural pattern for membrane recognition and emphasizes the importance

of subtle structural properties of hydrophobic membrane binding sites.

Author summary

Peripheral membrane proteins bind cellular membranes transiently, and are otherwise

soluble proteins. As the interaction between proteins and membranes happens at cellular

interfaces they are naturally involved in important interfacial processes such as recogni-

tion, signaling and trafficking. Commonly their binding sites are also soluble, and their

binding mechanisms poorly understood. This complicates the elaboration of conceptual

and quantitative models for peripheral membrane binding and makes binding site predic-

tion difficult. It is therefore of great interest to discover traits that are common between

these binding sites and that distinguishes them from other protein surfaces. In this work

we identify simple and general structural features that facilitate membrane recognition by

soluble proteins. We show that these motifs are highly over-represented on peripheral

membrane proteins.
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Introduction

Biological membranes are ancient and crucial components in the organisation of life. Not only

do they define the boundaries of cells and organelles, but they are central to a myriad protein-

protein and protein-lipid interactions instrumental in numerous pathways [1–5]. Besides the

embedded transmembrane proteins and receptors, a number of soluble proteins interact tran-

siently with the surface of cellular and organellar membranes achieving remarkable spatial and

temporal specificities. These proteins (or domains) are referred to as peripheral proteins (or

domains) and their membrane-binding site as interfacial binding site or IBS. Peripheral pro-

teins may bind membranes via lipid-binding domains which are independently folded mod-

ules forming an integral part of the overall protein; C2-domains and FYVE-domains are

examples of such domains [6, 7]. Many lipid-processing enzymes, endogenous or secreted by

pathogens are also included in the definition of peripheral proteins.

Unlike protein-protein or protein-ligand interactions, interfacial binding sites of peripheral

proteins are poorly characterized in terms of amino acid composition and structural patterns.

Embedded and transmembrane proteins contain well defined regions of hydrophobic surface,

clearly identifying their membrane interacting segments. This is seldom the case for peripheral

membrane proteins. Currently the prototypical peripheral membrane binding site is described

as displaying a combination of basic and hydrophobic amino acids [7, 8]. Attempts to charac-

terize the energetics of membrane binding has mostly focused on electrostatic complementar-

ity of peripheral proteins with the charged surfaces of membrane [9], rather than on the

desolvation of hydrophobes which is more difficult to isolate in theoretical treatments. Never-

theless the predictive power of implicit membrane models in the prediction of membrane

binding sites is a strong indication of the importance of the hydrophobic effect [10] in periph-

eral membrane binding. For example, Lomize et al. could correctly identify the experimentally

known IBS of 53 peripheral peptides and proteins using a model that includes only hydropho-

bic, desolvation and ionization energy terms [11]. Yet in order to assert the generality of a pro-

tein-membrane binding mechanism, it is not enough to demonstrate its validity for a selected

set of true positives, but it is also important to evaluate it on a control dataset.

As both small hydrophobic patches and charged residues are frequently present on protein

surfaces it is challenging to distinguish membrane binding sites from the rest of the peripheral

membrane proteins surface solely relying on amino acid composition. There are indications

that structural considerations may allow signatures of membrane interacting hydrophobes to

be defined. Terms like hydrophobic spikes [12, 13] and protruding loops [11] have been used to

describe membrane binding sites, prompting the idea of hydrophobes protruding from the

protein globule. A close look at amphipathic helices, also motivates the concept of protruding

hydrophobes. Amphipathic helices are characteristic of membrane-binding peptides and pro-

teins. When such membrane binding helices exist, they are often found lining a protein, form-

ing a cylindrical protrusion from the globule (e.g. ENTH domain of Epsin, PDBID: 1H0A

[14], shown in Fig 1C and 1D). Yet, no generalization of protruding membrane binding sites

has been proposed for peripheral membrane proteins.

The purpose of this contribution is to identify structural characteristics that distinguish

exposed hydrophobes at membrane binding sites from those that are frequently found on any

protein surface. We propose a simple definition that formalizes the concept of protruding

hydrophobes, and which can be easily computed from the protein structure. This definition

allows us to systematically investigate to what extent protruding hydrophobes are found on

both binding and non-membrane-binding surfaces, and to identify structural criteria for rec-

ognizing exposed hydrophobes that are likely to be important for membrane binding.

Hydrophobic protrusions on peripheral proteins
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A major obstacle in developing general association models for peripheral membrane pro-

teins is the scarcity of experimentally verified binding sites, and detailed descriptions of bind-

ing orientations. Computational studies on the role of hydrophobes on membrane binding

sites have been based so far on relatively small sets of proteins with known binding sites [10,

11, 15]. To get around this problem and to leverage the large number of proteins for which

membrane binding has been identified without a detailed characterisation of the IBS, we per-

form a comparative statistical analysis of protein surfaces. Given classifications of proteins that

identifies membrane binders, we compare peripheral membrane proteins with protein surfaces

that are not membrane-binding and with more general reference proteins. With this we can

Fig 1. The definitions of ‘protrusions’ and ‘co-insertable protruding hydrophobes’. Panel A shows a cartoon

representation of the C2 domain of human phospholipase A2 (PDB ID: 1RLW), and panel B shows the convex hull for

the same protein. Panel C shows the structure of the ENTH-domain (PDB ID: 1H0A), which contains an amphipatic

helix. The corresponding convex hull is shown on panel D. All Cα- and Cβ-atoms are shown as spheres. Hydrophobes

are coloured orange. The convex hull for the Cα- and Cβ-atomic coordinates is shown in blue. All spheres visible on the

convex hull representation are vertex residues. ‘Protrusions’ are defined as vertex residues with low local protein

density, and shown as large grey spheres. ‘Co-insertable protruding hydrophobes’ are protruding hydrophobes that are

adjacent vertices of the convex hull and are shown connected by orange lines. Small black spheres are at vertex residues

that have high local density, and do therefore not meet the criteria for protrusions.

https://doi.org/10.1371/journal.pcbi.1006325.g001
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extend our analysis to hundreds of protein families rather than the few dozens for which bind-

ing sites have been partially identified by experiments.

With our simple definition of structural protrusions, we perform a statistical analysis of

protruding hydrophobes in a large protein structure dataset and our results support their gen-

eral role in membrane association. We find that protruding hydrophobes can be used to

strongly discriminate protein surfaces involved in membrane binding from those that are not.

Hydrophobes are much more frequent on protruding sites of peripheral membrane proteins

than in the reference dataset, and they have a strong tendency to cluster on positions that can

simultaneously interact with the membrane.

Results and discussion

Our formalisation of the concept of protruding amino acids is illustrated in Fig 1 and

described in details in ‘Materials and methods’. In short, it relies on firstly identifying the

convex hull (in blue in Fig 1) of a coarse-grained protein model consisting of only its Cα- and

Cβ-atoms. We then identify amino acids located at vertices of the convex hull which intuitively

are good candidates to be inserted into a membrane without inserting other residues, and

without deforming the protein backbone. The model thus implicitly assumes that (1) proteins

interact with the membrane without appreciable conformational change, or prior to such

change and (2) that the membrane is locally flat, which is a valid approximation in most cases

[16]. In order to single out the amino acids that are most exposed to solvent, we identify

amino acids (vertices) in regions of low protein density, defined as having a low number of

neighboring atoms. Solvent accessibility is a necessary condition for the hydrophobic effect to

contribute to binding. In addition, regions of low local protein density are also likely to cause

less disruption of lipid packing upon membrane insertion. The model was formulated based

on inspection of eight proteins for which ample experimental data is available. They are listed

in the Supporting Information (Table B in S1 Text).

In what follows, we present results of the application of this model to characterise hydro-

phobic properties of protrusions in peripheral membrane proteins. We do this by comparing

peripheral membrane proteins to a reference set of non-binding protein surface segments, and

a reference set of typical protein surfaces. The reference set of non-binding surface segments

(‘Non-binding surfaces’) is constructed from the solvent exposed regions of trans-membrane

proteins and is intended to represent structures that do not interact with membranes. The ref-

erence set of typical proteins (‘Reference Proteins’) is constructed from a protein structural

classification from which we have excluded proteins that are classified as membrane-interact-

ing. This set is intended to represent more general representative protein surfaces, and

includes an unknown frequency of peripheral membrane binders. Because our two reference

datasets are obtained from different sources we cannot use exactly the same sets of peripheral

proteins to compare them to. Specifically, we build two variants of the set of peripheral mem-

brane proteins (‘Peripheral’ and ‘Peripheral-P’). These data sets are described in detail in

‘Materials and methods’. The main difference between those two sets is the modeling of qua-

ternary structure which needs to be consistent with each of the reference datasets.

Protruding hydrophobes in a dataset of peripheral membrane proteins

First we calculated the frequency of hydrophobes on protrusions in peripheral protein families

and compared it to the reference datasets. In Fig 2, we observe a stark contrast between the set

of peripheral proteins and the non-binding surfaces (compare Fig 2A and 2C). Hydrophobes

occur with high frequency and in almost all families on protrusions of peripheral proteins. In

the reference set on the other hand, hydrophobes on protrusions are much less tolerated,

Hydrophobic protrusions on peripheral proteins
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reflected by a histogram mode of zero. While less pronounced, the distinction is also clear for

the comparison with reference proteins (compare Fig 2E and 2G). Qualitatively, the frequency

of hydrophobes on protrusions is similar in the two reference sets (Fig 2C and 2G) but the sets

of peripheral proteins differ somewhat suggesting some sensitivity to quaternary structure

modeling. For both comparisons however, this trend is specific for protruding positions and

does not reflect a general difference in composition of surface exposed amino-acids between

the data sets as shown by plots in Fig 2B, 2D, 2F and 2H. Indeed, if we consider the frequency

of hydrophobes on all solvent exposed residues, the distributions look quite similar with both

sets having histogram modes close to 0.2. This value is in agreement with the fraction of the

surface of globular proteins typically reported to be hydrophobic (for instance 0.19 in

Ref. [17]). The ‘Non-binding surfaces’ are in some cases very small, due to the way we ensure

that these surfaces are not interacting with the membrane (see ‘Materials and methods’).

While these small surfaces are relevant samples for calculating average frequencies, the fraction

of hydrophobes on such surfaces can take more extreme values (close to zero or 1). For this

reason the tails of the histograms for this reference set are somewhat fatter than those for the

peripheral membrane proteins.

Given the nature of our model the differences presented in Fig 2 are naturally ascribed to

two factors; the accessibility of amino acids compared to other regions of the protein (they are

vertices of the convex hull) and their low local protein density d defined as the number of

neighboring Cα- or Cβ-atoms (Cf. definition in ‘Materials and methods’). We here explore the

dependence of this difference on d. In Fig 3 we show the difference between frequencies of

hydrophobes in peripherals and the non-binding surfaces for different ranges of the local pro-

tein density d. The leftmost bar (0� d� 6) corresponds to chain terminals. The other bars

corresponding to ranges covered by our definition of protruding residues (7� d< 22) show

that hydrophobic residues are more frequently found at vertex residues with low local protein

density in the peripheral proteins. This also serves as an a posteriori justification for constrict-

ing our definition of protrusions to amino-acids with d< 22.

Fig 2. Hydrophobes are more common on protruding positions in peripheral proteins than in the reference sets. The plots show

frequencies of hydrophobes on surface amino acids, both on protrusions (A, C, E, G) and among all solvent exposed amino acids (B, D, F,

H) for peripheral proteins (blue) and the reference datasets (red). The horizontal axes show the mean fraction (Eq 1) of protrusions or

solvent exposed amino-acids that are hydrophobic. The vertical axis shows the fraction of protein families for each set. Plots A-D show the

comparison between the data sets ‘Peripheral’ and ‘Non-binding surfaces’, and E-H the comparison between ‘Peripheral-P’ and ‘Reference

Proteins’.

https://doi.org/10.1371/journal.pcbi.1006325.g002
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Assuming that the over-representation of hydrophobes on protrusions in peripheral mem-

brane proteins stems from actual membrane binding sites, we expect those proteins to have

more than one hydrophobic protrusion. We estimated the tendency of hydrophobic protru-

sions to be ‘co-insertable’ by calculating the weighted frequency of co-insertion (Eq 9) (Cf

‘Materials and methods’) for all datasets (Fig 4). We note that peripheral membrane proteins

do indeed tend to have hydrophobes on co-insertable protrusions to a significantly larger

extent than what would be expected from randomly scattering hydrophobes among protrud-

ing positions. This tendency is much lower for the ‘Non-binding surfaces’ even when consider-

ing the extremities of the error bars, which are wide precisely because there are very few

protruding hydrophobes in this set. In the ‘Reference Proteins’ the analysis indicates that co-

insertability is more common than in the null model, but far less so than in the Peripheral

proteins.

We further explore the degree of co-insertability of the hydrophobic protrusions present

in our datasets. We seek to evaluate to what extent co-insertable hydrophobic protrusions can

be used to discriminate likely peripheral membrane binders from other proteins. Fig 5 shows

the fraction of proteins in each dataset that have at least one pair of co-insertable hydrophobic

protrusions (labelled ‘Co-ins.’) and the fraction of proteins that have at least one isolated

hydrophobic protrusion (i.e. a protrusion that does not satisfy the criteria that define ‘co-

insertability’). While we do see some discrimination between the data sets in the case of iso-

lated protruding hydrophobes, the co-insertable ones prove to be very strong indicators of

which proteins surfaces are membrane binding. As the coincidental occurrence of such

Fig 3. On peripheral proteins (‘Peripheral’ dataset) protrusions in low density regions are more often

hydrophobes compared to the ‘Non-binding surfaces’. The plot shows the logarithm of the odds-ratio (Eq 10)

comparing the frequency of hydrophobes on ‘vertex residues’ in peripheral proteins and non-binding surfaces. Positive

values reflect higher frequencies in the peripheral proteins. The horizontal axis shows the protein density d around the

protrusion, measured as the number of Cα and Cβ atoms within 1nm. Vertex residues are all on the convex hull, but

only the vertex residues with d< 22 are protrusions. The leftmost bar with d< 7 corresponds mostly to chain

terminals. More precisely, the vertical axis shows RðA;B; F̂ hydrophobejvertex\l<d�uÞ where A denotes the dataset ‘Peripheral’,

B the ‘Non-binding surfaces’, l and u denote the lower and upper limits of the ranges given on the vertical axis, and d is

the local protein density defined in ‘Materials and methods’. Error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006325.g003
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properties increase with the size of the protein surface, we have grouped the proteins by total

number of surface protrusions (regardless of hydropathic properties). We do however see

no appreciable difference between the proteins of size 0–25 and those of size 25–50. We con-

sider the fraction in the reference sets to be a reasonable estimate of a false positive rate for

Fig 4. The ‘protruding hydrophobes’ tend to be ‘co-insertable’ in peripheral proteins. Panel A shows the

comparison between the data sets ‘Peripheral’ and ‘Non-binding surfaces’, and B the comparison between the

‘Peripheral-P’ and ‘Reference Proteins’. The tendency for protrusions to be co-insertable is quantified by the weighted

frequency of co-insertion (Eq 9), and is compared between each data set and a null model using the odds ratio

(Eq 10). Positive values reflect higher frequencies of co-insertion than in the null model. More precisely we plot

Rðset; null; F̂ pair
one;bothÞ where set represents the set of peripheral proteins (blue) and the corresponding reference set (red),

and null represent their respective null models where hydrophobes have been relocated randomly among protrusions

as described in ‘Materials and methods’. Error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006325.g004

Fig 5. ’Co-insertable protruding hydrophobes’ are common in peripheral proteins and rare in the reference sets. The plots show the

occurrence of ‘co-insertable protruding hydrophobes’ on protein surfaces. Panels A-C show the comparison between the sets ‘Peripheral’

and ‘Non-binding surfaces’ and panels D-F the comparison between ‘Peripheral-P’ and ‘Reference Proteins’. Panels A, B, D, and E show

the weighted fraction (Eq 5) of proteins that have protruding hydrophobes in the peripheral proteins (blue) and the reference sets (red).

We differentiate here between protrusions that have at least one co-insertable protruding hydrophobe (labeled “Co-ins.”), and those that

have not (labeled “isolated”). The analysis is done separately for two groups of proteins according to the total number of protrusions on

the protein surface ([0, 25i in panels A and D, [25, 50i in panels B and E). Panels C and F show the frequency distribution of the total

number of protruding residues (“# protrusions”) for all proteins. The selections analysed in panels A, B, D, and E are found between the

dashed lines in panels C and F. Error bars in panels A, B, D, and E are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006325.g005
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predicting membrane binding function based on the presence of co-instertable protruding

hydrophobes. The reference proteins (Fig 5D–5F), indicate a false positive rate in the range of

20%–30%. The lack of membrane interaction is not asserted for this set, and we do expect it to

contain some proteins with undetected or unclassified membrane binding. The false positive

rate is around 12% for the non-binding surfaces (Fig 5A–5C) but with a smaller sample size

this estimate comes with somewhat higher error bars. Around 64% and 75% of the peripheral

membrane proteins in the respective size-groups have co-insertable protruding hydrophobes.

In line with the previous analyses (Figs 2 and 4) the predictive power is somewhat weaker for

the ‘Peripheral-P’ dataset compared to ‘Peripheral’. We interpret this as a dependence on qua-

ternary-structure modeling, which is corroborated by a dedicated analysis presented in the

Material and methods section (Fig 11). We consider the manually curated oligomeric states to

be more reliable and therefore expect the peripheral proteins presented in Fig 5A–5C (Periph-
eral dataset) to better represent actual proteins. In order to evaluate how common co-inserta-

ble protruding hydrophobes are as membrane-interacting motifs we will assume the rate of

occurrence in the set ‘Peripheral’, and conservatively assume a frequency of occurrence on

non-membrane interacting sites around 20%. This is consistent with both extremes of the

95%-confidence intervals in the non-binding surfaces (Fig 5A–5C) and the estimate from the

reference proteins (Fig 5D–5F). Even when considering that as much as 20% of co-insertable

protruding hydrophobes might not be membrane interacting we still expect a rough estimate

of around half of the analysed membrane binders to have this motif at their membrane-inter-

acting sites.

Protruding hydrophobes vs. experimentally verified membrane-binding

sites

The analysis presented in Figs 3 and 5 suggests that the concepts of protruding hydrophobes

and co-insertability can be used to identify membrane binding residues. Based on these results

we seek to define a predictor of membrane binding sites. We define ‘the Likely Inserted

Hydrophobe’ as the protruding hydrophobe with the highest number of co-insertable protrud-

ing hydrophobes and lowest local protein density, as defined in ‘Materials and methods’. Fig 6

illustrates that this simple definition is able to identify binding sites on modular membrane-

binding domains: C1, C2, PX, ENTH, PLA2 and FYVE. For most of these cases, the Likely

Inserted Hydrophobe has in fact been experimentally indicated to contribute to membrane

binding. For the other examples, it is clearly positioned close to the experimentally identified

binding site. A more quantitative comparison between predicted and verified membrane inter-

acting residues is complicated by the sparsity of negative assertions from either methods.

Experiments aiming at identifying membrane-binding sites will usually only target some of the

amino acids suspected to belong to the membrane binding residues, and usually not conclude

on other amino acids. To the extent non-binding amino-acids are investigated or revealed by

the mutation of putative membrane binding residues, interpretation of results in this context

is also less straightforward as the absence of interaction of an amino-acid with the membrane

does not strictly preclude it from being located close to a binding site. Similarly the Likely

Inserted Hydrophobe is by definition only one residue and provides no negative prediction of

which amino acids do not bind the membrane. We can however make a rough, but well

defined, comparison by computing the angle between the vectors connecting the protein cen-

ter with respectively the mean position of the membrane interacting residues identified in

experiments (tIe), and the Likely Inserted Hydrophobe (tIp , See Eq 11). While this comparison

does not provide a quantitative evaluation of whether experimentally determined IBS and pre-

dicted residues match exactly, it allows us to separate proteins where the predicted and verified

Hydrophobic protrusions on peripheral proteins
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residues are “on the same side” of the protein (fftIetIp < 90�) from those where they are not.

We show on Fig 7 such a comparison for proteins whose binding sites are experimentally

determined. This is a coarse approximation to the protein orientation, which is sensitive to

both protein shape, the selection of residues included in the partial biding sites, and any differ-

ence in backbone conformation between bound and unbound protein. Even so, we do expect

that wrong binding site predictions should provide angles in the entire range from 0˚ to 180˚

with roughly uniform probability. But, we observe that almost all angles are sharper than 90˚,

indicating a reasonable agreement with experimental data. We also observe a similar range of

angles for cases where the membrane interaction of the Likely Inserted Hydrophobe has been

experimentally verified (marked with asterisks (�) in Fig 7) and the cases where it has not. We

would like to emphasise at this point that the Likely Inserted Hydrophobes that are not yet

found to be membrane interacting might very well never have been tested. We also calculated

all angles between the set of experimentally identified residues and protruding amino acids of

Fig 6. Protruding hydrophobes are found on the membrane binding sites of well known membrane binding domains.

The figure shows the convex hull (in blue) of the Cα and Cβ-atoms of selected peripheral membrane binding domains. The

Cβ-atoms of ‘the Likely Inserted Hydrophobe’ are shown as orange spheres and Cβ-atoms of experimentally identified

membrane-binding residues as gray spheres. The Likely Inserted Hydrophobe is an amino acid that has been experimentally

verified to be a membrane binding residue for A, B, D and F. For C and E the Likely Inserted Hydrophobe is located in the

same area as the residues identified by experiments. A: C2 domain of human phospholipase A2 (PDBID: 1RLW [18]); B: PX

domain of P40PHOX (PDBID: 1H6H [19]); C: snake phospholipase A2 (PDBID: 1POA [20]); D: C1 domain of protein

kinase C δ (PDBID: 1PTR [21]); E: Epsin ENTH domain (PDBID: 1H0A [14]); F: FYVE domain of yeast vacuolar protein

sorting-associated protein 27 (PDBID: 1VFY [22]).

https://doi.org/10.1371/journal.pcbi.1006325.g006
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all kinds. These results are displayed as box-plots in Fig 7. While they vary a bit between fami-

lies we note that all medians are close to 90˚, confirming that the statistical expectation for pro-

trusions in general is to have roughly equally many observations larger than and smaller than

90˚. Interestingly, the Bovine α-lactalbumin, for which we find no protruding hydrophobes, is

analysed in its crystallised form while it is known to bind membranes in a molten globule state

[23].

We provide as Supporting Information the complete list of amino acids experimentally

identified as being part of membrane binding sites (Table B in S1 Text). It overlaps with the

list provided by Lomize et al. [11], but sometimes differ in exactly which amino acids are

included, as we include indicated membrane interacting residues even when they are not

inserted in the hydrophobic core of the membrane.

Protruding hydrophobes on predicted membrane binding sites

The continuum-model presented by Lomize et al. [24] forms the basis for a systematic effort to

predict binding orientations for peripheral membrane proteins. The OPM database [25] pro-

vides prediction of spatial arrangements of membrane proteins with respect to the lipid bilayer

for a selection of peripheral membrane proteins. We here investigate to what extent protruding

hydrophobes are captured by the model proposed by Lomize et al.We identify The Likely

Inserted Hydrophobe for each of the proteins in our dataset and extract the OPM predicted

insertion coordinate of its Cα-atom. The ‘insertion coordinate’ of an atom measures its depth

of insertion into the hydrocarbon region of the membrane model and is thus positive for

atoms located in the hydrocarbon core and negative for atoms located on either side of the

membrane including the interfacial region (Cf. ‘Materials and methods’). Fig 8 shows

Fig 7. Protruding hydrophobes predict experimentally verified binding sites. The figure shows comparisons of

predicted binding residues (‘the Likely Inserted Hydrophobe’) with experimentally verified binding sites for a

manually curated dataset of 24 proteins (listed in S2 Table). The vertical axis corresponds to values of the angle (Eq 11)

comparing the two vectors connecting the center of the protein with either the predicted or known binding sites.

Smaller angles imply better agreement between prediction and experiment. Asterisks (�) mark proteins where the

Likely Inserted Hydrophobe is an amino acid experimentally identified to be interacting with the membrane. The grey

boxplots show the distribution of angles when the known binding site residues are compared to all protruding amino

acids on the protein. 1iaz is analysed in its soluble monomeric state, while it forms a transmembrane pore upon

oligomerisation. The structure of the Bovine α-lactalbumin (PDBID: 1F6S) has no identified protruding hydrophobes

and is marked with a cross at 180˚.

https://doi.org/10.1371/journal.pcbi.1006325.g007
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histograms of the median insertion coordinate of the Likely Inserted Hydrophobes identified

in each family. A clear majority of those residues are located close to the interface of the mem-

brane model in the OPM-predictions (Fig 8A) and 75% of the families in the set of peripheral

membrane proteins have the median insertion coordinate for the Likely Inserted Hydrophobe

within a margin of 0.5 nm from the membrane. This fraction is similar to the estimated frac-

tion of proteins that have co-insertable protruding hydrophobes (Fig 5A and 5B). We allow

this margin of 0.5 nm to compensate for the assumptions of rigid protein, flat membrane, and

the distance between Cα-atoms and side-chain atoms. Fractions for other margins can be read

from the cumulative histogram shown in Fig 8C. By representing position with the insertion

coordinate we effectively project residue coordinates onto the membrane normal. We there-

fore do not expect surface amino acids to be uniformly distributed along the insertion coordi-

nate axis and present control statistics for randomly chosen protruding amino acids of all

hydropathic properties (Fig 8B and 8D). It appears clearly that the high number of Likely

Inserted Hydrophobes close to the membrane model is not an effect of having more protein at

that location.

Structure and amino acid composition at hydrophobic protrusions

The analysis presented in Fig 3 indicates that the ability to discriminate the data sets based on

the frequency of hydrophobes on protrusions gets lower as the local protein density gets

Fig 8. Comparing predictions based on protruding hydrophobes with the predicted IBS in the Orientation of

Proteins in Membranes (OPM) database. The plots show the distributions of the median ‘insertion coordinate’ from

OPM for ‘the Likely Inserted Hydrophobe’ in each family (measured at the Cα-atom, ‘Peripheral’ dataset). Values

greater than or equal to zero correspond to atoms positioned in the hydrophobic core or at the boundary. Hence

insertion coordinate values close to zero indicate agreement with OPM. Panels A and C show data for the Likely

Inserted Hydrophobes and panels B and D for a null model of randomly selected ‘protruding’ residues. Panels C and D

show cumulative histograms (accumulated with decreasing insertion coordinate).

https://doi.org/10.1371/journal.pcbi.1006325.g008
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higher. Local protein density of a protrusion is dependent on secondary structure elements

with loops, turns and bends being those that intuitively favor low local protein density. These

secondary structures typically mark a clear change in direction of the backbone trace, where

the neighbouring residues ‘make way’ for the protruding hydrophobe. Fig 9A shows which

secondary structure elements the protruding hydrophobes are associated with in the set of

peripheral proteins. We note that loops, turns and bends are indeed abundant but so are also

helices and not beta-strands. Fig 9B shows a comparison with the reference data set (‘Non-

binding surfaces’). We see that protruding hydrophobes on turns and bends are not only com-

mon in the peripheral membrane proteins as we saw in Fig 9A, but that they are also signifi-

cantly more frequent than in the reference set. Interestingly, this is not the case for loops.

Turns and bends are by definition structural elements with restricted flexibility [26] compared

to loops, which are here defined as the absence of any of the other secondary structure defini-

tions (equivalent to ‘coil’). We expect the latter category to contain less regular, more flexible

structures. We speculate that turns and bends provide rigid scaffolds for exposing hydrophobic

Fig 9. Hydrophobic protrusions in peripheral proteins are more frequent on turns, bends and α-helices,

compared to the reference set (‘Non-binding surfaces’). Panel A shows the weighted number(Eq 2) of ‘protruding

hydrophobes’ associated with the different types of secondary structure elements. We have differentiated between

protrusions that have at least one co-insertable protruding hydrophobe (right, labeled “Co-ins.”), and those that have

not (left, labeled “Isolated”). Panel B compares the weighted frequencies (Eq 4) of hydrophobes on protruding

secondary structures between the peripheral membrane proteins and the reference set using the odds ratio (Eq 10).

Positive values reflect higher frequencies in the peripheral proteins; panel A shows the valuesNhydrophobe|protrusion\sse

and panel B the comparisons RðA;B; F̂ hydrophobejprotrusion\sseÞ where A denotes the peripheral proteins, B the reference set

and sse specifies the secondary structure (see color legend). Error bars in panel B are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006325.g009
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side chains, which might otherwise rearrange to desolvate when exposed to solvent. We also

expect a similar property of rigid scaffolding from amphipathic helices, which is an established

motif for membrane association. Fig 9 illustrates however that protrusions are not dominantly

helices, confirming that the concept of protruding hydrophobes provides a useful generalisa-

tion for the shapes of membrane-binding sites.

For purposes of isolating the structural component of hydrophobic membrane association

we have until now used a dichotomous definition of hydrophobicity based on signs of free

energy of transfer determined by Wimley and White [27] (leucine, isoleucine, phenylalanine,

tyrosine, tryptophan, cysteine and methionine have been considered to be hydrophobic). Yet,

we do expect different amino acids to have varying contributions to the free energy of binding.

We have therefore also assessed the relative importance of different amino acids for discrimi-

nating between our sets. Fig 10B shows the comparison of the frequencies of different hydro-

phobic amino acids on protrusions in the set ‘Peripheral’ and the set ‘Non-binding surfaces’.

Analysis of the other two sets can be found as Supporting Information (S1 Text). As expected

Fig 10. Large aliphatic and aromatic side chains are over-represented on protrusion on peripheral proteins. Panel

A shows the weighted fractions (Eq 4) of hydrophobic amino acids on protrusions from peripheral proteins (blue) and

from proteins in the reference set (red, ‘Non-binding surfaces’). In panel B, the contrast between the two sets is

quantified by the odds ratio (Eq 10), so that positive values reflect higher frequencies in the set of peripheral proteins

than in the reference set. More precisely the vertical axis denote ln Rðperipheral; reference; F̂ aa;protrusionÞ with aa
representing each of the standard amino acids. Error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006325.g010
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we find non-polar residues with large aliphatic or aromatic side chains to be much more fre-

quent at the protrusions of peripheral proteins than on the non-binding surfaces. While the

error bars in Fig 10B are not corrected for multiple testing, the signal for the hydrophobes as a

group is quite clear. They all occur as over-represented in the set ‘Peripheral’ and the odds-

ratio is much larger for phenylalanine, leucine and tryptophan than for any of the amino-acids

that are over-represented in the set ‘Non-binding surfaces’. Analysis of the other two sets can

be found as Supporting Information (S1 Text). Recall that ln R (Eq 10) is symmetric around 0,

so the magnitude of the bar representing phenylalanine on one end, can be directly compared

to that of the bar representing threonine in the negative direction. Tyrosine on the other hand

discriminates the sets poorly compared to its high hydrophobicity score in the Wimley-White

scale. We consider this a possible consequence of the orientational restrictions on the binding

sites of peripheral membrane proteins. The typical orientations consistent with shallow bind-

ing has the residue anchored above the membrane. This probably allows less freedom for the

polar hydroxyl group of tyrosine to orient towards regions of higher water density, than it has

in the peptides used for the Wimley-White experiments or in transmembrane proteins. We

also note with interest that proline is among the residues that are somewhat over-represented

in the set of peripheral proteins. In general prolines are conformationally important protein

components that restricts the backbone with respect to its immediate neighbours along the

peptide chain. They are therefore likely to promote local rigidity. They also serve to induce

sharp changes in the backbone direction. We speculate that this would facilitate solvent expo-

sure of neighbouring side-chains as discussed above. Specifically they are in general frequently

found on turns [28].

Comments on the protein model

The convex hull representation presents a useful abstraction of proteins for investigating sur-

face properties of approximately rigid protein conformers interacting shallowly with an

approximately flat membrane. The model enables statistical analysis of protein structures,

which is prohibited by high-resolution models where model parameters and quality controls

typically have to be made subjectively for individual protein-membrane systems. We have

employed this abstraction specifically to quantify and understand aspects of hydrophobes in

peripheral membrane binding. In order to isolate components contributing to membrane

binding we have purposefully avoided complicating the interpretation with other known

important factors such as electrostatics, conformational flexibility and even relative hydro-

phobicity. For the purpose of understanding the balance and complementarity between dif-

ferent contributions to membrane-binding and making more generic models it will be

necessary to take these other factors into account in ways that allows decomposition of their

contribution. In the framework of a non-energetic structural analysis as the one we present

in this manuscript, it is natural to do that in terms of comparing presence -or absence- and

location of predicted binding sites between protein models. Particularly, models of electro-

static binding are well developed and readily applicable to surface representations of rigid

protein conformers. While complex energetic models or machine learning approaches can be

expected to yield high performance in predicting membrane-binding properties of proteins,

the kind of model presented here provides a clear interpretation of the resulting prediction

(membrane-binding or not) and mechanistic information. This connection to expert knowl-

edge is invaluable for interpreting automated classifications where the models can not be

reliably parameterised against negative data, that is definitely non-binding proteins. The

combined use of various binding-site indicators based on different generic binding models

such as hydrophobic and electrostatic models can provide a much improved performance in
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such prediction while maintaining interpretability. Such an approach would also be useful

for inference or interpretation of protein specificity towards particular lipid compositions of

the interacting membrane.

Conclusion

Protein-membrane interactions are typically studied in vitro or in silico and inference to their

biological context have to carry over from greatly simplified membrane models. To make

sense of such experiments and simulations, it is essential to formulate general models that

explain protein association in terms of factors that are present in both model systems and the

relevant in vivo counterpart. In pursuit of such general models for membrane recognition,

we have formulated the concepts of protruding hydrophobes and co-insertability. We have

analysed more than 300 families of proteins that are classified as peripheral membrane bind-

ers and identified this model to be a good fit for at least half of them, after cautiously correct-

ing for conservative false positive rates estimated from the reference sets (Fig 5). The

generality of the model is corroborated by three important points. Hydrophobes are clearly

over-represented on the protrusions of peripheral membrane proteins (compare Fig 2A and

2C, and see Fig 3), they tend to locate on co-insertable protrusions (see Figs 4 and 5), and

protruding hydrophobes are generally positioned consistently with experimentally identified

binding sites (Figs 6 and 7). Amphipathic helices are already well known membrane binding

motifs which our definition of protrusion is well suited to capture, whenever these are stably

folded and exposed. We do however find that the majority of identified protruding hydro-

phobes are not helices (Fig 9A) and that hydrophobes are also highly over-represented on

protruding turns and bends (Fig 9B). We therefore propose the concept of protruding hydro-

phobes as a useful generalisation upon binding motifs that are identified in terms of second-

ary structure.

Investigation of the interfacial binding sites of numerous peripheral membrane proteins

has revealed the presence of hydrophobic amino acids and of basic amino acids such as argi-

nines and lysines. This reflects the two universal traits of biological membranes; their hydro-

phobic core and anionic surface. Yet the focus on the electrostatic component of the free

energy of transfer from water to membrane—often referred to as being long-range—has over-

shadowed the importance of hydrophobic contribution which is sometimes referred to as

being short-range. The focus on electrostatic interaction is at least in part to be attributed to

the difficulties in evaluating the hydrophobic contribution as opposed to for example, the

computational tractability of continuum electrostatic models. In principle the contribution of

hydrophobes to membrane binding can only be determined with a rigorous treatment of the

hydrophobic effect, which requires very accurate treatment of large systems involving both

protein, membrane and solvent. The mere presence of hydrophobes on the protein surface is

to a large extent tolerated by non-membrane-binding proteins as well. For both hydrophobes

and basic amino acids, it is challenging to determine when their presence on protein surfaces

are coincidental, and when they are important for membrane binding. Moreover, amino acids

on membrane binding sites are not typically strongly conserved [29] so modeling their generic

binding modes is important both for relating binding sites between homologs and for under-

standing how additional factors determine differences in membrane specificities. Fortunately,

as evident from the results presented in this contribution, the role of hydrophobes can often be

understood in much simpler terms than what is required for an exact estimate of the energetics

of the hydrophobic effect and their importance for membrane-binding can be inferred from

comparative statistical analyses. The subtle considerations of protein structure encoded in our

definition of protrusions, strongly distinguishes the small hydrophobic patches on peripheral
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membrane proteins from those on other protein surfaces. This provides reliable evidence to

assume their importance for binding.

Materials and methods

Data sets

We have compiled four data sets, two versions of a set of peripheral proteins, and two different

reference sets:

• ‘Peripheral’: A set of peripheral membrane binders obtained from the OPM-database [25]

using the OPM quaternary structure models.

• ‘Peripheral-P’: A subset of ‘Peripheral’ where no protein overlap in terms of their SCOPe-

family classification [30] and with quaternary structure predicted by PISA [31].

• ‘Non-binding surfaces’: A set of protein surfaces obtained from the solvent exposed regions

of transmembrane proteins.

• ‘Reference Proteins’: A non-redundant set of proteins from 5 SCOPe-classes obeying the fol-

lowing conditions: (1) none of these proteins have a domain represented in OPM and (2)

none of the proteins in the dataset have domains belonging to the same SCOPe-family (the

same restriction as for ‘Peripheral-P’).

In our analysis ‘Peripheral’ is always compared to ‘Non-binding surfaces’, and ‘Peripheral-P’

to ‘Reference Proteins’.

‘Peripheral’ are all the proteins in OPM classified as type ‘Monotopic/peripheral’. While the

OPM has strict criteria for inclusion, membrane binding is not asserted by experiment in all

cases and the set might contain false positives. This data set is provided as Supporting Informa-

tion (S1 Dataset).

The set ‘Non-binding surfaces’ consists of fragments of transmembrane complexes. We

obtained these protein fragments from all proteins classified as type ‘Transmembrane’ in

OPM. The fragments analysed are composed of all amino acids whose Cα-coordinates are at

least 1.5 nm from the hydrocarbon region of the membrane model (parameter ZHDC in the

OPM model [32]). We rely here on membrane models positioned by the OPM, which we

deem reliable for transmembrane proteins. While the entire protein complex was considered

when calculating structural properties, only the fragments meeting this distance criteria were

considered in the statistical analyses. When these proteins interact with secondary membranes

or interact with membranes of extremely high curvature, it is not captured by the OPM model

and the assumption that these surfaces are not interacting with membrane may be violated.

We have assumed that such issues are exceptional. This data set is provided as Supporting

Information (S2 Dataset).

We do consider the assumptions mentioned above to be conservative. Inclusion of non-

membrane-binding proteins in our set of peripheral membrane proteins would likely weaken

any general signal from membrane binding proteins and inclusion of secondary membrane

interactions sites in the reference set would probably inflate the number of hydrophobes on

protrusions in that set.

All protein structures in these two sets are obtained by X-ray crystallography and NMR

spectroscopy and we have assumed that at least the backbone coordinates are representative of

the solvated state of the proteins. As the source of structural information for this database is

the Protein Data Bank (PDB) [33] the relevant oligomeric state is not always determined. The

curators of the OPM-database have decided on oligomer models, upon which we have relied
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for the sets ‘Peripheral’ and ‘Non-binding surfaces’. These are taken from PDBe [34] and gen-

erated by PISA [31] or obtained from literature as described by Lomize et al. [25].

Even if the solvent exposed regions of the proteins in the set ‘Non-binding surfaces’ are

extracted after relevant properties for potential membrane interaction was calculated, we can-

not exclude totally that the surface constructed reflect artifacts of the extraction of fragments

from complete protein models. In addition we expect our analysis to be sensitive to quaternary

structure modeling as oligomeric protein-protein interfaces may also contain exposed hydro-

phobic patches [35, 36]. As a quality control we therefore also performed an analysis ourselves

relying solely on computationally predicted quaternary structures and complete protein struc-

tures. This is achieved by the comparison of ‘Peripheral-P’ and ‘Reference Proteins’.

The set ‘Reference Proteins’ is constructed from SCOPe [30] and is a subset of all PDB IDs

determined by X-ray crystallography, with at least a domain classified in SCOPe [30] in the

classes ‘All alpha proteins’ (sunid: 46456), ‘All beta proteins’ (sunid: 48724), ‘Alpha and beta

proteins (a+b)’ (sunid: 51349), ‘Alpha and beta proteins (a/b)’ (sunid: 53931) or ‘Multi domain

proteins’ (sunid: 56572). The exclusion of structures not determined by X-ray crystallography

ensures the consistency of quaternary structure predictions. All PDB IDs that have one or

more domains classified in the same SCOPe-family as any domain in the OPM-database [25]

were excluded from the set. This excludes not only the peripheral membrane binders, but also

any transmembrane protein found in the reference set used for our primary analysis. In order

to avoid redundancy, we iteratively removed proteins with domains that share SCOPe-family

classification with any other domain in the set, until there were no such shared classifications

left. This process ensures that there is at most one representative for each SCOPe family in the

set. We generated quaternary structure models using PISA [31] for all members of this set.

While this data set consists of more complete protein surfaces than the dataset of ‘Non-binding

surfaces’, it is intended to be a reference for typical protein surfaces and we do expect it to be a

mix of both membrane interacting and non-interacting proteins. This data set is provided as

Supporting Information (S4 Dataset).

The set ‘Peripheral-P’ was derived from ‘Peripheral’ for comparability with ‘Reference Pro-

teins’. All structures not determined by X-ray crystallography were excluded and proteins with

domains that share SCOPe-family classification with any other domain in the set were itera-

tively removed to avoid redundancy. Quaternary structure models were predicted using PISA.

This data set is provided as Supporting Information (S3 Dataset).

A few structures meeting the criteria above were not included in the analysis for technical

reasons including issues with formats of PDB files. After exclusion of these cases the final

‘Peripheral’ dataset contains 1012 protein structures classified into 326 families. The final set

of ‘Non-binding surfaces’ contains 495 protein structures classified into 158 families. The final

set of ‘Peripheral-P’ binders contained 170 proteins (or families) and the set ‘Reference Pro-

teins’ contained 2250 proteins (or 2250 families).

The two sets of peripheral proteins are both derived from OPM but ‘Peripheral-P’ is orga-

nized in a different classification than ‘Peripheral’ and retains fewer structures. In addition

their quaternary structures, which are not completely determined by X-ray crystallography,

are modeled differently. In Fig 11, we illustrate this difference in quarternary structure by

showing the difference in the number of polypeptide chains present in the models belonging

to each of the two sets.

Based on experiments reported in available literature [12, 23, 37, 38, 38–41, 41, 42, 42–70],

we built a dataset of partially identified membrane binding sites on proteins with resolved

structures. This set contains membrane interacting residues of 34 protein structures classified

into 22 families. A detailed description is provided in the Supporting Information (Table B in

S1 Text).
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Definitions

Structural characteristics of protein surfaces. We characterise the surface of proteins

with different criteria designed to capture solvent ‘exposed’ residues, ‘protruding’ residues and

‘co-insertable’ protruding residues. The two latter are illustrated in Fig 1.

‘Exposed’ amino acids are defined as all amino acids that have a solvent accessible side-

chain area greater than 0.2 nm2, as calculated with a probe with a radius of 0.14 nm, following

the procedure described in Eisenhaber et al. [71] using van der Waals radi reported by Bondi

[72].

We identify a ‘protrusion’ or a ‘protruding residue’ via the calculation of the convex hull of

the Cα- and Cβ-coordinates of the protein. The convex hull of a set of points S is the smallest

possible convex set containing S. We define ‘vertex residues’ as residues whose Cβ-atom is a

vertex of this convex hull. A ‘protrusion’ or a ‘protruding’ residue, is defined as a ‘vertex resi-

due’ that also has low local protein density. For the purposes of this work, we will define the

local protein density d of a residue, as the number of Cα- or Cβ-atoms within a distance c of its

Cβ-atom. We will designate a local protein density as low, if d< n, with n = 22 and c = 1 nm.

These parameters were manually chosen based on a set of six different families of peripheral

membrane proteins (C2-domain, PX-domain, Discodin domain, ENTH domain, Lipoxy-

genases and a Bacterial Phospholipase C). A list of these proteins are provided as Supporting

Information (Table A in S1 Text).

We define two protrusions to be ‘co-insertable’ or a ‘co-insertable pair’, if the straight line

connecting them is an edge of the convex hull polygon.

Fig 11. Differences in number of polypeptide chains between the protein models present in the dataset

‘Peripheral’ (quaternary structure model from OPM) and the models in ‘Peripheral-P’ (quaternary structure

model predicted by PISA). The difference is calculated for each of the PDB IDs occurring in both datasets. When

more chains are present in the PISA models, The difference (horizontal axis) is negative.

https://doi.org/10.1371/journal.pcbi.1006325.g011
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Hydrophobic residues. An amino acid is defined to be ‘hydrophobic’, or a ‘hydrophobe’,

if it contributes favourably to membrane interface partitioning of peptides, as determined in

the Wimley-White scale for interfacial insertion [27]. These amino acids are: leucine, isoleu-

cine, phenylalanine, tyrosine, tryptophan, cysteine and methionine.

Secondary structure. We use DSSP definitions [73] for protein secondary structure.

DSSP codes H, G or I are reported as ‘helix’, DSSP codes B or E as β, DSSP code T as ‘bend’

and DSSP code S as ‘turn’. All other residues are considered to be in ‘loops’.

Likely Inserted Hydrophobe. The ‘Likely Inserted Hydrophobe’ is defined as the pro-

truding hydrophobe with the largest number of co-insertable protruding hydrophobes in a

protein. Ties are resolved by choosing the likely inserted hydrophobe with the smallest local

protein density d. Further ties are resolved by random selection, so that each protein has

exactly one Likely Inserted Hydrophobe, unless it has no protruding hydrophobes at all.

Insertion coordinate. For comparisons with OPM predictions, we define the ‘insertion

coordinate’ of atoms. This coordinate measures how deeply into the OPM membrane model

an atom is inserted, and is therefore negative on the solvated side of the membrane. The

membrane perimeter, where the insertion coordinate is 0, is the end of the hydrocarbon

region. We identify this boundary as it is done in the model used to predict the OPM orienta-

tions, namely the planes where the volume fraction of total hydrocarbon is equal to 0.5. See

Eq 2 in [32].

Measures

Averages of residues. We compare protein surfaces with respect to structural and hydro-

pathic properties, reflected in different selection criteria and averaged over families or the

entire data sets.

The mean fraction of residues having property s with respect to a reference property r in a

family is:

f̂ sjr ¼
1

jCj

X

G2C

jGs \ Grj
jGrj

ð1Þ

where C is the set of proteins in a family, G is a protein, and, Gs is the set of residues on a

protein meeting criteria s. Vertical bars denote size of sets. We will specify s and r according

to the definitions above, using intersect notation to combine criteria when necessary.

f̂ hydrophobejprotrusion\helix, for instance, should be interpreted as the mean fraction of hydrophobes

out of all protruding amino acids that are in helices.

We estimate weighted data set counts of amino acids with property s as:

N̂ s ¼
X

C2D

1

jCj

X

G2C

jGsj

 !

ð2Þ

where D is a data set, such as the set of peripheral proteins or the reference set. Similarly we

quantify the weighted count of proteins that have at least one amino acid with property s as:

M̂s ¼
X

C2D

1

jCj

X

G2C

HðjGsjÞ

 !

ð3Þ

where H is the Heaviside step function. Given a property s and reference property r, we
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estimate the weighted fraction in a data set, F̂ sjr:

F̂ sjr ¼
N̂ s\r

N̂ r

ð4Þ

or the weighted fraction of proteins that have at least one residue with the given property s:

Ês ¼
M̂s

jDj
ð5Þ

With |D| being the number of families in the data set. When such fractions (Eqs 4 or 5) are

reported, we estimate 95%-confidence intervals using a normal approximation to the binomial

distribution, with |D| the total number of trials (Eq 5), or N̂ r serving as a real-number analog

to the total number of trials (Eq 4).

Averages of co-insertable pairs. To analyse co-insertable residues, we estimate weighted

data set counts of co-insertable pairs of residues with property s, as:

N̂ pair
s ¼

X

C2D

1

jCj

X

G2C

jGpair
s j

 !

ð6Þ

where jGpair
s j are the number of co-insertable amino acids pairs with property s. For quantifica-

tion of the weighted count of proteins that have at least one co-insertable pair with property s,
we calculate:

M̂pair
s ¼

X

C2D

1

jCj

X

G2C

HðjGpair
s jÞ

 !

ð7Þ

Considering the set of co-insertable amino acid pairs in a protein, Gpair, we will denote the set

of pairs where at least one of the amino acids is a protruding hydrophobe as Gpair
one , and the set

where both are protruding hydrophobes as Gpair
both. We will report the weighted fraction of pro-

teins that have co-insertable protruding hydrophobes as:

Êpair
both ¼

M̂pair
both

jDj
ð8Þ

and the weighted frequency of co-insertion of protruding hydrophobes as:

F̂pair
bothjone ¼

N̂ pair
both

N̂ pair
one

ð9Þ

Note that F̂ pair
bothjone estimates the conditional probability that both amino acids of a co-insertable

pair are protruding hydrophobes, given that one of them is. The tendency for protruding

hydrophobes to be located at co-insertable positions can then be quantified by comparing with

a null model for each set. We obtain these null models by randomly reassigning the hydropho-

bic amino acids to other protruding locations in the same protein.

Comparison between data sets. The frequency of properties in different data sets, are

compared via weighted fractions. For two data sets, A and B, we compare a certain weighted

fraction F̂ using the odds ratio, RðA;B; F̂Þ:

RðA;B; F̂Þ ¼
F̂Að1 � F̂BÞ
F̂ Bð1 � F̂AÞ

ð10Þ
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where F̂A denotes the fraction F̂ sjr obtained for data set A. We will report ln R, which is sym-

metric around 0, so that ln RðA;B; F̂Þ ¼ � ln RðB;A; F̂Þ. Wald 95%-confidence intervals for

ln R are calculated with N̂ s\r and ðN̂ r � N̂ s\rÞ serving as real number analogs for the count of

successes and failures in the data sets compared. When F̂ pair
bothjone is compared, the corresponding

counts of successes and failures are N̂ pair
both and N̂ pair

both � N̂ pair
one , respectively.

Comparison of experimentally verified and predicted binding sites. We define two vec-

tors which we then compare to evaluate the distance between experimentally verified and pre-

dicted membrane binding residues. The Cα-coordinate of experimentally verified membrane

binding residues functions as a proxy for the membrane, and the vector defined by the latter

residues and the center of mass (COM) of the protein is used as a reference to which we com-

pare the vector defined by the protein COM and the Likely Inserted Hydrophobe. Given a set

of identified or predicted membrane interacting residues, I, we compute the vector, tI:

tI ¼
1

jIj

X

a2I

Va �
1

jG�j

X

a2G�

Va ð11Þ

where Va denotes the Cα-coordinates of residue a, and G� is the set of all residues in the pro-

tein. We will denote vectors obtained for experimentally identified membrane binding resi-

dues as tIe , and those obtained for a Likely Inserted Hydrophobe as tIp . We then measure the

angle fftIetIp between the two vectors for each protein in the dataset of known binding sites.

Implementation

The solvent accessible area was calculated with MMTK [74] (version 2.9.0), and the convex

hull was calculated with Qhull [75] via scipy [76] (version 0.13.3). Proportion test confidence

intervals were calculated with R [77] (Version 2.12.0), odds ratios and corresponding confi-

dence intervals were calculated with the R-package epitools [78] (version 0.5-6). Secondary

structure annotations were computed with the CMBI DSSP implementation [79] (version

2.0.4). For construction of the set ‘Peripheral-P’ and ‘Reference Proteins’ SCOPe version 2.06

was used. PISA predictions were obtained through the “Protein interfaces, surfaces and assem-

blies” service PISA at the European Bioinformatics Institute. (http://www.ebi.ac.uk/pdbe/

prot_int/pistart.html). Where PISA predicted that the asymmetric unit represents the most

stable quaternary structure in solution, we obtained structures from the Protein Data Bank

(http://www.rcsb.org/) [33]. Otherwise the analyses were implemented by us, using Python

and R. Plots were produced with R, and other visualisations using VMD (Visual Molecular

Dynamics) [80]. Data sets of peripheral membrane proteins were generated on a snapshot of

the OPM-database extracted the 23. Dec. 2013.
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